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Integral Equation Analysis of Drift tvnve Eigenmodes in a 
Sheared Slab Geometry 

W. M. Tang, G. Rewoldt, and E. A. Frieman 

plasma Physics Laboratory. Princeton University, 
Princeton, New Jersey 08544 

The derivation of the appropriate form for the 
integral eigenmo&e equation governing both electron 
and ion drift waves of arbitrary radial wavelengths 
in a sheared slab is presented. The solutions to 
this equation provide useful information regarding 
the absolute stability of universal modes and ion-
temperature-gradient driven modes for arbitrary 
wavelengths,. and particularly for short wave lengths. 
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1. INTRODUCTION 

The investigation of the stability of drift waves in 
a sheared slab geometry has been actively pursued in numerous 
recent publications. These calculations have dealt with 
long radial wavelength eigenmodes governed by a differential 
equation of the form 

[p^V^x2 + 0(x,i»)]iW = 0 , (1) 

with o. being the ion qyroradius and Q(X,M) being the radial 
potential whose specific form is determined by the particular 
instability considered. However, at shorter radial wavelengths, 
where the assumption |p.3 /3x \ *< 1 breaks down, it becomes 
necessary to deal with the integral equation generalization of 
Eq. (j.;. The present paper is concerned with the derivation of 
the appropriate form of this integral c .gerrrode equation and 
with obtaining solutions for both electron and ion drift waves. 

Results from tha differential eigenmode equation studies 
have indicated that as the aziimithal wave number {k ) is in­
creased to k p. - 1, the radial localization of the mode be-
comes of the order of the ion gyroradius. For electron drift 
waves. this is a consequence of the fact that as k p. is 

y i 
increased, there is a downward shift of the eigenfrequency 

i 
caused by finite gyroradius effects; i.$,,.o> = a I (b )exp(-b ) 

i | , *e o y j with b = k p./2 and I being tie familiar'Bessel function. Since y y Hi o ^ ] p 
the radial position, where ion-iandau damping becomes dominant, 
is proportional to a (i.e., a - IK,, v i wi|tJi v^ being the ion thermal 
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velocity and k a x for a sheared slab), the corresponding 
radial localization of the eigenmode is also shifted to smaller 
values. Hence, it is of interest to apply the proper integral 
equation analysis to examine the stability properties n£ these 
waves at shorter wavelengths. 

2 3 
In the case of ion drift wavus, ' the radial localization 

of the eigenmodps is again determined by the ion-Landau resonance 
region. Differential equation eigenmode studies of ion-temperature-
gradient-driven instabilities of this branch indicate that 
the largest growth rates are found for waves with k i>, approach­
ing one with corresponding eige.imodes localized to a radial 2 3 extent of a few ion gyroradii. ' Since the dominant part of 
the unstable spectrum here falls in the regime of wavelengths 
where the differential eigenmode equation is breaking down, it 
becomes important to generalize the calculation to an integral 
equation analysis appropriate at arbitrary wavelengths. 

Motivated by the preceding considerations, we present a 
systematic derivation of the integral eigenmode equation cf 
interest in Sec. II. In this section the procedures employed to 
solve the resultant equation are also described. Results from 
the computer code implementing the integral equation formalism 
("integral formulation code") are presented in Sec. Ill for 
collisionless electron drift waves ("universal" modes), and in 
Sec. IV for the ion-temperature-gradient-driven ion drift 
instabilities. Finally, we conclude with a brief summary and 
general comments in Sec. V. 
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II. Derivation of Integral Eigeronode Equation 

The term of the integral equation governing collisionless 

electrostatic drift waves for arbitrary k ,->. in a sheare-1 slab 

geometry is derived in this section. Assuming that there is 

no equilibrium electric field, the governing equation for the 

perturbed distribution function f (given, for example, in 

Ref. 4) reduces to: 

where F = F + F ' is the equilibrium distribution function, .;. 

is the gyrophase angle, E is the kinetic energy per unit mass, 

V is the magnetic moment per unit mass, * is the perturhed electro­

static potential, an U =- eB/mc. Species subscripts are suppressed 

here. We deal with a sheared magnetic field given by B - B e, 

+ B (x)e , and consider the ordering 

k B 
=-!' = 0 ( E ) , ^ = 0(e) , (3) 
RJ- B 2 

with E being the fundamental smallness parameter and B taken to be 

proportional to x. Hence, B = B , and n H B/B = n' ' + n ' , 

with n = e and n = (B /B) e , where the superscripts 
w z ~s- y ~~y 
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refer to the order in c. Thus n l '/n = 0(e). F„ is a Max-
wellian and, from Ref. 4, 

„(1) vi . , a F m (4) 
F = — s i n * TTixT • 

14 

To lowest order in c, Eq. (2) becomes 

v..v f a'f f f f J - S v
r f f ; * r o , . v . 4 t - n | f ' W - o ' ( 5 ) 

w i t h t h e n o t a t i o n v | 0 ) = 3 / 5 x , v j 1 ' = 3 / 3 { e x ) , and 7 = V* * = 3/32 

Def in ing h ( 0 ) b y 

f < 0 ) = | , ( 0 ) ^ n + n ( 0 ) f { 6 J 

Eg. (5) becomes 

v . , ( 0 ) h ( 0 ) _ fl 3 n ( 0 ) m 0 # 

Without lc>ss of g e n e r a l i t y , we can e x p r e s s h in t h e form: 

h = ( 2 T O ~ 1 / 2 j d k x h (E,vt,(t.,k x) e x p i ( k x x + k,,z - wU . 
— CO 

(8) 



Hence Eq. (7) becomes 

<ik xv icos4, + ik v A sin .J. -Qd/3^) h exp i (k x + k y) 

Letting h = h (E,u,k )g(.t) gives 

0 . 

(9) 

ik v. 
x •*• 

ik Vj -
cos J + - * — sin* = - ^ g (10) 

so that 

g(<M = exp i -75- (k sin * - k cos 40 :ID 

From Eq. (8) , we then get 

n ( 0 ) = C 2 T I ) " 1 / 2 dk h ( 0 ) (E,u,k ) exp i (k x + k y + k z - ut + L] 
J X A J\ y Z 

( i ? . ) 

w i t h L ~ (v^/ft) (k s i n <|> - k 'OS $) . Now we need t o de te rmine 

h from t h e f i r s t o r d e r form of Eq. ( 2 ) , which becomes: 

# ( 0 )

+ v n „ t « » . v ( i ) £ t o ) + ( D . v ( 0 ) f { 0 ) + : : : ± . y ( U f ( 0 ) + V i . v < « » f « i » 

- e / m V ( 0 > * < 0 ) 

f (1) 1 3 F ( D ( Q ) x a p ( D 

- e/m 
3 F

m 

m 
"5E -

V ( 1 V 0 ) . v 1 + v.. „ < U . V ( 0 )

+ n ( 0 ) . v a ) . ( 0 ) 

3 f C 1 > 

n T T = 0 
( 1 3 ) 
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In terms of h this becomes 

i w h(0) + £ | | < 0 ) ^ + V | ) »(0) .v(l> h(0) + ^ ( D > 7(0) h(0) 

+ (D h(0) +|,(0» (1) 9P + 7<0) f(l) _e 7(0),(0) 
«E 

a ^ ( 1 > = o 
(14) 

Aga in without loss of generality we can express * in the forifl: 

,< 0 ) = { 2 « ) " 1 / 2 f" dk x* ( 0 )(k x) e x P i [ k x x + k y y + k 2 z - utJ . 

Using Eq. (12) for h and expressing f in the form; 

(15) 

f'1' = M - 1 ' 2 J dkx f ' (E,u,<f,Xxlej'.p i k xx+K y + kz2 - ut+Lj i 

Mb) 

Eq. (14) reduces to the following forn after averaging over the 
gyrophase Angle $: 
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i w h ( 0 ) + i u Sjt ° F J T m o ( k ^ / n ) + i k

z

 v n h 
(0) 

+ l k y vll B h + i" * 
0 1 ( e ~ i L ( v , 

» 2 F . 
COS m 

»E 8(£x) 

- ik k~^* l l ,-rf ') -*—?r] 
i ky [*. s i"» ( f U ) + ^ 7 £ U > • £ » • • i^ 1 )]}) 0 , 

(17) 

1/2 / 2 2 \ ' where k , = I k + k I , J i s t h e u s u a l B e s s e l f u n c t i o n , and \ x y / o 

<• • •> -- h fi . 2 i i 
/d* . . . 

Substituting for F ' from Eq. (4), the last term in r:q. fl7) 
becomes 
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( • v, cos ^ - i k x -± cos 4. sin * 0_ 
3E a(ex) SE a(ex) 

" lky U s i n * ^Tux) + n?(^/'J/ 

e "(0) i k y dFm 
n i)(ex) < . - ) m 3E a<ex) \ e 

v A cos $ - i f k cos $ + k sin $] — sin 0 ) 

ik HF y m € ^'(0) 
m n 3(ex) ( ^ ) 

> 2F 
m --E -\ (ex) 

* v-i ( ^ | s i n * e x p [* T ( k y c o s * • k * s i n vJ}7 

e ;{0) ^JL *Fm 
m a s(ex) o ( ^ ) 

So, Eq. (17) reduces to 

i«> • * " " F_ , / k j ^ . \ / Ul-U.̂  \ 
V n / U-kj,v|( / (IB) 
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with kM = Jtz + k B / B , ^1 = ^ [1 + n (mE/T - 3 /2) J, 

n = (d In T/dx)/M l u n / d x ) , u ^ = - k (cT/eflL ) and L, 

-{d In n / d x ) ~ . w i t h h ( 0 ) t h u s d e t e r m i n e d , Eg. (12) 

y i e l d s : 
T 

*V = I '. ( w - k i l V | | ) " P M V + k==* " w t ) ( 2 " > ~ l / 2 

Finally, the gyrophase-averagod perturbed distribution function 
can be expressed as 

'(0) 2 f kx vA ^ / \ 
* * ( k

x ' J

0 \ ~n~) • " P 1 1 k

x

x + V + k z z " u j t ) 
(20) 

If we write B /B = x/L and take k = 0 (which is equivalent to a 
change in origion of x>, then k M = kV"x/Lg = kjjx. 
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We will use the notation *' = <J>(x) exp i (k v - ut) for 

the perturbed electrostatic potential and n., = n^ (x) exp i |k y-ut] 
for the perturbed density, where j » i for ions with charge e 
and j = e for electrons with charge -e. Carrying out the velocity 
space integrations of Eq. (20) gives 

^f L * , x ) + ( v f r ^ z ( C i ) ( 2 * r l / 2 7 d k x e x p ^ v > 

) | W - , , ^ ( 1 - | n . ) ) r o - ^ . n i i r o + b d ^ - r „ ) ) ( 

[ 2 T I ) " 1 / 2 / i x e x p ( - i k x x > i j . ( x ) , (21) 

and 

• z ( f , e ) 

- € e " ^e Z ( e e 0 ^ 1 • (22) 

1/2 Here v.. = (2^/^) x/*, ^ = u/jv^'j x |) , r Q j - I. ^Wexpf-b), 
I Qand I are modified Bessel functions of the first kind, 
b ~ ; k x + k y ) p i / 2 5 b x + by' Pi B v i / S V a n d z i s t h e u s u a l P 1 ^ 
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dispersion function. In computing n , k xp .= k±v /It has been 
assumed to be negligible. Although Eqs. (21) and (2?) are valid 
only in the collisionless limit, the addition of electron 
collisions by means of a number-conserving Krook model is straight­
forward. 

Tho equation to be solved for the normal modes is just tho 
quasi-neutra]ity condition, 

0 - ^ - nL . (23) 

This equation can bo solved by means of a Ritz mofhod. First ;(«) 
is decomposed into appropriate basis functions; 

~ °° 

n- n 

where 

h n ( x ) = H n ( o 1 / 2 k BX) exp 1- a k 2

y s 2 x 2 / 2 > M j ; 1 / 2 , (25) 

s = (q ' r /q ) i s the usual shear parameter, Hn i s the 
1/2 n Hermite polynomial of order n, and Mn H (if/a) 2 n l . The 

opera tor 

~ K s /••" T k s e 

is then applied to Eq. (23) to give the matrix equation 
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£ L n n ' ( w , * n = ° • ( 2 6 > 

n-0 

where 

, / , = d + l±) & , + k s / d x h . (x) I * - — X z (l, L n n ' 1 ' \ T. / nn ' y J n U v K | x J . , , , . . . . > 

u * e n 

+ -v k,. e II 

T e 

fe(^U0) "C. " f-eZ «.)) 

( ^ T R Z ( t i } { 2 n ) ' 1 / 2 / ^ e x P ( i k x x ) T. 
l v 1 II 

j [ u , - ,..,. (i - § , . ) ] r o - »t.*h tr o + b (r, - r 0)] 

• t i t [ > ; + C? z (5 i»] (2 i r ) J ' ^ / d k e x p l i k v ) 

r \ { 2 n ) " 1 / Z ^ d x e x p ( - i k x x ) J h n <x j . (27) 

In practice, the summation in Eq. (26) will be truncated to a 
finite number of terms, K. The complex constant o in Eq. (25) 
can be adjusted to minimize N, with the requirement that Re(a) > 0 
so that lim (j>(x) = 0 . The basis functions given in 

x-»±~ 

E^. (?5) have the useful property that their Fourier transforms 
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a r e Vnown a n a l y t i c a l l y , e . g . 

t 2 n f 1 / 2 fix e x p ( - i k x j h fx) = l l L i l h / '_* _\ (23) 

so that Eq* (27) can be rewritten an 

v T ^ i 2( ;. c) 

T 

f [^-T^i' , a i , r l / 2 f'**°*"<W 

X j ID - ll j [,, - .„,. d - j n . ) ] r o - ^ n . [ r o + b (r, - r )] 

gi ( i . + t j Z ( t j ) (2m- 1 ' 2 / d k x exp Ukx>:) ;•. ] 
v.k,; |x 

y y J 

[29) 

Kence only the x and k integrals need to be performed numerically 
when evaluating L ,. The numerical method useci is high order Gauss-^ nn 
Hermite quadrature . However, for the electron x integration, a 
separate Gaussian quadrature formula is used in the inner layer 
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x • 2x = 2'u'/(k,,'v ) . The numerical method used to determine e 11 e 

the eigenvalue of u for a selected eigenfunction is exactly that 
described in detail in Ref. 7 for the corresponding toroidal 
problem. 

The usual second-order differential equation may be obtained 
irom Eq. (23) by expanding the Bessel functions in Eq. (21) 
through second order in k p •• • 1, leaving k r>4 arbitrary. 
Speci f ically 

<b) * • (ty + tr^by) - r <b y))b x , 

and 

b[r,(b) - :, (b)] = b ir (b >-r (b )] - ir (b ) 

+ 2b |r,(b ) - r (b )]|b . y 1 y D y x 

With appropriate integrations by parts, the integrals in Eq. (21) 
may then be performed to yield the familiar second order 

1-4 
differential equation governing long radial wavelength drift 
eigenmodes. 
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III. ELECTRON DRIFT EIGENMODES 

As noted in the preceding section, the spatial v-ir i at .(itis in 
the equilibrium quantities is toxen to be- much weaker than l ho 
variations on tho .scale of I he porturhat i ons. Within t hr fr.iinf-
work of thic fami lint ordering it has been demoris-traLed thnt 
collisionless electron drift waves ("universal modes') are. ab­
solutely Stable at long radial wave lengths iu a sh.aa.ced slab 
geometry. However, for larger azinuthal wavenumbers (k ,>. • I), 

the corresponding tighter radial localization of the eiyenmodes 
(discussed in .sec. 1) forces a consideration of shorter radial 
wavelengths. Since tho differential equation formulation break./ 

down as k p. •* 1, it becomes necessary to solve the integral >• I 

eigenmode equation to determine tho behavior of these waves in 
the shorter wavelength part of the spectiuir. 

As described in Sec. tl-B, we have developed a computer 
code which implements the basis function, or Uiti, method to 
solve, the eXq,e_Dmod.e eâu.a.ti.cjn. at Lateiest- For. the. auai-vsis. °£ 
universal modes, this numerical procedure is limited by the 
requirement that there are two distinctly different length scales 
in the problem. Specifically, it is necessary to choose a 
sufficient number of appropriate basis functions to cover both 
the small-scale region around the average electron resonance 
point x = Iwl/k'v , as well as the large-scale region out to 
c ' e II e 
the average ion resonance point, x i = |iu|/k v T" properly 
determine the stability properties of these modes it has been 
emphasized in the differential equation studies that it is 

http://sh.aa.ced
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ussentiiil to account for the detailed behavior around the narrow 
1/2 electron resonance region. Since the ratio, *../xe = ( m

i
T
e/ r n

e
Ti> > 

is obviously very large, the required number of basis functions, 
N, becomes correspondingly prohibitive for realistic mass rdtios. 
in particular, i •' is found that the largest ratio, xi/x , that 
can be practically handled is roughly equal to N ' . Hence, in 
the cases studied by this numerical procedure, we are restricted 
to artificially small mass ratios. 

As a check on the integral formulation code, we considered 
some moderate wavelength cases (k p. - 1) which arc near the 
limits of validity of the differential formulation. For a re­
presentative use with m./m = 100, k p. = 0.63, L /L = 100, 
' l e y l s n 
T = T., 'i = r|. = 0, and o = 1.33, ^e obtained an eigenvalue c l e l 

_3 of ^/^„ = 0.2261 + i9.fixlo using 120 basis functions. Although 
not as accurate, this result compares reasonably wo]] with a 
differential shooting code calculation of the same case using 

g 500 equally-spaced grid points in x. Spt.<ci f i ca 1 ly , tlio shooting 
code result is wAl*„ = 0.2294 + i5.0-10" . The even eigenfunction 
and its Fourier transform, iji(k ), calculat'-d by the integral 
formulation code for this case are shown on Fig. 1. Here it is 
seen that, as expected, the eigenfunction is evanescent beyond 
the ion Landau resonance region, |x| > x. . It is also of 
interest to note that the Fourier transformed eiv;nfunction 
for this moderately short wavelength case is dominated by values 
of k p. around 2. x l 
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To illustrate the qualitotivo behavior of the un l v;: sal 
mode of shorter wavelengths, wo now consider a represcmativo 
case with 11^/mQ -- 100, k r̂  = 0.71, 1-S/L " rj6, T " T , 

ni = r'c = °' a n < 5 '' " °- 7 6- 0 n I-'i'l- 2 > t n c oi'ie-ivaluo u 

(normalized to „ t ) is shown as a function of 11 f'jr one even 
oiyenfunrtaon. Thc results h<-r<- demonstrate th.iL .i.; the proper 
number of basis functions required to describe » he <-i |en f \inr:L ion 
is approached, the corresponding eigenvalue becomes that ot a 
damped normal mode. In this, as well as for nil of thc other 
cases examined, we have found no evidence lor thc development 
of unstable universal cigenmodes at thc shorter r.nhiii wave­
lengths where differences between thc integral .jni di: ferentLa J 
formulations are significant. It should be rioted, however, 
that those results in themselves do not constitute a mathematical 
proof for thc non-cxistcncc of unstable short wavelength >jniv<..rsal 
modes. 

Tho lack of numerical efficiency of the Uitz method procedure 
for dealing with the universal modes is not difficult to under­
stand. Since the basis functions die off rapidly in :•: beyond 
the width of the highest-n basis function kept, thoir truncation 
effectively forces the eigenfunction to zero at a very short 
distance beyond this x-value. The requirement then is that this 
point must fall well outside the ion Landau damping region 
(x = x.), where the wave energy is absorbed. If this criterion 
is not met, the artificial forcing of the eigenfunction to zero 
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introduces corresponding spurious reflection of tho outgoing 
energy. As a result, incorrect positive growth rates of the 
type shown in Fig. 2 can be readily generated. 

Motivated by the preceding considerations, v;c have also 
analyzed the integral equation problem by a WKu procedure. fts 
described in etail in Ref, 10, this involved the introduction 
of o.n ordering in powers of e . o./L far from the relevant 

1/1 . • 
turning points and in powers of c close to sujh turning points. 
Matching the solutions in the different regions then leads to 
Lhe familiar form of the phase-integral eigpnvalue coudition: 

jdxkx(x,ui) = (p + 1/2) r (30) 
* i 

whore t, = 0 , 1 , 2 , . . . and k (x,w) is determined by the solu-
tiar, of the lowest ordor dispersion relation: 

\ * y/ 2 J / T e u ,*e\ 
( T - + t r ) ( 5 i ) z ( q ) 

(31) 

Temperature gradients are ignored here for simplicity, and the 
turning points, :: ar.dx,, are determined by 

k xCx 1 u) = ^ x(x 2 di) = 0 . (32) 

r 
0 

This generally leads to complex values for x.. and x 
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The phase-integral procedure outlined here has been 
11 i-i 

numerically implemented using an interactive code.' When th<=> 
appropriate evanescent boundary conditions arc imposed, thore 
is again no evidence found for the existence of unstable eigen-
modes at short wavelengths. However, as noted earlier, these 
numerical studies do not prove in a mathematically definitive 
sense that such modes cannot exist. 

IV ION DRIFT EIGENMODPS 

Unlike the situation for universal modes, the application 
of the Ritz method to the integral equation problcn. lor ion 
drift ijavcs is quite efficient. The obvious reason is that the 
small-scale effects associated with the electron resonance 
region (x - x ) are unimportant for these oigenmodeu. This fact 
is clearly demonstrated by the differential equation . "-udics of 
lonq wavelength ion tempcrature-gradient-driven drift instabilities. 
Results from a shooting code analysis of a typijal case (with 
parameters L /L =20, T /T. = 2, n. = n = 2, and k p, = 1) 
r~e displayed in Fig. 3. Here the eigenvalue, w, is calculated 
as a function of the mass ratio. For unrealistically large 
ratios, such as m /m. = 1/100, the electron resonances can 
introduce substantial shifts in the eigenvalue. However, for 
realistic values, such as n̂ /rr̂  = 1/3672 or 1/1836, the eigen­
value is negligibly shifted from that obtained assuming purely 
adiabatic electrons, i.e. m /m. = 0 . Hence, to a very good 



-21-

approximation, the non-adiabatic effects associated with electron 
resonances can be ignored for these modes. 

Using the adiabatic response for electrons, n = (e<fi/T )n , 
and again considering the case described in preceding comments, 
we (.alculatfcci the eigenvalue as a function of the aniiriuthal 

2 2 wave number k , or b £ k f>""/2, with a shooting code. As illustrated Y y y i 
on Firj. 4, the results are in agreement with earlier calculations 
sliowinrj that the growth rate has a maximum near b = D. 8 and that the 
mode frequency continues to increase beyond b = 1.0. However, 
ai such relatively short wavelengths the differential equation 
used to lerive these results is no longer valid. In what 
follows we will consider only the proper integral eguation 
analysis of these modes. 

Since the present eigenmode problem has only one spatial 
scale of interest, the Ritz method proves to be very efficient 
for obtaining solutions to the governing integral equation. 
Taking the parameters of the previous case solved with the 
shooting code, we used a = 1.0 and N = 120 in the integral 
formulation code to obtain the eigenvalue, u/io, = UT 
- 0.036 + iO.029, for b = 0.5 (i.e., k vp = 1.0). The 
differential equation result, UJ/O)4 = - 0.043 + 10.043, 
differs by about 20% in the real frequency and 50% in the 
growth rate. Agreement between results from the two codes is, 
of course,, better at longer wavelengths, in the present case, 
however, it can be concluded that the non-negligible shifts in 
the eigenvalue are due to inaccuracies introduced by the 
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differential approximation. This point is best illustrated by 
Fig. 5, where the corresponding even eigenfunction and its 
Fourier transform, ^(k^), are plotted for this case. Although 
the root-mean-squ?re value of k p. i R 0f tho same order as k P =-

X I y ]. 
1, it is rlpar f"ron l-'iij. r> that tho actual distribution in k for 

X 
this mode ei;t"-idR to several times k with appreciable amplitude. 

The dependence of thf eigenvalue, t», on the azimuthal 
wavenumbei (b ) and the ion-temperature gradient (n.) has also 
been investigated witfr the integral fanmriation cod's. Ou rig. 

6 it is seeh that tho maximum growth rate occurs for b between 
y 

0.4 and 0.5, and that the real frequency, -iu x , reaches a 
plateau at b •> 0.7. This differs significantly from the 
differential formulation results displayed in Fig. A which 
indicated maximum growth at t - 0.8 and a continuing increasing 
trend for the real frequency beyond b = 1.0. On the other 
hand, the integral equation results for the p. dependence of 
the eigenvalue displayed in Fig. 7 is in general qualitative 
agreement with the differential equation analysis. Both types 
of calculations indicate an instability tAresftoIcf at r\. > 1. 

V. CONCLUSION 

In this paper we have presented a systematic derivation 
of the appropriate integral eigenmode equation for analyzing 
drift waves of arbitrary radial wavelengths in a sheared slab 
system. For collisionless electron drift waves ("universal" 
modes) our main conclusion is that although we cannot definitely 
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rule out the possible existence of short wavelength absolute 
instabilities of this type, no evidence has been found to 
support their existence. As a practical point we should also 
note that the Ritz method is inefficient for dealing with th$ 
universal mode problem because of the stringent requirement 
that the basis functions used must properly cover the two widely 
different spatial scales associated with the electron and ion 
rosonanCl. . .jions. However, for the ion-temperature-gradient-
driven ion drift instabilities, the Ritz procedure is quite 
efficient and allows us to readily explore the behavior of 
these modes throughout the spectrum. This is due to the fact 
that th e electron resonance effects can be ignored for these 
instabilities. Our main conclusions for the TI, modes are: (1) even 
at short wavelengths (^VPJ > 1), the instability threshold 
remains at n. > 1 ; (2) the maximum growth rate for these modes 
occurs around k p. = 1 ; and (3) the real frequency reaches a 
plateau near k p. > 1 instead of following the monotonically 
increasing treilif. exhibited by the differential equation results. 
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79232** 
Fig, 1. Eigenfunction $M and Fourier transform *(k x) from the integral formu­

lation code for the parameters: k yp ; = 0.63, L s/L n = 100, m[/m e = 100, T /Tj = 1, 
n- = n = 0, a = 1.33 + Oi, and N = 120. The eigenvalue is c>/uA = 0.2261 + 0.0096;. 
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792312 
fig. I. Real and imaginary parts of the eigenvalue to = u> + iv versus N, the 

number of basis functions used in the integral formulation code. Tbs parameters 
are: k vp. = 0.71, L,/L = 56, ni;/m = 100. T./T, = 1 , n. = n * 0. and a = 0.76 
+ Oi . *r\ 
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79?5A6 
Fig. 5. Elgenfunction *(x) and Fourfer transform *(k ) in the integral forriula-

tion with adfabatic electron response for parameters: 8., = 0.5, L /L = 20, T /T. 
= 2 , 1 + O i , and N 120. The e igenva lue i S Y ID /L> A = - S Q .836 + 0 - ^ S i ! 
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