

48
3/10/92 J.S. (2)
PREPARED FOR THE U.S. DEPARTMENT OF ENERGY,
UNDER CONTRACT DE-AC02-76-CHO-3073

PPPL-2826
UC-427

PPPL-2826

WEAK- AND STRONG-TURBULENCE REGIMES
OF THE HASEGAWA-MIMA EQUATION

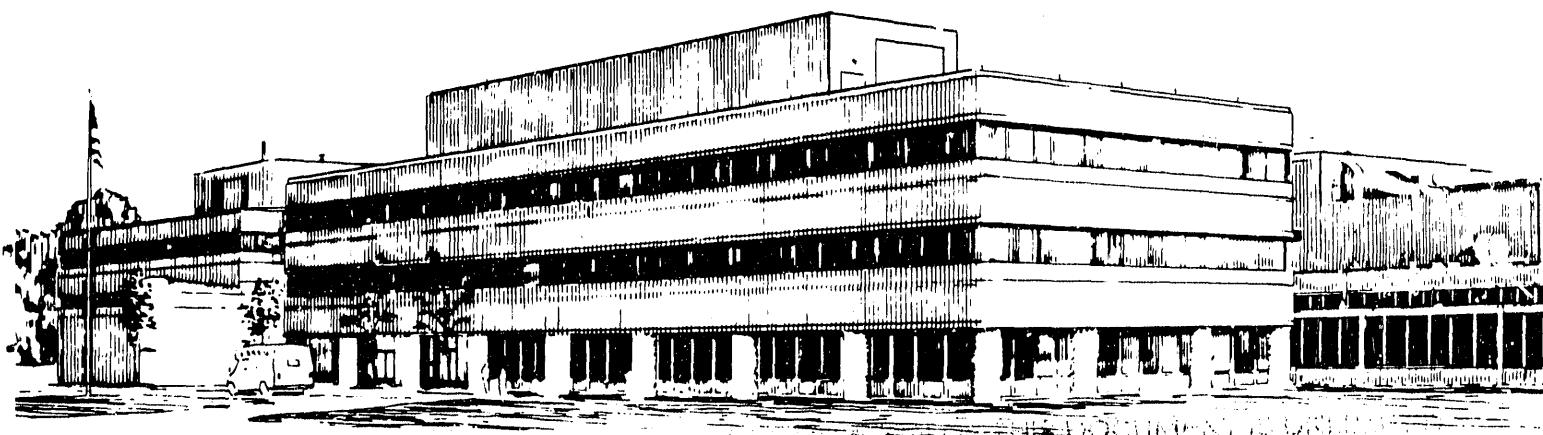
BY

M. OTTAVIANI AND J. KROMMES

February 1992

PPPL

PRINCETON
PLASMA PHYSICS
LABORATORY



PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY

Weak- and strong-turbulence regimes of the Hasegawa-Mima equation

Maurizio Ottaviani^(a) and John A. Krommes

Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, NJ 08543

A Kolmogorov-type analysis of the energy- and enstrophy-cascading ranges of the forced Hasegawa-Mima equation allows one to derive a criterion for the threshold of the transition between the weak turbulence and the strong turbulence regimes. It is found that, due to the inverse energy cascade, the large-scale portion of the inertial range is in the strong turbulence regime in the limit of infinite Reynolds-like numbers.

PACS numbers: 52.35.Ra, 47.25.-c

Among the tools employed to analyze the various reduced models of plasma turbulence, the weak turbulence approximation [1] (WTA) is perhaps the most popular. Formally, the WTA for a given nonlinear model is introduced as an expansion in terms of the magnitude of the coupling coefficients [2] or as a multiple-time-scale expansion [3]. The physical WTA expansion parameter, however, turns out to be a dimensionless quantity representing the ratio of the rate of energy injection to some measure of wave dispersion. For example, if the turbulence model involves just a single scalar field (as in the case of the

^(a) Present address: JET Joint Undertaking, Abingdon, Oxfordshire OX14 3EA, England.

MASTER

EP

two-dimensional Navier-Stokes equation or the Hasegawa-Mima equation [4], the proper WTA expansion parameter ϵ_{WT} is

$$\epsilon_{WT} \doteq \gamma_k / \Delta\omega_k,$$

where γ_k is the growth rate of a given instability as a function of the wavenumber k and $\Delta\omega_k \doteq \omega_k - \mathbf{k} \cdot \mathbf{v}_{g,k}$, with ω_k being the wave frequency and $\mathbf{v}_{g,k}$ being the group velocity, is a measure of wave dispersion.

It is generally assumed that the condition that ϵ_{WT} is somewhat smaller than one is sufficient for the applicability of the WTA. Moreover, in many applications the spectrum of unstable modes, driven by γ_k , is localized to scales substantially smaller than the size of the system. One typically considers a region in wavenumber space around $k_{\perp} \rho_i \approx 1$, where ρ_i is the ion gyroradius. Since the long-wavelength modes are stable or only weakly unstable, one generally concludes that large-scale turbulent dynamics are appropriately described by weak turbulence equations.

Implicit to this viewpoint is the assumption that the shape of the turbulent spectrum somehow resembles the profile of the instability growth rate. Therefore, in the wavenumber region where ϵ_{WT} is significantly smaller than unity nonlinear interactions are assumed to be small compared to wave dispersion and wavelike phenomena are considered to be dominant.

That this line of thought is at least questionable can be understood by noting that the primary effect of nonlinear interactions, which are generally conservative, is to transfer

energy to scales different from those into which it is injected. Therefore, even in regions of negligible growth rate the fluctuation level can be so high that the dynamics are dominated by nonlinearity. The conclusion is that in order to assess the validity of the weak turbulence approach one must perform a more detailed analysis of the nonlinear dynamics.

In this letter we carry out such analysis for a specific model, the forced Hasegawa-Mima (HM) equation [4], the paradigm for a large class of plasma turbulence models. The main conclusion will be that large scales are always in the regime of strong turbulence in the limit of infinite Reynolds-like numbers.

Upon employing the usual normalizations (lengths normalized to ρ_s , where $\rho_s \doteq c_s/\omega_{ci}$, $c_s \doteq (T_e/m_i)^{1/2}$, and $\omega_{ci} \doteq eB/m_i c$; times normalized to L_n/c_s , where L_n is the density scale length), the forced Hasegawa-Mima equation can be written as

$$\partial_t(1 - \nabla^2)\Phi + \partial_y\Phi + \hat{\gamma}\Phi + \mathbf{V}_E \cdot \nabla(-\nabla^2\Phi) = -\nu_L \nabla^{p_L}\Phi - \nu_S \nabla^{p_S}\Phi,$$

where $\hat{\gamma}$ is a linear growth-rate operator associated with the energy injection and the right-hand side represents phenomenological dissipation terms associated with large-scale and small-scale damping coefficients [(hyper-)viscosities] ν_L and ν_S respectively. Also, \mathbf{V}_E is the $\mathbf{E} \times \mathbf{B}$ velocity: for any scalar field ψ , $\mathbf{V}_E \cdot \nabla\psi = \partial_x\Phi \partial_y\psi - \partial_y\Phi \partial_x\psi$.

In the following it is assumed that γ_k vanishes outside a small band of width Δk_f centered around the forcing wavenumber k_f . Then the model possesses three dimensionless control parameters: two Reynolds-like numbers, inversely proportional to ν_S and ν_L ; and the weak turbulence parameter ϵ_{WT} . In the limit $\nu_S \rightarrow 0$, $\nu_L \rightarrow 0$, the inertial ranges

virtually extend from zero wavenumber to infinite wavenumber. Then, varying ϵ_{WT} allows one to pass from regimes of fully developed weak turbulence to regimes of fully developed strong turbulence. Note that, depending on the value of ϵ_{WT} , different regimes may occur in different wavenumber ranges.

The analysis of the turbulent cascade is made difficult by the fact that the present model is not scale-invariant due to the operator $1 - \nabla^2$. In addition, the presence of waves makes the spectrum anisotropic. These difficulties can be circumvented in the strong turbulence (ST) regime. Indeed, in the ST regime wave effects are negligible and one can drop the wave operator altogether. In addition, one can break the wavenumber space into two regions: $k \ll 1$ and $k \gg 1$. In each of these regions the dynamics are described by scale-invariant equations. A Kolmogorov-type analysis can then be carried out separately in the two regions and the spectra connected afterwards.

Let us first consider the case $k \ll 1$. In the absence of forcing and damping, the Hasegawa-Mima equation reduces to

$$\partial_t + \mathbf{V}_E \cdot \nabla (-\nabla^2 \Phi) = 0. \quad (1)$$

The scale transformation $(x, y) \rightarrow \lambda(x, y)$, $t \rightarrow \tau t$ leaves Eq. (1) unchanged provided that $\Phi \rightarrow (\lambda^4/\tau)\Phi$. Therefore the intrinsic dimensions of the field Φ associated with scale invariance in the $k \ll 1$ regime are

$$[\Phi] \sim [\text{length}]^4 [\text{time}]^{-1} \quad (k \ll 1). \quad (2)$$

The two invariants of the full Hasegawa-Mima equation reduce to $E = \sum_k |\Phi_k|^2$ (energy) and $Z = \sum_k k^2 |\Phi_k|^2$ (enstrophy). As usual, energy cascades to low k while enstrophy cascades to high k in the limit of infinite Reynolds numbers. In the energy-cascading range the rate of energy transfer ϵ across wavenumber space is constant. Dimensionally, upon using Eq. (2) one finds $[\epsilon] \sim [\text{length}]^8 [\text{time}]^{-3}$. Then the energy-transfer timescale (turnover time) at wavenumber k is given by

$$\tau_k^{(E)} \sim \epsilon^{-1/3} k^{-8/3}.$$

Similarly one obtains $\tau_k^{(Z)} \sim \eta^{-1/3} k^{-2}$ in the enstrophy-cascading range, where η is the rate of enstrophy transfer. Upon defining the potential spectrum $E_\phi(k)$ such that $\int_0^\infty dk E_\phi(k) = \sum_k |\Phi_k|^2$ and using again Eq. (2), one obtains

$$E_\phi(k) \sim \begin{cases} C_K \epsilon^{2/3} k^{-11/3} & (k < k_f), \\ C_K \eta^{2/3} k^{-5} & (k > k_f). \end{cases} \quad (3)$$

In the opposite case $k \gg 1$ the Hasegawa-Mima equation reduces to the two-dimensional Navier-Stokes equation. Then invariants are the usual energy $E = \sum_k k^2 |\Phi_k|^2$ and enstrophy $Z = \sum_k k^4 |\Phi_k|^2$. The potential has the dimensions of a stream function and one recovers the well known expressions for the turnover times [5]: $\tau_k^{(E)} \sim \epsilon^{-1/3} k^{-2/3}$ and $\tau_k^{(Z)} \sim \eta^{-1/3}$. Still, the same dependence (3) on k is obtained. Indeed, Eqs. (3) yield the usual Kolmogorov expressions when written in terms of the energy spectral density.

One can recognize that ϵ and η are the rate of transfer of the invariants of the full Hasegawa-Mima equation $E = \sum_k (1 + k^2) |\Phi_k|^2$ and $Z = \sum_k k^2 (1 + k^2) |\Phi_k|^2$. Then it is natural to assume that the spectral functions join smoothly at $k_f \approx 1$, thus implying the same value of the Kolmogorov constant C_K throughout the whole k space.

The validity of the ST approximation requires that energy transfer due to nonlinearity dominates over wave dispersion. Since the appropriate measure of the rate of energy transfer in wavenumber space is the local turnover time τ_k , the ST approximation is valid when

$$\frac{1}{\tau_k \Delta \omega_k} > 1. \quad (4)$$

Upon using the limiting expressions $\Delta \omega_k \sim k_y k^2 \sim k^3$ and $\Delta \omega_k \sim k_y/k^2 \sim k^{-1}$ for $k \ll 1$ and $k \gg 1$ respectively, one can evaluate the conditions given in Eq. (4). In the long-wavelength limit one finds that $1/(\tau_k \Delta \omega_k) \sim \epsilon^{1/3} k^{-1/3}$. Therefore long wavelengths are always found in the ST regime in the limit of zero large-scale dissipation (infinite large-scale Reynolds number).

The behavior of $1/(\tau_k \Delta \omega_k)$ as a function of k is depicted in Figs. 1 and 2 for $k_f < 1$ and $k_f > 1$ respectively. For each k , the criterion for the transition from WT to ST depends on the forcing. In any case, one can see from Figs. 1 and 2 that the wavenumber region that first enters the WT regime as the forcing is reduced is $k \approx 1$. The transition criterion can be recast in terms of the integral of the growth rate over the unstable domain: $\Gamma \doteq \int_{\gamma > 0} dk \gamma_k \approx 2\pi \gamma_{k_f} k_f \Delta k_f$. For $k_f < 1$ one can relate Γ to η using $\eta = \sum_k \gamma_k k^2 |\Phi_k|^2$ for $k \approx k_f$. Omitting constants of order unity (such as the Kolmogorov constant) one obtains $\eta^{1/3} \approx \Gamma k_f^{-4}$. Upon imposing the condition given by Eq. (4) around $k \approx 1$ (the most restrictive case) one finally obtains

$$\Gamma \gtrsim k_f^{-4} \quad (k_f < 1) \quad (5)$$

for the uniform validity of the ST approximation in the whole wavenumber space. Also, one can rewrite Eq. (5) in terms of the weak turbulence parameter ϵ_{WT} evaluated at $k \approx k_f$. Assuming that $\Delta k_f \approx k_f$ one finds $\gamma_{k_f}/\omega_{*,k_f} \gtrsim k_f \rho_s$ or $\epsilon_{WT} \gtrsim (k_f \rho_s)^{-1}$, where the original normalization length ρ_s^{-1} has been restored and $\omega_{*,k} \doteq k_y \rho_s c_s / L_n$.

Finally we would like to comment on the relation between the Hasegawa-Mima equation and the very similar Rossby wave (RW) equation that is employed in the modeling of atmospheric turbulence. The RW equation can be seen as the large gyroradius limit of the HM equation. Therefore only $k_f > 1$ and the $k > 1$ portion of Fig. 1 must be considered. At low wavenumbers, one has $1/(\tau_k \Delta \omega_k) \sim \epsilon^{1/3} k^{5/3}$, and large scales are always found in the weak turbulence regime. This implies the formation of zonal flows [6]. No such phenomena are expected in the Hasegawa-Mima equation.

This work was supported by U.S.D.o.E. contract number DE-AC02-76CHO3073. One of us (M.O.) would like to thank the kind hospitality of Princeton University's Plasma Physics Laboratory where most of the work was performed.

REFERENCES

- [1] B. B. Kadomtsev, *Plasma Turbulence* (Academic Press, New York, 1965).
- [2] R. Z. Sagdeev and A. A. Galeev, *Nonlinear Plasma Theory* (Benjamin, New York, 1969).

[3] R. C. Davidson, *Methods in Nonlinear Plasma Theory* (Academic Press, New York, 1972).

[4] A. Hasegawa and K. Mima, *Phys. Rev. Lett.* **39**, 205 (1977).

[5] R. H. Kraichnam, *Phys. Fluids* **10**, 1417 (1967).

[6] G. Holloway, *Ann. Rev. Fluid Mech.* **18**, 91 (1986).

FIGURE CAPTIONS

Figure 1. Strong-turbulence parameter $(\tau_k \Delta \omega_k)^{-1}$ as a function of wavenumber in the case of large-scale forcing ($k_f \ll 1$, indicated by the dotted line).

Figure 2. Behavior of the strong-turbulence parameter in the case of small-scale forcing ($k_f \gg 1$).

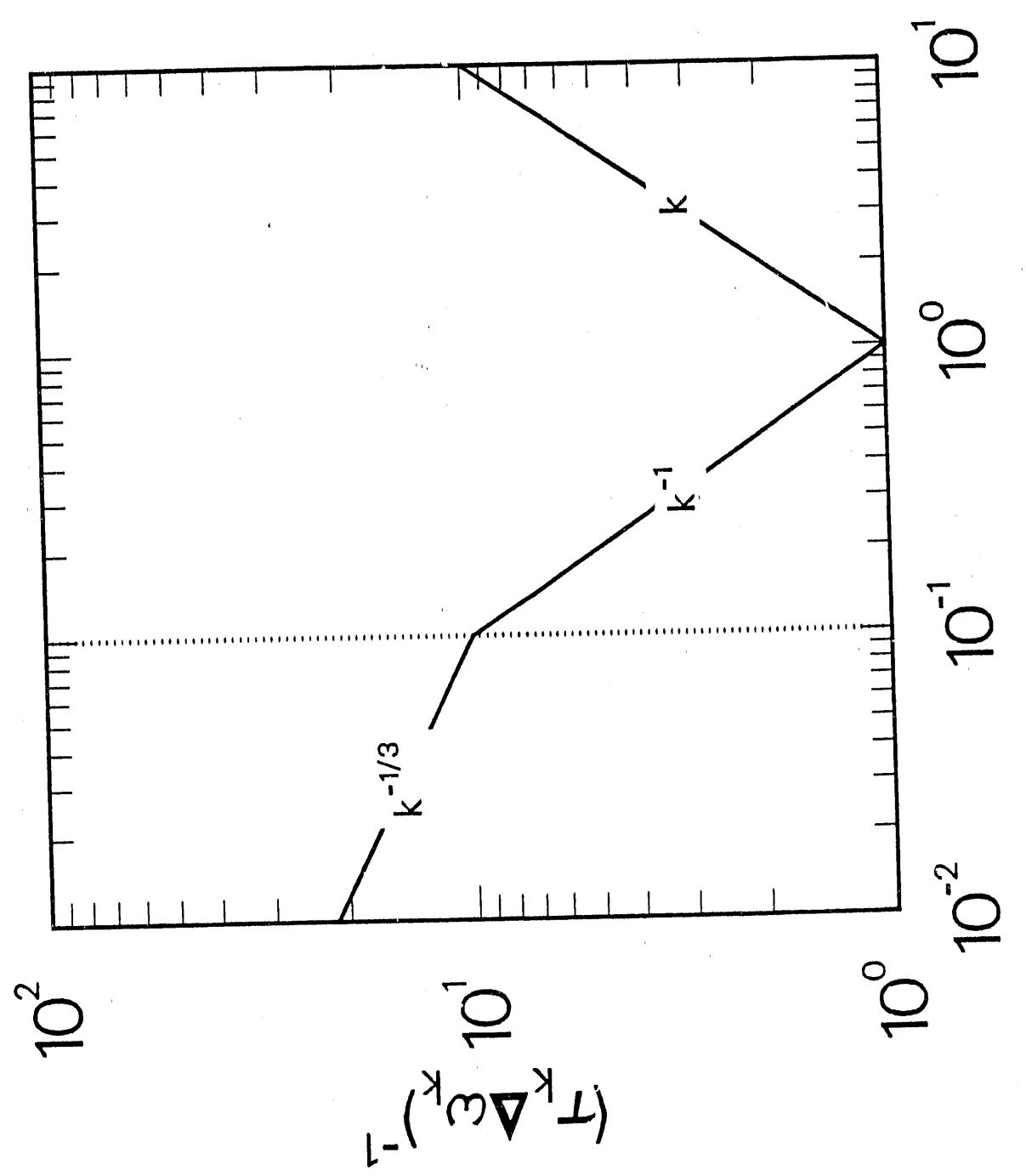


Fig. 1

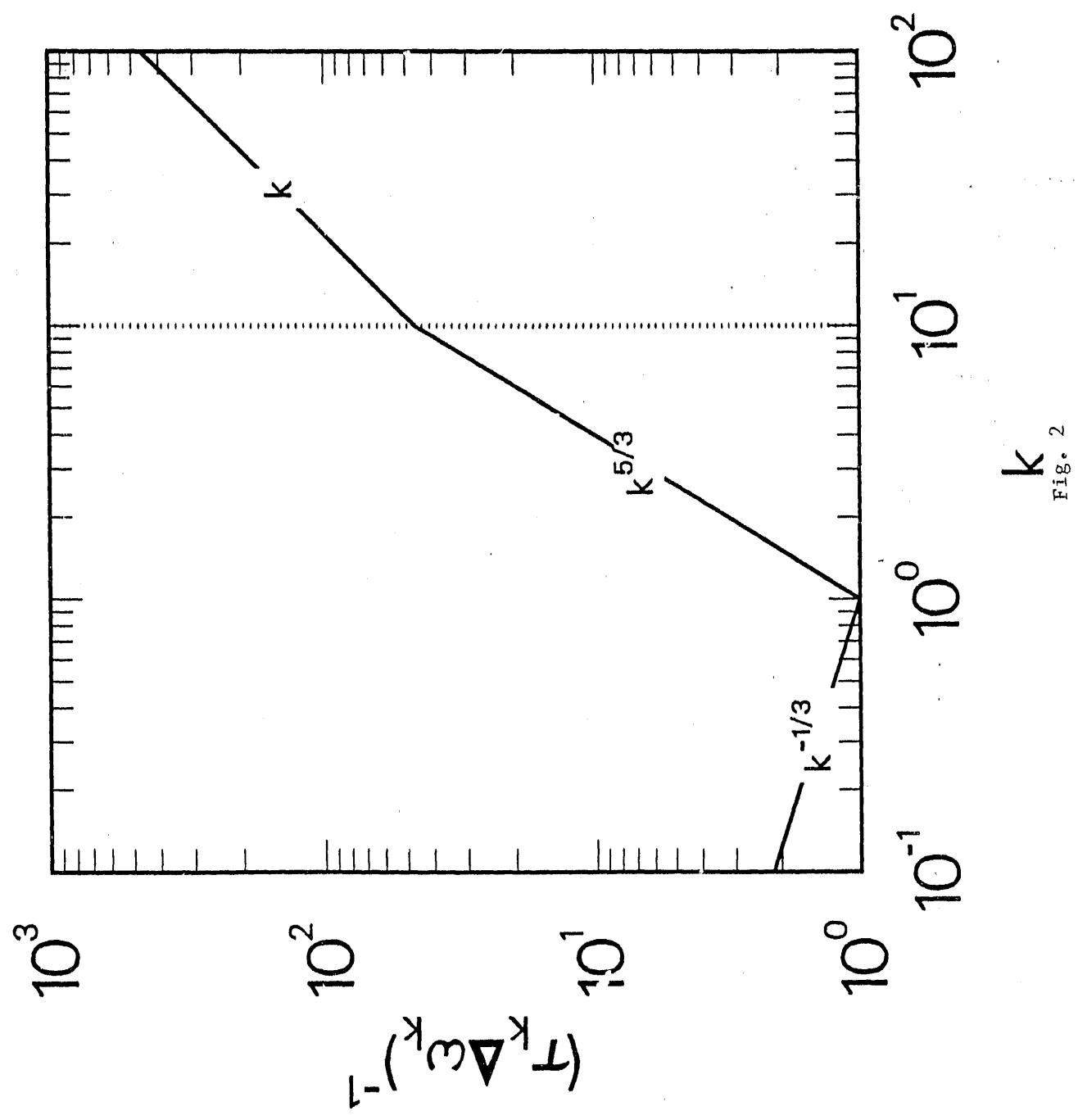


Fig. 2

EXTERNAL DISTRIBUTION IN ADDITION TO UC-420

Dr. F. Paoloni, Univ. of Wollongong, AUSTRALIA
Prof. M.H. Brennen, Univ. of Sydney, AUSTRALIA
Plasma Research Lab., Australian Nat. Univ., AUSTRALIA
Prof. I.R. Jones, Flinders Univ, AUSTRALIA
Prof. F. Cap, Inst. for Theoretical Physics, AUSTRIA
Prof. M. Heindler, Institut für Theoretische Physik, AUSTRIA
Prof. M. Goossens, Astronomisch Instituut, BELGIUM
Ecole Royale Militaire, Lab. de Phys. Plasmas, BELGIUM
Commission-Européen, DG. XII-Fusion Prog., BELGIUM
Prof. R. Bouquqé, Rijksuniversiteit Gent, BELGIUM
Dr. P.H. Sakanaka, Instituto Fisica, BRAZIL
Instituto Nacional De Pesquisas Espaciais-INPE, BRAZIL
Documents Office, Atomic Energy of Canada Ltd., CANADA
Dr. M.P. Bachynski, MPB Technologies, Inc., CANADA
Dr. H.M. Skarsgard, Univ. of Saskatchewan, CANADA
Prof. J. Teichmann, Univ. of Montreal, CANADA
Prof. S.R. Sreenivasan, Univ. of Calgary, CANADA
Prof. T.W. Johnston, INRS-Energie, CANADA
Dr. R. Bolton, Centre canadien de fusion magnétique, CANADA
Dr. C.R. James, Univ. of Alberta, CANADA
Dr. P. Lukáč, Komenského Universzita, CZECHO-SLOVAKIA
The Librarian, Culham Laboratory, ENGLAND
Library, R61, Rutherford Appleton Laboratory, ENGLAND
Mrs. S.A. Hutchinson, JET Library, ENGLAND
Dr. S.C. Sharma, Univ. of South Pacific, FIJI ISLANDS
P. Mähönen, Univ. of Helsinki, FINLAND
Prof. M.N. Bussac, Ecole Polytechnique, FRANCE
C. Mouttet, Lab. de Physique des Milieux Ionisés, FRANCE
J. Radet, CEN/CADARACHE - Bat 506, FRANCE
Prof. E. Economou, Univ. of Crete, GREECE
Ms. C. Rinni, Univ. of Ioannina, GREECE
Dr. T. Mual, Academy Bibliographic Ser., HONG KONG
Preprint Library, Hungarian Academy of Sci., HUNGARY
Dr. B. DasGupta, Saha Inst. of Nuclear Physics, INDIA
Dr. P. Kaw, Inst. for Plasma Research, INDIA
Dr. P. Rosenau, Israel Inst. of Technology, ISRAEL
Librarian, International Center for Theo. Physics, ITALY
Miss C. De Palo, Associazione EURATOM-ENEA, ITALY
Dr. G. Grosso, Istituto di Fisica del Plasma, ITALY
Prof. G. Rostangni, Istituto Gas Ionizzati Del Cnr, ITALY
Dr. H. Yamamoto, Toshiba Res. & Devol. Center, JAPAN
Prof. I. Kawakami, Hiroshima Univ., JAPAN
Prof. K. Nishikawa, Hiroshima Univ., JAPAN
Director, Japan Atomic Energy Research Inst., JAPAN
Prof. S. Itoh, Kyushu Univ., JAPAN
Research Info. Ctr., National Instit. for Fusion Science, JAPAN
Prof. S. Tanaka, Kyoto Univ., JAPAN
Library, Kyoto Univ., JAPAN
Prof. N. Inoue, Univ. of Tokyo, JAPAN
Secretary, Plasma Section, Electrotechnical Lab., JAPAN
S. Mori, Technical Advisor, JAERI, JAPAN
Dr. O. Mitaai, Kurnamuto Inst. of Technology, JAPAN
J. Hyeon-Sook, Korea Atomic Energy Research Inst., KOREA
D.I. Choi, The Korea Adv. Inst. of Sci. & Tech., KOREA
Prof. B.S. Liley, Univ. of Waikato, NEW ZEALAND
Inst of Physics, Chinese Acad Sci PEOPLE'S REP. OF CHINA
Library, Inst of Plasma Physics, PEOPLE'S REP. OF CHINA
Tsinghua Univ. Library, PEOPLE'S REPUBLIC OF CHINA
Z. Li, S.W. Inst Physics, PEOPLE'S REPUBLIC OF CHINA
Prof. J.A.C. Cabral, Instituto Superior Técnico, PORTUGAL
Dr. O. Petrus, AL I CUZA Univ., ROMANIA
Dr. J. de Villiers, Fusion Studies, AEC, S. AFRICA
Prof. M.A. Hellberg, Univ. of Natal, S. AFRICA
Prof. D.E. Kim, Pohang Inst. of Sci. & Tech., SO. KOREA
Prof. C.I.E.M.A.T, Fusion Division Library, SPAIN
Dr. L. Stenflo, Univ. of UMEA, SWEDEN
Library, Royal Inst. of Technology, SWEDEN
Prof. H. Williamson, Chalmers Univ. of Tech., SWEDEN
Centre Phys. Des Plasmas, Ecole Polytech, SWITZERLAND
Bibliotheek, Inst. Voor Plasma-Fysica, THE NETHERLANDS
Asst. Prof. Dr. S. Cakir, Middle East Tech. Univ., TURKEY
Dr. V.A. Glukhikh, Sci. Res. Inst. Electrophys. Apparatus, USSR
Dr. D.D. Ryutov, Siberian Branch of Academy of Sci., USSR
Dr. G.A. Eliseev, I.V. Kurchatov Inst., USSR
Librarian, The Ukr.SSR Academy of Sciences, USSR
Dr. L.M. Kovrizhnykh, Inst. of General Physics, USSR
Kernforschungsanlage GmbH, Zentralbibliothek, W. GERMANY
Bibliothek, Inst. Für Plasmaphysik, W. GERMANY
Prof. K. Schindler, Ruhr-Universität Bochum, W. GERMANY
Dr. F. Wagner, (ASDE)(1), Max-Planck-Institut, W. GERMANY
Librarian, Max-Planck-Institut, W. GERMANY
Prof. R.K. Janev, Inst. of Physics, YUGOSLAVIA

END

DATE
FILMED

4/01/92

I

