SANDG 7-030F <

Transformation as a Design
Process and Runtime
Architecture for High

Integrity Software.

Stephen J. Bespalko
Victor L. Winter 7 o

Sandia National Laboratories’ ADR 2 9 %;;3

Abstract. Designers of mission-critical systems need to guarantee the cor- @ % T %
rectness of software and its output. Complexity of a system, and thus the pro-
pensity for error, is best characterized by the number of states a component
can distinguish. In many cases, large numbers of states arise where the pro-
cessing is highly dependent on context. Discussed here are successes with
representing both the design process and the runtime architecture of such sys-
tems as a series of transformations. We believe this approach can have a sig-
nificant impact on the construction of high integrity software. The discussion
includes an overview High Assurance Transformation System (HATS), a
language independent design tool, which is a syntax derivation tree-based
(SDT) transformation system in which transformation sequences are de-
scribed in a special purpose language. Further, compactness of representation
plays a key role, facilitating or impeding specification in terms of transfor-
mation sequences in both design and implementation. Thus, we discuss
methods for compactly specifying system states and which allow the factor-
ization of complex components into a control module and a semantic pro-
cessing module. Additionally, we will argue that in the high-consequence
realm, there is a need for methods that allow for the explicit representation of
ambiguity and uncertainty.

Keywords. Specification and Verification, Component-based Software Engineer-
ing, Domain Specific Languages, Software Architectures

1 Overview of High Integrity Software

The purpose of the High Integrity Software Department at Sandia National Laboratories
is to develop tools and techniques that will promote the creation of kigh integrity soft-
ware (HIS). Software is considered, in this context, to be high integrity when there is
quantifiable assurance that the software will be:

1. Authors’ Address: Sandia National Laboratories, PO Box 5800, MS 03535,
Albuquerque, New Mexico, United States of America, 87185-0535. Tel: +1(505) 845-
8847. Fax: +1(505) 844-9478. E-mail: sjbespa@sandia.gov; viwinte@sandia.gov

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

1. reliable in normal environments,
2. safe in abnormal environments, and
3. secure in malevolent environments.

As such, we are conducting research programs whose objectives are to explore correct-
ness in the limit. The ultimate goal of the work is to advance the state-of-the-art with
regard to establishing the correctness of complex software systems [1].

The systems designed and engineered at the National Laboratories require this in-
tense focus on safety (or correctness and robustness), because of the immense conse-
quence of a mistake. The National Laboratories in the United States are responsible for
the basic science, engineering and production of nuclear weapons, and other systems
deemed in our national interest. Clearly, these weapons must be among the highest con-
sequence devices known to mankind.

It is in response to the challenges of establishing the correctness of increasingly
more complicated systems where the consequence of a mistake is also growing, that the
HIS program was engendered at the Laboratories. We believe that the development of
formal methods for specific problem domains is a promising approach that can make
the design and construction of HIS more cost-effective and robust. We perceive demand
for tools that establish high integrity in fields as diverse as finance, telecommunications,
aviation and medical technology.

Ultimately, the impact of this work will be a reduction in the scale of effort needed
for engineering complex systems. The transformation technology will assist the soft-
ware engineer in breaking the development process down into a series of steps, each
small enough that it can be easily (and appropriately) assessed for correctness. The ap-
plication of transformation to the runtime environment is reducing the amount of coding
that is needed to represent the solution by increasing the reuse of well conceived com-
ponents, which we will refer to as tools and runtime modules. Transformation is also
providing increasingly more powerful models to visualize the solution.

The balance of the paper will proceed in three parts. Section 2 briefly outlines the
work being done under the auspices of the HIS program in formal verification, and pro-
totype tools to test the theory. This section stresses the creation, and quantification of
the reliability of software. The software architecture for the tool depends on a sophisti-
cated parser with extensions for backtracking. Section 3 discusses how transformation
can be used to establish the safety and security of software, which is predominately a
runtime phenomenon. Interestingly, the architecture of the designs discovered to date
all depend on the availability of a parser (or rewriting system) of similar capability to
that identified for the tools discussed in Section 2. Finally, the last section contains con-
clusions.

2 Formal Verification through Transformation

Today we are building systems of unprecedented complexity. In addition, technological
advances are also dramatically increasing the rate at which complexity is growing. For
example, planes are now being designed that are inherently unstable and require com-

3.

plex control functions in order to fly safely. To date, software systems are at the fore-
front of technology's need/demand for complexity.

It is recognized that partial ‘black box’ testing, when applied to discontinuous sys-
tems, is less effective than when applied to continuous systems [2] [3]. Informally, the
reasoning is that as the functionality of a system becomes more discontinuous, inferring
the behavior of input elements that are not tested from ‘similar’ input elements that are
tested becomes increasingly problematic. From a sampling theory perspective another
way of saying this is that the operational profile of a discontinuous system is (in general)
more complex and harder to define than the operational profile of a continuous system.

Given a black box testing environment, it can be argued that as a system becomes
more complex it also becomes increasingly difficult to make meaningful inferences
concerning portions of its input space that have not been explicitly tested. In turn, this
implies that in order to obtain a given level of assurance, a complex system will need to
be more extensively tested than a simple system. When high levels of assurance (e.g.,
less than 10" failures per operational hour) are required for complex (e.g., highly dis-
continuous) systems with large input spaces, traditional black box testing paradigms be-
come ineffective [2] [3].

During the design and development phases of a software system there are two gen-
eral sources of error:

1. the initial set of requirements are incorrect, and
2. a correct set of requirements exist, but they are implemented incorrectly.

Given this partitioning of design and development errors, let us consider black box test-
ing of complex software for which we require a high degree of assurance. As we have
already mentioned, demonstrating high assurance of a complex (software) system will
require the examination of a very large number of test cases. Realistically, the only way
that one could hope to examine large numbers of test cases is through automation. In
order to automate testing, a formal (and computable) specification, often called a zest
oracle, is needed to determine (recognize) whether the input/output pairs generated by
the testing process are ‘correct’!. Therefore, in the context of high assurance, when
comparing alternative approaches to black box testing we may assume that we are given
a correct test oracle. This oracle can also serve as a somewhat non-algorithmic, formal
specification which can be used as the basis for formal software development.

Let S() denote such a formal specification, Sn denote an implementation of that
specification, and C denote a correctness relation (which is transitive and reflexive). In
theory then, if we can show that

SeC'S,

n

(automated) black box testing would not be necessary. That is, showing that the imple-
mentation S, is correct with respect to the specification S would, by definition of cor-

1. It should be noted that if the test oracle is itself incorrect then the value of oracle-
based testing is questionable at best.

4.

rectness, correspond to exhaustive black box testing using the test oracle. Note that we
might however, still want to perform testing to validate S, .

Showing that the relation Sy C S, holds is more commonly referred to as program
verification, formal verification, or simply verification. In theory, verification works. In
practice, however, the calculations needed to directly show that the relation S,C S
holds are most often overwhelming. Informally, the difficulties encountered here result
from the fact that a large part of the verification process is concerned with implementa-
tion details and how they interact to solve the desired problem.

Due to the difficulties encountered in directly verifying that a program satisfies a
formal specification, a paradigm for obtaining programs from formal specifications is
being explored in which the gap between formal specifications and programs is bridged
through a sequence of small ‘steps’ or changes. These steps are traditionally called
transformations, and their aggregation is called a transformation sequence.

Through a transformation sequence one can transform a specification into an imple-
mentation via a sequence of (hopefully small) transformations. This process yields a
number of intermediate representations of S, . More specifically, if # transformation
steps are performed then we will have the representations: S, S, S,, ..., S, . Given
two representations S; and S in this sequence, it will generally be the case that when
i<j, Si will be a representation that ‘looks’ a little more like the initial specification,
Sy while S ; will be a representation that ‘looks’ a little more like the final implemen-
tation, S, .

Intuitively, the motivation for having small transformations is thatas S; and S; , ;
becomle increasingly similar to one another, S;C S, should become easier to demon-
strate.

And finally, since L is transitive, we can calculate Sy C S, by showing that

Vi:0<i<n—> S, | CS;

holds. In this case, we say that the transformation sequence
So—=5285=...-S8,

is correctness preserving.

Under the right circumstances and with careful planning, calculating that a transfor-
mation sequence is correctness preserving is significantly easier (to the point of being
practical) than a direct calculation of Sy C S, . Thus, when handled properly, the ap-
proach to program verification offered by transformation can make a substantial contri-
bution towards the construction of high assurance software. For a nontrivial example
demonstrating the benefits of a transformation-based approach to software construction
see [4].

1. Consider the case in the limit where we want to show that Si C Si

2.1 An Introduction to HATS

The High Integrity Software program is developing a tool called the High Assur-
ance Transformation System (HATS) to explore the potential of transformation-based
software development. Figure 1 gives an overview of HATS.

HATS is an SDT-based transformation system that can be adapted to a problem do-
main in the following manner:

» specify the tokens of the target language,
¢ provide a grammar of the target language, and

+ specify how target program strings should be formatted (e.g., indentation, car-
riage returns, etc.).

The results of these activities are represented by shadowed boxes in Figure 1.

Denotational

Semantics of
Transformation
Language

Transform-
ation

Target
Program

Target Transform-
Langyage ation
Le.x_lcal_ Language
Specification Grammar
Target Transform-
Language ation
Parser System
Transform-
Target ation
Language Language
Grammar Lexical
h 4 Specification
Pretty
printer

Figure 1 The HATS Architecture

After HATS has been adapted to a problem domain, it can be used as an automatic
transformation system by supplying it with (1) a specific target program as input, and

(2) a transformation program that describes how the target program should be trans-
formed.

As a first step in the execution of HATS, the transformation program is parsed. Dur-
ing this parse, HATS also checks that all transformations will only produce syntactical-
ly valid target programs. After this has been completed, the denotational semantics of
the transformation language is used to execute the transformation program.

A transformation program will contain the following sections:

* an input expression that names a specific target program (i.e., a pathname to a
file)

< a section where transform functions are defined (see Matching and Control in
HATS on page 7 for a discussion of transform functions)

« asection where transformation sequences are defined (i.e., where transform func-
tions are composed)

¢ acontrol section that defines how transformation sequences are applied to the tar-
get program
When the execution of the transformation program encounters the ‘input target pro-
gram’ expression, a recursive-descent parser is invoked to parse the target program. Be-
cause of the desire to (effortlessly) apply to a wide range of target languages, this parser
is extended with backtracking capabilities to enable it to resolve local ambiguities that
may arise in the parse table. As long as the target grammar is not truly ambiguous, target
programs will be able to be parsed. However, it should be noted that in the worst case
(e.g., if many parse table locations have multiple entries) the parsing process will be
time consuming !

2.2 Schemas
Given a target grammar, G, (SDT) schemas are defined as follows:

* Select a nonterminal symbol, d, belonging to G. The symbol d will be the root of
the SDT that HATS is constructing. In this context, we refer to d as the dominat-
ing symbol of the schema.

» Construct a derivation of the form: d =0 . Note that o may contain nonterminal
symbols.

* The expression d[:]o'[:] is a schema describing an SDT whose root is d and
whose leaves are o.. Here the string ‘[:]” serves as a begin-end marker. The differ-
ence between o and o¢ is as follows: Let Cdenote an arbitrary nonterminal sym-
bol in o . The distinction between o and o is that any nonterminal symbol such
as, C, in o will be represented by a schema-variable of the form <C >;, where i
is a non-negative integer, in o . Note that subscripts are used to distinguish in-
stances of schema-variables.

Through recognition of the begin-end markers and by making the assumption that the
string <C >; will not be a legal token in the target language, HATS is able to parse o
to ensure that the derivation d 2o is possiblez. This assures that schemas are syntac-
tically correct. Furthermore, HATS also requires that tree substitutions made during the
transformation process always replace (substitute) trees having the same dominating
symbol. This results in transformations that, by definition, produce syntactically legal
(though not necessarily semantically legal) programs.

1. Exponential with respect to the number of productions in the target grammar.

2. Note that since transformations are defined in the transformation program, the
target parser is invoked during the parse of the transformation program.

2.3 Matching and Control in HATS
Transformations have traditionally had the form of rewrite rules such as:

Tq—f'f (schema, = schema,)

in which the notion of a match is implicit in the transformation, and the notion of control
is external to the transformation. For example, to what SDT's within the target program
does one attempt to apply 7? Historically, this lack of explicit control was not an issue
because rewrites were applied manually (e.g., mathematical expressions were simpli-
fied by hand). However, in the context of automatic transformation, such rewrite rules
lack expressive power. When limited to basic rewrite rules it becomes difficult to ex-
press, within a transformation program, a refined application strategy.

We have addressed this problem in HATS by explicitly parameterizing rewrites
with respect to the SDT that they are applied to. This is a distinguishing feature of
HATS that we believe is extremely powerful. We call these parameterized transforma-
tions transform functions to distinguish them from the standard unparamterized trans-
formations. Along with the notion of explicit parameterization arises the need for an ex-
plicit match operator. In HATS, the explicit match operator is denoted by the symbol:
|=| . A basic match is then a boolean-valued expression of the form e, |=| e, where ¢,
and e, are schemas, or variables that are or can be bound to schemas. We have also
found it useful to introduce a special universal SDT that denotes the empty match. In
this paper we denote this SDT by ¢, and refer to it as the null tree. This SDT is unique
(and universal) because it cannot match with anything else (including itself). An inter-
esting property of ¢ is that because it cannot participate in a successful match it can be
used to terminate a recursive transformation. Abstractly, ¢ is the intersection between
the control domain and the SDT value domain.

Using the ideas and notation just described, the transformation given earlier would
be expressed as the following transform function:

gdef (Asdt.sdt |=| schema, = schema.,)
1 2

Thus the paitern portion, the expression to the left of the =, of the transform function
is a boolean expression, whose successful evaluation produces an environment (a gen-
eralized substitution list) which is then used to instantiate the replacement (i.e., the ex-
pression to the right of the =. When viewed from this perspective it becomes natural to
consider further extending the pattern expression to include more general boolean ex-
pressions containing more general matches. Another extension is to support a Dijkstra-
like guarded command construct.

One particularly powerful idea comes from realizing that (1) transform functions
produce SDT's as outputs, and (2) match operations bind variables to SDT's. After see-
ing this connection, it is natural to consider applying transform functions to variables
that are bound in match operations and then matching the resulting SDT to a particular
schema. In this manner, very refined control can be expressed within a pattern expres-
sion. From here on out we will refer to patterns that contain this type of control as

control-patterns.

With this capability, a transformation system achieves theorem prover-like charac-
teristics. Transformation sequences can be viewed as focused search strategies, and
control-patterns can be seen as proving lemmas and providing the transform function
with the resulting information.

2.4 Execution of HATS

Since HATS is based on an SDT transformation system, a target program must first be
parsed and converted into an SDT before transformation can begin. Because of the de-
sire to (effortlessly) parse programs defined in terms of a wide variety of target languag-
es, the HATS target parser has been extended with a backtracking capability that enable
it to resolve local ambiguities which arise in the resulting parsing tables. The traditional
methods for resolving parse table ambiguities has been to:

1. modify the parse table manually, or

2. provide the parser with sufficient lookahead capabilities to enable it to automati-
cally resolve the ambiguity.

However, in the context of program transformation, the problem with requiring manu-
ally resolving ambiguities is that it is unreasonable to require the user to posses a suffi-
cient level of knowledge of parsing theory to be capable of solving the problem. Addi-
tionally, the problem with the automatic resolution which depends on multiple looka-
heads, is that the number of lookaheads must be bounded. As such, the parsing
algorithm in HATS is extended with a backtracking function that is powerful enough to
parse target programs in all cases where the target grammar is not truly ambiguous. In
the worse case, such as when many parse table entries have multiple entries, a conse-
quence of the approach chosen for HATS is that the parsing process can be quite time
consuming.1 None-the-less, we have made a relatively weak assumption that, in gener-
al, the target grammar will be ‘well behaved.” In those instances where the grammar re-
quires an unreasonable amount of time to parse, a parsing expert may need to be con-
sulted to modify the grammar to make it more amenable to parsing.

3 Transformation and the Runtime Environment

In the previous section we outline the technique for utilizing transformation for estab-
lishing that:

1. the initial set of requirements are correct, and

2. given a complete and correct specification, that they are implemented correctly.
Software developed with these properties can reasonably expected to be reliable, one
of the criteria for HIS. We now turn our attention to consideration of how transforma-
tion, or more specifically, rewriting technology is crucial for establishing the safety and
the security of a system, the other two criteria for HIS.

1. The time to parse a target program will grow exponentially with respect to the number
of productions in the target grammar.

9.

We will consider three aspects of how transformation benefits the software engi-
neer when designing HIS, particularly from a real-time, or runtime perspective:

1. The ability to compactly represent an algorithm that involves, among other
things, context sensitivity and/or ambiguity, features of many of the systems we
have discovered that are considered problematic.

2. Forcing the engineer to predetermine the valid state transitions provides an ex-
tremely important invariant for detecting ‘abnormal environments’ or ‘hostile ac-
tions.’

3. The factoring of the problem into a set of tools, which are not deployed, and likely
useful for more than one problem, and a runtime module, and one or more tables,
or statically defined data elements.

The section concludes with comments relating these technical issues to the establish-
ment of safety and security.

3.1 Transformation as a compact representation
The examples below will establish the need for two important features that a runtime
transformation capability should possess:
1. The ability to handle more complex grammars than typically handled by parsers
available to software engineers.

2. The ability to easily incorporate domain specific properties of the problem.

A parser with these features will likely require small changes for application to most
problems, a characteristic identified in the last section as being desirable for promoting
a correct adaptation. Further, the characteristic of requiring small changes will also fa-
cilitate the introduction of domain specific features, or the creation of custom tools that
greatly reduce the scale of the problem. This also will tend to promote the creation of
HIS.

3.1.1 Context Sensitivity

Context sensitivity involves the interpretation of data in which the interpretation of one
segment of data is dependent upon the interpretation of other segment. In other words,
the meaning of one piece of data can potentially change the meaning of a piece of data
elsewhere in the system. This is often the case with data transmission, where signals to
change the interpretation mode are encountered regularly, or in situation-reactive sys-
tems, where interpretation of data from one set of sensors or instruments affects the in-
terpretation of another set of data.

The importance of context sensitive algorithms to researchers is that these have
emerged as a source of subtle errors which are difficult to identify and fix. The solution
to the problem we are exploring is to define a set of formal languages powerful enough
to handle the common context sensitive situations identified in problematic compo-
nents.

The following example outlines the problem, and shows why concise specification
is an extremely important component of a well-engineered solution. The basic scenario
is simple. A data stream includes the following structure:

[startvall] [count] [time] [framel] [frame2]. .. [frame(count)] [endvall

10.

Although the grammar is fairly simple, implementing the parser for the data stream with
a context-free (or worse yet, with a hand-built) parser has led to several unintentional
errors. In the most straightforward implementation, the parser had the following frag-
ment of BNF:

frames [startVal] frameList [endVall
frameList ::= [startVall[count][time]lbasicFrame |
frameList basicFrame

i

basicFrame ::=
The source of errors with this architecture is that the count is basically ignored. Further,
the actions for the first trigger are different than for the other triggers. The next fragment
attempts to include somewhat more context sensitivity, but still tries to do so with a con-
text free grammar.

frames ::= frameList
frameList ::= [startvalll[l][time]basicFrame |
[startval] [2] [time]lbasicFrame basicFrame{endvall]

basicFrame ::=

Although there is now a special case for each of the trigger counts, the actions for pro-
cessing the frames is replicated

T+6+5+4+3+2+1 =28

times. From a linguistic point of view, the grammar accomplished its mission. However
from the point of view of the engineered solution, there was a high degree of likelihood
of one of the frames not being processed correctly. The alternative we chose to imple-
ment is an extension of the standard context sensitive grammar (where standard here re-
fers to Type 1 in the Chomsky Hierarchy of Grammars {4], which has limitation that the
length of the left side of a production be less than or equal to the length of the right side
of the production). The following grammar is compact enough for human verification
and also explicitly allows the designer to specify the semantic processing for the frame
in exactly one location.

frame ::= [time]basicFrame |
{Drocessing action for the frame}
[time}basicFrame ::= [startval][l][timelbasicFrame[endbytel

[time]lbasicFrame[startVal] [1] [time]
[time]lbasicFrame{startvall[2]itime]
[timelbasicFrame{startval]l[3]{time]
[time]lbasicFrame([startVal] (4] [time]

[startval] [2] [time]basicFrame
[startval] [3] [time]basicFrame
[startval] [4] [time]basicFrame
[startval] [5] [time]basicFrame

non

{timelbasicFrame[startvVal] [5][time] ::= [startVall{6][time]basicFrame
[time]basicFrame [startvVal] [{6]{time] ::= [startVal]{7][timelbasicFra
basicFrame ::=

In short, for each production

11.

where the length of A is n and the length of B is m, and m < n, there must also exist
a second production

C—-D

such that
1. the length of D = x , where

xZ2n-m+1

2. thelengthof C = 1
3. D corresponds to the first x symbols of A

Even though this is a small generalization of the simplest context sensitive grammar,
the impact on the architecture of the software component studied was enormous: rather
than a huge number of ‘special cases,” the component can now be specified with a few
dozen compact and precise rules. This example, along with our interactions with the en-
gineers that built the original implementation of the module, leads to several observa-
tions:

1. The formal specification must match the application closely for it to be useful to

the application designer,

2. Most software engineers avoid generating (or even admit that they know about)
formal specification methods because they are so difficult to use,

3. Therefore, there exists a need for simpler formal specification generation tools.

3.1.2 Ambiguity

The following are examples where the very nature of the problem appears to be ambig-
uous from the point-of-view of the engineered problem solution:

1. High-tech devices such as a photocopying machine has one set of states associat-
ed with each ‘normal’ mode of operation, and a completely separate set of states
for failure modes. Examples of failure modes included paper exhaustion, paper
jams, mechanical part failure, incorrect paper in all of the paper trays, and power
interruption during operation.

2. In certain high-consequence operations involving data transfer, data processing
must continue during and after periods of data loss. In a context sensitive situa-
tion, the data lost might have altered the behavior of subsequent processing steps.
In this event, assumptions must be made about the lost data so processing can pro-
ceed.

3. Cases have been found in the work here at Sandia National Laboratories where
the answer depends on the order in which the data is received, yet the data order
cannot be known ahead of time.

More examples are cited in [9]. There has been a considerable amount of research put
into developing systems capable of dealing with ambiguous situations (at least from the
stand-point of handling inconsistent or uncertain data). In general these are referred to
as either a non-monotonic logic system, assumption based truth maintenance system, or
a directed backtracking grammar. The foundation of this work is covered in the work

12.

by deKleer [6]. Unfortunately, this work is abstract, and the implementations of the
work are too inefficient for deployment in high consequence applications. Further, none
of the Lisp (or Al implementations, in general) have any method of generating domain
specific representations of the ambiguity. Given the number of examples we have iden-
tified where there is some form of ambiguity or inconsistency in the information flow-
ing into applications, we conclude there is a need for:

1. formal computation models based on some form of non-monotonic logic

2. research into the structure of formal languages for specifying inconsistent and
ambiguous data, and

3. better tools for generating formal models based on (1) and (2).

3.2 Safety Derived from State-driven Design

For the purposes of this discussion, assume the behavior of a complex software system
is described by some formal representation of a collection of finite state machines.
These representations capture the intended and hence acceptable states the system may
be in and transitions governing movement between all the intended states.! From the
perspective of establishing the safety of a system, one views the departure from this set
of states or improper transitions between states as potential hazards that could lead to
unacceptable consequences. A subset of the universe of all possible unacceptable states
can be described as serious hazards that will lead to compromise of safety. Safety in this
context means a lack of possibility for the loss of life, damage to the environment, or
other economic loss. Establishing such a state can be precipitated by several events.
Those include human errors related to incomplete specifications, improper implemen-
tation, and insufficient testing. In addition, dependencies on tools such as compilers
can also lead to the creation of a system that does not faithfully adhere to the abstract
behavioral models. In addition to the domain of defects related to the human participa-
tion in the creation of software, the failures related to the underlying physical hardware
contribute a completely disjoint set of possible system failures. That is, random failures
of microelectronic devices upon which the software is dependent, can and will cause the
execution sequence of software to be violated and hence increasing the likelihood of ar-
riving at an unacceptable state.

A hallmark of an architecture based on transformation (and thus parser-driven) de-
sign is the intrinsic ability to detect abnormal situations. It has been proven that the class
of parsers known as LR(k) have the properties that they will detect any anomolous input
[7], and further they will detect the error as soon as it is possible to do so [8]. This is an
extremely elegant manner of achieving a high degree of system safety. The ability to be
confident of what the system behavior will be in the presence of unanticipated circum-
stances is extremely important when the consequence of an erroneous step could be im-
mense. The key to encouraging complex state-driven design is to make available tech-
nology that elegantly represents the complete set of valid states, and then operating in
a mode where everything else is considered an anomalous situation.

1. Keep in mind that the actual system itself is only a replica of what we hoped
would be developed based on abstractions of behavior.

13.

3.3 Security from Factoring Components into Tools, Tables,
and Runtime Modules

Establishing the security of a system relates to the notion of demonstrating the inability
of intentional or malevolent diversion of a system for the purpose of gain by an adver-
sary, or other agent that does not have authorized access to the system. That gain can
take forms ranging from financial reward to damage resulting from terrorist activities.
The objective of the adversary is to induce an unacceptable state, such creating a se-
quence of actions that result in an Automated Teller Machine emitting money either
from an unauthorized account, or from no account at all. In the case of a weapon, the
goal is to be able to assert control of the system, e.g. causing detonation. The successful
adversary usually depends on the acquisition of substantial knowledge of both software
and hardware. With this knowledge, the adversary will then attempt to identify and ex-
ploit a vulnerability present in either the construction of the system (as delineated in
section 3.2) or from the systems vulnerability to external environmental stimuli. This
might take the form of physical stimuli such as extreme temperatures which could pre-
cipitate physical failures, or an attempt to operate the system out of specified limits, e.g.
providing digital input that the system is not prepared to handle properly.

A system architecture based on parser technology will have, typically, three types
of components. We will call these components tools, tables and runtime modules. (We
will ignore the symantic components for the moment). A tool is a non-deployed com-
ponent that simply transforms one form of information into another. The parser gener-
ation technology we have been discussing is a good example of such a component. The
table output from a parser generator is another form of component that becomes ex-
tremely important in an architecture defined in terms of transformation. The table,
though static, embodies a considerable amount of information, and context defining the
behavior of the system. Finally, the runtime modules, are codes invariant to the in-
stance, that usually depend on tables and other context to operate correctly. We draw
the distinction between a ‘normal’ library component, that does not depend on much
context other than the inputs to operate correctly. Further, the runtime portion of a pars-
er generator has many of the properties we believe are salient: it is invariant to the in-
stance, but bound with a parsing table output from the parser generator (the tool), it is
capable of both monitoring and controlling the behavior of a component.

There are several important benefits from decomposing a system into tools, tables
and runtime modules: first, the tools can be built once, verified, then reused. Even if a
particular domain specific attribute is added to the tool, it will likely be a small trans-
formation (or sequence of transformations). Second, the same holds true for the runtime
module related to the tool. Third, the table can be more easily verified with other tools
and inspection than a large code component. Finally, the scale of all three components
(from our experience) is of a considerably smaller scale than the monotonic code com-
ponent. This makes the quantification of the high integrity considerably easier, or even
possible. Thus, from the standpoint of security, the system designed around transforma-
tion, will have fewer vulnerabilities to exploit than a system based on more traditional
software engineering approaches. In particular this will be true of systems generated
from tools that were generated from domain specific tools. If the tools are properly pro-
tected, there is virtually no opportunity for an adversary to gain sufficient knowledge to

14.

identify, let alone, exploit a vulnerability. Further, the likelihood of even finding a sig-
nificant vulnerability is greatly reduced.

4 Conclusion

We have discussed two aspects of creating high integrity software that greatly benefit
from the availability of transformation technology, which in this case is manifest by the
requirement for a sophisticated backtracking parser. First, because of the potential for
correctly manipulating programs via small changes, an automated non-procedural
transformation system can be a valuable tool for constructing high assurance software.
Second, modeling the processing of translating data into information as a, perhaps, con-
text-dependent grammar leads to an efficient, compact implementation.

From a practical perspective, the transformation process should begin in the do-
main language in which a problem is initially expressed. Thus in order for a transfor-
mation system to be practical it must be flexible with respect to domain-specific lan-
guages. We have argued that transformation applied to specification results in a highly
reliable system. We also attempted to briefly demonstrate that transformation technol-
ogy applied to the runtime environment will result in a safe and secure system. We thus
believe that the sophisticated multi-lookahead backtracking parsing technology is cen-
tral to the task of being in a position to demonstrate the existence of HIS.

5 Acknowledgement

This work was supported by the United States Department of Energy under Contract
DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Cor-
poration, a Lockheed Martin Company, for the United States Department of Energy.

References

[11 Winter, Victor, L., Software Construction via Abstraction, Synthesis, and Transformation,
Proceedings of the High Integrity Software Conference, IEEE, 1997.

[2] I Rushby. Formal Methods and their Role in the Certification of Critical Systems. Tech-
nical Report CSL-95-1, SRI International.

[3]1 C. M. Holloway. Why Engineers Should Consider Formal Methods. Proceedings of the
16th Digital Avionics Systems Conference, October 1997.

[4] S. Stepney. High Integrity Compilation: A Case Study. Prentice Hall, 1993.

[5] Cohen, Daniel, LA., Introduction to Computer Theory, Wiley, 1991, 743-754.

[6] DeKleer, Johan, An Assumption-based Truth Maintenance System, Artificial Intelligence,
28(1986) 127-162.

[71 Sippu, S. and Soisalon-Soininen, E., Parsing Theory, Volume II, Springer-Verlag, 53

[8] Aho, Alfred V., Sethi, R. and Ulman, J., Compilers (Principles, Techniques and Tools),
Addison-Wesley, 1985, 215

{9] Bespalko, S.J., Sindt, A., Context Sensitivity and Ambiguity in Component-based Systems
Design, Proceedings from the Foundations of Component-based Systems Workshop, In
conjunction with the ESEC '97, 1997.

