

MASTER

TRANSFER REACTIONS WITH HEAVY ELEMENTS

Darleane C. Hoffman

Nuclear Science Division, Lawrence Berkeley Laboratory
University of California, Berkeley, CA 94720

LBL--21384

DE86 011316

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This work was supported by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Q5W

TRANSFER REACTIONS WITH HEAVY ELEMENTS

Darleane C. Hoffman

Nuclear Science Division, Lawrence Berkeley Laboratory
University of California, Berkeley, CA 94720

In the last few years there has been a renaissance of interest in transfer reactions with heavy element targets. Some early studies of transfer reactions¹⁻³ were performed and P. Eskola³ pointed out in 1975 that in many cases nuclides could be produced in high yield by heavy ion transfer reactions when they could not be produced by compound nucleus reactions. Nevertheless, until recently these reactions remained relatively unexploited in favor of fusion reactions between the heaviest actinide targets available and relatively light projectiles. Such reactions were used in the discovery of the new elements 102 through 106. However, because of the rather high excitation energies of the compound nuclei produced in this way, severe losses from prompt fission and particle emission occur and the production cross section for element 106 was only 0.3 nb for the ^{249}Cf (^{18}O , $4n$) reaction to make $^{263}\text{106}$. The discovery of still heavier elements depended on a rather radical departure to the use of lighter elements and "cold fusion", a method first used by Oganessian and co-workers⁴. This technique was exploited by Münzenberg et al.^{5,6,7} to produce elements 107, 108, and 109 using the relatively "light", stable targets Bi and Pb with the heavy ion beams of ^{54}Cr and ^{58}Fe available at GSI.

Like the "cold fusion" reactions, binary transfer reactions are attractive because heavy products can be produced with low excitation energies in reactions between heavy ions and the heaviest actinide targets. This is primarily because many of the reactions to produce heavy actinide products are rather endoergic and energy must be provided in order to make these reactions proceed. In these binary transfer reactions, nucleons or clusters of nucleons are exchanged between target and projectile without complete fusion. In addition to the fact that many of the ground state Q values are negative, the resultant projectile-like fragment carries off much of the kinetic energy and

angular momentum, thus leaving a residual heavy product with low excitation energy and, therefore, a highly reduced probability for fission or particle emission compared to products from the complete fusion process. Eskola³ also pointed out that the cross sections for products between the target and compound nucleus are larger than for the compound nucleus reactions. This can be both beneficial and detrimental inasmuch as it means that literally a plethora of products between target and compound nucleus can be produced and identification of a specific product can be very difficult.

We "rediscovered" transfer reactions⁸ with heavy element targets in 1979 when we used our rotating wheel system, the MG (Merry-Go-round) to detect 1.5-s ²⁵⁹Fm from the reaction of 95-MeV ¹⁸O projectiles with a ²⁴⁸Cm target. The ²⁵⁹Fm was presumably produced via an effective transfer of ¹¹Be to the ²⁴⁸Cm with a cross section of about 15 nb. In order to see if this cross section was reasonable and to positively identify and measure the cross sections for other products, we began a systematic study of products of this and other target-projectile systems using off-line radiochemical techniques. Our early results¹⁰ for ²⁴⁸Cm with ¹⁶O, ¹⁸O, ²⁰Ne, and ²²Ne showed that the peaks of the mass-yield curves for Bk through Fm are about 2 mass units larger for ¹⁸O and ²²Ne than for ¹⁶O and ²⁰Ne, thus reflecting the two-neutron excess of the heavier projectiles.

Since then the production of heavy actinides from the interactions of ²⁴⁸Cm, ²⁴⁹Bk, ²⁴⁹Cf, and ²⁵⁴Es targets with a variety of projectiles has been studied¹¹⁻¹⁵ by several collaborations using the accelerators at both GSI and LBL and on-line as well as off-line radiochemical separation techniques. (See Table I.) Excitation functions were measured¹¹⁻¹³ for reactions of ²⁴⁸Cm and ²⁴⁹Cf with ¹⁸O ions from energies just below to 50 MeV above the Coulomb barriers and for ²⁴⁸Cm with ⁴⁰Ca and ⁴⁸Ca ions with energies from just below to 80 MeV above the Coulomb barriers. The results of these measurements can be summarized briefly as follows:

1. The production of neutron-rich heavy actinides is enhanced by the use of the neutron-rich projectiles ¹⁸O and ²²Ne, reflecting the 2-neutron excess of the projectiles over ¹⁶O and ²⁰Ne.

2. The maxima of the isotopic distributions occur at only 2 to 3 mass numbers larger for ^{48}Ca than for ^{40}Ca reactions with ^{248}Cm .
3. The cross sections decrease rapidly with the number of nucleons transferred.
4. The use of neutron-rich targets favors the production of neutron-rich isotopes.

5. "Cold" heavy products are produced. For most of the heavy isotopes measured, the excitation functions are quite broad and do not decrease rapidly with increasing energy, in contrast to the compound nucleus reactions.

6. Comparisons with simple calculations of the product excitation energies assuming binary transfers indicate that the maxima of the isotopic distributions occur at the lightest product isotope for which the energy exceeds the reaction barrier.

7. The cross sections for transfer of the same nucleon clusters appear to be comparable for a wide variety of systems.

At about the same time these results were becoming available, a workshop was convened in 1983 by the National Research Council at the request of the U.S. Department of Energy to assess¹⁶ the current status and future opportunities in research with transplutonium elements. In the area of nuclear research, the panel concluded that, "the exploration of the limits of nuclear stability is a prime motivation for studying nuclear species with the highest atomic numbers accessible. Improved understanding of nuclear-reaction mechanisms recently achieved gives great promise for reaching uncharted regions of nuclei at the upper end of and beyond the actinides, including presumably longer-lived isotopes of known elements than were previously available and possibly the long-sought superheavy elements of $Z \approx 114$ with neutron numbers near 184."

In the area of chemical research, the panel concluded that, "From the chemist's point of view, the periodic table of elements is the most basic road map and to extend it to its farthest reaches is an obvious goal... Focus on the most basic chemistry for the trans einsteinium elements, including determination of properties of the metallic atoms, range and stability of oxidation states, ionic radii and complexation behavior, and simple binary molecular species." As an imaginative

response to these recommendations, a consortium of four national laboratories in the United States, Lawrence Berkeley Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and Oak Ridge National Laboratory proposed¹⁷ the Large Einsteinium Activation Program or LEAP to prepare a source of ²⁵⁴Es more than 10 times larger than the current production. The LEAP proposal constituted a major initiative to exploit the currently existing expertise in heavy element research and the unique potential for processing ²⁵⁴Es which exists at the HFIR-TRU complex at ORNL.

The program proposes production of the largest ever target of ²⁵⁴Es, at least 30 micrograms, which would permit preparation of a 400 $\mu\text{g}/\text{cm}^2$ target by depositing the ²⁵⁴Es with a diameter of about 3 mm. The scientific goals of the LEAP are threefold: 1) to produce and identify neutron-rich isotopes of the heaviest elements by bombardment of the target with neutron-rich heavy ions in order to study nuclear properties, especially spontaneous fission, at the extreme limits of nuclear stability; 2) to prepare sufficient quantities of the heaviest actinides and transactinides for studies of their chemistry; 3) to produce superheavy elements by irradiation of the ²⁵⁴Es target with ⁴⁸Ca, which gives a compound nucleus whose neutron number of 183 is nearer the predicted closed shell at 184 than has previously been achieved. These studies require access to an accelerator which can provide stable and relatively high intensities of neutron-rich light heavy ion beams such as ¹⁸O, ²²Ne, and ⁴⁸Ca.

Since that proposal was prepared and presented the laboratories involved have proceeded with "pre-LEAP" experiments which are confirming the prediction that transfer reactions between heavy ions and an ²⁵⁴Es target can provide access to the unexplored region of neutron-rich heavy element isotopes of the trans-einsteinium isotopes. (See Fig. 1.)

Recently, the previously unknown ²⁶⁰Md was produced and isolated¹⁸ from the products of ¹⁸O and ²²Ne reactions with a 40 $\mu\text{g}/\text{cm}^2$ ²⁵⁴Es target. The cross section for its production was measured to be 0.3 microbarns for both ¹⁸O and ²²Ne reactions with ²⁵⁴Es, consistent with predictions for a ⁶He transfer based on the systematics for He transfers for a variety of target and projectile systems. The half-life was measured to be 32 days, much longer than

predicted. (See Table II.) The mass was determined by electromagnetic separation and the element assignment was based on the production cross section¹⁹ and the predicted decay properties for isotopes of mass 260. Subsequent experiments indicated that ²⁶⁰Md decays primarily by spontaneous fission rather than by electron capture or beta decay.

The use of transfer reactions with ²⁵⁴Es has also permitted the extension of measurements²⁰ of mass and kinetic-energy distributions for the spontaneous fission (SF) of a number of additional heavy element isotopes and has revealed that although the mass distributions for ²⁵⁴Fm, ²⁵⁹Md, ²⁶⁰Md, ²⁵⁸No, and ²⁶⁰104 are all symmetric, the full-widths at half-maximum vary from 8 mass units for ²⁵⁸Fm and ²⁶⁰Md to 36 mass units for ²⁶⁰104. Asymmetric tailing in the total kinetic energy distributions was observed at both higher and lower energies than the most probable total kinetic energy. These observations have been interpreted²⁰ as resulting from a mixture of liquid-drop and fragment-shell controlled fission.

²⁶⁰Lr (half-life = 3 min) has been prepared by ²²Ne reactions (⁶Be transfer) with an ²⁵⁴Es target and by ¹⁸O reactions with a ²⁴⁹Bk target. We have determined its elution position from a cation exchange resin column with alpha hydroxyisobutyrate has been determined relative to the rare earth pairs Yb-Er and Tm-Ho. Its elution position was very close to that of Er and from the data obtained from many runs in which only about an atom every other run was detected, the ionic radius was deduced to be 0.885 + 0.004 angstroms. This is in excellent agreement with the prediction of 0.885 made by Goldman & Morss²¹. Additional experiments to prepare the predicted +1 oxidation state are planned but would be much easier with the proposed large ²⁵⁴Es target.

We are continuing our investigations of transfer reactions with different target and projectile systems and have recently measured the actinide production cross sections for ¹⁸O reactions with ²⁴⁹Bk and ²⁴⁹Cf targets with both our on-line rotating wheel system and with off-line radiochemical techniques. (See Fig. 2.) The on-line measurements indicate the production of both ²⁵⁶Lr and ²⁶⁰Lr from the ²⁴⁹Cf target, effective transfers of ⁷B and ¹¹B, with cross sections of about 10 and 40 nb, respectively. These are at the optimistic end of the range predicted earlier (See Table III) for B

transfers. Pending the availability of a large ^{254}Es target, it may be much easier to produce ^{260}Lr via a ^{11}B transfer to ^{249}Cf rather than by the 180 (alpha, 3n) reaction with ^{249}Bk which has a cross section of only 20 nb. If the B transfer cross sections are this large, it would also be feasible to produce sufficient quantities for chemical studies of isotopes of element 104 from a large ^{254}Es target.

Our on-line measurements of the ^{249}Bk target showed evidence for both No and Lr isotopes (B and C transfers), but because of the rapid growth of ^{249}Cf into the ^{249}Bk , large corrections for ^{249}Cf were necessary and confirmation awaits additional measurements on a freshly separated ^{249}Bk target. We are particularly interested in measuring yields of some transfer reactions with odd Z targets such as ^{249}Bk to see if there is a pronounced effect on the yields of various types of transfers. Schädel et al.¹⁴ compared their results for Li and Be transfers to ^{254}Es (odd-Z) with our earlier results^{10,11} for ^{248}Cm (even Z) interactions with 180 and ^{22}Ne projectiles. The cross sections are roughly comparable for the ^{22}Ne reactions, but the yields are considerably lower for the 180 reactions. However, since the 180 energy used was only about at the Coulomb barrier and the reactions to produce most of the measured No and Lr isotopes are quite endoergic, the excitation functions need to be investigated before a firm conclusion can be reached. Our measured excitation functions¹¹ for 180 reactions with ^{248}Cm and ^{249}Cf to produce Es and Fm isotopes show maxima which are related to the calculated²² reaction barriers. The maxima of the excitation functions tend to be at higher energies for those isotopes with lower calculated excitation energies. Furthermore, it appears that the cross sections for endoergic reactions remain relatively low even when the projectile energy is increased. Perhaps this can be partially explained if the energy is apportioned according to the fraction of projectile mass transferred. Then for these reactions somewhat less than half of the incident kinetic energy above the Coulomb barrier would be expected to result in internal energy of the target-like product. This may account for our observation for the reactions of ^{248}Cm with ^{48}Ca that the excitation functions¹³ reached a maximum some 20 MeV above the Coulomb barrier (consistent with our calculations indicating quite negative excitation energies), but

decreased only slowly with projectile energies as high as 80 MeV above the barrier. However, our earlier attempts to correlate the fraction of projectile energy transferred for the 180 O + 248 Cm and 249 Cf systems with the fraction of projectile mass transferred indicated that about half the projectile kinetic energy was transferred for up to 8 nucleons transferred. Obviously additional experiments are required in order to better understand the energy partition for these systems.

All of the "pre-LEAP" experiments conducted to date have confirmed the potential for performing additional exciting experiments with a still larger target of 254 Es. It also appears to be feasible to produce²³ such a target and we are hoping that we will soon be able to take this LEAP forward!

References

1. T. Sikkeland, N. H. Shafrir, and N. Trautmann, Phys. Lett. 42B, 201 (1972)
2. R. L. Hahn, P. F. Dittner, K. S. Toth, and O. L. Keller, Phys. Rev. C10, 1889 (1974)
3. P. Eskola, "Studies of Production and Decay of Some Alpha-Active Isotopes of Einsteinium, Mendelevium, Nobelium and Lawrencium," Dept. of Physics, University of Helsinki, Report Series in Physics 195, No. D5 (1975)
4. Yu. Oganessian, A. S. Iljinov, A. G. Demin, S. P. Tretyakova, Nucl. Phys. A239, 353 (1975)
5. G. Münzenberg et al., Z. Phys. A300, 107 (1981)
6. G. Münzenberg et al., Z. Phys. A317, 235 (1984)
7. G. Münzenberg et al., Z. Phys. A309, 89 (1982); A315, 145 (1982)
8. D. C. Hoffman et al., Phys. Rev. C22, 1581 (1981)
9. D. C. Hoffman, J. B. Wilhelmy, J. Weber, W. R. Daniels, E. K. Hulet, R. W. Lougheed, J. H. Landrum, J. F. Wild, R. J. Dupzyk, Phys. Rev. C21, 972 (1980)
10. D. Lee, H. R. von Gunten, B. Jacak, M. Nurmia, Y.-f. Liu, C. Luo, G. T. Seaborg, and D. C. Hoffman, Phys. Rev. C25, 286 (1982)
11. D. Lee, K. J. Moody, M. J. Nurmia, G. T. Seaborg, H. R. von Gunten, and D. C. Hoffman, Phys. Rev. C27, 2656 (1983)
12. D. C. Hoffman, Accts. of Chem. Res. 17, 235 (1984)
13. D. C. Hoffman et al., Phys. Rev. C31, 1763 (1985)
14. M. Schädel et al., preprint GSI-85-30, August 1985, Phys. Rev. Lett. (in press)
15. J. Wild et al., GSI-84-1, ISSN 174-0814, p. 15, March 1984
16. Board of Chemical Sciences, National Research Council, National Academy Press, Washington, D.C. (1983) "Opportunities and Challenges in Research with Transplutonium Elements"
17. A. Ghiorso, D. C. Hoffman, E. K. Hulet, O. L. Keller, and G. T. Seaborg, Lawrence Berkeley Laboratory Report PUB-5118 (1984)
18. R. W. Lougheed et al., LLNL Nuclear Chemistry Division FY85 Annual Report, UCAR 10062/85-1, p. 4-44
19. J. F. Wild et al., ibid., 4-47

20. E. K. Hulet et al., *ibid.*, 4-41
21. S. Goldman and L. R. Morss, *Can. J. Chem.* **53**, 2695 (1975)
22. D. C. Hoffman and M. M. Hoffman, Los Alamos National Laboratory Report LA-UR-82-824, March 1982
23. J. E. Bigelow, C. W. Alexander, and L. J. King, *Am. Inst. Chem. Eng. Summer Natl. Meeting*, Aug. 25-28, 1985, Seattle, Wash., Paper 28B

Acknowledgment: This work was supported by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract No. DE-AC03-76LSF00098.

Table I
 Recent Radiochemical Studies of Transfer Reaction
 with Transuranium Targets

<u>Targets</u>	<u>Projectiles</u>	<u>Energies MeV</u>
^{248}Cm	16, 180	90-150
	20, 22Ne	115-116
	40, 48Ca	234-318
^{249}Bk	180	102, 109
$^{249}\text{ Cf}$	16, 180	91-150
^{254}Es	16, 180	98
	20, 22Ne	121, 126
	48Ca	266

Table II

ESTIMATED PRODUCTION RATES FOR NEW N-RICH ISOTOPES
(400 $\mu\text{g}/\text{cm}^2$ ^{254}Es , 1 p μA beam)

NUCLIDE	ESTIMATED	REACTION	RATE
	$T_{1/2}$		ATOMS/m
Md-260	1-10h β	$(^6\text{He})\text{T}$	800
261	2-200 μs , SF	$(^7\text{He})\text{T}$	80
262	≈ 0.2 s, SF	$(^8\text{He})\text{T}$	8
No-260	< ps SF	$(^6\text{Li})\text{T}$	1000
261	1.1 h α	$(^7\text{Li})\text{T}$	80
Lr-261	5 m α	$(^7\text{Be})\text{T}$	400
262	14 m α	$(^8\text{Be})\text{T}$	120
263	0.7 h α	$(^9\text{Be})\text{T}$	20
264	2.3 h α	$(^{10}\text{Be})\text{T}$	8
Rf-262	ms, SF	$(^8\text{B})\text{T}$	4
263	1.5 m α	$(^9\text{B})\text{T}$	4
Ha-263	0.6 s α	$(^{12}\text{C}, 3\text{n})$	4
264	4 s α	$(^{10}\text{C})\text{T}$	0.4

TRANSFER REACTIONS

MAXIMUM YIELDS

TRANSFERRED FRAGMENT	CROSS SECTION (μ b)
$^{1,2}\text{H}$	2000-3000
$^{2,3}\text{He}$	1000-2000
$^{4,5}\text{Li}$	30
$^{6,7}\text{Be}$	2-3
^{7-9}B	0.01-0.10
^{9-11}C	0.001-0.01

* Wild Extrapolations!!

Table IV

PRODUCTION RATES FOR CHEMICAL STUDIES
 (400 $\mu\text{g}/\text{cm}^2$ ^{254}Es , 1 p μA beam)

<u>NUCLIDE</u>	<u>REACTION</u>	<u>$T_{1/2}$</u>	<u>ATOMS/MIN.</u>
^{256}Md	$(^{18}\text{O} \text{ or } ^{22}\text{Ne})\text{T}$	1.3 h	8×10^5
^{259}Md	"	1.6 h	4×10^4
^{259}No	$(^{22}\text{Ne})\text{T}$	58 m	2×10^3
^{260}Lr	"	3 m	3×10^2
^{261}Rf	$(^{11}\text{B}, 4n)$	1 m	(20)
^{262}Ha	$(^{12}\text{C}, 4n)$	34 s	(8)

Figures

Fig. 1. Portion of table of isotopes showing neutron-rich trans-Am isotopes. Hatched regions indicate new actinide isotopes postulated to be produced with >1 -nb cross sections from transfer reactions to a $400 \mu\text{g}/\text{cm}^2$ ^{254}Es target with a projectile beam of 1 p A. Compound nuclei for reactions of 180 with ^{248}Cm , ^{252}Cf , and ^{254}Es are shown in parentheses.

Fig. 2. Isotopic distributions measured for 104-MeV 180 reactions with ^{249}Cf .

Fig. 3. Mass-yield curves for Fm from 160 and 180 Reactions with ^{248}Cm and ^{249}Cf .

Fig. 4. Excitation functions for Es and Fm isotopes from the interaction of ^{48}Ca with ^{243}Cm .

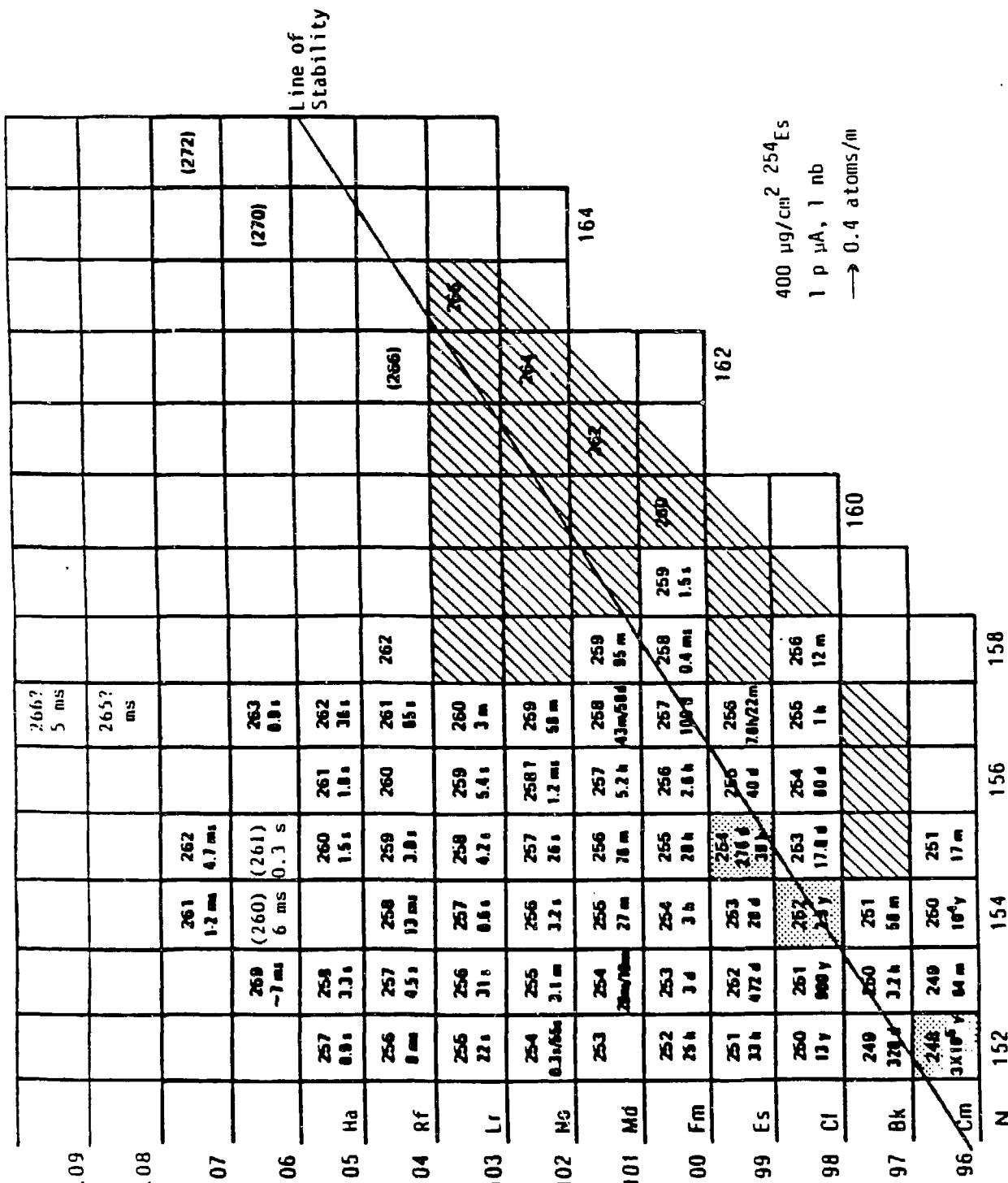


Fig. 1. Portion of table of isotopes showing neutron-rich trans-Am isotopes. Hatched regions indicate new actinide isotopes postulated to be produced with >1 -nb cross sections from transfer reactions to a $400 \mu\text{g}/\text{cm}^2$ ^{254}Es target with a projectile beam of 1 nA . Compound nuclei for reactions of ^{190}W with ^{246}Cm , ^{252}Cf , and ^{254}Es are shown in parentheses.

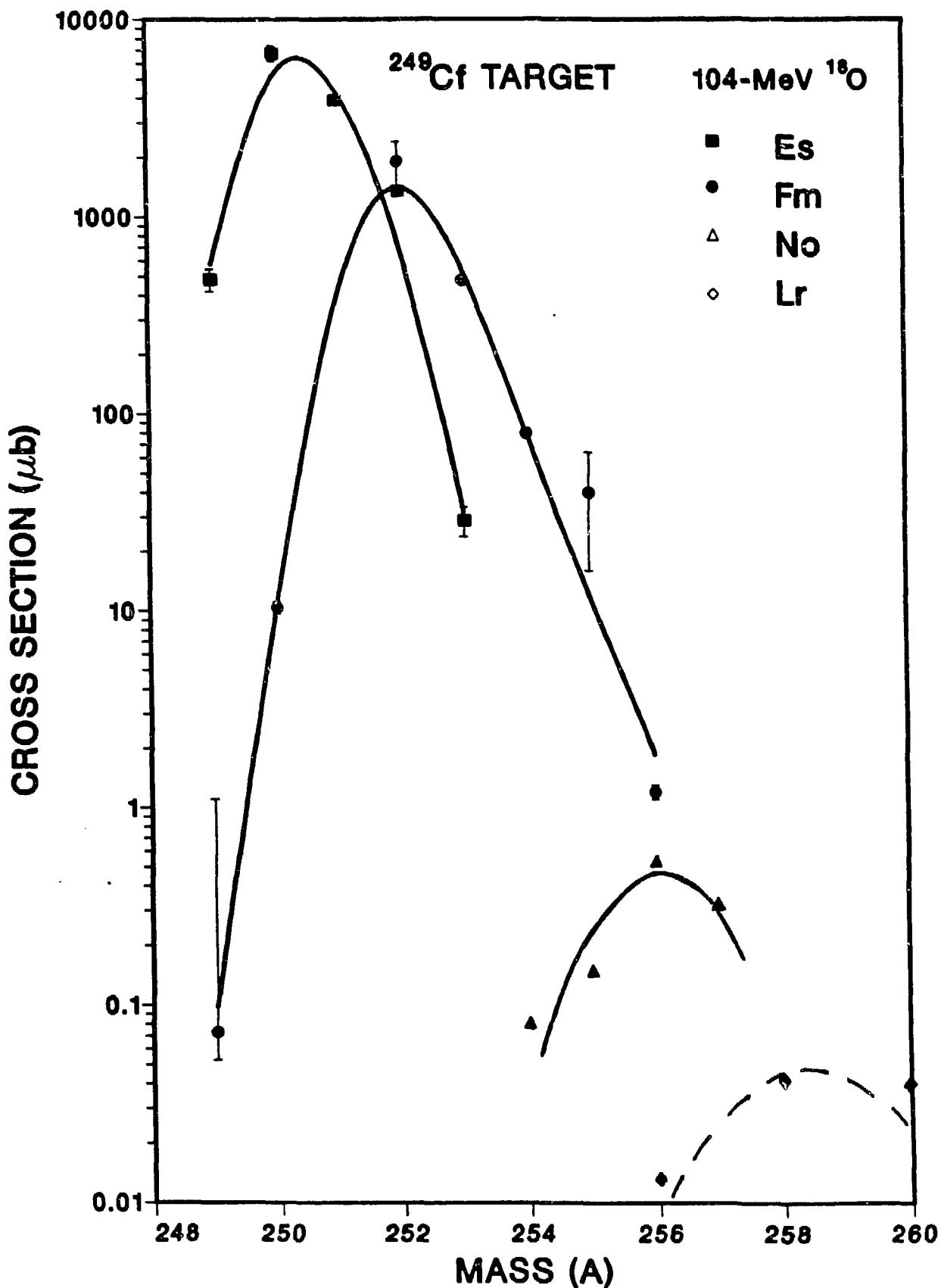


Fig. 2. Isotopic distributions measured for 104-MeV ^{18}O reactions with ^{249}Cf .

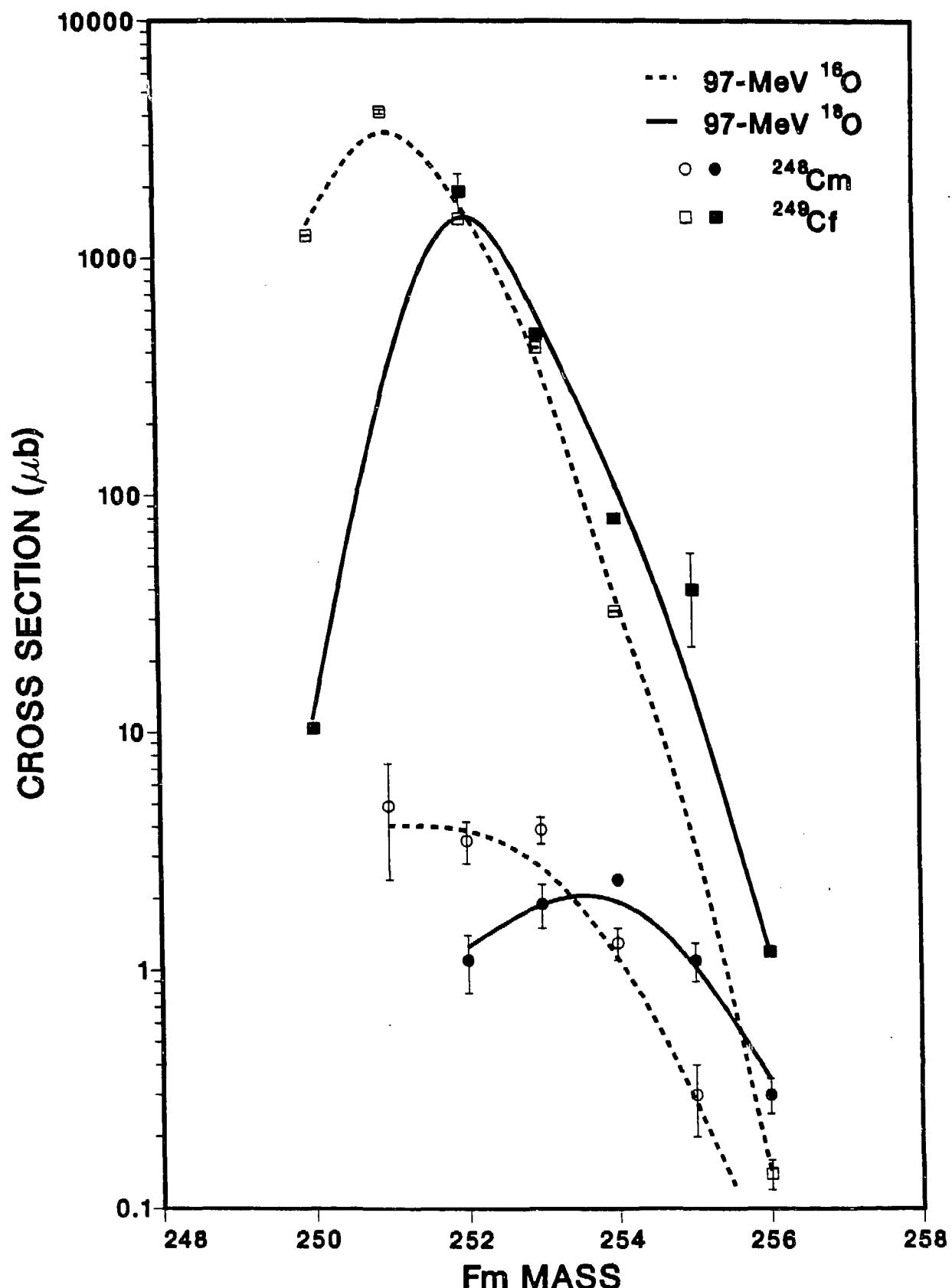


Fig. 3. Mass-yield curves for Fm from ^{16}O and ^{18}O reactions with ^{248}Cm and ^{249}Cf .

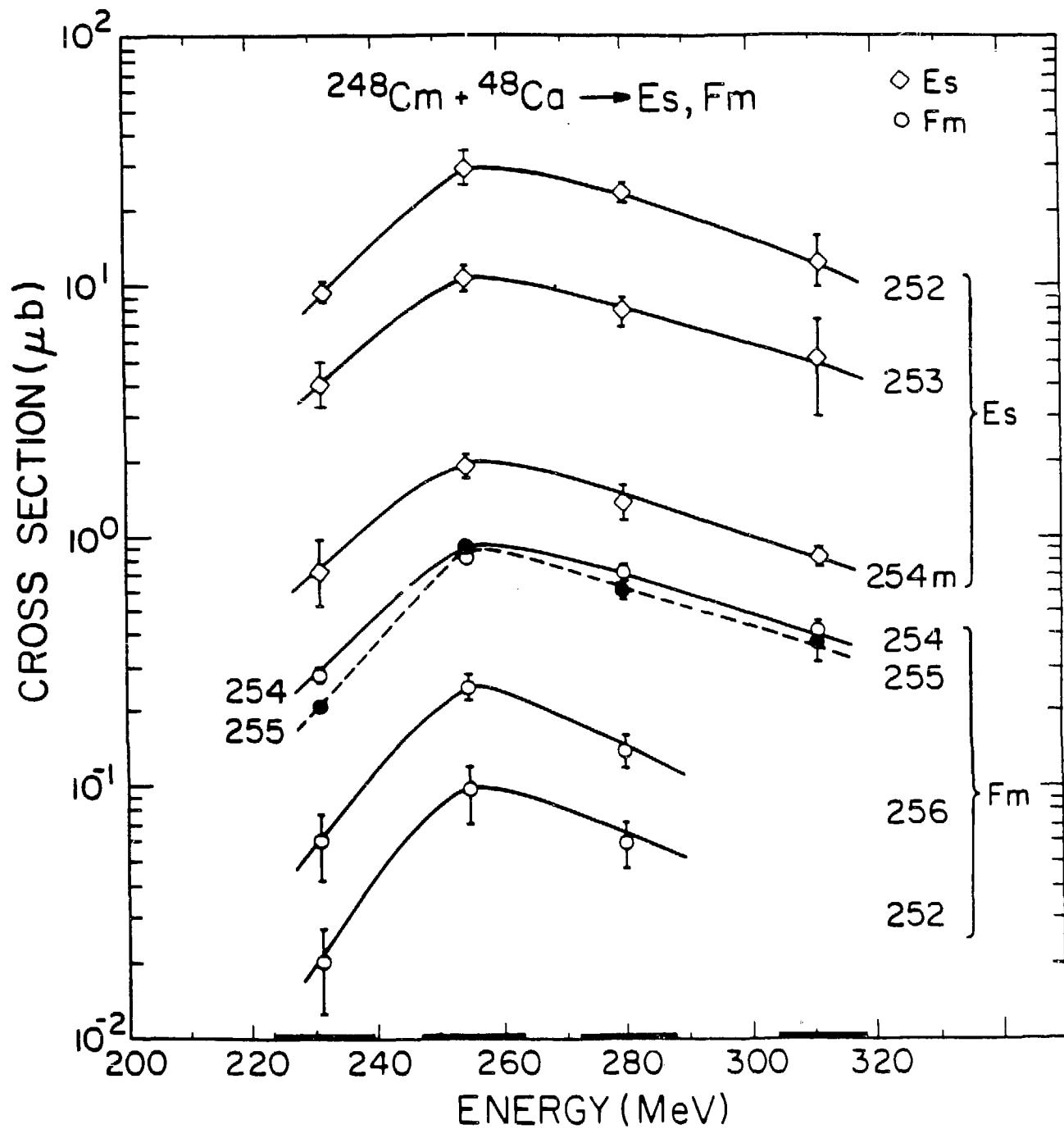


Fig. 4. Excitation functions for Es and Fm isotopes from the interaction of ^{48}Ca with ^{248}Cm .