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ABSTRACT :

We :onstruct,mo&els based on the gauge group SU(2] X U(1) X U'(1) as
alternatives to the SQandars model. These lead naturaily to effective Lagran-
gian for the neutrino-hadron scattering which is iaentical to the standard
model. The electron-quark interactionS»can be chosen to yield the correct
result for polarized electron-~deuterium asymmetTy measared at SLAC, while
permitting a small value fcr parity violation in bismuth. Definitive tests
for thece models are the y-dependence of the asymmetry in electron-deuterium
and electron-proton deep inelastic‘scattering, which should be fairly rapid,
and the assignment of er to a doublet which can be tested on neutrino-electron
scattering. Other tests of the models are also considered. A different
version of the model predizts all results identical to the standard model

at small qz, but allowing a lighter Z-boson. Models which are not strictly

natural are also discussed.
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1. Introduction
Recent model independent analysis [1] of neutrino-hadron neutral current
data confirms the standard SU(2) X U(l) gauge model of Weinberg-~Salam (W-S) [2]

with the Glashow-Iliopoulos-Maiani [3] mechanism., The situation with the

neutrino-electron scattering and the electron-hadron scattering data is not as

clear, however. Recent observation of asymmetry in polarized electron-deuterium
scattering at SLAC [4] tends to confirm W—ﬁ model. However, the lack of large
enough parity nonconservation signal in experiments on bismuth at Seattle [5]
and at Oxford [6] is a matter of deep concern. A larger result observed at
Novosibirsk [7] may mean that there are unknown experimental difficulties, or
the atomic theory for bismuth might not be very well understood. On the other
hand, the possibility remains that W-S model accounts only for the v-hadron
processes, while the model needs a modification to satisfactorily explain these
other effects.

We already know that within SU(2) X U(l) group any change in the assign-
ment of left-handed fermions to doublets and the right-handed fermions to
singlets would contradict the experiment. In particular, the hybrid model [8]
which assigns_eR to a doublet is consistent with v-e data and atomic physics
experiments on bismuth, but inconsistent with the observed asymmetry in
electron-hadron scattering. Further, the charged currants are consistent with
W-S model. Thus the simplest group that can lead to a theory of v-hadron
scattering identical to W-S model [9], and permitting departure in electron
interactions, is the group SU(2) X U(1) X U'(1). This model has been
extensively studied in the literature [10] with a view of making neutral
currents parity comserving. With the observation of asymmetry in e-d scatter-
ing, all these models are ruled out with the exception of a model due to Ma,
Pramudita and Tuan (MPT) [11] which we shall consider in detail later.

Throughout most of this paper we shall enforce a criterion of naturalmess of
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3 .
the model. By this we mean that the model shou%d yield predictions for
v-hadron - interactions identical ta Wfs‘model naturally, and not by adjusting
some seg of coupling constants. In this sense the MPT:model'is not stri;tly
natural.
In Sect. 2 we establish a notét;on for model independeﬁt analysis
of the experimental situation, and discuss the present data. In Sgct.Aé
we present a general formulation of the'SU(Z) X U(l) X U'(1) gtoup-and
.pres:nc the criteria for naturalness of the mode}s. In Sect. é cwovdiffcrgn:
natural models are discussed*. Deta;lea teste'for these models are
presented. In Sect. 5 we discugélmode;s where the criterion of naturalness

is relaxed. Our conclusions are summarized in Sect. 6.

*a preliminary version of our results:appeats in a brief. paper, "Gauge
Models and Neutral Currents," University of Oregon prepr?nt 0ITS-101,

to be publisﬁed.

2. Phenomenology of Electron Interactions and Data

2.1. Electron-neutrino interactions

The effective interacticrs of electrons with neutrinos due to neutral
currents arising in any gauge model may bé writteﬁ as
Lowy o= (SN TT+5)VNEL I+ 5y 5)S).
e-7 < . "3.1)
where we have assumed p-e universality. The experiments are based on left-
handed neutrinos produced in charged interactions and thus the presence of
right-handed neutrino interactions 1s not detectable at present; consequently
we have ignored these in Bq. (2.1). Our khoﬁledge of g, and gA comes from
\)u and Vu scattering on electrons [12] and scdttering of 3e from reactors [13].

The data is still not sufficiently good .to give a definite prediction for gy

and 840 but two possible. solutions emerge {14], solution A:

gy = -.03 .12 8y = -.52 £.15 . o (2.2)
and solution B: '
g, = =.03 .12 gy = --52 +.15 , (2.3)

Solution A agrees with W-S wodel with X = sin26w %.25, while solution B would
agree with the hybrid model for the same value‘of X. The theoretical expressions
for these couplings in §U(!) X U(1) are-

2gvA= 4X~-1~D

A . .
where D Q‘O corresponds ta er in singlet rep?eéentation (W-S model), and D-= 1

2g, = D-1 S ‘ : (2.4)

corresponds to er in a dovblet representation (hybrid model). In a natural
model based on SU(2) X U(1) X G'(1), neutriho‘scattering is identical to
50{2) X U(1) model. Thus we shall -obtain the sawe result as in Eq. (2.4) and

we leave open the option of the assignment of .to a singlet or -to a doublet.
: R _ ae!



2.2 Electron-hadron interactions

The effective parity nonconserv:lng part of electron-quark interaction

that arises from the exchange of week neutral bosons can be parameterized as [15]

JR S R R YO

dois
+ETE; (E,,,,(eu)' U+ Eqyted)d ?«14):’

(2.5)
Various polarized electron-hadron ,scattex;'ing experiments as well as parity
nonconservation signal in atoms cot;ld be ueed to determine the four unknown
constants in Eq (2.5). The expected asymmetry bas: been analyzed by Caha end
Gilman [16]) for 5L(2) X U(1) models where one Z boson exchange was es.sumed.
It is fairly straightforward to geeeralize these to the model independent form
in Eq. (2.5). We present.these fomu;ae beiov. For ‘deep 1nc1as§ic ecattering

on a general hadronic target, the 'ésy:nnnetry 1s given by

A e,-:s- z}f(X)& Eémcewm;fm(em

(2.6)
where A= ( x-)/(O" + ) f (x) is the structure function of quatk.
of type a5 and Qi is the charge measured in units of Iel . The function £(y)

is [1—(1-y’2]/[1+(1-y) ] where y = (Ee_z.e)/EE‘

a. Electron-deuteriumdeep iﬂelastit.seattering

Here fu(x) =. f (x) for' x > .1, and x dependence drops out, and we obtain
ed .
A -- [(25nv(e 4 -[,"(e "”)*2((7)( &) -64e) ]
) /ol'

2.7)

The recent measurcment Aed/Q:‘ =-(9.5£1.6) x 10—5 at y=.21 then leads to

the constraint

08¢ 0.5 = [zfnv(éf”), - fn;«,(e.d)] +0.23[26 -4 ]
. ' A . . (2.8)

b. ElectronJroton &eg) ineia'stiC'scactering

' The formula in general dcpends on the ratio r = f (x)/f (x). This ratfo

can be determined from e- p and e-d deep inelastic scattaring, We find

AT 36e
E S

) Py (ZTE,,.,(eu) f,w(ed))

+fw(zrwui & (ed})]

2.9)

- for small x (x=.15) where the experiment was catried out, r 2 1 and the formula

is identical to Eq. (2.7). However for .3<x<.6, r =2 and different
combinations of coup.‘.lings can. be measured.

.

¢. Electron-proton elastic scattering : . J

Following quark model assumptions made in [16), w2 find

”QP =- 8 [‘Zfsvk"'} *&J"“]* *‘?@W(Jﬁ%)«*;ted{(;,,‘%ﬂ
& = ‘ :
o

T 2an
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d. e + p->e+A+(1236) 3. Gauge Group SU(2) X U {1) X U'(1)
In this section we present a general énalysis of the group SU(2) X U(1) X U'(1)
H‘P"’e‘r N v ’ . and show how natural models can be built. The specific models are disfussed
&L i -ZEH:* [Z}W (e,ll) = £Av(¢?ldj_] . S in Sects. 4 and 5'. . The ax-'_'alysis is basg:'i pat:'tly on the work of Ross ané
’ ' Weiler [19]. ‘ ) ' . ’
We associate gauge fields ‘Tl , B and C respectively with ghoups
(2.11) ‘ L ,
e. Electron-deuterium elastic scattering [17] SU(2), U(1) and U'(1). The associated.couplin‘gs are g, g’ anfi g'', and the
‘ generators ?, Y and Y'. We choose ourA basis quite gengrally so that the charge
ed . ) Q 1s defined by . o i
f%"ﬁ—i fnv(e‘/)"’fnv(e,d)} o - ' T G-
& m,(r 2 The gauge fields acquire mass by spontaneous breakdown of symmetry. The
) } (2.12) Higgs structure .is const;ai.;:ed to ar—bitrary'mvmber. of doub‘le.ts

- ¢f 0 d L i . ‘o R
=(_ ) ﬁ) 'ar: complex s nglets t"i' This will insure that the

The above measurement can give unambiguously the four unknown coupling - . .
' : - ’ strength of the neutral currents are normalized to the charged currents as in

constants. Further, atomic physics experiments on heavy atoms measure a _
’ - W-S model. The mass matrix is given by

quantity Qw defined by

Q, 2(2£+N)[ny(e”)*(.ze+~)f (ed}] ' 'zl_' ;,T +j)’ +;y#)(f !lll

(2.13) , ‘ . . (3.2)
For bismuth this‘is . L i . If the vacuum expectation values are’ £ §‘- = (0, A") " and
QB; - 584 [Eav(ezuj + /‘lifny (GJJ}J (lﬂ.) = /\“ , and the fields z, " (corresponds to Z boson of W-S) and
W . . . ) < .
) ‘ (2.14) AH (photon) are defined as o
The present experiments on bismuth have generally led to smaller values of Q,
than predicted by W-S model. The data are sumarized in [5], [6], [71. . ;W 4
. Lo . . . 12 )
IQHI <20 (Seattle) _ " . /“ J ? + }
Q= -3 *7 (0xford) T C(2.19) (3.3
qQ, = -1201 40 (Novosibirsk) - s T ' ? Wﬁ + } 2
Work on Thallium [17] is in progress and should. yield invaluable data. . B ) W )

|' . N 4 . .; .. N (3.4)
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we then have the mass matrix for -fields 2 and C given by
z 2
Ma Mac - .
.. . z . N
=1 A
M Mae Mc-
(3.5)
We further define 'tan Bw = g'/g as in W-S model. We then-find
. ) 2 )
. bt M+
ES 'f? } -1 .._..w—-
m = (fq‘__._. ‘Z A‘ 3 Cos.‘bﬂ ).
: u\/'—“’,;' WL
ME VI, LA
.”.lc: = .._.—i—-z— E;- X‘ Aa - !
MEs RO S0P
c” v L F
(3.6)

The Lagrangian for the neutral currents in terms of the (undiagonalized) fields
z d C 1is given b
, and € g y

L= FREE+ PP o

wvhere Juz is the usual W-S nestral current :

F-D-xI" e
]

. . 1y o2
with X = siuz-ew and J is the current of U’(1) group. At small q~, assuming

that the diagonalized masses MZ and Hz >> qz,'we obtain an effective Lagrangian
. T 1 2 . M L .

L L sy (77
T 9" % !

(3.9)

10
. We can write it in q*simpler_ form
' %‘b %[L’Pr*—" *z(J‘:‘?;}f‘l}(J‘e*y ,a}] . (3.10)
where G,//2 = ey, and
o M
, °" * (det M)
(3.11)
el gy
S e
' | (3.12)

The condition that v-hadron data agree with SU(2) X U(1) model at small q2 is

that the second term in Eq. (3.10) not inVolveYL. A trivial possibilit;y is

that g'' +0. Two nontrivial possibilities remain. If o? # 0, then the -
Z M Y' L]

condition is that .lu + J)J not conitain Vv, - From Eq. 73.8) we therefore require
. A . : . .
that Y'* (= IJ'»AY d3X) quantum number of v satisfies
o )
y)=-%
7 h 2

(3.13)
Since Bq. (3.12) can be simplified to )

u zA:
CZTNN

4y’

we see that condition (3.12) can be implemented paturally provided all the

(3.14)

Biggs doublets satisfy

y) ==Y (&)

(3.15)
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We present a natural model based on this condition in the next section.
The> second possibility i1s to require ,
=0 . ' T 3.a6)
My =0 ' T
Then Eq. (3.9) réduces to
L
Log=- 8 [T oy It 7
e e .
# vz L™ (F+3yMe .Gan

Now 1if Y'(vL) = 0, we shall recover the standard result for v-hadron scattering.

However, the condition in Eq. (3.16) can be satisfied naturally only 1if [9]

’ . y .
y(i)'o . ' (3.18)
Models based on this requirement turm out to be.inconsiptent with data as

"discussed in Sect. 4. If the criterion of naturalness is somewhat relaxed,

Eq. -(3.15) can be satisfied vith two Higgs doublets such that
) '
y(E)=-Y (&)
A= AL
I 2

Condition (3.19) can be realized only at the tree level'by imppsing a symmetry

(3.19)

T2 @, on the Niggs potential [11]. We do not find this possibility
& L . .

theoretically as attractive, but we'discussAmbdels based on this in Sect. 5.

12

4. Naégral Models

We first investigate models with arbitrary 2-C wmixing, characterized by
Y'(VL) - —Y'(Qi) # 0. It is sufficient. to determine Y'' quantiim numbers of
various quark and lepton fields. The ieft-ﬁanded quarks are in SU(2) doublets,
and V-hadron data requires right-handed quarks to be ir SU(2) singlets. In
order to generaté magses with ﬁiggs doublets that have Y"(¢i) = 1/2, wvé

require the following assignments.

Y0 e)e-5, Yi)=¥ , Jiudi=p,

jv L ", L
Yl)=Btz ,Y(d)=8-= .
Where ¥ = ~1 if ex is in a singlet, 'and 47 can be arb;tragy if gR.is in a

doublet; and 8 is an arbitra-y parameter to be determined later. The effective

_coupling constants defined in Eq. 2.5 can then be readily computed to be

- _ (1D 1 g.5 D=l
;V"'("z'»j'*z’\’ ! ;ﬁ R

)

£, ez ~Eug ted)= (LFD0 |
g le =L v lp ) 02 -%) | wo

byvted)== SR [- B )¢ plorg)(p-t+ ).
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) (&Y (CR in singlet) |
with D = . .

1 (eR 1n doublet)

" We consider the possibilities.

(a) Cage I: e, is a. sirlglet. All the above couplings agree with W-§S

model. The only difference is that there are two Z bosons ), Zl‘ and _ZZ’ one o-::f
which is lighter than W-§ vall.;e of ” = [dU/r—&FX(t-X)]X‘ ~ 93 Gev

if x = .20. The ‘theory deviates from W-S model at values of q2 comparable

to the lower mass Z boson.

(b) Case II: e, is in a doublet. We reach the following conclusions:

(1) The vector dominant (B) solutfon is preferred over the W-S axial
dominant (A) solution in v-e scattering.

(11) The polarized electron-hadron deep. inelastic scattering should exhibit’

a strong y depcnacnce. We write the expres‘sion_s for asymmetries for different

processes below:

(a) E'lectron-dcutcriundecp' inclastic scattering

.="/ 08 x 1041—}‘(/5*% 5755)’“7((})(3“"}] ‘«».3)

where /\ ‘f‘o( (T+-L) " . The récent measurcment of

A/Q = (9.5 t1.6) x 10 -3 then requires

/\(ﬁ +'% -5%)'-' 6-55‘5i0-l5 | »(A.A)b

For x = .25 the coefficient of f(y) is 1.5. This would give a dramatic y
dependence. We have plotted these-curves in Fig. 1. ’

(b) E'lcctron—proton deep inelastic scattering

For small x the expression 1s identical to Eq. 4.3. For x = .3~.6, we

obtain

ep - T '
L1081 10% FE N Bt - ) fi -0)]

14

"I'h:la is also very similar to Eq. (4. 3) and ptedicts a rapid y dependence

of the asymmetry for small values of B

(¢) . Electron—protoﬁ elastic scettering

?Oxlo A l);("s” 2’”*;,7#‘?@#1 2X)up » (4= 1), ]
B | /? . ‘ (4.6)

@ e+ pre+ At (1236)

Hep-aeo
g =~ 18 0X 1o A(I-x)
(4.7)
(e) Electron-deuterimnelastiescattefi;lg .
B soxis "ACép-x)
| Q (4.8)
(i1i) For Q, ve find the expression
2 (ZN’f
Q 7e (Z?’*Nj/\ [(P*J' 3+ Qa-fﬂ) -t"%')] i0)
For bismuth this reduces to
625' 534)\ [-2 15/.’: 0-075—423x:}
74.10)

Although the two parameters B and A can be deternined experimentallw,
an attractive theoretical possibility is that B = The asymmetry in

electron-deuterium scattering then fixes A . We find thke following soluticn:
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Qu= -+ xi1l. ' ' _ (4.11)
This w;alue of Qw is consistent with Qxford data. ‘
All the asymmetries are then determined and we hgve shovﬁ these in Fig. 1
through 4, where 'comparison is'ma;ie with-W-$ model.

If in future experiments a larger parity violation is found: in atoms, the
value of B can be chosen appropriately. The one phar;é:teristi"c, prlediction of
this n;odel is that the asymmecriés in e-d and e-p‘deep inelastic scattering
exhibit a characteristic rapid y dep;ahdence.

We now turn to natural models coﬁstmcted by requiring

yl(f,) = )"(K,C‘L) =0

(4.12)
In this case the effective-Lagrangian is -
. - 1 -
e 8 [_J"z’j“*.,.""‘]yj‘y']
"Qﬁ iz L™ A 4. (4.13)

. vhere zl-.: (H':- "’/’k‘( ?z-i';'l) ) l
y'( Ul) llgldl.ld )::ﬂ Y(eg)‘a l : : (4.14)

vhere vy = 0 1if er is do the singlet, and arbitrary ot.hervise.

The other quantum numbers are

The coupling constants are then found to be

6
3,2~ !%_Q-'f-zx' , “  =4 Q}

Eolet)= -5,y ted)= LEDZ#D

8/;; (;f,u)= Q——;_’i)-(l:-.%).;- 4278 4 | was

Epv (6d) =~ g;_y(,- ‘t_;?f)‘+~%21(p

As before, 1f er 18 a singlet (D = 0) - we see that .the expressions are identical
to the W-S model. If ex is ;n a doublet, ﬁhe asymietry in polarized eléctron'—

deuterium has strongy dependence

g . '
< = —/08)(/0 [?31',6 + 7[/?)(3 ‘X) ] (4.16)
However, now Q for bismuth comes out to be
= 5842450 42rp )= 684 2 155
Q= 584 [2us142'ap )= 242

This value is very large and has oppqéite sign to W-S model. .Thus this model .

is not acceptable.

F.



5. Other no'dels

We examine here models based on two Higgs doublets that satisfy

y(fl)n—y(fl J=1  and )\, = /\L . This requirement leads to

MZC = 0 and the effective. Lagrangian'is

Lyo- e [72T0 ‘L"N']

We can assign Y' quantum numbers as follows:

Yne)=o , Yie)=¥, Yiad)=B,

77%)¥ﬁ+7,

vhere |n| = 1 and el = 1.

The other couplings are

Y'(de)= B+§

28, (CU)" (""D"‘I‘X)-f- 3 2'7] )
2 & {qd)=-(|+D-‘l-XJ+ 4 rf

28 (eu)= (1=D)(i- B)+ 4w (aprm)
. . X ; AL
284 (€)== (=)0~ f}) +4X r(:p*f)

We pow find the following two possibilities.

Case I: e is a singlet:

Our conclusiouns for this case are: (1) axial dominant

17

(5.1)

(5.2)

The coupling constants gy and g, are as before.

(5.3)

e-y scattering is obtained as in W-S model. (i1) The asymmetry in electron-

deuterium scattering is giveo by

’?eJ
a

-f‘~-/03x,oltl-’°’)+2drwp+27 £)

+ ﬂ;)(%(r-w +223‘(z7-§))]

(5.4)
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while (11i) Q, for bismuth is given by
- W ]

QB: 58“[0/5 [ISX*'-}A:‘(%}FJ-")«H:SE)J

(5.5)
A possible solution 18(2B + 2n -£) = 0 and £ = -n .'1. Then if Qw—'t’- 0, we

obtain . . .
.2217‘:'0‘32' , BA

There is haraly any difference between W-S theory and this theory for e~d ot

(5.6)

e-p deep :Lnelasﬁic scattering. However, for elastic electron-deuterium

scattering we find

Aed elastic’QZ - _1;35' x 10-5
(5.7)
Compared to.H-,S value of (x = .25)
(1%, =49 x 107 } (5.8)

A large difference can also be obtained for e-p clastic scattering. At

small Qz we have

ep clastic/QZ - 5x 10-_5 . . 5.9)

A
Compared to W-S value of (x = .2).

5

ep elastic/Q ] s = 1.8 x 10 N (5.10)

[A

Thus further experiments should reveal if this model is realized by naturc.

Case II: en is in a double:: A model based on this assignment was considered
by MPT. They chose coupling constants for the special casef= 0,n= 1 and
£=-1. 'I"he conscqueaces o this model are ‘

(1) ~vector domipant solt;tipn B is preferred for Ve scattering;

(ii) for various asymmetries ome finds: )
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(a) Electron-deuteriuminelastic scattering

ed

%’ :_32)(/0 [J'i‘ f(})(l"?z\"f';)] . -

(5.11)
where § = 2027. From observed value of AEd/Q2 =9.5¢t1.6 at y=21, and
ass@ng x = .25, the‘value of § = .15% .04. The asymmetry should have a
much stronger y dependence than the natural model, as can be seen b); comparing
Eq. (5.11) with Eq. (4.3).

(t) Electron—proton inelastic scattering

For small x this is identical to Eq.(5.11). At higher x, .3<x< .6, we have

ﬁcP - Hed

Q (5.12)
(c) Electron-proton elastic ',scaCtering ) .
. & o php-p)
Aet -5 + 44¢/7
o= -]].8x 1vx (15t 0.0%) T
Q . Lor s

‘(d) Electron + proton -+ electron + A+(1236)

e?-)eA ) ' '
.B__é_-—-—: ~35.5X 10 (0.151’0«05") (5.18)

(e) Eléctron-deuterium elascic scatteting

ed elasticlqz <0 ' . 4 (5.15)

A

(411) The value of Q, for bismuth mm out to be -

Q' = 5810[:5(1—1.15)]

= -13.14£ 3.5 : h (5.16)

This lev value agrees with Seattle experiment.

(5.13)

6. Conclusions

Measurement of y dependencé of the asyumiétry in electron;deuceri\m
scattering is of crucial importance. ,_I'f no strong y dependencle is observed,
the natural model discussed in Sect. 4 as ‘v_ell as thé gecond nioéel of Sec. 5
are’ eliminated'. if atomic phyéica experiments persist In showing small or no
parity violation while polarized electron deuterium experiments show no y
dependencé, the first-model of Sect. 5 will have to be seriously cor;sidered.

A test for this model is the asymmetry in ele.ct_rbu-deuterim elastic scattering.

It is possible to determine the four coupling constants involved in.electron-

-hadron scattering by modél-independent analysis as shown in Sect.2. Even if

all results should agree with W~S model at low qz, it is still possible that
at high q2 the theory could deviate as discu.ssed in model 1 of Sect. 4. The

mass of Z-boson provides a crucial test of W-S model.
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Figure 1.

Figure 2.

Figure 3.

FPigure 4.
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FIGUBE CAPTIONS
The y dependence of the electron-deuterium asymmetry for the .
natural model (solid lines) compared with W-S model (dashed lines).
The number on Solid‘linés refer to different values of A whenB= 0 -
and X = .25. . '
Asymmecry in elastic’ electron-proton scattering as a function of Q2
for natural model (solid lines) compared with W-S model (dashed
lines). ‘ A
Asymmetry in e + p+e + A+ (1236) as a fupc-t:l'on of Q2 for the natural
model (solid lines)- compared with W-S modei (dashed 1ines).
Asymmetry io elastic 'electrcn—deuterium scattering as a function of
02 for the natural model (solid lines) compared with W-S model

(dashed lines).
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