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Abstract

This report describes Welch’s method for computing PSDs.
We first describe the bandpass filter method which uses
filtering, squaring, and averaging operations to estimate a
PSD. Second, we delineate the relationship of Welch’s method
to the bandpass filter method. Third, the frequency domain
signal-to-noise ratio for a sine wave in white noise is derived.
This derivation includes the computation of the noise floor
due to quantization noise. The signal-to-noise ratio and noise
floor depend on the FFT length and window. Fourth, the
variance of Welch’s PSD is discussed via chi-square random
variables and degrees of freedom. This report contains many
examples, figures and tables to illustrate the concepts.
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Section 1 Introduction

Widespread use of Welch’s method for computing power spectral densities
(PSDs) continues even though it is well over 20 years old. Welch’s short 4-page
paper [26], written in 1967, discusses his estimation method. His earlier and
longer paper [25], written in 1961, is referenced in [26]. This earlier paper
covers much of the same material but without any mention of the fast Fourier
transform (FFT). The FFT was popularized by Cooley and Tukey in their 1965
paper [3]. Much of the widespread acceptance of the Welch method is because
it uses the FFT, which makes it computationally efficient. Many programs and
scientific software libraries contain a version of Welch’s method: MATLAB,
Matfor, Numerical Recipes [21], Digital Spectral Analysis [14], Signal Processing
Algorithms [24], and C Language Algorithms for Digital Signal Processing [4].
This report describes the bandpass filter method and its relation to Welch’s
method. References [1], [2], [8], [9], [7], and [15] describe the bandpass filter
method. Blackman and Tukey call the bandpass filter method the direct analog
computation method. Gardner calls it the wave analysis method. We illustrate
the relationship through numerous examples, figures and tables. To assess the
information in a PSD, one should know the maximum and minimum values that
the algorithm can produce. Our discussion on signal-to-noise ratios and noise
floors is meant to aid the analyst in this area. Reference [11], IEEE Std 1057,
contains some of the formulas for signal-to-noise ratios. However, its derivations
are very short and hard to understand. A new draft of IEEE Std 1057 should
be published in 1992. Schoukens and Renneboog in [23] discuss how noise,
both white and colored, influences discrete Fourier transform (DFT) coefficients.
The paper does not describe the effect of windowing or how noise influences
PSDs. Proper interpretation of PSDs requires an understanding of which wiggles
are significant. Welch’s variance expression helps us in this area. Blackman and
Tukey [2, Section 9] provides motivation for the use of chi-square distributions and
equivalent degrees of freedom for describing the stability of a PSD. Report [17]
compares an approximate chi-square distribution of a PSD estimate to its exact
distribution. It concludes that the approximate chi-square distribution provides a
valid probabilistic description of Welch’s PSD estimate.

Section 2 General Description of PSD Estimation

To perform spectral analysis on a computer, one begins with a sequence of
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data values or samples:
z[0],z[1],...,z[N — 1]

The independent variable of the data sequence ranges from 0 to N — 1. The data
values z[n] are indexed by their sample number n. This is the sample value’s
position relative to the start of the sequence. The data samples are acquired at a
constant rate. The time between two successive data samples z[n] and z[n + 1]
is T seconds. The sample rate is 1/7T samples per second. The length of the data
sequence in seconds is Ts¢q = N * T'. The time of acquisition of a data value
is related to its sample number by ¢ = ¢y + nT where ¢, is time when the first
data sample was acquired.

The goal of spectral analysis is to decompose the data into a sum of weighted
sinusoids. This decomposition allows one to assess the frequency content of the
phenomenon under study. The phenomenon under study may be concentrated
in some narrow frequency band. On the other hand, it might be spread across a
broad range of frequencies. Spectral analysis is divided into two major areas. One
can compute a Fourier transform or a power spectral density (PSD). When the
data contains no random effects or noise, it is called deterministic. In this case,
one computes a Fourier transform. One computes a PSD when random effects
obscure the desired underlying phenomenon. To see the desired phenomenon,
some sort of averaging or smoothing is employed.

The desired underlying phenomenon can itself be random. The desired
underlying phenomenon is normally not white noise. For example, suppose
that we want to test a new electronic lowpass filter. We excite the filter with
random white noise. The output of the filter looks like noise. However, a PSD
analysis will show (assuming that the filter works properly) that low frequencies
are unattenuated and high frequencies are attenuated. The desired underlying
phenomenon here is the electronic circuit. The purpose of the averaging and
smoothing is to expose the underlying persistent behavior of the lowpass filter.
Averaging and smoothing must be used in an intelligent manner to discover the
true nature of the underlying phenomenon.

Figure 1 shows how to estimate a PSD at a single fixed frequency, fo. This
method is called direct analog computation by Blackman and Tukey [2] and wave
analysis by Gardner [9]. Conceptually, the design of a PSD estimation procedure
is equivalent to choosing: (1) the type of bandpass filter, (2) the bandwidth of the
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Figure 1 Wave Analysis Method of PSD Estimation

Bandpass Filter with Divid
Square and 1vide
X[n} ——» Center Frequency f, P > byB — S(fy)
and Bandwidth B verage
y[n] z[n]

bandpass filter, (3) a method of squaring and averaging the output of the bandpass
filter, and (4) how long to average the squared output of the bandpass filter.
The proper choices are dependent on the phenomenon under study. Appropriate
choices for one phenomenon may be bad for a different phenomenon.

The purpose of computing a PSD is to see how the frequency content of
z[n] varies with frequency. To do this, one must choose many different center
frequencies for the bandpass filter in Figure 1. One then plots S(f) versus f, the
different center frequencies of the bandpass filter.

Let us now focus our attention on estimating a single PSD value at a single
fixed frequency fo. We use the subscript 0 to remind us that fp is a single fixed
frequency. The bandpass filter is considered to be ideal: the gain is 1 in its
passband and 0 elsewhere. The bandpass filter limits the data sequence to a band
of frequencies from fo — B/2 to fo + B/2 Hz. The bandpass filter removes the
DC component of z[rn]. The output of the bandpass filter y[n] oscillates about
zero. The average value of y[n] is approximately zero. With reference to Figure
1, z[n] is the average value of the square of the bandpass filtered output y[n].
z[n] is called the mean square value of y[n|. The sequence z[n] is not always
zero because it is squared before it is averaged. It depends on the frequency
content of the input sequence z[r]. In fact, it is zero only when the bandpass
filtered sequence y[n] is identically zero. For example, if z[n] is a sine wave
whose frequency is less than fy — B/2, then the average value of the square of
the bandpass filtered output, z[n], is zero. If z[n] is a sine wave with frequency
fo, then z[r] is a nonzero sequence. The value of z[n] is proportional to the
strength of the sine waves in z[n] that lie between f; — B/2 and fo + B/2 Hz.

Let U denote the unit of measurement for the sequence z[n]. U could be
volts, amperes, or pounds per square inch. What are the units for a PSD of
z[n]? Look at Figure 1. The units for y[n] are U because the bandpass filter does
not change the units of z[r]. The units for z[r] are U-squared because of the
squaring operation. The averaging operation does not alter the units. Dividing
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z[n] by the bandwidth in Hz of the filter creates the units of U-squared per Hz
for the PSD, S(f).

The choice of the bandpass filter and the averager are interrelated to each
other and the length of the data sequence. Some constraints on the choice of the
bandpass filter and the averager are:

1
Tseq 2 Tavg >> E

where

Tseq = length of data sequence in seconds
Tevg = averaging time in seconds

B = bandwidth of bandpass filter in hertz

The constraint that Tyeq > T, insures that the length of the data sequence must
be greater than or equal to the averaging time. Data must be gathered before it
can be averaged. The more subtle constraint that T,,, 3> 1/B is discussed below.

An important observation is that to reduce random variations, one must
average independent data. Consider the problem of assessing an individual’s
knowledge of some subject by asking yes-and-no questions. If the subject has
any breadth at all, one cannot hope to discover what this person knows by asking
a single question. Asking the same question over and over, and computing the
average number of correct responses is silly. It is much better to ask a variety of
different questions. Then the average number of correct responses stands a chance
of indicating the individual’s knowledge. Asking the same question over and over
does not provide any new information after the first question. Averaging the same
old information over and over will not smooth out random noise. The answer
to each new question adds more information about an individual’s knowledge.
Averaging independent data values reduces random variations.

When a very short pulse is bandpass filtered, the result is a sine wave whose
amplitude varies with time. This result is called the impulse response of the filter.
Figure 2 shows the input and output of a bandpass filter. The filter has a center
frequency of f = 210 Hz and a 3-dB bandwidth of B = 20 Hz. The length of
the amplitude-modulated sine wave is approximately 1/B = 0.05 seconds. The
averager begins to smooth out random effects when Tg,, = 1/B. For effective
smoothing, the averaging time must be much longer than the length of this signal,
ie., Taog > 1/B. All of the nonzero data values in the lower plot are derived
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from the single nonzero value in the upper plot. Blackman and Tukey in [2,
Section B.10] derive the above constraints on averaging time and analog filtering
bandwidth. See [8, Section 11.4] for a short description of the wave analysis
method. Chapter 4 of [9] is a more detailed discussion of the wave analysis
method and its variations.

Figure 2 Bandpass Filter Response

1 i Input to I‘Sessel Bmdgus Filter :
08+ 4
0.6}
04+
0.2
0 i 1 . L A I 1
-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
Time (s)
0.1 ' __Output of Bessel Bandpass Filter
0.05+
or i
-0.05+
-0.1 L ) L L s L
-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
Time (s)

At approximately 1/ B seconds from the first nonzero data value, the bandpass
filter finishes responding to the first nonzero data value. At approximately 1/B+T
seconds from the first nonzero data value, the bandpass filter finishes responding to
the second data value. In general, at approximately 1/B + (n —1)T seconds from
the first nonzero data value, the bandpass filter finishes responding to the nth data
value. Two adjacent values of the bandpass filter output, y[n] and y{n + 1], contain
almost the same information. They are the response to almost the same set of input
values. Values of y?[n] closer together than 1/B seconds are correlated to one
another. Values of y%[n] separated by more than 1/ B seconds are independent of
one another. To smooth out random effects requires the averaging of independent
values of y?[n]. To obtain a good PSD requires the averaging of many independent
values of y%[n], ie., Tuoy > 1/B.



Section 3 Welch’s Method
The tasks in Figure 1 can be accomplished in many ways. I will describe
Welch’s method and then explain how it relates to Figure 1. The steps are:
1. Partition the data sequence:
z[0],z[1],...,z[N — 1]
into K segments or batches:
Segment 1: z[0],z[1],...,z[M — 1]
Segment 2: z[S],z[S + 1],...,z[M + 5§ — 1]

Segment K: z[N — M],z[N — M +1],...,z[N —1]
where
M = Number of points in each segment or batch size
S = Number of points to shift between segments
K = Number of segments or batches
2. For each segment (k¢ = 1 to K), compute a windowed discrete Fourier
transform (DFT) at some frequency v = i/M with —(M/2—-1) <71 < M/2:

Xi(v) = Z z[m]w[m] exp (—j27vm)

m
where
m=(k-1S,.... M+ (k-1)S-1
w[m] = the window function

3. For each segment (k = 1 to K), form the modified periodogram value, Pi(f),
from the discrete Fourier transform:

1
P(v) = W|Xk('/)lz
where
M
W= Z w?[m)
m=0

4. Average the periodogram values to obtain Welch’s estimate of the PSD:

1 &
) = L B0)



Welch’s method is also called the weighted overlapped segment averaging
(WOSA) method and periodogram averaging method. The parameter M is the
length of each segment. Some people refer to segments as batches. These people
call M the batch size. Note that M is the length of the DFT. The parameter S is
the number of points to shift between segments. It is the number of new points
in each segment or batch. The number of points in common to two adjacent
segments is M — S. Two adjacent segments are said to overlap by M — S
points or 100[(M — S)/M]%. When S = M, the segments do not overlap. When
S = 0.5M, the segments contain 50% overlap. The M-point sequence w([m] is the
window function. Some common windows are the rectangular, Hann or Hanning,
Hamming, Blackman, Blackman-Harris, and Kaiser-Bessel. References [10] and
[18] contain good discussions of windows. The parameter K is the number of
segments or batches. It is the number of periodograms that are averaged together
to form the PSD estimate S;(f).

There are four ways to designate the frequencies of a DFT [24, Table 3.1,
page 24]. The units of the four methods are hertz times seconds (Hz-s), radians
(rad), hertz (Hz) and radians per second (rad/s). In step 2 above, the units for v are
Hz-s. Adjacent values of v are separated by 1/M Hz-s. The frequency variable
v ranges from —0.5+ 1/M to 0.5 Hz-s. PSDs are often plotted versus frequency
in Hz. To convert the units in step 2 above to Hz, divide each v by the sample
interval T'. The resulting frequency variable f ranges from —1/(27) + 1/(MT)
to 1/(27) Hz. The units of Hz-s and rad are common. PSD procedures seldom
specify the sample interval 7' as a processing parameter.

The value of 7 in v = /M for Step 2 of Welch’s method is not restricted to
integers. However, it normally is an integer because DFT values are usually
computed with a fast Fourier transform algorithm. A fast Fourier transform
(FFT) is a fast algorithm for computing the DFT in Step 2 of Welch’s method.
See [24, Chapter 3] for a discussion of DFT and FFT algorithms. For PSD
computations, the input to the FFT routine is normally M real-valued data points.
The most common outputs are the M complex values. The M complex values
are the DFT values at the frequencies v = ¢/M Hz-s for the integers ¢ = 0 to
M — 1. The Nyquist frequency component occurs at » = (M/2)/M = 0.5. The
frequencies v = (M/2 +1)/M =05+ 1/M to (M — 1)/M = 1.0 — 1/M are
the negative frequencies. The most negative frequency is v = (M/2 + 1}/M =
0.5+ 1/M. When the input sequence to the FFT routine is real-valued, the
negative frequencies are redundant and are often deleted. Exactly how the
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complex values are stored in a data array depends on the FFT software. Computer
programmers are free to store the values in whatever order is reasonable given
the constraints of their programming language, operating system, and computer.
Read the description of your software to avoid mistakes.

The filtering method of Figure 1 and Welch’s windowed overlapped seg-
mented averaging method are equivalent. However, there are major differences
in the implementation. Principally, the method of Figure 1 performs only time-
domain operations whereas Welch’s method performs mostly frequency-domain
operations. An explanation of exactly why these two methods are equivalent is
too lengthy for this report. My goal 1s to explain which parameters in Welch’s
method control the parameters of Figure 1. Recall that the main design parameters
of Figure 1 are the bandpass filter bandwidth and the averaging time.

Steps 1 and 2 of Welch’s method correspond to the leftmost block of Figure
1 which is the bandpass filter. The window w[n] = 1 for all n is called a
rectangular window. Most windows other than the rectangular window are similar
to the Gaussian bell shape of probability theory. The bandwidth of a window or
filter 1s approximately equal to the reciprocal of its length. This is a very rough
approximation which is accurate only to a factor of 2 to 4. How one defines
the length of a window that decays smoothly to zero is not obvious. For the
rectangular window, the bandwidth of the bandpass filter is approximately 1/M
Hz-s. The window w|n] is used to change the characteristics of the bandpass
filter. Window choice i1s normally based on sidelobe behavior. Two definitions
of bandwidth in wide use are the equivalent noise bandwidth (ENBW) and the 3
dB bandwidth. The equivalent noise bandwidth is always bigger than the 3 dB
bandwidth. The ratio of these bandwidths is normally in the range of 1.032 to
1.229 [10, page 82]. Table II in [10] lists the ENBW and 3 dB bandwidths for
many windows. We describe the relationship of the equivalent noise bandwidth
to the amplitude of the windowed FFT and the PSD in a later section.

The parameter .S in Step 1 controls how much the segments overlap. When
S = M, adjacent segments do not overlap. When S = 1, adjacent segments differ
at one value. In this case, one point was deleted and one point was added to form
the next segment from the previous segment. When S = 1, the discrete Fourier
transform values X;(v) and Xj,,(v) are highly correlated with one another.
Ideally S should be the smallest value such that X;(v) and Xy4,(v) are nearly
uncorrelated. This value of S would save arithmetic operations but provide the

8



maximum amount of smoothing. The shift between segments .S is usually in the
range 0.4M < 5§ < M.

Steps 3 and 4 correspond to the rightmost 2 blocks of Figure 1. The squaring
and averaging are performed in the frequency domain in Steps 3 and 4. Step 3
forms the periodogram or sample spectrum. The units for the Px(») are the same
as those for S;(v). The P(v) are not good estimates of PSDs. They contain too
much statistical oscillation. Step 4 averages the periodograms Pj(v) to form a
stable PSD estimate that does not oscillate wildly. When S is chosen properly, the
K periodogram values, P;(v), Py(v), ..., Px(v), are approximately independent
of one another.

Welch’s method normalizes a PSD to satisfy Parseval’s relation:

var(z[n]) = 7\1'4' 3 5.(0)

where

1 2
v==05+55,—05+ 15,05

Sz(v) = Welch’s PSD of z[n] at v Hz—s

Many engineers learn that the integral of a continuous PSD equals the variance
of the continuous signal. The above sum is an approximation to an integral. For
the above sum to approximate the integral of a continuous PSD, the factor 1/M
must equal the bandwidth. What are the units for f,, and S;(fr)? The units for
v are Hz-s as mentioned above. Engineers normally measure frequency in Hz
or rad/s. The sequence v equals a frequency sequence in Hz muitiplied by the
sample interval T'. For this reason, it is sometimes called a normalized frequency
scale [24, page 46). Let U be the units for z,,. The units for S;(v) are U*/Hz-s
rather than U?/Hz. PSDs computed via Welch’s method are often plotted versus
frequency f in Hz without modifying the PSD values. This practice can lead to
confusion. The units for f are Hz, while the units for S, (v) are U?/Hz-s. One
seldom sees plots of PSDs with the ordinate labelled as U?/Hz-s. Normally the
ordinate is labelled as U%/Hz even though it is really U?/Hz-s. To convert the
units for S;(v) to U*/Hz, multiply S;(v) by the sample interval T, and divide v

9



by T. Parseval’s relation in the new units U?/Hz and Hz is

var(z[n]) = A—Jl—f 3 8.(/)
f

where

fo L, Lo 121
T 79T T MT' 2T ' MT’’oT
S:(f) =T x Welch’s PSD S;(v)

We use S;(v) to denote Welch’s PSD with unit of U?/Hz-s, and S;(f) to denote
a PSD with units of U?/Hz. The power in a frequency range [v1, vz] Hz-s is

=3 5.0)

where

frequency range = v; to v, Hz—s

and the power in a frequency range [fi, fo] Hz is

1 &
MT f=h

where
frequency range = f; to fo Hz
S:(f) =T x Welch’s PSD S;(v)

PSDs of real-valued data are symmetric about f = 0. Analysts usually only
view the positive frequencies. PSDs with both positive and negative frequencies
are called two-sided PSDs. PSDs with only positive frequencies are called one-
sided PSDs. A two-sided PSD can be converted to a one-sided PSD and vice
versa. If you sum only the positive frequencies of a two-sided PSD, you will
not get the total power. You get about half the total power. How is a two-
sided PSD converted to a one-sided PSD? Multiply all nonnegative frequencies
except 0 Hz-s and 0.5 Hz-s (0 Hz and 1/(27") Hz) by 2. Delete all negative
frequencies. A one-sided PSD contains M/2 + 1 values. This conversion does
not change the bandwidth. The bandwidth of each measurement is about 1/M
Hz-s or 1/(MT) Hz.

10



Window Examples

Figure 3 shows some windows in the frequency domain. The center lobes are
centered on 0 Hz. For nonzero center frequencies, the window shapes in Figure
3 are translated to the new nonzero center frequency. The center lobe of the
rectangular window is smaller than those of the other windows. However, the
sidelobes of the rectangular window are higher than those of the other windows.
Most people view the width of the main lobe as the resolution of the discrete
Fourier transform. The sidelobes allow a sine wave with a frequency outside
of the main lobe to contaminate the measurement of frequencies within the main
lobe. Higher sidelobes increase the contamination. Windows can be designed with
small sidelobes. Such windows will have a main lobe wider than the main lobe of
the rectangular window. One cannot simultaneously make the main lobe narrow
and the sidelobes small. References [10] and [18] discuss optimization strategies.

Figure 3 Bandpass Filter Shapes and Windows
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The sidelobes form nice patterns which resemble a picket fence. Recall
that T is the sample interval and M is the DFT length. Away from the center
lobe, the deep nulls are spaced 1/(MT) Hz apart. Sine waves at multiples of
1/(MT) Hz cannot interfere with other frequencies. Multiples of 1/(MT) Hz
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are the basic or basis frequencies of the discrete Fourier transform. For a DFT of
length 8192 points with a sample rate of 2500 samples per second, the frequency
67/(MT) = 20.45 Hz will not interfere with other frequencies for a rectangular
window. For windows other than the rectangular window, it interferes only when
it and the other frequency both lie within the main lobe. It will never interfere
with a frequency located far away from it. Figure 4 shows windowed DFTs of this
sine wave. The only difference in the DFTs 1s the width of the spike at 20.45 Hz.

Figure 4 DFTs of a Basis Sine Wave
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The frequency 67.5/(MT) = 20.60 Hz interferes with all other frequencies.
It lies halfway between two digital basis frequencies 67/(MT) = 20.45 and
68/(MT) = 20.75. Figure 5 shows windowed DFTs of this sine wave. All of the
DFTs are nonzero away from 20.60 Hz. The rectangular window is particularly
bad. The contamination for DFT with the minimum 4-term Blackman-Harris
window is down 90 dB away from the main lobe. The main purpose of windowing
is to alleviate this type of interference. The DFT of real data will almost certainly
contain components at frequencies other than multiples of 1/(MT') Hz.

The length of the segments M and the window type are used to control the
characteristics of the bandpass filter. M is the dominant parameter. In fact,
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Figure 5 DFTs of a Non-Basis Sine Wave
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for large amounts of data, a rectangular window with the proper segment length
is adequate for any spectral analysis job. Since most applications have limited
amounts of data, window choice is important.

Figure 6 shows the magnitude of four discrete Fourier transforms with dif-
ferent windows. The time-domain signal is the sum of a large and a small sine
wave. The amplitudes of the sine waves are 128 and 0.128. The little sine wave is
—60 dB smaller than the big sine wave. The frequencies of the big and little sine
waves are 67.5/(MT) = 20.60 Hz and 77.5/(MT) = 23.65 Hz, respectively. The
smaller sine wave is clearly observable with both the Hann and minimum 4-term
windows. The rectangular and Hamming windows cannot see the little sine wave
because it is obscured by the response of the sidelobes to the big sine wave.

How much of the response at the bandpass filter output is caused by the little
sine wave and how much is caused by the big sine wave? The answer depends both
on the gain of the filter at the frequencies of the sine waves and on the amplitudes
of the sine waves. None of the frequencies in Step 2 of Welch’s method coincide
with 77.5/(MT) = 23.65 Hz. The frequency of the little sine wave lies between
2 basis frequencies. The closest basis frequencies are: 77/(MT) = 23.50 and
78/(MT) = 23.80 Hz.
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Figure 6 How Windows Influence Discrete Fourier Transforms
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Table 1 Output of Bandpass Filter at 23.80 Hz
Window Gain at 20.60 | Gain at 23.80 | Amplitude of | Amplitude of
Hz Hz Big Sine Little Sine
Wave Wave
Rectangular | -30 dB 0dB 4,048 ~0.128
Hann -71 dB 0dB 0.036 ~0.128
Hamming -48 dB 0 dB 0.510 ~0.128
Minumum -99 dB 0dB 0.001 ~0.128
4-Term

Center the bandpass filter for the rectangular window at the basis frequency
above the frequency of the little sine wave: 23.80 Hz. The gain of the bandpass
filter at 23.80 Hz is 0 dB or 1. The amplitude of the little sine wave at the output
of the bandpass filter is slightly less than 0.128. The center frequency of the
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bandpass filter, 23.80 Hz, is slightly different from the frequency of the little sine
wave, 23.65 Hz. The range of attenuation for the little sine wave is 0.75 to 4.00
dB. See the discussion of scalloping loss in [10] for more details. We ignore
this attenuation of the little sine wave. What is the gain of this bandpass filter at
the frequency of the big sine wave? Look at the bandpass filter for a rectangular
window in Figure 3. The gain of the sidelobe at 23.80—20.60 = 3.20 Hz from the
center frequency is about —30 dB less than that of the main lobe. So, the gain of
the bandpass filter at 20.60 Hz is about —30 dB or 0.032. The amplitude of the big
sine wave at the output of the bandpass filter is approximately 4. Even though the
filter attenuates the big sine wave 30 dB, it contributes more to the output than the
little sine wave. The little sine wave is masked by the response of the sidelobes
to the big sine wave. Table 1 lists the amplitudes of the big and little sine waves
at the output of bandpass filters centered at 23.80 Hz. Each window changes the
gain of the bandpass filter at 20.60 Hz. The gains at the frequency of the little
sine wave also vary, but much less than at 20.60 Hz. Similar computations can
be made for a bandpass filter centered at 23.50 Hz, which is the basis frequency
below the frequency of the little sine wave.

Figure 7 shows the magnitude of four discrete Fourier transforms with dif-
ferent windows. The time-domain signal is the sum of a large, a small sine wave
and a white noise sequence. The amplitudes and frequencies of the sine waves
are as in the previous example. The amplitudes of the sine waves are 128 and
0.128. The frequencies of the big and little sine waves are 67.5/(MT) = 20.60
Hz and 77.5/(MT) = 23.65 Hz, respectively. The white noise added to the sine
waves simulates quantization noise [4, Section 1.3]. The noise was uniformly
distributed on £0.5. The smaller sine wave is observable with both the Hann
and minimum 4-term Blackman-Harris windows. The rectangular and Hamming
windows cannot see the little sine wave. The little sine wave is obscured by the
response of the sidelobes to the big sine wave.

All measurement systems introduce noise. In our example, the uniformly
distributed noise added to the sine waves represents system or measurement noise.
It is not what we are interested in measuring. We want to know the amplitudes
and frequencies of the sine wave. The random sequence models the unwanted,
undesirable quantization noise. Our job would be easier if the noise would just
go away. The average value of the DFT of the system or measurement noise
is frequently called the noise floor. The DFTs for the rectangular and Hamming
windows in Figure 7 are smooth and regular. Their shapes look very similar to
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Figure 7 How Windows and White Noise Influence DFT
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those in Figure 5. The DFT of a random sequence is not smooth. How can this
be? The sidelobes of the rectangular and Hamming windows are larger than the
noise floor. The smoothness in the rectangular and Hamming DFTs in Figure 7
is their response through their sidelobes to the big sine wave. The smoothness 1s
not their response to the random sequence.

Section 4 Some Examples
PSDs computed on digital computers are usually normalized so that
var(z[n]) = u Z Sz(fm)
m=>0

Due to the many different gain ranges of our data, we elected to normalize our
PSDs to a full scale sine wave. On our plots of PSDs, 0 dB corresponds to a full
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Figure 8 PSD of Two Sine Waves
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scale sine wave and —6 dB corresponds to a half scale sine wave. To convert a
peak value on one of our PSDs to an amplitude, use the formula:

Amplitude in % of full scale = 10(5:(/)/2%) % 100

Note that this formula assumes that the peak corresponds to a sine wave. Figure 8
shows the PSD of a sum of two sine waves. The amplitudes are full and half scale.

Figure 9 shows a very noisy sine wave. The sequence is the sum of a sine
wave and a random sequence. The amplitude and frequency of the sine wave are
1.0 and 20.5 Hz. The random sequence has a Gaussian distribution with a mean of
zero and a standard deviation of 20.0. The sample rate is 2500 samples per second.
The sequence is 26.0 seconds long. The peak-to-peak amplitude of the sine wave
is 2. The peak-to-peak amplitude of the noise is about 160. The rms value of the
sine wave is 0.707. The rms value of the noise is 20. The signal-to-noise ratio is
—29 dB. The sine wave is completely overwhelmed by the noise.

Figure 10 shows the PSDs of the noisy sine wave in Figure 9. The upper plot
shows a PSD from the first 6.5 seconds of data and the lower plot shows a PSD
of the entire 26.0 seconds of data. The sine wave is unobservable in the PSD of
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Figure 9 Very Noisy Sine Wave
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the short sequence. The lower PSD is computed from 4 times as many segments
or batches as the upper PSD. The K in Step 1 of Welch’s method is 4 times larger
for the lower PSD than it is for upper PSD. The lower PSD is the average of 4
times more periodograms than the upper PSD. This extra averaging reveals the
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sine wave at about 20 Hz in the lower PSD. This demonstrates how averaging
smooths out the random effects of noise. A second observation is that sine waves
are easy to find in broadband noise. Broadband noise spreads its energy across
all frequencies. A sine wave concentrates all its energy at one frequency.

Figure 11 Product of a BP Filtered Square Wave and a Sine Wave
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Let us now consider a more complex signal to show how a few simple
operations can create a signal with a complicated spectrum. The upper plots
of Figure 11 show the input and output of a filter. The input is a square wave
with a period of 0.56 seconds and an amplitude of 50. The filter is a cascade of
lowpass and highpass filter. The lowpass filter 1s a Butterworth with 4 poles and
a cutoff frequency of 50 Hz. The highpass filter is a Butterworth with 8 poles and
cutoff frequency of 11 Hz. The lower left plot of Figure 11 shows a sine wave
with a frequency of 0.21 Hz and an amplitude of 1. The lower right plot of Figure
11 shows the product of the highpass filtered square wave and the sine wave. The
product was rounded to the nearest integer to simulate quantization effects.

The top plot in Figure 12 shows a PSD of the product in the upper right of
Figure 11. The PSD values near 0 Hz are about 150 dB below full scale. The PSD
values near 120 Hz are also about 150 dB below full scale. The spacing between

19



Figure 12 PSD of the BP Filtered Square Wave
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Figure 13 PSD of the Product
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the major peaks is about 3.6 Hz. The period of the square wave train is 0.56
seconds. At each transition of the square wave (positive to negative, or negative to
positive), the highpass filter output contains a transient. The repetition rate of these
transitions is one divided by half the period of the wave train: 1/(0.56/2) = 3.6
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Hz. The bottom plot in Figure 12 shows the same PSD restricted to the frequency
range 10 to 30 Hz. Observe the structure of the peaks.

The top plot in Figure 13 shows a PSD of the quantized product in the lower
right of Figure 11. The rounding to the nearest integer to simulate quantization
raised the noise floor. The PSD values in the frequency range from 0 to 10
Hz are about —86 dB. The PSD values in the frequency range from 100 to 120
Hz are about —63 dB. The spacing between the major peaks is about 3.6 Hz.
The major peaks look a little different. The bottom plot in Figure 13 shows the
same PSD restricted to the frequency range 10 to 30 Hz. Multiplication by the
sine wave cause the single peaks in Figure 12 to split into twin peaks in Figure
13. The spacing between the adjacent large peaks is 0.42 Hz, which is double
the frequency of the sine wave. The blobs of energy in the product of highpass
filtered square wave and the sine wave are spaced about 1/0.42 = 2.38 seconds
apart. See the quantized product in the lower right hand corner of Figure 11.

Section 5 Noise Floors and the SNR

How does one calculate the amplitude of the noise floor? Assume a data

record with M samples of the form:

Yn = Sn + qn

where

Sp = Acos (wt,) = digitizer input

¢n = quantization noise
Note that the peak amplitude of the sine wave is A. Assume also that the sine
wave record contains an integer number of cycles. The signal-to-noise ratio in a
single DFT frequency bin is the maximum value of the magnitude squared of the
DFT of s, divided by the average value of the magnitude squared of the DFT of
gn . Perform a DFT (with a rectangular window) on the record. This is step 2
of Welch’s method with w[m| = 1 for all m. The magnitude of the DFT in the

spectral bin corresponding to the frequency of the sine wave, |[DFT(s,) at w|, is
[24, page 46]:

A-M
IDFT(s,) at w| = 5
or

A2 2
IDFT(s,) at w|* = iw
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The rms value of ¢, is Q/+/12 where Q = code bin width (value of a least
significant bit). Since the mean of g, is zero, the standard deviation of g,, oy,
is also @/ V12. Perform a DFT (with a rectangular window) on ¢,. If a + jb
is a complex value of the DFT of ¢, at any frequency except DC, then a and
b are approximately Gaussian with a mean of zero and variance given by [23,

p. 282, Eq. (33)I:
M-Q?
212

0'2=0'2=0'b2=

The many computations of the DFT turn an input with a uniform distribution
into a DFT value with a Gaussian distribution. The magnitude squared of the
normalized DFT value (a + jb)/o is (a? 4+ b%)/o?. Papoulis [20, p. 221] shows
that this random variable is chi-square distributed with 2 degrees of freedom, x2.
The expected or average value is:

E[a2+b2} — B[] _

ol
_Mo*

2 21 _ 2
E[a +b]-—2a T

The average value of the magnitude squared of the DFT value (a + jb) is 202,
So, the square of the average value of the magnitude of the DFT of ¢, at any
frequency (other than DC) is (M @Q?)/12. The ideal signal-to-noise ratio is:

max (IDFT(sn)|2)

avg (IDFT(ga)*)

_ IDFT(s,) at w|’
~ Ela®+ ¥?]
_AZM? 12
T4 MQ?

_ 3AM
=~

Windows modify the values of |DFT(s,)|*> and |DFT(g,)|?. The above
equations are correct for the rectangular window. Let w, be the coefficients of

SNR =
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the window normalized so that their maximum value is 1. The peak signal power
gain (PSPG) of the DFT window is the square of the sum of the weights.

M 2
Peak signal power gain = {Z w(i)}
1=1

The peak signal power gain is also called the coherent power gain. The peak
signal power gain of the rectangular window is M. The above equations for the
maximum value of the DFT of the signal s, were for a rectangular window. To
convert the result from the rectangular window to other windows, we divide by
the peak signal gain of the rectangular window and multiply by that of the new
window. The normalized peak signal power gain (NPSPG) of the DFT window
is the peak signal power gain divided by the DFT length squared M2,

M 2

> w(i)

1=1

M

Normalized peak signal power gain =

The NPSPG is always less than 1. The normalized peak signal power gain
of the DFT window attenuates the value of |DFT(s,) at w|* calculated with a
rectangular window. The noise power gain (NPG) of the DFT window is the sum
of the squared weights.

M
Noise power gain = Z w ()
=1
The noise power gain is also called the incoherent power gain. The noise power
gain of the rectangular window is M. The equation for the average value of the
DFT of the noise g, 1s for a rectangular window. To convert the result from a
rectangular window to other windows, we divide by the noise power gain of the
rectangular window and multiply by that of the new window. The normalized
noise power gain (NNPG) of the DFT window is the noise power gain divided
by the DFT length M.

M
> w(1)
Normalized noise power gain = iﬁf—
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The normalized noise power gain of the DFT window attenuates the average value
of the DFT of the noise, E[a? + b?], calculated for the rectangular window. The
ratio of normalized noise power gain to the normalized signal power gain is a
measure of the equivalent noise bandwidth (ENBW) of the window in question
[12]:
M
My wi
ENBW = — =1

(£=)

(Equation 11 for ENBW in [10] should be multiplied by the FFT length M. The
ENBWs listed in Table I of [10] include this factor.) For any DFT window, the
ideal signal-to-noise ratio is:

NPSPG x |DFT(s,) at w|’
NNPG x E[a? + ]

_ NPSPG x 44

~ NNPG x ¥

SNR =

1 3A*M
~ ENBW Q2
1 3A*M

What is the SNR in a modified periodogram as defined by Step 3 of Welch’s
method? A modified periodogram equals the magnitude squared of a DFT divided
by the noise power gain of the window. Since the NPG divides both the signal
and the noise components of the DFT, the SNR for the magnitude squared of a
DFT and a PSD is the same. However, the peak value of the PSD of s, does
not equal the peak value of the magnitude squared of the DFT of s,. The peak
value of the PSD of s, is

_ |Windowed DFT(s,) at w|’
PSD(s,) at w = NPG

_ NPSPG A2M?

~ NPG 4
1 A*’M

~ ENBW 4
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Figure 14 Sine Wave and Quantization Noise

100 ~ . , SinejWave i . . .
5 B \
50t 1
-100 - . . . -
8.1 8.2 8.3 8.5 8.6 8.7 88 89

8 8.4 9
Time (s)

[=]

(=]

(=1

5 QuannzatTlon Noisg

O W I WA AN VAA N VAN W AW

8§ 81 82 83 84 85 86 87 88 89 9O
Time (s)

The average value of the PSD of ¢, is

avg(lWindowed DFT(qn)|2)
_ NNPG MQ?
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_@_ e
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To make 0 dB correspond to a full scale sine wave, a two-sided PSD computed
by Welch’s method is divided by (A?M)/(4 ENBW), which is the maximum
value of a two-sided PSD of a sine wave with amplitude A. The above equations
are for two-sided PSDs that contain negative as well as positive frequencies. For
a one-sided PSD that contains frequencies from 0 Hz to the Nyquist frequency
1/(2T) Hz, multiply the above values by 2. To make 0 dB correspond to a full
scale sine wave, a one-sided PSD computed by Welch’s method is divided by
(A2M) /(2 ENBW), which is the maximum value of a one-sided PSD of a sine

wave with amplitude A.
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Figure 15 PSD of Sine Wave + Quantization Noise
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We now consider an example:

Yn = Sn + qn

where

Sp = 100 cos (274.69t,) = digitizer input
gn = quantization noise

See Figure 14. The digitizer has 8 bits. The quantization is uniformly distributed
on £0.5. The sample rate is 200 samples per second. The total number of
data samples is 8192. Figure 15 shows PSDs with 4 different windows. The
segment or batch size is 512 points for all PSDs. The frequency 4.69 Hz is a
multiple of 1/(MT') Hz. So, leakage and the picket fence effect are irrelevant
for this example. The PSDs are not normalized relative to a full scale sine wave.
They are one-sided PSDs with frequencies ranging from 0 to 100 Hz, which is
the Nyquist frequency. The noise floor for all of the PSDs is approximately
10log;0(1/6) = 202. The noise floors (NF) are printed on the plots. The noise
floor is 202 rather than o7 because the PSDs are one-sided. The peak values of the
PSDs vary with the window from a minimum of 61.06 to a maximum 64.08 dB.
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Figure 16 Sine Wave and Gaussian Noise
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We consider another example:

Yn = Sp T €n

where

sn = 100 cos (274.69¢, ) = digitizer input
en, = Gaussian noise with unit variance

See Figure 16. The additive noise is Gaussian. Its variance is 12 times larger
than the uniformly distributed noise of the previous example. The sample rate is
200 samples per second. The total number of data samples is 8192. Figure 17
shows PSDs with 4 different windows. The segment or batch size is 512 points
for all PSDs. The PSDs are not normalized relative to a full scale sine wave.
They are one-sided PSDs with frequencies ranging from 0 to 100 Hz, which is
the Nyquist frequency. The noise floor for all of the PSDs is approximately equal
to 10logyo(2) = 202. The noise floors (NF) are printed on the plots. The noise
floor is 2 rather than 1 because the PSDs are one-sided. The peak values of
the PSDs vary with the window from a minimum of 61.06 to a maximum 64.08
dB. This is the same range as in the previous example. These examples clearly
illustrate that the noise floor of a Welch PSD equals the variance of the additive
noise. The distribution does not matter. However, the noise must be uncorrelated
from sample to sample.
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Figure 17 PSD of Sine Wave + Gaussian Noise
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Section 6 Variance of Welch’s PSD

Computations on two different data sequences from the same experiment
should result in similar PSD estimates. Often, this is not the case. Sometimes,
the experiment is different even though it is believed to be the same. Other times,
the computations are not identical for the two sequences. When the computations
and the experiment are the same, variations will occur. Averaging reduces the
variations caused by random noise; it does not eliminate them. The variance of
the estimator tells the analyst what size varations are likely to occur.

Welch derived an expression for the variance of his estimator. His derivation
is based on the concept of equivalent degrees of freedom developed by Blackman
and Tukey in [2, Sect. 6-9]. Blackman and Tukey approximate the PSD estimate,
Sz(f), with a multiple of the chi-square random variable, ax? with v degrees
of freedom. The coefficient of variation of a random varable is the standard
deviation divided by the mean. This value is also called the normalized rms error
[1]. When the coefficient of variation of an estimator is large, all estimates are
close to the average value of the estimator. The mean and variance of a chi-
square random variable are v and 2v, respectively. So, its coefficient of variation
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is 1/2/v. Approximate S;(f) with the chi-square random variable which has the
same mean and variance:

2 - mean®(x?2) _ 2 - mean®(S;(f))
var(x2) var(Sz(f))

The value of v that satisfies the above equation 1s called the equivalent degrees
of freedom of the estimator S;(f). The above equation equates the inverse
of the coefficient of variation of the estimator S;(f) with that of a chi-square
random variable. To find the value of v that satisfies the above equation, we need
expressions for the mean and variance of the estimator S;(f).

In his derivation, Welch assumes that the sequence z[n] has a Gaussian
distribution, a zero mean, a local variance that does not vary with time, and

uncorrelated adjacent values. His variance expression for f not close to 0 or
1/(2T) Hz is

V=

var(S¢(f)) = ¢ 82 true 5y(f) (1 +2 Z ——p (k, S )

where

M-kS 2
p(k,S) = (ml»c; 2. w(m)w(m + kS)) , 1<k <int(M/S)
0, S>M

The function, p(k,S), is called the normalized window correlation function
because of the division by the noise power gain. This forces p(k,S) to always
be less than or equal to one. The mean value of Welch’s estimate equals the true
value of the PSD. With this justification, replace the true S;(f) with its estimate
Sz(f) in the above equation. Substitute Welch’s variance expression into the
equation for the equivalent degrees of freedom. After rearranging, we obtain an
expression for the equivalent degrees of freedom:

_ 2 -mean?(S(f)) _ 2-K
var(Sx(f)) 21 I_{R_ .S

From the equivalent degrees of freedom and the percentage points of the chi-
square distribution, we get the confidence interval for S;(f) (see [13, p. 274,
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Figure 18 PSDs with Rectangular Window, 50% Overlap
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Eq. (8-41)], [22, p. 468])

( 21/Sz(f) QVSz(f))
xo(1—a/2) x3(a/2)

where

x2(1 — a/2) = lower 100(1 — a)% point of the x? distribution

x2(a/2) = upper 100(1 — )% point of the x? distribution
The probability that the true S, (f) is in this interval is 100(1 — «)%. Tables are
normally used to find the percentage point of the chi-square distribution. However,
tables are not amenable to automatic computation on a computer. A percentage
point of the chi-square distribution is the solution to an equation involving the

complement to the incomplete gamma function Q(a,z). Specifically, the value
of x that satisfies [21, Section 14.5, page 556]

Q(v/2,z/2)=1—-«

is equal to x2(z/2). In the above equation, v is the equivalent degrees of freedom
and «a is the confidence level. Tables are obviated by solving for =z with a root
finding program. See [21, Section 6.5, page 171] for a discussion of the incomplete
gamma function and its complement. Appendix A contains a C function for
computing confidence intervals.
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Figure 19 PSDs with Minimum 4-Term Window, 50% Overlap
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Table 2 Confidence Intervals and Statistics for 50% Overlap

Window LCL UCL Avg Std Min Max
Rectangular 1.24 3.77 2.01 048 0.60 431
Minumum 1.34 332 2.01 0.37 0.84 3.59
4-Term

To illustrate the statiscal properties of Welch’s PSD estimator, we performed
some computer simulations. Figure 18 shows 20 Welch PSDs with a rectangular
window and v = 25.8. Figure 19 shows 20 Welch PSDs with a minimum 4-term
window and v = 37.9. The confidence intervals are at the 95% confidence
level. The parameters for both PSDs are N = 2560, M = 256, S = 128 and
K =19. Table 2 compares the confidence intervals and statistics of the two
PSD estimators. The only difference in the estimators is the window: rectangular
versus minimum 4-term. The minimum 4-term window has less correlation
between data segments than the rectangular window. The values of p(k,S) are
smaller for the minimum 4-term window than they are for the rectangular. The
denominator of the expression for the equivalent degrees of freedom is smaller
for the minimum 4-term window than it is for the rectangular window. This
translates into a smaller confidence interval for the PSD estimator with minimum
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4-term window. The lower and upper chi-square confidence limits are listed
under “LCL” and “UCL” in the table. The “Avg”, “Std”, “Min”, and “Max”
values are the average, standard deviation, minimum, and maximum values over
all 20 PSDs. The PSD values at 0 Hz and 100 Hz were not included in the
statistics. The average values minus twice the standard deviations, 1.05 and 1.27,
are smaller than the lower chi-square confidence limits for both PSD estimators.
The upper chi-square confidence limits are larger than the average values plus
twice the standard deviations, 2.97 and 2.75, respectively. If one assumes a
Gaussian rather than a chi-square distribution, the 95% confidence intervals for
the two PSD estimators are [1.05, 2.97] and [1.27, 2.75]. These confidence limits
are nearly symmetrical about the average value, which is 2. Look at Figure 18.
The bottom envelope of the PSDs is much flatter than the top envelope. The
distribution at each frequency is chi-square with the same number of degrees of
freedom. The asymmetry of the envelopes is caused by the asymmetry of the
chi-square distribution about its mean. Note that the top and bottom envelopes
of Figure 19 are much more similar than those of Figure 18. The equivalent
degrees of freedom is 37.9 as opposed to 25.8 for the previous figure. As the
degrees of freedom increases, the statistics for both estimators becomes Gaussian
because of the central limit theorem. The statistics for the estimator of Figure 19
are more nearly Gaussian because of the increased number of equivalent degrees
of freedom.

Let us consider a slightly different example. The parameters are as before
except that the shift between segments is 256. This results in no overlap between
segments. The parameters for both PSDs are N = 2560, M = 256, S = 256
and K = 10. Figures 20 and 21 show the PSDs from 20 simulations. Note
that the confidence intervals on the plots are the same. The equivalent degrees of
freedom equals twice the number of segments for this example, i.e., v = 2K = 20.
The difference in windows does not affect the equivalent degrees of freedom for
non-overlapping data segments. Table 3 compares the confidence intervals and
statistics of the two PSD estimators. The average values and standard deviations
are almost equal. The difference in the bandwidths of the windows is not great
enough to force a perceptible difference in the standard deviations. I have no
explanation for the difference in minimum and maximum values.

The above plots of 20 PSDs on the same grid give one a feel for the variation
in a Welch PSD. More quantitative information is available in a histogram. A
histogram of PSD cannot be directly compared to the probability density function
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Figure 20 PSDs with Rectangular Window, No Overlap
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Figure 21 PSDs with Minimum 4-Term Window, No Overlap
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To make a comparison requires some

special scaling factors. Earlier, we noted that Blackman and Tukey approximate
the PSD estimate, S, (f), with a multiple of the chi-square random variable, ax2.
However, we neglected to specify the value of the multiplier a. References [13,
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Table 3 Confidence Intervals and Statistics for No Overlap

Window LCL UCL Avg Std Min Max
Rectangular 1.17 4.17 2.01 0.54 0.55 4.86
Minumum 1.17 4.17 2.02 0.53 0.28 5.06
4-Term

pp. 272-274] and [22, pp. 466-468] contain good discussions of how to derive
confidence intervals for PSDs using chi-square random variables. Koopmans [13,
p. 273, Eq. (8.37)] derives the above equation by solving a system of 2 equations
in 2 unknowns. Both authors show that S, (f) is approximately distributed as a x>
with a equal to the true value of S;(f) divided by v. So, if S;(f) is multiplied
by the equivalent degrees of freedom, v, and divided by the true value of S;(f),
the result is a chi-square random variable:

VSz(f) ~ 2
true Sx(f) Xy

We computed 100 PSDs with the rectangular window with 50% overlap. All
values, but the first and last, are approximately distributed as a chi-square random
variable. We deleted the first and last value of each PSDs because they have a
larger variance. Each PSD was scaled as above. All of the scaled PSD values for
the rectangular window were pooled together to form a data set with 12700 points.
Figure 22 shows a histogram of the pooled PSD values along with true histogram.
The true histogram value for a bin was calculated by integrating the chi-square
PDF over the bin and multiplying by the sample size, 12700. The bin width for
the histogram is one. The histogram is not symmetric. Its slope is steeper below
the peak value than above the peak value. This agrees with our observation that
the bottom envelope of the PSDs in Figures 18, 19, 20, and 21 is much flatter than
the top envelope. We computed 100 PSDs with the minimum 4-term window
with 50% overlap. The number of degrees of freedom 1s 37.9. Figure 23 shows a
histogram of the pooled PSD values along with true histogram for PSDs computed
with the minimum 4-term window. For both the rectangular and minimum 4-term
windows, the measured histograms match the true histograms.

In this report, the error model for the PSD estimates assumes that the errors
are distributed as a chi-square random variable. Another common assumption
is that the errors are distributed as a normal random variable. For the previous
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example (the minimum 4-term window with 50% overlap), the true histogram was
calculated for a PSD estimator under the assumption that the errors are distributed
as a normal random variable. Figure 24 compares the true histograms for the 2
different error models. The true histogram value for a bin was calculated by
integrating the PDF over the bin and multiplying by the sample size, 12700. The
bin widths for the histograms are one. The chi-square histogram is slightly taller
than the normal histogram. Compare Figure 23 with Figure 24. The measured
histogram in Figure 23 does not match the true histogram for normally distributed
errors in Figure 24. The errors for this PSD estimator are distributed as a chi-
square random variable rather than as a normal random variable. The normal
histogram is symmetric about its mean value of 37.9. The chi-square histogram is
not symmetric about its mean value of 37.9. The chi-square and normal histograms
differ significantly in four intervals: (1) bins 10 to 23, (2) bins 23 to 38, (3) bins
38 to 54, and (4) bins 54 to 70. The lower tail of the normal histogram is too large.
For bins 10 to 24, the normal histogram lies above the chi-square histogram. For
bins 24 to 38, the normal histogram lies below the chi-square histogram. For
bins 38 to 54, the normal histogram lies above the chi-square histogram. The
upper tail of the normal histogram is too small. For bins 54 to 70, the normal
histogram lies below the chi-square histogram. The area of the absolute value of
the difference between the two curves is about 1485 PSD values out the total of
12700 PSD values, or about 12%.

In above examples, the data values form a white noise sequence. Data
values from an experiment will seldom be a white noise sequence. Recall that
Blackman and Tukey proposed the equivalent degrees of freedom argument as an
approximation to the true statistics. Nuttall in [17] gives further justification for
the use of equivalent degrees of freedom for predicting the stability of Welch’s
method. Nuttall derives exact probability distribution function for a signal tone
in Gaussian noise. He concludes that the probabilistic description based on the
concept of equivalent degrees of freedom is satisfactory over a wide range of
windows, overlaps and time-bandwidth products. However, one should keep in
mind that these confidence intervals are approximations, not absolute laws.

Variance in Terms of the BT Product

Another popular way to describe the variation in a PSD uses the concept of
a bandwidth-time (BT) product [1, 2, 15, 16]. In the 1968 and 1971 editions
of [1], Bendat and Piersol define three bandwidths: (1) the 3-dB bandwidth, (2)
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Figure 22 Measured and True Histograms: Rectangular
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Figure 23 Measured and True Histograms: Mimimum 4-Term
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the equivalent noise bandwidth, and (3) the equivalent statistical bandwidth. The
3-dB bandwidth is easy to measure. The equivalent noise bandwidth is used as the
normalization factor B in Figure 1. The equivalent statistical bandwidth 1s used for
calculating the standard deviation of PSD estimates. For a Hann window, the 3-dB
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Figure 24 True Histograms for Chi-Square and Normal RVs
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bandwidth is about 1.44/M Hz-s, the equivalent noise bandwidth is about 1.50/M
Hz-s, and the equivalent statistical bandwidth is about 2.08/M Hz-s, where M
is the FFT length. The ratio of the 3-dB bandwidth to the equivalent statistical
bandwidth for common windows [18] varies from about 0.83 to 1.45. For most
windows and filters, the 3-dB bandwidth and the equivalent noise bandwidth agree
to within 5%. A notable exception is the rectangular window for which they differ
by 12%. Table I in Harris’ paper [10] lists both the 3-dB and equivalent noise
bandwidths for many windows. For the PSD estimate of Figure 1, the statistical
bandwidth is given by

NG
B = 1
JHf

where

H(f) = frequency response of the bandpass filter
The numerator is the square of the noise power gain of the bandpass filter. Note
that the magnitude of the bandpass filter is raised to the 4th power in the above
denominator. Nuttall in [16] lists 2.079 as the statistical bandwidth of the Hann
window.

The equivalent degrees of freedom v for Welch’s PSD estimate depends on

the overlap of adjacent segments. If we shift S points between segments, the
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overlap is 100(M — S)/M%. For a Welch PSD estimate with a Hann window,
Nuttall in [16] shows that 61% overlap yields the minimum vartance and maximum
equivalent degrees of freedom. For 2560 total points and a FFT length of 256,
the equivalent degrees of freedom ranges from 20 for no overlap to 38.9 for 61%
overlap. No overlap corresponds to a shift of 256 points between segments and
61% overlap corresponds to a shift of 100 points between segments. A shift of
1 point between segments or 99.6% overlap yields 38.1 equivalent degrees of
freedom.

Nuttall in [18] defines the quality ratio for a PSD estimator S(f) as

var(S(f))
avg?(S(f))

The minimum value of the quality ratio for a nonparametric PSD estimator is

1
9=37

where B is the equivalent statistical bandwidth and T is the length of the data
record. For any amount of overlap between segments, the quality ratio for a
Welch PSD estimate is larger than 1/(BT) where B is the equivalent statistical
bandwidth. The preceding statement is not true for the 3-dB bandwidth or
equivalent noise bandwidth. The equivalent degrees of freedom equals 2/Q.
For the Hann window with 2560 total points, a FFT length of 256 and 7' = 1, the
equivalent statistical bandwidth is 2.079/256 Hz. For this statistical bandwidth
and 2560 seconds of data, the maximum number of degrees of freedom is 41.6.
The maximum equivalent degrees of freedom for Welch’s method is 38.9 with
an overlap of 61%.

Parametric PSD estimators with quality ratios better than 1/(B7T') can be
designed for specific applications. One approach is to fit a ratio of polynomials to
the power spectral density function. See Marple’s book [14] for some examples.

Nuttall in [16] derives the following approximate rule of thumb for finding
the maximum equivalent degrees of freedom:

Vmaz = 3(BT — 1)

where

B = 3 dB bandwidth of the window in Hz
T = length of data record in seconds

Q:
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This empirical formula was derived from tables of equivalent degrees of freedom
for 4 different windows. Nuttall derives a more exact expression specifically for
the Hann window

Vmas ~ 2.88BT — 2.43

where

B = 3 dB bandwidth of the window in Hz
T = length of data record in seconds

Gade and Herlufsen in [7] define an effective BT-product per segment as
1

Bler = Kvar(Sz(f))

where
var(Sz(f)) = variance of Welch’s PSD
K = number of segments

References [5] and [7] contain a short table of BT, sy versus overlap. From a
table of BT, values, one can compute the variance of Welch’s PSD estimate :

Va‘r(Sz(f)) = BT:ﬂ‘I{

Nuttall’s approximate formulas for the maximum degrees of freedom and the
effective BT-product are useful for quickly computing the variance of Welch’s
PSD estimate. However, Nuttall’s formulas are approximations. They contain
some error. Calculations with the effective BT-product are limited to the tabulated
values. For example, Gade and Herlufsen’s table does not contain a BTsy for
61% overlap. Neither method allows one to easily find a confidence interval for
the PSD estimate. Appendix A contains a C program for computing confidence
intervals. It calculates confidence intervals for 5 window types: (1) rectangular,
(2) Hann, (3) Hamming, (4) minimum 4-term Blackman-Harris, and (5) Kaiser-
Bessel with @ = 3. The C program prompts the user for the parameters of the
PSD estimate: the total number of data points, the FFT length, the number of
data points to shift between segments, the window type and the confidence level.

Section 7 Conclusion

Welch’s method for computing PSDs and its relation to direct analog com-
putation has been described. A sine wave data sequence results in the largest
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PSD amplitudes for a given RMS value. White noise data results in the smallest
PSD amplitude for a given RMS value. Signal-to-noise ratios and noise floors
depend on the FFT length and the window. Confidence intervals for Welch’s PSD
estimate are based on his expression for the estimate’s variance. A program for
calculating confidence intervals is listed in Appendix A.
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Appendix A Program to Compute
Confidence Intervals

This appendix contains some C functions to compute confidence intervals
for Welch’s PSD estimate. The function uses several routines from the book
Numerical Recipes in C [21] to calculate the percentage points of a chi-square
distribution. Some functions for computing the Hann window, Hamming window,
minimum 4-term Blackman-Harris window and Kaiser-Bessel window for o =
3.0 are also included. References [10] by Harris and [18] by Nuttall are good
general references on window functions. Gade and Herlufsen in [7, Appendix
B, Table B.1] list coefficients for Kaiser-Bessel window for ¢ = 3.0. These
are the Kaiser-Bessel weights used in the B & K Analyzers Types 2032 and
2034. Gade and Herlufsen list slightly different weights for the Kaiser-Bessel
window in [5] and [6]. In their papers, Harris and Nuttall define the Kaiser-
Bessel window in terms of the modified zero-order Bessel function of the first
kind. Gade and Herlufsen do not explain how their coefficients are related to the
modified zero-order Bessel function of the first kind. The C function below for
the Kaiser-Bessel window uses Gade and Herlufsen’s weights in [7, Appendix B,
Table B.1]. References {16] by Nuttall and {26] by Welch contain good discussions
of how to calculate the equivalent degrees of freedom for Welch’s PSD estimate.
Reference [13, pp. 272-277] by Koopmans clearly describes how to compute
confidence intervals from the equivalent degrees of freedom.

The C function prompts the user for the parameters of the PSD estimate:
the total number of data points, the FFT length, the number of data points to
shift between segments, the window type and the confidence level. The program
is designed to handle large values for the total number of data points, the FFT
length, and the number of data points to shift between segments. The FFT length
and shift between segments must be less than the total number of points. Try a
few billion for the total number of points. For such large numbers, the program
computes for a about a minute on a 25 MHz 80386 with a math coprocessor. The
confidence level can be any number greater than O and less than 100.

The C functions from [21] were modified to handle larger numbers. All of the
float declarations in the C functions gammln (), gammg (), gcf (), gser (),
and rtbis () were changed to double declarations. The named constant
ITMAX was changed to 1000 from 100 in the C function gcf (). The named
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constant I TMAX was changed to 10000 from 100 in the C function gser (). The
named constant EPS was changed to 3.0e—16 from 3.0e—7 in the C functions
gcf () and gser (). The named constant JMAX was changed to 100 from 40
in C function rtbis ().

/************************************************

confiden.c Otis Solomon 12-11-91
************************************************/
#include <stdio.h>

#include <math.h>
/************************************************
These files are in the book "Numerical Recipes in C"
by Press, Flannery, Teukolsky & Vetterling.
************************************************/
$include "gammln.c"

#include "gammg.c"

#include "gcf.c"

#include "gser.c"

#include "nrerror.c"

#include "rtbis.c"

$#define SQR(a) ((a)*(a))

double hannwin (N, k)
unsigned long int N;
unsigned long int k;
/************************************************
hannwin (N, k) computes the kth weight of the
Hanning window of length N.
Window Parameters:
alfa highest side-lobe (dB) 3 dB BW (bins)
2.0 -31.47 1.44
Example: hannwin (N, k)

Input: N = length of window

k = index of weight

Return value: value of the kth window weight
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*************************************************/

{

double pi, w, X;

pi=acos (-1.0);

x= (double) k;

w=0.5*(1.0-cos (2.0*pi*x/N));
return w;

double hammwin (N, k)
unsigned long int N;
unsigned long int k;
/************************************************
hammwin (N, w) computes the kth weight of the Hamming
window of length N in a column.
Window Parameters:
highest side-lobe (dRB) 3 dB BW (bins)
-43.19 1.3

Example: hammwin (N, k)

Input: N = length of window

k = index of weight

Return value: value of the kth window weight
*************************************************/
{

double pi, w, X;

pi=acos(-1.0);

x= (double) k;

w=0.54-0.46*cos (2.0*pi*x/N) ;

return w;

double kbeswin (N, k)
unsigned long int N;

unsigned long int k;
/************************************************

kbeswin (N, w) computes the kth weight of the Kaiser-
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Bessel window of length N.
References:
1. Svend Gade and Henrik Herfulsen, "Windows
to FFT Analysis (Part II)," Bruel & Kjaer Technical
Review, No. 3, 1987, Table B.l1l, p. 1l4.
Example: kbeswin (N, k)
Input: N = length of window
k = index of weight
Return value: value of the kth window weight

*****'k*******************************************/

{
double pi, w, x, a0, al, a2, a3;
double sum;
pi=acos(-1.0);
a0=1.0;
al=(-1.298);
a2=0.244;
a3=(-0.003);
/* Normalize st max value = 1.0. */
/* sum(ai) = 1.0. */
sum=al+ (—-al) +taz2+ (-a3);
al0=a0/sum;
al=al/sum;
a2=a2/sum;
a3=a3/sum;
x= (double)k;
w=al+al*cos (2.0*pi*x/N) +
a2*cos (4.0*pi*x/N)+a3*cos (6.0*pi*x/N) ;
return w;

}

double rectwin (N, k)
unsigned long int N;

unsigned long int k;
/************************************************

rectwin (N, w) computes the kth weight of the
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rectangular window of length N.
Example: rectwin (N, k)
Input: N = length of window
k = index of weight
Return value: value of the kth window weight

*************************************************/

{
return 1.0;

}

double trmé4win (N, k)

unsigned long int N;

unsigned long int k;
/************************************************
trmdwin (N, w) computes the kth weight of the minimum
4 term window of length N.
Window Parameters:

highest side-1lcobe (dB) 3 dB BW (bins)
-92.01 1.9
Example: trmé4win (N, w)
Input: N = length of window
k = index of weight

Return value: value of the kth window weight
*************************************************/
{

double pi, w, x, a0, al, a2, a3;

pi=acos (-1.0);

a0=0.35875;

al=0.48829;

a2=0,14128;

a3=0.01168;

x=(double) k;

w=al0-al*cos (2.0*pi*x/N) +

a2*cos (4.0*pi*x/N)-a3*cos(6.0*pi*x/N);

return w;
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double rho(w,M,k,S)
double (*w) ();
unsigned long int M, Kk, S;

/************************************************

rho computes the window autocorrelation function

Inputs:
w = window
M = FFT length

k = lag of window correlation
S = number of new points in each FFT
Return Value:

r = autocorrelation of window
*************************************************/

{

double r = 0.0, Pw = 0.0;

unsigned long int i;

Pw=0.0;

r=0.0;

for(i=0; i<=M-1; i++)
Pw=Pw+w (M, 1) *w (M, 1) /M;
for(i=0;i<=(M-k*S-1); i++)
r=r+w(M, i) *w (M, i+k*S) ;
r=SQR(r/ (M*Pw) ) ;

return r;

}

double edf (w,M,N,S)
double (*w) ();
unsigned long int M,N, S;

/************************************************

edf computes the equivalent degrees of freedom

Inputs:

w = window

M = FFT length

N = total number of data points

S = number of new points in each FFT
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Return value:

v = equivalent degrees of freedom in a PSD estimate
*************************************************/

double s = 0.0, v = 0.0;
unsigned long int i, k;
k=1+ (N-M)/S;
printf ("Number of segments = %1d\n",k);
s=0.0;
for (i=1; i<=k-1; i++)
{
if( i*S < (M-1) )
{
s=s+ ((double)k-1i) / ( (double)k) *rho(w,M, i, S) ;
) .
}

/* Inverse of Welch’s variance expression */
v = k/(1.0+2.0%*s);

printf ("P(f) = estimate of PSD value ");
printf ("at frequency f£\n");

printf ("Welch’s variance estimate = ");
printf ("%$#8.6f * (P (f) squared)\n", 1.0/v);
printf ("Welch’s standard deviation estimate = ");

printf ("%$#8.6f * P(f£)\n", sqrt(l.0/v));
/* Degrees of freedom */

v = 2.0%v;

return vy

/* Global variables */
double v _dof,p_cl;
double gammg2 (x)

double x;
{
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return gammg(v_dof/2,x/2)-p_cl;
}

void confiden(w,M,N,S,cl)
double (*w) (), *cl;
unsigned long int M,N, S;
/************************************************
confiden finds confidence limits of a PSD estimate
Inputs:

w = window

M = FFT length

N = total number of data points

S number of new points in each FFT

Qutput:

cl = confidence limits

*************************************************/

{
double xacc, chi_upper, chi_lower, alpha, conf;
v_dof edf (w,M, N, S);
printf ("Equivalent degrees of freedom = %#4.1f\n",
v_dof);
xacc=1.0e-12;
/* Set alpha to 0.975 for 95% confidence interval. */
do {
printf ("Enter confidence level as a percentage: ");
scanf ("%1f", &conf);
} while ((conf<=0.0)}1| (conf>=100.0));
fflush(stdin);
conf=conf/100.0;
alpha=1.0-(1.0-conf)/2.0;
p_cl=1.0-alpha;
chi_upper=rtbis (gammg2, 0.0, 5*v_dof, xacc);
cl[0}=v_dof/chi_upper;
p_cl=alpha;
chi lower=rtbis (gammg2,0.0,5*v_dof, xacc);
cl[l]=v_dof/chi_lower;
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printf ("Confidence interval for chi-square RV
printf ("[%g, %g)\n",chi lower,chi upper);

return;

}

void main ()

{

double (*w) (), cl[2], y;

unsigned long int N=0, M=0, S=0, 1i;
double Nd=0.0, Md=0.0, Sd=0.0, pick;
printf ("\n\n");

printf ("Compute confidence interval ");
printf ("for Welch’s PSD estimate.");
printf ("\n");

printf ("Enter total number of points: ");
scanf ("%1f", &Nd) ; '

N=Nd;

do {

printf ("Enter FFT length: ");

scanf ("%1£f", &Md) ;
} while ((Md<=0.0) || (Md>Nd));

M=Md;
do {

printf ("Enter number of points ");
printf ("to shift between segments: ");
scanf ("%$1f", &Sd) ;

} while ((Sd<=0.0) |1 (Sd>Nd));

S=8d;
printf ("Enter: 1 for Rectangular\n");
printf (" 2 for Hann\n");
printf (" 3 for Hamming\n");
printf (" 4 for Minimum 4-Term ");\
printf ("Blackman—-Harris\n");
printf (" 5 for Kaiser-Bessel ");
printf ("with alpha = 3.0\n");

do {
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printf ("Choose a window: ");
scanf ("%1f", &pick);

} while ((pick<=0.0) 1|1 (pick>=6));
fflush(stdin);

if (pick==1.0) w=rectwin;
if (pick==2.0) w=hannwin;
if (pick==3.0) w=hammwin;
if (pick==4.0) w=trmdwin;
if (pick==5.0) w=kbeswin;
y=0.0;

for (i=0; i<M; i++)
y=y+ ((*w) (M, 1)) *((*w) (M,1));
printf ("Normalized noise power gain of window = ");
printf ("$£\n", y/M);
confiden(w,M,N, S,cl);
printf ("Confidence interval for PSD = ");
printf("[%g * P(f), %g * P(f)]1\n", cl[0],cl(l]);
cl[0]=10.0*1ogl0(cl[0]);
cl[1]=10.0*1ogl0(cl([1]);
printf ("Confidence interval for PSD = ");
printf ("[P(f) - %g, P(f) + %g] dB\n",
-c1(0],cl(1]);
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Distribution:

1544
1545
1545
1551
1554
2334
2344
2700
2713
2715
2715-2
2722
2722
2722
2722
2722
2725
2732
2737
2741
2741
2741
2741
2741
2741
2741
2743
2743
2743
2743
2743
2743
2743
2744
2744

Charlie Adams
Dave Martinez
John Red-Horse
Bill Millard

Ed Clark

Stu Kohler

Bill Hensley
Ruth David
Wayne Lathrop
Bob Peet

Carl Dreyer
Jeanne Bando
Jerry Biedscheid
Bob Isidoro
Mike Rogers
Otis Solomon (20)
Doug Dederman
Don Thalhammer
Jim Nakos

Tom Baca

Jerry Cap

Bill Dunn

Bill Sieger
Ervin Smith
John Snethen
Roger Zimmerman
Ron Rodeman
Vesta Bateman
Tom Carne

Neil Davie

Jim Lauffer
Randy Mayes
Dennis Roach
Dave Smallwood
Dan Gregory
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2744
2744
2745
2757
5143
5144
5144
5144
5144
5144
5144
5147
5167
6258
6258
0141
9144
9145
9145
0145
9222
9222
9223
9223
9223
9223
9223
9244
9244
9244
9244
9311
8523-2
3141
3145
3151

Tom Paez

Jonathan Rogers
Vern Gabbard

Pat Walter

Cliff Harris

Dave Ryerson

Ron Franco

Cass Gowins

Jeff Kalb

Vince Salazar

Ray Wood

Garth Maxam
Glenn Bell
Thurlow Caffey
Gerry Sleefe

Paul Kuenstler (3)
Jerry McDowell
Keith Miller

Dave Overmier
Dan Talbert

Harold Eyer

Dave Smith

Dennis Reynolds
Steve Gentry

Rex Kay

Jeff Kemn

Kurt Lanes

Pres Herrington
Bobby Corbel

Dick Kromer

Tim MacDonald
Sam Stearns
Central Technical Files
S. A. Landenberger (5)
Document Processing for DOE/OSTI (8)
G. C. Claycomb (3)
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