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Plasma Physics Laboratory, Princeton University, P.O. Boz _51, Princeton, NJ 085.{3

A Kolmogorov-type analysis of the energy- and enstrophy-cascading ranges

of the forced Hasegawa-Mima equation allows one to derive a criterion for the

threshold of the transition between the weak turbulence and the strong turbulence

regimes. It is found that, due to the inverse energy cascade, the large-scale portion

of the inertial range is in the strong turbulence regime in the limit of infinite

Reynolds-like numbers.

' PACS numbers: 52.35.Ra, 47.25.-c

Among the tools employed to analyze the various reduced models of plasma turbu-

]ence, the weak turbulence, approximation [1] (\VTA)is perhaps the mo,_t popular. For-

mally, the WTA for a given nonlinear model is introduced as an expansion in terms of the

magnitude of the coupling coefficients [2] or as a multiple-time-scale expansion [3!. The

physical WTA expansion parameter, however, turns out to be a dimensionless quantity

representing the ratio of the rate of energy injection to some measure of wave dispersion.

For example, if the turbulence model involves just a single scalar field (as in the case of the
1,
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two-dimensional Navier-Stokes equation or the Hasegawa-Mima equation [4], the proper

WTA expansion parameter eWT is '

I1

eWT " 7k/Awk,
o

where 7k is the growth rate of a given instability as a function of the wavenumber k and

Awk ' wk, - k'Vs,l,, with wt_ being the wave frequency and rs,/, being the group velocity,

is a measure of wave dispersion.

-'.1

i lt is generally assumed that the condition that tSVv'T iS somewhat smaller than one is

sufficient for the applicability of the WTA. Moreover, in many applications the spectrum

of unstable modes, driven by 7/,, is localized to scales substantially smaller than the size

of the system. One typically considers a region in wavenumber space around kj.pi _ 1,

where pi is the ion gyroradius. Since the long-wavelength modes are stable or only weakly

unstable, one generally concludes that large-scale turbulent dynamics are appropriately "

described by weak turbulence equations.

Implicit to this viewpoint is the assumption that the shape of the turbulent spectrum

somehow resembles the profile of the instability growth rate. Therefore, in the wavenumber .

region where eWT is significantly smaller than unity nonlinear interactions are assumed

to be small compared to wave dispersion and wavelike phenomena are considered to be

dominant.

% c

That this line of thought is at least questionable can be understood by noting that

the primary effect of nonlinear interactions, which are generally conservative, is to transfer
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energy to scales different from those into which it is injected. Therefore, even in regions of

negligible growth rate the fluctuation level can be so high that the dynamics are dominated

by nonlinearity. The conclusion is that in order to assess the validity of the weak turbulence

, approach one must perform a more detailed analysis of the nonlinear dynamics.

In this letter we carry out such analysis for a specific model, the forced Hasegawa-

Mima (HM) equation [4], the paradigm for a large cla__zof plasma turbuleI_ce models. The

main conclusion will be that large scales are always in the regime of strong turbulence in

the limit of infinite Reynolds-like numbers.

Upon employing the usual normalizations (lengths normalized to p_, where ps '

cs/wcl, cs ' (T_/mi) 1/2, and wci - eB/mic; times normalized to L,.,/cs, ,,,here L,_ is

, the density scale length), the forced Hasegawa-Mima equation can be written as

* 0,(1- v2) + G¢ + + = -

where _ is a linear growth-rate operator associated with the energy injection and the right-

hand side represents phenomenological dissipation terms associated with large-scale and

small-scale damping coefficients [(hyper-)viscosities] z4_ and us respectively. Also, "CE is

the ExB velocity: for any scalar field ¢, VE'Vqd = 0=_ OrC -Ov¢ cg=qd.

In the following it is assumec 1 that, ^fk vanishes outside a small band of width AkF

centered around the forcing wavenumber kF. Then the model possesses three dimensionless

control parameters" two Reynolds-like numbers, inversely proportional to _s and _L; and
II'

the weak turbulence parameter ¢WT. In the limit us --* 0, G _ O, the inertial ranges
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virtually extend from zero wavenumber to infinite wavenumber. Then, varying CWT allows
d

one to pass from regimes of fully developed weak turbulence to regimes of fully developed

strong turbulence. Note that, depending on the value of £WT, different regimes ma 3"occur

in different wavenumber ranges.
I

The analysis of the turbulent cascade is made difficult by the fact thaL the
present

:: model is not scale-invariant due to the operator 1 - V 2. In addition, the presence of waves

makes the spectrum anisotropic. These difficulties can be circumvented in the strong

turbulence (ST) regime. Indeed, in the ST regime wave effects are negligible and one can

drop the wave operator altogether. In addition, one can break the wavenumber space into

two regions: k <:< 1 and k :>> 1. In each of these regions the dynamics are described by

!

I scale-invariant equations. A Kolmogorov-type analysis can then be carried out separatelyf

i in the two regions and the spectra connected afterwards.

Let us first consider the case L- << 1. In the absence of forcing and damping, the

•Hasegawa-F, Iima equation reduces to

o, + 0.

The scale transformation (x,y) _ ,_(x,y), t --, -rr leaves Eq. (1) unchanged provided that

--, (,k4/r)eF. Therefore the intrinsic dimensions of the field cF associated with scale

invariance in the k << 1 regime are

[*] ,-_ [length] 4 [time] -z (k << 1). (2)
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The two invariants of the full Hasegawa-Mima equation reduce to E Eh [Okl2 (energy)

and Z = _a/°2 ['I'_}2 (enstrophy). As usual, energy cascades to low k while enstrophy
i

.' cascades to high k in the limit of infinite Reynolds numbers. In the energy-cascading

¢ range the rate of energy transfer e across wavenumber space is constant. Dimensionally,

upon using Eq. (2) one finds [e] _ [length] s [time], 3. Then the energy-transfer timescale

(turnover time) at wavenumber k is given by

rl E) _ e-llak-sl3"

Similarly one obtains r(kZ) _ ri-1/"k -2 in the enstrophy-cascading range, where 7? is

the rate of enstrophy transfer. Upon defining the potential spectrum E_(k) such that

fodk E¢(k) = _/, I_] 2 and using again Eq. (2), one obtains

~ { (k< (3)' CKr72/_k-s (k > kf).

1' In the opposite case k >> 1 the Hasegawa-Mima equation reduces to the two-dimensional

Navier-Stokes equation. Then invariants are the usual energy E = _,k k2 ]e)kl2 and en-

strophy Z = _'_1_k4 Iqkl 2" The potential has the dimensions of a stream function and one

recovers the well known expressions for the turnover times [5]: r(kE) _ e-1/3k -2/3 and

rl z) _ r]-_/_. Still, the same dependence (3) on k is obtained. Indeed, Eqs. (3) yield the

usual Kolmogorov expressions when written in terms of the energy spectral density.

One can recognize that e and r/ are the rate of transfer of the invariants of the full

Hasegawa-Mima equation E = E/,(1 + k2) ICk[ 2 and Z = E/,k2(1 + k 2) [0k 2. Then it is

w natural to assume that the spectral functions join smoothly at kf _ 1, thus implying the

same value of the Kolmogorov constant CK throughout the whole k space.
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The validity of the ST approximation require" that energy transfer due to nonlinearity

dominates over wave dispersion. Since the appropriate measure of the rate of energy

transfer in wavenumber space is the local turnover time rk, the ST approximation is valid

when ._

1
>1. (4)

rk Awk

Upon using the limiting expressions Aw h --, k_k 2 _ k _ and Aw k _ kv/k 2 _ k -l for k << 1

and k ),> 1 respectively, one can evaluate the coaditions given in Eq. (4). In the long-

i wavelength limit one finds that 1/(vk Awk) "-*e1/ak- 1/3. Therefore long wavelengths are

,i
|[ always found in the ST regime in the limit of zero large-scale dissipation (infinite large-scale

Reynolds number).

The behavior of 1/(rkA_'k) as a function of k is depicted in Figs. 1 and 2 for kf < 1

and kf > 1 respectively. For each k, the criterion for the transition from WT to ST

depends on the forcing. In any case, one can see from Figs. 1 and 2 that the wavenumber

region that first enters the WT regime as the forcing is reduced is k _ 1. The transition

criterion can be recast in terms of the integral of the growth rate over the unstable domain:

F ' f.>odk'_k _ 27r-ykfkfAkf. For kf < 1 one can relate F to r/using 77= X:k _'k k_ icbk 2
i

for k -_ kt. Omitting constants of order unity (such as the Kolmogorov constant) one

obtains 771/3 -_ Fkr- q. Upon imposing the condition given by Eq. (4) around k _ 1 (the

most restrictive case) one finally obtains

r < 1) (5)
r
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for the uniform validity of the ST approximation in the whole wavenumber space. Also,

one can rewrite Eq. (5) in terms of the weak turbulence parameter eWT evaluated at k m kf.
)

Assuming that Akr _. kf one finds 7_f/w,,_, >..._fps or ¢WT .-.> (kfP,) -1, where the original

'_ normalization length p_-I has been restored and W,,k - kvpsc,/Ln.

Finally we would like to commen t on the relation between the Hasegawa-Mima equa-

: tion and the very similar Rossby wave (RW) equation that is employed in the modeling of

atmospheric turbulence. The R.W equation can be seen as the large gyroradius limit of the

H/vi equation. Therefore only kf > 1 and the k > 1 portion of Fig. 1 must be considered.

At low wavenumbers, one has 1/(rkAwk) _ el/ak 5/a, and large scales are ahvays found

in the weak turbulence regime. This implies the formation of zonal flows [6]. No such

phenomena are expected in the Hasegawa-Mima equation.
#
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FIGURE CAPTIONS

J
Figure 1. Strong-turbulence parameter (_-kAw_) -1 as a function of wavenumber in the

• case of large-scale forcing (kf << 1, indicated by the dotted line).

Figure 2. Behavior of the strong-turbulence parameter in the case of small-scale forcing

(k_:_,1),
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