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I compare discrete-ordinates and Monte Carlo techniques for solving integro-
differential equations and compare their relative adaptability to vector
processors. ] discuss the utility of multiprocessors for Monte Carlo
calculations and describe a simple architecture (the monodirectional edge-
coupled array or MECA) that seems ideally suited to Monte Carlo and over-
comes many of the packaging problems associated with more general multi=~
processors.



Integrodifferential Equations

The last century has witnessed a drame-ic expansion in the role of
integrodifferential equations in basic and applied physics. The applica-
tions of such equations range from the mundans to the sublime: from multi-
dimensional integrals to gquantum field theory. Perhaps the most important
class of integrodifferential equations are transport equations. In math-
ematical physics, trancport equations occupy a no-man's land: the middle of
s triangle bordered by diffusiun theory, hydredynamics, and optics. In fact
each of these disciplines is a special case of transport theory. Except for
those describing unrealistically simple processes transport equations have
no analytic solutions.

Computer science has developed two approaches to the solution of integro-

differential equations: Discrete Oi1dinates and Monte Carlo. The two tech-
niques in many ways complement each other. Discrete-ordinate techniques

give an exact answer to a poorly defined problem, while Monte Carlo tech-

niques give a poorly defined answer to an exact problem.

To use Discrete Ordinates, we must cast in finite difference form all of
those parameters over which the integration is to be performed. In the
example of transport theory, we must divide space and time into discrete
intervals. In addition, cross secctions must be defined in discrete inter-
vals as functions of energy, direction, and scattering process. We must
average cross sections over groups of energy and scattering angle, and we
assume similar incremental averages over time and space. The answer from
discrete ordinates techniques, however, is exact to the accuracy of the
comp.ting machine. The inaccuracy arises from averaging over the intervals
of the discrete ordinates.

When using Monte Carlo, we can define all parameters of the problem to any
precision we desire, in principle, to the precision of the computing
machine. Cross sections can be defined by tables with variable intervals
and with interpolation or polynomial fits to provide as much precision as we
desire. Although we can define the problem exactly for a Monte Carlo calcu-
laticn, the answer is fuzzy. As we use the laws of probability to integrate
the equations, it is necessary that the solutions have some statistical
fluctuation. The precision of an answer increases as the square root of the
computer time used to perform the calculation.

To improve the precision of the answer in discrete ordinates, we improve tne
precision with which we describe the problem, that is, we refine the multi-
dimensional mesh over which we the integration is being performed. This
also requires more computer time. I suggest that when a deeper understand-
ing of these alternative techniques tc the solution of integrodifferential
equations is acyuired, we will find that both discrete ordinates and Monte
Carlo offer a precision that increases as the square root of the computer
resources expended if each is appiied to an arbitrarily general problem.

The most important difference between the two methods is the flexibility
offered to the computationa! physicist, particularly in modifying the two
transport techniques to accommndate phenomena that are unique to the problem
he is trying to solve.
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Using the discrete-ordinates techniques, we usually start by writing down
the transport equation that describes the particular physical phenomena we
are planning to investigate. We then find a clever way to cast that
integrodifferential equation into a set of finite-difference equations. We
then write the computer code for calculating these, averuge raw cross section
data into energy and angle groups, and proceed to calculate a solution. The
difficulty becomes apparent when we want to change the problem. To make the
mesh finer, we must go back and group average the cross sections all over
again. But even more difficult is the problem of trying to add some new
physical phenomena.

For example, suppcse we were trying to calculate the transport of charged
particles through a completely ionized plasma. We might first write down
the transport equation for Rutherford scattering from tae ions and electrons.
We would difference that equation, we would set up the group averages from
our understanding of the classical and quantum mechanical processes of
scattering in a completely ionized gas, and we would proceed tc perform the
integratisn numerically. But what happens when we want to change the physics
involved? Finding ourselves dissatisfied with only calculating the electro-
magnetic interaction in the plasma, we might decide to treat the strong
interactions with nuclei of the plasma as well. Certain simplifications
could be made by realizing that the nuclear interaction and Coulomb inter-
ference terms that attend this type of scattering sre only important for
large scattering angles. And although we could apply certain perturbation
techniques, we would likely find ourselves writing down the original transport
equation, adding the strong nuclear interaction and Coulomb interference,
and differencing the equation all over again. this is a long and tedious
task.

The greatest virtue of Monte Carlo is its flexibility. Changes to physics,

such as those described above, can be easily accommodated. We rneed only to
include the partial cross section for this new process in the total cross

section and, on the basis of the probabilitv of scattering derived from this
new term, take a conditional branch to a new section of computer code that
represents the strong interaction process. The writing of a conditionaj

branch is a simple process. In fact, one could write an entire Monte Carlo
transport code and never have to write down a transport equation. So Monte
Carlo is the ideal technique for undertaking heuristic studies of transport
processes; we have the flexibility to alter the physics with minimal effort,

Vector Machines

Computational physicists have been studying the application of vector
processing machines to transport theory for the last fifteen years. Efforts
to shape code architecture in a form that would allow the solution of integro-
differential equations on vectcr machines started with the Illiac IV!-% jn
the late sixties, proceeded through the Control Data STAR 1004 in the early
seventies, has been applied for the Cray I15-® machine, and work is continuing
for future machines. Vector processing machines are ideally suited for
discrete-ordinates problems. With discrete ordinates, one is frequently
operating on many mesh points at the same time, snd the same operation is
applied to each of them. Monte Carlo, on the other hand, is a much more
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difficult problem for vector miachines. The crux of the difficulty lier in
the construction of conditional branches, and conditional branches are the
essence of Monte Carlo calculations. Although we frequently want to disguise
them in other forms (conditional branches are not in vogue), Monte Carlo is
an intripsically "iffy" technique. The usual vector techniques involve
filling a set of vectors with the phase space coordinates of Monte Carlo
particles. Then as conditional branches split these vectors into various
subroutines of the codes, the once full vectors are converted to sparse
vectors--vectors that contain empty spaces. As the complexity of the problem
increases, the vectors become progressively sparser. So while highly efficient
techniques can be found for very simple transport processes, those that are
more complex become progressively less efficient.

There is another problem with vector machines when applied to Monte Carlo.
Upon adding more complexity to the transport equation, we can frequently
find other methods for vectorizing the problem to take advantage of the
speed of a vector machine. In other words, there are always clever tech-
niques to circumvent the problem of sparsing vectors. But we must go back
to the original transport problem, reconsider the whole picture, and then
recast the problem back into a vector mode. Does this sound familiar? It
is the same problem that we have with discrete-ordinate techniques. Every
time we want to make a change to the physics of the problem, we must go back
and consider it from the beginning and probably recode it entirely. Thus
for vector machine, one might as well be using a discrete ordinates tech-
nique.

ENTER THE MULTIPROCESSOR

With the advance of very-large-scale integration, it has become pussible to
produce an entire computer on a single chip. Today's technology permits
mass manufacture of chips with a half million or so transistor-equivalent
devices. Numerous technologies including electron-beam and x-ray lithography
portend enormous increases in device packing density and wafer-scale integra-
tion is near to reality. All of these technologies are relatively young and
fer from realizing their full potential. The number of devices on a chip
has doublec every year or two for the last two decades and it is not
unreasonable to forecast 108 per chip by the turn of the millenium.? There-
fore computer architects have considered constructing an array of micropro-
cessors with interconnecting links and exterior links to an array of
memories in such a way as to have this microprocessor team ''gang tackle'" a
numcrical problem. For Monte Carlo this secms natural. If we arec running a
scalar algorithm, the precision of our Monte Carlo answer increases the
sqQuare root of the computational time. Similarly if all the microprocessors
are running without interference the precieion of the answer should increase
as the square root of the number of microprocessors. But they are all
sharing memories, and there is the rub. Memory bank conflicts are the
principle problem with multiprocessors.

Many researchers regard the multiprocessor as an array of micro-processing
units (MPU) and memories !inked together by a switching network. The
processing units and/or memories are called nodes. The switches may be
dedicated to a particular node, in which case the network is called static,
or available to several nodes, in which case it is called dynamic. Computer
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scientists have suggested an enormous variety »>f network topologies.
Figure 1 is a representative sampling.

A good example of & dynamic network is the S-1 computer,® which has N meiories
and N processors linked by a crossbar switch (Fig. 1a). This architecture
is limited because as the cost of memory plus microprocessor increases
linearly with N and the cost of the crossbar switch goes as the square of N.
Present estimates indicate that the cost of the switch will exceed the cost
of the microprocessors and memory for N > 1000, although some reduction
might be realized by replacing the N X N switch with two N/2 x N/2 switches
and two N-input exchange switches.? Ar alternative is to have an N x M
crossbar switch, where the product of N and 1 remains constant, yet N can be
changed by the programmer. This kind of architecture when applied to the
Monte Carlo prnblem suggests that we might have considerable fewer memories
than processors, because all of the processors use the same algoricthm and
the same data base. If each microprocessor were completely free to read
from the common memory at its convenience, then only a small local memory
would be necessery for each processor plus a common memory in which the
results of all of the processors would be talleyed.

Further reduction of the number of switches can be obtained by using 2 x 2
crossover switches rather than the on-off switches of the crossbar. An
example of this is the binary Benes® network (Fig. 1b). If it is accept-
able to have delays in information transmission owing to blocking of signals
competing for the same switch, then the number of processors can be reduced
to N log N. Examples of such biocking networks are the baselinel® and the
omegall (Fig. 1c).

Static networks present an enormous range of choices. Those that have
attracted most attention achieve symmetry at all levels of modularity by
using lypergeometric topologies: the node positions become the minimal
faces of regular polytopes. In Euclidean srace of dimension n 2 5, there
are only three regular polytopes: n-simplex (Fig. 1d), n-octahedron, and
n-cube (Fig. le). Both n-simplex!? and n-cube!3-15 machines have been
studied extensively, but the n-octahedron has been iguored, perhaps because
wvhen realized in ordinary space it is nearly the same as the n-simplex.
Table I compares the three networks on the basis of usual parameters that
characterize speed, cost, and utility. The hypercube enjoys an advantage in
number of communication channels and switch positions, it pays for it with
increased communication delay time. Unlike the simplex and octahedron,
however, the topology of the hypercube is easily adaptable to real space.
Hypercubes have been built at Cal. Tech. and elsewhere and the first commercial
machine is soon to be offered by Intel. Two-dimvnsional arrays such as the
systolic!® and cartesian!? (Fig. 1f) are particularly good at two-dimensional
protlems such as obtaining relaxation solutions to Poisson's equation. A
numbcr of demonstration machines of this sort have also been built.

For ideal scalar Monte Carlo, all of the processors will be reading the same
algorithm and data base. They will &lso be talleying in the same memory
arrays. For 8 very large number of processors, onc copy of the algorithm
will not bhe sufficient. 1If dynamic blocking networks are used, there will
be delays getting to the wemory and bank conflicts once inside memory. It
is c¢lear that several copies of the algorithm and data base will be needed
as well as several copies of the talley memory. The fewer copies the more
networking is required and the more bank conflict will occur. What is the
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ideal ratio of memories processors? The thesis of this paper is that, given
present technological trends, the ideal ratio is one.

THE TREK TO MECA

The Monodirectional Edge-Coupled Array (MECA) is the simplest possible
architecture for a multiprocessor computer. It is a linear network of
microprocessor units (MPUs) random-access memories (RAMs) and read-only
memories (ROMs) as illustrated in Figure 2. Figure 2 shows a hypothetical
tie-line connecting all of the microprocessor units. When this tie-line is
pulled high, all of the microprocessors read and write the RAMs on their
right as shown in Fig. 2a. When the line is pulled low, all of the micro-
processors read and write to the RAMs on their left as shown in Fig. 1b.
All of the microprocessors read and write RAMs onlv one at a time, and all
of the microprocessors switch directions sim'ltaneously.

This architecture eliminates two problems of Monte Carlo multiprocessors:
(1) The price of the network does not increase with the number of MPUs but
in fact disappears entirely; and (2) The time required to read an algorithm
and data base into each of the RAMs is only slightly longer than the time to
read the algorithm into a single memory.

To demonstrate this fact let us look at a specific case. Consider a MECA
system consisting of N microprocessors and a Monte Carlo algorithm consist-
ing of W words. The process of loading the memories proceeds as follows:
The control processor, which is on one end of MECA lcads the first word of
the algo ithm inte the first RAM while holding the tie-line high. The
control processor then pulls the tie-line low so the first RAM is read by
the first MPU. The first MPU reads the first word out of RAM into one of
its accumulators. The tie-line is then pulled high and the first MPU stores
the first word into the second RAM while the control processor is reading
the second word into the first RAM the tie-line is pulled low and the pro-
cess is repeated. The instcructions for this daisy-chain operation are
contained in the ROM that accompanies each MPU.

If all of the RAMs were being loaded with the algorithm serially the time
required would be given by

= Nwat (1)

where At is the time required for one word to be loaded. 1f, on the other
hand, the algorithm could be fed to all the RAMs simultaneously the time
required would be

Tparalle] = Tserial/N = Wat . (2)

With the daisy-chain operation described here, tiile total time to load the
algorithm and all the RAMs is given by

Tload = (N + wW)at . (3)
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If we consider the loading of all the RAMs simultaneously to be the maximum
possible efficiency then the efficiency of this daisy-chain technique is
given by

=W/ W+N) . 4)

E=T /T

load
For any realistic system this efficiency is very high compared to the serial
efficiency. If, the algorithm wcere 64K words long, and there were 64K
microprocessors, the efficiency would only be half the optimum or parallel
efficiency. This is excellent when compared to other techniques.

parallel

At the end of any Monte Carlo operation, for example, calculating the heating
in a reactor, it would be necessary to sum up the results from all the
microprocessors into ar array of numbers representing the heating in the
various geometric zones under consideration. Such a process is completely
analogous to the 1loading of the algonrithm described above. Thus the
efficiency is still given by Eq. (4).

PACKAGING

The most conspicuous advantage of the MECA computer is its adaptability to
highly efficient packaging. In state-of-art LSI-based supercomputers, 30%
of the time involved in a compu:ational cycle is owing to delays in informa-
tion transmission among the individual microcircuits. Factors of ten speed-
up in the microcircuits will accrue little improvement unless the packaging
is accompanied by a similar improvement in efficiency. Furthermore, as
chips become more complex, the difficulty of making connections from the
microcircuit to pins becomes intolerable. Present estimates!? suggest that
chip fanout will be limited to 256 pins.

Because it is monodirectional and edge-coupled, the MECA computer lends
itself to a particular compact packaging technique. The chips or wafers
can be stacked, eliminating the fanout problem entirely. The natural arrangc-
ment is to have alternating wafers of MPU + ROM and RAM. 1t may be neces-
sary to have several RAM wafers if large memory is required. Because of the
cleavage planes of silicon and silicon nitride it is naturai, although not
mandatory, to cut wafers into rectangles. For the MECA machine they must
actually be squares. The squares of the edge-coupled array would then be
stacked vertically with a 90° rotation at each chip. Figure 2a illustrates
the physical connection of the edre-coupled array. It is a single surface
folded together in a stack. Figure 2b is an exploded view of the stack with
lines representing the electrical connections at the edges of the chips.
Thermomigration techniques might be used to produce feedthroughs and micro-
spring interconnects between the surfaces of adjacent wafers.!® Because of
the up-reading and down-reading components of each chip are spatially
separated, the conductors that pass information from one chip to the other
can conduct compietely through the chip, greatly relaxing engineering require-
ments for their fabrication. In fact, this geometric separation allows the
possibility of using cepacitive coupling from one chip to another. Thus
perfect contact between chips is not necessary in the MECA machine; although
capacitive coupling may cause delay. The packaging of the MECA computer
therefore approaches optimum efficiency. The efficiency is near optimum if
alternating chips have to be MPU plus ROM and RAM :nd is ideatically optimum
if each chip contains an MPU, ROM and RAM.
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Cooling of the chip vackage is easily accomplished by putting a heat
exchanging fluid around the package and through optimally placed holes that
will line up when the chips are stacked. This can be done with minimal
perturbation of the circuit layout. For fifth generation components,
cryogenic packaging is likely, and the heat exchanging fluid may be liquid
nitrogen. The cooling problem may be considerably mitigated when gallium-
arsinide technology is further developed, par.icularly if transistors can be
made small enough to operate in the ballistic regime.

CONCLUSIONS

I have described an extremely simple multiprocessor connection system
that is ideally suited to Montz Carlo problems. The time lost in loading
the algorithm and in gathering and summing information from all the multi-
processors is ~nly a factor of two or so greater than optimum. The delays
ovwing to pa . configuration are minimized. The whole system is as well
adapted to huiive Carlo as a single-scaler processor.
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TABLE 1

Comparison of Hypergeometric Networks with N Processing Units

simplex octahedron cube
Channels LN(N-1) XN(N-2) &N 1092 N
Switch
Positions N-1 M-2 1og2 N
Average N-1
Delay N 1 %1092 N
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Figure 1. The crossbar switch (a) permits any node on the right to
communicate with any node on the bottom without blocking. The
Benes network /b) does the same, but requires 2 X 2 crossover
switches rather than on-off switches. The omega network (c)
reduces the numher of switches to N log N but introduces
blocking. The hypergeometric simplex {d) connects every node to
every other node, in this case n = 7. The hypercube (e) requires
fewer connections, here n = 4. The simplest 2d network is a
cartesian grid (f).

DYNAMIC
. y
L
(o) Crossbar {b) Benes (c) Omego
STATIZ

(d) n~ simplex (e) n~cube {f) Cartesian
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Schematic diagram of an edge-coupled ar.ay: {(a) control
processor pulls tie-line high and MPUs access the RAM to their
right; (b) control processor pulls tie-line low and MPUs access
the RAM to their left.

TIE-LINE HIGH

RAM
(v TIE-LINE LOW
7.1y
(;j? RAM
7R«
MONODIRECTIONAL EDGE-COUPLED ARRAY
Fignre 3. Chip stacking: (a) edge coupled array is in fact a single

surface; (b) exploded stacking with interconnections.

{a)
{b)
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