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PYECA: A MULTIPROCESSOR CONCEPT SPECIALIZED TO MONTE CARLO

Johndale C. Solem
Theoretical Division

Los Alamos National Laboratory
Los Alamos, NM 87545

I compare discrete-ordinates and Monte Carlo techniques for solving integro-
differential equations and compare their relative adaptability to vector
processors, 1 discuss the utility of multiprocessors for Monte Carlo
calculations and describe a simple architecture (the monodirectional edge-
coupled array or MECA) that seems ideally suited to Monte Carlo and over-
comes many of the packaging problems associated with more general multi-
processors.
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Z!EB.wdiff=-tial Eq~ati~ns

The last century has witnessed a dram~~ic ●xpansion in the r~le of
inte8rodifferential ●quations in basic and applied physics. The applica-
tions of such equations ran8e from the ❑undane to the sublime: from multi-
dimensional inte8rals to quantum field theory. Perhaps the most important
clasa of inte8rodifferential equations are transport equations. In math-
ematical physics, tranrport eq~lations occupy a no-man’s land: the ❑iddle of
a triariglebordered by diffusi~n theory, hydrodynamics, and optics. In fact
each of these disciplines is a special case of transport theory. Except for
those describing unrealistically simple processes transport equations have
no analytic solutions.

Computer science has developed two approaches to the solution of integro-
differential equations: Discrete O~dinates and Monte Carlo. The two tech-
niques in many ways complement each other. Discrete-ordinate techniques
give an exact answer to a poorly defined problem, while Monte Carlo tech-
niques give a poorly defined answer to an exact problem.

To use Discrete Ordinates, we must cast in finite difference form all of
those parameters over which the integration is to be performed, In the
example of transport theory, we must divide space and time into discretr
intervals. In addition, crocs sections must be defined in discrete inter-
vals as functions af eriergy, direction, and scattering process. We must

average cross sections over groups of energy and scattering angle, and we
assume similar incremental averages over time and space. The answer from
discrete ordinates techniques, however, is exact to the accuracy of the
compiling machine. The inaccuracy arises from averaging over the intervals
of the discrete ordinates.

When using Monte Carlo, we can define all parameters of the problem to any
precision we desire, in principle, to the precision of the computing
machine, Cross sections can b<I defined by tables with variable inter~~als
and with interpolation or polynomial fits to provide as mtuchprecision as w(’
desire. Although we can define the problem exactly for a Monte Carlo calru-
laticn, the answer is fuzzy. As we use the laws of probability to integrate
the equations, it is necessary that the solutions have some statistic~l
fluctuation. The precision of an answer increases as the square root of tl~r
computer time used to perform the ralcula~ion.

TO improve the precision of thv answer in discrete ordinates, we improve ti)(j

precision with which we describe the Froblem, that is, we refine the multi-
dimensional mesh over which we the integration .isbeing performed, This
●lso requires more romputer time. I suggest that when a deeper understand-
ing of thesr alternative techniques to the solution of integrodifferentiai
equations is acquired, we wj] ] find that both discrete ordinates and tlontr

Carlo offer a precision that increases au thr square root of the c~mpllter
resources exper~derfif ~ar-h is appiied to an arbitrarily general problem,

The morat important difference between the two m~thods is the flexibility
offered to the computational physicist, particularly irlmodifying the two
transport techniqu~s to accmrrrrnda’.~ phenomt=nn that are ulliqur to the problem
he is trying to solve,
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techniques, we usually atart by writing down
describe% the particular physical phenomena we

● re planning to investigate. We then find a clever way to cast that
integrodifferential equation into a set of finite-difference ●quations. We
then write the computer code for calculating these, ●verage raw cross section
data into energy and angle groups, and proceed to calculate ● solution. The
difficulty becomes apparent when we want to change the problem. To make the
mesh finer, we must go back and group average the cross sections all over
again. But ●ven more difficult is the problem of trying to add some new
physical phenomena.

For example, suppose we were trying to calculate the transport of charged
particles throu~h a completely ionized plasma. We might first write down
the transport equation for Rutherford scattering from the ions and electrons.
We would difference that equation, we would set up the group averages from
our understanding of the classical and quantum mechanical processes of
scattering in a completely ionized gas, and we would proceed tG perform the
integration numerically. But what happens when we want to change the physics
involved? Finding ourselves dissatisfied with only calculating the electro-
magnetic interaction in the plasma, we might decide to treat the strong
interactions with nuclei of the plasma as well.. Certain simplifications
could be made by realizing that the nuclear interaction and Coulomb inter-
ference terms that attend this type of scattering are only important for
large scattering angles. And although we could apply certain perturbation
techniques, we would likely find ourselves writing down the original transport
equation, adding the strong nuclear interaction and lCoulomb interference,
and differencing the equation all over again. This is a long and tedious
task.

The greatest virtue of Monte Carlo is its flexibility, Changes to physics,
such as those described above, can be easily accommodated. We ~eed only to
include the partial cross section for this new process in the total cross
section and, on the basis of the probability of scattering derived from this
new term, take a conditional branch to a new section of computer code that
represents the strong interaction grocess. The writing of a conditional
branch is a simple
transport code and
Carlo is the ideal
processes; we have

Vector Machines—...—.-— ..——.——

process, In fact, one could write an entire Monte Carlo
never hOvt= to write down n transport equation. So Monte
technique for undertakin~ heuristic studies of transport
the flexibility to alter the physics with minimal eftort,

Computational physicists have been studyin~l the application of vector
processing machines to tra[lsport theory for the last fifte~n years. Efforts
to shape code architecture in a form that would allow the solution of integro-
differential equations on vector machines started with the Illiac IV~-3 in
the late sixties, proceeded through the Control Data STAR 1004 in the early
Beventies, has been applied for the Cray 16-6 machine, and work is continuir,q
for fut~re machines. Vector processing machines are ideally suited for
discrete-ordinates problems, With discrete ordinates, one is frequently
op~rating on many mesh points at the same time, ●nd the same operation is
applied to ●ach of them, Monte Carlo, on the other hand, is a much more
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difficult problem for vector mucbines. The crux of the difficulty lies in
the construction of conditional branches, ●nd conditional branches are the

essence of Honte Carlo calculations. Although we frequently want to disguise
them in other forms (conditional branche~ are not in vogue), Honte Carlo ia
●n intrinsically “iffy” technique. The usual vector techniques involve
filling ● set of vectors with the phase space coordinates of tlonte Carlo
particle~. Then as conditional branches split these vectors into various
subroutines of the codes, the once full vectors are converted to sparse
vectors-- vectors that contain empty npaces. As the complexity of the problem
incre3ses, the vectors become progressively sparser. So while highly ●fficient
techrliques can be found for very simple transport processes, those that are
more complex become progressively less efficient.

There is another problem with vector ❑achines when applied to Monte Carlo.
Upon adding more complexity to the transport equation, we can frequently
find other methods for vectorizing the problem to take advantage of the
speed of a vector ❑achine. In other words, there are always clever tech-
niques to circumvent the problem of sparaing vectors. But we must go back
to the original transport problem, reconsider the whole picture, and then
recast the problem back into a vector mode. Does this sound familiar? It
is the same problem that we have with discrete-ordinate techniques. Every
time we want to make a change to the physics of the problem, we must go back
and consider it from the beginning and probably recode it entirely. Thus
for vector machine, one might as well be using a discrete ordinates tech-
nique.

ENTER THE MULTIPROCESSOR

With the advance of very-large-scale integration, it has become pussihle LO
produce an entire computer on a single chip. Today’s technology permits
masa manufacture of chips with a half million or so transistor-equivalent
devices. Numerous technologies including electron-beam and x-ray lithography
portend enormous increases in device packing density and wafer-scale integra-
tion is near to reality. All of these technologies are relatively young and
fcr from realizing their full potential. The number of devices on a cl,ip
has doubled ●very year or two for the last two decades and it is not
unreasonable to forecast 108 per chip by the turn of the millennium.’ There-
fore computer architects hsve considered constructing an array of micropro-
cessors with interconnecting links and exter~or links to an arrmy of
memories in such a way as to have this microprocessor team “gsng tackle” iI
nmomcrical problcm. For Monte Carlo this ficcmsnatural. If we arc running iI
scalar algorithm, the precision of our Honte Carlo answer increases the
square root of thr computational t{me. Similarly if all the microprocessor~
are running without interft=rence th~ precision of the answer should incrensc
a~ the square root of the number of microprocessors. But they are all
sharing memories, and there is the rut), Memory hank conflicts are the
principle problem with multlproce~~or~,

Many researchers regard the multiprocessor aB an array of micro-processinfl
units (?IPU) and mcmorieR Iinkrd togethrr by a switching network, The
processing units and/or memories arc called nodes. The switches may be
dedicat~d to a particular nofc, in whi~.h casr the nrtwork i~ called stat il.,
or available to sevrral nodr~;, iII wh{rh rase it Is called dynamic. Compiltrr
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scientists have suggested an enormous variety >f network topologies.
Figure 1 is a representative sampling.

A good example of a dynamic network is the S-1 computer,a which has N memories
and N processors linked by a crossbar switch (Fig. la). This architecture

is limited because as the cost of ❑emery plus microprocessor increases
linearly with N and the cost of the crossbar switch goes as the square of N.
Present estimates indicate that the cost of the switch will exceed the cost
of the microprocessors and memory for N > 1000, although some reduction
might be realized by replacing the N x N ~witch with two N/2 x N/2 switches
and two N-input exchange switches.g Ar alternative is to have an N x M
crossbar switch, where the product of N and H remains constant, yet N can be
changed by the programmer. This kind of architecture when applied to the
Monte Carlo problem suggests that we might have considerable fewer memories
than processors, because all of the processors use the same algorithm and
the same data base. If each microprocessor were completely free to read
from the common memory at its convenience, then only a small local memory
would be necesszry for each processor plus a common memory in which the
results of all of the processors would be talleyed.

Further reduction of the number of switches can be obtained by using 2 x 2

crossover switches rather than the on-off switches of the crossbar. An
example of this is the binary Benesg network (Fig. lb). If it is accept-
able to have delays in information transmission owing to blocking of signals
competing for the same switch, then the number of processors can be reduced
to N log N. Examples of such biocking networks are the baselinel” and the
omegall (Fig. lc).

Static networks present an enormous range of choices. Those that have
attractpd most attention achieve symmetry at all levels of modularity by
using I:ypergeometric topologies: the node positions become the minimal
faces of regular polytopes. In Euclidean snace of dimension n 2 5, there
are only three regular polytopes: n-simplex (Fig. Id), n-octahedron, and
n-cube (Fig. le), Both n-simplex12 and n-cube13-15 machines have been
studied extensively, but the n-octahedron has been ignored, perhaps becausr
whrn realized in ordinary space it is nearly the samr as the n-simplex.
Table I compares the three networks on th(’ basis of usual parameters that
characterize speed, cost? and utility, Thr hypercube enjoys an ad~antage in
number of communication channels and swilch positions, it pays for it with
increased communication delay time. Unlike the simplex and octahedron,
however, the topology of the hypercube is easily adaptable to real space.
Hypercubes have been bl]ilt at Cal. Tech, and elsewhere and the first c.xnmercial
machine is soon to be offered by Intel. Two-diir.unsionalarrays such as the
Systolicle’ and cartesianl’ (Fig. If) are particularly good at two-dimensional
problems such as obtaining relaxation solutions to Poisson’s equation. A
number of demonstration machines of this sort have also been built.

For ideal scalar tlont.eCarlo, ~11 of ~he processors will br reading the ~ame
algorithm arid data base. They will Elso be talleying in the same memory

arrays. For a very large number of processors, onr copy of the algorithm
will not he sufficient. lf dynamic blocking networks are used, there will
be delays grtting to the memory and bank conflicts once inside memory, It
is clear thtit scvpral copies of the algorithm and data base will be needed
as well as severs] copie~ of the talley memory. The ft=wercopies the more
networking is required and the more bank conflict will occur, What is thr



-6-

ideal r~tio of ❑emeries processors? The thesis of this paper is that, given
present technological trends, the ideal ratio is one.

THE TREK TO MECA

The l’lonodirectionalEdge-Coupled Array (MECA) is the simpl~’st possible
architecture for a multiprocessor computer. It is a linear network of
microprocessor units (MPUS) random-access memories (RAMs) and read-only
memories (ROMS) as illustrated in Figure 2. Figure 2 shows a hypothetical
tie-line connecting all of the microprocessor units. When this tie-line is
pulled high, all of the ❑icroprocessors read and write the RAMs on their
right as shown in Fig. 2a. When the line is pulled lQW, all of the micro-
processors read and write to the RAMs on their left as shown in Fig. lb.
All of the microprocessors read and write RAMs only one at a time, and all
of the microprocessors switch directions sim’,ltaneously.

This architecture eliminates two problems of Monte Carlo multiprocessors:
(1) The price of the network does not increase with the number of M?US but
in fact disappears entirely; and (2) The time required to read an algorithm
and data base into each of the RAMs is only slightly longer than the time to
read the algorithm into a single memory.

To demonstrate this fact let us look at a specific case. Consider a MECA
system consisting of N microprocessors and a Monte Carlo algorithm consist-
ing of W words, The process of loading the memories proceeds as follows:
The control processor, whirh is on one end of MECA loads the first word of
the algo ilhn into the first RAM while holding the tie-line high. ‘J’he
control processor then pu!.ls the tie-line low so the first RAM is read by
the first MPU. The first MPU reads the first word out of RAM into one of
its accumulators. The tie-line is then pulled high and th~ first MPLI stores
the first word into the second RAM while the control processor is reading
the second word into the first RAM the tie-line is pulled low and the pro-
cess is repeated. The instructions for this daisy-chain operation are
contained in the ROM that accompanies each MIW.

If all of the RAMs were being loaded with the algorithm serially the time
required would be given by

T = lWAt ,
serial

(1)

where At is the time required for one word to be loaded. If, ot)the other
hand, the algorithm could be fed to all the RAMs simultaneously the time
required would b~

T =T serial/N =WAt .
parallel (2)

With the daisy-chain operation described herf , the total time to load the
algorithm and all the RAMs is give[lby

‘load
= (N + W)At . (:J)
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If we consider the loading of all the RAMs simultaneously to be the maximum
possible efficiency then the efficiency of this daisy-chain techniq!le is

given by

E /T =W/(W + N) .
= ‘parallel load

(4)

For any realistic system this efficiency is very high compared to the serial
efficiency. If, the al,gorjthm were 64K words long, and there were 64K
microprocessors , the efficiency would only be half the optimum or parallel
efficiency. This is excellent when compared to other techniques.

At the end of any Monte Carlo operation, for example, calculating the heating
in a reactor, it would be necessary to sum up the results from all the
microprocessors into at.array of numbers representing the heating in the
various geometric zones under consideration
analogous to the loading of the algorithm
efficiency is still given by Eq. (4).

Such a process is completely
described above. Thus the

PACKAGING

The most conspicuous advantage of the MECA computer is its adaptability to
highly efficient packaging. In state-of-art LSI-based supercomputers, 30%
of the time involved in a compu~ational cycle is owing to delays in informa-
tion transmission among the individual microcircuits. Factors of ten speed-
up in the microcircuits will accrue little improvement unless the packaging
is accompanied by a similar improvement in efficiency. Furthermore, as
chips become more complex, the difficulty of making connections from the
microcircuit to pins becomes intolerable. Present estimates17 suggest that
chip fanout will be limited to 256 pins.

Because it is monodirectional and edge-coupled, the MECA computer lends
itself to a particular compact packaging technique. The chips or wafers
can be stacked, eliminating the fanout problem entirely. The natural arrange-
ment is to have alternating wafers of MPU + ROM and RAM, It may be neces-
sary to have several RAM wafers if large memory is required, Because of the
cleavage planes of silicon and silicon nitride it is natural, alth~ugh not
mandatory, to cut wafers into rectangles, For the MECA machine they must
actually be squares. The squares of the edge-coupled array would then be
stacked vertically with a 90° rotation at each chip, Figure 2a illustrates
the physical connection of the ed~e-coupled array. It is a single s~rface
folded toqe~her in a stack. Figure 2b is an exploded view of the stack with
lines representing the electrical connections at the edges of the chips,
Thermomigration techniques might be used to produce feedthroughs and micro-
spring interconnects between the surfaces of adjacent wafers.18 Because of

the up-reading and down-reading components of each c-hip are spatially
separated, the conductors that pass information from one chip to the other
can conduct completely through the chip, greatly relaxing engin~ering require-
ments for their fabrici~tion. In fact, this geometric separation allows the
possibility of u~ing cap{~citive coupling from on~ chip to another. Thus
perfert contact between chips is not necessary in ~.heMEcA machine; although

c.spacitive coupliIIg may cause delay. The packaging of the MECA computer
therefore approaches opti,tnumefficiency. The efficiency is near optimum if
alternating chips have to be MFU p]us Rc)Mand RAM ~.ndis ide-ltically optimum
if ench chip contains an MPU, ROM and RAM,
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Cooling of the chip package is easily accomplished by putting a heat
exchanging fluid around the package and through optimally placed holes that
will line up when the chips are stacked. This can be done with minimal
perturbation of the circuit layout. For fifth generation components,
cryogenic packaging is likely, and the heat exchanging fluid may be liquid
nitrogen. The cooling problem may be considerably mitigated when gallium-
arsinide technology is further developed, particularly if transistors can be
❑ade small enough to operate in the ballistic regime.

CONCLUSIONS

I have described an extremely simple multiprocessor connection system
that is ideally suited to Monte Carlo problems. The time lost in loading
the algorithm and in gathering and summing information from all the multi-
processors i~ ~Q;y a factor of two or so greater than optimum. The delays
owing to pa configuration are minimized. The whole system is as well
adapted to ~,ui,~eCarlo as a single-scaler processor.
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Compar. son of

TABLE I

Hypergeometric Networks with N Processing Un’ ts

simplex octahedron cube

Channels %N(N-1) 3SN(N-2) 4N log2 N

Switch
Positions N-1 N-2 log2 N

Average N-1
De 1ay

N
1 %log2 N
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Figure 1. The crossbar switch (a) permits any node on the right to
consnunicate with any node on the bottom without blocking. The

Benes network (b) does the same, but requires 2 x 2 crossover
switches rather than on-off switches. The omega network (c)

reduces the num’~er of switches to N log N but introduces

blocking. The hypergeometric simplex {d) connects ●very node to
every other node, in this case n = 7. The hypercube (e) requires

fewer connections, here n = 4. The simplest ~d network is a

cartesian grid (f).

IHt
(o) Crossbor

DWAMIC

(b)5enes

STATIC— —.

(c) Omego

(d)n - simplex (e) n-cube [f) Corfesion
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Figure 2. Schematic diagram of an edge-coupled ar.ay: (a) control
processor pulls tie-line high and MPUS access the RAM to their

right; (b) contzol processor pulls tie-line low and MPUS access
the RAH to their left..

(0) TIE-LINE HIGH

~~- —

b.,#@:.:,...,,.....,.,.:.* E12.,.:..,.,..
YKiitil
..$,., ,,, . , . . . . . .

MONODIRECTIONAL EDGE-COUPLED ARRAY

Figllre3. Chip stacking: (a) edge coupled array is in fact a slnglc.
surface; (b) exploded stacking with interconnections.

(cl)
(b)

m.-..
>-2-s ~

_... ..—
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CHIP STACKING


