

MASTER

A METHODOLOGY FOR REGIONAL ECONOMIC ANALYSIS OF URBAN
REFUSE AS AN ENERGY SOURCE FOR THE NORTHEAST

PETER M. MEIER AND TIEN LE

PREPARED FOR PRESENTATION AT THE 1979 ANNUAL NORTHEAST
REGIONAL SCIENCE ASSOCIATION MEETING
AMHERST, MASSACHUSETTS, JUNE 1979

DIVISION OF REGIONAL STUDIES
NATIONAL CENTER FOR ANALYSIS OF ENERGY SYSTEMS
DEPARTMENT OF ENERGY AND ENVIRONMENT

BROOKHAVEN NATIONAL LABORATORY
UPTON, NEW YORK 11973

bnl
cui

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

A Methodology for Regional Economic Analysis of Urban Refuse as an
Energy Source for the Northeast

by

Peter M. Meier

and

Tien Le

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Prepared for presentation at the
1979 Annual Northeast Regional Science Association Meeting
Amherst, Mass., May 1979

Division of Regional Studies
Brookhaven National Laboratory
Upton, New York 11973

Prepared under contract no. EY-76-C-02-0016
with the United States Department of Energy

A METHODOLOGY FOR REGIONAL ECONOMIC ANALYSIS OF
URBAN REFUSE AS AN ENERGY SOURCE FOR THE NORTHEAST*

Peter M. Meier and Tien Le

I. INTRODUCTION

Although the natural regional scale of many energy planning problems is by now well recognized, a number of problems still beset the application of the methods of regional analysis to energy planning and the implementation of coherent regional policy. Even at the national level, energy policy analysis encompasses a unique blend of economic, technological and environmental considerations, for which analytical tools are still in their infancy; and the addition of the spatial dimension essential to the regional perspective poses even greater conceptual and computational problems. Moreover, although the development of regional institutions focussed on energy policy implementation is still in the formative stages, the recognition of the importance of coherent regional energy policy-making has, over the past few years, led to the emergence of several increasingly active bodies in this field such as the New England Regional Commission, the Association of Rocky Mountain States, and the Western Governors Regional Energy Policy Office [24].

A case of point is the question of the potential contribution of municipal refuse as an energy source, a question obviously closely related to the spatial distribution and characteristics of population, and the cost of alternative fuels. Equally obvious is the fact that simplistic calculations that assume all municipal refuse to be potentially available for energy conversion, ignoring economic realitites, is useful only as an indication of upper bound. Preferable would be a methodology that integrates population, interregional fuel price variations, and other engineering variables into a single model that can be subjected to sensitivity analysis helpful to the policy maker. The objective of this paper is to develop such a framework in the context of the Northeast States.¹

*The research upon which this paper is based was supported by the Regional Assessment Division, U.S. Department of Energy. The writers are also pleased to acknowledge the assistance of their Brookhaven colleagues T.H. McCoy and W. Metz.

¹New England, New York, New Jersey, Pennsylvania, Maryland, Delaware, and the District of Columbia.

A number of methodological issues emerged very early in our analysis. Whilst there is a wealth of material on the use of refuse as an energy source from the national perspective, [25,11,9] and any number of detailed engineering studies for particular metropolitan applications [27,29] many of the variables central to the analysis of policy trade-offs at the regional scale are not readily incorporated into traditional engineering methodologies. For example, even in the face of strong regulatory postures of federal energy agencies in matters of energy allocation and energy costs, one of the key issues concerns intra- and inter-regional fuel price differentials, an issue that can be captured only to the extent that the methodology itself has a spatial dimension. An appropriate approach seemed to be one based on the application of a generalized model of urban structure that captures the necessary compromise between detailed engineering feasibility studies on the one hand, and regional scale models on the other. Thus, in addition to a resolution of the energy policy issue itself, the purpose of this paper is to illustrate the extension of analytical and empirical models and methods developed in urban geography and regional science over the past decade to their prescriptive application to energy policy analysis.

2. SOME CONCEPTUAL AND PRACTICAL PROBLEMS OF PRACTICAL REGIONAL ANALYSIS

The two extremes of the spectrum of analytical approaches are readily disposed of. At the one extreme, one might attempt to perform detailed engineering-economic analysis for every SMSA in the region, aggregating to an appropriate regional total. The difficulty here is primarily logistic, since the resources likely to be allocated to the type of policy question considered in these pages obviously precludes such an effort. Moreover, even given the circumstance that one might build on those studies that already exist, inspection of even a very small sample of detailed studies will likely show great divergence of analytical methods and standards of data collection, resulting in substantial difficulty, therefore, in cross-comparisons. At the other extreme stands the case study approach, in which one seeks to analyze in detail some "representative" sample of cases, followed by a suitable aggregation procedure. Unfortunately the spatial differentiation of economic and demographic variables makes such an aggregation very difficult without explicit consideration and quantification of intra-regional spatial trends, and the expedient of simply working with average regional values, and regional

totals, proved to yield little of any value for policy analysis (although useful as an order of magnitude check).

One approach to the aggregation problem was developed by Isard et al. [12] in a comparative analysis of nuclear energy centers with their dispersed sited counterparts: to avoid detailed analysis of the substantial number of dispersed sites, these were grouped into "surrogate" categories, based on common demographic-social and economic criteria. The results of multiplier analysis conducted for each of the surrogate categories were then readily aggregated to yield the desired comparisons. This line of attack, however, was not deemed appropriate to our problem, largely as a result of the difficulties of a surrogate classification of urban energy systems.

The approach finally selected was indeed to identify all SMSA's and non-SMSA urban areas in excess of 25,000 population in the Northeast, but then use a common model of urban population structure, and derive regional totals by summation. Use of matrix algebra makes such an approach not unusually formidable from a computable viewpoint, and the issue of aggregation is inherently solved. There were, to be sure, some computational difficulties in model parameter estimation for the 78 subregions (SMSA's, urban areas) included (see Section 7, below), but the model, once operational, allowed examination of important policy issues associated with land use and intra-regional price differentials at low cost.

The problem of data, too, is especially difficult in the solid waste field, as there is no comprehensive national-regional data base of adequate detail and reliability for even the most basic variables in a study of this kind--the per capita generation of residential refuse as a function of socioeconomic characteristic. To be sure, numerous studies and estimates exist for individual towns and cities,² but quantitative comparisons are made difficult by the significant variations in reporting guidelines. For an estimate of solid waste generation to be acceptable, it must include specific information about the following items, among others: the extent of garbage grinding in homes; whether bulky wastes are collected separately and whether they are included in the total; what fraction of commercial refuse is included in the total; and whether, if garbage is collected separately, it is included

²See, for example [5], a study relating refuse generation to socioeconomic variables in the Chicago area, or [9], focussed on Cincinnati. The problem from the perspective of a regional scale analysis, however, is the absence of a synthesis of these individual studies and the consequent lack of a consistent data base at the appropriate scale.

in the total (frequently it is not because its collection is privately contracted for delivery to piggeries, especially in the Northeast).³ Yet such detail is all too often absent.

3. URBAN REFUSE AS AN ENERGY SOURCE

The energy accounting framework developed at Brookhaven for policy analysis and technology assessment is illustrated on Figure 1; termed a Reference Energy System, it portrays all of the elements of an energy system in terms of Btu flows.[1,3] Energy flows are indicated in 10^{12} Btu above each element, with conversion efficiencies indicated in parentheses. Energy from refuse might enter into the regional energy system in a number of ways--as a substitute for coal at coal-fired electric generation stations (typically as a fuel supplement to about 20% by weight as envisaged for a number of base load plants in the Northeast); as a source of synthetic natural gas (SNG), either by anaerobic digestion or by gas pyrolysis process such as the Union Carbide Purox Process (demonstrated at Charleston, W. Virginia); or as a source of industrial process steam by way of incineration in Waterwall boilers (exemplified by the Saugus Massachusetts Energy Recovery facility that provides process heat to a nearby General Electric Manufacturing Plant).⁴

The energy yield of a given quantity of refuse will depend not only on the conversion technology (since these vary quite substantially in efficiency), but also on the refuse composition. As an illustration of the type of computation necessary, consider the following computation of the heat value of refuse, the parameter of interest for direct combustion in utility

³Recognizing the inadequacies of the existing solid waste data base, the U.S. Environmental Protection Agency (EPA) commenced in 1973 a systematic scientific data collection effort for a stratified random sample of Standard Metropolitan Statistical Areas (SMSA), the intent being to create a national data resource on solid waste quantities, composition, collection, and disposal costs. Unfortunately, this program has had its funding difficulties, and the fruits of the data collection effort are not yet apparent. In any event, there are too few SMSA's in the Northeast in the EPA sample to provide the basis for a quantitative relationship focused on our study region.

⁴There are a number of other possibilities, such a Brayton Cycle Power Generation (in which the exhaust gases from refuse combustion are used directly to power a gas turbine), various hydrogeneration processes, and a variety of exotic bioconversion processes including acid hydrolysis to ethyl alcohol, enzymatic conversion to glucose, or conversion to yeast. None of these technologies, however, were considered to be sufficiently well developed to make a measurable contribution to energy supplies over the next 10-15 years.

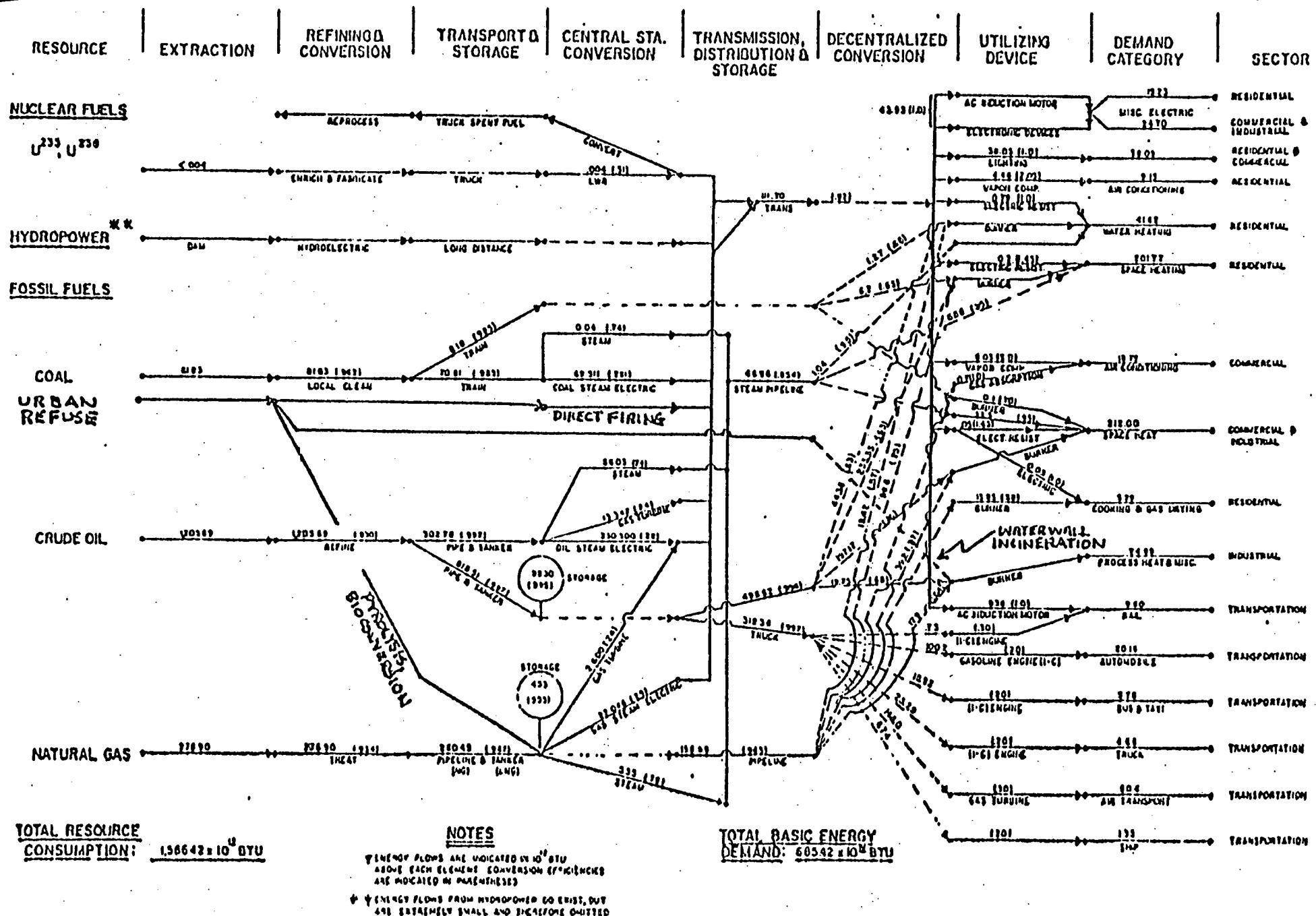


Figure 1: Reference Energy System for New York City, 1970 with refuse energy pathways superimposed.

boilers and waterwell incineration. Suppose C is an $m \times 1$ vector representing the fractional composition of m refuse categories, and let W be a $1 \times n$ vector whose elements represent the total quantity of refuse generated in each of n subregions.⁵ Also, let T be an $(m \times k)$ matrix corresponding to the transformation from m refuse categories to k ultimate analysis categories. Then the matrix product

$$(1) \quad T' \times C \times W = U$$

$$(k \times m) \quad (m \times 1) \quad (1 \times n) \quad (k \times n)$$

represents the tons of k ultimate analysis categories generated in each of the n subregions per year. Table 1 shows the transformation matrix T and the base case refuse composition vector as used in our analysis. Then, armed with the ultimate analysis, one may apply an equation derived by Wilson [33] to obtain the heat value: using basic thermo-chemical principles and assuming complete combustion, the heat content, in Btu/lb, is given by

$$(2) \quad 14096 C + 64678 H - 5950 O + 1040 N + 3982 S$$

where C , H , O , N and S are the fractions of total carbon, oxygen, hydrogen, nitrogen and sulfur, respectively. However, due to the moisture in the refuse (in fact, one of the key parameters), this heat value will be reduced somewhat; if h_r is the heat vaporization of moisture, and H_2O the moisture content, then one must subtract $h_r H_2O$ from eq. (2). In matrix terms, the annual energy yield in each of n subregions, B_T in 10^{12} Btu/yr, is given by

$$(3) \quad B = \frac{2000}{10^{12}} \gamma T C W$$

$$(1 \times n) \quad (1 \times k) \quad (k \times m) \quad (m \times 1) \quad (1 \times n)$$

where γ is the vector notation for Equation (2).

The results of this procedure, extended to other conversion technologies, and summed over all in subregions, are shown on Table 2, which shows the potential contribution that municipal refuse could make to particular elements of the Northeastern Energy System on the assumption that all the refuse in the region were so utilized. Thus, for example, we note that refuse could have contributed, in 1972, 6.1% of the region's natural gas supply, or replaced 18% of the coal used for electric generation.

However, although it is highly unlikely that all refuse would be so converted, and even though the maximum contribution to the region's energy

⁵Subregional identities need to be preserved for reasons elaborated in Section 5, below.

TABLE 1
ASSUMPTIONS

ULTIMATE ANALYSIS CATEGORIES

C	Carbon
H	Hydrogen
O	Oxygen
N	Nitrogen
S	Sulfur
INRT	Inerts
H ₂ O	Moisture

ULTIMATE ANALYSIS TRANSFORMATION MATRIX (T)

	<u>PAPR</u>	<u>GARB</u>	<u>GARD</u>	<u>PLST</u>	<u>METL</u>	<u>GLSS</u>	<u>OTHR</u>	<u>HSO</u>
C	.4400	.4400	.4800	.4700	.0450	.0050	0.0000	0.0000
H	.0610	.0570	.0590	.0300	.0063	.0007	0.0000	0.0000
O	.4160	.2760	.4240	.2400	.0420	.0036	0.0000	0.0000
N	.0043	.0279	.0029	.0190	.0085	.0003	0.0000	0.0000
S	.0012	.0025	.0011	.0055	.0091	0.0000	0.0000	0.0000
INRT	.0765	.2187	.0289	.1970	.9040	.9902	1.0000	0.0000
H ₂ O	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
TOTAL	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Omega Victor (ω)

C	14096.0
H	64678.0
O	-5940.0
N	1040.0
S	3982.0
INRT	0.0
H ₂ O	-1120.0

TABLE 2
POTENTIAL ENERGY CONTRIBUTION: TO THE NORTHEAST U.S.
BASE YEAR 1972

<u>Process</u>	<u>Efficiency</u>	<u>Potential Btu Yield 10^{12} Btu/year</u>	<u>Resource Replaced</u>	<u>1972 Resource Use 10^{12} Btu/year^a</u>	<u>Potential Percentage Replacement Resource</u>
Gas Pyrolysis	.55	161	Natural gas	2635	6.1
Bioconversion	.493	144			5.4
Oil Pyrolysis	.487	143	Fuel oil for steam electric	1630	8.7
Direct Firing	.272	80	Electricity	1239	6.4
	.85	250	Coal for steam electric	1335	18.7
Steam Generation	.73	214	Non-electric industrial process heat	1686	12.7

^aFrom Lee [14]

supply is small, the potential contribution is of the same order of magnitude as some of the estimates of the more controversial regional resources, especially offshore oil and gas. Thus, from the point-of-view of policy analysis, the range of zero to six percent contribution to gas supply (corresponding to no refuse conversion, and utilization of the entire resource, respectively) is entirely inadequate, since that range of uncertainty would aid little in an evaluation of the necessity for the more controversial alternatives. Thus the injection of economic variables, the focus of the remaining sections of this analysis, was justified on the basis of providing the overall study with more useful information on which to analyze policy alternatives.

4. THE BREAKEVEN REFUSE PRICE

The central concept of the economic analysis used in our model is that of the breakeven refuse price. This is the price of refuse that an electric utility or private entrepreneur is willing to pay for refuse delivered to his facility, and is defined as that price for which the discounted present worth of annual returns equals the original investment:

$$(4) \quad \sum_{t=1}^n \left\{ \left[(S' - P_R) q_R(t) - O(t) \right] \frac{1}{(1+i)^t} \right\} = I$$

where i = opportunity cost of capital

n = recovery period

$q_R(t)$ = quantity of refuse purchased in period t , tons/year

$P_R(t)$ = breakeven price of refuse in period t , \$/ton.

$O(t)$ = other operating costs in period t , \$/ton.

S' = revenue for sale of recovered energy, \$/ton.

I = necessary investment, \$

Note that P_R can also have a negative sign, which implies that a municipality would pay the entrepreneur for disposing of refuse, payments frequently referred to as tipping fees. Indeed, current conditions make this the likely situation; but provided that the tipping fee to the entrepreneur is less than that incurred by alternative means, say by incineration or remote landfill, even negative values would provide the necessary market incentives for conversion.

The capital cost I is of course a function of the facility size; if one assumes that the usual exponential rule adequately captures the available scale economies, i.e.

$$(5) \quad I = C(q_R) = C(q_0) \left(\frac{q_R}{q_0} \right)^b$$

where $C(q)$ is the investment cost at annual capacity q , b is the scale coefficient, typically around 0.7 for complete process facilities, and q_0 plant size for which a good engineering cost estimate $C(q_0)$ is available, then, under the additional constraints of constant capacity, say q_R , and constant P_R , rearrangement of (4) leads to

$$(6) \quad P_R = S' - O' - CRF(i,n) I'_0 \left(\frac{q_R}{q_0} \right)^b$$

where $CRF(i,n)$ is the capital recovery factor at interest rate i and time horizon n , O' is the per ton operating cost and I'_0 the per ton capital cost at a facility of capacity q_0 tons/year. But S' is equal to the product of the energy P_E (say as 10^6 Btu per ton of refuse) and the market price of energy, e , ($$/10^6$ Btu), and hence P_R solves to

$$(7) \quad P_R = P_E e - O' - CRF(i,n) I'_0 \left(\frac{q_R}{q_0} \right)^{b-1}$$

Applying this to the 4 major conversion technologies noted earlier for 1000 ton per day facilities, and assuming $i = 10\%$, $n = 20$ years, the results of Figure 2 emerge: the fuel costs used here are as given by March 1979 data for delivered fuel costs at electric power plants under long term contract (spot prices are generally much higher, and more volatile). Decreases in interest rate, and increases in plant size, result in upward, parallel shifts in the indicated curves.

It should be noted that these curves are likely to show significant shifts through time: Figure 3, for example, uses the same derivation but with 1975 estimates of capital and operating costs, and indicates 1975 fuel cost ranges. With OPEC induced oil price increases, and the beginning of gas deregulation, these ranges have shifted to the right with time (compare Figure

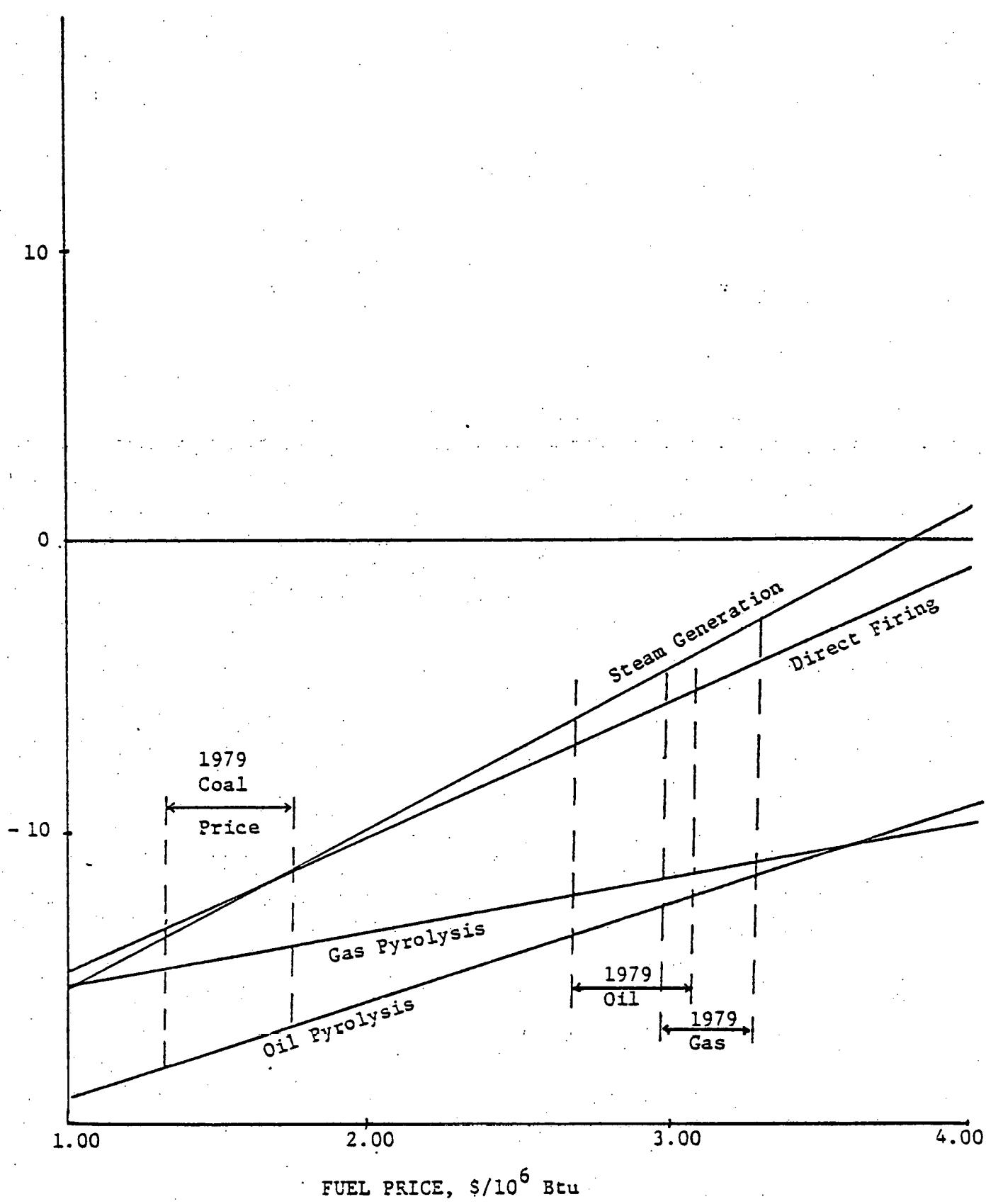


Figure 2: 1979 Breakeven Refuse Price Curve.

BREAK-EVEN REFUSE PRICE \$/TON

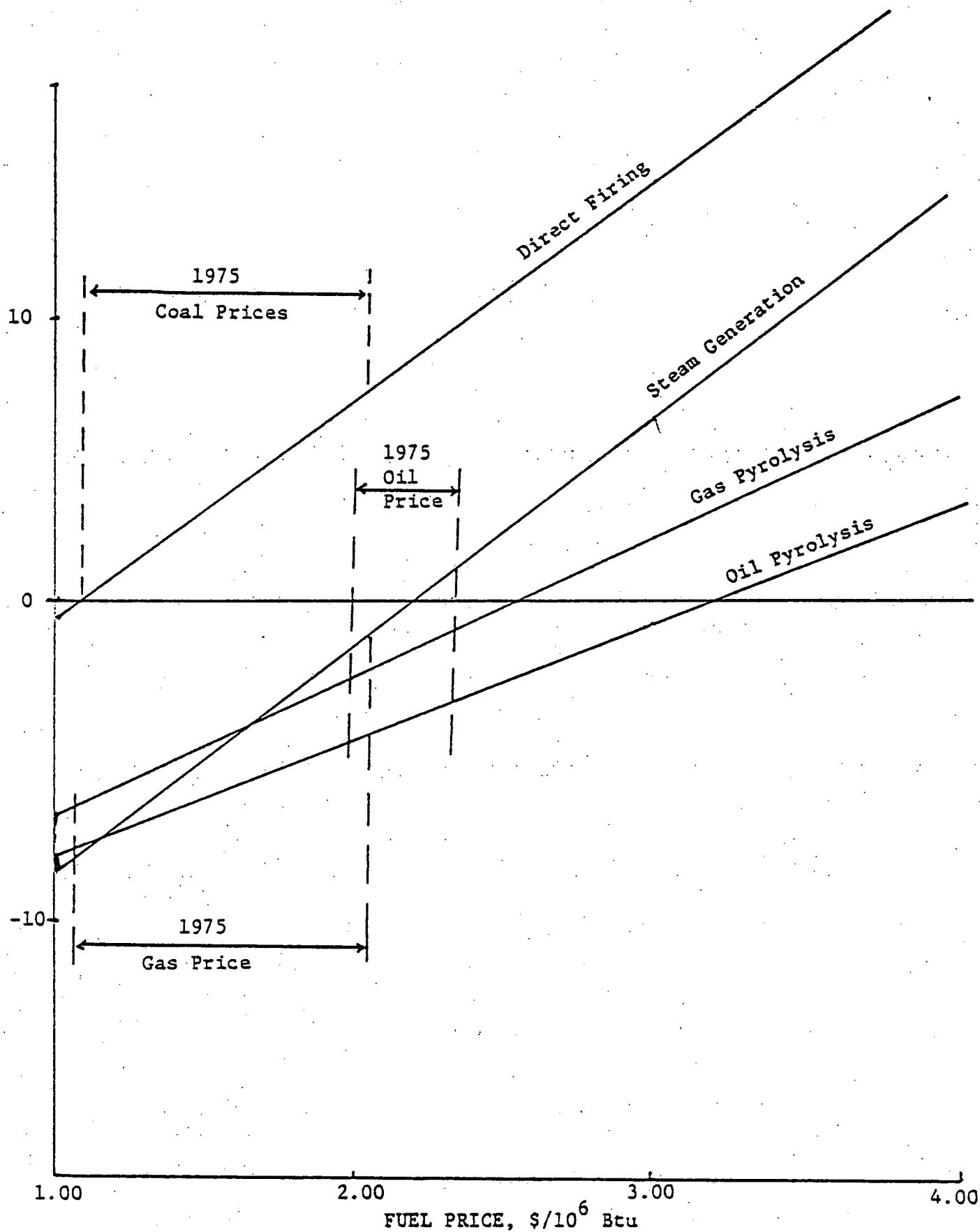


Figure 3: 1975 Breakeven Refuse Price Curves.

2 & 3)⁶. We note also a significant change in the y-intercept: the curves are lower in 1979 than 1975, reflecting less optimistic estimates of capital costs now that several resource recovery facilities have actually been built: Figure 4, for example, compares the shift in the process cost curves for steam generation. These curves are readily interpreted for a given situation. Suppose, for example, that the cost of landfill disposal faced by a municipality were \$5.00/ton, and suppose one were to consider the use of RDF fuel as a substitute for oil for steam generation: at the current range of oil prices, we see a breakeven refuse cost of between minus \$4 to minus \$6, implying a tipping fee of from 4 to 6\$. It follows that if no additional transportation cost to the municipality to bring the refuse to the RDF facility is incurred, the tipping fee is about equal to the cost of alternative disposal, and the option would be economic. A haul cost of, say \$5/ton, however, would in effect lower the RDF curve by that amount, bringing the curve below the alternative disposal cost, thus making the RDF alternative uneconomic (see Figure 4).⁷

5. REFUSE AS A SPATIALLY VARYING RESOURCE

The essence of the decision problem is the balance between breakeven refuse cost, haul cost to the energy conversion facility, and the alternative disposal cost to the municipality. Ceteribus Paribus, the greater the amount of refuse converted to energy at a single facility, the lower is the unit cost of processing. But, assuming a centrally located conversion facility, the greater the quantity of refuse converted, the further from the center must one travel to obtain the necessary refuse, and thus the greater the transportation cost. Moreover, for every infinitesimal element of the urban continuum, breakeven refuse price minus haul cost must be less than the alternative disposal cost, given rational economic behavior. Thus, in a realistic

⁶It is interesting to see that the range of gas prices encountered in the Northeast in 1979 is much narrower than the wide range of 1975.

⁷Much of the reasoning behind this approach to the problem was stimulated by correspondence in Science that dates back to 1974 and 1975, and particularly Roger Bolton's response to the article by J. Albert et al., Science 183, 1052. Albert et al. use the term "dump price" rather than tipping fee, or breakeven refuse price. It might be noted that the assumption of constant refuse quantities over time implied by the equations used here is not as unreasonable as may first appear, because agreements between entrepreneur and municipality typically span 15 to 25 years, guaranteeing supply arrangements and delivery price schedules over that interval.

BREAK-EVEN REFUSE PRICE, \$/TON

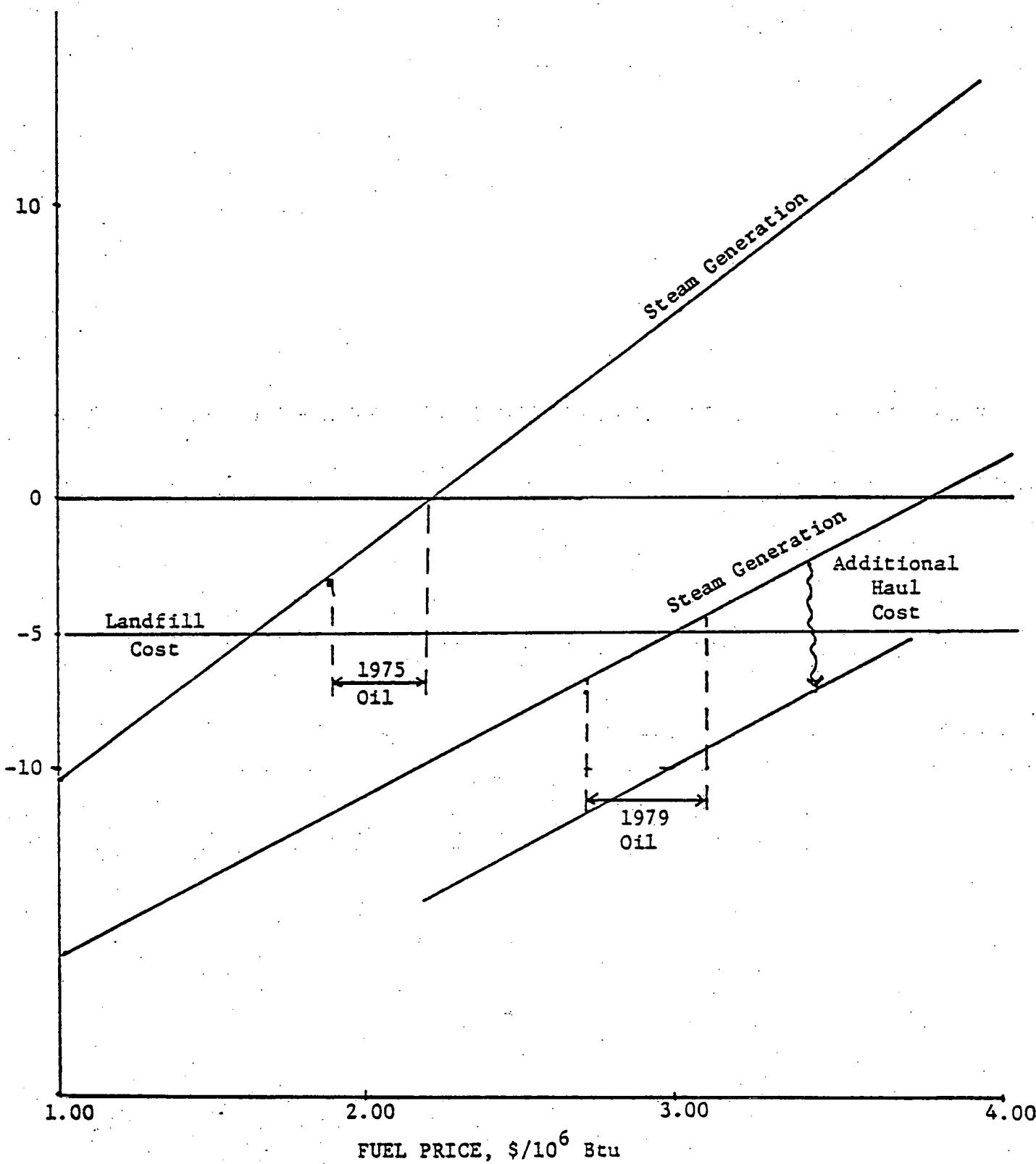


Figure 4: 1975 & 1979 Comparison for Steam Generation.

assessment of the extent of likely future refuse-to-energy conversion, the spatial distribution of refuse within each SMSA becomes as important as variations of refuse generation between SMSAs.

If one assumes constant per capita generation rate, then refuse generation per unit area will show the same spatial variation as population density. But population density in an urban area shows strong spatial variation, for which a widely used characterization is the classic formulation of Clark

$$(8) \quad d(r) = d_0 e^{-\alpha r}$$

where $d(r)$ is the population density at distance r from the city center, α is the density gradient, and d_0 the extrapolated value of central density. It follows directly that if q is the per capita refuse generation rate, in pounds capita/day, the tons of refuse generated per unit area at distance r from the city center is

$$(9) \quad \frac{365}{1000} qd(r) = .1825 qd_0 e^{-\alpha r} = a e^{-\alpha r}$$

It follows further that the quantity of refuse generated out to the distance R in the city of sector angle θ , $Q(R)$, is given by

$$(10) \quad \begin{aligned} Q(R) &= \int^R \int^{\theta} a e^{-\alpha r} r dr d\theta = a \theta \int^R e^{-\alpha r} r dr \\ &= \frac{a \theta}{\alpha^2} \left[1 - (1 + \alpha R) e^{-\alpha R} \right] \end{aligned}$$

As a useful aside, what advantage is there to such a model formulation, as opposed to the use of an SMSA-wide average population density? If σ is the haul cost per ton per mile and R the SMSA radius then the assumption of constant density results in an average haul cost of $\frac{2}{3} R \sigma$ \$/ton for a conversion located at the city center. Elsewhere [19] we have shown that the assumption of the population density distribution (8) results in an average haul cost of

$$(11) \quad \sigma \frac{1}{\alpha} \frac{2 - (2\alpha R + \alpha^2 R^2)}{1 - (1 + \alpha R)} e^{-\alpha R}$$

For a typical SMSA of about 20 miles radius, with a typical α value of 0.3, use of (11) yields an average haul cost of 6.4σ , as opposed to 14.4σ yielded by the comparable constant average density assumption. Use of the constant average density assumption may thus typically introduce as much as a 50% error into the haul cost computation, and yields results biased against resource recovery, from which the additional complexity of the exponential model can indeed be seen to be worthwhile.

6. HAUL COSTS AND OPTIMAL RESOURCE UTILIZATION

Consider first the case of house-to-house refuse collection vehicles being driven directly to the energy conversion facility. Transportation costs of such vehicles are generally given in terms of \$/hour to operate a truck of given capacity. If γ_h = cost, in \$/hour, r = haul distance in miles, s = average truck speed, in miles/hour, and u = unloading time, in hours, then the haul cost per trip is

$$(12) \quad \gamma_h \left(\frac{2r}{s} + u \right)$$

and hence the cost per ton, as a function of haul distance, is

$$(13) \quad \frac{\gamma_h}{t} \left(\frac{2r}{s} + u \right)$$

where t is the truck capacity in tons.

With Eq. (9) used to obtain the refuse generation rate at distance r from the center, then the haul cost at that radius, $c(r)$, is given by

$$(14) \quad \begin{aligned} c(r) &= \frac{\gamma_h}{t} \left(\frac{2r}{s} + u \right) q(r) \\ &= \frac{2\alpha\gamma_h}{ts} r e^{-\alpha r} + \frac{au\gamma_h}{t} e^{-\alpha r} \end{aligned}$$

Further, on the assumptions of a circular city of sector angle θ , and a conversion facility located at (or near) the city center, the total haul cost per year for the area within radius R , $c(r)$, is given by⁸

⁸ θ describes the angle subtended by the city topology at its center: Chicago for example, has a θ value of about 180° (i.e., π radians), whereas the coastline of Boston Bay would prescribe an θ value of about 270° . In all of the above derivations, θ is of course in radians.

$$(15) \quad C(R) = \int^{\theta} \int^R c(r)r \, d\theta \, dr$$

by further algebra omitted here, this integral can be shown to yield

$$(16) \quad C(R) = \frac{2a\theta\gamma_h}{ts\alpha^3} \left[2 - \left(2 + 2aR + \alpha^2 R^2 \right) e^{-\alpha R} \right] \\ + \frac{au\theta\gamma_h}{ts\alpha^2} \left[1 - (1 + \alpha R) e^{-\alpha R} \right]$$

Now consider the decision problem as to the service area of the conversion facility, expressed in terms of the distance from the central location to which haul and conversion still remains economic. Obviously, as the haul distance becomes greater, a point will be reached at which haul costs plus conversion costs minus alternative disposal costs exceed revenues from the sale of energy.

The total annual cost of refuse management $y(R)$, if refuse is delivered within a radius R to a central conversion facility, is given by⁹

$$(17) \quad y(r) = -Q(R)P_R + [Q_T - Q(R)]P_D + C(R)$$

where the first term represents revenue from energy conversion, the second the cost of disposing of the residual refuse (not delivered to the conversion facility) and the third the haul cost to the energy facility; and

$Q(R)$ = refuse converted to energy, tons/year

Q_T = total refuse in the region, tons/year

P_R = breakeven refuse price, \$/ton

P_D = alternative refuse disposal cost, \$/ton

$C(R)$ = cost of refuse delivery to conversion facility, \$/yr.

Since minimization of y is the objective, differentiating Eq. (17) with respect to R , setting and result to zero, and solving for R will yield the optimum distance (and hence, the amount of refuse optimally converted), i.e.,

⁹This assumes that there is no haul cost for refuse beyond the radius R , an assumption that is justified on the basis of computational experience that shows R^* , the optimum radius, to lie beyond the bounds of the central city, somewhere in the suburbs. In these areas, disposal is generally by individuals or private contractors to landfills there on an ad hoc basis; and since each suburb in the typically politically fragmented Northeast tends to have its own disposal site, such haul costs tend to be low.

$$\frac{dy(R)}{dR} = -P_R \frac{dQ(R)}{dR} + Q(R) \frac{dP_R}{dR} - P_D \frac{dQ(R)}{dR} + \frac{dC(R)}{dR} = 0$$

hence

$$(18) \quad (P_R + P_D) \frac{dQ(R)}{dR} = Q(R) \frac{dP_R}{dR} + \frac{dC(R)}{dR}$$

but from (10)

$$(19) \quad \frac{dQ(R)}{dR} = a\theta R e^{-\alpha R}$$

from (14)

$$(20) \quad \frac{dC(R)}{dR} = a\theta R e^{-\alpha R} \left\{ \frac{u\gamma_h}{t} + \frac{2R\gamma_h}{ts} \right\}$$

and from (7)

$$(21) \quad \frac{dP_R}{dR} = \frac{-CRF(i,n)I'_0}{q_0^{\beta-1}} (\beta - 1) Q(R)^{\beta-1} a\theta R e^{\alpha R}$$

Substituting these expressions into (18), and solving for the optimum radius R^* , albeit omitting some algebra, yields

$$(22) \quad R^* = \frac{ts}{2\gamma_h} \left\{ P_E \epsilon - 0' + \frac{CRF(i,n)I'_0}{q_0^{\beta-1}} [(\beta - 1)Q(R^*)^\beta - Q(R^*)^{\beta-1}] - \frac{u\gamma_h}{t} \right\}$$

which must be solved simultaneously with (10) to obtain the solution for the two variables of interest, R^* and $Q(R^*)$. Since neither can be obtained explicitly, we must resort to numerical techniques; in this case, the Newton-Raphson algorithm proves to be the appropriate procedure. Simply by substituting (10) into (22), one obtains the desired value of R^* by determination of the root of the resulting function.

The assumption that the refuse energy conversion facility be at (or near) the city center, however, is rarely satisfied. Inspection of a number of SMSA's, and some experimentation as to sensitivity of the results to assumptions, showed that two further situations needed explicit consideration--the case of an arbitrary location for the conversion facility (even, possibly, beyond the limits of the SMSA), and the case of a transfer station mode of refuse management, in which collection vehicles would deliver not directly to the conversion facility, but to some transfer station located

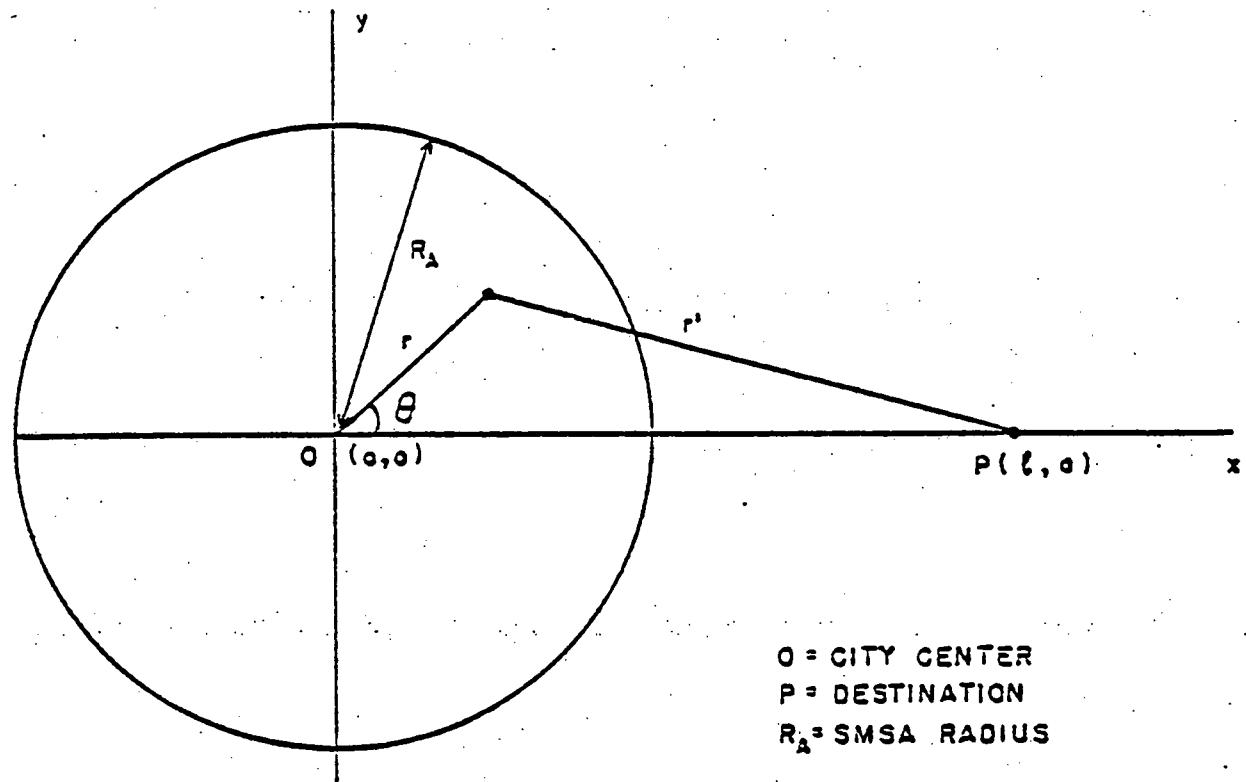


Figure 5: Definition Sketch: General Conversion Facility Location

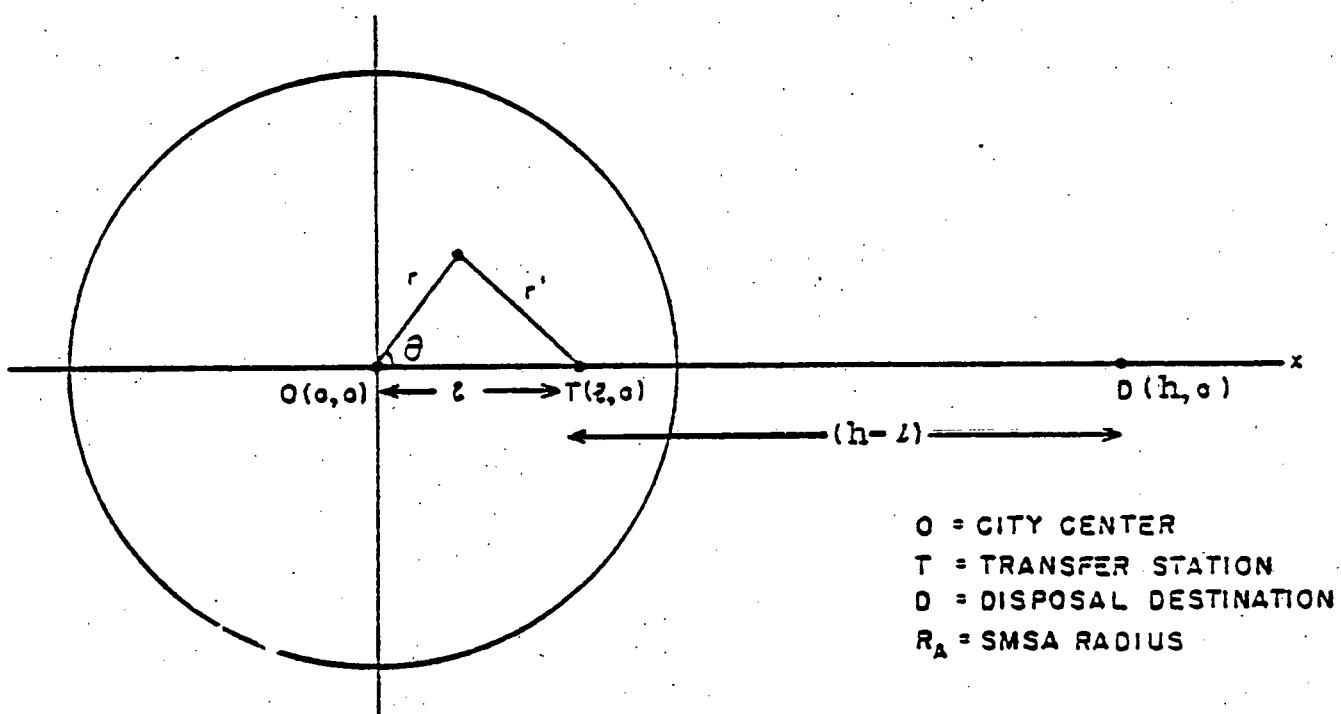


Figure 6: Definition Sketch: Transfer Station Case

within the SMSA, and subsequent haul from that transfer station by large tractor-trailers.¹⁰

Consider first a conversion facility located a distance l from the city center (Figure 5). In this case the distance between the infinitesimal element and its destination is given by

$$(24) \quad r'^2 = r^2 + l^2 - 2rl \cos\theta$$

and hence substituting into (13) gives the haul cost per unit area at (r, θ) as

$$(25) \quad c(r, \theta) = \frac{\gamma_h}{t} \left[\frac{2}{s} (r^2 + l^2 - 2rl \cos\theta)^{1/2} + u \right] q(r)$$

The total average system haul cost is given by

$$(26) \quad C_A(R) = \frac{\int_{r=0}^R \int_{\theta=0}^2 c(r, \theta) r dr d\theta}{\int_{r=0}^R \int_{\theta=0}^2 q(r) r dr d\theta}$$

which yields

$$(27) \quad = \frac{2\gamma_h}{ts} \frac{\int_{r=0}^R \int_{\theta=0}^2 (r^2 + l^2 - 2rl \cos\theta)^{1/2} q(r) r dr d\theta}{\int_{r=0}^R \int_{\theta=0}^2 q(r) r dr d\theta} + \frac{\gamma_h}{t} u$$

After considerable but tedious algebra, again omitted here, we obtain, finally,

$$(28) \quad = \frac{4\gamma_h \alpha^2}{\pi ts} \frac{\int_0^R r(r + l) e^{-\alpha r} E\left(\frac{2\sqrt{rl}}{r+l}\right) dr}{1 - (1 + \alpha R) e^{-\alpha R}} + \frac{\gamma_h}{t} u$$

where $E(x)$ is a complete elliptical integral of the second kind.¹¹ Note that for the special case $l = 0$, this reduces to Eq. (16), and that Eq. (28) is

¹⁰Haul by rail or by barge from transfer station to conversion facility was not considered on ground of it being applicable only in very special situations.

¹¹An Elliptical integral of the second kind is defined as the general form

$$E(x) = \int_0^{\phi_0} (1 - x^2 \sin^2 \phi)^{1/2} d\phi$$

if $\phi_0 = \pi/2$, $E(x)$ is called a complete elliptical integral (of the second kind).

valid for any l , within or outside R_A .

As the distance from population center to haul destination increases, the cost of transporting refuse in the vehicle used for house-to-house collection increases. At some break-even distance, it becomes cheaper to build a transfer facility near the population center and to haul refuse from there to the disposal (or energy recovery) site in large tractor-trailers.

Such a system is diagrammed in Figure 6. Haul cost to the transfer station in collection vehicles is given by Eq. (28). To this must be added the haul cost from transfer station to disposal site, given by

$$(29) \quad \frac{\gamma^*}{t^*} \left[\frac{2(h - l)}{s^*} \right] + u^*$$

where γ^* = cost, \$/hour

t^* = truck capacity, tons

s^* = speed, miles/hour

u^* = loading and unloading time, hours

This is analogous to Eq. (13), with the asterisk indicating reference to a transfer vehicle rather than a collection vehicle (note that u^* includes both loading and unloading time whereas u included only unloading time).

The capital cost of the transfer facility must also be considered. The cost of processing a ton of refuse at a transfer station, C_T , has been expressed as [15].

$$(30) \quad C_T = b/T^m$$

where b and m are constants characteristic of the station design and construction costs, and T is the transfer station capacity in tons/day. If T is in the range 100 to 1500, then from [15], $b = 33.4$ and $m = 0.55$, and hence the average cost per ton for a transfer station serving a city of radius R is

$$(31) \quad C_T = \frac{33.4}{[Q(R)/260]^{0.55}}$$

where $Q(R)$, in tons/year, is given by Eq. (10) and 260 represents the number of working days per year. The total cost for delivering refuse to the transfer station, transferring it, and hauling it to the destination point is thus given by

$$(32) \quad C_T(R) = \frac{4\gamma_h \alpha^2}{\pi t s} \cdot \frac{\int_0^R r(r + l) e^{-r} r_E \left(\frac{2\sqrt{rl}}{r+l} \right) dr}{1 - (1 + \alpha R) e^{-\alpha R}} + \frac{\gamma_h}{t} u + \frac{\gamma^*}{t^*} \left[\frac{2(h - l)}{s^*} \right] + \frac{33.4}{\left\{ \frac{a\theta}{260\alpha^2} \cdot [1 - (1 + \alpha R) e^{-\alpha R}] \right\}^{0.55}}$$

We are now in a position to determine the optimum radius R^* , and hence the optimum quantity of municipal refuse converted to energy, for each SMSA and for each alternative conversion technology. For each SMSA we solve (17) for that R that yields the minimum total annual cost. Only in the special case of collection vehicle haul to a centrally located facility can one use the rather simple solution of the two simultaneous equations (10) and (22); where $C(R)$ in Eq. (17) is given by (32), one has the additional search dimension for l , and the additional suboptimization problem of whether or not to utilize transfer stations. This may, however, all be readily computed, and computation times for a run of 78 SMSA's required some 3 seconds of CDC 7600 CPU time, thus allowing extensive sensitivity analyses at not unreasonable cost.

7. COMPUTATIONAL ASPECTS OF THE EXPONENTIAL DENSITY MODEL

Before proceeding to a discussion of results, mention should be made of model parameter estimation problems. The traditional method of determination of the α and d_0 parameters of (8) from historical data rests on a linear regression estimation of the corresponding logarithmic version of (8), an approach exemplified by Treadway [30], Winsborough [34], Muth [23], Martin [16] and Guest [10]. Unfortunately, there are a number of statistical and computational difficulties inherent in this approach, difficulties that appear to have received little attention to date. The first, conceptual, problem concerns the issue of weighting values in statistical analysis of areal data; and, as predicted by Robinson's classic discussion [28], experimentation showed that regression estimates were indeed affected measureably by the weighting scheme chosen. The second difficulty concerns sampling variability; as indicated by Table 3, which compares estimates based on complete census tract samples with those based on limited samples, variability does indeed appear high. And, finally, there is the purely computational problem of

Table 3
COMPARISON OF α -ESTIMATES

City	Year	All Tracts	25 Tracts	50 Tracts
Akron	1960	.370 ^a		.19
Columbus	1950	.548 ^b	.190	.40
	1960	.421 ^b		.32
Dayton	1950	.467 ^b	.320	.51
	1960	.354 ^b		.37
Hartford	1950	.800 ^b		.70
	1960	.597 ^b		.51
Miami	1950	.336 ^b	.240	.32
	1960	.210 ^b		.18
Milwaukee	1960	.359 ^a		.10
Portland	1960	.087 ^a		.16
Syracuse	1950	.494 ^b	.92	.72
	1960	.437 ^b		.46
Toledo	1960	.292 ^a		.14

^afrom Martin [16]

^bfrom Treadway [30]

^cfrom Muth [23]

^dfrom Guest [10]

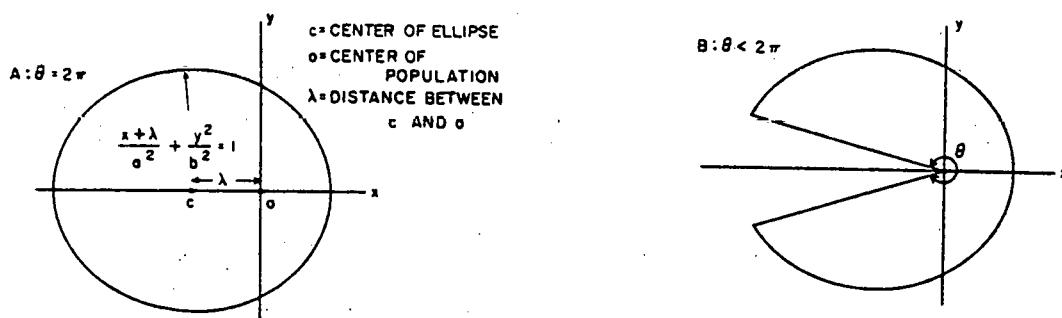


Figure 7: Definition Sketch: Elliptical SMSA

making census tract area¹² and distance determinations, especially, as in our case, when several hundred such estimates are required.

An alternative approach, suggested originally by Mills [21] and developed by Edmonston [8], rests on integration of (8) over appropriate spatial limits. For a circular city of sectoral angle θ , the integration of (8) to a distance R from the center can be shown to yield

$$(32) \quad P(R) = \frac{\theta d_0}{\alpha^2} \left[1 - (1 + \alpha R) e^{-\alpha R} \right]$$

Applying (32) to, say, the entire SMSA, of average radius R_A , and known population $P(R_A)$, and the central city of radius R_C and population $P(R_C)$, results in two simultaneous equations in the two unknowns α and d_0 , which, although no explicit solution exists, can be solved numerically; again it can be shown [19] that α is given by the root of

$$(33) \quad f(\alpha) = \frac{P(R_C) \left\{ 1 - (1 + \alpha R_A) e^{-\alpha R_A} \right\}}{P(R_A) \left\{ 1 - (1 + \alpha R_C) e^{-\alpha R_C} \right\}} - 1 = 0$$

However, a difficulty in the Mills-Edmonston approach is the assumption of circular or near circular topology, and it was found that direct application of (33) to many of the elliptically shaped urban areas in the Northeast introduced substantial error. Consider, therefore, the general case of an elliptical SMSA (Figure 7). Any point on such an ellipse, in polar coordinates (ϕ, R) , is given by the equation¹³

$$(34) \quad \frac{1}{a^2} (R \cos \phi + \lambda)^2 + \frac{1}{b^2} (R \sin \phi)^2 = 1$$

which may be solved for R to yield

$$(35) \quad R = \frac{-\frac{\lambda}{a^2} \cos \phi + \sqrt{\frac{1}{a^2} \cos^2 \phi + \frac{1}{b^2} \left(1 - \frac{\lambda^2}{a^2} \sin^2 \phi \right)}}{\frac{1}{a^2} \cos^2 \phi + \frac{1}{b^2} \sin^2 \phi}$$

¹²Census tract areas are not in the commonly available published statistics. There are some proprietary data basis, but these are expensive to use; and U.S. Bureau of the Census Computer Packages require very sophisticated software. The most common method reported in the literature (even the most recent) is a manual determination using tracing graph paper [30,17].

¹³This approach is discussed in some detail in [18].

denoted by $R(\phi)$. Thus the SMSA population is given by the integral

$$(36) \quad P_{\text{SMSA}} = \int_0^{\pi} \int_0^{R(\phi)} d_0 e^{-\alpha r} r dr d\phi$$

which can be shown to yield

$$(37) \quad = \frac{\theta d_0}{\alpha^2} - \frac{2d_0}{\alpha^2} \int_0^{\theta/2} [1 + \alpha R(\phi)] e^{\alpha R(\phi)} d\phi$$

defining an analogous expression for the central city, α is then given by the root of

$$(38) \quad f(\alpha) = \frac{P_C \left\{ \theta - 2 \int_0^{\theta/2} [1 + \alpha R_A(\phi)] e^{-\alpha R_A(\phi)} d\phi \right\}}{P_A \left\{ \theta - 2 \int_0^{\theta/2} [1 + \alpha R_C(\phi)] e^{-\alpha R_C(\phi)} d\phi \right\}} - 1 = 0$$

which is readily obtained by the Newton-Raphson technique. The differences between (33) and (38) and α and d_0 estimates are illustrated on Table 4. Note that in the special case of circularity in both SMSA and central city, (38) reduces to (32).

Table 4
THE EFFECT OF ESTIMATING TECHNIQUE

SMSA	1970 α -Estimate		1970 d_0 - Estimate (in 1000's)	
	Eq. (31)	Eq. (36)	Eq. (31)	Eq. (36)
Altoona	.65	.70	18.28	18.28
Lancaster	.36	.56	13.13	13.04
Manchester	.93	.83	15.21	12.96
Newark	.21	.19	27.28	26.00
Norwalk	.50	.43	11.23	9.76
Scranton	.37	.41	10.13	8.40
Ultica-Rome	.19	.26	3.89	3.74
Wilmington	.25	.24	9.87	8.57

Using this technique for all of the 69 SMSA's and urban areas in the Northeast allowed a rapid estimation of model parameters for both 1960 and 1970, avoiding the tedium of numerous regression computations for complete census tract sets.

8. SOME RESULTS

All of the above mathematics has been integrated into a single computer program, and Table 5 is an extract from the output listing, showing, for the case of direct firing in a coal boiler with landfill as the alternative disposal method, the optimum radii R^* , the SMSA radius R -SMSA, the central city radius R -CC, and the breakeven refuse price P_E .

In making projections for future refuse energy conversions, it should be clear that one must consider future values of α and d_0 . In the Northeast, where many SMSA's are already contiguous and without much scope for further territorial expansion, an assumption of constant SMSA area seems not unreasonable. But given this assumption, it is clear that population growth in our model can only be accommodated by adjustment in the α and d_0 parameters, an argument well developed by Winsborough [34]. Two specific cases were examined in detail; one assuming a continuation of current urban sprawl trends, in which we extrapolate the 1960-1970 trend for α (in most cases, of course, implying continuing decrease in α value), and then, using

TABLE 5
OPTIMUM RADIUS FOR ALTERNATIVE DISPOSAL AT \$5.00/TON
(Direct Firing in Utility Boilers, P_E -Coal Price, \$/ton)

SMSA	R^*	R -SMSA	R -CC	P_E
Albany	20.5*	26.6	3.6	3.3
Allentown	14.6*	18.6	3.7	1.2
Altoona	14.6	13.0	1.7	1.2
Atlantic City	33.1	19.0	2.8	8.0
Baltimore	30.1*	35.1	6.5	6.9
Binghamton	20.5*	25.7	1.9	3.3
Boston	24.4	19.9	4.3	4.8
Bridgeport	24.4	11.1	2.3	4.8
Bristol	24.4	4.0	2.9	4.8
Brockton	24.4	7.2	2.6	4.8
Buffalo	10.5*	26.0	4.2	3.3
Erie	24.6*	22.8	2.5	1.2

denotes $R^ < R$ -SMSA, implying that only part of the SMSA refuse would be economically converted.

Haul Cost Parameters

Truck size, tons (t)	=	5.50
Unload time, hr (u)	=	0.25
Average speed mph (s)	=	20.00
Optimum cost, \$/hr (γ_h)	=	20.00

the OBERS projection for total SMSA population, solve for d_0 , by substitution in (30); this will result in generally decreasing d_0 values also. As an alternative, we also considered a postulated revitalization of city centers, in which we keep constant the d_0 value, and then solved for α again by substitution (30). α values still decline somewhat, but much less so than in the urban sprawl case; and of course α must be sought again by numerical means as (30) does not allow explicit derivation of α .

The results of this analysis not unexpectedly indicated that by 2000, the revitalization case yielded increases over the sprawl case in potentially recoverable energy by as much as 15%. However, many of the smaller SMSAs show little or no increase with this scenario,¹⁴ whereas the larger SMSAs show a much higher increase.¹⁵ The reason is that in the smaller SMSAs, all or most of the refuse would be economically hauled to the central facility, even in the base case, whereas in the larger ones, the optimal collection radius does not encompass the entire population and hence concentration of the population results in a greater proportion of the total refuse being economically recoverable. Thus we note yet a further energy benefit to limiting current suburban expansion - in addition to the usually cited gains to transportation energy savings or waste heat utilization/district heating potential.

Several other sensitivity analyses were performed details of which are noted elsewhere [20]. The most important results however, do bear mention here: Table 6, for example, shows an analysis of the total regional contribution to electricity demands as a function of different load growth scenarios (derived in [18]) and different assumptions for refuse generation rate. The low case is based on no increase in current rates; the median case on a constant 1.5% annual growth rate in accordance with trends in non-durable goods consumption [9]; and the high case by application of a regression equation prediction, reflecting current trends. Another analysis showed remarkably little sensitivity to refuse composition, with the predominant variation in Btu yield due to population growth and per capita generation levels.

¹⁴Reading, Scranton and Waterbury, for example, show increases of 1.78, 4.0 and 0.6% respectively.

¹⁵New York and Boston, for example, show increases of 29 and 44%, respectively.

Table 6
PERCENTAGE OF REGIONAL ELECTRIC DEMAND POTENTIALLY CONTRIBUTED BY REFUSE

<u>1985 Electricity Demand</u>				
	Low (480×10^6 Mwh)	Median (555×10^6 Mwh)	High (638×10^6 Mwh)	
	Low (28.5×10^6 tons)	5.9%	5.1%	4.5%
1985 Refuse Generation	Median (33.1×10^6 tons)	6.9%	5.9%	5.2%
	High (38.9×10^6 tons)	8.1%	7.0%	6.0%
<u>2000 Electricity Demand</u>				
	Low (681×10^6 Mwh)	Median (900×10^6 Mwh)	High (1158×10^6 Mwh)	
	Low (36.0×10^6 tons)	5.2%	4.0%	3.1%
2000 Refuse Generation	Median (52.0×10^6 tons)	7.6%	5.7%	4.5%
	High (90.7×10^6 tons)	13.3%	10.1%	7.8%

9. CONCLUSIONS

Despite a recent resurgence of analysis on the validity of the negative exponential model of urban population density [13, 17, 26] and despite Dacey's fears that extensions of the negative exponential model might lead to intractable analytical formulations [6], use of this model in an energy policy analysis context appears appropriate, useful and not unduly complex. To be sure, the reasons for successful application are practical rather than theoretical (and we have no argument with those who question the exponential model on theoretical grounds); but in policy analysis studies, necessarily involving the participation of non-technical decision makers, clarity of assumptions and plausibility of models are important factors to be considered in the selection of an analytical approach.

As to the substantive findings, there can be little doubt as to the merit of exploiting the energy in refuse in the heavily urbanized Northeast. Recent setbacks to implementation of refuse energy projects are due almost entirely to institutional obstacles, amenable to resolution given appropriate planning and political leadership, rather a result of technical difficulties. Moreover, the precarious Northeastern supply situation mandates a comprehensive energy policy based on a synthesis of many options, each of which by themselves would make only a marginal contribution, but which together could make the difference between serious shortages (and all that that portends for an already declining industrial base) and tolerable balance.

REFERENCES

1. Associated Universities, Inc. "Reference Energy Systems and Resource Data for use in the Assessment of Energy Technologies" AET-8, Brookhaven National Laboratory, Upton, N.Y., April 1972 (Published by NTIS).
2. Brainard, J. et al., "A Perspective on the Energy Future of the Northeast United States," BNL 50550, Brookhaven National Laboratory, Upton, N.Y., September 1976.
3. Bronheim, H.R., R. Nathans, and P.F. Palmedo, "User's Guide for Regional Reference Energy Systems" BNL 20426, Brookhaven National Laboratory, Upton, N.Y., Nov. 1975 (Published by NTIS).
4. Casetti, E., Alternative Urban Population Density Models: An Analytical Comparison of their Validity Range", Studies in Regional Science, 1, 105, (1969).
5. Center for Urban Studies, "Socioeconomic Factors Affecting Demand for Municipal Collection of Household Refuse", Report to the U.S. Environmental Protection Agency, University of Chicago, August 1973 (Published by NTIS PR 225 020).
6. Dacey, M. F., "Some Comments on Population Density Models-Tractable and Otherwise" Papers of the Regional Science Association, Vol. 27, p. 119 (Nov. 1970).
7. Davidson, G.R., "A Study of Residential Solid Waste Generated in Low Income Areas", U.S. Environmental Protection Agency, Report SE-83ts, 1972.
8. Edmonston, B., "Population Distribution in American Cities", Lexington Books, Lexington, Mass., 1975.
9. Environgenics Company, "Systems Evaluation of Refuse as a Low Sulfur Fuel", Report to the U.S. Environmental Protection Agency, November 1971 (Published by NTIS, PB 209 271), p. II-5.
10. Guest, A., "Urban Growth and Population Densities", Demography, Vol. 10, p. 53
11. Huang, C.J. and C. Dalton, "Energy Recovery from Solid Waste", University of Houston, Texas, April, 1975, (Published by NTIS N75-25292).
12. Isard W. et al., "Regional Economic Impacts of Nuclear Power Plants" BNL 50562, Brookhaven National Laboratory, Upton, N.Y., Jan. 1977.
13. Kau, J.B. and Lee, C.F. "A Generalized functional form approach to investigate the Density Gradient of an Urban Area" 1975 North American Meeting, Regional Science Association, Boston, Mass., Nov. 1975.

14. Lee, J., "Energy Supply and Demand in the Northeast States", BNL Regional Energy Studies Program, Report BNL 20427, September 1975.
15. Little A.D., Inc. "A System Evaluation of Alternative Statewide Resource Recovery Techniques for the disposal of Municipal Solid Waste" Report to the Massachusetts Department of Public Works, December 1974, p. 118.
16. Martin, R.C., "Spatial Distribution of Population: Cities and Suburbs", Journal of Regional Science, Vol. 13, No. 2, August, 1973.
17. McDonald, J.F. and Bowman, H.W., "Some Tests off Alternative Urban Population Density Functions" Journal of Urban Economics, Vol. 3, p. 242, (1976).
18. Meier, P. and T.H. McCoy "Some Extensions of Mill's Method of Urban Population Density Gradient Estumation", Geographical Analysis, Vol. X, No. 2, p. 163-173 (April 1978).
19. Meier, P. and T.G. McCoy, "An Analytical Approach to the Determination of Urban Population Density Gradients and its Application to Energy Planning Problems", BNL 20916, Brookhaven National Laboratory, Upton, N.Y., Jan. 1976.
20. Meier, P.M. and T.H. McCoy, "Solid Waste as an Energy Source in the U.S." BNL 50559, Brookhaven National Laboratory, Upton, N.Y., Sept. 1976.
21. Mills, E. S., "Urban Density Functions", Urban Studies, Vol. 7, p. 5 (1970).
22. Moore, C.L. and A.A. Zoltners, "A Linear Programming Model for Determining the Optimal Regional Distribution of Petroleum Products", in Energy, Regional Science and Public Policy, Springer-Verlag Lecture Notes in Economics and Mathematical Systems, Vol. 126, 1976.
23. Muth, R., "The Spatial Structure of the Housing Market," Papers and Proceedings, Vo. 7, 1961.
24. Palmedo, P.F., "Regional Energy Analysis: A State and National Need" Presented at the Conference of State Legislative Leaders from the Northeast on the Regional Response to the Energy Crisis, New York City, Dec. 1974 (also published as BNL 19466, Brookhaven National Laboratory, Upton, New York, 1975).
25. Payne, J. "Energy Recovery from Refuse: State-of-the-Art" Journal Environmental Engineering Division, ASCE, 102, EE2 p. 281 (April 1976).
26. Richardson, H.W., "Discontinuous Densities, Urban Structure and Growth-a New Approach", Land Economics, 51, 305 (Nov. 1975).

27. Roberts, R.M. and R.C. Hansen, "Combined Firing Systems for Specific Metropolitan Areas", U.S. Environmental Protection Agency, November 1971 (Published by NTIS, Report PB 207 701).
28. Robinson, A.H., "The Necessity of Weighting Values in Correlation Analysis of a Real Data", Annals, Association of American Geographers, Vol. 46, p. 233, June 1956.
29. Shannon, L.J. et al., "St. Louis/Union Electric Refuse Firing Demonstration Air Pollution Test Report", Report by Midwest Research Institute to EPA, August 1974 (Published by NTIS, PB 237 630), p. 40.
30. Treadway, R., "Social Components of Metropolitan Population Densities", Demography, Vol. 6, No. 1, p. 55 (1969).
31. U.S. Water Resources Council: "1972 OBERS Projections, Series E Population", April 1974.
32. Uri, N.D., "A Spatial Equilibrium Model for Electricity Supply" Journal of Regional Science, Vol. 15, No. 3. p. 323 (Dec. 1975).
33. Wilson, D.L., "Prediction of Heat of Combustion of Solid Wastes from Ultimate Analysis", Environmental Science and Technology, Vol. 6, No. 13, p. 1119 (December 1972).
34. Winsborough, H. "City Growth and City Structure", Journal of Regional Science, Vol. 4, No. 2, 1962.

