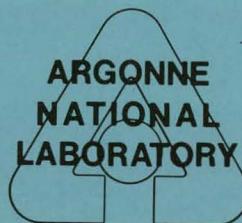


TECHNICAL MEMORANDUM


ANL-CT-80-3

MASTER

DOE/ANL/HTRI HEAT EXCHANGER TUBE
VIBRATION DATA BANK

by

H. Halle, J. M. Chenoweth, and M. W. Wambsganss
Components Technology Division

February 1980

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) among the U. S. Department of Energy, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

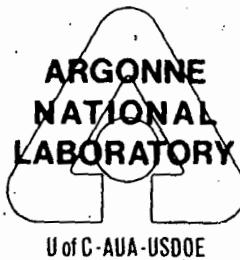
The University of Arizona
Carnegie-Mellon University
Case Western Reserve University
The University of Chicago
University of Cincinnati
Illinois Institute of Technology
University of Illinois
Indiana University
The University of Iowa
Iowa State University

The University of Kansas
Kansas State University
Loyola University of Chicago
Marquette University
The University of Michigan
Michigan State University
University of Minnesota
University of Missouri
Northwestern University
University of Notre Dame

The Ohio State University
Ohio University
The Pennsylvania State University
Purdue University
Saint Louis University
Southern Illinois University
The University of Texas at Austin
Washington University
Wayne State University
The University of Wisconsin-Madison

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.


TECHNICAL MEMORANDUM

ANL-CT-80-3
Engineering and
Equipment (UC-38)

DOE/ANL/HTRI HEAT EXCHANGER TUBE
VIBRATION DATA BANK

by

H. Halle, J. M. Chenoweth,^{*} and M. W. Wambsganss
Components Technology Division

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

February 1980

^{*}Assistant Technical Director, Heat Transfer Research, Inc., Alhambra, CA

TABLE OF CONTENTS

	<u>Page</u>
ABSTRACT	1
I. INTRODUCTION	1
II. BACKGROUND	3
III. OBJECTIVES	5
IV. ASSESSMENT OF DIFFICULTIES	5
V. DATA FORM	6
VI. SOLICITATION	7
VII. INITIAL CASE HISTORIES	8
VIII. DISCUSSION	8
APPENDIX 1: HTRI Solicitation Letter for Tube Vibration Case Histories and DOE/ANL/HTRI Heat Exchanger Tube Vibration Data Form	1-1
APPENDIX 2: Case Histories 101-115 of the DOE/ANL/HTRI Heat Exchanger Tube Vibration Data Bank	2-1

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA BANK

by

H. Halle, J. M. Chenoweth, and M. W. Wambsganss

ABSTRACT

Development of a new heat exchanger tube vibration data bank at Argonne National Laboratory is described. The objective is to accumulate comprehensive case histories on heat exchangers that have experienced tube-vibration problems and units that have been trouble-free, and render this information available for evaluation, improvement, and development of vibration-prediction methods and design guidelines. Discussions include difficulties in generating a data bank, data form development, and solicitation efforts. Also included are 15 case histories upon which the data bank will be built. As new case histories are received, they will be assembled and published as addenda to this report.

I. INTRODUCTION

Flow-induced vibration has become a vital factor in the design of heat exchangers along with the more traditional thermal, hydraulic, and mechanical considerations. There have been many cases of shell-and-tube heat exchangers experiencing vibration problems, often leading to tube failures, and, in some cases, costly plant shutdowns. These vibration problems have motivated theoretical and experimental studies which have resulted in the development of prediction methods and design guidelines to avoid detrimental tube vibration. However, most of these studies involved single tubes or tube banks subjected to idealized uniform crossflow or parallel flow conditions. Although these conditions can occur locally, they are not

typical of the changing flow patterns throughout an actual shell-and-tube exchanger: Flow passages, and thus flow conditions, are much more complex than simulated by either mathematical models or experimental equivalents. Consequently, extrapolation of these methods for predicting flow-induced vibration problems to heat exchanger tube bundles has been seriously challenged. Available prediction methods provide useful guidance but are considered unreliable to the extent that their application to heat exchanger design evaluation is uncertain thus requiring the use of large factors of safety.

To examine the ability of these methods to correctly predict the absence or presence of flow-induced tube vibrations, field data must be collected from case histories of individual heat exchangers and stored in a manner that can be input into these methods.

Efforts in support of such a data bank are being carried out at Argonne National Laboratory (ANL), and funded by the U.S. Department of Energy, Office of Fossil Energy, Division of Fossil Fuel Utilization. The activity is also a part of a U.S. contribution to an International Energy Agency (IEA) program of Research and Development on Heat Transfer and Heat Exchangers.

Solicitation and collection of case histories for the data bank has been assigned by ANL to Heat Transfer Research, Inc. (HTRI), a nonprofit cooperative of heat transfer equipment manufacturers, engineering contractors, and processing companies to promote application-oriented research in heat transfer. ANL is working with HTRI to take advantage of their experience with data banks, their established contacts with manufacturers and users throughout the world, and to ensure anonymity of contributors to the bank.

This report describes the DOE/ANL/HTRI Heat Exchanger Tube Vibration Data Bank, including background information, objectives, assessment of difficulties involved, data form development, solicitation efforts, and, as an appendix, fifteen case histories of heat exchanger tube vibration. These histories were purchased

from HTI with program funds and represent cases in which acoustic vibration, damaging tube vibration, and no vibration were present. They constitute the initial entries and the base upon which the new data bank will be built. As additional case histories are received, the data will be collated and published annually as addenda to this report.

II. BACKGROUND

The need for a bank of field data for shell-and-tube heat exchangers that have experienced flow-induced tube vibration problems was recognized by the Tubular Exchanger Manufacturers Association (TEMA) in 1969. Data collected from its members represented observations of gross effects that were considered significant parameters concerning tube vibrations. These proprietary data were made available to HTI in 1971. Since that time, a new understanding of vibration phenomena has shown that the data are inadequate to evaluate critically current prediction methods.

In 1972, HTI started collecting case histories for a heat exchanger tube vibration data bank. A form was designed that requested more data than found in the TEMA Data Bank. More specifically, case histories also were requested for heat exchangers which had not experienced vibration problems.

The data obtained ranged from very complete to sparse. In some instances, data gaps could be filled either by contacting the organization submitting the case, by making back-calculations, or by using "good engineering judgment." Although the HTI data bank is proprietary to HTI members, gross comparisons of predictions by known methods with field observations have been published.[†] Of the more than 60 cases submitted, only 25 were sufficiently documented to

[†]J. M. Chenoweth, "Flow-Induced Tube Vibrations in Shell and Tube Heat Exchangers," ERDA Report SAN/1273-1 (February 1977).

be included in the data bank. However, only six of these cases deal with liquid shell side flow. Additionally, the data are heavily biased toward cases for which vibration problems have been experienced; there is a lack of cases for which no vibration problems occurred.

In England, Heat Transfer and Fluid Flow Service (HTFS) also has collected, analyzed, and prepared a report on tube-vibration data. However, the report is proprietary to HTFS members.

In 1976, HTRI conducted a study on flow-induced tube vibration in shell-and-tube heat exchangers for the Division of Conservation Research and Technology of the Energy Research and Development Administration (ERDA). This study included a Heat Exchanger Tube Vibration Workshop to identify the most promising areas of needed research in flow-induced vibration in industrial shell-and-tube heat exchangers. An international panel of 14 vibration experts, representing on-going research, was invited to present their evaluation of the current state-of-the-art, and to participate with other attendees in discussions and formulation of research recommendations. The results of the presentations and discussions were published by Chenoweth.

During the workshop, the panelists stressed the importance of obtaining and using field data to establish the validity of any prediction method. The difficulty of obtaining reliable field data was recognized, and the development of improved methods (i.e., data banks) to acquire such data was recommended.

Based, in part, on the results and recommendations from this workshop, development of a bank of field data was selected as one of two program activities to be assigned to ANL. The second activity involves obtaining tube-vibration data under controlled conditions from testing of a specially built, industrial size, segmentally baffled shell-and-tube heat exchanger.

III. OBJECTIVES

The DOE/ANL/HTRI Heat Exchanger Tube Vibration Data Bank has as its immediate objective the collection of sufficient, reliable, well-documented field data to (1) demonstrate confidence in the application of available prediction methods to the design of equipment; (2) provide a basis for improving these methods; or (3) provide the researcher with information for developing new methods. The ultimate goal, in addition to reducing the number of heat exchangers that experience detrimental vibrations, is to minimize the number of heat exchangers that are unnecessarily overdesigned to avoid flow-induced vibration problems.

IV. ASSESSMENT OF DIFFICULTIES

Following are some of the reasons why it may be difficult to obtain comprehensive field data on flow-induced vibration in shell-and-tube heat exchangers.

- (1) Plant managers and field service engineers are, understandably, more interested in getting a plant back into production than investigating the source of vibration-induced failure of a heat exchanger.
- (2) Before a vibration problem develops, there is no incentive to make observations that could identify the source of the problem. Thus, although a long-term phenomenon may have caused the failure, recent operational changes are usually suspected.
- (3) Actual operating conditions often do not agree with conditions assumed in the design of a heat exchanger, particularly during startup, shutdown, and plant upsets. It is reasonable to suspect many vibration problems are initiated during these phases of operation.

(4) Flow velocity profiles within a tube bundle and tube damping, both important parameters in any prediction method, are difficult to measure and to calculate.

(5) Records are seldom kept of "as built" heat exchangers. Deviations during initial construction and subsequent field changes are not always noted on drawings.

(6) Before organizations will release the desired amount of data, they must be assured that its source will be protected and that its use will be restricted to evaluation of prediction methods.

The last item was a contributing factor in the decision to assign an independent, non-government organization (i.e., HTRI) the task of collecting, storing, and coding the data forwarded to ANL.

V. DATA FORM

It is important that the data be collected in a systematic way, be as complete as possible, and as accurate as practical. Toward this end, a standard questionnaire is required which lists the desired information that may be available but may not be considered significant by each contributor.

The questionnaire should provide entries for sufficient primary data to enable an investigator (1) to calculate important derived data such as flow velocity fractions and natural frequencies (if not measured); (2) to input the data in various prediction methods; (3) to compare the calculated results with actual performance; and (4) to request additional information that may be made available by the source.

The DOE/ANL/HTRI Heat Exchanger Tube Vibration Data Form and Instruction Sheet developed to satisfy these requirements are reproduced in Appendix 1. The 4-page data form is based on a Heat Exchanger Vibration Data Sheet developed and used by HTRI to accumulate their data bank. In consultation with HTRI, the format of their data sheet has been rearranged and enlarged to motivate and accommodate more input, particularly with respect to vibration damage description, analysis of two-phase flow, and evaluation of the influence of axial forces on tubes.

As the case histories are received by HTRI, they will be coded. Page 1 of the Data Form will be retained in a confidential file. Pages 2, 3, and 4, which contain the pertinent technical information will be sent to ANL for inclusion in the DOE/ANL/HTRI Heat Exchanger Tube Vibration Bank.

VI. SOLICITATION

As discussed above, the task of soliciting case histories has been assigned to HTRI. The letter of solicitation that accompanies the data form is included in Appendix 1.

A direct solicitation for case histories has been made to HTRI member organizations (> 150) located through the world. Additionally, non-HTRI member organizations will be solicited.

The vibration problem is sufficiently complex, that a follow-up procedure will be implemented to ensure complete documentation of each case history. In addition, the quality of the information will be evaluated; poor data with inadequate documentation will only be misleading. It is better to have fewer reliable data in a data bank than a larger amount of questionable data.

VII. INITIAL CASE HISTORIES

Fifteen of the most representative of well-documented case histories have been purchased from the HTRI Data Bank, and the information transferred to the new data forms. These forms are reproduced as Appendix 2, and represent the initial case histories of the DOE/ANL/HTRI Heat Exchanger Tube Vibration Data Bank. Owing to the enlarged format and increased number of entries, there are areas where the data are incomplete.

Also included in Appendix 2 is a summary tabulation of the geometries and various process fluids of the heat exchangers.

VIII. DISCUSSION

Successful development of a data bank of heat exchanger tube vibration case histories cannot be guaranteed a priori because of the many difficulties in obtaining data that are sufficiently detailed and reliable. For the most part, these difficulties are beyond the control of the data bank developer. In fact, some investigators who have attempted to assemble a similar bank for evaluation of prediction methods have concluded that such an effort, while initially appealing, is difficult to accomplish in practice because of inherent uncertainties in the data.

Nevertheless, development of the DOE/ANL/HTRI Heat Exchanger Tube Vibration Data Bank is deemed a significant effort toward a better understanding of the phenomena involved, and marked improvement in formulation and application of prediction methods.

More specifically: Although information in the data bank will be predominantly of a qualitative nature, it will aid researchers and design engineers in (1) identifying regions within a tube bundle (such as the first row after the baffle cut) that are most susceptible to vibration and whether

the mode of failure is tube wear at the baffle or intertube impacting; and (2) determining the relative effectiveness of various design features (e.g., impingement plates) in reducing the potential for tube vibration.

As a source of practical information, the data bank will be particularly beneficial to researchers who have no direct experience in design or operation of heat exchangers, but are involved in development of design guidelines and corresponding performance-prediction methods.

For the effort to be successful will require the cooperation of the contributors to the bank to ensure that complete and accurate data are provided. Also, it will be necessary to collect case histories from heat exchangers that have as well as those that have not experienced vibration problems, and from units with liquids, gases, and two-phase mixtures as the shellside fluid. As the number of respective case histories increases, trends in the dynamic behavior will become apparent, as will any anomalies that should be disregarded because of inaccurate or uncertain data. As necessary, selected case histories will be followed up with personal contacts and/or on-site visits for purposes of obtaining clarification or additional information.

It is not unreasonable to expect that it will take several years to collect a sufficient number of well-documented cases for the data bank to become a useful tool in the evaluation of prediction methods. However, during this time period the available data will provide useful guidance of research efforts. For example, new methods to calculate flow velocities may be derived which will increase the potential usefulness of the data over what it would be today.

APPENDIX 1

HTRI Solicitation Letter for Tube Vibration Case Histories

and

DOE/ANL/HTRI Heat Exchanger Tube Vibration Data Form

Research Facilities

1000 South Fremont Avenue Alhambra, California 91802 Telephone (213) 570-3950
Telex 67-4888 (CFBRAUN) TWX 910-589-3377

Subject: Tube Vibration Data Bank on Shell-and-Tube Heat Exchangers

The importance of correctly predicting, and thus eliminating, the danger of possible tube vibration in shell-and-tube heat exchangers hardly needs to be emphasized. There are many known cases where tube vibration resulted in destruction of tubes with very dangerous and costly consequences. HTRI has been active in tube vibration research for the past eight years.

In October 1976 HTRI organized under contract to ERDA (presently US Department of Energy, DOE) a Tube Vibration Workshop with a panel discussion on the state of the art by selected international experts. (Reference ERDA Report No. SAN/1273-1.) One of the principal conclusions was the urgent need for a tube vibration data bank. To test the various predictive methods developed from theory or laboratory studies, field data on large-scale industrial shell-and-tube heat exchangers are necessary. Our subsequent contract with DOE resulted in

- HTRI consulting on a research program involving a large-scale test exchanger for vibration study at the Argonne National Laboratory. This test is currently under way and is producing most important data. The results will eventually be published as a report from Argonne National Laboratory and will also be made available to the International Energy Agency.
- HTRI, acting on behalf of DOE/Argonne, soliciting and collecting data for a new DOE/ANL/HTRI Heat Exchanger Tube Vibration Data Bank.

The reason Argonne National Laboratory has given the task of establishing the Tube Vibration Data Bank to HTRI is (a) our previous experience in the proper assembly of tube vibration data, and (b) to assure anonymity of the data sources.

By this letter I am requesting support from your company to supply field data on shell-and-tube heat exchangers that experienced vibration problems as well as data on similar exchangers that did not experience vibration problems. Such cases to be useful need to be reasonably well documented. A new Data Form (attached) was developed to assist in collecting the data. It reflects our experience and anticipates items that are significant but might be overlooked. The identity of the data source will be confidential to HTRI Staff as only pages 2, 3, and 4 of the Data Form will be included in the Data Bank. Your cooperation will assure that badly needed data will be available for a well-organized international cooperative project on flow-induced vibration and ultimately the formulation of improved methods for tube vibration prediction.

Sincerely yours,

JT:pth
Attachment

Jerry Taborek
Technical Director

Administrative Office

1499 Huntington Drive, Suite 309 South Pasadena, California 91030
Telephone (213) 570-3980 Telex 67-5355 (HTRI)

Name of Person Submitting Case	(Confidential)
Phone Number	
Address	
Item No.	(Confidential)
Reference No.	(Confidential)

Assigned Case No.

Date Submitted

INSTRUCTIONS

HTRI is collecting data on vibration and vibration damage in shell-and-tube heat exchangers which will be incorporated into a Vibration Data Bank sponsored by the U. S. Department of Energy (DOE). Some years ago, TEMA and HTRI collected case studies of vibration which have become the initial entries in the data bank. Recognizing that more comprehensive data are needed, this data collection form has been prepared. The case studies will be used to test and to aid in the improvement of proposed correlations for predicting the occurrence of vibration and possible damage which might result. Until a sufficiently broad data bank can be assembled and used to test possible prediction methods, it will be impossible to make predictions with any degree of confidence.

Any predictive method must not only indicate when vibration problems are probable, but must also predict accurately when they will be absent. Consequently, we are interested in also receiving a number of cases of heat exchangers which did not experience vibration and yet were similar to ones which had vibration problems. Much of the requested information may be available from drawings and/or specification sheets for the exchangers. If these are supplied, only the flow conditions and observed descriptions of damage, vibration frequencies, etc. need be filled in on the data sheets. The company submitting the data and any Item and Reference Numbers used to identify the exchanger will be confidential. HTRI will assign a case number and forward the data to Argonne National Laboratory (ANL) for publication for DOE.

Please fill in the forms as completely as possible. Supplement with photographs, sketches, drawings, and descriptions if available. Indicate known deviation from construction drawings. Add anything you feel would assist in understanding flow-induced vibration. For the benefit of all, please contribute as many cases as possible. Mail the completed forms with attachments to:

Heat Transfer Research, Inc.
1000 S. Fremont Avenue
Alhambra, CA 91802

Assigned
Case No. _____

Type TEMA Exchanger Designation _____
 Special Exchanger (Describe) _____

Shell Orientation Horizontal
 Vertical

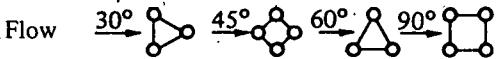
SHELL GEOMETRY (Complete Sketch Below)

Inside Diameter, mm (in.) _____
 Wall Thickness, mm (in.) _____ Material _____
 Inlet Nozzle ID, mm (in.) _____
 Outlet Nozzle ID, mm (in.) _____
 Impingement Protection No Yes
 (Describe) _____
 Annular Distributor No Yes
 Open Cut Area mm² (in.²) _____
 Nozzle-to-First Tube Row Distance, mm (in.) _____

TUBE GEOMETRY

Outside Diameter, mm (in.) _____

Wall Thickness, mm (in.) _____ Material _____


Tube Lengths

Straight Tube, Inside Tubesheets, mm (in.) _____

U-Tube, Tubesheet to Bend Tangent, mm (in.) _____

Tube Pitch, mm (in.) _____

Layout (Please Circle)

No. of Tubes _____ No. of Tubepasses _____

First Tubepass Countercurrent Cocurrent

Tube-to-Tubesheet Joint

Welded Roller Expanded Other _____

If U-Tube

Maximum Bend Radius, mm (in.) _____

Bend Orientation Relative to Axis of Shellside Inlet Nozzle

Perpendicular Parallel

Central Baffles Perpendicular Parallel 45°

If Bend Supported, Describe in Comments Below

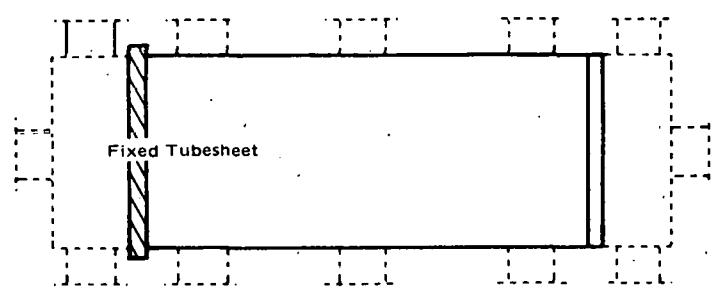
If Finned Tubes

Fins/m (Fins/in.) _____ Fin Material _____

Diameter, mm (in.), Root _____ Over Fins _____

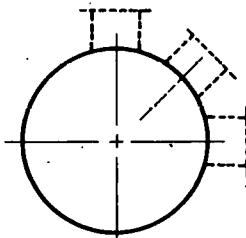
If Enhanced Surface Tubes _____

(Describe) _____


DETUNING BAFFLE

If Detuning Baffle Used to Control Acoustic

Vibration, Indicate Position on Sketch Below


COMMENTS AND SKETCH

Complete sketches by drawing in tubeside and shellside nozzles.
 Indicate inlet nozzles with an arrow.

Indicate top of exchanger as mounted
 by filling in appropriate arrow.

Show shellside inlet nozzle location, baffle cut
 orientation, and impingement devices.

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 3

Assigned

Case No. _____

PROCESS CONDITIONS

	Reference Condition A		Reference Condition B	
	Tubeside	Shellside	Tubeside	Shellside
Flow Rate, kg/s (10^3 lb/hr)				
Inlet Temperature, C (F)				
Outlet Temperature, C (F)				
Inlet Pressure, kPa (psia) Absolute				
Measured ΔP , kPa (psi)				
Inlet Weight Fraction Vapor				
Outlet Weight Fraction Vapor				
Vibration Observed	<input type="checkbox"/> No	<input type="checkbox"/> Yes	<input type="checkbox"/> No	<input type="checkbox"/> Yes

FLUID PHYSICAL PROPERTIES

Fill In All Applicable Entries	Tubeside	Shellside		
Fluid Name				
Reference Temperature, C (F)				
Liquid Properties at Reference Temperatures				
Density, kg/m ³ (lb/ft ³)				
Viscosity, mPa·s (cP)				
Thermal Conductivity, W/m·C (Btu/m ft F)				
Heat Capacity, kJ/kg·C (Btu/m ft F)				
Vapor or Gas Properties at Reference Temperatures				
Density, kg/m ³ (lb/ft ³)				
Viscosity, mPa·s (cP)				
Thermal Conductivity, W/m·C (Btu/hr ft F)				
Heat Capacity, kJ/kg·C (Btu/lb F)				
Fluid Molecular Weight, kg/mol (lb/mole)				
If Boiling or Condensing				
Latent Heat, kJ/kg (Btu/lb)				

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 4

Assigned _____
Case No. _____

VIBRATION AND DAMAGE DESCRIPTION

When Vibration Present, Shellside Flow Rate, kg/s (10^3 lb/hr)				
If Known, Crossflow Velocity at baffle tip, m/s (ft/sec)*				
Crossflow Velocity at centerline; m/s (ft/sec)*				
Velocity Through Window in Baffle, m/s (ft/sec)*				
Inlet Nozzle Velocity, m/s (ft/sec)*				
Outlet Nozzle Velocity, m/s (ft/sec)*				
Measured Natural Frequency, Hz				
Measured Acoustic Frequencies, Hz				
Noise Sound Level, db				

* Please describe how velocities were calculated or estimated.

Vibration Caused by External Sources

 No Yes

Source Frequency, Hz _____ rpm _____

<input type="checkbox"/> Machinery	<input type="checkbox"/> Piping
<input type="checkbox"/> Cavitation	<input type="checkbox"/> Pulsating Flow

Damage Noted

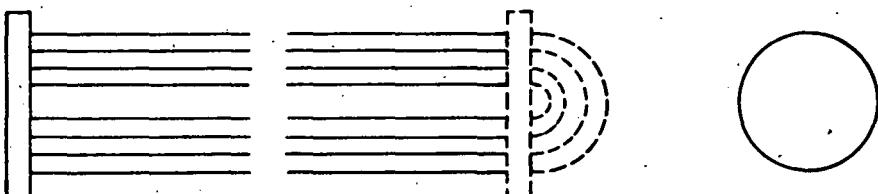
 No Yes Complete sketch at bottom of page indicating location in bundle

Type

<input type="checkbox"/> Tube-to-Tube Impact	<input type="checkbox"/> Cutting at Baffle	<input type="checkbox"/> Near Tubesheet
<input type="checkbox"/> Tube-to-Shell Impact	<input type="checkbox"/> Tubesheet Joint Leaking	<input type="checkbox"/> Fatigue

Wear

<input type="checkbox"/> One Side of Tubes Only	<input type="checkbox"/> Parallel to Flow	<input type="checkbox"/> Normal to Flow
<input type="checkbox"/> All Around Tube Circumference	<input type="checkbox"/> Fouling Evident	
<input type="checkbox"/> Corrosion Evident		
<input type="checkbox"/> General Description of Damage		


Exchanger Operation History

- How Long on Stream Before Damage Occurred? _____
- Any Unusual Occurrence Observed Prior to Vibration as a Consequence of

<input type="checkbox"/> Start-up	<input type="checkbox"/> Plant-Upset	<input type="checkbox"/> Shutdown
-----------------------------------	--------------------------------------	-----------------------------------

 Describe _____
- If Vibration Remedy Applied, Describe and Indicate Results: _____

TUBE BUNDLE DAMAGE SKETCH

APPENDIX 2

Case Histories 101-115 of the DOE/ANL/HTRI Tube Vibration Data Bank

Summary of Heat Exchanger Case Histories in Appendix 2

Case No.	Shell Type *	Baffle Type *	Bundle Type	Tube OD In.	Tube Pitch Ratio	Layout Angle deg.	Tubeside Fluid	Shellside Fluid	Shell Diameter in.	Damage Reported
101	BEM	Seg.	FXTS	0.750	1.33	30	City Gas	City Gas	47.2	Noise
102	BJM	Seg.	FXTS	0.750	1.25	60	Water	Refrig.	44.0	Baffle
103	AEP	2-Seg.	OPFH	0.625	1.20	30	Water	Water	19.3	Collision
104	AES	Seg.	SRFH	0.625	1.20	30	Water	Air	10.1	Baffle
105	AET	Seg.	PTFH	0.984	1.28	60	Water	City Gas	57.7	—
106	AET	Seg.	PTFH	0.984	1.28	60	Water	C_2H_4	57.7	Near Tubesheet
107	CEM	2-Seg.	FXTS	0.750	1.25	60	Nat'l Gas	Nat'l Gas	37.0	Baffle
108	CEM	3-Seg.	FXTS	0.750	1.25	60	Nat'l Gas	Nat'l Gas	44.0	Tubejoint
109	CEM	2-Seg.	FXTS	0.750	1.33	60	Nat'l Gas	Nat'l Gas	53.0	—
110	CEN	2-Seg.	FXTS	1.000	1.25	45	Water	Olefin	45.0	Baffle
111	CEN	2-Seg.	FXTS	1.000	1.25	45	Water	Olefin	45.0	—
112	AJS	Seg.	PTFH	0.750	1.33	90	Water	Air	43.0	Tubejoint
113	AEU	Seg.	U-tube	0.750	1.33	90	Water	H.C.	17.3	Baffle
114	AEL	2-Seg.	FXTS	0.750	1.25	60	Rich Gas	Lean Gas	56.0	Near Inlet
115	BJS	Seg.	PTFH	0.750	1.67	90	Water	Proc. Gas	69.0	Noise

* For definitions, see Standards of Tubular Exchanger Manufacturers' Association, Sixth Edition, 1978.

To protect the identity of the organization submitting this case, HTRI has assigned a case number. Additionally the data on pages 2, 3, and 4 have been reviewed to ensure that they do not include any proprietary information.

This is a replacement for the original page 1 that provides space for additional comments, drawings, photographs, etc.

Assigned
Case No.

101

Summary

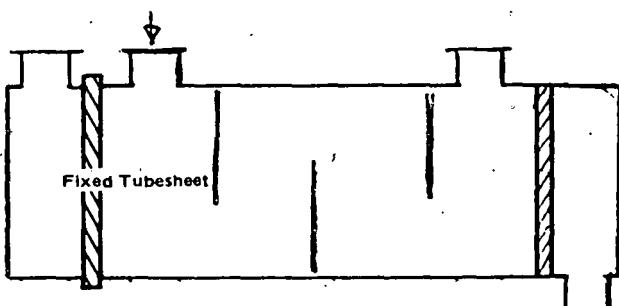
This 48-in. diameter by 13-ft long BEM TEMA style heat exchanger with segmental baffles had "city gas" in both the shell side and the tube side. Although no direct damage to the tubes was noted, there was a loud noise during operation. The noise was assumed to have been the result of flow-induced acoustic vibration. Information is limited to that presented on data form.

Assigned 101
Case No.

Type TEMA Exchanger Designation BEM
 Special Exchanger (Describe) _____

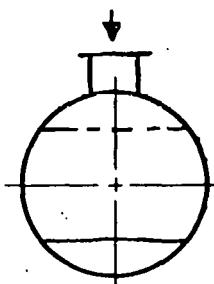
Shell Orientation Horizontal
 Vertical

SHELL GEOMETRY (Complete Sketch Below)


Inside Diameter, mm (in.) 47.7
Wall Thickness, mm (in.) _____ Material _____
Inlet Nozzle ID, mm (in.) 20
Outlet Nozzle ID, mm (in.) 20
Impingement Protection No Yes
(Describe) _____
Annular Distributor No Yes
Open Cut Area mm² (in.²) _____
Nozzle-to-First Tube Row Distance, mm (in.) 3.55

CROSS BAFFLE GEOMETRY

Type Segmental; Double-Segmental Disc/Doughnut
 Triple-Segmental; No-Tubes-in-Window
Baffle Cut, % Shell Diameter 25
Cut Orientation Relative to Axis of Inlet Nozzle
Inlet Baffle Perpendicular Parallel 45°
Central Baffles Perpendicular Parallel 45°
Baffle Thickness, mm (in.) 0.437 Material ?
Diametral Clearances Shell-to-baffle, mm (in.) 0.118
Tube-to-baffle mm (in.) 0.01
Bundle-to-shell, mm (in.) 4
Number of Baffles Along Length of Shell 3
Baffle Spacing, mm (in.) Central 29.6
Inlet 47.7 Outlet 47.7
Unsupported Tube Span Lengths, mm (in.) _____
Longest 77.3 Inlet 77.3 Outlet 77.3


COMMENTS AND SKETCH

Complete sketches by drawing in tubeside and shellside nozzles.
Indicate inlet nozzles with an arrow.

Indicate top of exchanger as mounted
by filling in appropriate arrow.

Show shellside inlet nozzle location, baffle cut
orientation, and impingement devices.

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 3

Assigned	101
Case No.	1

PROCESS CONDITIONS

	Reference Condition A		Reference Condition B	
	Tubeside	Shellside	Tubeside	Shellside
Flow Rate, kg/s (10^3 lb/hr)	?	184		
Inlet Temperature, $^{\circ}$ F	69.8	37.4		
Outlet Temperature, $^{\circ}$ F	53.6	54.5		
Inlet Pressure, kPa (psia) Absolute	370	370		
Measured ΔP , kPa (psi) <i>CALCULATED</i>	0.34	0.9		
Inlet Weight Fraction Vapor	1.0	1.0		
Outlet Weight Fraction Vapor	1.0	1.0		
Vibration Observed	<input type="checkbox"/> No	<input checked="" type="checkbox"/> Yes	<input type="checkbox"/> No	<input type="checkbox"/> Yes

FLUID PHYSICAL PROPERTIES

Fill In All Applicable Entries	Tubeside		Shellside	
Fluid Name	"CITY GAS"		"CITY GAS"	
Reference Temperature $^{\circ}$ F	69.8	53.6	37.4	54.5
Liquid Properties at Reference Temperatures				
Density, kg/m ³ (lb/ft ³)				
Viscosity, mPa·s (cP)				
Thermal Conductivity, W/m· $^{\circ}$ C (Btu/m ft F)				
Heat Capacity, kJ/kg· $^{\circ}$ C (Btu/m ft F)				
Vapor or Gas Properties at Reference Temperatures				
Density, kg/m ³ (lb/ft ³)	0.82	0.82	0.825	0.825
Viscosity, mPa·s (cP)			0.0146	0.0146
Thermal Conductivity, W/m· $^{\circ}$ C (Btu/hr ft F)				
Heat Capacity, kJ/kg· $^{\circ}$ C (Btu/lb F)				
Fluid Molecular Weight, kg/mol (lb/mole)				
If Boiling or Condensing				
Latent Heat, kJ/kg (Btu/lb)	—	—	—	—

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 4

Assigned	
Case No.	101

VIBRATION AND DAMAGE DESCRIPTION

When Vibration Present, Shellside Flow Rate, kg/s (10^3 lb/hr)	184			
If Known, Crossflow Velocity at baffle tip, m/s (ft/sec)*				
Crossflow Velocity at centerline, m/s (ft/sec)*				
Velocity Through Window in Baffle, m/s (ft/sec)*				
Inlet Nozzle Velocity, m/s (ft/sec)*				
Outlet Nozzle Velocity, m/s (ft/sec)*				
Measured Natural Frequency, Hz				
Measured Acoustic Frequencies, Hz	NOISE NOTED			
Noise Sound Level, db				

* Please describe how velocities were calculated or estimated. HTRI ST-4 COMPUTER PROGRAM

Vibration Caused by External Sources

No Yes

Source Frequency, Hz _____ rpm _____

Machinery Piping
 Cavitation Pulsating Flow

Damage Noted

No

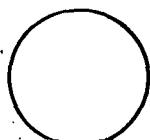
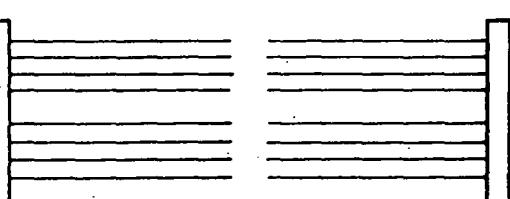
Yes Complete sketch at bottom of page indicating location in bundle

Type

Tube-to-Tube Impact Cutting at Baffle Near Tubesheet
 Tube-to-Shell Impact Tubesheet Joint Leaking Fatigue

Wear

One Side of Tubes Only Parallel to Flow Normal to Flow
 All Around Tube Circumference
 Corrosion Evident Fouling Evident
 General Description of Damage



Exchanger Operation History

- How Long on Stream Before Damage Occurred? _____
- Any Unusual Occurrence Observed Prior to Vibration as a Consequence of

Start-up Plant-Upset Shutdown

Describe _____

- If Vibration Remedy Applied, Describe and Indicate Results: _____

To protect the identity of the organization submitting this case, HTRI has assigned a case number. Additionally the data on pages 2, 3, and 4 have been reviewed to ensure that they do not include any proprietary information.

This is a replacement for the original page 1 that provides space for additional comments, drawings, photographs, etc.

Assigned	102
Case No.	

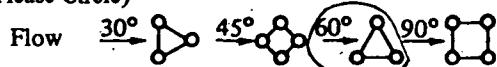
Summary

This 44-in. diameter by 12-ft long BEJ TEMA style heat exchanger with segmental baffles had propylene vapor on the shell side and cooling water on the tube side. The vapor entered the shell through the double nozzles. The vapor was cooled but not condensed. Tube damage was noted as cutting at the baffles; however, the specific location in the bundle was not noted. Information is limited to that presented on data form.

Assigned Case No. 102

Type TEMA Exchanger Designation BJM
 Special Exchanger (Describe) _____

Shell Orientation Horizontal
 Vertical


SHELL GEOMETRY (Complete Sketch Below)

Inside Diameter, mm (in.) 44
 Wall Thickness, mm (in.) _____ Material _____
 Inlet Nozzle ID, mm (in.) 22 (Two)
 Outlet Nozzle ID, mm (in.) 24
 Impingement Protection No Yes
 (Describe) _____
 Annular Distributor No Yes
 Open Cut Area mm² (in.²) _____
 Nozzle-to-First Tube Row Distance, mm (in.) _____

TUBE GEOMETRY

Outside Diameter, mm (in.) 0.750
 Wall Thickness, mm (in.) 0.065 Material ADMIRALTY
BRASS
 Tube Lengths
 Straight Tube, Inside Tubesheets, mm (in.) 140.25
 U-Tube, Tubesheet to Bend Tangent, mm (in.) _____
 Tube Pitch, mm (in.) 0.9375

Layout (Please Circle)

No. of Tubes _____ No. of Tubepasses _____

First Tubepass Countercurrent Cocurrent

Tube-to-Tubesheet Joint

Welded Roller Expanded Other _____

If U-Tube

Maximum Bend Radius, mm (in.) _____

Bend Orientation Relative to Axis of Shellside Inlet Nozzle

Perpendicular Parallel

If Bend Supported, Describe in Comments Below

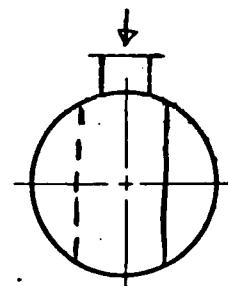
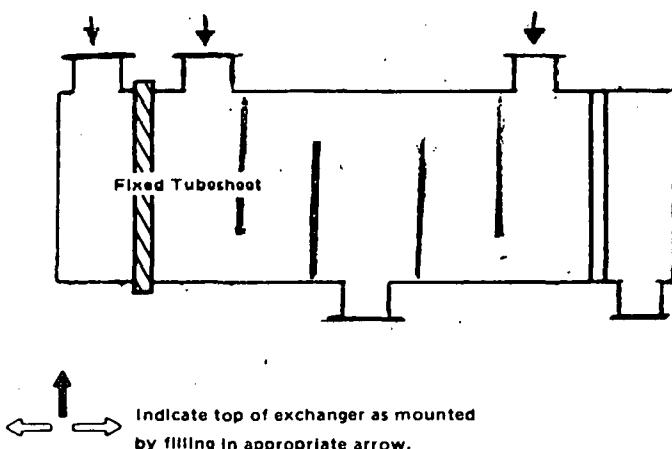
If Finned Tubes

Fins/m (Fins/in.) _____ Fin Material _____

Diameter, mm (in.), Root _____ Over Fins _____

If Enhanced Surface Tubes _____

(Describe) _____



DETUNING BAFFLE

If Detuning Baffle Used to Control Acoustic
 Vibration, Indicate Position on Sketch Below

COMMENTS AND SKETCH

Complete sketches by drawing in tubeside and shellside nozzles.
 Indicate inlet nozzles with an arrow.

Show shellside inlet nozzle location, baffle cut
 orientation, and impingement devices.

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 3

Assigned
Case No. <u>102</u>

PROCESS CONDITIONS

	Reference Condition A		Reference Condition B	
	Tubeside	Shellside	Tubeside	Shellside
Flow Rate, kg/s (10^3 lb/hr)	?	676		
Inlet Temperature, \mathcal{E} (F)	75	182		
Outlet Temperature, \mathcal{E} (F)	120	100		
Inlet Pressure, kPa (psia) Absolute	69.7	236		
Measured ΔP , kPa (psi)	12.4	4.0		
Inlet Weight Fraction Vapor	0	1.0		
Outlet Weight Fraction Vapor	0	1.0		
Vibration Observed	<input type="checkbox"/> No	<input checked="" type="checkbox"/> Yes	<input type="checkbox"/> No	<input type="checkbox"/> Yes

FLUID PHYSICAL PROPERTIES

Fill In All Applicable Entries	Tubeside		Shellside	
Fluid Name	COOLING WATER		PROPYLENE	
Reference Temperature, \mathcal{E} (F)			100	182
Liquid Properties at Reference Temperatures				
Density, kg/m ³ (lb/ft ³)				
Viscosity, mPa·s (cP)				
Thermal Conductivity, W/m·C (Btu/m ft F)				
Heat Capacity, kJ/kg·C (Btu/m ft F)				
Vapor or Gas Properties at Reference Temperatures				
Density, kg/m ³ (lb/ft ³)			1.62	1.44
Viscosity, mPa·s (cP)			0.0087	0.0095
Thermal Conductivity, W/m·C (Btu/hr ft F)				
Heat Capacity, kJ/kg·C (Btu/lb F)				
Fluid Molecular Weight, kg/mol (lb/mole)				
If Boiling or Condensing				
Latent Heat, kJ/kg (Btu/lb)	—		—	

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 4

Assigned	
Case No.	102

VIBRATION AND DAMAGE DESCRIPTION

When Vibration Present, Shellside Flow Rate, kg/s (10^3 lb/hr)	676			
If Known, Crossflow Velocity at baffle tip, m/s (ft/sec)*	27.8			
Crossflow Velocity at centerline, m/s (ft/sec)*	26.4			
Velocity Through Window in Baffle, m/s (ft/sec)*	23.8			
Inlet Nozzle Velocity, m/s (ft/sec)*	33.4			
Outlet Nozzle Velocity, m/s (ft/sec)*				
Measured Natural Frequency, Hz				
Measured Acoustic Frequencies, Hz				
Noise Sound Level, db				

* Please describe how velocities were calculated or estimated.

Vibration Caused by External Sources.

No Yes

Source Frequency, Hz _____ rpm _____

Machinery Piping
 Cavitation Pulsating Flow

Damage Noted

No

Yes Complete sketch at bottom of page indicating location in bundle

Type

Tube-to-Tube Impact
 Tube-to-Shell Impact

Cutting at Baffle

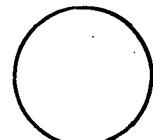
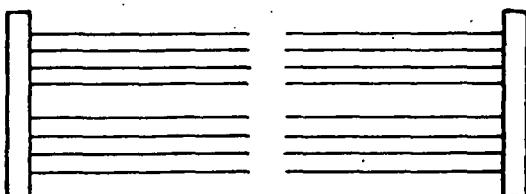
Near Tubesheet

Fatigue

Wear

One Side of Tubes Only
 All Around Tube Circumference
 Corrosion Evident
 General Description of Damage _____

Parallel to Flow



Normal to Flow

Exchanger Operation History

- How Long on Stream Before Damage Occurred? _____
- Any Unusual Occurrence Observed Prior to Vibration as a Consequence of

Start-up Plant-Upset Shutdown
- Describe _____
- If Vibration Remedy Applied, Describe and Indicate Results: _____

TUBE BUNDLE DAMAGE SKETCH

To protect the identity of the organization submitting this case, HTRI has assigned a case number. Additionally the data on pages 2, 3, and 4 have been reviewed to ensure that they do not include any proprietary information.

This is a replacement for the original page 1 that provides space for additional comments, drawings, photographs, etc.

Assigned	103
Case No.	

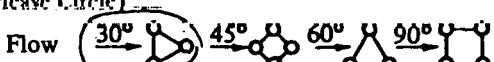
Summary

This 20-in. diameter by 7-ft long AEP TEMA style heat exchanger with segmental baffles had water on both the shell side and the tube side. The inlet nozzle orientation was such that its centerline intersected the baffle cut at 45°. The baffle cut was 45 percent of the shell inside diameter which results in little crossflow. The tube damage reported tube-to-tube impact resulting in splitting of the tube material until leaks developed. Information is limited to that presented on data form.

Assigned
Case No. 103Type TEMA-Exchanger Designation AEP
 Special Exchanger (Describe) _____Shell Orientation Horizontal
 Vertical

SHELL GEOMETRY (Complete Sketch Below)

Inside Diameter, mm (in.) 19.25
 Wall Thickness, mm (in.) _____ Material _____
 Inlet Nozzle ID, mm (in.) 12
 Outlet Nozzle ID, mm (in.) 12
 Impingement Protection No Yes
 (Describe) _____
 Annular Distributor No Yes
 Open Cut Area mm² (in.²) _____
 Nozzle-to-First Tube Row Distance, mm (in.) 1.4


CROSS BAFFLE GEOMETRY

Type Segmental; Double-Segmental Disc/Doughnut
 Triple-Segmental; No-Tubes-in-Window
 Baffle Cut, % Shell Diameter 45
 Cut Orientation Relative to Axis of Inlet Nozzle
 Inlet Baffle Perpendicular Parallel 45°
 Central Baffles Perpendicular Parallel 45°
 Baffle Thickness, mm (in.) 0.375 Material _____
 Diametral Clearances Shell-to-baffle, mm (in.) 0.141
 Tube-to-baffle mm (in.) 0.019
 Bundle-to-shell, mm (in.) 2.812
 Number of Baffles Along Length of Shell 3
 Baffle Spacing, mm (in.) Central 21
 Inlet 21 Outlet 21
 Unsupported Tube Span Lengths, mm (in.) _____
 Longest 42 Inlet _____ Outlet _____

TUBE GEOMETRY

Outside Diameter, mm (in.) 0.625
 Wall Thickness, mm (in.) 0.049 Material 90/10 CuNi
 Tube Lengths

Straight Tube, Inside Tubesheets, mm (in.) 84
 U-Tube, Tubesheet to Bend Tangent, mm (in.) _____
 Tube Pitch, mm (in.) 0.750

Layout (Please Circle)

 No. of Tubes 407 No. of Tubepasses 1

First Tubepass Countercurrent Cocurrent

Tube-to-Tubesheet Joint

Welded Roller Expanded Other _____

If U-Tube
 Maximum Bend Radius, mm (in.) _____

Bend Orientation Relative to Axis of Shellside Inlet Nozzle

Perpendicular Parallel

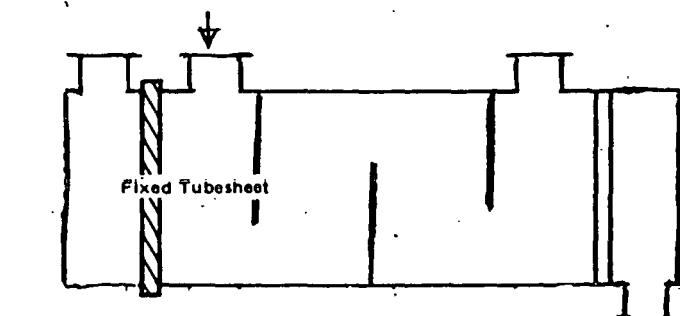
If Bend Supported, Describe in Comments Below

If Finned Tubes

Fins/m (Fins/in.) _____ Fin Material _____

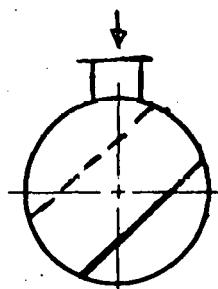
Diameter, mm (in.), Root _____ Over Fins _____

If Enhanced Surface Tubes _____


(Describe) _____

DETUNING BAFFLE

If Detuning Baffle Used to Control Acoustic
 Vibration, Indicate Position on Sketch Below


COMMENTS AND SKETCH

Complete sketches by drawing in tubeside and shellside nozzles.
 Indicate inlet nozzles with an arrow.

Indicate top of exchanger as mounted
 by filling in appropriate arrow.

Show shellside inlet nozzle location, baffle cut
 orientation, and impingement devices.

PAIR OF SEAL STRIPS

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 3

Assigned
Case No. 103

PROCESS CONDITIONS

	Reference Condition A		Reference Condition B	
	Tubeside	Shellside	Tubeside	Shellside
Flow Rate, kg/s (10^3 lb/hr)		800		
Inlet Temperature, $^{\circ}$ C ($^{\circ}$ F)		140		
Outlet Temperature, $^{\circ}$ C ($^{\circ}$ F)		134		
Inlet Pressure, kPa (psia) Absolute		~ 30		
Measured ΔP , kPa (psi)				
Inlet Weight Fraction Vapor		0		
Outlet Weight Fraction Vapor		0		
Vibration Observed	<input type="checkbox"/> No	<input checked="" type="checkbox"/> Yes	<input type="checkbox"/> No	<input type="checkbox"/> Yes

FLUID PHYSICAL PROPERTIES

Fill In All Applicable Entries	Tubeside	Shellside		
Fluid Name	WATER	WATER		
Reference Temperature, $^{\circ}$ C ($^{\circ}$ F)				
Liquid Properties at Reference Temperatures				
Density, kg/m ³ (lb/ft ³)				
Viscosity, mPa·s (cP)				
Thermal Conductivity, W/m·C (Btu/m ft F)				
Heat Capacity, kJ/kg·C (Btu/m ft F)				
Vapor or Gas Properties at Reference Temperatures				
Density, kg/m ³ (lb/ft ³)				
Viscosity, mPa·s (cP)				
Thermal Conductivity, W/m·C (Btu/hr ft F)				
Heat Capacity, kJ/kg·C (Btu/lb F)				
Fluid Molecular Weight, kg/mol (lb/mole)				
If Boiling or Condensing				
Latent Heat, kJ/kg (Btu/lb)				

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 4

Assigned	103
Case No.	

VIBRATION AND DAMAGE DESCRIPTION

When Vibration Present, Shellside Flow Rate, kg/s (10^3 lb/hr)	800			
If Known, Crossflow Velocity at baffle tip, m/s (ft/sec)*				
Crossflow Velocity at centerline, m/s (ft/sec)*				
Velocity Through Window in Baffle, m/s (ft/sec)*				
Inlet Nozzle Velocity, m/s (ft/sec)*				
Outlet Nozzle Velocity, m/s (ft/sec)*				
Measured Natural Frequency, Hz				
Measured Acoustic Frequencies, Hz				
Noise Sound Level, db				

* Please describe how velocities were calculated or estimated.

Vibration Caused by External Sources

No Yes

Source Frequency, Hz _____ rpm _____

Machinery Piping
 Cavitation Pulsating Flow

Damage Noted

No

Yes

Complete sketch at bottom of page indicating location in bundle

Type

Tube-to-Tube Impact

Cutting at Baffle

Near Tubesheet

Tube-to-Shell Impact

Tubesheet Joint Leaking

Fatigue

Wear

One Side of Tubes Only

Parallel to Flow

Normal to Flow

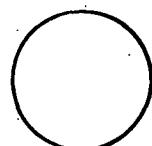
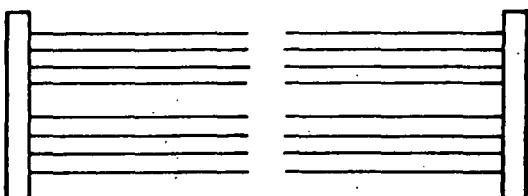
All Around Tube Circumference

Corrosion Evident

Fouling Evident

General Description of Damage

TUBES SPLIT AND LEAKING



Exchanger Operation History

- How Long on Stream Before Damage Occurred? _____
- Any Unusual Occurrence Observed Prior to Vibration as a Consequence of

Start-up Plant-Upset Shutdown

Describe _____
- If Vibration Remedy Applied, Describe and Indicate Results: _____

TUBE BUNDLE DAMAGE SKETCH

To protect the identity of the organization submitting this case, HTRI has assigned a case number. Additionally the data on pages 2, 3, and 4 have been reviewed to ensure that they do not include any proprietary information.

This is a replacement for the original page 1 that provides space for additional comments, drawings, photographs, etc.

Assigned	104
Case No.	

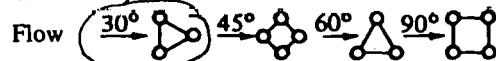
Summary

This 10-in. diameter by 6-ft long AES TEMA style heat exchanger with segmental baffles had air on the shell side and water on the tube side. The inlet nozzle orientation was such that its centerline intersected the baffle cut at 45°. The baffle cut was 45 percent of the shell inside diameter which results in little crossflow. All tubes showed evidence of cutting at each baffle. It was noted that there was a possibility that the vibration might have been induced by outside sources. Information is limited to that presented on data form.

Assigned
Case No. 104Type TEMA Exchanger Designation AES
 Special Exchanger (Describe) _____Shell Orientation Horizontal
NOT GIVEN Vertical

SHELL GEOMETRY (Complete Sketch Below)

Inside Diameter, mm (in.) 10.136
 Wall Thickness, mm (in.) _____ Material _____
 Inlet Nozzle ID, mm (in.) 5
 Outlet Nozzle ID, mm (in.) 5
 Impingement Protection No Yes (Describe) _____
 Annular Distributor No Yes
 Open Cut Area mm² (in.²) _____
 Nozzle-to-First Tube Row Distance, mm (in.) _____


TUBE GEOMETRY

Outside Diameter, mm (in.) 0.625
 Wall Thickness, mm (in.) 0.065 Material 90/10 Cu Ni
 Tube Lengths

Straight Tube, Inside Tubesheets, mm (in.) 70
 U-Tube, Tubesheet to Bend Tangent, mm (in.) _____

Tube Pitch, mm (in.) 0.750

Layout (Please Circle)

No. of Tubes 78 No. of Tubepasses 1

First Tubepass Countercurrent Cocurrent

Tube-to-Tubesheet Joint

 Welded Roller Expanded Other NOT GIVEN

If U-Tube

Maximum Bend Radius, mm (in.) _____

Bend Orientation Relative to Axis of Shellside Inlet Nozzle

 Perpendicular Parallel

If Bend Supported, Describe in Comments Below

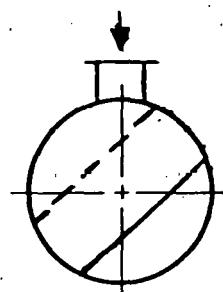
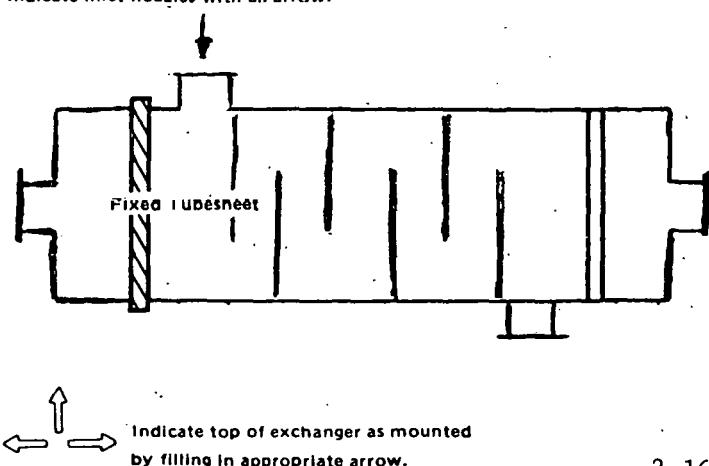
If Finned Tubes

Fins/m (Fins/in.) _____ Fin Material _____

Diameter, mm (in.), Root _____ Over Fins _____

If Enhanced Surface Tubes _____

(Describe) _____



DETUNING BAFFLE

If Detuning Baffle Used to Control Acoustic Vibration, Indicate Position on Sketch Below

COMMENTS AND SKETCH

Complete sketches by drawing in tubeside and shellside nozzles.
 Indicate inlet nozzles with an arrow.

Show shellside inlet nozzle location, baffle cut orientation, and impingement devices.

TWO PAIRS OF SEAL STRIPS

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 3

Assigned
Case No. 104

PROCESS CONDITIONS

	Reference Condition A		Reference Condition B	
	Tubeside	Shellside	Tubeside	Shellside
Flow Rate, kg/s (10^3 lb/hr)		10.476		
Inlet Temperature, $^{\circ}\text{F}$	163.7	530		
Outlet Temperature, $^{\circ}\text{F}$	170.6	250		
Inlet Pressure, kPa (psia) Absolute		113		
Measured ΔP , kPa (psi)				
Inlet Weight Fraction Vapor		1.0		
Outlet Weight Fraction Vapor		1.0		
Vibration Observed	<input type="checkbox"/> No	<input checked="" type="checkbox"/> Yes	<input type="checkbox"/> No	<input type="checkbox"/> Yes

FLUID PHYSICAL PROPERTIES

Fill In All Applicable Entries	Tubeside	Shellside		
Fluid Name	WATER	AIR		
Reference Temperature, $^{\circ}\text{C}$ ($^{\circ}\text{F}$)				
Liquid Properties at Reference Temperatures				
Density, kg/m^3 (lb/ft^3)				
Viscosity, $\text{mPa}\cdot\text{s}$ (cP)				
Thermal Conductivity, $\text{W/m}\cdot\text{C}$ (Btu/m ft F)				
Heat Capacity, $\text{kJ/kg}\cdot\text{C}$ (Btu/m ft F)				
Vapor or Gas Properties at Reference Temperatures				
Density, kg/m^3 (lb/ft^3)				
Viscosity, $\text{mPa}\cdot\text{s}$ (cP)				
Thermal Conductivity, $\text{W/m}\cdot\text{C}$ (Btu/hr ft F)				
Heat Capacity, $\text{kJ/kg}\cdot\text{C}$ (Btu/lb F)				
Fluid Molecular Weight, kg/mol (lb/mole)				
If Boiling or Condensing				
Latent Heat, kJ/kg (Btu/lb)				

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 4

Assigned	104
Case No.	

VIBRATION AND DAMAGE DESCRIPTION

When Vibration Present, Shellside Flow Rate, kg/s (10^3 lb/hr)	10.476			
If Known, Crossflow Velocity at baffle tip, m/s (ft/sec)*				
Crossflow Velocity at centerline, m/s (ft/sec)*	62.9			
Velocity Through Window in Baffle, m/s (ft/sec)*	22			
Inlet Nozzle Velocity, m/s (ft/sec)*	69			
Outlet Nozzle Velocity, m/s (ft/sec)*				
Measured Natural Frequency, Hz				
Measured Acoustic Frequencies, Hz				
Noise Sound Level, dB	NOISE NOTED			

* Please describe how velocities were calculated or estimated.

Vibration Caused by External Sources

No Yes POSSIBLE

Source Frequency, Hz _____ rpm _____

Machinery Piping
 Cavitation Pulsating Flow

Damage Noted

No

Yes

Complete sketch at bottom of page indicating location in bundle

Type

Tube-to-Tube Impact

Cutting at Baffle

Near Tubesheet

Tube-to-Shell Impact

Tubesheet Joint Leaking

Fatigue

Wear

One Side of Tubes Only

Parallel to Flow

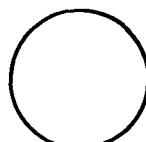
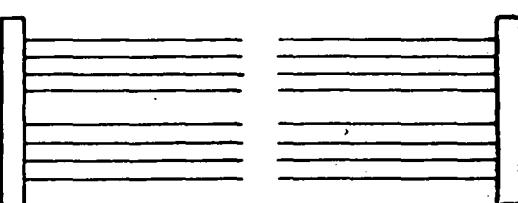
Normal to Flow

All Around Tube Circumference

Corrosion Evident

Fouling Evident

General Description of Damage ALL TUBES SHOWED EVIDENCE OF
CUTTING AT EACH BAFFLE



Exchanger Operation History

- How Long on Stream Before Damage Occurred? _____
- Any Unusual Occurrence Observed Prior to Vibration as a Consequence of

Start-up Plant-Upset Shutdown

Describe _____

- If Vibration Remedy Applied, Describe and Indicate Results: _____

To protect the identity of the organization submitting this case, HTRI has assigned a case number. Additionally the data on pages 2, 3, and 4 have been reviewed to ensure that they do not include any proprietary information.

This is a replacement for the original page 1 that provides space for additional comments, drawings, photographs, etc.

Assigned	105
Case No.	

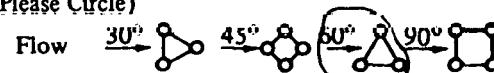
Summary

This 57-in. diameter by 12-ft long AET TEMA style heat exchanger with segmental baffles had acetylene on the shellside and water on the tubeside. The tube span for baffle window tubes at the inlet and the outlet greatly exceeded the TEMA Standards for maximum spans for 1-in. carbon steel tubes. However, for this case no vibration was noted for the given flow rates. Information is limited to that presented on data form.

Assigned _____
Case No. 105

Type TEMA Exchanger Designation AET
 Special Exchanger (Describe) _____

Shell Orientation Horizontal
 Vertical


SHELL GEOMETRY (Complete Sketch Below)

Inside Diameter, mm (in.) 57.3
Wall Thickness, mm (in.) _____ Material _____
Inlet Nozzle ID, mm (in.) 22.8
Outlet Nozzle ID, mm (in.) 22.8
Impingement Protection No Yes
(Describe) _____
Annular Distributor No Yes
Open Cut Area mm² (in.²) _____
Nozzle-to-First Tube Row Distance, mm (in.) 4.41

CROSS BAFFLE GEOMETRY

Type Segmental; Double-Segmental Disc/Doughnut
 Triple-Segmental; No-Tubes-in-Window
Baffle Cut, % Shell Diameter 44
Cut Orientation Relative to Axis of Inlet Nozzle
Inlet Baffle Perpendicular Parallel 45°
Central Baffles Perpendicular Parallel 45°
Baffle Thickness, mm (in.) 0.625 Material _____
Diametral Clearances Shell-to-baffle, mm (in.) 0.27
Tube-to-baffle mm (in.) 0.02
Bundle-to-shell, mm (in.) 3.74
Number of Baffles Along Length of Shell 6
Baffle Spacing, mm (in.) Central 34.65
Inlet 55.5 Outlet 40.56
Unsupported Tube Span Lengths, mm (in.) _____
Longest 90.15 Inlet 90.15 Outlet 75.21

TUBE GEOMETRY

Outside Diameter, mm (in.) 0.983
Wall Thickness, mm (in.) 0.079 Material CS
Tube Lengths
Straight Tube, Inside Tubesheets, mm (in.) 234.65
U-Tube, Tubesheet to Bend Tangent, mm (in.) _____
Tube Pitch, mm (in.) 1.26
Layout (Please Circle)
Flow

No. of Tubes 1508 No. of Tubepasses 2

First Tubepass Countercurrent Cocurrent

Tube-to-Tubesheet Joint

Welded Roller Expanded Other _____

If U-Tube

Maximum Bend Radius, mm (in.) _____

Bend Orientation Relative to Axis of Shellside Inlet Nozzle

Perpendicular Parallel _____

If Bend Supported, Describe in Comments Below

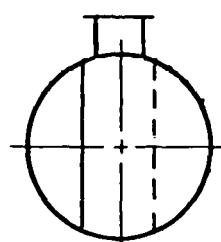
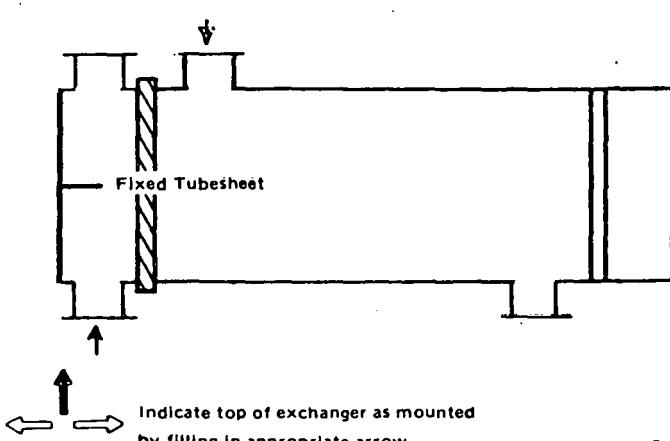
If Finned Tubes

Fin/mm (Fins/in.) _____ Fin Material _____

Diameter, mm (in.), Root _____ Over Fins _____

If Enhanced Surface Tubes _____

(Describe) _____



DETUNING BAFFLE

If Detuning Baffle Used to Control Acoustic
Vibration, Indicate Position on Sketch Below

COMMENTS AND SKETCH

Complete sketches by drawing in tubeside and shellside nozzles.
Indicate inlet nozzles with an arrow.

Show shellside inlet nozzle location, baffle cut
orientation, and impingement devices.

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 3

Assigned	<u>105</u>
Case No.	

PROCESS CONDITIONS

	Reference Condition A		Reference Condition B	
	Tubeside	Shellside	Tubeside	Shellside
Flow Rate, kg/s (10^3 lb/hr)		351		
Inlet Temperature, $^{\circ}$ C ($^{\circ}$ F)	74.7	201		
Outlet Temperature, $^{\circ}$ C ($^{\circ}$ F)	10.4	86		
Inlet Pressure, kPa (psia) Absolute	65.4	277		
Measured ΔP , kPa (psi)				
Inlet Weight Fraction Vapor	0	1.0		
Outlet Weight Fraction Vapor	0	1.0		
Vibration Observed	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	<input type="checkbox"/> No	<input type="checkbox"/> Yes

FLUID PHYSICAL PROPERTIES

Fill In All Applicable Entries	Tubeside	Shellside		
Fluid Name	WATER	C_2H_2		
Reference Temperature, $^{\circ}$ C ($^{\circ}$ F)		20	86	
Liquid Properties at Reference Temperatures				
Density, kg/m ³ (lb/ft ³)				
Viscosity, mPa·s (cP)				
Thermal Conductivity, W/m· $^{\circ}$ C (Btu/m ft F)				
Heat Capacity, kJ/kg· $^{\circ}$ C (Btu/m ft F)				
Vapor or Gas Properties at Reference Temperatures				
Density, kg/m ³ (lb/ft ³)			1.16	1.52
Viscosity, mPa·s (cP)			0.127	
Thermal Conductivity, W/m· $^{\circ}$ C (Btu/hr ft F)				
Heat Capacity, kJ/kg· $^{\circ}$ C (Btu/lb F)				
Fluid Molecular Weight, kg/mol (lb/mole)				
If Boiling or Condensing				
Latent Heat, kJ/kg (Btu/lb)				

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 4

Assigned	
Case No.	105

VIBRATION AND DAMAGE DESCRIPTION

NO VIBRATION NOTED

When Vibration Present, Shellside Flow Rate, kg/s (10^3 lb/hr)				
If Known, Crossflow Velocity at baffle tip, m/s (ft/sec)*				
Crossflow Velocity at centerline, m/s (ft/sec)*				
Velocity Through Window in Baffle, m/s (ft/sec)*				
Inlet Nozzle Velocity, m/s (ft/sec)*				
Outlet Nozzle Velocity, m/s (ft/sec)*				
Measured Natural Frequency, Hz				
Measured Acoustic Frequencies, Hz				
Noise Sound Level, db				

* Please describe how velocities were calculated or estimated.

Vibration Caused by External Sources

No Yes

Source Frequency, Hz _____ rpm _____

<input type="checkbox"/> Machinery	<input type="checkbox"/> Piping
<input type="checkbox"/> Cavitation	<input type="checkbox"/> Pulsating Flow

Damage Noted

 No Yes

Complete sketch at bottom of page indicating location in bundle

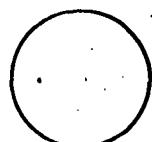
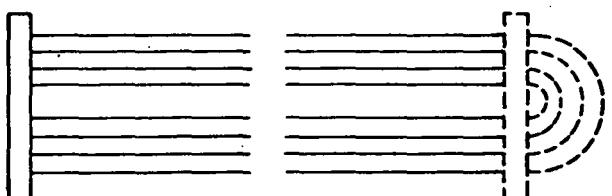
Type

Tube-to-Tube Impact
 Tube-to-Shell Impact

 Cutting at Baffle Near Tubesheet Tubesheet Joint Leaking Fatigue

Wear

One Side of Tubes Only
 All Around Tube Circumference
 Corrosion Evident
 General Description of Damage _____



 Parallel to Flow Normal to Flow

Exchanger Operation History

- How Long on Stream Before Damage Occurred? _____
- Any Unusual Occurrence Observed Prior to Vibration as a Consequence of

<input type="checkbox"/> Start-up	<input type="checkbox"/> Plant-Upset	<input type="checkbox"/> Shutdown
-----------------------------------	--------------------------------------	-----------------------------------
- Describe _____
- If Vibration Remedy Applied, Describe and Indicate Results: _____

TUBE BUNDLE DAMAGE SKETCH

To protect the identity of the organization submitting this case, HTRI has assigned a case number. Additionally the data on pages 2, 3, and 4 have been reviewed to ensure that they do not include any proprietary information.

This is a replacement for the original page 1 that provides space for additional comments, drawings, photographs, etc.

Assigned	106
Case No.	

Summary

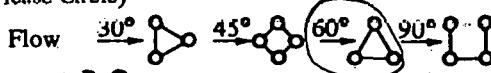
This 57-in. diameter by 12-ft long AET TEMA style heat exchanger with segmental baffles had acetylene on the shellside and water on the tubeside. The tubespan for the baffle window tubes at the inlet and outlet were nearly the limit specified in the TEMA Standards for 1-in. carbon steel tubes. Flow-induced tube vibration is indicated as the cause for tube damage near the tubesheet. Information is limited to that presented on the data form.

Assigned
Case No. 106Type TEMA Exchanger Designation A E T
 Special Exchanger (Describe) _____Shell Orientation Horizontal
 Vertical

SHELL GEOMETRY (Complete Sketch Below)

Inside Diameter, mm (in.) 57.3
 Wall Thickness, mm (in.) _____ Material _____
 Inlet Nozzle ID, mm (in.) 22.8
 Outlet Nozzle ID, mm (in.) 22.8
 Impingement Protection No Yes
 (Describe) _____
 Annular Distributor No Yes
 Open Cut Area mm² (in.²) _____
 Nozzle-to-First Tube Row Distance, mm (in.) 1.87

CROSS BAFFLE GEOMETRY


Type Segmental; Double-Segmental Disc/Doughnut
 Triple-Segmental; No-Tubes-in-Window
 Baffle Cut, % Shell Diameter 44
 Cut Orientation Relative to Axis of Inlet Nozzle
 Inlet Baffle Perpendicular Parallel 45°
 Central Baffles Perpendicular Parallel 45°
 Baffle Thickness, mm (in.) 0.63 Material _____
 Diametral Clearances Shell-to-baffle, mm (in.) 0.27
 Tube-to-baffle mm (in.) 0.02
 Bundle-to-shell, mm (in.) 3.74
 Number of Baffles Along Length of Shell 3
 Baffle Spacing, mm (in.) Central 34.49
 Inlet 40.1 Outlet 34.34
 Unsupported Tube Span Lengths, mm (in.)
 Longest 74.62 Inlet 74.62 Outlet 68.82

TUBE GEOMETRY

Outside Diameter, mm (in.) 0.988
 Wall Thickness, mm (in.) 0.07874 Material CS
 Tube Lengths
 Straight Tube, Inside Tubesheets, mm (in.) 143.48
 U-Tube, Tubesheet to Bend Tangent, mm (in.) _____

Tube Pitch, mm (in.) 1.26

Layout (Please Circle)

No. of Tubes 1508 No. of Tubepasses 4First Tubepass Countercurrent Cocurrent

Tube-to-Tubesheet Joint

 Welded Roller Expanded Other _____

If U-Tube Maximum Bend Radius, mm (in.) _____

Bend Orientation Relative to Axis of Shellside Inlet Nozzle

 Perpendicular Parallel

If Bend Supported, Describe in Comments Below

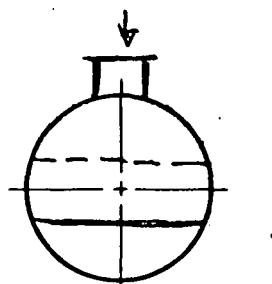
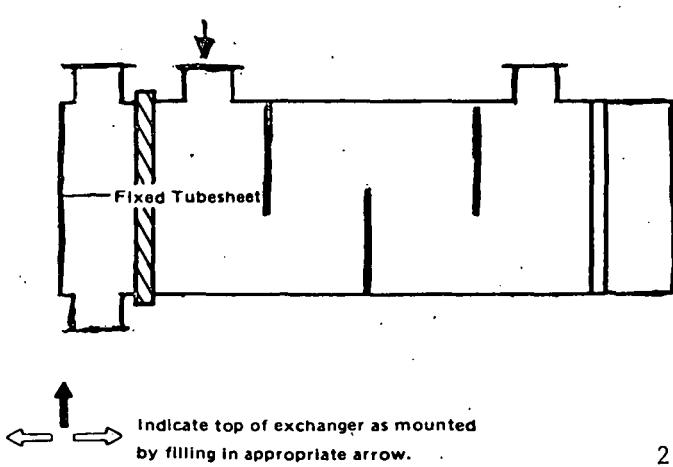
If Finned Tubes

Fins/mm (Fins/in.) _____ Fin Material _____

Diameter, mm (in.), Root _____ Over Fins _____

If Enhanced Surface Tubes _____

(Describe) _____



DETUNING BAFFLE

If Detuning Baffle Used to Control Acoustic
 Vibration, Indicate Position on Sketch Below

COMMENTS AND SKETCH

Complete sketches by drawing in tubeside and shellside nozzles.
 Indicate inlet nozzles with an arrow.

Show shellside inlet nozzle location, baffle cut
 orientation, and impingement devices.

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 3

Assigned
Case No. 106

PROCESS CONDITIONS

	Reference Condition A		Reference Condition B	
	Tubeside	Shellside	Tubeside	Shellside
Flow Rate, kg/s (10^3 lb/hr)		405		
Inlet Temperature, $^{\circ}$ F	71.6	201		
Outlet Temperature, $^{\circ}$ F	97.3	86		
Inlet Pressure, kPa (psia) Absolute		277		
Measured ΔP , kPa (psi)				
Inlet Weight Fraction Vapor	0	1.0		
Outlet Weight Fraction Vapor	0	1.0		
Vibration Observed	<input type="checkbox"/> No	<input checked="" type="checkbox"/> Yes	<input type="checkbox"/> No	<input type="checkbox"/> Yes

FLUID PHYSICAL PROPERTIES

Fill In All Applicable Entries	Tubeside	Shellside
Fluid Name	WATER	C ₂ H ₄
Reference Temperature, $^{\circ}$ F		201
Liquid Properties at Reference Temperatures		
Density, kg/m ³ (lb/ft ³)		
Viscosity, mPa·s (cP)		
Thermal Conductivity, W/m·C (Btu/m ft F)		
Heat Capacity, kJ/kg·C (Btu/m ft F)		
Vapor or Gas Properties at Reference Temperatures		
Density, kg/m ³ (lb/ft ³)		
Viscosity, mPa·s (cP)		0.0127
Thermal Conductivity, W/m·C (Btu/hr ft F)		
Heat Capacity, kJ/kg·C (Btu/lb F)		
Fluid Molecular Weight, kg/mol (lb/mole)		
If Boiling or Condensing		
Latent Heat, kJ/kg (Btu/lb)		

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 4

Assigned	106
Case No.	

VIBRATION AND DAMAGE DESCRIPTION

When Vibration Present, Shellside Flow Rate, kg/s (10^3 lb/hr)	405		
If Known, Crossflow Velocity at baffle tip, m/s (ft/sec)*			
Crossflow Velocity at centerline, m/s (ft/sec)*			
Velocity Through Window in Baffle, m/s (ft/sec)*			
Inlet Nozzle Velocity, m/s (ft/sec)*			
Outlet Nozzle Velocity, m/s (ft/sec)*			
Measured Natural Frequency, Hz			
Measured Acoustic Frequencies, Hz			
Noise Sound Level, db			

* Please describe how velocities were calculated or estimated.

Vibration Caused by External Sources

No Yes

Source Frequency, Hz _____ rpm _____

Machinery Piping
 Cavitation Pulsating Flow

Damage Noted

No

Yes Complete sketch at bottom of page indicating location in bundle

Type

Tube-to-Tube Impact

Cutting at Baffle

Near Tubesheet

Tube-to-Shell Impact

Tubesheet Joint Leaking

Fatigue

Wear

One Side of Tubes Only

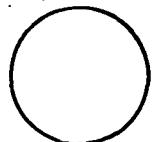
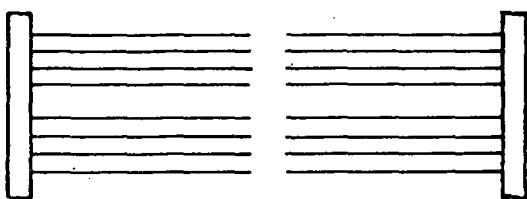
Parallel to Flow

Normal to Flow

All Around Tube Circumference

Corrosion Evident

Fouling Evident



General Description of Damage _____

Exchanger Operation History

- How Long on Stream Before Damage Occurred? _____
- Any Unusual Occurrence Observed Prior to Vibration as a Consequence of

Start-up Plant-Upset Shutdown
- Describe _____
- If Vibration Remedy Applied, Describe and Indicate Results: _____

TUBE BUNDLE DAMAGE SKETCH

To protect the identity of the organization submitting this case, HTRI has assigned a case number. Additionally the data on pages 2, 3, and 4 have been reviewed to ensure that they do not include any proprietary information.

This is a replacement for the original page 1 that provides space for additional comments, drawings, photographs, etc.

Assigned	107
Case No.	

Summary

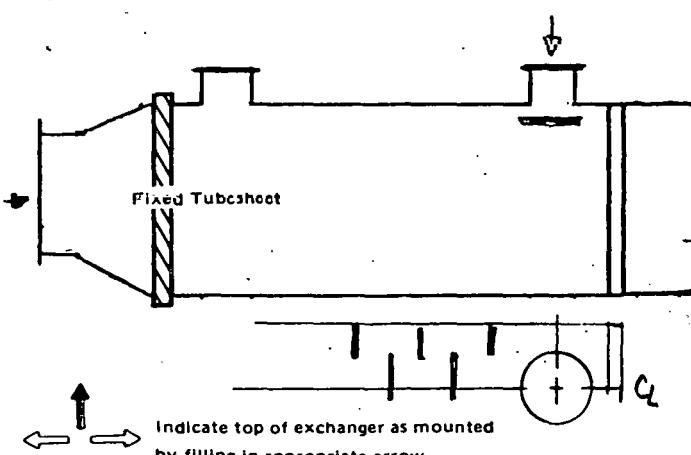
This 37-in. diameter by 40-ft long CEM TEMA style heat exchanger is one of two in series joined by welding their shells together. The tubeside fluid, natural gas with ethylene glycol to prevent hydration, passes from the one exchanger to the next without external piping. The shellside fluid, natural gas, flows counter current and between shells through external piping. Both exchangers were identical on the shell side and both experienced similar tube damage in the same locations of the exchanger. Most of the damage was noted after operating the plant at more than 40 percent higher than the designed shellside flow. Leaking tubes were plugged. During a subsequent overhaul of the bundles, the leaking tubes were found to be "broken on side near the nozzles." It is interesting to note that the damaged tubes were not those with the longest span at the inlet end zone.

For this case, there are construction drawings and a field report describing the operation history and the repairs made to the exchanger.

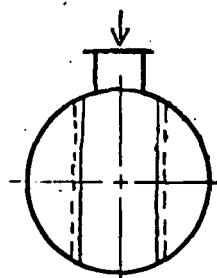
Assigned 107
Case No. 107

Type <input checked="" type="checkbox"/> TEMA Exchanger Designation <u>CEM</u>	<u>FIXED TUBESHEET</u>	Shell Orientation <input checked="" type="checkbox"/> Horizontal
<input type="checkbox"/> Special Exchanger (Describe) _____	<input type="checkbox"/> Vertical	

SHELL GEOMETRY (Complete Sketch Below)


Inside Diameter, mm (in.) <u>37</u>	
Wall Thickness, mm (in.) <u>1.5</u>	Material <u>CS</u>
Inlet Nozzle ID, mm (in.) <u>16</u>	
Outlet Nozzle ID, mm (in.) <u>16</u>	
Impingement Protection <input type="checkbox"/> No <input checked="" type="checkbox"/> Yes	
(Describe) <u>CIRCULAR PLATE 16.5" 00</u>	
Annular Distributor <input checked="" type="checkbox"/> No <input type="checkbox"/> Yes	
Open Cut Area mm ² (in. ²) <u>—</u>	
Nozzle-to-First Tube Row Distance, mm (in.) <u>6.125</u>	

CROSS BAFFLE GEOMETRY


Type <input type="checkbox"/> Segmental; <input checked="" type="checkbox"/> Double-Segmental <input type="checkbox"/> Disc/Doughnut		
<input type="checkbox"/> Triple-Segmental; <input type="checkbox"/> No-Tubes-in-Window		
Baffle Cut, % Shell Diameter <u>30.3 (1 TUBE OVERLAP)</u>		
Cut Orientation Relative to Axis of Inlet Nozzle		
Inlet Baffle <input type="checkbox"/> Perpendicular <input checked="" type="checkbox"/> Parallel <input type="checkbox"/> 45°		
Central Baffles <input type="checkbox"/> Perpendicular <input checked="" type="checkbox"/> Parallel <input type="checkbox"/> 45°		
Baffle Thickness, mm (in.) <u>0.625</u>	Material <u>CS</u>	
Diametral Clearances Shell-to-baffle, mm (in.) <u>0.1875</u>		
Tube-to-baffle mm (in.) <u>0.0156</u>		
Bundle-to-shell, mm (in.) <u>1.500</u>		
Number of Baffles Along Length of Shell <u>16</u>		
Baffle Spacing, mm (in.) <u>—</u>	Central <u>27.3</u>	
Inlet <u>30.6</u>	Outlet <u>30.6</u>	
Unsupported Tube Span Lengths, mm (in.) <u>—</u>		
Longest <u>57.9</u>	Inlet <u>57.9</u>	Outlet <u>57.9</u>

COMMENTS AND SKETCH

Complete sketches by drawing in tubeside and shellside nozzles. Indicate inlet nozzles with an arrow.

Show shellside inlet nozzle location, baffle cut orientation, and impingement devices.

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 3

Assigned
Case No. 107

PROCESS CONDITIONS

	Reference Condition A		Reference Condition B	
	Tubeside	Shellside	Tubeside	Shellside
Flow Rate, kg/s (10^3 lb/hr)		341.5		210
Inlet Temperature, $^{\circ}$ F	69	-23	86	-29
Outlet Temperature, $^{\circ}$ F	25	57	26	80
Inlet Pressure, kPa (psia) Absolute	1055	1045	10.50	1040
Measured ΔP , kPa (psi)	10	20	5	8
Inlet Weight Fraction Vapor	1.0	1.0	1.0	1.0
Outlet Weight Fraction Vapor	1.0	1.0	1.0	1.0
Vibration Observed	<input type="checkbox"/> No	<input checked="" type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes

FLUID PHYSICAL PROPERTIES

Fill In All Applicable Entries	Tubeside	Shellside		
Fluid Name	NATURAL GAS + GLYCOL	NATURAL GAS		
Reference Temperature, $^{\circ}$ C ($^{\circ}$ F)				
Liquid Properties at Reference Temperatures				
Density, kg/m ³ (lb/ft ³)				
Viscosity, mPa·s (cP)				
Thermal Conductivity, W/m·C (Btu/m ft F)				
Heat Capacity, kJ/kg·C (Btu/m ft F)				
Vapor or Gas Properties at Reference Temperatures				
Density, kg/m ³ (lb/ft ³)				
Viscosity, mPa·s (cP)				
Thermal Conductivity, W/m·C (Btu/hr ft F)				
Heat Capacity, kJ/kg·C (Btu/lb F)				
Fluid Molecular Weight, kg/mol (lb/mole)				
If Boiling or Condensing				
Latent Heat, kJ/kg (Btu/lb)	—	—	—	—

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 4

Assigned
Case No. 107

VIBRATION AND DAMAGE DESCRIPTION

When Vibration Present, Shellside Flow Rate, kg/s (10^3 lb/hr)	341.5			
If Known, Crossflow Velocity at baffle tip, m/s (ft/sec)*				
Crossflow Velocity at centerline, m/s (ft/sec)*				
Velocity Through Window in Baffle, m/s (ft/sec)*				
Inlet Nozzle Velocity, m/s (ft/sec)*				
Outlet Nozzle Velocity, m/s (ft/sec)*				
Measured Natural Frequency, Hz				
Measured Acoustic Frequencies, Hz				
Noise Sound Level, db				

* Please describe how velocities were calculated or estimated.

Vibration Caused by External Sources

 No Yes

Source Frequency, Hz _____ rpm _____

Machinery Piping
 Cavitation Pulsating Flow

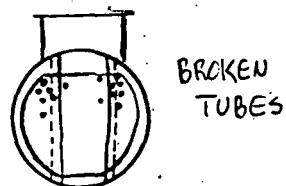
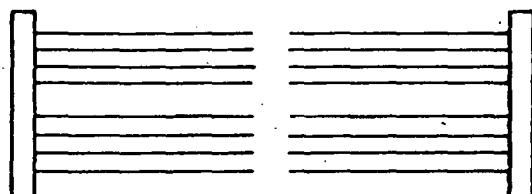
Damage Noted No Yes Complete sketch at bottom of page indicating location in bundle

Type	<input type="checkbox"/> Tube-to-Tube Impact	<input type="checkbox"/> Cutting at Baffle	<input type="checkbox"/> Near Tubesheet
	<input type="checkbox"/> Tube-to-Shell Impact	<input type="checkbox"/> Tubesheet Joint Leaking	<input type="checkbox"/> Fatigue

Wear	<input type="checkbox"/> One Side of Tubes Only	<input type="checkbox"/> Parallel to Flow	<input type="checkbox"/> Normal to Flow
	<input type="checkbox"/> All Around Tube Circumference		
	<input type="checkbox"/> Corrosion Evident	<input type="checkbox"/> Fouling Evident	

General Description of Damage "BROKEN TUBES" ON SIDE OF
 BUNDLE NEAR NOZZLES

Exchanger Operation History



- How Long on Stream Before Damage Occurred? _____
- Any Unusual Occurrence Observed Prior to Vibration as a Consequence of

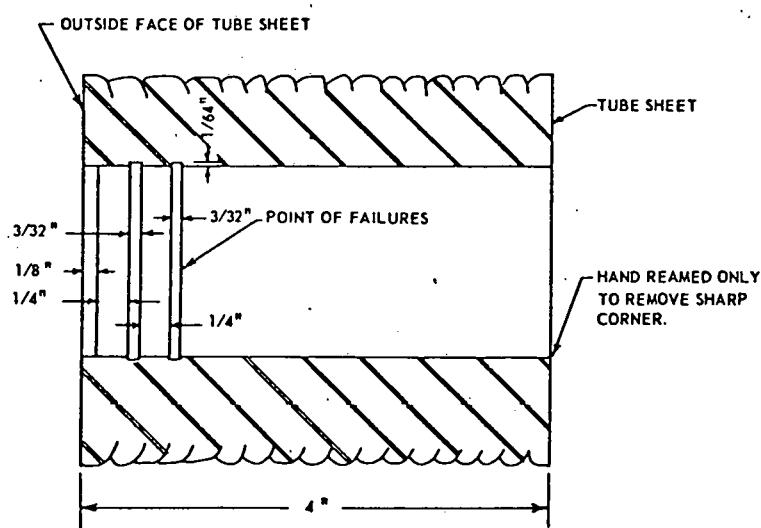
<input type="checkbox"/> Start-up	<input type="checkbox"/> Plant-Upset	<input type="checkbox"/> Shutdown
-----------------------------------	--------------------------------------	-----------------------------------

Describe _____

- If Vibration Remedy Applied, Describe and Indicate Results: _____

TUBE BUNDLE DAMAGE SKETCH

To protect the identity of the organization submitting this case, HTRI has assigned a case number. Additionally the data on pages 2, 3, and 4 have been reviewed to ensure that they do not include any proprietary information.


This is a replacement for the original page 1 that provides space for additional comments, drawings, photographs, etc.

Assigned Case No. 108

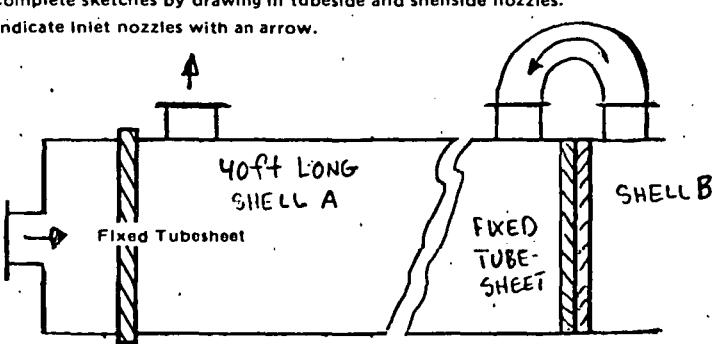
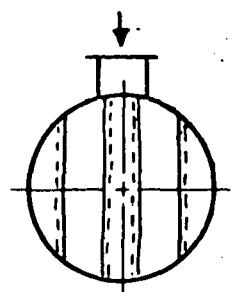
Summary

This 44-in. diameter by 40-ft long CEM TEMA style heat exchanger is one of three that are joined tubesheet to tubesheet so that in effect the tubes are 120 ft long. The tubeside flow is natural gas with glycol to prevent hydration while the shellside flow is counter current and passes between shells through external piping. The bundle uses triple-segmental baffles so the shellside flow is primarily axial. The tube spans are longer than TEMA Standards maximum spans for 3/4-in. carbon steel. The heat exchanger operated successfully for one and a half years at the design conditions. However, tubes began leaking where they were joined to the tubesheet in all three exchangers when the shellside flow rate was substantially increased beyond that used for design. The sketch below indicates the location of these failures. The failed tubes were characterized by particularly long spans in the outlet end zones. Minor cutting of the tubes at the baffles was also reported.

For this case, there are construction drawings and a field report describing the operating history, the damage noted, and the repairs made to the exchanger.

Assigned
Case No. 108

Type <input checked="" type="checkbox"/> TEMA Exchanger	Designation <u>CEM (FIXED TUBESHEET)</u>	Shell Orientation <input checked="" type="checkbox"/> Horizontal
<input type="checkbox"/> Special Exchanger	(Describe) _____	<input type="checkbox"/> Vertical



SHELL GEOMETRY (Complete Sketch Below)

Inside Diameter, mm (in.)	<u>44</u>		
Wall Thickness, mm (in.)	<u>—</u>	Material	<u>CS</u>
Inlet Nozzle ID, mm (in.)	<u>17.9</u>		
Outlet Nozzle ID, mm (in.)	<u>17.9</u>	(21.6 SHELL C)	
Impingement Protection	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	
(Describe)	<u>—</u>		
Annular Distributor	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	
Open Cut Area mm ² (in. ²)	<u>—</u>		
Nozzle-to-First Tube Row Distance, mm (in.)	<u>8.4</u>		

CROSS BAFFLE GEOMETRY

Type	<input type="checkbox"/> Segmental;	<input type="checkbox"/> Double-Segmental	<input type="checkbox"/> Disc/Doughnut
<input checked="" type="checkbox"/> Triple-Segmental; <input type="checkbox"/> No-Tubes-in-Window			
Baffle Cut, % Shell Diameter	<u>35</u>		
Cut Orientation Relative to Axis of Inlet Nozzle			
Inlet Baffle	<input type="checkbox"/> Perpendicular	<input checked="" type="checkbox"/> Parallel	<input type="checkbox"/> 45°
Central Baffles	<input type="checkbox"/> Perpendicular	<input checked="" type="checkbox"/> Parallel	<input type="checkbox"/> 45°
Baffle Thickness, mm (in.)	<u>0.625</u> Material <u>CS</u>		
Diametral Clearances Shell-to-baffle, mm (in.)	<u>0.239</u>		
Tube-to-baffle mm (in.)	<u>0.0194</u>		
Bundle-to-shell, mm (in.)	<u>0.632</u>		
Number of Baffles Along Length of Shell	<u>22</u>		
Baffle Spacing, mm (in.)	Central	<u>18.5</u>	
Inlet	<u>40.62</u>	Outlet	<u>40.63</u>
Unsupported Tube Span Lengths, mm (in.)			
Longest	<u>77.63</u>	Inlet	<u>77.62</u>
Outlet	<u>77.63</u>		

COMMENTS AND SKETCH

Complete sketches by drawing in tubeside and shellside nozzles. Indicate inlet nozzles with an arrow.		Show shellside inlet nozzle location, baffle cut orientation, and impingement devices.
<p>3 SHELLS IN SERIES 120 ft long tubes</p> <p>Indicate top of exchanger as mounted by filling in appropriate arrow.</p>		

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 3

Assigned
Case No. <u>108</u>

PROCESS CONDITIONS

	Reference Condition A		Reference Condition B	
	Tubeside	Shellside	Tubeside	Shellside
Flow Rate, kg/s (10^3 lb/hr)		320		
Inlet Temperature, $^{\circ}$ F (TRAIN OF 3 IN SERIES)	84/54/23	-28/14/48		
Outlet Temperature, $^{\circ}$ F	54/23/-11	14/48/75		
Inlet Pressure, kPa (psia) Absolute	835	825		
Measured ΔP , kPa (psi)				
Inlet Weight Fraction Vapor	1.0	1.0		
Outlet Weight Fraction Vapor	1.0	1.0		
Vibration Observed	<input type="checkbox"/> No	<input checked="" type="checkbox"/> Yes	<input type="checkbox"/> No	<input type="checkbox"/> Yes

FLUID PHYSICAL PROPERTIES

Fill In All Applicable Entries	Tubeside		Shellside	
Fluid Name	NAT'L GAS + GLYCOL		NAT'L GAS	
Reference Temperature, $^{\circ}$ F	84	-11	-28	75
Liquid Properties at Reference Temperatures				
Density, kg/m ³ (lb/ft ³)				
Viscosity, mPa·s (cP)				
Thermal Conductivity, W/m·C (Btu/m ft F)				
Heat Capacity, kJ/kg·C (Btu/m ft F)				
Vapor or Gas Properties at Reference Temperatures				
Density, kg/m ³ (lb/ft ³)	2.79	3.86	3.82	2.62
Viscosity, mPa·s (cP)				
Thermal Conductivity, W/m·C (Btu/hr ft F)				
Heat Capacity, kJ/kg·C (Btu/lb F)				
Fluid Molecular Weight, kg/mol (lb/mole)				
If Boiling or Condensing				
Latent Heat, kJ/kg (Btu/lb)	—	—	—	—

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 4

Assigned _____
 Case No. 108

VIBRATION AND DAMAGE DESCRIPTION

When Vibration Present, Shellside Flow Rate, kg/s (10^3 lb/hr)	<u>320</u>			
If Known, Crossflow Velocity at baffle tip, m/s (ft/sec)*				
Crossflow Velocity at centerline, m/s (ft/sec)*				
Velocity Through Window in Baffle, m/s (ft/sec)*				
Inlet Nozzle Velocity, m/s (ft/sec)*				
Outlet Nozzle Velocity, m/s (ft/sec)*				
Measured Natural Frequency, Hz				
Measured Acoustic Frequencies, Hz				
Noise Sound Level, db				

* Please describe how velocities were calculated or estimated.

Vibration Caused by External Sources

No Yes

Source Frequency, Hz _____ rpm _____

Machinery Piping
 Cavitation Pulsating Flow

Damage Noted

No

Yes Complete sketch at bottom of page indicating location in bundle

Type

Tube-to-Tube Impact
 Tube-to-Shell Impact

Cutting at Baffle (MINOR)
 Tubesheet Joint Leaking

Near Tubesheet
 Fatigue

Wear

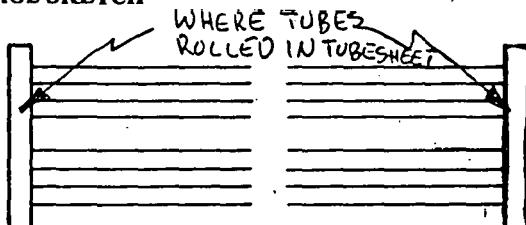
One Side of Tubes Only
 All Around Tube Circumference
 Corrosion Evident
 General Description of Damage

Parallel to Flow

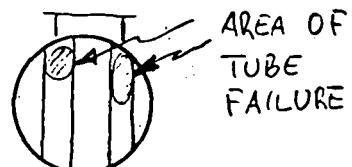
Normal to Flow

TUBES LEAKING WHERE ROLLED
 INTO TUBESHEETS

Exchanger Operation History


• How Long on Stream Before Damage Occurred? 1 1/2 YEARS

• Any Unusual Occurrence Observed Prior to Vibration as a Consequence of
 Start-up Plant-Upset Shutdown


Describe INCREASED FLOW RATE BEYOND DESIGN

• If Vibration Remedy Applied, Describe and Indicate Results: _____

TUBE BUNDLE DAMAGE SKETCH

MOST FAILURES IN SHELLS A AND B

To protect the identity of the organization submitting this case, HTRI has assigned a case number. Additionally the data on pages 2, 3, and 4 have been reviewed to ensure that they do not include any proprietary information.

This is a replacement for the original page 1 that provides space for additional comments, drawings, photographs, etc.

Assigned	109
Case No.	

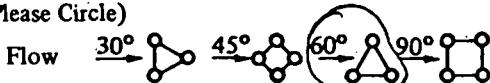
Summary

This 53-in. diameter by 40-ft long CEM TEMA style heat exchanger is one of two in series that share a common shell. There is natural gas with glycol to prevent hydration on the tube side. Between exchangers the tubeside flow passes through an open shell section about 4 ft long before entering the tubes of the downstream exchanger. The shellside fluid is natural gas flowing counter current and piped externally between shells. The bundle has double-segmented baffles and is flat on top to a depth of 8-1/2 in. A round impingement plate the same diameter as the inlet nozzle ID is 8-1/2 in. below the nozzle. A unique feature is a flat plate seal welded to the shell to block shell-side flow bypassing at the top of the bundle. The maximum span lengths are less than the TEMA Standards maximum lengths for 3/4-in. carbon steel tubes.

No tube vibration has been noted in this unit even when operated at greater than 20 percent over the designed shellside flow rate. For this case, there are construction drawings and a short field report of the operating history of the exchanger train.

Assigned
Case No. 109Type TEMA Exchanger Designation CEM
 Special Exchanger (Describe) _____Shell Orientation Horizontal
 Vertical

SHELL GEOMETRY (Complete Sketch Below)


Inside Diameter, mm (in.) 53
 Wall Thickness, mm (in.) 1.75 Material CS
 Inlet Nozzle ID, mm (in.) 20
 Outlet Nozzle ID, mm (in.) 20
 Impingement Protection No Yes
 (Describe) 20 in. OD BY 3/8 in.
 Annular Distributor No Yes
 Open Cut Area mm² (in.²) _____
 Nozzle-to-First Tube Row Distance, mm (in.) 8.125

CROSS BAFFLE GEOMETRY

Type Segmental; Double-Segmental Disc/Doughnut
 Triple-Segmental; No-Tubes-in-Window
 Baffle Cut, % Shell Diameter 30.7
 Cut Orientation Relative to Axis of Inlet Nozzle
 Inlet Baffle Perpendicular Parallel 45°
 Central Baffles Perpendicular Parallel 45°
 Baffle Thickness, mm (in.) 0.625 Material CS
 Diametral Clearances Shell-to-baffle, mm (in.) 0.225
 Tube-to-baffle mm (in.) 0.0156
 Bundle-to-shell, mm (in.) 0.625
 Number of Baffles Along Length of Shell 15
 Baffle Spacing, mm (in.) Central 29.5
 Inlet 32.75 Outlet 32.75
 Unsupported Tube Span Lengths, mm (in.)
 Longest 62.25 Inlet 62.25 Outlet 62.25

TUBE GEOMETRY

Outside Diameter, mm (in.) 0.750
 Wall Thickness, mm (in.) 0.065 Material CS
 Tube Lengths
 Straight Tube, Inside Tubesheets, mm (in.) 478.5
 U-Tube, Tubesheet to Bend Tangent, mm (in.) _____
 Tube Pitch, mm (in.) 1.00
 Layout (Please Circle)

No. of Tubes 2220 No. of Tubepasses 1

First Tubepass Countercurrent Cocurrent

Tube-to-Tubesheet Joint

 Welded Roller Expanded Other NOT GIVEN

If U-Tube

Maximum Bend Radius, mm (in.) _____

Bend Orientation Relative to Axis of Shellside Inlet Nozzle

 Perpendicular Parallel

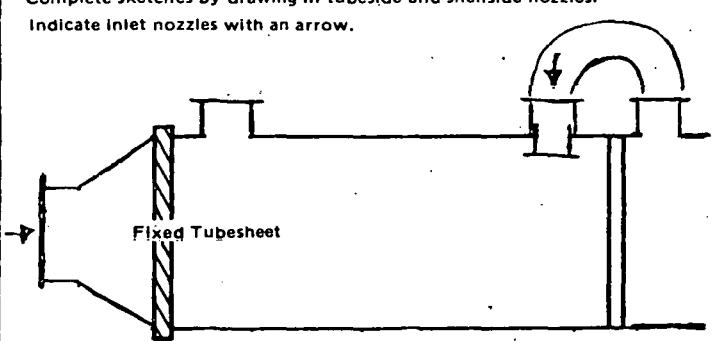
If Bend Supported, Describe in Comments Below

If Finned Tubes

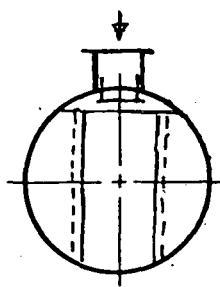
Fin/cm (Fins/in.) _____ Fin Material _____

Diameter, mm (in.), Root _____ Over Fins _____

If Enhanced Surface Tubes _____


(Describe) _____

DETUNING BAFFLE


If Detuning Baffle Used to Control Acoustic
Vibration, Indicate Position on Sketch Below

COMMENTS AND SKETCH

Complete sketches by drawing in tubeside and shellside nozzles.
 Indicate inlet nozzles with an arrow.

TRAIN OF TWO SHELLS IN PARALLEL
TWO PARALLEL TRAINSIndicate top of exchanger as mounted
by filling in appropriate arrow.

Show shellside inlet nozzle location, baffle cut
orientation, and impingement devices.

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 3

Assigned
Case No. 109

PROCESS CONDITIONS

	Reference Condition A		Reference Condition B	
	Tubeside	Shellside	Tubeside	Shellside
Flow Rate, kg/s (10^3 lb/hr)		554		
Inlet Temperature, $^{\circ}$ F	65	-30		
Outlet Temperature, $^{\circ}$ F	-5	46		
Inlet Pressure, kPa (psia) Absolute	698	690		
Measured ΔP , kPa (psi)	3	11		
Inlet Weight Fraction Vapor	1.0	1.0		
Outlet Weight Fraction Vapor	1.0	1.0		
Vibration Observed	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	<input type="checkbox"/> No	<input type="checkbox"/> Yes

FLUID PHYSICAL PROPERTIES

Fill In All Applicable Entries	Tubeside		Shellside	
Fluid Name	NATURAL GAS + GLYCOL		NATURAL GAS	
Reference Temperature, $^{\circ}$ F	-5	65	-30	46
Liquid Properties at Reference Temperatures				
Density, kg/m ³ (lb/ft ³)				
Viscosity, mPa·s (cP)				
Thermal Conductivity, W/m·C (Btu/m ft F)				
Heat Capacity, kJ/kg·C (Btu/m ft F)				
Vapor or Gas Properties at Reference Temperatures				
Density, kg/m ³ (lb/ft ³)				
Viscosity, mPa·s (cP)	3.10	2.40	3.15	2.35
Thermal Conductivity, W/m·C (Btu/hr ft F)				
Heat Capacity, kJ/kg·C (Btu/lb F)				
Fluid Molecular Weight, kg/mol (lb/mole)				
If Boiling or Condensing				
Latent Heat, kJ/kg (Btu/lb)	—		—	

To protect the identity of the organization submitting this case, HTRI has assigned a case number. Additionally the data on pages 2, 3, and 4 have been reviewed to ensure that they do not include any proprietary information.

This is a replacement for the original page 1 that provides space for additional comments, drawings, photographs, etc.

Assigned
Case No. 110

Summary

This 45-in. diameter by 40-ft long CEM TEMA style heat exchanger is in refinery service. The tubeside fluid is cooling tower water while the shellside fluid is an olefin-isoctane mixture with hydrofluoric acid. Indications are that there was a loud noise coming from the exchanger at start-up before the tubeside fluid was brought on stream. Tubes that failed were those within a few rows of the baffle tips of the double-segmental baffles. The breaks were at baffles near the center of the tube length. Metallurgical analysis indicates corrosion fatigue that was probably initiated by flow-induced vibration. The exchanger bundle was replaced with a new one with 18 instead of 12 baffles and no further vibration was noted (See Case 111).

For this case, there are partial construction drawings, an indication of the specific tubes that failed, and a metallurgical report on the failed tubes.

Assigned
Case No. 110

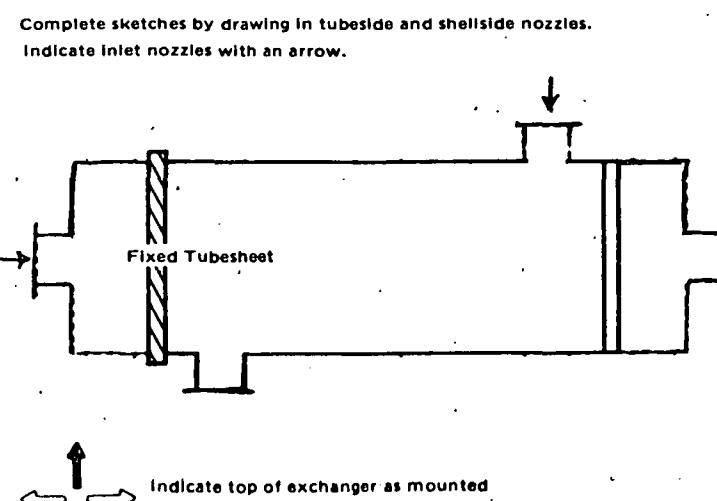
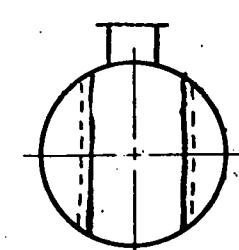
Type <input checked="" type="checkbox"/> TEMA Exchanger	Designation <u>CEN</u>	Shell Orientation <input checked="" type="checkbox"/> Horizontal
<input type="checkbox"/> Special Exchanger (Describe) _____	<input type="checkbox"/> Vertical	

SHELL GEOMETRY (Complete Sketch Below)

Inside Diameter, mm (in.)	<u>45</u>		
Wall Thickness, mm (in.)	<u>—</u>	Material	<u>CS</u>
Inlet Nozzle ID, mm (in.)	<u>24</u>		
Outlet Nozzle ID, mm (in.)	<u>24</u>		
Impingement Protection	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	
(Describe) _____			
Annular Distributor	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	
Open Cut Area mm ² (in. ²)	<u>—</u>		
Nozzle-to-First Tube Row Distance, mm (in.)	<u>1.5</u>		

CROSS BAFFLE GEOMETRY

Type	<input type="checkbox"/> Segmental;	<input checked="" type="checkbox"/> Double-Segmental	<input type="checkbox"/> Disc/Doughnut
	<input type="checkbox"/> Triple-Segmental; <input type="checkbox"/> No-Tubes-in-Window		
Baffle Cut, % Shell Diameter	<u>26.5</u>		
Cut Orientation Relative to Axis of Inlet Nozzle	Inlet Baffle <input type="checkbox"/> Perpendicular <input checked="" type="checkbox"/> Parallel <input type="checkbox"/> 45° Central Baffles <input type="checkbox"/> Perpendicular <input checked="" type="checkbox"/> Parallel <input type="checkbox"/> 45°		
Baffle Thickness, mm (in.)	<u>0.625</u> Material <u>CS</u>		
Diametral Clearances Shell-to-baffle, mm (in.)	<u>0.25</u>		
	Tube-to-baffle mm (in.) <u>0.0156</u>		
	Bundle-to-shell, mm (in.) <u>1.125</u>		
Number of Baffles Along Length of Shell	<u>12</u>		
Baffle Spacing, mm (in.)	Central	<u>36.5</u>	
	Inlet	<u>35.9</u>	Outlet <u>35.9</u>
Unsupported Tube Span Lengths, mm (in.)			
Longest	<u>70.4</u>	Inlet <u>70.4</u>	Outlet <u>70.4</u>



TUBE GEOMETRY

Outside Diameter, mm (in.)	<u>1.0</u>		
Wall Thickness, mm (in.)	<u>0.134</u>	Material	<u>CS</u>
Tube Lengths	Straight Tube, Inside Tubesheets, mm (in.) <u>473.25</u> U-Tube, Tubesheet to Bend Tangent, mm (in.) <u>—</u>		
Tube Pitch, mm (in.)	<u>1.25</u>		
Layout (Please Circle)			
No. of Tubes	<u>930</u>	No. of Tubepasses	<u>1</u>
First Tubepass	<input checked="" type="checkbox"/> Counter-current	<input type="checkbox"/> Co-current	
Tube-to-Tubesheet Joint	<input checked="" type="checkbox"/> Welded <input checked="" type="checkbox"/> Roller Expanded <input type="checkbox"/> Other <u>—</u>		
If U-Tube	Maximum Bend Radius, mm (in.) <u>—</u>		
	Bend Orientation Relative to Axis of Shellside Inlet Nozzle		
	<input type="checkbox"/> Perpendicular <input type="checkbox"/> Parallel <u>—</u>		
If Bend Supported, Describe in Comments Below			
If Finned Tubes	Fins/mm (Fins/in.) <u>—</u> Fin Material <u>—</u> Diameter, mm (in.), Root <u>—</u> Over Fins <u>—</u>		
If Enhanced Surface Tubes			
(Describe) <u>—</u>			

DETUNING BAFFLE

If Detuning Baffle Used to Control Acoustic Vibration, Indicate Position on Sketch Below

COMMENTS AND SKETCH

Complete sketches by drawing in tubeside and shellside nozzles. Indicate inlet nozzles with an arrow.	Show shellside inlet nozzle location, baffle cut orientation, and impingement devices.

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 3

Assigned
Case No. <u>110</u>

PROCESS CONDITIONS

	Reference Condition A		Reference Condition B	
	Tubeside	Shellside	Tubeside	Shellside
Flow Rate, kg/s (10^3 lb/hr)		3300		
Inlet Temperature, $^{\circ}$ F		95		
Outlet Temperature, $^{\circ}$ F		90		
Inlet Pressure, kPa (psia) Absolute		200		
Measured ΔP , kPa (psi)		—		
Inlet Weight Fraction Vapor	0	0		
Outlet Weight Fraction Vapor	0	0		
Vibration Observed	<input type="checkbox"/> No	<input checked="" type="checkbox"/> Yes	<input type="checkbox"/> No	<input type="checkbox"/> Yes

FLUID PHYSICAL PROPERTIES

ISOBUTANE

Fill In All Applicable Entries	Tubeside	Shellside
Fluid Name	WATER	HYDROCARBON AND HYDROFLUORIC ACID
Reference Temperature, $^{\circ}$ F		93
Liquid Properties at Reference Temperatures		
Density, kg/m ³ (lb/ft ³)		44.5
Viscosity, mPa·s (cP)		0.65
Thermal Conductivity, W/m·C (Btu/m ft F)		
Heat Capacity, kJ/kg·C (Btu/m ft F)		
Vapor or Gas Properties at Reference Temperatures		
Density, kg/m ³ (lb/ft ³)		
Viscosity, mPa·s (cP)		
Thermal Conductivity, W/m·C (Btu/hr ft F)		
Heat Capacity, kJ/kg·C (Btu/lb F)		
Fluid Molecular Weight, kg/mol (lb/mole)		
If Boiling or Condensing		
Latent Heat, kJ/kg (Btu/lb)		

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 4

Assigned
Case No. 110

VIBRATION AND DAMAGE DESCRIPTION

When Vibration Present, Shellside Flow Rate, kg/s (10^3 lb/hr)	3300			
If Known, Crossflow Velocity at baffle tip, m/s (ft/sec)*				
Crossflow Velocity at centerline, m/s (ft/sec)*				
Velocity Through Window in Baffle, m/s (ft/sec)*				
Inlet Nozzle Velocity, m/s (ft/sec)*				
Outlet Nozzle Velocity, m/s (ft/sec)*				
Measured Natural Frequency, Hz				
Measured Acoustic Frequencies, Hz				
Noise Sound Level, db				

* Please describe how velocities were calculated or estimated.

Vibration Caused by External Sources

 No Yes

Source Frequency, Hz _____ rpm _____

<input type="checkbox"/> Machinery	<input type="checkbox"/> Piping
<input type="checkbox"/> Cavitation	<input type="checkbox"/> Pulsating Flow

Damage Noted

 No Yes Complete sketch at bottom of page indicating location in bundle

Type

<input type="checkbox"/> Tube-to-Tube Impact	<input checked="" type="checkbox"/> Cutting at Baffle	<input type="checkbox"/> Near Tubesheet
<input type="checkbox"/> Tube-to-Shell Impact	<input type="checkbox"/> Tubesheet Joint Leaking	<input type="checkbox"/> Fatigue

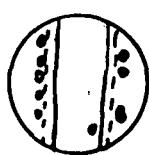
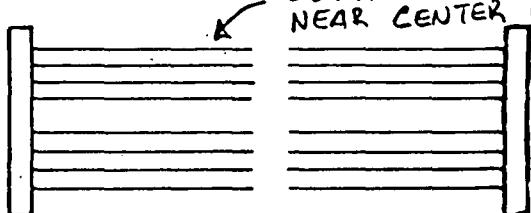
Wear

<input type="checkbox"/> One Side of Tubes Only	<input type="checkbox"/> Parallel to Flow	<input type="checkbox"/> Normal to Flow
---	---	---

 All Around Tube Circumference Corrosion Evident Fouling Evident General Description of Damage14 TUBES NEAR BAFFLE TIPS
AND IN CENTRAL SPANS

Exchanger Operation History

- How Long on Stream Before Damage Occurred? _____



- Any Unusual Occurrence Observed Prior to Vibration as a Consequence of

<input type="checkbox"/> Start-up	<input type="checkbox"/> Plant-Upset	<input type="checkbox"/> Shutdown
-----------------------------------	--------------------------------------	-----------------------------------

Describe _____

- If Vibration Remedy Applied, Describe and Indicate Results: REBUILT BUNDLE
WITH 18 BAFFLES. NO FURTHER PROBLEMS

TUBE BUNDLE DAMAGE SKETCH

To protect the identity of the organization submitting this case, HTRI has assigned a case number. Additionally the data on pages 2, 3, and 4 have been reviewed to ensure that they do not include any proprietary information.

This is a replacement for the original page 1 that provides space for additional comments, drawings, photographs, etc.

Assigned	111
Case No.	

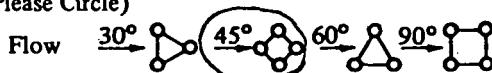
Summary

This 45-in. diameter by 40-ft long CEM TEMA style heat exchanger is the same shell as for Case 110 with a replacement bundle. These are 18 double-segmental baffles instead of the original 12. The service and the fluids are the same. This exchanger resulted in a higher shellside pressure drop; however, added pump capacity was available. The exchanger has operated for several years without any vibration problems.

The information is limited to that included on the data form.

Assigned
Case No. 111Type TEMA Exchanger Designation CEN
 Special Exchanger (Describe)Shell Orientation Horizontal
 Vertical

SHELL GEOMETRY (Complete Sketch Below)


Inside Diameter, mm (in.) 45
 Wall Thickness, mm (in.) Material
 Inlet Nozzle ID, mm (in.) 24
 Outlet Nozzle ID, mm (in.) 24
 Impingement Protection No Yes
 (Describe)
 Annular Distributor No Yes
 Open Cut Area mm² (in.²)
 Nozzle-to-First Tube Row Distance, mm (in.) 1.5

CROSS BAFFLE GEOMETRY

Type Segmental; Double-Segmental Disc/Doughnut
 Triple-Segmental; No-Tubes-in-Window
 Baffle Cut, % Shell Diameter 26.5
 Cut Orientation Relative to Axis of Inlet Nozzle
 Inlet Baffle Perpendicular Parallel 45°
 Central Baffles Perpendicular Parallel 45°
 Baffle Thickness, mm (in.) 0.625 Material CS
 Diametral Clearances Shell-to-baffle, mm (in.) 0.25
 Tube-to-baffle mm (in.) 0.0156
 Bundle-to-shell, mm (in.) 1.125
 Number of Baffles Along Length of Shell 18
 Baffle Spacing, mm (in.) Central 25
 Inlet 24.13 Outlet 24.13
 Unsupported Tube Span Lengths, mm (in.)
 Longest 50 Inlet 49.13 Outlet 49.13

TUBE GEOMETRY

Outside Diameter, mm (in.) 1.0
 Wall Thickness, mm (in.) 0.134 Material
 Tube Lengths
 Straight Tube, Inside Tubesheets, mm (in.) 473.25
 U-Tube, Tubesheet to Bend Tangent, mm (in.)
 Tube Pitch, mm (in.) 1.25
 Layout (Please Circle)

No. of Tubes 930 No. of Tubepasses 1

First Tubepass Countercurrent Cocurrent

Tube-to-Tubesheet Joint

 Welded Roller Expanded Other

If U-Tube Maximum Bend Radius, mm (in.)

Bend Orientation Relative to Axis of Shellside Inlet Nozzle

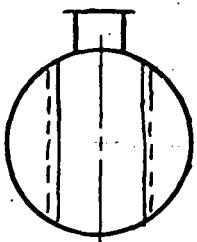
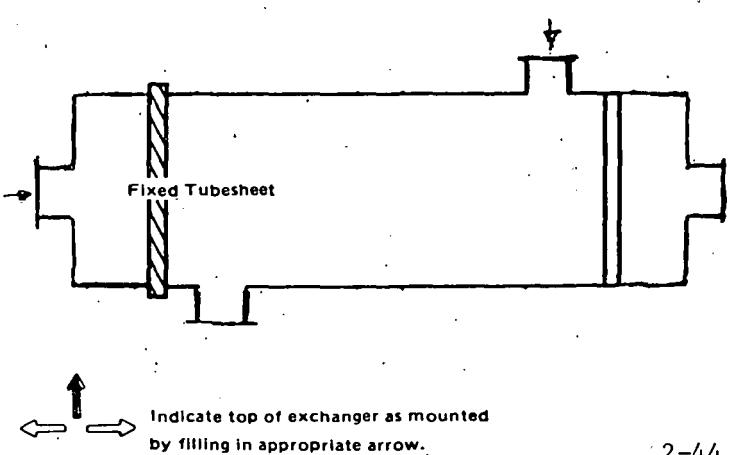
 Perpendicular Parallel

If Bend Supported, Describe in Comments Below

If Finned Tubes

Fin Spacing (Fins/in.) Fin Material

Diameter, mm (in.), Root Over Fins



If Enhanced Surface Tubes

(Describe)

DETUNING BAFFLE

If Detuning Baffle Used to Control Acoustic
Vibration, Indicate Position on Sketch Below

COMMENTS AND SKETCH

Complete sketches by drawing in tubeside and shellside nozzles.
Indicate inlet nozzles with an arrow.Show shellside inlet nozzle location, baffle cut
orientation, and impingement devices.

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 3

Assigned _____
 Case No. 111

PROCESS CONDITIONS

	Reference Condition A		Reference Condition B	
	Tubeside	Shellside	Tubeside	Shellside
Flow Rate, kg/s (10^3 lb/hr)		3.300		
Inlet Temperature, °C (F)		95		
Outlet Temperature, °C (F)		90		
Inlet Pressure, kPa (psia) Absolute		200		
Measured ΔP , kPa (psi)		—		
Inlet Weight Fraction Vapor	0	0		
Outlet Weight Fraction Vapor	0	0		
Vibration Observed	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	<input type="checkbox"/> No	<input type="checkbox"/> Yes

FLUID PHYSICAL PROPERTIES

ISOBUTANE

Fill In All Applicable Entries	Tubeside	Shellside
Fluid Name	WATER	HYDROCARBON PLUS HYDROFLUORIC ACID
Reference Temperature, °C (F)		93
Liquid Properties at Reference Temperatures		
Density, kg/m ³ (lb/ft ³)		44.5
Viscosity, mPa·s (cP)		0.65
Thermal Conductivity, W/m·C (Btu/m ft F)		
Heat Capacity, kJ/kg·C (Btu/m ft F)		
Vapor or Gas Properties at Reference Temperatures		
Density, kg/m ³ (lb/ft ³)		
Viscosity, mPa·s (cP)		
Thermal Conductivity, W/m·C (Btu/hr ft F)		
Heat Capacity, kJ/kg·C (Btu/lb F)		
Fluid Molecular Weight, kg/mol (lb/mole)		
If Boiling or Condensing		
Latent Heat, kJ/kg (Btu/lb)		

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 4

Assigned	111
Case No.	

VIBRATION AND DAMAGE DESCRIPTION

When Vibration Present, Shellside Flow Rate, kg/s (10^3 lb/hr)				
If Known, Crossflow Velocity at baffle tip, m/s (ft/sec)*				
Crossflow Velocity at centerline, m/s (ft/sec)*				
Velocity Through Window in Baffle, m/s (ft/sec)*				
Inlet Nozzle Velocity, m/s (ft/sec)*				
Outlet Nozzle Velocity, m/s (ft/sec)*				
Measured Natural Frequency, Hz				
Measured Acoustic Frequencies, Hz				
Noise Sound Level, db				

* Please describe how velocities were calculated or estimated.

Vibration Caused by External Sources

No Yes

Source Frequency, Hz _____ rpm _____

Machinery Piping
 Cavitation Pulsating Flow

Damage Noted

No

Yes Complete sketch at bottom of page indicating location in bundle

Type

Tube-to-Tube Impact

Cutting at Baffle

Near Tubesheet

Tube-to-Shell Impact

Tubesheet Joint Leaking

Fatigue

Wear

One Side of Tubes Only

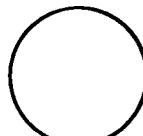
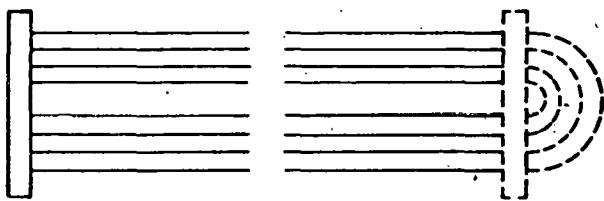
Parallel to Flow

Normal to Flow

All Around Tube Circumference

Corrosion Evident

Fouling Evident



General Description of Damage _____

Exchanger Operation History

- How Long on Stream Before Damage Occurred? _____
- Any Unusual Occurrence Observed Prior to Vibration as a Consequence of

Start-up Plant-Upset Shutdown
- Describe _____
- If Vibration Remedy Applied, Describe and Indicate Results: _____

TUBE BUNDLE DAMAGE SKETCH

To protect the identity of the organization submitting this case, HTRI has assigned a case number. Additionally the data on pages 2, 3, and 4 have been reviewed to ensure that they do not include any proprietary information.

This is a replacement for the original page 1 that provides space for additional comments, drawings, photographs, etc.

Assigned	112
Case No.	

Summary

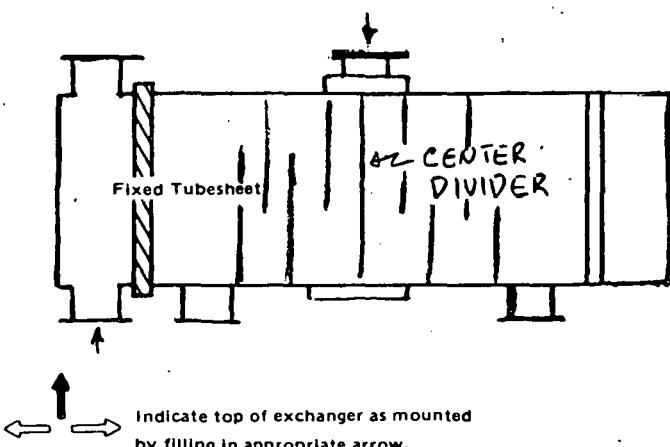
This 43-in. diameter by 19-ft long AJS TEMA style heat exchanger has an annular distribution at the center inlet with a series of slots to direct half of the shellside flow of air to each of the two ends of the exchanger. Cooling tower water flowed in the tube side. The bundle has segmental baffles with relatively short unsupported span lengths for 3/4-in. admiralty tubes. The tube field is arranged in an inline layout with a pitch-to-diameter ratio of 1.33. The indication is that this exchanger had "frequent tube leaks." Unfortunately, there is no indication as to where the leaks occurred. Tube vibration is given as the probable cause.

For this case, there are partial construction drawings, a field inspection report, and the exchanger specification sheet.

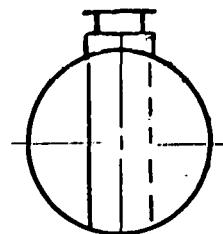
Assigned
Case No. 112

Type <input checked="" type="checkbox"/> TEMA Exchanger Designation <u>AJS</u>	Shell Orientation <input type="checkbox"/> Horizontal <input type="checkbox"/> Vertical
<input type="checkbox"/> Special Exchanger (Describe) _____	

SHELL GEOMETRY (Complete Sketch Below)


Inside Diameter, mm (in.)	<u>43</u>
Wall Thickness, mm (in.)	<u>—</u>
Material	_____
Inlet Nozzle ID, mm (in.)	<u>16</u>
Outlet Nozzle ID, mm (in.)	<u>12</u>
Impingement Protection <input checked="" type="checkbox"/> No <input type="checkbox"/> Yes (Describe) _____	
Annular Distributor <input type="checkbox"/> No <input checked="" type="checkbox"/> Yes	
Open Cut Area mm ² (in. ²)	<u>912</u>
Nozzle-to-First Tube Row Distance, mm (in.)	<u>1,675</u>

CROSS BAFFLE GEOMETRY


Type <input checked="" type="checkbox"/> Segmental; <input type="checkbox"/> Double-Segmental <input type="checkbox"/> Disc/Doughnut
<input type="checkbox"/> Triple-Segmental; <input type="checkbox"/> No-Tubes-in-Window
Baffle Cut, % Shell Diameter <u>33</u>
Cut Orientation Relative to Axis of Inlet Nozzle
Inlet Baffle <input type="checkbox"/> Perpendicular <input checked="" type="checkbox"/> Parallel <input type="checkbox"/> 45°
Central Baffles <input type="checkbox"/> Perpendicular <input checked="" type="checkbox"/> Parallel <input type="checkbox"/> 45°
Baffle Thickness, mm (in.) <u>0.5</u> Material <u>CS</u>
Diametral Clearances Shell-to-baffle, mm (in.) <u>0.25</u>
Tube-to-baffle mm (in.) <u>0.0156</u>
Bundle-to-shell, mm (in.) <u>1.25</u>
Number of Baffles Along Length of Shell <u>8 + DIVIDER</u>
Baffle Spacing, mm (in.)
Central <u>2.3</u>
Inlet <u>2.3</u> Outlet <u>21.75</u>
Unsupported Tube Span Lengths, mm (in.)
Longest <u>46</u> Inlet <u>46</u> Outlet <u>44.75</u>

COMMENTS AND SKETCH

Complete sketches by drawing in tubeside and shellside nozzles. Indicate inlet nozzles with an arrow.

Show shellside inlet nozzle location, baffle cut orientation, and impingement devices.

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 3

Assigned	Case No.
112	

PROCESS CONDITIONS

	Reference Condition A		Reference Condition B	
	Tubeside	Shellside	Tubeside	Shellside
Flow Rate, kg/s (10^3 lb/hr)	378	168		
Inlet Temperature, $^{\circ}$ F	90	225		
Outlet Temperature, $^{\circ}$ F	105	105		
Inlet Pressure, kPa (psia) Absolute	65	118		
Measured ΔP , kPa (psi)	6	1.5		
Inlet Weight Fraction Vapor	0	1.0		
Outlet Weight Fraction Vapor	0	1.0		
Vibration Observed	<input type="checkbox"/> No	<input checked="" type="checkbox"/> Yes	<input type="checkbox"/> No	<input type="checkbox"/> Yes

FLUID PHYSICAL PROPERTIES

Fill In All Applicable Entries	Tubeside	Shellside		
Fluid Name	WATER	AIR		
Reference Temperature, $^{\circ}$ F				
Liquid Properties at Reference Temperatures				
Density, kg/m ³ (lb/ft ³)				
Viscosity, mPa·s (cP)				
Thermal Conductivity, W/m·C (Btu/m ft F)				
Heat Capacity, kJ/kg·C (Btu/m ft F)				
Vapor or Gas Properties at Reference Temperatures				
Density, kg/m ³ (lb/ft ³)				
Viscosity, mPa·s (cP)				
Thermal Conductivity, W/m·C (Btu/hr ft F)				
Heat Capacity, kJ/kg·C (Btu/lb F)				
Fluid Molecular Weight, kg/mol (lb/mole)				
If Boiling or Condensing				
Latent Heat, kJ/kg (Btu/lb)				

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 4

Assigned 112
Case No.

VIBRATION AND DAMAGE DESCRIPTION

When Vibration Present, Shellside Flow Rate, kg/s (10^3 lb/hr)	168			
If Known, Crossflow Velocity at baffle tip, m/s (ft/sec)*				
Crossflow Velocity at centerline, m/s (ft/sec)*				
Velocity Through Window in Baffle, m/s (ft/sec)*				
Inlet Nozzle Velocity, m/s (ft/sec)*				
Outlet Nozzle Velocity, m/s (ft/sec)*				
Measured Natural Frequency, Hz				
Measured Acoustic Frequencies, Hz				
Noise Sound Level, db				

* Please describe how velocities were calculated or estimated.

Vibration Caused by External Sources

 No Yes

Source Frequency, Hz _____ rpm _____

<input type="checkbox"/> Machinery	<input type="checkbox"/> Piping
<input type="checkbox"/> Cavitation	<input type="checkbox"/> Pulsating Flow

Damage Noted

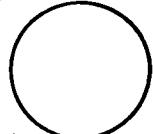
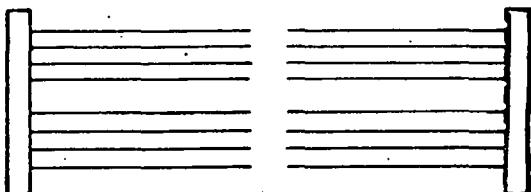
 No Yes

Complete sketch at bottom of page indicating location in bundle

Type

<input type="checkbox"/> Tube-to-Tube Impact	<input type="checkbox"/> Cutting at Baffle	<input type="checkbox"/> Near Tubesheet
<input type="checkbox"/> Tube-to-Shell Impact	<input type="checkbox"/> Tubesheet Joint Leaking	<input type="checkbox"/> Fatigue

Wear



<input type="checkbox"/> One Side of Tubes Only	<input type="checkbox"/> Parallel to Flow	<input type="checkbox"/> Normal to Flow
<input type="checkbox"/> All Around Tube Circumference		
<input type="checkbox"/> Corrosion Evident	<input type="checkbox"/> Fouling Evident	
<input type="checkbox"/> General Description of Damage	"FREQUENT TUBE LEAKS"	

Exchanger Operation History

- How Long on Stream Before Damage Occurred? _____
- Any Unusual Occurrence Observed Prior to Vibration as a Consequence of

<input type="checkbox"/> Start-up	<input type="checkbox"/> Plant-Upset	<input type="checkbox"/> Shutdown
-----------------------------------	--------------------------------------	-----------------------------------
- Describe _____
- If Vibration Remedy Applied, Describe and Indicate Results: _____

TUBE BUNDLE DAMAGE SKETCH

To protect the identity of the organization submitting this case, HTRI has assigned a case number. Additionally the data on pages 2, 3, and 4 have been reviewed to ensure that they do not include any proprietary information.

This is a replacement for the original page 1 that provides space for additional comments, drawings, photographs, etc.

Assigned	113
Case No.	

Summary

This 17-in. diameter by 16-ft long AEU TEMA style heat exchanger has cooling water flowing inside the two tube passes formed by the U-tubes. On the shell side a hydrocarbon designated "Atmospheric Top Pumparound" flows through a bundle with segmental baffles with very little overlap so the flow is mostly parallel to the tubes. Originally admiralty tubes were used and these suffered damage. The inspection report indicates evidence of "fretting corrosion with numerous penetrations under baffles." The indication is that there was a combined effect of vibration and corrosion. The tubes that failed were near the longitudinal baffle passlane and at the baffle plates. The cutting action resulted in the tubes being worn through on one side, but the specific orientation is not noted.

For this case, there are in addition to the data form, an inspection report, transmittal letter, and an indication of the remedial action taken. The bundle was retubed with 430 alloy stainless steel except for the bottom row of fin tubes which were with titanium. No further problems have been indicated.

Assigned
Case No. 113

Type <input checked="" type="checkbox"/> TEMA Exchanger Designation <u>A E U</u>	Shell Orientation <input checked="" type="checkbox"/> Horizontal <input type="checkbox"/> Vertical
<input type="checkbox"/> Special Exchanger (Describe) _____	

SHELL GEOMETRY (Complete Sketch Below)

Inside Diameter, mm (in.)	<u>17.25</u>		
Wall Thickness, mm (in.)	<u>0.375</u>	Material	<u>CS</u>
Inlet Nozzle ID, mm (in.)	<u>1.625</u>		
Outlet Nozzle ID, mm (in.)	<u>1.625</u>		
Impingement Protection	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	
(Describe) _____			
Annular Distributor	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	
Open Cut Area mm ² (in. ²)	<u>—</u>		
Nozzle-to-First Tube Row Distance, mm (in.)	<u>2.4375</u>		

CROSS BAFFLE GEOMETRY

Type <input checked="" type="checkbox"/> Segmental; <input type="checkbox"/> Double-Segmental <input type="checkbox"/> Disc/Doughnut			
<input type="checkbox"/> Triple-Segmental; <input type="checkbox"/> No-Tubes-in-Window			
Baffle Cut, % Shell Diameter	<u>43.5</u>		
Cut Orientation Relative to Axis of Inlet Nozzle			
Inlet Baffle	<input type="checkbox"/> Perpendicular <input checked="" type="checkbox"/> Parallel <input type="checkbox"/> 45°		
Central Baffles	<input type="checkbox"/> Perpendicular <input checked="" type="checkbox"/> Parallel <input type="checkbox"/> 45°		
Baffle Thickness, mm (in.)	<u>0.375</u>	Material	<u>CS</u>
Diametral Clearances Shell-to-baffle, mm (in.)	<u>0.123</u>		
Tube-to-baffle mm (in.)	<u>0.0156</u>		
Bundle-to-shell, mm (in.)	<u>2.0</u>		
Number of Baffles Along Length of Shell	<u>6</u>		
Baffle Spacing, mm (in.)	Central <u>27</u>		
Inlet <u>27</u> Outlet <u>27</u>			
Unsupported Tube Span Lengths, mm (in.)			
Longest <u>54</u> Inlet <u>54</u> Outlet <u>54</u>			

TUBE GEOMETRY

Outside Diameter, mm (in.)	<u>7.50</u>			
Wall Thickness, mm (in.)	<u>0.065</u>	Material	<u>ADMIRALTY BRASS</u>	
Tube Lengths				
Straight Tube, Inside Tubesheets, mm (in.)	<u>—</u>			
U-Tube, Tubesheet to Bend Tangent, mm (in.)	<u>189</u>			
Tube Pitch, mm (in.)	<u>1.00</u>			
Layout (Please Circle)				
Flow	<u>30°</u>	<u>45°</u>	<u>60°</u>	<u>90°</u>
No. of Tubes	<u>116</u>	No. of Tubepasses	<u>2</u>	

First Tubepass Countercurrent Cocurrent

Tube-to-Tubesheet Joint

Welded Roller Expanded Other

If U-Tube

Maximum Bend Radius, mm (in.) 7.25

Bend Orientation Relative to Axis of Shellside Inlet Nozzle

Perpendicular Parallel

If Bend Supported, Describe in Comments Below

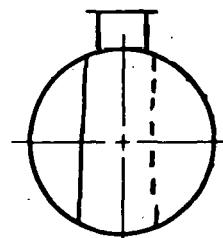
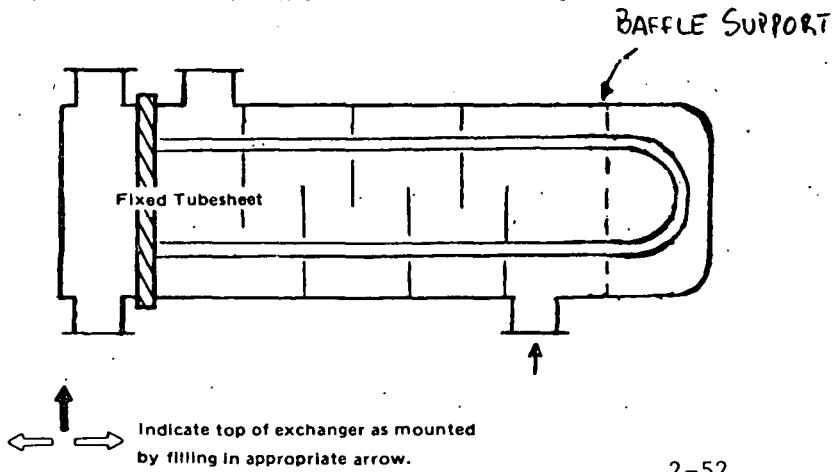
If Finned Tubes

Fin/mm (Fins/in.) — Fin Material —

Diameter, mm (in.), Root — Over Fins —

If Enhanced Surface Tubes

(Describe) —



DETUNING BAFFLE

If Detuning Baffle Used to Control Acoustic Vibration, Indicate Position on Sketch Below

COMMENTS AND SKETCH

Complete sketches by drawing in tubeside and shellside nozzles. Indicate inlet nozzles with an arrow.

Show shellside inlet nozzle location, baffle cut orientation, and impingement devices.

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 3

Assigned
Case No. <u>113</u>

PROCESS CONDITIONS

	Reference Condition A		Reference Condition B	
	Tubeside	Shellside	Tubeside	Shellside
Flow Rate, kg/s (10^3 lb/hr)		372.4		
Inlet Temperature, °C (F)	70	234		
Outlet Temperature, °C (F)	100	176		
Inlet Pressure, kPa (psia) Absolute				
Measured ΔP , kPa (psi)				
Inlet Weight Fraction Vapor	0	0		
Outlet Weight Fraction Vapor	0	0		
Vibration Observed	<input type="checkbox"/> No	<input checked="" type="checkbox"/> Yes	<input type="checkbox"/> No	<input type="checkbox"/> Yes

FLUID PHYSICAL PROPERTIES

Fill In All Applicable Entries	Tubeside		Shellside	
Fluid Name	WATER		"TOPS PUMPAROUND"	
Reference Temperature, °C (F)			234	176
Liquid Properties at Reference Temperatures				
Density, kg/m ³ (lb/ft ³)			43.14	44.84
Viscosity, mPa·s (cP)			0.21	0.22
Thermal Conductivity, W/m·°C (Btu/m ft F)				
Heat Capacity, kJ/kg·°C (Btu/m ft F)				
Vapor or Gas Properties at Reference Temperatures				
Density, kg/m ³ (lb/ft ³)				
Viscosity, mPa·s (cP)				
Thermal Conductivity, W/m·°C (Btu/hr ft F)				
Heat Capacity, kJ/kg·°C (Btu/lb F)				
Fluid Molecular Weight, kg/mol (lb/mole)				
If Boiling or Condensing				
Latent Heat, kJ/kg (Btu/lb)				

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 4

Assigned 113
Case No.

VIBRATION AND DAMAGE DESCRIPTION

When Vibration Present, Shellside Flow Rate, kg/s (10^3 lb/hr)	372.4			
If Known, Crossflow Velocity at baffle tip, m/s (ft/sec)*				
Crossflow Velocity at centerline, m/s (ft/sec)*				
Velocity Through Window in Baffle, m/s (ft/sec)*				
Inlet Nozzle Velocity, m/s (ft/sec)*				
Outlet Nozzle Velocity, m/s (ft/sec)*				
Measured Natural Frequency, Hz				
Measured Acoustic Frequencies, Hz				
Noise Sound Level, db				

* Please describe how velocities were calculated or estimated.

Vibration Caused by External Sources

 No Yes

Source Frequency, Hz _____ rpm _____

<input type="checkbox"/> Machinery	<input type="checkbox"/> Piping
<input type="checkbox"/> Cavitation	<input type="checkbox"/> Pulsating Flow

Damage Noted

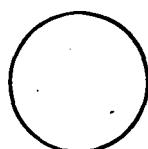
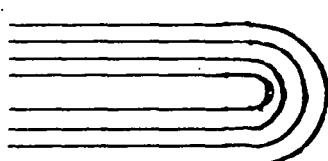
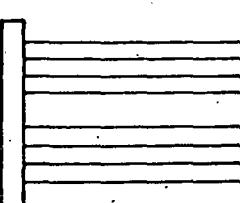
 No Yes Complete sketch at bottom of page indicating location in bundle

Type

 Tube-to-Tube Impact
 Tube-to-Shell Impact
 Cutting at Baffle Near Tubesheet Tubesheet Joint Leaking Fatigue

Wear

 One Side of Tubes Only Parallel to Flow Normal to Flow All Around Tube Circumference Corrosion Evident Fouling Evident General Description of DamageTwo TUBES WORN THROUGH ON ONE
SIDE AT BAFFLE SUPPORTS




Exchanger Operation History

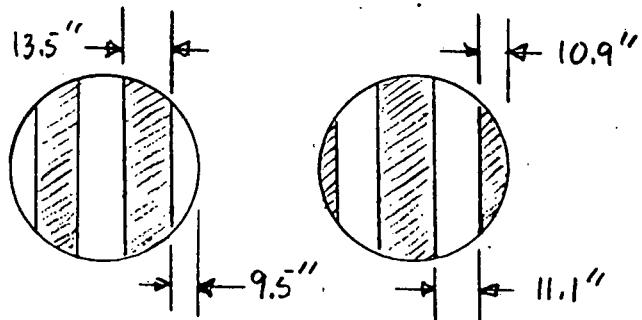
- How Long on Stream Before Damage Occurred? _____
- Any Unusual Occurrence Observed Prior to Vibration as a Consequence of

<input type="checkbox"/> Start-up	<input type="checkbox"/> Plant-Upset	<input type="checkbox"/> Shutdown
-----------------------------------	--------------------------------------	-----------------------------------

Describe _____

- If Vibration Remedy Applied, Describe and Indicate Results. _____

To protect the identity of the organization submitting this case, HTRI has assigned a case number. Additionally the data on pages 2, 3, and 4 have been reviewed to ensure that they do not include any proprietary information.


This is a replacement for the original page 1 that provides space for additional comments, drawings, photographs, etc.

Assigned
Case No. 114

Summary

This 56-in. diameter by 50-ft long AEL TEMA style heat exchanger has a hydrocarbon gas stream on both the shell side and the tube side. The "lean gas" is heated on the shell side where the bundle has 19 "double double-segmental" baffles. See sketch below. The "rich gas" is cooled on the tube side in a single tube pass. There was no impingement device under the shellside inlet nozzle. Tubes failed in "top three rows under shell inlet nozzle."

For this case, in addition to the data form is a description of the process conditions and geometry including the sketch reproduced below.

Assigned _____
Case No. 114

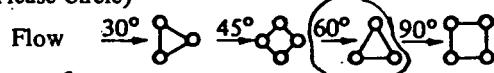
Type TEMA Exchanger Designation A E L
 Special Exchanger (Describe) _____

Shell Orientation Horizontal
 NOT GIVEN Vertical

SHELL GEOMETRY (Complete Sketch Below)

Inside Diameter, mm (in.) 56
 Wall Thickness, mm (in.) _____ Material _____
 Inlet Nozzle ID, mm (in.) 20
 Outlet Nozzle ID, mm (in.) 24
 Impingement Protection No Yes
 (Describe) _____
 Annular Distributor No Yes
 Open Cut Area mm² (in.²) _____
 Nozzle-to-First Tube Row Distance, mm (in.) 4.1

TUBE GEOMETRY


Outside Diameter, mm (in.) 0.750
 Wall Thickness, mm (in.) 0.083 Material C5

Tube Lengths

Straight Tube, Inside Tubesheets, mm (in.) 596
 U-Tube, Tubesheet to Bend Tangent, mm (in.) _____

Tube Pitch, mm (in.) 0.9375

Layout (Please Circle)

No. of Tubes 2910 No. of Tubepasses _____

First Tubepass Countercurrent Cocurrent

Tube-to-Tubesheet Joint

Welded Roller Expanded Other NOT GIVEN

If U-Tube

Maximum Bend Radius, mm (in.) _____

Bend Orientation Relative to Axis of Shellside Inlet Nozzle

Perpendicular Parallel

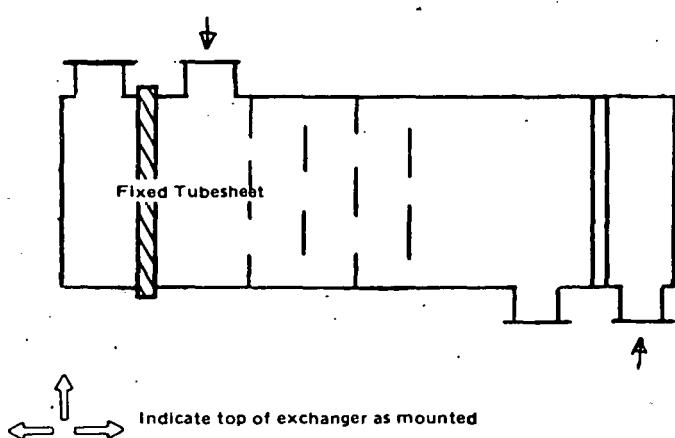
If Bend Supported, Describe in Comments Below

If Finned Tubes

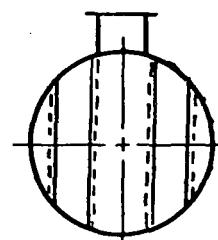
Fins/m (Fins/in.) _____ Fin Material _____

Diameter, mm (in.), Root _____ Over Fins _____

If Enhanced Surface Tubes _____


(Describe) _____

DETUNING BAFFLE


If Detuning Baffle Used to Control Acoustic
 Vibration, Indicate Position on Sketch Below

COMMENTS AND SKETCH

Complete sketches by drawing in tubeside and shellside nozzles.
 Indicate inlet nozzles with an arrow.

Show shellside inlet nozzle location, baffle cut orientation, and impingement devices.

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 3

Assigned
Case No. 114

PROCESS CONDITIONS

	Reference Condition A		Reference Condition B	
	Tubeside	Shellside	Tubeside	Shellside
Flow Rate, kg/s (10^3 lb/hr)	571.7	488.2		
Inlet Temperature, $^{\circ}$ F	80	-35		
Outlet Temperature, $^{\circ}$ F	-16	74		
Inlet Pressure, kPa (psia) Absolute	448	426		
Measured ΔP , kPa (psi)				
Inlet Weight Fraction Vapor	1.0	1.0		
Outlet Weight Fraction Vapor	1.0	1.0		
Vibration Observed	<input type="checkbox"/> No	<input checked="" type="checkbox"/> Yes	<input type="checkbox"/> No	<input type="checkbox"/> Yes

FLUID PHYSICAL PROPERTIES

Fill In All Applicable Entries	Tubeside		Shellside	
Fluid Name	RICH GAS		LEAN GAS	
Reference Temperature, $^{\circ}$ F	19.5	74	-15.5	80
Liquid Properties at Reference Temperatures				
Density, kg/m ³ (lb/ft ³)				
Viscosity, mPa·s (cP)				
Thermal Conductivity, W/m·C (Btu/m ft F)				
Heat Capacity, kJ/kg·C (Btu/m ft F)				
Vapor or Gas Properties at Reference Temperatures				
Density, kg/m ³ (lb/ft ³)				
Viscosity, mPa·s (cP)	0.011	0.012	0.0108	0.0120
Thermal Conductivity, W/m·C (Btu/hr ft F)	0.0184	0.0206	0.0173	0.0207
Heat Capacity, kJ/kg·C (Btu/lb F)	—	0.585	—	0.604
Fluid Molecular Weight, kg/mol (lb/mole)	16.62		17.41	
If Boiling or Condensing				
Latent Heat, kJ/kg (Btu/lb)	—		—	

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 4

Assigned	114
Case No.	

VIBRATION AND DAMAGE DESCRIPTION

When Vibration Present, Shellside Flow Rate, kg/s (10^3 lb/hr)	448.2			
If Known, Crossflow Velocity at baffle tip, m/s (ft/sec)*				
Crossflow Velocity at centerline, m/s (ft/sec)*	11.2			
Velocity Through Window in Baffle, m/s (ft/sec)*	24.9			
Inlet Nozzle Velocity, m/s (ft/sec)*				
Outlet Nozzle Velocity, m/s (ft/sec)*				
Measured Natural Frequency, Hz				
Measured Acoustic Frequencies, Hz				
Noise Sound Level, db				

* Please describe how velocities were calculated or estimated. GIVEN

Vibration Caused by External Sources

No Yes

Source Frequency, Hz _____ rpm _____

Machinery Piping
 Cavitation Pulsating Flow

Damage Noted

 No Yes

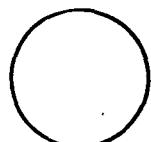
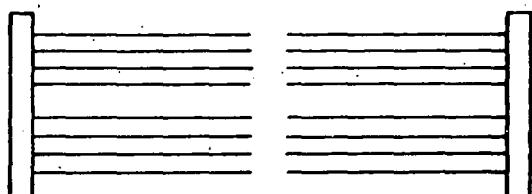
Complete sketch at bottom of page indicating location in bundle

Type

Tube-to-Tube Impact Cutting at Baffle Near Tubesheet
 Tube-to-Shell Impact Tubesheet Joint Leaking Fatigue

Wear

One Side of Tubes Only Parallel to Flow Normal to Flow
 All Around Tube Circumference Corrosion Evident Fouling Evident



General Description of Damage FAILED IN TOP 3 ROWS UNDER
 INLET NOZZLE

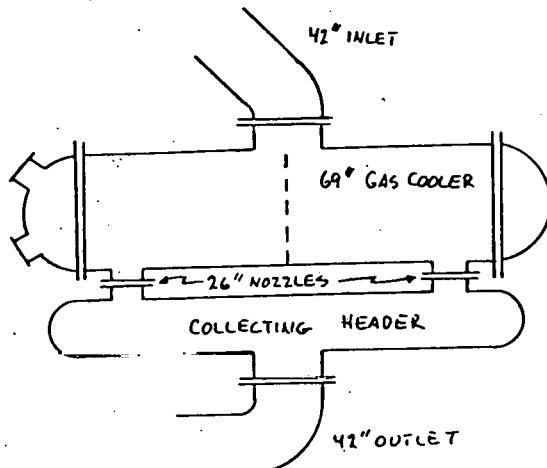
Exchanger Operation History

- How Long on Stream Before Damage Occurred? _____
- Any Unusual Occurrence Observed Prior to Vibration as a Consequence of

<input type="checkbox"/> Start-up	<input type="checkbox"/> Plant-Upset	<input type="checkbox"/> Shutdown
-----------------------------------	--------------------------------------	-----------------------------------
- Describe _____
- If Vibration Remedy Applied, Describe and Indicate Results: _____

TUBE BUNDLE DAMAGE SKETCH

To protect the identity of the organization submitting this case, HTRI has assigned a case number. Additionally the data on pages 2, 3, and 4 have been reviewed to ensure that they do not include any proprietary information.


This is a replacement for the original page 1 that provides space for additional comments, drawings, photographs, etc.

Assigned	115
Case No.	

Summary

This 69-in. diameter by 20-ft long BJS TEMA style heat exchanger is used as a process gas cooler. Shellside flow entered the single 42-in. nozzle at the center of the exchanger and was directed to the two ends by a solid flow divider plate. A portion of the nozzle was blanked off to prevent by passing and reduced the flow area to the equivalent of a 40.6-in. diameter nozzle. There were five crosspasses on each end with segmental baffles. The outlet nozzles were 26 in. diameter and mated matching 26-in. diameter nozzles on a vessel that acted as a collecting header to combine the flow into a 42 in. diameter outlet line. See sketch below. It should be noted that the tubefield layout was inline. There has not been any tube damage reported. However, there is an extremely loud noise. The noise was greatest at the fixed tubesheet at the top of the shell and at the bottom of the shell near the floating head. The shellside pressure drop was pulsing between 2 to 4 psi. It is not clear that the noise was flow-induced inside the shell and not being generated by an outside source.

For this case, in addition to the data form, there are complete construction drawings of the exchanger (not the collecting header), a description of noise observations, and several sketches.

Assigned
Case No. 115Type TEMA Exchanger Designation BJS
 Special Exchanger (Describe) _____Shell Orientation Horizontal
 Vertical

SHELL GEOMETRY (Complete Sketch Below)

Inside Diameter, mm (in.) 69
 Wall Thickness, mm (in.) 0.50 Material CS
 Inlet Nozzle ID, mm (in.) 42 BLANKED TO 40.6
 Outlet Nozzle ID, mm (in.) 26
 Impingement Protection No Yes
 (Describe) _____
 Annular Distributor No Yes
 Open Cut Area mm² (in.²) _____
 Nozzle-to-First Tube Row Distance, mm (in.) 2,687.5

CROSS BAFFLE GEOMETRY

Type Segmental; Double-Segmental Disc/Doughnut
 Triple-Segmental; No-Tubes-in-Window
 Baffle Cut, % Shell Diameter 45
 Cut Orientation Relative to Axis of Inlet Nozzle
 Inlet Baffle Perpendicular Parallel 45°
 Central Baffles Perpendicular Parallel 45°
 Baffle Thickness, mm (in.) 0.50 Material CS
 Diametral Clearances Shell-to-baffle, mm (in.) _____
 Tube-to-baffle mm (in.) _____
 Bundle-to-shell, mm (in.) _____
 Number of Baffles Along Length of Shell 9
 Baffle Spacing, mm (in.) Central 19
 Inlet 20.75 Outlet 39.312
 Unsupported Tube Span Lengths, mm (in.) _____
 Longest 58.312 Inlet 38 Outlet 58.312

TUBE GEOMETRY

Outside Diameter, mm (in.) 0.750
 Wall Thickness, mm (in.) 0.083 Material CS

Tube Lengths
 Straight Tube, Inside Tubesheets, mm (in.) 234.9
 U-Tube, Tubesheet to Bend Tangent, mm (in.) _____
 Tube Pitch, mm (in.) 1.25

Layout (Please Circle)

No. of Tubes 2028 No. of Tubepasses 2

First Tubepass Countercurrent Cocurrent

Tube-to-Tubesheet Joint
 Welded Roller Expanded Other _____

If U-Tube
 Maximum Bend Radius, mm (in.) _____

Bend Orientation Relative to Axis of Shellside Inlet Nozzle

Perpendicular Parallel _____

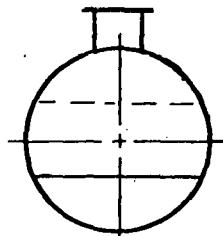
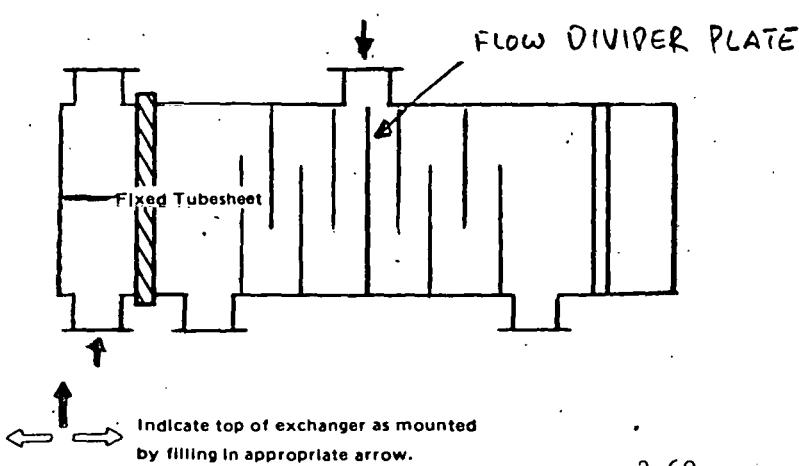
If Bend Supported, Describe in Comments Below

If Finned Tubes
 Fins/m (Fins/in.) _____ Fin Material _____

Diameter, mm (in.), Root _____ Over Fins _____

If Enhanced Surface Tubes _____

(Describe) _____



DETUNING BAFFLE

If Detuning Baffle Used to Control Acoustic
 Vibration, Indicate Position on Sketch Below

COMMENTS AND SKETCH

Complete sketches by drawing in tubeside and shellside nozzles.
 Indicate inlet nozzles with an arrow.

Show shellside inlet nozzle location, baffle cut
 orientation, and impingement devices.

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 3

Assigned
Case No. 115

PROCESS CONDITIONS

	Reference Condition A		Reference Condition B	
	Tubeside	Shellside	Tubeside	Shellside
Flow Rate, kg/s (10^3lb/hr)	1697*	372		
Inlet Temperature, C (F)	87	192		
Outlet Temperature, C (F)	96	105		
Inlet Pressure, Pa (psia) Absolute	50	51		
Measured ΔP , Pa (psi)	—	—		
Inlet Weight Fraction Vapor	0	1.0		
Outlet Weight Fraction Vapor	0	1.0		
Vibration Observed	<input type="checkbox"/> No	<input checked="" type="checkbox"/> Yes	<input type="checkbox"/> No	<input type="checkbox"/> Yes

* CALCULATED

FLUID PHYSICAL PROPERTIES

Fill In All Applicable Entries	Tubeside	Shellside		
Fluid Name	WATER	PROCESS GAS		
Reference Temperature, C (F)			105	192
Liquid Properties at Reference Temperatures				
Density, kg/m^3 (lb/ft^3)				
Viscosity, $\text{mPa}\cdot\text{s}$ (cP)				
Thermal Conductivity, $\text{W/m}\cdot\text{C}$ (Btu/m ft F)				
Heat Capacity, $\text{kJ/kg}\cdot\text{C}$ (Btu/m ft F)				
Vapor or Gas Properties at Reference Temperatures				
Density, kg/m^3 (lb/ft^3)				
Viscosity, $\text{mPa}\cdot\text{s}$ (cP)			0.0099	0.0115
Thermal Conductivity, $\text{W/m}\cdot\text{C}$ (Btu/hr ft F)			0.0366	0.0397
Heat Capacity, $\text{kJ/kg}\cdot\text{C}$ (Btu/lb F)			0.3330	0.6090
Fluid Molecular Weight, kg/mol (lb/mole)				22.59
If Boiling or Condensing				
Latent Heat, kJ/kg (Btu/lb)				—

DOE/ANL/HTRI HEAT EXCHANGER TUBE VIBRATION DATA FORM

Page 4

Assigned	115
Case No.	

VIBRATION AND DAMAGE DESCRIPTION

When Vibration Present, Shellside Flow Rate, kg/s (10^3 lb/hr)	372			
If Known, Crossflow Velocity at baffle tip, m/s (ft/sec)*				
Crossflow Velocity at centerline, m/s (ft/sec)*				
Velocity Through Window in Baffle, m/s (ft/sec)*				
Inlet Nozzle Velocity, m/s (ft/sec)*				
Outlet Nozzle Velocity, m/s (ft/sec)*				
Measured Natural Frequency, Hz				
Measured Acoustic Frequencies, Hz				
Noise Sound Level, db	VERY LOUD!			

* Please describe how velocities were calculated or estimated.

Vibration Caused by External Sources

No Yes MOST PROBABLY NOT

Source Frequency, Hz _____ rpm _____

Machinery Piping
 Cavitation Pulsating Flow

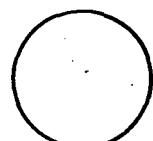
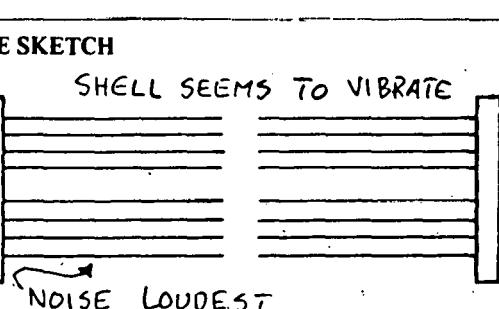
Damage Noted No

Yes Complete sketch at bottom of page indicating location in bundle

Type	<input type="checkbox"/> Tube-to-Tube Impact	<input type="checkbox"/> Cutting at Baffle	<input type="checkbox"/> Near Tubesheet
	<input type="checkbox"/> Tube-to-Shell Impact	<input type="checkbox"/> Tubesheet Joint Leaking	<input type="checkbox"/> Fatigue

Wear	<input type="checkbox"/> One Side of Tubes Only	<input type="checkbox"/> Parallel to Flow	<input type="checkbox"/> Normal to Flow
	<input type="checkbox"/> All Around Tube Circumference		
	<input type="checkbox"/> Corrosion Evident	<input type="checkbox"/> Fouling Evident	

General Description of Damage NO DAMAGE TO DATE
AP TWICE DESIGN ON SHELLSIDE



Exchanger Operation History

- How Long on Stream Before Damage Occurred? _____
- Any Unusual Occurrence Observed Prior to Vibration as a Consequence of

<input type="checkbox"/> Start-up	<input type="checkbox"/> Plant-Upset	<input type="checkbox"/> Shutdown
-----------------------------------	--------------------------------------	-----------------------------------

Describe _____

- If Vibration Remedy Applied, Describe and Indicate Results: _____

