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We :onstruct ,modcls ba3ed on the gauge group SU(2: X U(l) X U'(l) as 

~ ~lternat1vcs to the s~andarj model. TI•ese lend oatura~ly to effective Lagran-

f h neutr].· no-hadron scattering which is identical to the standard ginn or t e 

model. The electron-q·u11rk interactions .can be chosen ~o yield the correct 

res ult for polarized elec tron~deuterium asymmetry measJred at SLAC, while 

permitting a small value fer parity violation in bismuth . Definitive tests 

for thes e models arc .the y-depcndence of the asymmetry in electron-deuterium 

~r.elast<c. scattering, which should be fairly rapid, and ele~tron-proton deep 4 ~ 

t o a doublet which can be tested on neutrino-electron and the assignment of ~ 

scat t eriog . Other . tests of the models are also considered. A different 

version of the model predi:ts all results identical to the standard model 

2 z b Models which are not strictly at small q , but allowing ~ lighter · - oson-

natural are also discussed-
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1. Introduction 
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not necessarily constitute or imply its endorsement, recommend~ tion, or favoring by the United 
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Recent model independent analys is [1] of neutrino-hadron neutral current 

data confirms the standard SU(2) X U(l) gauge model of Weinberg-Salam (W-S) [2 ] 

with the Glashow-Iliopoulos-Maiani [3] mechanism. The situa t ion with the 

neutrino-elec tron sca ttering and the electron-hadron scattering data is no t as 

clear, however. Recen t observation of asymmetry in polarized electron-deuterium 

scattering at SLAC [4] tends to confirm W-~ model . However, the lack of large 

enough parity nonconservation signal in experiments on bismuth at Seattle [5] 

and at Oxford [6] is a matter of deep concern. A larger result observed at 

Novosibirsk [7] may mean that there are unknown experimental difficulties, or 

tbe atomic theory for bismuth might not be very well understood. On the other 

hand, the poss ibility r emains that W-S model accounts only for the v-hadron 

processes, ~hile the model needs a modification t o s a t isfactoril y expl ain the se 

other effects. 

We already know that within SU(2) X U(l) group any change in the assign-

ment of left-handed fermions to doublets and the right-handed fcrmions to 

singlets would contradict the experiment. In particular, the hybrid model [8] 

which assigns .eR to a doubl et is consistent with v-e data and atomic physics 

experiments on bismuth, but inconsis tent with the observed asymmetry i n 

electron-hadron sca ttering . Purther, the charged currents are cons istent with 

W-S model. Tbus the simplest group that can lead to a theory of v-hadron 

scat tering identical toW-S model [9], and permit ting departure in electron 

int'!'rnctions , is the group SU(2) X U(l) X U' (1) . TI•is model has been 

extensively s tudied in. the literature [10] with a view of making neutral 

currents parity conse rving. With the obse~ation of asymmetry in e-d s catter-

ing, all these models are ruled out with the exception of a model due to Ma, 

Pramudita and Tuan (MPT) [11] which we shall consider in detail later_ 

Throughout most of this paper we shall enforce a criterion of ·naturalness of 
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the model. By this we mean that the model should yield predictions for 

v--hadron · interact'ions identical to W~S model naturally, and not by !'djusting 

some set of coupling constant~. In this sense the MPT model is not strictly 

natural. 

In Sect. 2 we es·tablish a notation for model independent analysis 

of the experimental situation, and discuss the present data. In Sect. 3 

we present a genera·! formulation qf the. SU(2) X U(l) X U' (1) group and 

prese.nt the criteria for naturalness of the models. In Sect. 4 two. differen': 

* natural models are discussed . Deta~led tests for these models are 

presented. In Sect. 5 we discus~ models where the criterion of naturalness 

is relaxed. Our conclusions are summarized in Sect. 6. 

. . A prel:i.UJinary version of our results.' appears in a brief· paper, "Gauge 

Models and Neutral Currents," University of Oregon preprint OITS-101, 

to be published. 

2. Phenomenology of Electron Intera-ctions and Data 

2 .1. Electron-neutrino interactions 

The effective interacticris of electrons with neutrinos due to rieutral 

currents arising in any gauge model may b~ liiTi tte~ a·s 
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. :2.1) 

where we have assumed IJ-e unive.rsality •. The experiments are based on left­

handed neutrinos produced in charged interac ttons and thus the presence of 

right-handed neutrino interactions is not detectable at present; consequently 

we have ignored these in Eq. (2.1). Our lcito~ledge of 1\r and gA comes froa: 

vll and \fll scattering on elec:trons [12] and' scattering of ve from reactors 113]. 

The data is still not suffiodently good .to give a definite prediction for 8v 

and gA, but two possible.solutions emerge [14], solution A: 

&v c -.03 ±.12 gA = -.52 ±.15 (2 .2) 

and solution B: 

&v c - •. 52 ±.15 (2.3) 

Solution A agrees with W~S ~ode! with X : sin
2

6W ~.25, while solution B •~uld 

agree with the hybrid l!IJde: for the same value of X. The theoretical e"Fres.sions 

for these couplings in SU(!) X U(l) are · 

2gv.= 4X-l-D 

2gA = D-1 (2.4) 

vhere D = 0 corresponds to ~ in singlet rep!"esentation (W-S model), and .. D·"' 1 

corresponds to~ in a do~blet represen~atian (hybrid ~el). In a natural 

model based on SU(2) ·X U(l) X U' (1), neutrilto scattering is id1mtical to 

SU[2) X U(l) model. Thus ve shall·obtain. the s.ame result as in Eq. (2.~) and 

ve leave open the option of the assigiUDeJlt.'of ~.to a singlet or.to a doublet. 
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2.2 Electron-hadron interactions 

The effective parity nonconserving part_of electron-quark. interaction 

that arises from the exchange of weak neutral bosons can be parameterized as [15] 

./.e-V r( firF/fi )[ e1,-.e(Ev"C¢,uJii~Jj.u + E.,11 cc.~J J ~IS d) 

· +eT"'(se(E1u1 ce,u)ir~ u+ ERv (e,cl)d~c:J)] 

(2.5) 

Various polarized electron-hadron_scattering experiments as well as parity 

nonconservation signal in atoms- could be used to determine. the four unknown 

constan'ts in Eq. (2.5). The expected asyunnetrybas:been analyzed by Cahn and 

Gilman- [ 16] for 5~ (2) X 1: (1) models ;.•here one Z boson exchange was assumed. 

It is fairly straightforward to generalize these to the model independent form 

in Eq. (2.5). We present.these formulae below. For deep inelastic scattering 

on a general ha~ronic target, the ~~s~etry is given by 

(2.6) 

where fl:;:_(~_-a-;,)/{0,. +~) .. ·, fi(x) is the structure function of quark 

of type qi' and Qi, is the charge measured in units of leI • The function f(y) 

is (l-{l-y.
2
]/(l+(l-y)

2
] where y = (Ee-E'.e)/Ee. ·.: · 

a. Electro'n-deuterium deep inelasti~ -s~ttering 

Here fu (x) = f d(x) for x > .1, and, x dependence drops out:, and we obtain 

~~~,..- 3~ ·.[( .Z~v(~.uJ-~,(e,JJ)tJc1J(1.f,.:e,u)-[v/.e,cl)) J 
Q. .fofiTd.. ·. 

. (2.7) 

• 

The recent measurement Aed/Q
2 

= -(9.5_ ±1.6) x 10-S at y::::.21 then leads to 

the constraint 

b. Electron-proton dee·p inelastic ·scattering 

(2 .8) 

The formula in: general depends on :the ratio r ':' f}x)/fd(x). This ratio 

can be determined from e-p ·and e-d deep _inelastic scattering. We find 

e~ . . . . . 

-:-~z. =- .l~(i;~{'fT+I):Fz'(~Avft!:.U)-£11 "te,d)) 

+fttJ{t-r t,Je,u) -tVR ce,JJ)] 
(2.9) 

for sm.~ll x (x"" .15) where the experimen,t vas carried out, r :::::: 1 and the formula 

is identical to Eq. (2. 7). However, for . 3 < x < • 6, r :::: 2 and differen-t 

combinations of couplings can. be measured. 

c. Electron-proton elastic scat.tering 

Following quark model assumptions made in [16], w~ find 

. - - (2.10) 



+ 
d. e+p-+e+6(1236) 

=-

(2.11) 

e. ne·ctron-deuterium elastic scattering [17] 

(2.12) 

The above measurement can give unambiguously the four unknown coupling .. 

constants. Further, atomic physics experiments on heavy atoms measure a 

quantity QW defined by 

Q."' = .z (.t~tN) [ ERvfe,uJ+ ( ;:;Z)t;,v <e,ciJ] 
(2.13) 

For bismuth this is 

ft~:. 584 [Eifvl~u)+ 1·/SERv(e,JJ] 
(2.14) 

The present experiments on bismuth have .generally led. to smalle·r values of Qw 

than predicted by w-s model. The dato are summarized in· [5], [6], [7]. 

IQwl < 20 (Seattle) 

Qw ~ -34 ± 7 (Oxford) (2.15) 

Qw = -120 :t 40 (Novosibirsk) 

Work on Thalli= [17] is in progress and s'hould. yield· ·invaluable data. 

3. Gauge Group SU(2) XU (1) X U'(l) 

In this section we present a general analysis of the group SU(2) X U(l) X U'(l) 

and show how natural models can be built. The specific models are discussed 

in Sects·. 4 and 5. The analysis is based partly on the work of Ross anc 

Weiler [19]. 
... 

We associate gauge fields W ~; B~ and C~ respectively with g.oups 

SU(2), U(l) and U'(l). The associated couplings are g, g' and g'', and the 
,. 

generators T, Y and Y'. 'fie choose our basis quite generally so tha.t the charge 

Q is defined by 

(3.1) 

The gauge fields acquire mass by spontaneouS breakdown of symmetry. The 

Higgs structure .is constrai.ned to arbitrary·number of doublets 

and complex singlets >I• 
"i. This will insure that the 

strength of. the neutral currents are normalized to the charged currents as in 

w-s model. Tbe mass matrix is given by 

± 1 ( 1 rv;. .. J'j'dp • t>"c;.Jlt, .. ~J( 
(3.2) 

If the vacuum expec:tation values are· "' f-4 > :: { 0 1 .\.&) and 

and the fields z
11 

· (corresponds to Z boson of V-S) and 

A~ (photon) are defined as 

l: = 
,w;.- I'Be. 

J ·/"" r 32+ ,,z. 
(3.3) 

'iW:+J~ R -:/""-
. Tf'+1'z. ) 

(3.4) 



t 

we then have the mass matrix for ·fields Z and C given by 

c· :0· 

) .l- M~c 
'l. 

M= 'Z. 
M~ Mi-<; 

We further define ·.tan ew a .g I I g as in w-s· model. We 

= 
~ 

Mw+ 
cos•e., 

. z. ti'J tt":,.t:_ VI 1 Z. 
M . : - If · £ . 2;. /<t' 1'1 • 

·I RC . z. 4 A . 

then·find 

). 
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(3.5) 

I . 1- . 

(3.6) 

The Lagrangian for the neutral currents in terms of the (undiagonalized) fields· 

z~ and c~ is given by 

r£ r J-j"-+J-.1 !,..?.t:p. + j''J)'(fo (3. 7) 

z where J~ is the usUQ.l W-S neutral curre11t : 

J:r = 13 - x· le"" 
/" ~ ,... . . . (3.8) 

2 Y' . . 2 • 
vith X c sin ·6 Wand J)J is the current of U' (1) group. At mua1l q , assuming 

. . 2 
that the diagonalized masses "'z. and "'z :>> q , ·we obtain an effectiye Lagrangian 

. . 1 2 . . ,· 

(3.9) 

. We can wr.ite it in a:·simpler form 

y"_- ,, 
J - -. /"' . {J"+J'J. 
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(3.10) 

(3.11) 

(3.12) 

The condition that v-hadron data agree vfth SU(2) X U(l) model at small q2 is 

that the second term in Eq. (3.10) not involveVL. A trivial possibility i~ 

that g'' +0. TWo nont~ivial possibilities remain. 
2 

If a ~ 0, then the 

condition is that J Z .+ J Y" not coti·taf.n v • From ~ ~ , L Eq. (3.8) we therefore 7Cquirc 

Y'' 3 · . · 
tb<!.t Y'' (: /J

0
. d X) quantmn number of "L satisfies 

1/ ' J{}{)=-:z.. 
Since 'Eq. (3.12) can be si.nq:lified to 

'l. 

" ~A,. ')' 
'} = i'I:. ·j/ ~~ . 

1.. • ... 

(3 .13) 

(3.14) 

ve see that condition (3.12) can be implemented naturally provided all tbe 

Biggs doublets satisfy 

'j'(J{) ~ - y' ( t,.-) 
(3.15) 
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We present a natural model based on this condition in the next section. 

The-second possibility is to require 

(3.16) 

Then Eq. (3.9) reduces to 

(3.17) 

Now if Y'(v) = 0, we shall recover the standard result for v-hadron scattering. 
L . 

However, the condition in Eq. (3.16) can be satisfied naturally only if [9] 

y'(JJ :0 (3.18) 

Models based on this requirement turn out to be inconsi~tent with data as 

·discussed in Sect. 4. If the criterion of naturalness is somewhat relaxed, 

Eq •. (3 .15) can be satisfied with two Biggs doublets such that 

y'(£.) =- y'(£,.) 

(3 .19) 

Condition (3.19) can be realized only at the tree level. by imposing a symmetry 

'X-">­
:r, .r- t1- on the Bigg·s potential [11] • We do not find this possibility 

theoretically as attractive, but we discuss madel~ based on this· in Sect. 5. 

l 
I." 
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4. Natural Models 

We first investigate models with arbitrary Z-C mixing, chora~terized by 

Y' {VL) • -Y' (4'i) {< 0. It is ·sufficient. to deterudne Y.'' qulintum numbers of 

various quark and lepton fields. The left-handed quarks are in SU(2) doublets, 

and \1-hadron datil requires right-handed quarks to be in SU.(2)· singlets. In 

order to generate masses with Higgs doublets tha·t have Y' '(4' i) = 1/2, we 

require the following assignments. 

(4.i) 

Where Y m -1 if ~ is in a singlet, ·and ·Y ca.n be arbitrary if eR is in a 

doublet; and B is an arbitra::-y parameter to be determi.n.ed later. The effec:tive 

. coupling constants defined ll.n Eq. 2.5 c:an then·be readily computed to be 

e te~uJ=- Ev11te,JJ = YA 

D-1 ·z:-

t11Je,u) = /!::i1[1- B_f] +'lf-iD(li-t) {p+-i_- z;) (4.2) 



{ .
0 (.eR in singlet) .• 

with D = 
1 (eR in doublet) 

We consider the ·possibilities. 
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(a) Case I: eR is a. singlet. All the above couplings agree with W-S 

model. The only difference is tJ:ta·t there are two Z ·bosons '· z
1 

and z
2

, one of 

which is lighter than W-5 value. of H~" [til1/li"~FX(l-X)}Y..:;:: '/3 ~V 
if x = .20. The ·theory deviates fro~ W-S model at values of q 2 comparable 

to the lower mass Z boson. 

(b) Case II: ~ is in a doublet, We reach the following conclusions: 

(i) The vector· do"!inant ·(B) S()lut;l.on is preferred over the W-S axial 

dominant (A) solution in v-e scattering. 

(ii) The polarized electron~had~on deep.inelastic scattering should exhibit 

a strong y dependence. We write the expressions for asymmetries for different 

processes below: 

(a) Electron-deutcriuncleep. inelastic scnttering 

ed . . . . : . 

i~-.=-J.08x J()lf[li(P*'~ -~)+fftJ(3-txJ] 
where A: lfJ.l..( T+-f) The ri!cent measurement of 

A/Q2 • -{9 .5 ± 1..6) x 10-S then requires 

Atfo+"r;. _s~J= o.s'fst()./5 

For x = .25 the coefficient of f(y) is 1.5. This would give a dramatic y 

dependence. We have. plotted these -curves ·in Fig. 1. 

(b) E.lectron-proton deep inelastic scattering 

(4.3) 

(4.4) 

For small x the express.ion is identical to Eq. 4. 3. For x = • 3"-' .6, we 

obtain 

(4.5) 

. Th~s is also very similar· to ·Eq. (4.3) and predicts a npid y depend~nce 

of the asymmetry for small values of a·. 
(c) .. Electron-.proto~ elastic scattering 

er . . 
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Ret o -s 1 &2. =-,.ox 10 ,, 
{l{.tl -lJI) + t "1 ~¥tl·>x)J'p + ( {,A-1 )j'w] 1 

. 1+ ~ /11. . . j (4.6) 

(d) e + p-+e + 6+ (1236) 

-s- . 
/B.oxto l\(1-x) 

(e) Electron-deuteriumelastic scattering 

. eJ . . 
Aet -s 
Q-z.-= -J8.o;c. to id6f3-X) 

(iii) For ~ we find the expression 

For bismuth this reduces to. 

(4. 7) 

(4.8) 

Although the two parameters B and k can be deternined experimental!~, 

an attractive theoretical possibility is ·that B = 0. The asymmetry in 

electron-deuterium scattering then fixes ~ • We find t~c following solution: 
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k= o. 5"03 :t. ()./31 

(4.11) 

This value of QW is consistent with Oxford data. 

All tl1e asymmetries are then determined and we have shown these in Fig. 1 

throu:;:h 4, where comparison is· made with· W-S model. 

If in future experiments a larger parity violation is found. in atoms, the 

value of e can be chosen appropriately. The one characteristic. prediction of 

this model is that the asymmetries in e-d arid e-~·deep inelastic scattering 

exhibit a characteristic rapid y dependence. 

We now turn to DBtural models constructed by requiring 

(4.12) 

In this case the effective-Lagrangian is 

(4.13) 

where The other quantum numbers are 

(4.14) 

where y a 0 if ~ is in the t;inglet, and arbitrary otherwise. 

The coupling constants are then found to be 

:.6 

Cl :- (!.+D) -1- 2X 
qv 2.. '}II_= 

{4.15) 

As before, if~ is a singlet (D • 0) we see that.the expressions are identical 

to tbe·w-s model. If ~ is _in ~ doublet, the asymmetry in polarized electron~ 

deuterium has strong y depe .. dence: 

~ . . ] R ~f . ~ 

Qi = -J.o8-x 1o [ 'f:l rp .,. -fttJ P- tx): · 
(4.16) 

However, now QW for biamut':t comes out to be 

(11.17) 

This_value is very large and has opposite sign toW-S model •. thus this ~del. 

_is not acceptable. 
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5. Other ~lodels 

We examine here models based on two Higgs doublets that satisfy 

y.'t .f,)"- )~''Cia).:: J . ·and A~ = ,.\~ This requirement leads to 

Mzc = Q. and the effecti~e.Lagrangian·is 

· " - - !Jr.,. [rrJ .. ~ J. ·~ .,_Ji' """''] t?...•fJ - · (2: :M . · -, ,.. J cs.1) 

We can assign Y' quantum numbers as follows: 

y'( lh., cJ,.) =. {3 J 

(5.2) 

where In I = 1 and 1~1 = 1. The co~pling constants &y and gA are as· before. 

The other couplings are 

., c (e ul:: ( t+D- 'tX)+ 'f:I:'"Tn 
""'v.lf . ' J . . . I 

.2fv!J ce,JJ=-(t+r>-lfJCJ+ lf-irj 
. . 8x) ~~-1. ( " ) 

.l_ f/JV (e,u) :i: (f-f))(l- ~ + T(/,. 1' ~r+1'J 

;. £ltv te,cJJ=- (1-P)(l- 2:}-) -tlf:lr(:tfHJJ 

we now find the following two possibilities. 

(5.3) 

Case I: eR is a sing1ct: Our conclusions for this case arc: (i) axial dominant 

e-v scattering is obtained as in W-S model. (ii) The asymmetry in electron-

deuterium scattering is given by 

(5.4) 

18 

while (iii) QW for bismuth is given by 

(:5.5) 

A possible solution is(2B + 2n -~) = 0 and ~ = -n ~ 1. Then if QW~ 0, ~e 

obtain 

J (5.6) 

There is hardly any difference betWeen W-S theorJ and this theory for e-d or 

e-p deep inelast.ic scatt;ering. However, for elastic electron-deuteritun 

scattering we find 

(5 .• 7) 

Compared to W-:-S value of (x a .25) 

A large difference can also be obtained for e-p clastic scattering. At 

am."lll Q2 we have 

.(~.9) 

Compared to w-s vlll.ue of (x a .2) 

(5.10) 

Thus further .experiments should reveaf· if th:l:s model is realized by IU)tur~. 

Case II: %t is in a double':: A model based on this assignment vas considered 

by MPT. They chose coupli~ constants for the special case B ;= 0, n a 1 and 

~ = -1. The consequences o:: this model are 

(i) vector dOillinant solution B is preferred for Ve scattering; 

(ii) for various ·asyD~etri""" one finds.: 
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·(a) Electron-deuterium inelastic scattering 

(5 .11) 

ed 2 From obse-rved value of A /Q = 9.5 ± 1.6 at y::e21, and 

assuming x = .25, the value of o = .15± .04. The asymmetry should have a 

much stronger y dependence than the natural model, as can be seen by comparing 

Eq. (5.11) with Eq. (4.3). 

(b) Electron-proton inelastic scattering 

For small x this is identical to Eq.(5.11). At highe~ x, .3·<x< .6, we have 

(5.12) 

(c) Electron-proton elastic .scattering 

(5 .13) 

·(d) Electron + -proton + ele~tron + A+ (1236) 

Rep-"e~ -s 
&.,_ : -3S.Sx 10 ( o.IS..to.o'l-) (5.14) 

(e) Electron-deuterium elastic scattering 

(5.15) 

(iii) The value of 'lw for bismuth tunui out· to be 

C1w a 584~{1-1.15~ 
a -13.14 ± 3.5 (5.16) 

This lov value agrees with Seattle experiment. 

zo 
6; Conclusions 

Measurement of y dependence of the asymmetry in electron-deuterium 

scattering is of crucial importance; . I·f no strong y dependence is obse-rved, 

the natural· model discussed in Sect. 4 as w.e11 as the second uiodel of Sec. 5 

are· eliminated. If atomic physics experiments persist ~n showing small or no 

parity violation while polarized electron deuterium experiments show no y 

dependence, the first·model of Sect. 5 will have to be seriously considered. 

A test for this model is the asymmetry in elec[ron-deuterium.elastic scattering. 

It is possible to determine the four coupling constants involved in.electron-

-hadron scattering by model-independent analysis as showm in Sect.2. Even. if 

all results should agree with W-S model at low q2 , it is still possible that 

at high q
2 

the theory could deviate as discussed in model l.of Sect. 4. The 

mass of 2·boson provides a crucial test of W-S model. 
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FIGURE CAPTIONS 

Figure 1. The y dependence of the electron-deuterium asymmetry for the . 

natural model (solid lines) co11pared vith W-S model (dashed lines). 

The nUmber on solid ·lines refer to different values of >. vhen B = 0 · 

and X = .25. 

Figure 2. Asymmetry in elastic· electron-proton scattering as.a function of Q2 

for natural model (solid lines) compared vith W-S model (dashed 

lines). 

Figure 3. Asymmetry in e + p + e :t A+ (1236) as a func-tion of Q2 for the natural 

model (solid lines) compared vith w-s model (dashed lines). 

Figure 4. Asymmetry in elastic electron-deuterium scattering_as a function 

Q
2 

for the natural model (solid lines) compared vith w-s model 

(dashed lines) • 
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