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Abstract

This report describes Welch’s method for computing PSDs. 
We first describe the bandpass filter method which uses 
filtering, squaring, and averaging operations to estimate a 
PSD. Second, we delineate the relationship of Welch’s method 
to the bandpass filter method. Third, the frequency domain 
signal-to-noise ratio for a sine wave in white noise is derived. 
This derivation includes the computation of the noise floor 
due to quantization noise. The signal-to-noise ratio and noise 
floor depend on the FFT length and window. Fourth, the 
variance of Welch’s PSD is discussed via chi-square random 
variables and degrees of freedom. This report contains many 
examples, figures and tables to illustrate the concepts.

R.SJTiON OF THIS DOCUMENT iS UNLiMiTED



ACKNOWLEDGMENTS

The author thanks Paul Kuenstler for his support of this 
work. Jerry Biedscheid, Jeanne Bando, and Mike Rogers 
reviewed early drafts of the report Vesta Bateman, Jerry Cap, 
Dan Gregory and Paul Kuenstler reviewed later drafts of the 
report Jonathan Rogers via Jerry Cap told the author about 
the paper by Gade and Herlufsen. Bob Peet helped the author 
obtain copies of the reports by Gade and Herlufsen. Sam 
Stearns read over the report Toni Garcia and Julie Solomon 
proofread the report. Toni Garcia helped to get this report 
published. My facilitator Fred Gutierrez provided computers 
and software for analyzing the data and writing this report.



Contents
List of F ig u re s ....................................................................................................... v

Section 1 In tro d u ctio n ............................................................................1
Section 2 General Description of PSD E stim ation........................... 1
Section 3 Welch’s  Method ...................................................................6

Topic 1 Window E x a m p les ............................................................. 11
Section 4 Som e E x a m p le s .................................................................16
Section 5 Noise Floors and the S N R ...............................................21
Section 6 Variance of Welch’s  P S D ................................................. 28

Topic 1 Variance in Terms of the BT P r o d u c t ..........................35
Section 7 C onclusion............................................................................ 39

B ib liog raphy ........................................................................................................41
Appendix A Program to Compute Confidence In tervals 43

in





List of Figures
Figure 1 Wave Analysis Method of PSD Estim ation ...................3
Figure 2 Bandpass Filter R e s p o n s e ................................................ 5
Figure 3 Bandpass Filter S hapes and W in d o w s ...................... 11
Figure 4 DFTs of a  Basis Sine W a v e ........................................... 12
Figure 5 DFTs of a  Non-Basis Sine W a v e ...................................13
Figure 6 How Windows Influence Discrete Fourier

T ra n s fo rm s ....................................................................  14
Figure 7 How Windows and White Noise Influence DFT . . 16
Figure 8 PSD of Two Sine W a v e s ................................................. 17
F ig u re s  Very Noisy Sine W a v e .................................................... 18
Figure 10 PSDs of a  Sine Wave in N o is e .....................................18
Figure 11 Product of a  BP Filtered Square Wave and a  Sine

W a v e ................................................................................ 19
Figure 12 PSD of the BP Filtered Square W a v e ..........................20
Figure 13 PSD of the P r o d u c t .......................................................... 20
Figure 14 Sine Wave and Quantization N o i s e .............................25
Figure 15 PSD of Sine Wave + Quantization N o ise  26
Figure 16 Sine Wave and G aussian N o i s e .................................. 27
Figure 17 PSD of Sine Wave + G aussian N o ise ..........................28
Figure 18 PSDs with Rectangular Window, 50% Overlap . . 30
Figure 19 PSDs with Minimum 4-Term Window, 50%

Overlap ..............................................................................31
Figure 20 PSDs with Rectangular Window, No Overlap . . .  33
Figure 21 PSDs with Minimum 4-Term Window, No Overlap 33
Figure 22 M easured and True Histograms: R ectangular. . .  36
Figure 23 M easured and True Histograms: Minimum 4-Term 36
Figure 24 True Histograms for Chi-Square and Normal RVs 37





Section 1 Introduction
Widespread use of Welch’s method for computing power spectral densities 

(PSDs) continues even though it is well over 20 years old. Welch’s short 4-page 
paper [26], written in 1967, discusses his estimation method. His earlier and 
longer paper [25], written in 1961, is referenced in [26]. This earlier paper 
covers much of the same material but without any mention of the fast Fourier 
transform (FFT). The FFT was popularized by Cooley and Tukey in their 1965 
paper [3]. Much of the widespread acceptance of the Welch method is because 
it uses the FFT, which makes it computationally efficient. Many programs and 
scientific software libraries contain a version of Welch’s method: MATLAB, 
Matfor, Numerical Recipes [21], Digital Spectral Analysis [14], Signal Processing 
Algorithms [24], and C Language Algorithms for Digital Signal Processing [4]. 
This report describes the bandpass filter method and its relation to Welch’s 
method. References [1], [2], [8], [9], [7], and [15] describe the bandpass filter 
method. Blackman and Tukey call the bandpass filter method the direct analog 
computation method. Gardner calls it the wave analysis method. We illustrate 
the relationship through numerous examples, figures and tables. To assess the 
information in a PSD, one should know the maximum and minimum values that 
the algorithm can produce. Our discussion on signal-to-noise ratios and noise 
floors is meant to aid the analyst in this area. Reference [11], IEEE Std 1057, 
contains some of the formulas for signal-to-noise ratios. However, its derivations 
are very short and hard to understand. A new draft of IEEE Std 1057 should 
be published in 1992. Schoukens and Renneboog in [23] discuss how noise, 
both white and colored, influences discrete Fourier transform (DFT) coefficients. 
The paper does not describe the effect of windowing or how noise influences 
PSDs. Proper interpretation of PSDs requires an understanding of which wiggles 
are significant. Welch’s variance expression helps us in this area. Blackman and 
Tukey [2, Section 9] provides motivation for the use of chi-square distributions and 
equivalent degrees of freedom for describing the stabihty of a PSD. Report [17] 
compares an approximate chi-square distribution of a PSD estimate to its exact 
distribution. It concludes that the approximate chi-square distribution provides a 
valid probabilistic description of Welch’s PSD estimate.

Section 2 General Description of PSD Estimation
To perform spectral analysis on a computer, one begins with a sequence of



data values or samples:

a :[0 ],x [l] ,...,x [A ^ - 1]

The independent variable of the data sequence ranges from 0 to — 1. The data 
values a:[n] are indexed by their sample number n. This is the sample value’s 
position relative to the start of the sequence. The data samples are acquired at a 
constant rate. The time between two successive data samples x[n] and x[n +  1] 
is T  seconds. The sample rate is 1 /T  samples per second. The length of the data 
sequence in seconds is T g e q  = N  * T .  The time of acquisition of a data value 
is related to its sample number by t = tQ + n T  where is time when the first 
data sample was acquired.

The goal of spectral analysis is to decompose the data into a sum of weighted 
sinusoids. This decomposition allows one to assess the frequency content of the 
phenomenon under study. The phenomenon under study may be concentrated 
in some narrow frequency band. On the other hand, it might be spread across a 
broad range of frequencies. Spectral analysis is divided into two major areas. One 
can compute a Fourier transform or a power spectral density (PSD). When the 
data contains no random effects or noise, it is called deterministic. In this case, 
one computes a Fourier transform. One computes a PSD when random effects 
obscure the desired underlying phenomenon. To see the desired phenomenon, 
some sort of averaging or smoothing is employed.

The desired underlying phenomenon can itself be random. The desired 
underlying phenomenon is normally not white noise. For example, suppose 
that we want to test a new electronic lowpass filter. We excite the filter with 
random white noise. The output of the filter looks like noise. However, a PSD 
analysis will show (assuming that the filter works properly) that low frequencies 
are unattenuated and high frequencies are attenuated. The desired underlying 
phenomenon here is the electronic circuit. The purpose of the averaging and 
smoothing is to expose the underlying persistent behavior of the lowpass filter. 
Averaging and smoothing must be used in an intelligent manner to discover the 
true nature of the underlying phenomenon.

Figure 1 shows how to estimate a PSD at a single fixed frequency, / q. This 
method is called direct analog computation by Blackman and Tukey [2] and wave 
analysis by Gardner [9]. Conceptually, the design of a PSD estimation procedure 
is equivalent to choosing; (1) the type of bandpass filter, (2) the bandwidth of the
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Figure 1 Wave Analysis Method of PSD Estimation
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bandpass filter, (3) a method of squaring and averaging the output of the bandpass 
filter, and (4) how long to average the squared output of the bandpass filter. 
The proper choices are dependent on the phenomenon under study. Appropriate 
choices for one phenomenon may be bad for a different phenomenon.

The purpose of computing a PSD is to see how the frequency content of 
a:[n] varies with frequency. To do this, one must choose many different center 
frequencies for the bandpass filter in Figure 1. One then plots S { f )  versus / ,  the 
different center frequencies of the bandpass filter.

Let us now focus our attention on estimating a single PSD value at a single 
fixed frequency /o. We use the subscript 0 to remind us that /o is a single fixed 
frequency. The bandpass filter is considered to be ideal: the gain is 1 in its 
passband and 0 elsewhere. The bandpass filter limits the data sequence to a band 
of frequencies from /o — B / 2  to /o +  B j 2  Hz. The bandpass filter removes the 
DC component of x[n]. The ouq>ut of the bandpass filter y[n\ oscillates about 
zero. The average value of y[n] is approximately zero. With reference to Figure 
1, z[n] is the average value of the square of the bandpass filtered output y[n]. 
z[n] is called the mean square value of y[n]. The sequence z[n] is not always 
zero because it is squared before it is averaged. It depends on the frequency 
content of the input sequence x[n\. In fact, it is zero only when the bandpass 
filtered sequence y[n] is identically zero. For example, if a-[n] is a sine wave 
whose frequency is less than /o — jB/2, then the average value of the square of 
the bandpass filtered output, z[n], is zero. If is a sine wave with frequency 
/o, then z[n] is a nonzero sequence. The value of z[n] is proportional to the 
strength of the sine waves in x[n] that lie between /o — Bj ' I  and /o +  B /2  Hz.

Let U denote the unit of measurement for the sequence x[n]. U could be 
volts, amperes, or pounds per square inch. What are the units for a PSD of 
x[n]l  Look at Figure 1. The units for y[n] are U because the bandpass filter does 
not change the units of x[n]. The units for z[n] are U-squared because of the 
squaring operation. The averaging operation does not alter the units. Dividing



z[n] by the bandwidth in Hz of the filter creates the units of U-squared per Hz 
for the PSD, S{ f ) .

The choice of the bandpass filter and the averager are interrelated to each 
other and the length of the data sequence. Some constraints on the choice of the 
bandpass filter and the averager are:

T se g  > ^
where
Tseg = length of data sequence in seconds 

Tavg = averaging time in seconds 
B  = bandwidth of bandpass filter in hertz

The constraint that Tseg > Tavg insures that the length of the data sequence must 
be greater than or equal to the averaging time. Data must be gathered before it 
can be averaged. The more subtle constraint that Tavg >  l / B  is discussed below.

An important observation is that to reduce random variations, one must 
average independent data. Consider the problem of assessing an individual’s 
knowledge of some subject by asking yes-and-no questions. If the subject has 
any breadth at all, one cannot hope to discover what this person knows by asking 
a single question. Asking the same question over and over, and computing the 
average number of correct responses is silly. It is much better to ask a variety of 
different questions. Then the average number of correct responses stands a chance 
of indicating the individual’s knowledge. Asking the same question over and over 
does not provide any new information after the first question. Averaging the same 
old information over and over will not smooth out random noise. The answer 
to each new question adds more information about an individual’s knowledge. 
Averaging independent data values reduces random variations.

When a very short pulse is bandpass filtered, the result is a sine wave whose 
amplitude varies with time. This result is called the impulse response of the filter. 
Figure 2 shows the input and output of a bandpass filter. The filter has a center 
frequency of /  =  210 Hz and a 3-dB bandwidth of B =  20 Hz. The length of 
the amplitude-modulated sine wave is approximately l / B  =  0.05 seconds. The 
averager begins to smooth out random effects when Tavg = i l B .  For effective 
smoothing, the averaging time must be much longer than the length of this signal,
i.e., Tavg l / B .  All of the nonzero data values in the lower plot are derived



from the single nonzero value in the upper plot. Blackman and Tukey in [2, 
Section B.IO] derive the above constraints on averaging time and analog filtering 
bandwidth. See [8, Section 11.4] for a short description of the wave analysis 
method. Chapter 4 of [9] is a more detailed discussion of the wave analysis 
method and its variations.

Figure 2 Bandpass Filter Response
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At approximately I j B  seconds from the first nonzero data value, the bandpass 
filter finishes responding to the first nonzero data value. At approximately \IB -\-T  
seconds from the first nonzero data value, the bandpass filter finishes responding to 
the second data value. In general, at approximately I j  B  - \ - { n - \ ) T  seconds from 
the first nonzero data value, the bandpass filter finishes responding to the nth data 
value. Two adjacent values of the bandpass filter output, y[n] and y[n + l], contain 
almost the same information. They are the response to almost the same set of input 
values. Values of y ‘̂[n] closer together than l / B  seconds are correlated to one 
another. Values of y^[n] separated by more than l / B  seconds are independent of 
one another. To smooth out random effects requires the averaging of independent 
values of y ‘̂ [n]. To obtain a good PSD requires the averaging of many independent 
values of y ‘̂ [n], i.e., Tavg l / B .



Section 3 Welch’s Method
The tasks in Figure 1 can be accomplished in many ways. I will describe

Welch’s method and then explain how it relates to Figure 1. The steps are:

1. Partition the data sequence:

x [0 ] ,x [ l] , . . . ,x [ iV -  1]

into K segments or batches:
Segment 1: a:[0], a:[l],. . .  , x [ M — 1]
Segment 2: x[5], a;[5 +  1 ] , . . . ,  x[M +  5” — 1]

Segment K: x[N  — M] , x [N  — M  +  1 ] , . . . ,  x[N — 1]

where
M  =  Number of points in each segment or batch size 
S  = Number of points to shift between segments 

K  =  Number of segments or batches
2. For each segment (A: =  1 to K),  compute a windowed discrete Fourier 

transform (DFT) at some frequency v = i j M  with — (M /2 —1) < i < M j 2:

XU- ' )  = E  x[m]w[m] exp (—j 2Trvm )
m

where
m  = { k - l ) S , . . . , M  + { k - l ) S - 1  
w[m] = the window function

3. For each segment (A: =  1 to K),  form the modified periodogram value, Pk{f) ,  
from the discrete Fourier transform:

PkU)  =

where
M

W  =  w^[m]
m = 0

4. Average the periodogram values to obtain Welch’s estimate of the PSD:

1
=  7?  E

k=l



Welch’s method is also called the weighted overlapped segment averaging 
(WOSA) method and periodogram averaging method. The parameter M  is the 
length of each segment. Some people refer to segments as batches. These people 
call M  the batch size. Note that M  is the length of the DFT. The parameter S  is 
the number of points to shift between segments. It is the number of new points 
in each segment or batch. The number of points in common to two adjacent 
segments is M  — S.  Two adjacent segments are said to overlap hy M  — S  
points or 100[(M -  S) fM]%.  When S  ~  M ,  the segments do not overlap. When 
S  = 0.5M , the segments contain 50% overlap. The M-point sequence w[m] is the 
window function. Some common windows are the rectangular. Harm or Hanning, 
Hamming, Blackman, Blackman-Harris, and Kaiser-Bessel. References [10] and 
[18] contain good discussions of windows. The parameter K  is the number of 
segments or batches. It is the number of periodograms that are averaged together 
to form the PSD estimate Sx{f)-

There are four ways to designate the frequencies of a DFT [24, Table 3.1, 
page 24]. The units of the four methods are hertz times seconds (Hz-s), radians 
(rad), hertz (Hz) and radians per second (rad/s). In step 2 above, the units for i> are 
Hz-s. Adjacent values of u are separated by 1/M  Hz-s. The frequency variable 
u ranges from —0 .5 -l- l/M  to 0.5 Hz-s. PSDs are often plotted versus frequency 
in Hz. To convert the units in step 2 above to Hz, divide each u by the sample 
interval T.  The resulting frequency variable /  ranges from — 1/(2T) + 1 / { MT )  
to l l {2T )  Hz. The units of Hz-s and rad are common. PSD procedures seldom 
specify the sample interval T  as a processing parameter.

The value of i in u = i / M  for Step 2 of Welch’s method is not restricted to 
integers. However, it normally is an integer because DFT values are usually 
computed with a fast Fourier transform algorithm. A fast Fourier transform 
(FFT) is a fast algorithm for computing the DFT in Step 2 of Welch’s method. 
See [24, Chapter 3] for a discussion of DFT and FFT algorithms. For PSD 
computations, the input to the FFT routine is normally M real-valued data points. 
The most common outputs are the M complex values. The M complex values 
are the DFT values at the frequencies v = i j M  Hz-s for the integers i =  0 to 
M  — 1. The Nyquist frequency component occurs aX p = (M /2 )/M  =  0.5. The 
frequencies v =  (M /2  -f 1)/M  =  0.5 -|- 1 /M  to (M  — 1)/M  =  1.0 — 1/M  are 
the negative frequencies. The most negative frequency is p  =  (M /2  +  1)/M  =  
0.5 + l / M .  When the input sequence to the FFT routine is real-valued, the 
negative frequencies are redundant and are often deleted. Exactly how the



complex values are stored in a data array depends on the FFT software. Computer 
programmers are free to store the values in whatever order is reasonable given 
the constraints of their programming language, operating system, and computer. 
Read the description of your software to avoid mistakes.

The filtering method of Figure 1 and Welch’s windowed overlapped seg­
mented averaging method are equivalent. However, there are major differences 
in the implementation. Principally, the method of Figure 1 performs only time- 
domain operations whereas Welch’s method performs mostly frequency-domain 
operations. An explanation of exactly why these two methods are equivalent is 
too lengthy for this report. My goal is to explain which parameters in Welch’s 
method control the parameters of Figure 1. Recall that the main design parameters 
of Figure 1 are the bandpass filter bandwidth and the averaging time.

Steps 1 and 2 of Welch’s method correspond to the leftmost block of Figure 
1 which is the bandpass filter. The window w[n] =  1 for all n is called a 
rectangular window. Most windows other than the rectangular window are similar 
to the Gaussian bell shape of probability theory. The bandwidth of a window or 
filter is approximately equal to the reciprocal of its length. This is a very rough 
approximation which is accurate only to a factor of 2 to 4. How one defines 
the length of a window that decays smoothly to zero is not obvious. For the 
rectangular window, the bandwidth of the bandpass filter is approximately 1/M  
Hz-s. The window w[n] is used to change the characteristics of the bandpass 
filter. Window choice is normally based on sidelobe behavior. Two definitions 
of bandwidth in wide use are the equivalent noise bandwidth (ENBW) and the 3 
dB bandwidth. The equivalent noise bandwidth is always bigger than the 3 dB 
bandwidth. The ratio of these bandwidths is normally in the range of 1.032 to 
1.229 [10, page 82]. Table II in [10] lists the ENBW and 3 dB bandwidths for 
many windows. We describe the relationship of the equivalent noise bandwidth 
to the amplitude of the windowed FFT and the PSD in a later section.

The parameter S  in Step 1 controls how much the segments overlap. When 
S  = M ,  adjacent segments do not overlap. When 5  =  1, adjacent segments differ 
at one value. In this case, one point was deleted and one point was added to form 
the next segment fi'om the previous segment. When 5  =  1, the discrete Fourier 
transform values Xk{v)  and are highly correlated with one another.
Ideally S  should be the smallest value such that Xk{v)  and Xk+iii ' )  are nearly 
uncorrelated. This value of S  would save arithmetic operations but provide the



maximum amount of smoothing. The shift between segments S  is usually in the 
range 0.4M  < S  < M.

Steps 3 and 4 correspond to the rightmost 2 blocks of Figure 1. The squaring 
and averaging are performed in the frequency domain in Steps 3 and 4. Step 3 
forms the periodogram or sample spectrum. The units for the are the same 
as those for Sx{v).  The Pk{i^) are not good estimates of PSDs. They contain too 
much statistical oscillation. Step 4 averages the periodograms Pk(i^) to form a 
stable PSD estimate that does not oscillate wildly. When 5  is chosen properly, the 
K  periodogram values, P\{v),  Pzi^)-, • • •, Pk {^)^ are approximately independent 
of one another.

Welch’s method normalizes a PSD to satisfy Parseval’s relation;

var(a;[n]) =
V

where

V =  — 0.5 +  — , — 0.5 +  — , . . . ,  0.5 
M  M

Sx{^)  =  Welch’s PSD of x[n] at v Hz-s

Many engineers learn that the integral of a continuous PSD equals the variance 
of the continuous signal. The above sum is an approximation to an integral. For 
the above sum to approximate the integral of a continuous PSD, the factor 1 /M  
must equal the bandwidth. What are the units for fm  and The units for
1/ are Hz-s as mentioned above. Engineers normally measure frequency in Hz 
or rad/s. The sequence u equals a frequency sequence in Hz multiplied by the 
sample interval T.  For this reason, it is sometimes called a normahzed frequency 
scale [24, page 46]. Let U be the units for x„. The units for Sx(v') are U^/Hz-s 
rather than U^/Hz. PSDs computed via Welch’s method are often plotted versus 
frequency /  in Hz without modifying the PSD values. This practice can lead to 
confusion. The units for /  are Hz, while the units for are U^/Hz-s. One 
seldom sees plots of PSDs with the ordinate labelled as U^/Hz-s. Normally the 
ordinate is labelled as U^/Hz even though it is really U^/Hz-s. To convert the 
units for 5x(z/) to U^/Hz, multiply Sx{i^) by the sample interval T, and divide v



by T.  Parseval’s relation in the new units U^/Hz and Hz is

var(x[n]) =
f

where
1 1 1 2  1

■' ~ ~ T f  ^ M T ’” 2r  ^ MT^'" '2T
S^{ f )  =  r  X Welch’s PSD 5x(z^)

We use Sxii') to denote Welch’s PSD with unit of U^/Hz-s, and Sx{ f )  to denote 
a PSD with units of U^/Hz. The power in a frequency range [z/i, U2 ] Hz-s is

s  £
where
frequency range =  ui to 1/2 Hz-s 

and the power in a frequency range [/i, / 2 ] Hz is

Jlf i
f=h

where

frequency range =  / i  to / 2  Hz

Sx{ f )  = T x  Welch’s PSD Sx(iy)

PSDs of real-valued data are symmetric about /  =  0. Analysts usually only 
view the positive frequencies. PSDs with both positive and negative frequencies 
are called two-sided PSDs. PSDs with only positive frequencies are called one­
sided PSDs. A two-sided PSD can be converted to a one-sided PSD and vice 
versa. If you sum only the positive frequencies of a two-sided PSD, you will 
not get the total power. You get about half the total power. How is a two- 
sided PSD converted to a one-sided PSD? Multiply all nonnegative frequencies 
except 0 Hz-s and 0.5 Hz-s (0 Hz and l / ( 2 r )  Hz) by 2. Delete all negative 
frequencies. A one-sided PSD contains M / 2  + 1 values. This conversion does 
not change the bandwidth. The bandwidth of each measurement is about l / M  
Hz-s or 1 / {MT )  Hz.
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Window Examples
Figure 3 shows some windows in the frequency domain. The center lobes are 

centered on 0 Hz. For nonzero center frequencies, the window shapes in Figure 
3 are translated to the new nonzero center frequency. The center lobe of the 
rectangular window is smaller than those of the other windows. However, the 
sidelobes of the rectangular window are higher than those of the other windows. 
Most people view the width of the main lobe as the resolution of the discrete 
Fourier transform. The sidelobes allow a sine wave with a frequency outside 
of the main lobe to contaminate the measurement of frequencies within the main 
lobe. Higher sidelobes increase the contamination. Windows can be designed with 
small sidelobes. Such windows will have a main lobe wider than the main lobe of 
the rectangular window. One cannot simultaneously make the main lobe narrow 
and the sidelobes small. References [10] and [18] discuss optimization strategies.

Figure 3 Bandpass Filter Shapes and Windows
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The sidelobes form nice patterns which resemble a picket fence. Recall 
that T  is the sample interval and M  is the DFT length. Away from the center 
lobe, the deep nulls are spaced l f { M T )  Hz apart. Sine waves at multiples of 
1 /(M T ) Hz cannot interfere with other frequencies. Multiples of 1 /(M T ) Hz
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are the basic or basis frequencies of the discrete Fourier transform. For a DFT of 
length 8192 points with a sample rate of 2500 samples per second, the frequency 
67 /(M T ) =  20.45 Hz will not interfere with other frequencies for a rectangular 
window. For windows other than the rectangular window, it interferes only when 
it and the other frequency both he within the main lobe. It will never interfere 
with a frequency located far away from it. Figure 4 shows windowed DFTs of this 
sine wave. The only difference in the DFTs is the width of the spike at 20.45 Hz.

Figure 4 DFTs of a Basis Sine Wave
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The frequency 67.5/(M T) =  20.60 Hz interferes with all other frequencies. 
It lies halfway between two digital basis frequencies 67f { M T )  = 20.45 and 
68/ ( M T )  =  20.75. Figure 5 shows windowed DFTs of this sine wave. All of the 
DFTs are nonzero away from 20.60 Hz. The rectangular window is particularly 
bad. The contamination for DFT with the minimum 4-term Blackman-Harris 
window is down 90 dB away from the main lobe. The main purpose of windowing 
is to alleviate this type of interference. The DFT of real data will almost certainly 
contain components at frequencies other than multiples of 1 /(M T ) Hz.

The length of the segments M  and the window type are used to control the 
characteristics of the bandpass filter. M  is the dominant parameter. In fact.
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Figure 5 DFTs of a Non-Basis Sine Wave
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for large amounts of data, a rectangular window with the proper segment length 
is adequate for any spectral analysis job. Since most applications have limited 
amounts of data, window choice is important.

Figure 6 shows the magnitude of four discrete Fourier transforms with dif­
ferent windows. The time-domain signal is the sum of a large and a small sine 
wave. The amplitudes of the sine waves are 128 and 0.128. The little sine wave is 
—60 dB smaller than the big sine wave. The frequencies of the big and httle sine 
waves are 67 .5 /(M T ) =  20.60 Hz and 7 7 .5 /(M r) =  23.65 Hz, respectively. The 
smaller sine wave is clearly observable with both the Hann and minimum 4-term 
windows. The rectangular and Hamming windows cannot see the little sine wave 
because it is obscured by the response of the sidelobes to the big sine wave.

How much of the response at the bandpass filter output is caused by the little 
sine wave and how much is caused by the big sine wave? The answer depends both 
on the gain of the filter at the frequencies of the sine waves and on the amphtudes 
of the sine waves. None of the fi'equencies in Step 2 of Welch’s method coincide 
with 7 7 .5 /(A /r) =  23.65 Hz. The frequency of the httle sine wave lies between 
2 basis frequencies. The closest basis frequencies are: 77( { M T )  =  23.50 and 
7 8 /(M r)  =  23.80 Hz.
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Figure 6 How Windows Influence Discrete Fourier Transforms
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Table 1 Output of Bandpass Filter at 23.80 Hz

Window Gain at 20.60 
Hz

Gain at 23.80 
Hz

Amplitude of 
Big Sine 
Wave

Amplitude of 
Little Sine 
Wave

Rectangular -30 dB OdB 4.048 «0.128

Hann -71 dB OdB 0.036 wO.128

Hamming -48 dB OdB 0.510 «0.128

Minumum
4-Term

-99 dB OdB 0.001 «0.128

Center the bandpass filter for the rectangular window at the basis frequency 
above the frequency of the little sine wave: 23.80 Hz. The gain of the bandpass 
filter at 23.80 Hz is 0 dB or 1. The amplitude of the little sine wave at the output 
of the bandpass filter is slightly less than 0.128. The center frequency of the

14



bandpass filter, 23.80 Hz, is slightly different from the frequency of the little sine 
wave, 23.65 Hz. The range of attenuation for the little sine wave is 0.75 to 4.00 
dB. See the discussion of scalloping loss in [10] for more details. We ignore 
this attenuation of the little sine wave. What is the gain of this bandpass filter at 
the frequency of the big sine wave? Look at the bandpass filter for a rectangular 
window in Figure 3. The gain of the sidelobe at 23.80-20.60 =  3.20 Hz from the 
center frequency is about —30 dB less than that of the main lobe. So, the gain of 
the bandpass filter at 20.60 Hz is about —30 dB or 0.032. The amphtude of the big 
sine wave at the output of the bandpass filter is approximately 4. Even though the 
filter attenuates the big sine wave 30 dB, it contributes more to the output than the 
little sine wave. The little sine wave is masked by the response of the sidelobes 
to the big sine wave. Table 1 lists the amplitudes of the big and little sine waves 
at the output of bandpass filters centered at 23.80 Hz. Each window changes the 
gain of the bandpass filter at 20.60 Hz. The gains at the frequency of the little 
sine wave also vary, but much less than at 20.60 Hz. Similar computations can 
be made for a bandpass filter centered at 23.50 Hz, which is the basis frequency 
below the frequency of the little sine wave.

Figure 7 shows the magnitude of four discrete Fourier transforms with dif­
ferent windows. The time-domain signal is the sum of a large, a small sine wave 
and a white noise sequence. The amplitudes and frequencies of the sine waves 
are as in the previous example. The amplitudes of the sine waves are 128 and 
0.128. The frequencies of the big and little sine waves are 67.5/(AfT) =  20.60 
Hz and 77 .5 /(M T ) =  23.65 Hz, respectively. The white noise added to the sine 
waves simulates quantization noise [4, Section 1.3]. The noise was uniformly 
distributed on ±0.5. The smaller sine wave is observable with both the Hann 
and minimum 4-term  Blackman-Harris windows. The rectangular and Hamming 
windows cannot see the little sine wave. The little sine wave is obscured by the 
response of the sidelobes to the big sine wave.

All measurement systems introduce noise. In our example, the uniformly 
distributed noise added to the sine waves represents system or measurement noise. 
It is not what we are interested in measuring. We want to know the amplitudes 
and frequencies of the sine wave. The random sequence models the unwanted, 
undesirable quantization noise. Our job would be easier if the noise would just 
go away. The average value of the DFT of the system or measurement noise 
is frequently called the noise floor. The DFTs for the rectangular and Hamming 
windows in Figure 7 are smooth and regular. Their shapes look very similar to
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Figure 7 How Windows and White Noise Influence DFT
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those in Figure 5. The DFT of a random sequence is not smooth. How can this 
be? The sidelobes of the rectangular and Hamming windows are larger than the 
noise floor. The smoothness in the rectangular and Hamming DFTs in Figure 7 
is their response through their sidelobes to the big sine wave. The smoothness is 
not their response to the random sequence.

Section 4 Some Examples
PSDs computed on digital computers are usually normalized so that

M

var (x[n])
M

m=0

Due to the many different gain ranges of our data, we elected to normalize our 
PSDs to a full scale sine wave. On our plots of PSDs, 0 dB corresponds to a full
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Figure 8 PSD of Two Sine Waves
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scale sine wave and — 6 dB corresponds to a half scale sine wave. To convert a 
peak value on one of our PSDs to an amplitude, use the formula:

Amphtude in % of full scale =  x 100

Note that this formula assumes that the peak corresponds to a sine wave. Figure 8 
shows the PSD of a sum of two sine waves. The amplitudes are full and half scale.

Figure 9 shows a very noisy sine wave. The sequence is the sum of a sine 
wave and a random sequence. The amplitude and frequency of the sine wave are 
1.0 and 20.5 Hz. The random sequence has a Gaussian distribution with a mean of 
zero and a standard deviation of 20.0. The sample rate is 2500 samples per second. 
The sequence is 26.0 seconds long. The peak-to-peak amplitude of the sine wave 
is 2. The peak-to-peak amplitude of the noise is about 160. The rms value of the 
sine wave is 0.707. The rms value of the noise is 20. The signal-to-noise ratio is 
—29 dB. The sine wave is completely overwhelmed by the noise.

Figure 10 shows the PSDs of the noisy sine wave in Figure 9. The upper plot 
shows a PSD from the first 6.5 seconds of data and the lower plot shows a PSD 
of the entire 26.0 seconds of data. The sine wave is unobservable in the PSD of
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Figure 9 Very Noisy Sine Wave
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Figure 10 PSDs of a Sine Wave in Noise
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the short sequence. The lower PSD is computed from 4 times as many segments 
or batches as the upper PSD. The K  in Step 1 of Welch’s method is 4 times larger 
for the lower PSD than it is for upper PSD. The lower PSD is the average of 4 
times more periodograms than the upper PSD. This extra averaging reveals the
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sine wave at about 20 Hz in the lower PSD. This demonstrates how averaging 
smooths out the random effects of noise. A second observation is that sine waves 
are easy to find in broadband noise. Broadband noise spreads its energy across 
all frequencies. A sine wave concentrates all its energy at one frequency.

Figure 11 Product of a BP Filtered Square Wave and a Sine Wave
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Let us now consider a more complex signal to show how a few simple 
operations can create a signal with a complicated spectrum. The upper plots 
of Figure 11 show the input and output of a filter. The input is a square wave 
with a period of 0.56 seconds and an amplitude of 50. The filter is a cascade of 
lowpass and highpass filter. The lowpass filter is a Butterworth with 4 poles and 
a cutoff frequency of 50 Hz. The highpass filter is a Butterworth with 8 poles and 
cutoff frequency of 11 Hz. The lower left plot of Figure 11 shows a sine wave 
with a frequency of 0.21 Hz and an amplitude of 1. The lower right plot of Figure 
11 shows the product of the highpass filtered square wave and the sine wave. The 
product was rounded to the nearest integer to simulate quantization effects.

The top plot in Figure 12 shows a PSD of the product in the upper right of 
Figure 11. The PSD values near 0 Hz are about 150 dB below full scale. The PSD 
values near 120 Hz are also about 150 dB below full scale. The spacing between
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Figure 12 PSD of the BP Filtered Square Wave
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the major peaks is about 3.6 Hz. The period of the square wave train is 0.56 
seconds. At each transition of the square wave (positive to negative, or negative to 
positive), the highpass filter output contains a transient. The repetition rate of these 
transitions is one divided by half the period of the wave train: 1/(0.56/2) =  3.6
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Hz. The bottom plot in Figure 12 shows the same PSD restricted to the frequency 
range 10 to 30 Hz. Observe the structure of the peaks.

The top plot in Figure 13 shows a PSD of the quantized product in the lower 
right of Figure 11. The rounding to the nearest integer to simulate quantization 
raised the noise floor. The PSD values in the frequency range from 0 to 10 
Hz are about —86 dB. The PSD values in the frequency range from 100 to 120 
Hz are about —63 dB. The spacing between the major peaks is about 3.6 Hz. 
The major peaks look a little diff'erent. The bottom plot in Figure 13 shows the 
same PSD restricted to the frequency range 10 to 30 Hz. Multiplication by the 
sine wave cause the single peaks in Figure 12 to split into twin peaks in Figure 
13. The spacing between the adjacent large peaks is 0.42 Hz, which is double 
the frequency of the sine wave. The blobs of energy in the product of highpass 
filtered square wave and the sine wave are spaced about 1/0.42 =  2.38 seconds 
apart. See the quantized product in the lower right hand comer of Figure 11.

Section 5 Noise Fioors and the SNR
How does one calculate the amplitude of the noise floor? Assume a data 

record with M samples of the form:
Vn — Qn

where
Sji = A cos (utn)  =  digitizer input
Qn = quantization noise 

Note that the peak amplitude of the sine wave is A.  Assume also that the sine 
wave record contains an integer number of cycles. The signal-to-noise ratio in a 
single DFT frequency bin is the maximum value of the magnitude squared of the 
DFT of divided by the average value of the magnitude squared of the DFT of 
Qn . Perform a DFT (with a rectangular window) on the record. This is step 2 
of Welch’s method with w[m] = 1 for all m. The magnitude of the DFT in the 
spectral bin corresponding to the frequency of the sine wave, lD FT(s„) at u>\, is 
[24, page 46]:

, A - M  
|D FT(s„) at io\ = — -—

or
A^M'^

|D FT(s„) at Lj\  ̂ =
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The rms value of qn is Q/\f\2  where Q =  code bin width (value of a least 
significant bit). Since the mean of qn is zero, the standard deviation of q„, cFq, 
is also Qj\ /v i .  Perform a DFT (with a rectangular window) on If a + jb  
is a complex value of the DFT of qn at any frequency except DC, then a and 
h are approximately Gaussian with a mean of zero and variance given by [23, 
p. 282, Eq. (33)]:

2  2  2  M ■a  =  =  CTj =
2 - 1 2

The many computations of the DFT turn an input with a uniform distribution 
into a DFT value with a Gaussian distribution. The magnitude squared of the 
normalized DFT value (a +  j6)/cr is {a? +  h'^)la‘̂ . Papoulis [20, p. 221] shows 
that this random variable is chi-square distributed with 2 degrees of freedom, x l -  
The expected or average value is:

E
-t-

= E [ x l ] = 2

12

The average value of the magnitude squared of the DFT value {a + jb) is 2a^. 
So, the square of the average value of the magnitude of the DFT of qn at any 
frequency (other than DC) is (MQ'^)f 12. The ideal signal-to-noise ratio is:

SNR =
max ^|DFT(5„)|^^ 

av g (|D F T (,„ ) |" )

|D FT(s„) at ujf'
^  E[a? +  62]

12
~  4 MQ2

ZA^M

Windows modify the values of \ D F T { s n ) \ ^  and \ D F T { q n ) \ ^ .  The above 
equations are correct for the rectangular window. Let Wn be the coefficients of
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the window normalized so that their maximum value is 1. The peak signal power 
gain (PSPG) of the DFT window is the square of the sum of the weights.

Peak signal power gain =
M

E
_ i=l

W

The peak signal power gain is also called the coherent power gain. The peak 
signal power gain of the rectangular window is M.  The above equations for the 
maximum value of the DFT of the signal were for a rectangular window. To 
convert the result from the rectangular window to other windows, we divide by 
the peak signal gain of the rectangular window and multiply by that of the new 
window. The normahzed peak signal power gain (NPSPG) of the DFT window 
is the peak signal power gain divided by the DFT length squared M^.

Normalized peak signal power gain =

The NPSPG is always less than 1. The normahzed peak signal power gain 
of the DFT window attenuates the value of |DFT(5„) atcjj^ calculated with a 
rectangular window. The noise power gain (NPG) of the DFT window is the sum 
of the squared weights.

M

Noise power gain =  ^  'uP‘{i)
1 = 1

The noise power gain is also called the incoherent power gain. The noise power 
gain of the rectangular window is M .  The equation for the average value of the 
DFT of the noise qn is for a rectangular window. To convert the result from a 
rectangular window to other windows, we divide by the noise power gain of the 
rectangular window and multiply by that of the new window. The normalized 
noise power gain (NNPG) of the DFT window is the noise power gain divided 
by the DFT length M .

Normalized noise power gain =

M
E  “ "(0  

1 = 1

M
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The normalized noise power gain of the DFT window attenuates the average value 
of the DFT of the noise, E[a'^ +  6^], calculated for the rectangular window. The 
ratio of normalized noise power gain to the normalized signal power gain is a 
measure of the equivalent noise bandwidth (ENBW) of the window in question 
[12]:

ENBW =

M
M  Y ^ w l

n = l

V  Y
n=l  /

(Equation 11 for ENBW in [10] should be multiplied by the FFT length M .  The 
ENBWs listed in Table I of [10] include this factor.) For any DFT window, the 
ideal signal-to-noise ratio is:

|2
SNR =

NPSPG X |D FT(s„) at a;] 
NNPG X E [a ^  +  62]

NPSPG X

NNPG X ^  
1 SA^M

ENBW Q2
/  1 3 A ^ M \

What is the SNR in a modified periodogram as defined by Step 3 of Welch’s 
method? A modified periodogram equals the magnitude squared of a DFT divided 
by the noise power gain of the window. Since the NPG divides both the signal 
and the noise components of the DFT, the SNR for the magnitude squared of a 
DFT and a PSD is the same. However, the peak value of the PSD of does 
not equal the peak value of the magnitude squared of the DFT of The peak 
value of the PSD of is

|2

PSD(5„) at u; =
I Windowed DFT(5„) at u\

NPG 
NPSPG A2m 2

NPG ~
1 A ^ M

ENBW 4 
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Figure 14 Sine Wave and Quantization Noise
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To make 0 dB correspond to a full scale sine wave, a two-sided PSD computed 
by Welch’s method is divided by (A 2M )/(4  ENBW), which is the maximum 
value of a two-sided PSD of a sine wave with amplitude A. The above equations 
are for two-sided PSDs that contain negative as well as positive frequencies. For 
a one-sided PSD that contains frequencies from 0 Hz to the Nyquist frequency 
1/(2T ) Hz, multiply the above values by 2. To make 0 dB correspond to a full 
scale sine wave, a one-sided PSD computed by Welch’s method is divided by 
[A^M )I{2  ENBW), which is the maximum value of a one-sided PSD of a sine 
wave with amplitude A.
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Figure 15 PSD of Sine Wave + Quantization Noise
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We now consider an example:

Vn — Sn 9n

where
S n  =  1 0 0  COS ( 2 7 r 4 . 6 9 i „ )  =  

qn =  quantization noise

digitizer input

See Figure 14. The digitizer has 8 bits. The quantization is uniformly distributed 
on ± 0 . 5 .  The sample rate is 200 samples per second. The total number of 
data samples is 8192. Figure 15 shows PSDs with 4 different windows. The 
segment or batch size is 512 points for all PSDs. The frequency 4 . 6 9  Hz is a 
multiple of \ j { M T )  Hz. So, leakage and the picket fence effect are irrelevant 
for this example. The PSDs are not normalized relative to a full scale sine wave. 
They are one-sided PSDs with frequencies ranging from 0  to 1 0 0  Hz, which is 
the Nyquist frequency. The noise floor for all of the PSDs is approximately 
1 0 1 o g i o ( l / 6 )  =  2c7g. The noise floors (NF) are printed on the plots. The noise 
floor is 20-2 rather than because the PSDs are one-sided. The peak values of the 
PSDs vary with the winciow from a minimum of 6 1 . 0 6  to a maximum 6 4 . 0 8  dB.
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Figure 16 Sine Wave and Gaussian Noise
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We consider another example:

Vn ~

where
Sn = 100 COS (27r4.69t„) =  digitizer input
e„ =  Gaussian noise with unit variance

See Figure 16. The additive noise is Gaussian. Its variance is 12 times larger 
than the uniformly distributed noise of the previous example. The sample rate is 
200 samples per second. The total number of data samples is 8192. Figure 17 
shows PSDs with 4 different windows. The segment or batch size is 512 points 
for all PSDs. The PSDs are not normalized relative to a full scale sine wave. 
They are one-sided PSDs with frequencies ranging from 0 to 100 Hz, which is 
the Nyquist frequency. The noise floor for all of the PSDs is approximately equal 
to 10 log 1 0 (2) =  2cTg. The noise floors (NF) are printed on the plots. The noise 
floor is 2 rather than 1 because the PSDs are one-sided. The peak values of 
the PSDs vary with the window from a minimum of 61.06 to a maximum 64.08 
dB. This is the same range as in the previous example. These examples clearly 
illustrate that the noise floor of a Welch PSD equals the variance of the additive 
noise. The distribution does not matter. However, the noise must be uncorrelated 
from sample to sample.
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Figure 17 PSD of Sine Wave + Gaussian Noise
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Section 6 Variance of Welch’s PSD

Computations on two different data sequences from the same experiment 
should result in similar PSD estimates. Often, this is not the case. Sometimes, 
the experiment is different even though it is believed to be the same. Other times, 
the computations are not identical for the two sequences. When the computations 
and the experiment are the same, variations will occur. Averaging reduces the 
variations caused by random noise; it does not ehminate them. The variance of 
the estimator tells the analyst what size variations are likely to occur.

Welch derived an expression for the variance of his estimator. His derivation 
is based on the concept of equivalent degrees of freedom developed by Blackman 
and Tukey in [2, Sect. 6-9]. Blackman and Tukey approximate the PSD estimate, 
Sx{ f ) ,  with a multiple of the chi-square random variable, a x l  with v degrees 
of freedom. The coefficient of variation of a random variable is the standard 
deviation divided by the mean. This value is also called the normalized rms error 
[1]. When the coefficient of variation of an estimator is large, all estimates are 
close to the average value of the estimator. The mean and variance of a chi- 
square random variable are and 2u, respectively. So, its coefficient of variation
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is y /2 jv .  Approximate 5 'i( /)  with the chi-square random variable which has the 
same mean and variance:

V =
_  2 • mean^(x^) _  2 • m ean^(5i(/))

var(x^) var(5i(/))

The value of v  that satisfies the above equation is called the equivalent degrees 
of freedom of the estimator Sx{ f ) -  The above equation equates the inverse 
of the coefficient of variation of the estimator Sx{ f )  with that of a chi-square 
random variable. To find the value of u that satisfies the above equation, we need 
expressions for the mean and variance of the estimator Sx{ f ) -

In his derivation, Welch assumes that the sequence x[n] has a Gaussian 
distribution, a zero mean, a local variance that does not vary with time, and 
uncorrelated adjacent values. His variance expression for /  not close to 0 or 
1/{2T)  Hz is

.... true S x (f)/ ,  ,
var(Sx(f)) = ----- ^  V ^  ^  ^

where

{ /  M - k S
u;(m)u;(m +  k S ) j  , 1 <  A: <  m t { M / S )

0, S > M

The function, p{ k , S ) ,  is called the normahzed window correlation function 
because of the division by the noise power gain. This forces p { k , S )  to always 
be less than or equal to one. The mean value of Welch’s estimate equals the true 
value of the PSD. With this justification, replace the true Sx{ f )  with its estimate 
S x { f )  in the above equation. Substitute Welch’s variance expression into the 
equation for the equivalent degrees of freedom. After rearranging, we obtain an 
expression for the equivalent degrees of freedom:

2 • mean^(Sx(f)) 2 • K

k=l

From the equivalent degrees of freedom and the percentage points of the chi- 
square distribution, we get the confidence interval for Sx{ f )  (see [13, p. 274,
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Figure 18 PSDs with Rectangular Window, 50% Overlap
Rectangular: Ccnfidence Interval = [1.34,3.40]

40 50 60

Frequency (Hz)

Eq. (8-41)], [22, p. 468])

(  2iyS,{f)  2 u S , { f ) \  
vx^(l - « / 2 ) ’ x^(«/2)y
where
X^(l — a /2 )  =  lower 100(1 — a)%  point of the distribution 
X^(a/2) =  upper 100(1 — a)%  point of the x^ distribution

The probabihty that the true Sx{ f )  is in this interval is 100(1 — a)%.  Tables are 
normally used to find the percentage point of the chi-square distribution. However, 
tables are not amenable to automatic computation on a computer. A percentage 
point of the chi-square distribution is the solution to an equation involving the 
complement to the incomplete gamma function Q{a,x).  Specifically, the value 
of X that satisfies [21, Section 14.5, page 556]

Q(z//2,x/2) =  1 -  a

is equal to x l{x l2 ) .  In the above equation, i/ is the equivalent degrees of fi-eedom 
and a  is the confidence level. Tables are obviated by solving for x with a root 
finding program. See [21, Section 6.5, page 171] for a discussion of the incomplete 
gamma function and its complement. Appendix A contains a C function for 
computing confidence intervals.
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Figure 19 PSDs with Minimum 4-Term Window, 50% Overlap
Minimum 4-Tam : Ccnfidence Interval = [1.42,3.06]

40 50 60

Frequency (Hz)

Table 2 Confidence Intervals and Statistics for 50% Overlap

Window LCL UCL Avg Std Min Max
Rectangular 1.24 3.77 2.01 0.48 0.60 4.31

Minumum
4-Term

1.34 3.32 2.01 0.37 0.84 3.59

To illustrate the statiscal properties of Welch’s PSD estimator, we performed 
some computer simulations. Figure 18 shows 20 Welch PSDs with a rectangular 
window and v = 25.8. Figure 19 shows 20 Welch PSDs with a minimum 4-term 
window and v =  37.9. The confidence intervals are at the 95% confidence 
level. The parameters for both PSDs are N  = 2560, M  — 256, S  — 128 and 
K  =  19. Table 2 compares the confidence intervals and statistics of the two 
PSD estimators. The only difference in the estimators is the window: rectangular 
versus minimum 4-term. The minimum 4-term window has less correlation 
between data segments than the rectangular window. The values of p{k ,S )  are 
smaller for the minimum 4-term window than they are for the rectangular. The 
denominator of the expression for the equivalent degrees of freedom is smaller 
for the minimum 4-term window than it is for the rectangular window. This 
translates into a smaller confidence interval for the PSD estimator with minimum
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4-term window. The lower and upper chi-square confidence limits are listed 
under “LCL” and “UCL” in the table. The “Avg”, “Std”, “Min”, and “Max” 
values are the average, standard deviation, minimum, and maximum values over 
all 20 PSDs. The PSD values at 0 Hz and 100 Hz were not included in the 
statistics. The average values minus twice the standard deviations, 1.05 and 1.27, 
are smaller than the lower chi-square confidence limits for both PSD estimators. 
The upper chi-square confidence limits are larger than the average values plus 
twice the standard deviations, 2.97 and 2.75, respectively. If one assumes a 
Gaussian rather than a chi-square distribution, the 95% confidence intervals for 
the two PSD estimators are [1.05, 2.97] and [1.27, 2.75]. These confidence limits 
are nearly symmetrical about the average value, which is 2. Look at Figure 18. 
The bottom envelope of the PSDs is much flatter than the top envelope. The 
distribution at each frequency is chi-square with the same number of degrees of 
freedom. The asymmetry of the envelopes is caused by the asymmetry of the 
chi-square distribution about its mean. Note that the top and bottom envelopes 
of Figure 19 are much more similar than those of Figure 18. The equivalent 
degrees of fi-eedom is 37.9 as opposed to 25.8 for the previous figure. As the 
degrees of fi-eedom increases, the statistics for both estimators becomes Gaussian 
because of the central limit theorem. The statistics for the estimator of Figure 19 
are more nearly Gaussian because of the increased number of equivalent degrees 
of freedom.

Let us consider a slightly different example. The parameters are as before 
except that the shift between segments is 256. This results in no overlap between 
segments. The parameters for both PSDs are A  =  2560, M  = 256, S  = 256 
and K  = 10. Figures 20 and 21 show the PSDs from 20 simulations. Note 
that the confidence intervals on the plots are the same. The equivalent degrees of 
freedom equals twice the number of segments for this example, i.e., u = 2 K  = 20. 
The difference in windows does not affect the equivalent degrees of freedom for 
non-overlapping data segments. Table 3 compares the confidence intervals and 
statistics of the two PSD estimators. The average values and standard deviations 
are almost equal. The difference in the bandwidths of the windows is not great 
enough to force a perceptible difference in the standard deviations. I have no 
explanation for the difference in minimum and maximum values.

The above plots of 20 PSDs on the same grid give one a feel for the variation 
in a Welch PSD. More quantitative information is available in a histogram. A 
histogram of PSD cannot be directly compared to the probability density function
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Figure 20 PSDs with Rectangular Window, No Overlap
Rectangular: Confidence Interval = [1.27,3.69]
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Figure 21 PSDs with Minimum 4-Term Window, No Overlap
Minimum 4-Term: Confidence Interval = [1.27,3.69]

40 50 60 70

Frequency (Hz)

90 100

(PDF) of a chi-square random variable. To make a comparison requires some 
special scaling factors. Earlier, we noted that Blackman and Tukey approximate 
the PSD estimate, Sx{ f ) ,  with a multiple of the chi-square random variable, axl-  
However, we neglected to specify the value of the multipher a. References [13,
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Table 3 Confidence Intervals and Statistics for No Overlap

W indow LCL UCL Avg Std Min M ax

Rectangular 1.17 4.17 2.01 0.54 0.55 4.86

Minumum
4-Term

1.17 4.17 2.02 0.53 0.28 5.06

pp. 272-274] and [22, pp. 466-468] contain good discussions of how to derive 
confidence intervals for PSDs using chi-square random variables. Koopmans [13, 
p. 273, Eq. (8.37)] derives the above equation by solving a system of 2 equations 
in 2 unknowns. Both authors show that S x { f )  is approximately distributed as a \ l  

with a  equal to the true value of S x { f )  divided by u .  So, if S x { f )  is multiplied 
by the equivalent degrees of freedom, u ,  and divided by the true value of S x { f ) ,  

the result is a chi-square random variable:

I ' S x i f )  

true Sx(f) xl

We computed 100 PSDs with the rectangular window with 50% overlap. All 
values, but the first and last, are approximately distributed as a chi-square random 
variable. We deleted the first and last value of each PSDs because they have a 
larger variance. Each PSD was scaled as above. All of the scaled PSD values for 
the rectangular window were pooled together to form a data set with 12700 points. 
Figure 22 shows a histogram of the pooled PSD values along with true histogram. 
The true histogram value for a bin was calculated by integrating the chi-square 
PDF over the bin and multiplying by the sample size, 12700. The bin width for 
the histogram is one. The histogram is not symmetric. Its slope is steeper below 
the peak value than above the peak value. This agrees with our observation that 
the bottom envelope of the PSDs in Figiu-es 18,19, 20, and 21 is much flatter than 
the top envelope. We computed 100 PSDs with the minimum 4 - term window 
with 50% overlap. The number of degrees of freedom is 37.9. Figure 23 shows a 
histogram of the pooled PSD values along with true histogram for PSDs computed 
with the minimum 4-term window. For both the rectangular and minimum 4-term 
windows, the measured histograms match the true histograms.

In this report, the error model for the PSD estimates assumes that the errors 
are distributed as a chi-square random variable. Another common assumption 
is that the errors are distributed as a normal random variable. For the previous
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example (the minimum 4-term window with 50% overlap), the true histogram was 
calculated for a PSD estimator under the assumption that the errors are distributed 
as a normal random variable. Figure 24 compares the true histograms for the 2 
different error models. The true histogram value for a bin was calculated by 
integrating the PDF over the bin and multiplying by the sample size, 12700. The 
bin widths for the histograms are one. The chi-square histogram is slightly taller 
than the normal histogram. Compare Figure 23 with Figure 24. The measured 
histogram in Figure 23 does not match the true histogram for normally distributed 
errors in Figure 24. The errors for this PSD estimator are distributed as a chi- 
square random variable rather than as a normal random variable. The normal 
histogram is symmetric about its mean value of 37.9. The chi-square histogram is 
not symmetric about its mean value of 37.9. The chi-square and normal histograms 
differ significantly in four intervals; (1) bins 10 to 23, (2) bins 23 to 38, (3) bins 
38 to 54, and (4) bins 54 to 70. The lower tail of the normal histogram is too large. 
For bins 10 to 24, the normal histogram lies above the chi-square histogram. For 
bins 24 to 38, the normal histogram lies below the chi-square histogram. For 
bins 38 to 54, the normal histogram lies above the chi-square histogram. The 
upper tail of the normal histogram is too small. For bins 54 to 70, the normal 
histogram lies below the chi-square histogram. The area of the absolute value of 
the difference between the two curves is about 1485 PSD values out the total of 
12700 PSD values, or about 12%.

In above examples, the data values form a white noise sequence. Data 
values from an experiment will seldom be a white noise sequence. Recall that 
Blackman and Tukey proposed the equivalent degrees of freedom argument as an 
approximation to the true statistics. Nuttall in [17] gives further justification for 
the use of equivalent degrees of freedom for predicting the stability of Welch’s 
method. Nuttall derives exact probability distribution function for a signal tone 
in Gaussian noise. He concludes that the probabilistic description based on the 
concept of equivalent degrees of freedom is satisfactory over a wide range of 
windows, overlaps and time-bandwidth products. However, one should keep in 
mind that these confidence intervals are approximations, not absolute laws.

Variance in Terms of the BT Product
Another popular way to describe the variation in a PSD uses the concept of 

a bandwidth-time (BT) product [1, 2, 15, 16]. In the 1968 and 1971 editions 
of [1], Bendat and Piersol define three bandwidths: (1) the 3-dB bandwidth, (2)
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Figure 22 Measured and True Histograms: Rectangular
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Figure 23 Measured and True Histograms: Minimum 4-Term
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the equivalent noise bandwidth, and (3) the equivalent statistical bandwidth. The 
3-dB bandwidth is easy to measure. The equivalent noise bandwidth is used as the 
normalization factor B in Figure 1. The equivalent statistical bandwidth is used for 
calculating the standard deviation of PSD estimates. For a Hann window, the 3-dB
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Figure 24 True Histograms for Chi-Square and Normal RVs
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bandwidth is about 1.44/M  Hz-s, the equivalent noise bandwidth is about 1.50/M  
Hz-s, and the equivalent statistical bandwidth is about 2.08/M  Hz-s, where M  
is the FFT length. The ratio of the 3-dB bandwidth to the equivalent statistical 
bandwidth for common windows [18] varies from about 0.83 to 1.45. For most 
windows and filters, the 3-dB bandwidth and the equivalent noise bandwidth agree 
to within 5%. A notable exception is the rectangular window for which they differ 
by 12%. Table I in Harris’ paper [10] lists both the 3-dB and equivalent noise 
bandwidths for many windows. For the PSD estimate of Figure 1, the statistical 
bandwidth is given by

B  =

where

H{ f )  = frequency response of the bandpass filter 
The numerator is the square of the noise power gain of the bandpass filter. Note 
that the magnitude of the bandpass filter is raised to the 4th power in the above 
denominator. Nuttall in [16] lists 2.079 as the statistical bandwidth of the Hann 
window.

The equivalent degrees of freedom v for Welch’s PSD estimate depends on 
the overlap of adjacent segments. If we shift S  points between segments, the
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overlap is 100(M — S) / M %.  For a Welch PSD estimate with a Hann window, 
Nuttall in [16] shows that 61% overlap yields the minimum variance and maximum 
equivalent degrees of freedom. For 2560 total points and a FFT length of 256, 
the equivalent degrees of freedom ranges from 20 for no overlap to 38.9 for 61% 
overlap. No overlap corresponds to a shift of 256 points between segments and 
61% overlap corresponds to a shift of 100 points between segments. A shift of 
1 point between segments or 99.6% overlap yields 38.1 equivalent degrees of 
freedom.

Nuttall in [18] defines the quality ratio for a PSD estimator S{ f )  as

v a r(5 (/))
avg2(5(/))

The minimum value of the quality ratio for a nonparametric PSD estimator is

Q  =  —^  B T

where B  is the equivalent statistical bandwidth and T  is the length of the data 
record. For any amoimt of overlap between segments, the quality ratio for a 
Welch PSD estimate is larger than l l { B T )  where B  is the equivalent statistical 
bandwidth. The preceding statement is not true for the 3-dB bandwidth or 
equivalent noise bandwidth. The equivalent degrees of freedom equals 2lQ.  
For the Hann window with 2560 total points, a FFT length of 256 and T  =  1, the 
equivalent statistical bandwidth is 2.079/256 Hz. For this statistical bandwidth 
and 2560 seconds of data, the maximum number of degrees of freedom is 41.6. 
The maximum equivalent degrees of fi'eedom for Welch’s method is 38.9 with 
an overlap of 61%.

Parametric PSD estimators with quality ratios better than 1/ {BT)  can be 
designed for specific applications. One approach is to fit a ratio of polynomials to 
the power spectral density function. See Marple’s book [14] for some examples.

Nuttall in [16] derives the following approximate rule of thumb for finding 
the maximum equivalent degrees of freedom:

l ^ m a x  ~  3(B J’ -  1) 
where

B  = 3 dB bandwidth of the window in Hz 
T  =  length of data record in seconds
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This empirical formula was derived from tables of equivalent degrees of freedom 
for 4 different windows. Nuttall derives a more exact expression specifically for 
the Harm window

i^max «  2.SSBT  -  2.43 
where

=  3 dB bandwidth of the window in Hz 

T  = length of data record in seconds

Gade and Herlufsen in [7] define an effective BT-product per segment as

Kv3iT{Sx{f))
where
v a r(5 i( /) )  =  variance of Welch’s PSD
K  =  number of segments

References [5] and [7] contain a short table of BT e f f  versus overlap. From a 
table of B T c f f  values, one can compute the variance of Welch’s PSD estimate :

va r(5 ^ (/)) =  3 ^ ^

Nuttall’s approximate formulas for the maximum degrees of freedom and the 
effective BT-product are useful for quickly computing the variance of Welch’s 
PSD estimate. However, Nuttall’s formulas are approximations. They contain 
some error. Calculations with the effective BT-product are limited to the tabulated 
values. For example, Gade and Herlufsen’s table does not contain a B T ^ f f  for 
61% overlap. Neither method allows one to easily find a confidence interval for 
the PSD estimate. Appendix A contains a C program for computing confidence 
intervals. It calculates confidence intervals for 5 window types: (1) rectangular, 
(2) Hann, (3) Hamming, (4) minimum 4-term Blackman-Harris, and (5) Kaiser- 
Bessel with a  =  3. The C program prompts the user for the parameters of the 
PSD estimate: the total number of data points, the FFT length, the number of 
data points to shift between segments, the window type and the confidence level.

Section 7 Conclusion
Welch’s method for computing PSDs and its relation to direct analog com­

putation has been described. A sine wave data sequence results in the largest
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PSD amplitudes for a given RMS value. White noise data results in the smallest 
PSD amplitude for a given RMS value. Signal-to-noise ratios and noise floors 
depend on the FPT length and the window. Confidence intervals for Welch’s PSD 
estimate are based on his expression for the estimate’s variance. A program for 
calculating confidence intervals is listed in Appendix A.
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Appendix A Program to Compute 
Confidence Intervals___________

This appendix contains some C functions to compute confidence intervals 
for Welch’s PSD estimate. The function uses several routines from the book 
Numerical Recipes in C [21] to calculate the percentage points of a chi-square 
distribution. Some functions for computing the Harm window, Hamming window, 
minimum 4-term  Blackman-Harris window and Kaiser-Bessel window for a —
3.0 are also included. References [10] by Harris and [18] by Nuttall are good 
general references on window functions. Gade and Herlufsen in [7, Appendix 
B, Table B .l] list coefficients for Kaiser-Bessel window for a  =  3.0. These 
are the Kaiser-Bessel weights used in the B & K Analyzers Types 2032 and 
2034. Gade and Herlufsen list slightly different weights for the Kaiser-Bessel 
window in [5] and [6]. In their papers, Harris and Nuttall define the Kaiser- 
Bessel window in terms of the modified zero-order Bessel function of the first 
kind. Gade and Herlufsen do not explain how their coefficients are related to the 
modified zero-order Bessel function of the first kind. The C function below for 
the Kaiser-Bessel window uses Gade and Herlufsen’s weights in [7, Appendix B, 
Table B .l]. References [16] by Nuttall and [26] by Welch contain good discussions 
of how to calculate the equivalent degrees of freedom for Welch’s PSD estimate. 
Reference [13, pp. 272-277] by Koopmans clearly describes how to compute 
confidence intervals from the equivalent degrees of freedom.

The C function prompts the user for the parameters of the PSD estimate: 
the total number of data points, the FFT length, the number of data points to 
shift between segments, the window type and the confidence level. The program 
is designed to handle large values for the total number of data points, the FFT 
length, and the number of data points to shift between segments. The FFT length 
and shift between segments must be less than the total number of points. Try a 
few billion for the total number of points. For such large numbers, the program 
computes for a about a minute on a 25 MHz 80386 with a math coprocessor. The 
confidence level can be any number greater than 0 and less than 100.

The C functions from [21] were modified to handle larger numbers. All of the 
f l o a t  declarations in the C functions g a m m l n  ( ) ,  g a m m q  ( ) ,  g c f  ( ) ,  g s e r  ( ) ,  
and r t b i s O  were changed to d o u b l e  declarations. The named constant 
ITMAX was changed to 1000 from 100 in the C function g c f  { ) . The named
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constant ITMAX was changed to 10000 from 100 in the C function g s e r  ( ) .  The 
named constant E P S  was changed to 3.0e—16 from 3.0e—7 in the C functions 
g c f  0  and g s e r  ( ) .  The named constant JMAX was changed to 100 from 40 
in C function r t b i s  ( ) .

^ 'k ' k 'k 'k 'k-k ' k 'k ' k 'k ' ki f ' k ' kic 'k ' k 'k ' k 'k ' k 'k ' k 'k 'k 'k 'k 'k 'k 'k 'k 'k 'k ' k 'k ' k 'k ' k 'k ' k 'kic 'k-k-k ' k 'k ' k

c o n f i d e n . c  O t i s  S o l o m o n  1 2 - 1 1 - 9 1
' k ' k ic ' k ' k ' k ' k ' k 'k ' k 'k ' k 'kir ' kie 'k 'k 'k 'k 'k 'k 'k 'k 'k 'k ' k 'k ' k 'k ' k 'k ' k 'k ' k 'k ' k 'k 'k 'k 'k 'k 'k 'k 'kic ' k 'k^

f i n c l u d e  < s t d i o . h >  
l i n c l u d e  < m a t h . h >

T h e s e  f i l e s  a r e  i n  t h e  b o o k  " N u m e r i c a l  R e c i p e s  i n  C"  
b y  P r e s s ,  F l a n n e r y ,  T e u k o l s k y  & V e t t e r l i n g .

# i n c l u d e  " g a m m l n . c "  
t i n c l u d e  " g a m m q . c "  
l i n c l u d e  " g c f . c "  
l i n c l u d e  " g s e r . c "  
l i n c l u d e  " n r e r r o r . c "  
l i n c l u d e  " r t b i s . c "

I d e f i n e  S Q R ( a )  ( ( a )  * ( a )  )

d o u b l e  h a n n w i n ( N , k )  
u n s i g n e d  l o n g  i n t  N;  
u n s i g n e d  l o n g  i n t  k ;
^ ' k ' k ' k ' k ' k ' k ' k ' k ' k ' ^ ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' i c ' k ' k ' k ' k ' k ' k ' k i c - k i c ' ^ ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k i c ' k

h a n n w i n ( N , k )  c o m p u t e s  t h e  k t h  w e i g h t  o f  t h e  
H a n n i n g  w i n d o w  o f  l e n g t h  N.
W i n d o w  P a r a m e t e r s :
a l f a  h i g h e s t  s i d e - l o b e  ( dB)  3 d B  BW ( b i n s )

2 . 0  - 3 1 . 4 7  1 . 4 4
E x a m p l e :  h a n n w i n ( N , k )
I n p u t :  N =  l e n g t h  o f  w i n d o w  

k  =  i n d e x  o f  w e i g h t  
R e t u r n  v a l u e :  v a l u e  o f  t h e  k t h  w i n d o w  w e i g h t
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

{
d o u b l e  p i ,  w,  x ;  
p i = a c o s ( - 1 . 0 )  ; 
x = ( d o u b l e ) k ;
w = 0 . 5 * ( 1 . 0 -C O S ( 2 . 0 * p i * x / N ) ) ;  
r e t u r n  w;

}

d o u b l e  h a m m w i n ( N , k )  
u n s i g n e d  l o n g  i n t  N;  
u n s i g n e d  l o n g  i n t  k ;  
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

h a m m w i n ( N , w )  c o m p u t e s  t h e  k t h  w e i g h t  o f  t h e  H a m m i n g  
w i n d o w  o f  l e n g t h  N i n  a  c o l u m n .
W i n d o w  P a r a m e t e r s :

h i g h e s t  s i d e - l o b e  ( d B)  3 d B  BW ( b i n s )
- 4 3 . 1 9  1 . 3

E x a m p l e :  h a m m w i n ( N , k )
I n p u t :  N =  l e n g t h  o f  w i n d o w  

k  =  i n d e x  o f  w e i g h t  
R e t u r n  v a l u e :  v a l u e  o f  t h e  k t h  w i n d o w  w e i g h t

{
d o u b l e  p i ,  w,  x ;  
p i = a c o s ( - 1 . 0 )  ; 
x = ( d o u b l e ) k ;
w = 0 . 5 4 - 0 . 4 6 * c o s ( 2 . 0 * p i * x / N )  ; 
r e t u r n  w;

}

d o u b l e  k b e s w i n ( N , k )  
u n s i g n e d  l o n g  i n t  N;  
u n s i g n e d  l o n g  i n t  k ;

k b e s w i n ( N , w )  c o m p u t e s  t h e  k t h  w e i g h t  o f  t h e  K a i s e r -
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B e s s e l  w i n d o w  o f  l e n g t h  N.
R e f e r e n c e s :

1 .  S v e n d  G a d e  a n d  H e n r i k  H e r f u l s e n ,  " W i n d o w s  
t o  F F T  A n a l y s i s  ( P a r t  I I ) , "  B r u e l  & K j a e r  T e c h n i c a l  
R e v i e w ,  N o .  3 ,  1 9 8 7 ,  T a b l e  B . l ,  p .  1 4 .
E x a m p l e :  k b e s w i n ( N , k )
I n p u t :  N =  l e n g t h  o f  w i n d o w  

k  =  i n d e x  o f  w e i g h t  
R e t u r n  v a l u e :  v a l u e  o f  t h e  k t h  w i n d o w  w e i g h t
ic 'k 'k 'k 'k 'k 'k ' k 'k ' k 'kic ' k 'k ' k 'k ' kir 'k 'k-k ' k 'k ' kic 'k ' k 'k ' k 'k 'kie 'k 'k 'k 'k ' kic 'k ' k 'k ' k 'k ' k 'kic 'k 'k 'k^

{

d o u b l e  p i ,  w,  x ,  a O ,  a l ,  a 2 ,  a 3 ;
d o u b l e  s u m ;
p i = a c o s ( - 1 . 0 ) ;
a 0 = 1 . 0 ;
a l = ( - 1 . 2 9 B ) ;
a 2 = 0 . 2 4 4 ;
a 3 = ( - 0 . 0 0 3 ) ;
/ *  N o r m a l i z e  s t  m a x  v a l u e  = 1 . 0 .  * /
/ *  s u m ( a i )  =  1 . 0 .  * /
s u m = a O + ( ~ a l ) + a 2 + ( ~ a 3 ) ;
a O = a O / s u m ;
a l = a l / s u m ;
a 2 = a 2 / s u m ;
a 3 = a 3 / s u m ;
x = ( d o u b l e ) k ;
w = a O + a l * c o s ( 2 . 0 * p i * x / N ) +

a 2 * c o s ( 4 . 0 * p i * x / N ) + a 3 * c o s ( 6 . 0 * p i * x / N ) ; 
r e t u r n  w;

}

d o u b l e  r e c t w i n ( N , k )  
u n s i g n e d  l o n g  i n t  N;  
u n s i g n e d  l o n g  i n t  k ;  
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

r e c t w i n ( N , w )  c o m p u t e s  t h e  k t h  w e i g h t  o f  t h e
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r e c t a n g u l a r  w i n d o w  o f  l e n g t h  N .
E x a m p l e :  r e c t w i n ( N , k )
I n p u t :  N =  l e n g t h  o f  w i n d o w  

k  =  i n d e x  o f  w e i g h t  
R e t u r n  v a l u e :  v a l u e  o f  t h e  k t h  w i n d o w  w e i g h t

{
r e t u r n  1 . 0 ;

}

d o u b l e  t r m 4 w i n ( N , k )  
u n s i g n e d  l o n g  i n t  N;  
u n s i g n e d  l o n g  i n t  k ;

t r m 4 w i n ( N , w )  c o m p u t e s  t h e  k t h  w e i g h t  o f  t h e  m i n i m u m  
4 t e r m  w i n d o w  o f  l e n g t h  N.
W i n d o w  P a r a m e t e r s :

h i g h e s t  s i d e - l o b e  ( dB)  3 d B  BW ( b i n s )
- 9 2 . 0 1  1 . 9

E x a m p l e :  t r m 4 w i n ( N , w )
I n p u t :  N =  l e n g t h  o f  w i n d o w  

k  =  i n d e x  o f  w e i g h t  
R e t u r n  v a l u e :  v a l u e  o f  t h e  k t h  w i n d o w  w e i g h t  
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

{
d o u b l e  p i ,  w,  x ,  a O ,  a l ,  a 2 ,  a 3 ;
p i = a c o s ( - 1 . 0 ) ;
a 0 = 0 . 3 5 8 7 5 ;
a l = 0 . 4 8 8 2 9 ;
a 2 = 0 . 1 4 1 2 8 ;
a 3 = 0 . 0 1 1 6 8 ;
x = ( d o u b l e ) k ;
w = a O - a l * c o s ( 2 . 0 * p i * x / N )  +

a 2 * c o s ( 4 . 0 * p i * x / N ) - a 3 * c o s ( 6 . 0 * p i * x / N ) ; 
r e t u r n  w;

}
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d o u b l e  r h o ( w , M ,  k , S )  
d o u b l e  ( *w)  () ; 
u n s i g n e d  l o n g  i n t  M , k , S ;  
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

r h o  c o m p u t e s  t h e  w i n d o w  a u t o c o r r e l a t i o n  f u n c t i o n  
I n p u t s : 

w =  w i n d o w  
M =  F F T  l e n g t h
k  -  l a g  o f  w i n d o w  c o r r e l a t i o n  
S =  n u m b e r  o f  n e w  p o i n t s  i n  e a c h  F F T  

R e t u r n  V a l u e :  
r  =  a u t o c o r r e l a t i o n  o f  w i n d o w

•k'k 'k'k 'k'k 'k 'k 'k 'k 'k 'kicic'kic 'k 'k 'k 'k 'kie'k 'k 'k 'k 'k 'k 'k 'k 'k 'kic 'kic 'k 'k 'k 'k 'k 'k 'k 'kic' ic-k'k 'k 'k^

{

d o u b l e  r  =  0 . 0 ,  Pw =  0 . 0 ;  
u n s i g n e d  l o n g  i n t  i ;
P w = 0 . 0 ;  
r = 0 . 0 ;
f o r ( i = 0 ;  i < = M - l ;  i + + )

P w = P w + w ( M , i ) * w ( M , i ) / M ;  
f o r ( i = 0 ; i < = ( M - k * S - l ) / i + + )  

r = r + w ( M , i ) * w ( M ,  i + k * S )  ; 
r = S Q R ( r / ( M * P w )  ) ; 
r e t u r n  r ;

}

d o u b l e  e d f ( w , M , N , S )  
d o u b l e  (*w)  0 ;  
u n s i g n e d  l o n g  i n t  M , N , S ;
^ 'k 'k 'k 'k 'k ' k 'k ' k 'k ' k 'k ' k 'k ' k 'k ' k 'k ' k 'k 'k 'k 'k 'k 'k 'k 'k 'k 'k ' k 'k ' k 'k ' k 'k ' k 'k ' k 'k ic 'k 'k ic 'k 'k 'k ' k 'k ' k

e d f  c o m p u t e s  t h e  e q u i v a l e n t  d e g r e e s  o f  f r e e d o m  
I n p u t s : 

w =  w i n d o w  
M =  F F T  l e n g t h
N =  t o t a l  n u m b e r  o f  d a t a  p o i n t s  
S =  n u m b e r  o f  n e w  p o i n t s  i n  e a c h  F FT
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R e t u r n  v a l u e :
V =  e q u i v a l e n t  d e g r e e s  o f  f r e e d o m  i n  a  PSD e s t i m a t e

y

{
d o u b l e  s  =  0 . 0 ,  v =  0 . 0 ;  
u n s i g n e d  l o n g  i n t  i ,  k ;  
k = l + ( N - M ) / S ;
p r i n t f ( " N u m b e r  o f  s e g m e n t s  =  % l d \ n " , k ) ;  
s = 0 . 0 ;
f o r ( i = l ;  i < = k - l ;  i + + )

{
i f (  i * S  < ( M - 1 )  )

{
s = s + ( ( d o u b l e ) k - i ) / ( ( d o u b l e ) k ) * r h o ( w , M , i , S ) ;

}

}
/ *  I n v e r s e  o f  W e l c h ' s  v a r i a n c e  e x p r e s s i o n  * /
V =  k / ( 1 . 0 + 2 . 0 * s ) ;
p r i n t f ( " P ( f )  =  e s t i m a t e  o f  P SD v a l u e  " ) ;
p r i n t f ( " a t  f r e q u e n c y  f \ n " ) ;
p r i n t f ( " W e l c h ' s  v a r i a n c e  e s t i m a t e  =  " ) ;
p r i n t f ( " % # 8 . 6 f  * ( P ( f )  s q u a r e d ) \ n " ,  1 . 0 / v ) ;
p r i n t f ( " W e l c h ' s  s t a n d a r d  d e v i a t i o n  e s t i m a t e  =  " ) ;
p r i n t f  ( " % # 8  . 6 f  * P ( f ) \ n " ,  s q r t  ( 1 .  0 / v )  ) ;
/ *  D e g r e e s  o f  f r e e d o m  * /
V =  2 . 0 * v ;  
r e t u r n  v ;

}

/ *  G l o b a l  v a r i a b l e s  * /  
d o u b l e  v _ d o f , p _ c l ;

d o u b l e  g a m m q 2 ( x )  
d o u b l e  x ;

{
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return gammq(v_do f / 2 , x / 2 ) - p _ c l ;
}

v o i d  c o n f i d e n ( w , M , N , S , c l )  
d o u b l e  (*w)  ( ) , * c l ;  
u n s i g n e d  l o n g  i n t  M , N , S ;
^ 'k ' k ' k-k ' k ' k ' k 'k ' k 'k ' k 'k 'k-k ' k 'k ' k 'k ' k 'k ' k 'k ' k 'k ' k 'k 'k 'k 'k 'k 'k 'k 'kic ' k 'k ' k 'k ' k 'k ' k 'k ' k 'k ' kie 'k 'k

c o n f i d e n  f i n d s  c o n f i d e n c e  l i m i t s  o f  a  PSD e s t i m a t e  
I n p u t s : 

w =  w i n d o w  
M =  F F T  l e n g t h
N =  t o t a l  n u m b e r  o f  d a t a  p o i n t s  
S =  n u m b e r  o f  n e w  p o i n t s  i n  e a c h  F F T  

O u t p u t : 
c l  =  c o n f i d e n c e  l i m i t s  

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

{
d o u b l e  x a c c ,  c h i _ u p p e r ,  c h i _ l o w e r ,  a l p h a ,  c o n f ;  
v _ d o f  =  e d f ( w , M , N , S ) ;
p r i n t f ( " E q u i v a l e n t  d e g r e e s  o f  f r e e d o m  =  % # 4 . 1 f \ n " ,  

v _ d o f ) ;  
x a c c = l . O e - 1 2 ;
/ *  S e t  a l p h a  t o  0 . 9 7 5  f o r  95% c o n f i d e n c e  i n t e r v a l .  * /  
d o  {

p r i n t f ( " E n t e r  c o n f i d e n c e  l e v e l  a s  a  p e r c e n t a g e :  " ) ;  
s c a n f ( " % l f " , & c o n f ) ;

} w h i l e  ( ( c o n f < = 0 . 0 )  M ( c o n f > = 1 0 0 . 0 ) ) ;
f f l u s h ( s t d i n ) ;
c o n f = c o n f / I C O . 0 ;
a l p h a = l . 0 - ( 1 . Q - c o n f ) / 2 . 0 ;
p _ c l = l . 0 - a l p h a ;
c h i _ u p p e r = r t b i s ( g a m m q 2 , 0 . 0 , 5 * v _ d o f , x a c c )  ;
c l [ O ] = v _ d o f / c h i _ u p p e r ;
p _ c l = a l p h a ;
c h i _ l o w e r = r t b i s ( g a m m q 2 , 0 . 0 , 5 * v _ d o f , x a c c )  ; 
c l [ l ] = v  d o f / c h i  l o w e r ;
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p r i n t f ( " C o n f i d e n c e  i n t e r v a l  f o r  c h i - s q u a r e  RV = 
p r i n t f ( " [%g ,  % g ] \ n " , c h i _ l o w e r , c h i _ u p p e r ) ; 
r e t u r n ;

}

v o i d  m a i n ()

{
d o u b l e  (*w)  ( ) ,  c l  [ 2 ] ,  y ;  
u n s i g n e d  l o n g  i n t  N = 0 ,  M=0 ,  S = 0 ,  i ;  
d o u b l e  N d = 0 . 0 ,  M d = 0 . 0 ,  S d = 0 . 0 ,  p i c k ;  
p r i n t f ( " \ n \ n " ) ;
p r i n t f ( " C o m p u t e  c o n f i d e n c e  i n t e r v a l  " ) ;  
p r i n t f ( " f o r  W e l c h ' s  P SD e s t i m a t e . " ) ;  
p r i n t f ( " \ n " ) ;
p r i n t f ( " E n t e r  t o t a l  n u m b e r  o f  p o i n t s :  " ) ;  
s c a n f ( " % l f " , & N d ) ;
N = N d ;  
d o  {

p r i n t f ( " E n t e r  F F T  l e n g t h :  " ) ;  
s c a n f ( " % l f " , & M d ) ;

} w h i l e  ( ( Md<==0. 0)  I I (Md>Nd)  ) ;
M=Md;  
d o  {

p r i n t f ( " E n t e r  n u m b e r  o f  p o i n t s  " ) ;  
p r i n t f ( " t o  s h i f t  b e t w e e n  s e g m e n t s :  " ) ;  
s c a n f ( " % l f " , & S d ) ;

} w h i l e  ( ( S d < = 0 . 0)  M ( S d > N d ) ) ;
S = S d ;
p r i n t f ( " E n t e r :  1 f o r  R e c t a n g u l a r \ n " ) ;
p r i n t f ( "  2 f o r  H a n n \ n " ) ;
p r i n t f ( "  3 f o r  H a m m i n g \ n " ) ;
p r i n t f ( "  4 f o r  M i n i m u m  4 - T e r m  " ) ; \
p r i n t f ( " B l a c k m a n - H a r r i s X n " ) ; 
p r i n t f ( "  5 f o r  K a i s e r - B e s s e l  " ) ;
p r i n t f ( " w i t h  a l p h a  =  3 . 0 \ n " ) ;  
d o  {
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p r i n t f ( " C h o o s e  a  w i n d o w :  " ) ;  
s c a n f ( " % l f " , & p i c k )  ;

} w h i l e  ( ( p i c k < = 0 . 0 ) 1 1 ( p i c k > = 6 ) ) ;  
f f l u s h ( s t d i n ) ; 
i f ( p i c k = = l . 0 )  w = r e c t w i n ;  
i f ( p i c k = = 2 . 0 )  w = h a n n w i n ;  
i f ( p i c k = = 3 . 0 )  w = h a m m w i n ;  
i f ( p i c k = = 4 . 0 )  w = t r m 4 w i n ;  
i f ( p i c k = = 5 . 0 )  w = k b e s w i n ;  
y = 0 . 0 ;
f o r ( i = 0 ;  i < M ;  i + + )  

y = y +  ( (*W) (M, i )  ) * ( ( *w)  ( M , i ) ) /  
p r i n t f ( " N o r m a l i z e d  n o i s e  p o w e r  g a i n  o f  w i n d o w  =  " )  
p r i n t f ( " % f \ n " ,  y / M ) ; 
c o n f i d e n ( w , M , N , S ,  c l )  ;
p r i n t f ( " C o n f i d e n c e  i n t e r v a l  f o r  PSD = " ) ;  
p r i n t f  ( " [ % g  * P ( f ) ,  %g * P ( f ) ] \ n " ,  c l  [ 0 ] ,  c l  [ 1 ] )  ; 
c l [ 0 ] = 1 0 . 0 * l o g l 0  ( c l  [ 0 ] ) ;  
c l [ 1 ] = 1 0 . 0 * l o g l 0 ( c l [ 1 ] ) ;
p r i n t f ( " C o n f i d e n c e  i n t e r v a l  f o r  PSD = " ) ;  
p r i n t f ( " [ P ( f )  -  %g,  P ( f ) + %g] d B \ n " ,  

- c l [ 0 ] , c l [ l ] ) ;

}
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