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Integral Equation Analysis of Drift Wave Eigenmodes in a

Sheared Slab Geometry

W. M. Tang, G. Rewoldt, and E. A. Frieman

plasma Physics Laboratory, Princeton University,

Princeton, New Jersey 08544

The¢ derivation of the appropriate form for the
integral eigenmode equation governing boeth clectron
and ion drift waves of arbitrary radial wavelengths
in a sheared slab is presented. The solutions to
this eguation provide useful information regarding
the absolute stability of universal modes and ion-
temperature-gradient driven modes for arbitrary

wavelengths, and particularly for short wavelengths.
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I. INTRODUCTION

The investigation of the stability of drift waves in
a sheared slab geometry has been actively pursued in numerous
recent publications.1_3 These calculations have dealt with
long radial wavelength eigenmodes governed by a differential

equaticn of the form
[0232/Dx2 +0Mx,0)1d8x) =0 , (1)

with Py being the ion gyroradius and Q(x,w) bcing the radial
potential whnse specific form is determined by the particular
instability considered. llowever, at shorter radial wavelengths,
where the assumption ]piaz/nxzi << 1 breaks down, it becomes
necessary to deal with the integral eguation generalization of
Eq. {.i;. The present paper is concerned with the derivatien of
the appropriate form of this integral ¢ .gennode equation and
with obtaining solutions for both electron and ion drift waves.
Results from the differential eigenmode eguation studies
have indicated that as the azimuthal wave number (ky) is in-
creased to kypi ~ 1, the radial localization of the mode be-
comes of the order of the ion gyroradius. .For electron drift
waves,1 this is a consequence of the fact that as kypi is
increased, there is a downward shift of the eigenfreqguency
caused by finite gyroradius effgcts; i.é.,im = u*eID(by)exp(nbr)
with by = kipf/z and I, being t%e famil'ariBessel function. Since
the radial position, where ion-#andau dEmping becomes dominant,
is proportiocnal to o (i.e., w =ih|vi Wi,ﬁ v, being ;pe ion thermal

'
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velocity and klla x for a sheared slab), the corresponding
radlial localization of the eigenmode is also shifted to smaller
val%es. Hence, it is of interest to apply the proper integral
equation analysis to examine the stability properties nf these
waves at shorter wavelengths.

In the case of ion drift wavcs,z'3 the radial localization
of the eigenmodes is again determined by the ion-Landau resonarnce
region. Differential equation eigenmode studies of ion-temperature-
gradient-driven instabilities of this branch indicate that
the largest growth rates are found for waves with ky“i approach-
ing one with corresponding eigeamodes localized to a radial

2,3 Since the dominant part of

extent of a few ion gyroradii.
the unstable spectrum here falls in the regime of wavelengths
where the differential eigenmode equation is breaking down, it
becomes important to generalize the calculation to an integral
equation analysis appropriate at arbitrary wavelengths.
Motivated by the preceding considerations, we present a
systematic derivation of the integral eigenmode equation cf
interest in Sec, II. 1In this section the procndures employed to
solve the resultant equation are also described. Results from
the computer code implementing the integral equation formalism
{("integral formulation code") are presented in Sec. III for
collisionless electron drift waves ("universal” modes), and in
Sec. IV for the ion-temperature-gradient-driven ion drift
instabilities. Finally, we conclude with a brief summary and

general comments in Sec. V.
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II. Derivation of Integral Eigenmode Equation

The tovm of the inteqral equation governing collisionless
electrostatic drift waves for arbitrary kxni in a sheared slab
geometry is derived in this section. Assuming that there is
no equilibrium electric field, the governing equation for the

perturbed distribution function f (given, for example, in

Ref. 4) reduces to:

‘_4
b I

" e . : 1l F

O - = = o « —_

XA m Yl " X&v§1¢
1

where F = P+ F(I) ig the eguilibrium distribution function, .

is the gyrophase angle, E is the kinctic energy per unit mass,
¥ is the magnetic moment per unit mass, ¢ is the perturbed clectro-
static potential, an 2 = eB/mc. Species subscripts are suppressed

here. We deal with a sheared magnetic field given by B = B, e,

+ By(x)ey , and consider the ordering

i B
o = ofle), Ef =ole) , (1)

with € being the fundamental smallness parameter and By taken to be

proportional to x. Hence, B = B and n = B/B = n

zl

with n(u) = e z ard n(l) = (B, /B} ey, where the superscripts

Y
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refer to the order in €. Thus n(l)/nto) = Ql(e). Fm is a Max-

wellian and, from Ref. 4,

v aF,
e O Y .. S ()

L

To lowest order in ¢, Eg. (2) becomes

3F 10)

LARUAMEALLEEE- T AL S A L (5)
with the notation v{®) = a/4x, viV = a/a(ex, and v, = AR
Defining h(O)by

aF
0 _ e, 0 Fmn (o)
£ = =0 -5z +h ' {6}
Eg. (5) becomes
00} L (0) _ o @ (0) _
v, 910 250 -0 . (7
(o)

Without loss of generality, we can express h in the form:

(0) -172 [ ° - ,
h = {(2m) / f dkxtl(E,u,¢,kx) exp:.(kxx + kzz - wt)

-0

(8)



Hence Eq. {7) becomes

(ik v, cos ¢ + ikyv* sin ¢ -0¢/9¢) h expi (k, x + kyy) =0

{9)

Letting h = h{O)(E,u,kx)g(¢) gives
ik v ik v
x 1 4 . - 1 v
= cosd + 3 sind = 3 759 - (10)
so that
v, 4
g{¢) = exp|i—» (kx sind¢ - ky cos ¢) . (11)

[ -

From Eqg. (8), we then get

(0) _ 172 (U (o) ‘
n = (2n) Iﬂkah (E,u,kx) expi (k. x + kyy + k,z - ot + L),

(12)

with L = [v*/Q)(kx sin ¢ - ky ‘05 ¢)}). Now we need to determine

h(O) from the first order form of Egq. (2}, which becomus:

ag (0)

ey a0, gD (0

N -

(1), g(0) g0 gt g(0) AL FIEY

W —

(1)
1 1l oF
Yamow T L9 J

_
+
c

- o/my(® o000 |y 3T

L1 0 L (o ,v(l)] 5 (0
- - J

(13)
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In terms of h(o) this becomes

(0) aF
a% ”2(“.\7(1)1\(0)+v“11‘1’-v‘°’h(°’

(0, 24100 g1} Fy oy g0l _e 310),(0)

+ v,V
et e
(1) (1} (1)
33 13F (0} 1 3JF _ 2 () _
v & *Vaga; T M ;7 3% ] D) £ =0 .
4

(14)

Again without loss of generality we can express Q(O) in the form:

- & “ (0 :
¢(0) = (2m 1/2 J dkde( J(kx) exgl[kxx+ kyy+kzz—wt

i {13)

(0l and expressing f(l) in the form:

Using Eg. (12) fer h

f(l) - (Zn)'l/Z [ dkx f(l)(E,u,¢,kxlenpi kxx+ kyy+ kzz- wt + LJ

~w

118)

Eg. {14) reduces to the following form after averaging over the

gyrophase angle ¢:



. “(0
- 1oh (0 & iy e

B
i X
+ 1kyv“ B

RO, e jo <e-iL {vl cos 4

)
FmJo(

(1)
: . aF
- lkx [V‘. COSs ) (-T +

Substituting for F

becomes

(1}

from Eq.

klvl/n) + ik v, n(®

.2
I‘ Fm

3E alEx)

{17)

the usual Bessel function, and

27
o1
=ﬁ£¢‘.. .

{(4), the last term in Fg. f(17)
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e - (0) < -iL [ —— P - ik, -+ cos¢sin¢ —D
m e & Vi Cos ¢ 2B alex} x 8 ¢ ¢ PEalex)

e 1
or
m
x

(s )
B lkY T sine AE A (ex)
__e o My -1L> eqt0 *Ffm /oo
T T m Q a(sx) m AE Aexn)

2
v
x [vl cos¢ -1 (kx <COS ¢ + ky sin@) _Qt sinq;:l)

2

- L)) i‘fx “Frn Jo (k_,‘v_‘) . & 4o '
m T 3(ex) 7] m "E N (ex)

v
x v, <B% {sin¢ exp [i—gi(ky cos ¢ - kx sin;)]}>

~ ik 3F, k. v “
= dl(0) Qx g ( 1 -'-) .
alEX [+} Q

1
1
EXIY]

Se, Eg. (17) reduces to

R * (0) kv w- wT )
(0) _ e i1v1
h = —i‘T Fp I, ( ) ( k” - , (18)
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. - T .
with k” 2 kz + kyBy/B, w, = ow {1 + n (mE/T - 3/2)],

n = (d 1n T/A%) /(A 1n n/dx), We - ky(c'r/'eax.n) and L, =
~(@ 1n n/ax)~ ! . with h'®) thus determined, Eq. (12)
yields:
(O e (____) | 172
LAY T 'm \ G ki eXPikyy * kpz = wt) (@m) 777
b
«far, o) g (k*v*) exp i (k +L) (19
A R T : )

Finally, the gyrophase-averaged perturbed distribution function

can be expressed as

(0) W W -
0N _ et e ( N -1/2 f
) = -g n  5 (g ) o aky
~(0) 2 ( kxv‘,_) . (
x 9 k) Jg — expi | k x+ kyy +t k,z - wt)

{20)

If we write By/B = x/LS and take kz = 0 (which is eguivalent to a

change in origion of x), then k = ky'x/LS 2 K x
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We will use the notation ¢(°) = @(x) expi (kyy - wt) for

the perturbed electrostatic potential and n;O) = Bj(xl expi,(kyy‘—mt)
for the perturbed density, where j = i for ions with charge e
and j = e for electrons with charge -e. Carrying out the velocity

space integrations of Eg. (20) gives
o= -2n| g -1/2 f .
nj Ti [@(x) + (W z(&i) (2n) dkx exp(xkxx)

3
x Jle - wog(l = gn ) T = w g IT o+ DT, - r.,,”f

*] 1
LI S 20712 [ ‘
W G A (51)]( 1} j;ikx explik x)T
11 -
x (zm)TL/2 ﬁx exp(—ikxx)i(x)_] . (21)
- il
and
n =@$(x)[l+(w-w‘e ?(E)..._w_'in_e__ lz(r )
e Tg vek)) T & veky %1 2T e

- Ee - Ez z(&e)])] . (22)

3 _ 1/2 -
Eere vj = (ZTj/mj) / , & £ “/("jk""xl), r L Is.l (b)exp{-b),

b a.l
I oand I1 are modified Bessel functions of the first kind,
= 2 2, 2 = = ;
b = kx + kymi/z E bx + by' p; = vi/ni, and 2 is the usual plasma



=12~

dispersion functign. In computing ;e, klpe z klve/ue has been
assumed to be negligible. Although Egs. (21) and (22) are valid
only in the collisionless limit, the addition of electron
collisions by means of a number-~conserving Krook model is straight-
forward.

The eguation to be solved for the normal modes is just the

quasi-neutrality condition,

g = ne = Ny (23)
This eguation can bec solved by means of a Ritz method. First ;(#)
is decomposed into appropriate basis Functions:
-~ hiod -
¢(x} = Z(pnhn(x) r "24)
n= N
where
_ /2, ° - oxlely? -1/2' 95
hntm = H (o kysx) exp { okys /Z)Mn ' {25

b4

s = {g'r/q) is the usual shear parameter, H is the

- 1/2

Hermite polynomial of crder n, and M_ = (7/q) 27n1. The

operator

Tk s ©
LLf
en dx hn,(x)

-0

is then applied to Eg. (23) to give the matrix eguation
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¢ = (26)
Z Lnnvtw)¢n 0 '

where

T . f“ [ © oWy
e
Lnn'(w) = (1 + T——) 6nn, + kys mdx hn;(X) ;;}mz (Ee)

Yol 1 _ _ g2
e (32 06 - e - g2 (60)

T -
P 1 -1/2 f _
T ( viﬁd el (Ci) {2n) dk, explik x)

-

* i (w - Mg (L - %'H)] Fo = wayhy [T“ +b (rl - ro)]{

Way N

i . 2 -1/2 oo ]
vik) ®] [’i v 52 (Ei’](zﬂl ' ,/hkx exp (ik x)
1 - P

x

-1/2 f“’ .
ro) (2m Jax expt 1kxx)] h (% . (27)

In practice, the summation in Eg. (26) will be truncated to a
finite number of terms, N. The complex constant ¢ in Eg. (25)
can be adjusted to minimize N, with the requirement that Re{c) > 0,

so that 1lim ¢(x) = 0. The basis functions given in
X-rtoa

E3. (75} have the useful property that their Fourier transforms
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are ‘nown analyticallys, C.g.

- '" ~{yn ¥
(2'ﬂ)”2 ./Bx exp(-ik_») h_(x) = J.:l_,__h X (283)
) ® n 1/2k s nt 2.2
= Tv’s
Y
so that Ey. (27) can be rewritten as
( Tc) ) . o g

Lnn‘ tw) =11 + r-r-'—l nnt * kyS thn' (x) ;:k-ltl':—fi z{;'c)

‘*e'e 1 . .
¥ hn(:-:) 4 - —l(f'i, (»‘e)- ‘o * e z(-,e]) hn(x)

T '
¢ 1 ~1/2 .
+ [Vlk';'x_:— Z(ﬁl) (27} _/:]k)( ch’(lkx’-)

oy [r, v by, - 1)) t

x ; [m = ey (1 - %ui)] [‘“ - ey

w, N . 2 -2 [ o
_ ;?Il[ (&i + &Lz (&i))(ZH) _/;kx exp (lkx“)‘-]
Vit
sy
(-4 " ( *x )b (29)
ol Zk 3 Ukzéz

Hence only the x and kx integrals need to be performed numerically
when evaluating Lnn" The numerical method used is high order Gauss-
Hermite quadratureﬁ. However, for the electron x integration, a

separate Gaussian quadrature formula ic used in the inner layer
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X' - 2xe

ZTw:/[H;Ve)’ The numerical method used to determine
the eigenvalue of w for a selected eigenfunction is exactly that
described in detail in Ref. 7 for the corresponding torcidal
problem.

The usual second-order differential eynation may be obtained
trom Eq. (23) by expandiing the Bessel functions in Eg. {(21)

through second order in kxp

¢ 1, leaving kyp‘ arbitrary.

specifically

(b) = 7 (by) + [Tl(by) - T (by}]bx,

and

LT . (kY - ¢ (b)) = b - -
[JI( } ., (b)] yirl(by) rothx)] .Fo(by)

+ Zby[rl(by) - I‘D(by)]}bx .

With appropriate integrations by parts, the integrals in Eq. (21)
may then be performed to yield the famiiiar second order
differential equation1'4 governing long radial wavelength drift

eigenmodes.
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III. ELECTRON DRIFT EIGENMODES

As neted in the preceding section, the spatial wvariat.ans in
the equilibrium quantities is taxen to be much weaker than the
variations on the scale of the perturkations. Within the frame-
work of this familinr ordering it has been demanstratioed that
collisionless electron drift waves ("universal modes"') arn ab-
solutely stable at long radial wave lengths in a sheared slab
geometry.s However, for larger azimuthal wavenumbers (kypi + 1),
the corresponding tighter radial localization of the eigenmodes
(discussed in Sec. 1) forces a consideration of shorter radial
wavelengths. Since the differential ecquation formulation break.
down as kxﬂi + 1, it becomes necessary to solve the inteyral
eigenmode equation to determine the bhehavior nf thesc waves in
the shorter wavelength parti of the spectium.

As described in Sec. 1I-B, we have devcloped a computer
code whichk implements the basis function, or Rites, method to
salve the eigenmnde eaquatign af isterest. For the analysis of
universal modes, this numerical orocedure is limited by the
requirement that there are two distinc.ly different longth scales
in the problem. Specifically, it is necessary to choose a
sufficient number of appropriate basis functions to cover both
the small-scale region around the average electron resonance
point, X = lwl/kﬁve ., as well as the large-scale region out to
the average ion resonance point, x; = lwl/kdvi' Tn properly
determine the stability properties of these modes it nas been

emphasized in the differential equation studies! that it is
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essential to account for the detailed behavior around the narrow

. : 1/2
clcctron resonance region. Since the ratio, xi/xe = (miTe/meTi)/ .

is obviously very large, the required number of basis functions,
N, becones correspor.dirngly prohibitive for realistic mass ratios.
In particular, i is found that the largest ratio, xi/xe, that
can be practically handled is roughly equal to f’z. Hence, in
the cases studied by this numerical procedure, we are restricted
to artificially small mass ratios.

As a check on the integral formulation code, we considered
sume moderate wavelength cases (kypi © 1} which are near the

limits of validity of the differential formulation. For a re-

presentative use with mi/me 100, kyoi = 0.63, LS/Ln = 100,

T, =T,, n. =1, =0, and 0 = 1,33, we obtzined an eigenvalue
of u/u,e = 0.2261 + i9.6x107° using 120 basis functions. Although
not as accurate, this result compares rcasonubly well with a
differential shooting code calculation of the same case using
500 equally-spaced grid points in x.? Sprcifically, the shooting

code result is w/wgy = 0.2294 + i5.0-107°. The even eigenfunction

and its Fourier transform, ;(kx), calculated by the integral
formulation code for this case are shown on Fig. 1. Here it is
seen that, as expected, the eigenfunctior is evanescent beyond
the ion Landau resonance region, [x| > x; . It is also of
interest to note that the Fourier transformed ei,onfunction

for this moderately short wavelength case is dominated by values

of kxpi around 2,
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To illustrate the qualitative behavior of the unive: cal
mode of shorter wavelengths, we now consider a representative

case with mi/mC = 100, kvpi = 0.71, Ls/Ln - 56, Tp _ TL‘

nyo=ong T 0, and 0 = 0.76. On Fiq. 2, the ciqgeavalue w
(normalized to u.o) is shown as a function of !N foar one cven
cigenfunrtion. The results here demonstrate  that as the proper
numbrr of basis {unctions roruired to describe the ciqenfunction
is appreached, the corresponding eiqgenvalue becomes that ot g
damped normail mode., In this, as well as for all of the oLher
cases examined, we have found no cvidence {or the rfdevelopment

of unstuble universal cigeninodes at the shorter radial wave-
lengths where differences between the inteqgral anid diiferential
formulations are significant. 1t should he noted, however,

that these results in themselves do not constitute a mathematical
proof for the non-cxistence of unstable short wavelength universal
modes.

The lack of numerical efficiency of the Ritz method procedure
for dealing with the universal modes is not difficult to under-
stand. Since the basis functions die off rapidly in x bcyond
the width of the highest-n basis function kept, their truncation
effectively forces the eigenfunction to zero at a very short
distance beyond this x-value. The requirement then is that this
point must fall well outside the ion Landau damping region
(x = xi), where the wave energy is absorbed. If this criterion

is not met, the artificial forcing of the eigenfunction to zero
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introduces corresponding spurious refiection of the outgoing
cnerdy. As a result, 1ncorrect positive growth rates of the
type shown in Fig. 2 can be readily generated.

Motijvated Lv the preceding considerations, wc have also
analyzed the integral equation problem by a WK procedure. As
doscribed in .etail in Ref, 10, this involved the introduction
of an ordering in powers of € . oi/L.n far (rom the relevant
turning points and in powers of cllgclosc to such turning points.

Matching the solutions in the Jdifferent regions then leads to

the familiar form of the phase-integral eigenvalue coudition:
Xy
.j;xkx(x,m) = (p + 1/2)r (30)
Xy

where =0, 1, 2, . . . and ky (%, w) is determined by the solu-

tion of the lowest ordor dispersion relation:

2 1 %o w*e\ £ )z (E
ooy ] - e
S 1.2- (Zg+u*e

T

o0 )5 2(54)

1

(31)

Temperature gradients are ignored here for simplicity, and the

turning points, . ard x are determined by

1 2’

k_(x 'm) = kx(xz'm) =0 . (32)

This generally leads to complex values for x, and Xg-



~-20-

The phase~integral procedure outlined here has been

all using an interactive code!? When the

numerically implemente
appropriate evanescent houndary conditions arec imposed, theore
is again no evidence found for the existence of unstable cigen-
modes at short wavelenjths. However, as noted earlier, thesr

numerical studies do not prove in a mathematically definit.ve

sense that such modes cannot eXist.

Iv ION DRIFT EIGENMODES

Unlike the situation for universal mades, the applircation
of the Ritz wethod to the integral equation problem lor ion
drift waves is quite efficient. The obvious reason is that the
small-scalc effects associated with the electron resonance
region (x = xe) are unimportant for these eigenmodes. This fact
is clearly demonstrated by the differential equation . “udies of
long wavelength ion temperature-gradient-driven drift instabilities.
Results from a shooting code analysis of a typizal case (with
parameters Ls/Ln = 20, Te/'I‘i = 2, n, = ng = 2, and kyoi = 1}
~+e displayed in Fig. 3., Here the eigenvalue, w, is calculated
as a function of the mass ratio. For unrealistically large
ratios, such as “E/“& = 1/100, the electron resonances can
introduce substantial shifts in the eigenvalue., However, for
realistic values, such as m.e/mi = 1/3672 or 1/1836, the eigen-
value is negligibly shifted from that obtained assuming purely

adiabatic electrons, i.e. n%/nh = 0 . Hence, to a very good
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approximation, the non-adiabatic effects associated with electron

resonances can be ignored for these modes.

Using the adiabatic response for clectrans, n (eé/Te)n ’

e=
and again considering the case described in preceding comments,

we calculateus the eigenvalue as a function of the azimuthal

2 09

wave number k , or by =k p /2, with a shooting code. As illustrated
y1

or Fig. 4, the results are in agreement with ecarlier calculations2

showing that the growth rate has a maximum near b = 0_.B and that the

Y
made freguency continues to increase beyond by = 1.0. However,

at such relatively short wavelengths the differential eguation

r

used to lerive thrse results is no longer valid. 1In what
follows we will consider only the proper integral equation
cnalysis of these modes.

Since the present eigenmode problem has only one spatial
scale of interest, the kitz method proves to be very efficient
for obtaining solutions to the governing integral equation.
Taking the parameters of the previcus casc sclved with the
shooting code, we used ¢ = 1.0 and N = 120 in the integral

formulation code to obtain the eigenvalue, w/w*e = Wty =

- 0.036 + i0.029, for by = 0.5 (i.e., kvpi =1.0). The

differential equation result, w/w, = : 0.043 + 10.043,
differs by about 20% in the real frequency and 50% in the
growth rate. Agreement between results from the two codes is,
of course, better at longer wavelengths. In the present case,

however, it can be concluded that the non-negligible shifts in

the eigenvalue are due to inaccuracies introduced by the
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differential approximation. This point is best illustrated by
Fig. 5, where the corresponding even eigenfunction and its
Fourier transform, @(kx), are plotted for this case. Although
the roo*-mean-squere value of kP, i8 of the same order as kypi 2
1, it is clear from Fig 5 that the actual distribution in kx for
this mode extends to scveral times ky with appreciahle amplitude.
The dependence of the cigenvalue, w, on the azimuthal
wavenumbet (by) and the ion-temperature gradient (ni) lias also
been investigated with the Inteqral formulation code. dn fig.
6 it is sceh that the maximum growth rate occurs for by between
0.4 and 0.5, and that the real frequency, “w T, reaches a
plateau at by » 0.7. This differs significantly from the
differential formulation results displayed in Fig. 4 which
indicated maximum growth at by % 0.8 and a continuing increcasing
trend for the real freguency beyond bY = 1.0. On the other
hand, the integral equation results for the n, dependence of
the eigenvalue displayed in Fig. 7 is in general gualitative
agreement with the differential equation analysis. Both types

of calculations indicate an instability threshold at n, > I.

V. CONCLUSION

In this paper we have presented a systematic derivation
of the appropriate integral eigenmode equation for analyzing
drift waves of arbitrary radial wavelengths in a sheared slab
("universal"

system. For collisicnless electron drift waves

modes) our main conclusion is that although we cannot definitely

- Cim——— .
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rule out the possible existence of short wavelength absolute
instabilities of this type, no evidence has been found to

support their existence. As a practical point we should alsg

note that the Ritz method is inefficient for dealing with the
universal mode problem bhecause of the stringent requirement
that the basis functions used must properly cover the two widely
different spatial scales associated with the electron and ion
resonang,. . .gions. However, for the ion-temperature-~gradient-
driven ion drift instabilities, the Ritz procedure 1s guite
efficient and allows us to readily explore the behavicr of

these modes throughout the spectrum. This is due to the fact

that the electron resonance effects can be ignored for these
instabil)ities. Our main conclusions for the Hi modes are: (1) even
at short wavelengths (kypi > 1), the instability threshold

remains at n; > 1 ; {2) the maximum growth rate for these modes
occurs around k Py = 1;:; and {(3) the real fregquency reaches a
plateau pear k Py 2 1l instead of following the monotonically

increasing trend exhibited by the differential equation resulgs.
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Fig, 1. Eigenfunction ¢ {x)} and Fourier transform ¢(kx) from the integral formu-
lation code for the parameters: kyp; = 0.63, L./L, = 100, m;/mg = 100, T?/Ti =1,
+ 0

n; = ng = 0, 0 = 1.33 + 0i, and N = 120. The eigenvalue is m/m*e = (.226 .0096;.
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fig. 2. Real and imaginary parts of the eigenvalue w = w + iy versus N, the
number of basis functions used in the integral formulation code. The parameters
irg; kypi = 0.7, Ls/Ln = 56, mi/mE = 100, Te/Ti =1, n; = ng = 0, and 0 = 0.76
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Fig. 5. Elgenfunction ¢(x} and Fourier transform ¢{k_) in the integral formula-
tion with adfabatic electron response for parameters: = 0.5, L/L =20, T /T.
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