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of the Hasegawa—Mima equation

Maurizio Ottaviani®® and John A. Krommes

Plasma Physics Laboratory, Princeton University, P.O. Boz 451, Princeton, NJ 08543

A Kolmogorov-type analysis of the energy- and enstrophy-cascading ranges
of the forced Hasegawa—Mima equation allows one to derive a criterion for the
threshold of the transition between the weak turbulence and the strong turbulence
regimes. It is found that, due to the inverse energy cascade, the large-scale portion
of the inertial range is in the strong turbulence regime in the limit of infinite

Reynolds-like numbers.

PACS numbers: 52.35.Ra, 47.25.-¢

Among the tools employed to analyze the various reduced models of plasma turbu-
lence, the weak turbulence. approximation [1] (WTA) is perhaps the most popular. For-
mally, the WTA for a giveﬁ nonlinear model is introduced as an expansion in terms of the
magnitude of the coupling coefficients (2] or as a multiple-time-scale expansion [3i. The
physical WTA ‘expansion parameter, however, turns out to be a dimensionless quantity
representing the ratio of the rate of energy injection to some measure of wave dispersion.

For example, if the turbulence model involves just a single scalar field (as in the case of the

(®) Present address: JET Joint Undertaking, Abingdon, Oxfordshire 0X14 3EA, England.
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two-dimensional Navier-Stokes equation or the Hasegawa-Mima equation [4], the proper

WTA expansion parameter ewr is

EWT = Y/ Awg,

where v, is the growth rate of a given instability as a function of the wavenumber k and
Awy, = wp — k-vg )y, With wy being the wave frequency and vg k being the group velocity,

is a measure of wave dispersion.

It is generally assumed that the condition that ewr is somewhat smaller than one is
sufficient for the applicability of the WTA. Moreover, in many applications the spectrum
of unstable modes, driven by 7y, is localized to scales substantially smaller than the size
of the system. One typically considers a region in wavenumber space around kjp; = 1,
where pi is the ion gyrorédius. Since the long-wavelength modes are stable or only weakly
unstable, one generally concludes that large-scale turbulent dynamics are appropriately

described by weak turbulence equations.

Implicit to this viewpoint is the assumption that the shape of the turbulent spectrum
somehow resembles the profile of the instability growth rate. Therefore, in the wavenumber
region where ewr is significantly smaller than unity nonlinear interactions are assumed
to be small compared to wave dispersion and wavelike phenomena are considered to be

dominant.

That this line of thought is at least questionable can be understood by noting that

the primary effect of nonlinear interactions, which are generally conservative, is to transfer
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energy to scales different from those into which it is injected. Therefore, even in regions of
negligible growth rate the fluctuation level can be so high that the dynamics are dominated
By nonlinearity. The conclusion is that in order to assess the validity of the weak turbulence

v approéch one must perform a more detailed analysis of the nonlinear dynamics.

In this letter we carry out such analysis for a specific model, the ferced Hasegawa-

Mima (HM) equation {4], the paradigm for a large class of plasma turbulerice models. The
raain conclusion will be that large scales are always in the regime of étrong turbulence in

the limit of infinite Reynolds-like numbers.

Upon employing the usual normalizations (lengths normalized to ps, where ps =
Cs/Weiy Cs = (Te/m,-)l/z, and we; = eB/m;c; times normalized to L,/cs, where L, is

. the density scale length), the forced Hasegawa~Mima equation can be written as
A\ 8i(1 = V2)d + 8,8 + 5% + Vg V(=V28) = -1, VL& — 1 VPs &,

where 7 is a linear growth-rate operator associated with the energy injection and the right-
hand side represents phenomenological dissipation terms associated with large-scale and
small-scale damping coefficients [(hyper-)viscosities] 11, and vs respectively. Also, Vg is

the EX B velocity: for any scalar field ¥, VgV = 0,9 0,9 — 0,9 5.¢.

In the following it is assumed that g vanishes outside a small band of width Aks
P centered around the forcing wavenumber k;. Then the model possesses three dimensionless
control parameters: two Reynolds-like numbers, inversely proportional to vs and 11} and

the weak turbulence parameter ewT. In the limit vg — 0, 1, — 0, the inertial ranges
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virtually extend from zero wavenumber to infinite wavenumber. Then, varying ewT allows
one to pass from regimes of fully developed weak turbulence to regimes of fully developed
strong turbulence. Note that, depending on the value of ewr, different regimes may occur

in different wavenumber ranges.

The anaiysis of the turbulent cascade is made difficult by the fact that the present
model is not scale-invariant due to the operator 1 — V2, In addition, the presence of waves
makes the spectrum anisotropic. These difficulties can be circumvented in the strong
turbulence (ST) regime. Indeed, in the ST regime wave eflects are negligible and one can
drop the wave operator a]togethér. In addition, one can break the wavenumber space into
two regions: k <« 1 and k 3> 1. In each of these regions the dynamics are described by
scale-invariant equations. A Kolmogorov-type analysis can then be carried ou£ separately

in the two regions and the spectra connected afterwards.

Let us first consider the case = « 1. In the absence of forcing and damping, the

‘Hasegawa-Nlima equation reduces to
O, + Vg -V (-V?d) = 0. ' (1)

The scale transformation (z,y) — A z,y), t — 7t leaves Eq. (1) unchanged provided that
¢ — (A*/7)®. Therefore the intrinsic dimensions of the field ¢ associated with scale

invariance in the k <« 1 regime are

(®] ~ [length] [time]™' (k< 1). (2)



The two invariants of the full Hasegawa~Mima equation reduce to E = ), |®1|? (energy)
and Z = ¥, k% |®4| (enstrophy). As usuai, energy cascades 1o low k while enstrophy
cascades to higfl k in the limit of infinite Reynolds numBers. In the énergy-cascading
range the rate of energy transfer e across wavenumber space is constant. Dimensionally,
upon using Eq. (2) one finds [¢] ~ [length)® [time]~3. Then the energy-transfer timescale

(turnover time) at wavenumber k is given by

T;EE) ~ g~ 1/3),~8/3

Similarly one obtains 7{¥) ~ n7'/3k~2? in the enstrophy-cascading range, where 7 is
the rate of enstrophy transfer. Upon defining the potential spectrum Eg(k) such that

[ dk Eg(k) = 3y, |®,|? and using again Eq. (2), one obtains

CKE2/3k—11/3 (/\, < k{),
E¢(k) { Can/Sk—S (’C > kf) (3)

In the opposite case k > 1 the Hasegawa-Mima equation reduces to the two-dimensional
Navier-Stokes equation. Then invariants are the usual energy E = 3 1 k? I‘I’k.’Q and en-
strophy Z = 5" k* |®4]?. The potential has the dimensions of a stream function and one
recovers the well known expressions for the turnover times [5]: T,EE) ~ ¢~ 1/3k~2/3 and
(%) ~ n~1/3, Still, the same dependence (3) on k is obtained. Indeed, Egs. (3) yield the

usual Kolmogorov expressions when written in terms of the energy spectral density.

One can recognize that ¢ and 7 are the rate of transfer of the invariants of the full
Hasegawa-Mima equation E = 5, (1 +k2) 84| and Z = 3", k(1 + &?) |®4|°. Then it is
natural to assume that the spectral functions join smoothly at k¢ & 1, thus implying the
same value of the Kolmogorov constant Ck throughout the whole k space.
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The validity of the ST approximation require - that energy transfer due to nonlinearity
dominates over wave dispersion. Since the appropriate measure of the rate of energy

transfer in wavenumber space is the local turnover time 7, the ST approximation is valid

when

1
Tk Awk

> 1. (4)

Upon using the limiting expressions Awy, ~ kyk? ~ k® and Awy ~ ky/k? ~ k™! for k < 1
and k >» 1 respectively, one can evaluate the conditions given in Eq. (4). In the long-
wavelength limit one finds that 1/(7Awy) ~ €}/3k~1/3. Therefore long wavelengths are
always found in the ST regime in the limit of zero large-scale dissipation (infinite large-scale

Reynolds number).

The behavior of 1/(rxAwy) as a function of k is depicted in Figs. 1 and 2 for kf < 1 |
and k; > 1 respectively. For each k, the criterion for the transition from WT to ST
depends on the forcing. In any case, one can see from Figs. 1 and 2 that the wavenumber
region that first enters the WT regime as the forcing is reduced is k = 1. The transition
criterion can be recast in terms of the integral of the growth rate over the unstable domain:
r= f—,>odk T = 27r7kr)\7fAkf. For k¢ < 1 one can relate T to n using n = Zkﬁ'kkz |®), 12
for k = kr. Omitting constants of order unity (such as the Kolmogorov constar;t) one
obtains 7'/ = I'k;7*. Upon imposing the condition given by Eq. (4) around k & 1 (the

most restrictive case) one finally obtains

Tz k' (k<) (5)
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for the uniform validity of the ST approximation in the whole wavenumber space. Also,
one can rewrite Eq. (5) in terms of the weak turbulence parameter ewr evaluated at k =~ ky.
Assuming that Ak = ky one finds vk, /wu b, = krps or ewr = (keps) ™!, where the original

normalization length pJ! has been restored and w, j = kypscs/Ln.

Finally we would like to comment on the relation between ihe Hasegawa—l\'lima equa-
tion and the very similar Rossby wave (RW) equation that is employed in the modeling of
atmospheric turbulence. The RW equation can be seen as the large gyroradius limit of the
HM equation. Therefore only k¢ > 1 and the k > 1 portion of Fig. 1 must be consideréd.
At low wavenumbers, one has 1/(mxAwy) ~ €}/3k%/3, and large scales are always found
in the weak turbulence regime. This implies the formation of zonal flows [6]. No such

phenomena are expected in the Hasegawa-Mima equation.

This work was supported by U.S.D.o.E. contract number DE-AC02-76Ci103073. One
of us (M.0.) would like to thank the kind hospitality of Princeton University’s Plasma

Physics Laboretory where most of the work was performed.
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FIGURE CAPTIONS
Figure 1. Strong-turbulence parameter (TyAwg)~! as a function of wavenumber in the
case of large-scale forcing (by < 1, indicated by the dotted line).

Figure 2. Behavior of the strong-turbulence parameter in the case of small-scale forcing

(ke > 1).
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