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Summar .
Basic principles of the particle detection and signal processing for
high-energy physics experiments are presented. It is shown that the opt-
imum performance of a properly designed detector system is not limited by
incidental imperfections, but solely by more fundamental limitations imposed

by the quantum nature and statistical behavior of matter

The noise sources connected with the detection and signal processing
are studied. The concepts of optimal filtering and optimal detector/ampli-
fy{ng device matching are introduced. Signal processing for a liquid argon
calorimeter is analyzed into some detail.

The position detection in gas counters is studied. Resolution in drift
chambers for the drift coordinate measurement as well as the second coordinate

measurement is discussed.
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Part I.
1. Introduction
While detectors and detection in high emergy physics do not need an
introduction here we have the feeling that the signal processing does.
Everybody is familiar with (or at least has seen) some detectors
around an interaction region at a storage ring type machine or down-
stream from a target in a classical particie physics experiment. The
title of this school is "Data aquisition in high energy physics' so
everybody knows that the data from the detectors describing the event
is stored in many bits in many registers in form of a digital
information. The signal processing is a way of converting an obscure detector

signal into useful information.

We will study the signal processing in a broad sense. Signal
processing includes signal formation due to a particle passage
within a detector, signal amplification, signal shaping (filtering) and
read out. The basic goal of the signal processing is to extract the
derived and pertinent information from the obscuring factors (or "noise')
usually present. The relative strength of the signal and fhe noise
is one way to measure the quality of the detection.

The two quah:ities of greatest importance to be extracted from
detector signals are their amplitude and time of occurence. The
amplitude information is usually related to the energy or to the nature
of the particle. Also some position sensing detectors give the local-
ization of the particle via signal amplitude, however, the most popular method
of particle localization in high energy physics experiment is based on

time information.



2. Means of Detection

As will be shown later each detection method has to extract some
energy from the particle to be detected. This is done via the particle
interaction with the detector medium.

Nearly all detection methods (Cerenkov and transition radiation
detector being exceptions) make use of ionizatjon or excitation pro-
duced in a detection medium as a result of the particle interaction.
This interaction changes some quantitles characterizing the detected
particles.

This very fact imposes the final limitation on the accuracy of
some measurements as required by laws of quantum mechanics. In this
lecture we will find that usually the other physical phenomena in
particle detection impose larger limits on the precision of measure-
ment.

Returning to the detaction process; in the case of charged
particles, ionization and excitation is produced directly by the
interaction of the particle electromagnetic field with the electroms
of the detection medium. The resultant ionization and exitation is
distributed along the path of the particle. A typical particle energy
in today's experiments is of the order of few GeV, while the energy loss
can be below the MeV level. This is an example of a non-destructive method
for detection of charged particles.

All neutral particles must first underge some process which
transfers all or part of their energy to charged particles. The
detection method is destructive, The interaction cross section

for the neutral particle can be quite small and therefore a large amount




of material may be needed for such a detector. A great variety o detectors
for electromagnetic and hadron cascades have been recently

4
developed.

3. Detection of lonization and Excitation

In most ionization detectors the total ionization is collected using an:
externally applied electrical field. Sometimes an amplification
process by avalanche formation in a high electrical field is used.

Examples of detectors are
a) Proportional chamber (drift chamber)
b) Liquid argon chamber
¢) Semiconductor detector

Detection of excitation is a multistep process. The excitation is first
converted into luminescent light by smission, and then the light into an elec
trical signal. The most used light to electrical signal converters are
photomultipliers, however, the use of micro-channel plates and vacuum
and solid state photodiodes in high energy physics is steadily increasing.

As can be seen from the short list of detectors, all of them provide a
certain amount of charge onto an output electrode. The electrode represents
a certain capacitance so from subsequent signal processing point of view these
detectors are capacitive sources, i.e. their output impedence is dominated by
the capacitance.

This common feature of all detectors for particle physics allow
rather unified approach to the signal processing.

The science of signal processing for semiconductor detectors was
basically developed during the last 20 yearsil Most of the rules are

directly applicable to our detectors. However, in spite of common



features among various detectors used in high energy physics we should
not underestimate the differences among them. The typical total charge.
at the detector outputs can differ by six orders of magnitude for two
different kinds of detectors and the output capacitances can differ]

by the same factor. What is imﬁortant for one kind of detector can be:
irrelevant for another and vice versa.,

In a majority of detectors the signal produced by the detected:
particles is relatively small and is contaminated by noise generated by
the detector itself and by the amplifier. We can ask a few "fundamental"
questions. What is minimal signal which we can detect? (That means to
measure its amplitude and the time of its occurrence). How does it depend
on the shape of the waveform? What is the amplifying element which
we have to use to obtain this optimum condition? Is the optimum
solution also practical for a big detector system so typical in a high
energy physics experiment?

We will trv to answer such questions. We will see that the optimum

performance of a properly designed detector system is not limited by incidental

imperfections but solely by more fundamental limitations imposed by the
atomic structure and statistical behavior of matter. The presence of
noise in the detection system is a manifestation of the phenomena
governed by the laws of statistical mechanics which has to be taken into
consideration at the design stage of the detector system to minimize
its effects.

The meaning of the word "noise" is unfortunately different for
different detectors. This is extremely confusing, but now it is already

too late to change the tradition., For ionization detectors, noise has



the meaning of the electrical noise in the amplifier circuitry. Fluctua-
tions due to other effects in particle detection (statistical fluctuation
of collected charge for semiconductor detectors, sampling fluctuations

in calorimeters, etc.) are usually treated as a separate factor limiting

the detectability or detector resolution.

In photon detection the word noise usually includes all fluctuations

including those due to the quantum nature of the light.

We would like to stress that noise in thess notes always denotes the
intrinsic noise related to the basic nature of the detection process. A
broad class of man-made disturbances (radio and TV signals, switching,
sparking, etc.) picked up by detectors is not a topic of these lectures.
These interferences are sometimes called noise, but their presence can be

reduced to the negligible level by proper shielding.

4, Outline of the Paper

These notes are intended for the summer School of Physics and in prin-
ciple their text should be understandable without any references. Some
references are given for readers more deepiy interested in a particular
subject. Their list is not intended to be complete and we apologize to all
of those who have contributed te the art of signal processing and are not

quoted here.

In Part II we will develop a technique for treating the noise propagation

in electronic systems. Shot and thermal noise sources will be defined and

studied in the time as well as in the frequency domain.



Part IIT will treat the general problem of the charge measurement in
the presence of noise. The concept of matched filters for the charge
contained in the signal and for the time of the signal occurrence will be
introduced.

In Part IV we will find the optimal filter for the charge measurement
under additional constraints imposed by today's high—energy physics exper-
iments. We will defime the optimal matching between detectors and amplify-
ing devices., The signal processing for a .uid argon calorimeter is
treated in some detail.

Part V will give a short overview of methods of the position sensing in
gas detectors. Basic phenomena of the gas counter detection will vbe presented.
Limitations of the position measurament in drift chambers will be studied.

The second coordinate read-out in Jdrift chambers will be discussed.
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Part II. Noise Analysis in Linear Systems .:_.4,5'

1. Introduction

Noise analysis has a reputation for difficulity and obsurity.

The reason may be that the study of noise is based on results from three
different, rather disparate disciplines: statistical mechanics
(thermodynamics), circuit theory and statistical analysis. The
fundamental processes which give rise to noise in electronic components
are in the realm of statistical mechanics., The noise signal enters and
propagates through an electronics system requiring techniques of circuit
theory. Finally, the results have to be interpreted in statistical
terms.

In these lectures some fundamental knowledge of all three dis-
ciplinesis assumed. Requirements on the knowledge of statistical
mechanics and statistical analysis are well below the level of physics
graduates. Circuit theory will be limited to the analysis of linear
time invariant systems, and some knowledge of Fourier series, Fourier

and Laplace transforms is assumed.

2. Random Processes

An example of a noise signal as could be seen on the oscilloscope
is shown on Fig. 1. The random signal waveshape has an irregular,
unpredictable appearance. We call this random time-varying function

a random process v{(t). A sample of v(t) take. at an arbitrary time (t) is

a random variable with some probability-dengity function £ _(v). We
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generally assume a gaussian noise distribution around a mean value E(v).
(In these notes E(x) will denote the expectation value of x or ensemble
average.) This assumption is based on the central limit theorem, but in
any case, it is exceedingly unlikely that a single reading will depart
from the mean value by more than a few times the r.m.s. (root mean
square) for any "realistic" distribution. We, therefore, adopt r.m.s.
to describe the probability-density function.

To determine ft(v) we have to use the concept of an ensemble from
statistical mechanics. Let us consider v as a voltage across a 1000
resistor. A complete specification of the macroscopic state of the
resistor would involve giving the coordinates or momenta of all the 1023
particles constituting the resistor. This task is clearly beyond the
bounds of practical possibility. Instead we have to accept a much
cruder description of the resistor. We will assume it to be in thermody-
namic equilibrium with the outside world.

In some of the possible configurations of the resistor, the potential
difference across the resistor might be between v and v+4dv. We can also
describe this by saying that if we had an ensemble of idemtical resistors
specified macroscopically in an identical way, then for some fraction

e (v) - Av of all the resistors the voltage would be between

" MAC
v and v+Av.

In statistical mechanics we assume that a proper statistical
ensemble contains one copy of the original system in every single pos-~
sible macroscopic configuration compatible with the macroscopic
description of the resistor. We can see immediately that 8, .(vV)AV=f (v)-AV.
Another "experimental" approach to determine the probability density

function ft(v) would be to sample the value v(t) at intervals far



enough apart to ensure the statistical independence of the samples.

A random process v(t) is said to be an ergodic process if the pro-

bability density functions obtained by both the ensemble and time approaches

are identical. We will encounter only ergodic processes in these lectures.
Before deriving the general relation between the noise description

in the time and frequency domain, let us consider a special and impor-

tant example -~ shot noise.

3. Shot Noise

Shot noise occurs whenever a3 noise phenonenom can be considered
as a series of independent events occuring at random. It is
important, for example, in emission of electrons by a photocathode or
in minority carrier devices.
If we take a sufficiently short interval of time At, the probability ap
that an electron is emitted within this interval is proportiomal to At
Ap = it (2-1)
where y is the mean rate of emission.
It can be easily shown that the mean number of electrons emitted
during an interval T
E(nT) =y T
and E(ni) = vzrz + vt (2-2)
or E(Anf) = yT
(This is the well knowm result for the variance of Poisson distribution.)
Let us try to measure the current due to the electron emission

during the time t. The mean current is

= ﬂ -
E(I) T E(nr) qv (2-3)



I -
where q is the electron charge.
Fluctuations of the current expressed by the variance.

2 q 2 2 Zv
E(aL®) = B . E(an)" = -‘LT— --:- . E(D) (2-4)

This result agrees with our intuition. The fluctuations of I decrease
as T increases.

We will now study a more interesting case when this current is
applied at the input of a linear system with an impulse respomse h(t).
Because the current is constituted from random pulses with a mean rate
v we can apply the Campbell theorem:

If the impulse response of a linear system is h(t) then the mean
response of the system to a random series of pulses occuring at
a mean rate v is

. o
E(v) = v [ h(t)dt

-<n

(-]
and variance E(sz) =y f hz(t)dt (2-5)

-

Proof of the thecrem is left for the reader. Campbell's theorem is
a very powerful tool for noise calculations in the time domain. If
any kind of noise, at the input of a linear system, can be expressed
as a sequence of uncorrelated impulses then the equaticn (2-3) gives
directly the noise at the output of the system.
4. Noise Power and Spectral Representation of Noise.

The majority of electronics systems are more easily analyzable
in frequency domain. The frequency or spectral analysis of random noise

signal differs somewhat from the standard analysis of deterministic

signals.



;=5-
Let s expand the random signal v(t) in Fourier series along an

interval T. Thus,

=) 2171'1
v(e) =% g o gdut “n 7T
T n
n B =l
T/2 .
where cn - I ov(n) e—antdt
-T/2 (2-6)

Note that y is a random variable because v(t) is random. Because v(t)
is a real, cn* =c - If the process is stationary, the expectation
value of v(t) must be time independent.
«© . t
E(v(t)) = E(cn)eJ“’n
n==e (2-7)
So all expectation values of the Fourier coefficient ¢ except for
E(co) w st equal O.
So we are now in the peculiar situation of having a Fourier-serics
representation of v(t) which is valid for the particular time interval T,
but which varies statistically with the chosen member of the ensemble.

To obviate this difficulty let us calculate
2 * jlw - w)t
E(v (t)) r"zl 5 E(cmcn ) e’ m n (2-8)
and again if v(t) is a statiomary random process expression (2-8) must be

independent >f t and all expectation values E(cmcn*) must vanish except

when n= m, so

E(Vz(t)) = I E(cncn*) - E(coz) +2% E(ece *)
D —o n=1 BO

From equation (2-7) E(co) is the time-average value of v(t) over the

period T. If we take T large enough and assume that the system is ergodic

c, is the same for all systems in the statistical ensemble.
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Thus (E(c ))2 = ¢ 2 = E(c 2) and the expected fluctuations of v(t) from
o (] o
equation (2-8) are
@ *
E Av(t)2 =2 I E(cce )
n=1 "0 (2-9)

As T is made "very long", the interval 1/T between the frequencies of
successive Fourier components becomes ''very small". Provided that

E(cncn*) varies smoothly with n we can rewrite equation (2-9) as

- T %y.L
E (AV(t)Z) = lim zn!:_ 1 T'E(cncn ) 5

T+ @
-7 2T-E{c(f)-c*(f)] af = [ w(f)df
* i (2-10)
* n
where w({f)df = lim TE(cnc ). f = T
T n f

The function w(t) has dimension of square voltage for unit bandwidth.
Divided by resistance it becomes the power demnsity. It is called the
power spectral density function or power spectrum. Let us show that
knowledge of a power spectrum w(f) at the input of a linear system
allows the determination of a power spectrum function wo(t) at its
output.

If v (t) is presented as the input to a linear system described by
transfer function H(f) (Fourier transform of its impulse response h(t))
the output can be written

©

- 1, juwot
v, (t) I HGE) e 7R

N == =

so E(vo(t)) - H(0) e,

and E(Av(t)z) - E(vo(t)z) - g2 (vo(t))

= 1, .., * 0 L ®
= anl H("f) H (T) E(Cn h )
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which in the limit T -+ «» can be written as

E(Avo(f)z)— I IH(f)IZ: w, (F) df
o

or (2-11)

v (6) = w () - |ue)] ?
The equation (2-11) is an extremely important relation for the fre-
quency analysis of random signals passing through a linear system.
Th~ spectral analysis of random signals focuses on the power dis-
tribution. This is related to the integrated square of signals and
accounts for the lH(f)}2 term appearing in the transfer relation (2-11).
The band-limiting effect of a linear system on a random input signal
is expressed by multiplication of the imput spectral density by [H(f)[2 .
This is a direct analogy to the multiplication of the input Fourier
trénsform by the transfer function H(f) for deterministic signals.

Here we can ask a question. Can we carry this analogy also
into the time domain? The answer is positive, but before going into detail

let us return for a moment to our example of shot noise.

5. Power Spectrum of Shot Noise
Let us rewrite the Campbell theorem (2-5) using the Fourier
transform H(f) of the impulse response h(t) of the linear system.

(H(E) is a wellfknown system transfer fﬁnction.)

E(av?) = vfhi(t)dt = vf H(E) -H (£)df

We have used Parseval's theorem. Since h(t) is a real function of time

%
H(-£) = H*(f) and H(f) H (f) is an even function of frequency we can write

ECavD) = 2v IIH(f)lzdf
o - (2-12)
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The form of equation (2-12) is similar to (2-11,. Let us substitute v
with direct measured quantities. If a current I axhibiting orly shot
noise is presented at the input of the linear system (v = %; individual
pulses (electrons) hzve a charge q, so the limear system responds as i

q h(t), qzhz(t)) we can substitute for v in (2~12) and obtain

B = 2 L. &F|uce |t = 2q1f [HCE) [2af (2-13)

q o o
This result can be interpreted a:cording to the equation (2-11)

as a power spectrum at the output of the linear system with the power

spectrum w(f) = 2ql imposed at its igput. We have so shown that  shot

noise (or more generally any Poisson-like fluctuatioms) has the power

spectral density ws(f) = 21q (2-14)

6. Autocorrelation Function ¥

Let us return to the question raised in Section 4 about analogy of the power

density function in time domain. Basically, we require some measure of how
the noise process varies with time. Specifically, if we consider the noise
waveform v(t) of Fig. 1, we note that as tz >ty v(tz), regarded as a

rapdom variable, becomes more closely related to the v(tl). As t,-t;
increases we see less dependence of v(tz) on v(tl) . We make this

concept more precise by defining the autocorrelation function

R (t),t,) = E(v(tl) ‘v(tz)) (2-15)
It is apparent that if t, >t Rv -+ E(vz) or autocorrelation becomes
the statistical second moment., If at some value of the difference

(t2 - tl), v(t:)1 and v(tz)
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are statistically independent Rv - Ez(v). (0 if E(v)=0.) Rv (tl,tz)
thus provides one possible measure of how rapidly v(t) changes in time.

For » stationary process Rv(tl,tz) can depend cnly on the time

difference tz-tl = t so that we can write

Rv('r) = E[V(t)*V(t:+T)] (2-15a)

For an ergodic process we can replace the ensemble average E by time

average and write

T
R (T) = lim i% [T v(t)+v(t + T)dt (2-16)

T+x

The relationship between the power spectral density w(f) and the

4
autocorrelation function is given by (Wiener-Khintchine theorem) *

R(T) = [ w(£)+ed¥T af
o (2-17)
wiE) =2 [R(De T ar;  f20

-0

So that R(r) and w(f) are almost a Fourier transform pair. (If we define
"mathematical power spectral density" wm(f) as wm(f) = buw(f) if £>0 and
wm(f) = -wm(—f) for £<0; wm(f) and R(t) are a Fourier transform pair.)
The autocorrelation function is a means of characterizing the noise in
the time domain as the power spectral demsity is in the frequency domain.
The physics phenomena producing the noise may be more easily analyzable
in either one domain or the other so relations (2-17) allows us to trans-
late the noise description from one domain into another.

Let us return again to the example of a shot noise. A succession

of pulses occuring randomly in time can be most conveniently described
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in the time domain. In this case R(t) is zero for all values of T except
T = 0 and has the form of a "delta function."” Its Fourier transform
has all frequencies present in equal proportion. Calculation can be
carried out and not surprisingly the result is identical with already
known relation (2-14).

The thermal noise which we are going to investigate next has its

origin most easily analyzable in the frequency domain.

7. Johnson or Thermal Noise

Johnson noise arises from the thermal motion of the charge carriers
in z resistor. In its equilibrium with the surroundings at the temper-
ature T the average potential difference from one end of an isolated
resistor to the other is zero. However, emergy fluctuatioms of
the order kT per degree of freedom manifest themselves as a power
noise source.

Thermal noise was first studied experimentally by J. B. Johnson
in 19281.0 A. Einstein had predicted in 1906 that Brownian motion of the
charge carriers would lead to a fluctuating e.m.f. (electromotjve force)
across any resistance in thermal equilibrium{' The power spectrum was
calculated by H. Nyquist in 1928 based exclusively on thermodynamic

”

reascuing. We will briefly repeat his treatment.,-

Let us consider a resistance R connected to one end of an ideal
transmission line of characteristic impendance R, length 1 and wave
velocity ¢ that is shorted at the other end. After a while a state of

equilibrium is reached. This means that power flowing from the resistance

into the line is the same as the power flowing from the line imnto the
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resistance. The energy inside the transmission line flows in two differ-
ent directions; one half to the left and one half to the right. Power
flowing into the resistor is, therefore, equal

(2-18)

P= c

N
»|m

where E is the energy of electromagnetic waves inside the transmission line.
To calculate the energy we can, according to the rule of statistical
thermodynamics, give to each normal mode of the line an energy

€ SR | S kT in the frequency range of interest (2-19)
JRE/KT _ |

wher<
T - is the absolute toemperature
h - Plank constant.
k - Boltzmann constant

To calculate the number of normal modes we can short also the other
end of the transmission line. (The line is still in equilibrium at T
since, if we counect it back to the resistance no net power transfer to
or from the line will occur.)

For the shorted transmission line modes are related with frequency

according to
A nc
ny=3E £ (2-20)
where n is an integer. Thus if 1 is "large" “t« aumber of modes in df is

dn = ££ df
c

and the mean energy in frequency intervals df, trapped in the transmission

line from equation (2-19) is

dE --2—'kT df
c
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or using relation (2-18)

dP = kT df (2-21)

We can see
i)The noise power is independent of resistance
i1)The noise power is white (independent of frequency)
iii)The noise power is independent of the charge or the electron

(q ~ does not enter into relation (2-21)

The relation (2-21) is usually written in one of two following forms.

wi(f) = 4kT/R (2-22)
or w,(f) = 4kT*R | (2-23)
Equation (2-22) refers to Fig. 2a, where a physical resistance R was
replaced by an idealised noiseless resistance R and a noise current
generator in parallel. If the current power density of the generator
is wi(f) = 4kT/R the maximum power density available for an external
circuit is

g . Rew. (£)/4 = kT so relation

daf
(2-22) agrees with relation (2-21).
Similiarly equation (2-23) refers to Fig. 2b where a physical resistance
was replaced with a noiseless resistance and a noise voltage generator

in series. It can be shown again that formulae (2-21) and (2-23) are

identical.
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8. Comparison between Shot and Thermal Noise

Let us comment about differences and similarities between shot and thermal
noise. Shot noise depends on the number of the flowing charge carriers, thermal
noise does not. Shot noise is a fluctuation in the number of charge carriers.
It involves fundamentally a directed motion with random transit. Thermal noise
is a fluctuation in the velocity (direction as well as magnitude) of the charge
carriers.

Whether we have shot or thermal noise is essentially a question of whether
or not the number of current carriers is proportional to the current. In a np
junction or vacuum tube there are almost no current carriers normally present.
Fluctuations must be associated with the number of current carriers that enter.
(I in equation 2-14). 1In a resistor a very large and constant number of current
carriers is always present. The net flow of current is a negligible perturba-
tion of the random thermal motion of the carriers. Thus, we have the noise
independently of the current, i.e. equations (2-22), (2-23).

Equations (2-22) and (2-23) are sometimes used to.define equivalent
noise resistance. It is simply a value of resistance which gives the same
noise power as the noise source under study. For example, we can define the
noise resistance corresponding to the shot noise due to the current I. From

equations (2-14) and (2-22) we obtain

R, qI[ 7 ) (2-24)

at room temperature.

We can carry this parallel between shot and thermal noise even further.
Because both have the same form of the frequency spectrum and because
of Wiener-Khintchine theorem (Equations (2-17) they have also the same
form of the autocorrelation function. Therefore, we can imagine the
thermal noise in the time domain in the same way as the shot noise,

that is, as a succession of pulses occurring randomly in time, and use !
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Campbell's theorem. (2-5)

More formally, if we connect a voltage noise source e with a
voltage power density wv(t) = 4kTR to the input of a linear system with
the impulse response h(t) the fluctuations at the output are given
(according te (2-11))

o o

E(v2) = w, { lacey |2 as -%wvi |H(E) |2 at
where H(f) is the Fourier transform of h(t). (Because h(t) is real H(-f)
= H*(f) and (H(f))2 is an even function of f we can extend the lower
integration limit to -» and take one half of the integral.)

Using Parseval's theorem we can write
201 [ .2
E(Av)) = -2-va h(e) dt (2-25)
which can be considered a form of the Campbell theorem {2~5) with a "rate"

equal 1/2 of the noise power density.

We will conclude this part with a remark about the excess noise.

9. Flicker Noise.

In addition to shot noise and thermal noise which are white noise sources,
there is often another noise source in many devices which predominates at lower
frequencies. This flicker noise has a spectral density w(f) propor-

tional to 1/f" where u is between .8 and 1.5. Origin of flicker noise

is poorly understood. In frequencies of interest in signal processing

it should not present a problem. Paradoxically, the devices intended

for high frequency use exhibit the smallest amount of flicker noise,

i.e. they have the smallest noise at lowest frequencies as well. This is

pfbbably related to the better care taken in production of high fre-~

quency devices.

e a2



Part III

MEASUREMENT OF SIGNAL CHARGES
IN PRESENCE OF NOISE

.. Noise in Signal Amplification

We have seen in Part I that particle detection in high energy physics ex-
periments requires the measurement of the charge delivered at the output electrode
of the detector. To optimize the signal charge measurement under conditions

imposed by the experiment is the main subject of the signal processing.

The detected charge has to be amplified early in the process to avoid possible

addicional contaminatior: by other noise sources. From many different physical

systems capable of providing gain mechanism, direct charge controlled amplifiers

are the only amplifiers used in particle detection,

In this type of amplifier there is a charge in transit through the device
(i.e., current is flowing), and its transport properties are modulated by charge
on a separate control electrode. Examples are vacuum tubes (historical) and £field
effect transistors in which carrier transport is effected directly by the electric
field of the grid or gate. Also, the bipolar transistor belongs to this category.
Modulation of the charge in the base-emitter junction alters the base emitter
voltage, hence the injection current. We stress here that bipolar transistors at
the frequenéies of interest are not current controlled devices. The noige analysis
of all charged controlled devices is identical. The method consists of examining
the noise in the current flowing through the device and then pretending that this
noise is actually due to a noise voltage generator connected in series with the
control electrode (Fig. 3). This is the series noise voltage and can be expressed
as a series noise resistance. (According to relation [2-23] EE = 4 kTR, where we

write ei instead of Wi(f). The series noise voltage always appears as linearly

added to the signal, therefore the signal-to-noise ratio is degraded.



=2 -

The required connection between the magnitude of noise current fluctuation
at the amplifying element output and the magnitude of the voltage source e, at
the control electrode (see Fig. 3) to produce such noise current fluctuations

is given by the mutual conductance -0

Mutual conductance is defined as a ratio of a change in the controlled

current through the device and a2 change in the control electrode voltage.

AIDEV

g * v -
m AVCON . (3-1)

(This is correct for all input voltages, not only for noise.)

Using Eq. (3-1), we can write
en = 1n/gm . ’ 3-2)

where in is the output current noise source of the device.

The next important source of noise is due to the fact that the input
impedance of the amplifying element is not infinite. Consequently, there is
gome current ig flowing info (or out) of the control electrod.. This current
exhibits fluctuations Aig and produces corresponding voltage fluctuations.zB Aig,
where Zs is the impedance of the source, The control electrode '"leakage" current
noige can be equivalently represented by a parallel noise current generator

inp (Fig. 4a). .

For detectors where Zs is often capacitive and signal can be represented
by a current source parallel to the capacitance, it is convenient to replace the
i i i ivalen rr ource i__ = .
series noise source e . with an equivalent current source 1 ens/z1n parallel

to the input impedance so signal and all noise sources are situated at the same

place at the input and are directly comparable (Fig. 4b),




Summarizing, we have seen that the charge controlled amplifying device has
two uncorrelated noise sources to be congidered with it; the series noise source
e_and the parallel noise source in. Transforming the series noise as shown in
Fig. 4b, we see that the effect of the parallel noise is independent of the
detector impedance while the effect of the geries noise is inversely proportional
to the detector impedance. (There is some correlation, its effects are negligible

/3
in first order analysis.)

2. Series Noise in Bipolar Transistors

Series noise cnalysis of a bipolar tramsistor is particularly clean and 1
instructive. The operation of a bipolar transistor is generally krnown, but we
have the feeling that in order to prevent some misunderstanding we will outline

some of its properties important for our analysis here.

let us start by considering a forward biased n*-p junction (i.e., very
heavily doped n-type on lightly doped p-type semiconductor semiconductor). For

an idealized case under consideration, the forward current is given by

. y
=i (e % -1 & ge L , (3-3)

ig kT

where io is the reverse saturation current

V - voltage applied to the junction
q - charge of an electron
k - Boltzmann constant

T

absolute temperature.
In the vicinity of the junction in the p-type part of the device, the bulk
of the current is carried by -free electrons and their density falls off exponentially

with the distance x (see Fig., 5a)
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X

n ) =n_ e e , (3-4)

where Lé is the electron diffusion length in the p-type material. If the
p region is made extremely thin (compared to {é), and it is followed by a
reverse biased, lightly doped n region (Fig. 5b), then electrons injected from

the emitter into the base have a high probability of reaching the edge of the

collector-to-base depletion layer and being collected.

In the usual way, we will define @ and B of a trangsistor. If the emitter
current is IE’ then some fraction @ (0 < @ <« 1) of it will be collected and will
appear in the collector circuit as the collector current Ic' The difference

between IE and Ic congstitutes the base current.

Ic = QIE

IB = (l-a)IE

= Ic = o Tcz'—a- )IB = BIB . (3'5)

The quantity B relating Ic and IB is called the current gain of the tranmsistor

and can be made large (up to ~ 1000 in today's transistors).

Let us calculate g of a tramsistor in grounded emitter configuration, i.e.,
the transistor's base is the control electrode and the modulated device current

is the collector current.

I1f the base voltage is Vb, Eqs. (3-3) and (3-5) give

qVB
kT

IC’G.IOG ’

or by differentiation with respect to VB

dl
rrali e R
B
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Ic

By using Eq. (3-1), gm = ﬁf . IC (= m) (3-6)

at room temperature.

The value of mutual conductance is directly traceable to the Boltzmann
factor of Eq. (3-3), i.e., it is controlled by the thermal energy distribution
of carriers at junction (ambient) temperature. It follows that no charge con-
trolled amplifier in which the carriers are at the same temperature as the tran-—

sistor can have higher &n than a transistor operating at the same current.

We can now easily derive the formula for the series noise of a transistor.
The collettor current Ic exhibits full shot noise (since the carriers constituting
this current are minority carriers in the transistor base and at the collector

depletion layer are being collected independently).
Recalling (2-14), we can write the power current density as

.2 '
w, =i ZqIC s 3-7)

or by using (3-2) and (3-6), we can express series noise power density

N . (3-8)

2
e
n 8m

It is convenient to express the noise e, as being generated by a resistor

R_. Comparing (3-8) with formula (2-22), we obtain

11
R * 2 oo . (3-9)

g

In practice, formula (3-9) holds down to RS ~ 500, Below that value, the
other series noise sources became important. The most evident is the actual

series resistance in the base structure and the connecting leads. In the absence



of excess noise their noise resistance is equal to the ohmic resistance, so we

can write
1 1
RS 5 + Rex . (3-10)

Before concluding this section, let us study the base diffusion capacitance
of the bipolar tranmsistor. This capacitance is the dominant base-to-emitter
capacitance and plays an important role in the charge detection by bipolar
transistors. It is not a geometrical capacitance, but a consequence of the
transistor amplification mechanism,

The concentration of the minority carriers in the base is proportional to
the collector current. The constant of proportionality is just the time T

necessary for carriers to diffuse across the base.

QB =T . Ic . (3-11)

The same amount of charge of the pposite polarity has to b« supplied to the
base to be electrically neutral., This charge of base majority carriers must
be suppliaed through the base lead. That means that the change of the charge
stored in the base can be related to the change in the flow of the collector

current and via mutual conductance back to the change of the base voltage. We

can write
AQL =T . AIc =T * &n . AVh
or AQB = CD . AVB ’

where CDIF =T &, . (3-12)



The total base-to-emitter capacitance in a real bipolar transistor is the

sum of the dominant diffusion capacitance (?-12) and all geometrical capacitances.

3. Series Noise in Fileld Effect Transistors

The amplification action of a field effect transistor is based on voltage
control of majority carriers flow through a semiconductor channel. The effective
width, and with it the conductance of the channel is varied by reverse potential
of the gate-channel junction (Fig. 6). The gate is the control electrode. The
two channel ends are called drain and source. The drain is that channel-end
which is at higher reverse voltage with respect to the gate. There is usually

no structural difference between drain and source.

The basic noise source in the field effect transistor is the thermal noise of
the conducting channel. It can be shown that this noise 1is equivalent to a noise

current generator connected between the source and drain of magnitude.

2
i =0.7 x 4 kT &, . (3-13)

From this relation, we can write the series voltage noise and the series noise

resistcor

R % 7 . (3-14)

Comparing (3-14) and (3-9), we see that the series noise of junction field

effect transistors and bipolar transistors are comparable.

Vacuum tubes (mentioned here mainly for historical reasons) have higher

series noise. For vacuum triode we have

R = with 2.5 <ca < & . (3-15)

a
s 8m



4, Parallel Noise

As has been mentioned in Section 1. any current flowing to or from the
control electrode produces the noise. This was represented in Fig. 4. Assuming
the full shot noise of the central electrode current , the noise current power

density is given by

2
in = 2ng

where I_ denotes he current flowing through the control electrode. For junction
field effect transistors, the Ig values are in 10°10 - 10714 4 range. The bipolar

transistor has a much higher base current Ig = Ic/B, at least in the 10-6A regon.

The parallel noise is therefore much smaller for a FET. In many cases the

parallel noise is important and then a field effect transistor is the best ampli-
fying device.

We will return to the question of the most suitable amplifiers after
determining the relative importance of noise sources for the charge measurement.

/5

5. Optimum Filtering for Charze Measurement /

Now we are going to answer one of the fundamental questions we asked in
the Introduction. What is the minimal charge that we can detect on the output
electrode of a detector? As a criterion for this minimal charge, we will
adopt equivalent noise charge (ENC). ENC is the quantity of charge waich,
appearing on the detector, would give an output pulse of height equivalent to
rms (root mean square) of the noise. (To see a signal on the screen of an
oscilloscope,it has to be at least three ENC if the scope is independently

triggered. If we use the oscilloscope in the self-triggered mode, the signal

should be at least 5 ENC.)



The basic equivalent circuit of a detector and amplifier is shown in Fig. 7.
The signal is represented as a current source in parallel with the total input
capacitance. Noise gsources were represented by the current generators also in
parallel with the total input impedance. The amplifier is shown as an ideal
noiseless amplifier followed by additional amplifiers which includes the filter-
ing or "pulse shaping". It is important that filtering is performed after

amplification so that no noise is added by dissipative filter components.

The whole linear system from the detector to the output of the filter is
described by its impulse response h(t) in the time domain or equivalently by its
transfer function H(f) in the frequency domain. We assume that the shape of the
signal s(t) is known and we are measuring the amplitude A of the signal A.s(t)
in the presence of noise. Our problem is to find the pulse response of the system
h(t) which gives the best measurement of A, i.e., we have to find a filter which
maximizes the signal-to-noise ratio at the output of the system at some appropriate

"readout'" time to.

The filter output -at to’ due to the signal A s(t), is determined by the
Fourier transform of the filter ocutput frequency spectrum AS(£)+H(f). [S(f) is

the Fourier transform of the signal s(t)].

g(t)) = A j s(£) H(E)el¥o 4¢ (3-16)

The f'uctuations at the output due to the noise power density

2w(f) = iﬁn + iin at the input according to Eq. (2-11l) are equal
—_— [--] [--]
2
(tv?) -I 2w(£) |H(E)| “dE = J‘ w(f)-lH(f)[zdf . (3-17)
-l

o
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The signal-to-noise ratio p to be maximized is

2, 2
P = (8(t ) /(&v") . (3-18)
let us recall the Schwarz inequality for complex functions
|fu s vae)® < [|u? ae -+ [lv]? e . (3-19)
The equality holds only if
%
u{f) = a-v (f) . (3-20)
1f we substitute u(f) = H(f) - w%(f) and
v(E) = AGS(DMID))eI %o
and apply inequality (3-19) to the ratio (3-18), we obtain
[--]
2
27 S
p <A wif) df , (3-21)
-0l
and p is maximum, i.e., equality sign holds if
*
H(E) = a 5(H ., e Jutg . (3-22)

w(f)

It is convenient to split the optimum filter H(t) into twu.parts. The first
part Hl(f) transfers the noise spectrum w(f) into a white spectrum LR and the
second part Ho(f) completes the maximization of signal-to-nroise ratio. If we
denote by Sy(f) = S(f)*Hj(f) the signal Fourier transform modified by the filter

Hl(f)’ we can directly apply relation (3-22) to find the optimizing filter Ho(f).

H (£) = 5, (£)ee 1% (3-23)

where we have chosen a = Woe
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The filter pulse response, determined as the Fourier transform of the transfer

function (3-23), is

ho(t) = sl(to-t) R (3-24)
which is the mirror image delayed by t:o of the signal sl(t:) at the input of
the optimizing filter. The filter is called a matched filter, since it is
matched to a particular waveform.
The maximum signal-to-noise ratio for the matched filter with a white
noise source at the input obtained from Eq. (3-22) is
-0 =)
2] s, @l%e 2] s enie
- -l ]
Pmax B A (3-25)
max o LR v, .

Because the numerator is equal to the energy Es of the input signal. f-:q. (3-25)
shows that the matched filter uses the full signal energy. (It is not the eneigy
of a detecting particle nor the energy loss of a particle in the detector.)

Eq. (3-25) allows us to define the noise equivalent energy (NEE) = W This

quantity is directly related to the above defined noise equivalent charge.

The optimum filter pulse response (Eq. [3-24]) can be found alsc directly by
a similar analysis in the time domain, Let us show that the output waveform of the
matched filter ig symmetrical with respect to measured time to 50 any practical

output waveform has a maximum at that time,

The output of the filter canm be obtained as the convolution integral of the

signal and the filter pulse response (3-24).

00

g = [ s 00 n e-nran = im s, (Vs (Eg=esh)dA

orfort=t°+'r,
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g(t +1) = le(k) s;(A-m)dr = le(x'-»-r) s, AN =gt -T) . (3-26)

Before applying the derived formulae to the practical detection, let us study a

closely related problem of extracting the time information from a signal in the

presence of noise.

6. Optimum Filtering for Time Measurement

Let us consider the same basic equivalent circuit (shown in Fig. 7) as in
the previous section. The input signal A-s(t) has a known shape s(:) with an
unknown amplitude A. To measure the time related with the time of occurrence
of the signal, we have to maximize the signal slope to noise ratio. We decided
to perform the measurement at some later time with respect to the occurrence of
the signal.

The filter output at to is again given by relation (3-16) so the slope of

the output waveform at the time £, is

g'(t) = | jus(e) roedo as . (3-27)

The fluctuationmsat the output are given by (3-17), so the signal slope-to-noise

ratio to be maximized is,

2 ’
() ’p'%&% (3-28)
v -

Applying the Schwarz inequality we obtainm,

- 2
osa2 [ L@l , (3-29)

= w(f)

and the equality sign holds if

* -
H(E) = a :ﬂ‘%ﬂ - 1% . (3-30)
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We can again split the optimm filter into two parts; first the prewhitening
filter Hl(f) and the second filter Ho(f) for which we can apply the relation

(3-30), put a = v, and obtain

By(6) = jusi(e) + ™0 : (3-31)
The filter impulse responsge is
x X--}
= G dut o 4 Mox o jw(te-t)
ho(t) I Ho(f) e’ df 3t J Sl(f) e , df R
- -
or taking complex conjugated equation we can write
ho(t) = L5 (e -t) (3-32)
o dt "1 o ¢

Comparing Eqs. (3-32) and (3-24), we see that the pulse response of the optimum
filter for timing measurements in the presence of white noise is the derivative
of the pulse response of the optimum filter for the amplitude measurement. This

is true for any noise power spectrum. (It follows from relations (3-30) and (3-22.)

For a matched filter, we can find the Pmax which corresponds to the minimized

error in the timing 6t. From Eq. (3-29), written for the case of the white noise

and Eq. (3-31), we obtain

(35) =Py = é; i lius (O] df = ;3— lm(s{(t)) e . (3-33)

We can see that the matched filter for the best timing uses in an optimal
way the derivative of the signal waveform to extract the time occurrence of an
event. We will show that at the measured time tyr the resulting waveform g(t)
crosses 0. Hence, the best timing results from a zero crossing method which has

the well known antiwalk properties as well. Let us show something slightly more
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general, namely that the output waveform g(t) is an odd function of time around
the time to. By analogy with the previous section, we can write
(-] o0

g(t) =_[ sl(t-)t) . ho(x)dx = L sl(t-k) Edf sl()t)dx =

ENCOSIENCO I@ &S a0

Where we used integration per parts, The signal has to vanish for t = = = and

by simple manipulation similar to those for obtaining relation (3-26) we can

show that
g(to-T) = -g(t°+¢) . (3-34)

7. Feasibility of Detecting the Macroscopic
Electromagnetic Field of a Relativistic Particle

As an illustration of the fundamental character of the previous sections,

let us analyze the detectability of a relativistic particle via its macroscopic
7
electromagnetic field.

The basic motivation for wishing to directly detect the electromagnetic
field of a relativistic particle is the fact that the shape of the field depends
strongly on the v (= E? of the particle. Let us assume that with a suitable probe
we can extract all electromagnetic field energy U contained outside a cylinder of
radius L around the trajectory of the particle, Let us also assume that the full

extracted energy is brought as a signal to the input of an amplifier. Electro-

magnetic energy U can be expressed as

2
1Y (3-35)

329°r°

U=
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where ro and Y'were defined above and
q - 1is the charge of the particle

2 7

. 1 . -
E, = 1s the absolute dielectric constant ( Gmeg ¢ x 10 7) .

We see that the extracted energy is proportional to the particle energy ¥.
We can calculate the value of ¥ for which the signal energy équals the noise
power of the amplifier. Without goint into detail, we know that the noise power
mugt be according to the Eq. (2-21) of the order of kT. (This time we deal with
the real physical power and energy instead of square of current or voltage as

usual,) Calculating vy we obtain

32:° r0 kT
Ymin * 2 (3-36)

> which 1is too large for

for r_ = 1 cm, kT = 25 meV , we obtain y_. = 5 x 10
o min
the method to be practical. (It can be shown that the length { of the "extracting

probe'" is £ = YT, which makes the detector several km long.)



Part IV. Charge Measurement for Practical Detectiom Systems.
£=-19
1. Charge measurement under additional constraints.[

Let us return to the measurement of the charge signal. The input
circuit with the parallel and series noise sources is showu in Fig. 7.
Let us calculate the impulse response of an amplitude matched
filter for the detector signal being an impulse of current containing
tr tal signal charge Q.
s(t) = Q - &(t) (4-1)

The total noise current power density 2wi(f) at the input is

4KTR
2
2w (£) = AKT —2 - 4kT(—1]i- + mzctas) (4-2)
2] P

where Rp -~ is the equivalent parallel noise resistance

R, - is the equivalent series noise resistance

1
jmct is the input impendance

Ct - total input capacitance

We can rewrite equation (4-2) using the "noise corner time constant"

‘rc-Ct./RR as

S P
4kT 2 2
W () = L+ ) (4-3)
|2
To obtain white noise we have to pass the noise and signal through a
prevhitening filter with the transfer function H(f) = S S
1+jwt
The noise then becomes white: ¢
2w = .4—}31'—
o R (4-4)

P



and the signal becomes
-t

s =X e £>0 (4-5)

Cc
-0 £<0

Now we use equation {3-18) to calculate the square signal to noise ratio

for the matched filter.
2

p max = Ak'l‘Ct 7___§s (4-6)

Rp
From equation (4-6) we obtain the minimal equivalent noise charge

Rp
Under the most favorable conditions (usually not present in particle

2
(ENQ)S . = 4KTC, / Rs -7

physics experiments) ENC can be below 30 electron charges (as low as " 10}.
Equation (4-5) shows that the signal waveform s (t) has an infinite
duration, so the matched filter requires an infinite delay to respond in
a symmetrical way. Such a filter can never be built in practice.
The impulse response of an ideally matched filter
with the time origin shifted in such a ﬂ that the waveform peaks at
zero is shown in Fig. 8. (h(t) = & :c )

Ve notice that for It:l> 2'rct:he ideal pulse response is not
very different from 0. Since the ideal response corresponds to a
stationary function a small change in the shape of the function should
not increase the ENC too much. Intuitively we expect that the exact shape
of the impulse response is not very critical to obtain low noise
performance of the system. For any filter we can define the ratio p
of the ENC obtained with that filter and the ENC of the matched filter. The
ratio n measures how much of the noise performance we are sacrificing

with a given filter.

n = (ENC)Filter
Filter (ENC)Matched (4-8)
OPT -



Let us calculate this ratio for a filter with the triangular impulse

response shown in Fig 8.
t
h(e) =1 - ¢t lel <t

= 0 otherwise (4-9)
The calculatfon of the ENC can be counveniently done in the time domain
For the parallel noise we can use Campbell's theorem which is directly
applicable because the noise source can be thought as a sequence of
random impulses. (See equation (2-5)
The contribution of the parallel noise into ENC can be

written as

2 2kT 2
= _—_ h(t dt
U R j ( ( )) (4-10)
p — O
To write the expression for the contribution of the series noise
source e we have to take into account that the voltage source is placed
I3

differently at the input and therefore its impulse response is differ-~

ent from the impulse response of the signal. It is easy to see that the

4

impulse response of the voltage source is Ct 3t

h(t) where h(t) is the
impulse response due to a unit signal charge. So substituting for h(t)

into equation (2-5) we can express the series noise as:

d 2
€, = 2w c f(ﬁh (t)) de

—-_ (4-11)

Straight forward evaluation of integrals gives the following results.

2 - mo 2,
np Rp 3 m (4-12)

= . 2 2
qﬂS 2kT Rs Ct tm (4-13)



The ENC ratio n of the triangular filter has a minimum for L. =
V3. T, an its minimal value is about 1.08. We see that the noise
of the system is only about 8% above the theoretical limit.
We note also that for - /Trc, parallel and series noise contribute
the same amount to the total noise. From the equations (4-12) and
(4-13) we see t:h‘at: the contributions of the parallel noise increases
with the time t while the contribution of series noise decreases with
the shaping time tm.

This general behavior is independent of the precise shape of
the impulse response of the system and can be intuitively understood.
The parallel noise source feeds the same impedance as the detector
signal. Since the noise can be thought of as a sequence of random impulses
a longer shaping time allows more noise pulses to contribute to the
output. This process is similar to the random walk which also gives a
de viation proportional to the square root of the processing time.

Random voltage pulses from the series noise source are equivalent
to current "doublet" pulses when transformed to the same point
at the filter input as the detector signal. Current "doublet" pulses can be
visualized as derivatives of the Dirac delta function &(t), i.e., as a
pair of impulses of opposite polarity separated by At, where the product
of the pulse area and At equals unity. A doublet passing through a
flat part of the impulse response function . gives zero contribution
to the output because the contribution from the first pulse of the
doublet is exactly canceled by the contribution from the second pulse.
Only when impulse response function has a steep part two pulses of

the doublet produce different responses at the measuring time giving



a non zero contribution to the noise.

The triangular pulse response can be realized in practice. It has
the final time duration Ztm. The detection rate of the system is lim-
ited to 1/2t; level. The choice of t = T, which gives the best noise
performance is often impossible in high energy physics experiments
because the noise corner time constant is too long ('\:10—4 to 10'-5 sec) and
the resulting rate limitation unacceptable.

If the duration of the system impulse response is much shorter
than the noise corner time constant the contribution of the parallel
noise (egquations 4-10, 4-12) is negligible and the ENC is given by
equation (4-11) and (4-13).

We would like to stress that the length of the filter pulse response
ta has nothing to do with the speed of charge removal from the detector
capacitance. We will return to this point later in the section dealing
with amplifiers.

Up to now we have assumed the detector input is a current impulse
§(t),or practically a pulse of a duration much shorter thaa the
filtering time toe If the signal has a duration which can
fluctuate, the system impulse response has to have a flat top of the
duracion about equal to the longest signal charge collection time. If the
signal duration does not fluctuate and the total charge must be measured
the total length of the system impulse response has to be longer than
the duration of the signal. This can limit the rate performance
of the system. If the charge collection time is too long, it is possible

to have a system In which the duration of the output signal is shorter than’

20

the duration of the signal at the input. In these cases only a part



of the signal is used so ENC is usually much larger.

2. Optimal Matching between Detector and Amplifier

We are going to answer another important question asked in the
Introduction. What is the "best” amplifying device to be used with a
given detector?

Let us assume that the duration of the output waveform is limited
by the rate considerations so the total noise is due to the series noise
source of an amplifying device. Also we will assume a triangular
shaping of duration 2tm at the base (this assumption is not essential,
we could do the analysis with any suitable shaping function) so the

equivalent noise charge (ENC) ¢an be written as
(eve)? = 4kmR_ (c,+ ¢ )/t
s ‘car ) 't (46-14)

The relation. (4-14) 1is exactly the relation (4-13) where we have written
explicitly the total input capacitance as a sum of detector and ampli-

fier capacit.ace: . From section III-3

know that the noise series resistance
Rs can be written as

(4-15)

£ 1o

where a = .5 and .7 for bipolar and junction field effect tramsistors
respectively. (a = 2.5-4 for vacuum triodes),

To reduce the noise series resistance RS we have to increase the
mutual conductance of the amplifier. This can be in principle achieved
by paralleling several amplifying devices. If we call the number of

amplifying devices n, the equation (4-15) can be written as

(g



2 a 2
(ENC) 4kT n g (“ACA + CD) /tm

Am
(4-16)
(We must not forget that paralleling of amplifiers increases the
total input capacitance.) Equation (4-16) has a minimum for
oy = 2
A Gy (4-17)
which gives the (ENC)op: as
2 ac 1
(ENC_ )° = 16kTC, —B . =
opt D e 5 (4-18)

The equation (4-17) says that the lowest noise can be achieved when
the capacitance of the amplifier equals the detector capacitance. It
is easy to see that unde; this condition the maximum of the signal energy
from the detector electrode is transferred to the preamplifier so the
condition (4-17) also maximizes the signal energy E_ as defined in (3-25).
(To be really precise, if we consider a broa&er class of connections
between the detector and the preamplifier by using an "ideal" inductance
we can increase the signal energy Es at the preamplifier and hence
improve ENC up to the factor /‘f??Lthe stray capacitances of real inductors

make this solution impractical in cases of low amplifier capacitance.}

For the optimal capacitance matching between the detector and the

as given by (4-18) depends on the amplifying

preamplifier the ENCopt

device only via the ratio cA/gln (a - is practically the same for
bipolar and FET transistors)
Discussing the bipolar traunsistor (in Part 1I1.3) we have seen that

the ratio of the predominant, i.e., diffusion capacitance cdiff and the

SR e



mutual conductance gp is the transit time Ta of the minority carriers
across the base of a bipolar transistor. For a junction field effect
transistor we can find a very similar relation. The CA/gm ratio is
practically equal to the transit time A of the majority carriers
through the FET channel. The transit time T, is a measure of the reciprocal
of the unity gain frequency fT of the amplifying device.

Using f'l‘ we can rewrite the e\quation (4-18) as

2 a
)¢ o= 16chD T (4-19)
Tm

We have found that the unity gain frequency fT of an ampli-

(ENcopt

fying device is the only parameter defining the noise performance of
the signal orocessing system under all the above assumptions. Devices
intended for the use at the highest frequencies, which have the highest
f_, give also the best noise performance. The state of the art silicon junc-
tion FET  have fT around 1GHz, bipolar transistoms up to 5GHz and the
fT of GaAs FETs can be as high as 20 GHz. The extremely small
Cy (MlpF ) which makes the capacitance matching difficult particu-
larly at higher frequencies and the excess flicker noise up to 100 MHz
have prevented the wide use of GaAs FETs as amplifying devices so far.
The shot noise of the base current (source of the parallel noise)
limits the use of bipolar transistorsfor the applications with shaping
time shorter than few 10_8 sec., Silicon.:']unction FETs give the best
performance for t, > ZI.O-7 sec. The situation is summarized in Fig. 9,
where the ENC versug th is plotted for several detectors and amplifying
devices.

Optimal capacitance matching can be obtained by several means. There

is a wide scale of FETs with different CA' If necessary several FETs are



usually used at the preamplifier input. A bipolar transitor offers a
range of C, as a function of its standing current I, (equation 3-6).

For a detector with a very high capacitance the only practical match-
ing is by transformer matching. Liquid argon ecalorimeters provide
a very important example of a detector for which the transformer

matching is a necessity.

3. Signal Processing for Liquid Argon Calorimeters

I«

3.1 Signal Formation in Liquid Argon Calorimeters

As it was mentioned in Part I calorimeters measure the energy and
position of particles through the process of total absorption . In
this process, secondary particles are generated, which themselves react
inside the detector. Finally, almost all of the Incident energy of the
particle will be converted into heat (hence the name "calorimeter” ).
The increase of the temperature is obviously too small to be measured
and ifonization or excitation in a detection medium are used to produce
a measurable signal. The use of calorimeters is iIncreasing in high
energy physics experiment for the following reasons (i) it is the only way
to detect and measure the energy of the neutral particles, (ii) the
accuracy of the energy measurement due to detector factors improves
as the square root of the particle energy, (iii) signal from calorimeter
which carries the information about the energy deposition is available
at very short time scale for the event selection (triggering).

A liquid argon calorimeter uses liquid argon as a detection medium

and measures total energy via the ionization sampled in the liquid argon.



This technique is now very popular mainly for electromagnetic calorimeters.
Roughly speaking, the ligquid argon calorimeter consists of parallel conducting
plates (electrodes) a few mm thick and a few mm apart immersed in liquid argon.
Advantages of using ion chamber approach for the energy sampling are:
(1) Simple high-accuracy charge calibration is possible.
(1i) The detector has uniform sensitivity over the whole detector volume.
(iii) The detector can be practically arbitrarily subdivided and so provide
position resolution.

(iv) Large detectors of arbitrary shape can be constructed.

On the negative side we have the rate limits given by the mobility
of electrons in the liquid argon and the requirements of the operatiaon
at cryogenic temperatures.

To study the signal-from a liquid argon fon chamber we have to take
into account that the liquid argon is a single carrier medium as far
as charge collection is concerned. The positive ions do not contribute to
the signal charge due to their very low mobility. The basic rela-
tions for the current and charge waveform for planar electrode geometry
are illustrated in Fig. 10. Part a of Fig. 10 shows the current
and charge in an externmal circuit for ome ion pair. The current, due
to one carrier (electron), is determined as q/td, by the drift time ty
across the gap. (See also Appendix 1). The charge measured in the
external circuit is determined by the ratio of the distance traversed
by electron (d-x) and the electrode spacing d,

d-x
() = 9 g (4-20)



If iomization is uniformly distributed across the inter-
electrode gap as in the case of ionization resulting from a passage
of a charged particle the induced signal equals one half of the ionization
charge on the average. (Fig. 10b ) . The resulting current and charge
waveforms are different for localized and for uniform ionization
across the gap. We can note that for uniform ionization three quarters
of the observable charge is collected in one half of the drift time
across the gap. The saturated drift velocity of the electron in liquid
argon is around 5 mm/ us as so for a typical gap width of 2 mm the
collectfon time is about 400ns . Standard rate considerations in
high energy physics experiments limits the resolving time to the
1 us region, The signal current cannot be considered as an impulse
compared with the duration of the filter, so the output amplitude due to a
unit charge signal will be smaller than the amplitude due to the unit charge impulse.
Let us estimate the amount of charge produced by absorption of,
let us say, an electron of total energy E. Liquid argon samples
typically between (10-20) % of the total energy. The energy loss to
produce 1 ion pair in liquid argon is I25eV. Taking into account that
we see only one half of charge the energy loss per observed electron is
50 eV. If we sample 10% of the energy we need effectively 500 eV to
produce an electron charge. In other unit, one GeV of energy deposited

inside the calorimeter gives a signal of .32 pC.

3.2 Detector-Preamplifier Matching for Liquid Argon Calorimeters.

In the preceding section we have determined the quantity of charge

in typical sampling liquid argon calorimeters, Calorimeterg involve a
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large number of plates and, therefore, a large capacitance. The
capacitance of a bigger section of a calorimeter C, can

reach up to 10_7F. Connected directly to the gate of a junction FET
with an input capacitance of 10pF the amplifier would see omly one
part in 104 of the total charge. Paralleling of 104 input FETs

is not a practical solution; therefore, the capacitance matching has to
be accomplished by a transformer.

The detector-amplifier circuit configuration with a matching
transformer, provisions for detector biasing, and charge calibration is
shown in Fig. 11. Due to the large detector capacitance the blocking
capacitor Cb cannot be much bigger than the detector capacitance Cd
so it has to be taken into account. Amn equivalent circuit showing
the essential elements for noise analysis is given in Fig. 12. The
shape of the impulse response is alsc shown in Fig. 12. Bipolar shape
of the total duration A 1is asgumed. Bipolar shape 1s a necessity if
the shift in the energy spectrum due to the pile-up has to be avoided.

We are going to calculate ENC of the configuration shown first
assuming that the signal 1is a current impulse. We will transform
the signal charge and the detector capacitance and the blocking
capacitance to the secondary of the matching transformer and use
equations (4-10) and(4-11) with an impulse response as shown in Fig. 12.

We can write the following equations for the transformed signal

charge and capacitancies:

n

(M c -
@ . g (4-21)

where n is the transformation ratio.
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The transformed blocking capacitance Cb acts as a capacitive
divider between transformed detector capacitance C(c;r)and amplifier
capacitance CA . Hence, the relation between the transformed charge at

the detector ch)and the voltage at the preamplifier input Vp, can be

written as C

(T) d (T)
Q = (CA(1+ -(-:——)+ Cd. ) . VPR
b (4=22)

which allows us to write equation (4-11) in the following way:
c

9 d \2f fa 2
T - —— (T (...._ h{t) dt
(lns ) ZkTRs (CA (1+Cb ) +Cd ) [ dt ,

or after substituting for transformed quantities from (4-21) and eval-

(4-23)

uating the integral we can express the equivalent noise charge (not
transformed) of the series noise source as

C C 2
(ENC)SZ = 32KTR, % nc, (1+ Fd') + 32)
\ b (4~24)
In a similar way we can find the expression for the equivalent noise

charge due to parallel noise sources,

W

o) ? =2 2 o (1+'§9- )2 (4-25)
] b
For the short duration of the filter impulse response X as used
in practical calorimeters the parallel noise can be kept small compared
with the series noise and can be neglected. The total ENC is thus given

by (4-24). There is an optimum transformer ratio for which the ENC has

a minimum.

\ (4-26)
/

[P




From equations (4-21), (4-22) and (4-26) we see that the optimal
noise situation is obtained with the transformer ratio which equals
transform detector capacitance to the capacitance of the preamplifier.
(Modified slightly by the effect of a finite blocking capacitance Cb.)
The condition (4-26) maximizes again the transfer of the signal energy
from the detector to the preamplifier.

To keep the parallel noise small requires certain care. A liquid argon
ion chamber does not have significant leakage current. The dominant
source of parallel noise in the input circuit are the losses in
the ferrite core of the matching transformer. We will not analyze
the noise performance of the transformer here. With a correct choice
of the ferrite core with the right number of transformer turns wound
in a correct way the parallel noise due to the transform:r lo-ses can
be kept sufficiently small.

The leakage inductance of the transformer plus the inductance
in the connection between the detector and amplifier requires a
damping to prevent oscillations in the input circuit. An amplifier
input impedance . of 500-1000Q is required for an aperiodical waveform.
The damping has to be implemented with no resistive component con-
nected to the input. We will describe an amplifying configuration
satisfying the above condition ("cool resistor") in some detail later.

Substituting Moy from equation (4-26) into (4-24) we obtain

the minimum equivalent noise charge due to the series noise

(4-27)
MIN A Tda

S
C,

ENCE: . 128 kTRs-]'- c.C [1 +
&



Equation (4-27) shows that for an optimal matching the ENC increases
c

d
with the square root of detector capacitance., {We can assume Yo constant)
b

Let us consider two sections of a calorimeter each matched to its preampli-

fier. Noise at the output of one section is uncorrelated with the noise
at the output of the other section. The square of the noise of their
linear sum thus equals the sum of noise squares from individual sections
which is the same (according equation 4-27) as the noise coming from a
section with the capacitance equal to the sum of two capaci-
tancies. We see that for an optimal matching the noise is given by

the capacitance of the considered section independently of the number

of subdivisions and other read-out details. A fine subdivision can
improve the signal to noise ratio at the later stage of the analysis,
because for a given event we can exclude the subsections without the
signal and so decrease the effective capacitance of the detector.

This approach is not practical in triggering when the signal from the
calorimeter is used to provide the total energy for the event selection. In this
case we have to take the signal from a major part of the calorimeter
which has the equivalent noise charge given by equation (4-27) independ-

ently of all details of the detector segmentation.
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3.3 Optimization of Electrode Distance in Liquid Argon Calorimeter

All noise relations for the liquid argon calerimeter were derived up
to now under the assumption of an impulse (delta function) signal.
We have already seen that real signal due to uniform ionization across
the gap has a "sawtooth" waveform (shown in Fig. 10b)

«Ng L
i ty (1 td) 0ttty (4-28)




If this waveform is presented at the input of the preamplifier-filter-
amplifier system whose overall impulse response h(t) is our well-known
bipolar function with triangular lobes the output waveform is the
convolution of these two fumctions. Fig. 13 shows the result of the
convolution. Two effects are apparent. 1) The width of the output
waveform, i.e., the resolving time ﬁm' is the sum of the electron
drift time across the gap and the width A of the system impulse

response;

A=A+t (4-29)
m d

ii) The amplitude of the output is reduced compared to that of h(t)
for impulse excitation of the same charge.

We are going to find an "optimal" gap width under two constraiamts
The first is the resolving time Am and the second is the comnstant ratio
of the energy sampled in liquid argon. The first constraint is given
by the rate requirement. The second constraint defines the total volume of
the detector. Let us change the detector gap d. If d is very small,
the capacitance of the detector is high and according to equation (4-27)
equivalent noise charge rather high. If we increase the gap width, the
detector capacit#hce decreases, but so also the amplitude of the output
waveform which reaches 0 when the electron drift time ty is equal to
the resolving time Xm (A = Am -t = 0). Intuitively there is an
optimal gap width which gives the lowest ENC.

(There are many other important parameters entering into the choice
of the gap width and hence the granularity of sampling for this kind of
detector. The present optimization is only with respect to the electronic

noise which may not be the limiting factor for a particular calorimeter
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under consideration.)

Let us make our intuitive argument more quantitative. If we set
a constraint on the resolving time Am’ and vary the ratio of t to Am from
zero to one, maintaining.the total charge constant, then the amplitude
of the output decreases from unity to zero as shown in Fig. 1l4. Calling
this amplitude a (tdlkm) we can obtain the equivalent noise charge for
the case of the "sawtooth” signal from equation (4-27) by dividing the

ENC for the impulse case by a (td/km)

c c
2 d __c_l___
ENC” = 128KTR C (1+—) t (4-30)
S A C d
b az(i—-) . A
m

The capacitance of the detector Cd depends on the gap width. If we
use the second constraint of constant ratio of liquid argon and plate

material the detector capacitance Cd is inversely proportional to the

square of gap width Cq = i%. (Capacitance of one gap goes as 1/d and
d
the number of gaps in the detector has also 1/d dependence.) Substi-

tuting d = ve Tty and neglecting the term Cd/Cb we can write equation

(4-30) as
1 ty /2 5/ 2 ts -1
[Tt 572 | — [+ . ==
ENC <« kTRsCA ve Am Am (Xm a (‘\m ) (4-31)

The dimensionless term in the square bracket is plotted in Fig. 15.
It has a minimum value of 6 at td/km = 1/3.
Thus, there is an optimum value of the interelectrode gap deter-

mined by the required resolving time Am and by the electron drift

velocity ve
d=% v . 2 (4-32)



To conclude this part we would like to stress that the event
resolving time Am does not define the limit on event timing in the liquid
argon calorimeter. The best possible time resolution of the occurence
of an event in liquid argon calorimeter is given by equation (3-33).

For a bipolar shaping considered here and the '"sawtooth" form of the
input current, the time jitter of an event with the total charge Q at

the zero crossing is

ENC
St = £ (4-33)
Q bda( _i:dt_)

where ENC is given by equation (4-27) and a is plotted in Fig. 14,

-8
As an example for Cd =10 F; A =1 ps, a = .6 and the 1 GeV of the deposited
energy in the calorimeter with 10% of energy sampled by liquid argon

the time jitter St is 6 ns.
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POSITION SENSITIVE GAS DETECTORS

1. Fundamentals of Particle Detection
in Proportional Gas Counters

Today the position-sensitive detectors in high energy physics experiments
are dominated by multiwire gas counters operated in the proportiounal mode.
Detectors come in a large variety of sizes and arrangements, but the underlying
physical principles of detection are the same. Gas counters have an appealing
initial simplicity with a great design flexibility, but the details of their
operation are surprisingly complicated when closely examined. In these notes,
the emphasis in on the signal processing, so only very brief descriptions of

. a8 2<
the fundamentals of gas counter operation are presented. *

The physical processes involved in detection by gas proportional counters
are: i) Primary iemnization of the gas atoms and molecules by the dectromagnetic
field of high energy particles; fi) secondary ionization by some electrons produced
by the primary ionization; i1ii) drift of electrons toward the anode wire; iv) impact
ionization of "hot" electrons in the high electric field near the anode wire pro-
ducing the charge multiplication (avalanche gain mechanism); v) collection of
electrons by the anode and an exchange of remaining positive charges among various
components of the gas mixture; vi) drift of positive ions toward the cathode and
signal formation on the surrounding electrodes; and vii) signal processing and

readout.

As mentioned above, the main purpose of wire chambers in high energy physics
experiménts is to provide position sensing detection. 1In some applicatioms, the
measurement of the ionization due to the high energy particle (or the accompanied
x~rays) is also required. Examples are: gas proportional chambers used as eampling
detectors in calorimeters, chambers intended for particle identification via ioni-

zation in relativistic rise region, and detection of transition radiation x-rays, etc.
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A proportiocnal gas caunter consists of a thin wire stretched at the axis of
a conducting cylinder filled with a suitable gas., The electrons liberated in the
gas by an ionizing radiation drift toward the central wire at a positive potential
relative to the cylinder. Electrons arriving in the high field region in the
vicinity of the wire experience inelastic ionizing collisions, forming a multi-
plication avalanche. The pulse induced in an external circuit between the anode

and the cathode is mainly produced by the motion of positive ions. (Appendix 1)

Multiwire proportional chambers usually consist of a plane of equally spaced
anode wires, sandwiched between two cathode planes. 1In the major part of the
chamber volume the electric field is uniform, but close to the wire it is almost
identical to the field of a cylindrical proportional counter. The simplest loca-

lization is dome by identifying the wire which has produced an avalanche.

The relation between the position of the ionizing column created by a particle
and the avalanching process, due to the arrival of electrons at the anode, can be
used for an accurate position measurement. A gas detector designed to operate this
way is called a drift chamber. A possible configuration of drift chamber electrodes
is shown in Fig. 163.(£é) Electrons produced at time t, by incoming charged particles
drift against the electric field and reach the anode wire where avalanche multi-

plication occurs at a time £y The distance of the track from the anode wire is

therefore given by

t1

X = I wpt , (5-1)
t
[}

vwhere Y is the drift velocity of electrons. Before studying the main limitation

of the position accuracy obtainable by drift chambers, let us say a few words about

the charge multiplication in a avalanche process.



A passage of a charged particle through a 1 cm thick layer of gas preduces,
typically, about 100 electron-positive ion pairs. We already know that this
amount of charge is not large enough for direct detection. The amplification
in an avalanche brings the signal into a detectable level. However, there is a
penalty to pay. The avalanche process i3 a stochastic (random) process itself
and introduces additional fluctuation into the detection. (Its name is "linear
birth process'".) If we study avalanche processes originate! by a single electrom;
we see that resulting total charges have a broad distribution. This kind of

" distribution is very common in detection and is called the Furry distributiom. In
the case of the avalanche multiplication process in gas detectors, the probability

density function of the gain distribution can be approximated by a simple exponential

2

P(g) = -gl; - e 8 (5-2)

where P(g)*Ag is the probability for the gain to be between g and g+Ag and 8o
in the mean gain.

If we detect n primary electron charges having the mean value E(n) and the
variance var(n) via an avalanche process described by Eq. (5~2), the mean value E(n)
and the variance of the total number of charges var(N) after multiplication can be

_ expressed as <7
E(N) = g,* E(n)
var(N) = g% - var(n) + E(n)*var(g) (5-3)

(var(x) = E(x2) - E(x)?) )

The variance of g is directly calculable from the probability density funection (5-2),

and its value is g2 For the square of the relative width we can obtain from

o
Eq. (5-3)
var(N) .~ yar(n) + 1 (5-4)

E2(N) E2(n) E(n) ’
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If the distribution of the number of primary electrons n has Poigson statistics,
var(n)/Ez(n) = 1/E(n), we see that the relative width of the number of electrons
after multiplication in the avalanche process (5-2) is degraded by a factor of
J/2 . In the measurement of x-ray energy, the distribution of the number of
primary electrons is narrower than the Poisson distribution with the same mean
number of electrons. (Fano factor) Therefore, the relative importance of the
second term in Eq. (5-4) is greater and the energy resolution degradates typically
by a factor of 2, (Broadening of the resolution given by Eq. (5-4) does not
depend on the mean gain 80" It can be shown, however, that the stability of the

mean gain decreases with the value of mean g,.)

The loss of the energy resolution is of little importance for chambers where
only position information is required. Low gas gain has, however, enormous
practical advantages for the chamber operation. .he lifetime of the chamber is
extended, external and internal high voltage discharges are easier to prevent.
Positive ions produced by an avalanche at the anode of a drift chamber move slowly
toward the cathode across the drift volume. The presence of the positive charges
inside the drift volume can seriously affect the electric field and hence the drift
velocity of the primary electrons. The velocity in Eq. (5-1) can become dependent
on the past chamber history and the method stops to work. The effect depends on
the total charge in the drift volume which is product of the detection rate and
the mean gain. Smaller mean gain allows operation of the chamber at higher rates.

2. Position Resolution in Drift Chambers <

The space resolution in drift chambers is mainly limited by two factors:
i) diffusion of electron during their drift toward the anode and ii) discontinuity

of the primary ionization.
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The resolution for a track close to the anode wire is limited by the fact
that the ionization left by a fast particle, insfead of being a "continuous"
line, is concentrated in separated clusters. The effect is shown in Fig. 16b.
A track with drift path 0 (crossing the anode noise) gives a reading which
corresponds to the distance of the closest ionization cluster to the anode.

If the mean number of primary clusters per cm is N, the probability of zero

clusters within the distance d from the anode is

P (@) = e 2N . (5-5)
From this probability we can derive the mean distance of the closest
: 2
cluster E(dmin) 1/2N and the variance var(dmin) = 1/(2N)°. We see that
the drift distance measurement has a systematic error 1/2N (we cannot measure
negative distances) and also the spread ¢ = 1/2N. We can take their sum in
quadrature as the contribution of the primary ionization effect to the space

resolution (for a particle passing through the anode).

5%, (0) = L . (5-6)

JZN
9
For gases used in drift chambers, N is about 25/cm, so § xl-(o) is about

300 u (for a track crossing the anode wife). The importance of the fluctuation

in the ionization decreases rapidly with the track distance from the anode wire x.

Assuming a constant drift velocity, we can write

5xi(o)
& x, (x) =&x,(0) * WxZ¥ éixz(O) -x) * . §;x(0) + — (5-7)

80 already 3 mm from the anode wire the fluctuations in the primary ionization

contributes only 30 L to the total resolut.ion.
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The effect of the electron diffusion is more important in the major part
of the drift cell. For a gingle electron drifting during the time t the rms

displacement éxD, with respect to the mean drift path x, is

8x_ = ./2Dt = ,/2Dx (5-8)
D —
UE

where D is the diffusion constant, u is the electron mobility and E the electric

field. The diffusion constant D is given by the Einstein relationship

p= ., (5-9)
q

where k, T, q have their usual meaning and { is the ratio of the effective
electron temperature and the gas temperature T. The reason for having the
electron agitation ratio { im the"Eq. (5-9) is :that free electrons in gas
under the influence of an éxternal electric field are, in general, not in
thermal equilibrium with the gas. From Eqs. (5-8) and (5-9) it follows that
the mixtures used in the drift chambers should have the electron agitation ratio

close to one. (We can notice that the diffusion of electrons in gases and thermal

noige in resistors are bagsically the same effects.)

Combining Eqs. (5-8) and (5-9), we can write

bx_ = «/%ﬂ /3E‘- . (5-10)

It looks as if we could improve the diffusion by simply increasing the electric
field E. This is correct for low values of E. Physically it means that the
drift velocity increases with the electric field and therefore the electron drift

time decreases. At the some value of E, the drift velocity stops to increase (for

some gas mixtures it even starts to decrease!) and §xp stops to improve with
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the electric field. It means that electrons are heated and the increase of the
agitation electron velocity decreases the electron drift velocity. The majority
of the drift chamber works in a plateau region of the drift velocity as a function
of the electric field. The independence of the drift velocity of the electric
field removes the constraint of the uniform electric field inside the drift cell
and allows a much wider variety of electrode configuration in a drift chamber
design.

Since in a drift chamber a swarm of electroms are drifting from the particle
track to the anode wire, the diffusion effect on the position resolution is smaller
than 5xD for one electron giveu by Eq. (5-10). The rms of the total resolution

can be written as

Spop ~/6x12(x) +avsx Py + 5, 2 (5-11)
where A is the factor which accounts for the statistical effects in the diffusion
of the electron swarm and ée)? are the fluctuations in the drift time measurement.
A typical resolution versus drift distance curve is shown in Fig. l6c. e see that
increasing the drift path ffom zero (anode wire), the resolution at small x improves
due to the decreasing importance of the ionization density effect but at large X

increases as the total error starts to be dominated by diffusion effects.

The drift time measurement includes the measurement of the particle passage
time through the chamber (usually provided by a scintillation counter) and the time
of the avalanche at the anode Wire. Two examples of signals at the output of the
preamplifier connected to the drift chamber anode are shown in Fig. 17b and c.
Output waveforms are very irregular as can be expected from the ionization randomly
clustered along the particle path. (This is in contrast to a regular waveform due to

the point-like ionization of an Fe35 6 keV x-ray.) The irregularity of the waveform
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prevents us from using any matched filter for a optimi&l timing., The best results

for a standard drift chamber, where the information about the drift path is contained
only in the time of arrival of the first cluster, were obtained by a leading edge
timing method. From the signal processing point of view, standard drift chambers
can use only very small portions of the signal to derive the time and hence the
position information. Any drift chamber electrode configuration capable of equal~-
izing the drift time for all clusters produced by ionizing particles would improve
the chamber performance. Not omnly the available primary signal would be much larger,

but also the affact of the diffusion would be decreased by full use of the statistics

of all primary clusters,

Let us return to the Eq. (5-11) describing the resolution of drift chambers,
The contribution of fluctuations in drift time measurement Gel to the total drift
chamber resolution depends on the signal from the chamber and on the noise of the
amplifier. We will calculate the minimal gas gain of the chamber, i.e., the gain
which makes the anode signal sufficilently large so the time jitter in the timing
circuit, due to the amplifier noise and hence BQL, is negligible compared with

other terms in Eq. (5-11).

We will use results of the nolse analysis from Section IV,2, A typical
capacitance of the anode wire is 25 pF, (x~ 10 pF/m, plus additional capacitance
in chamber feed-throughs). The measurement time t is very small. The best amplifying
device under these conditions is a bipolar transistor with high fT. Taking fT =
3 cH, tm = 10 ns, the ENC calculated from Eq. (4-19) is equal tc about 1000 electron
charges. The time jitter can be written as

t,*ENC
ot = — (5-12)
8

where Qs is the part of the wire chamber signal utilized for timing and tm is

the half width at the hase of the assumed filter impulse response, The product




of the time jitter and the drift velocity should be small compared with the dif-
fusion limit of the chamber which allows us to write

- tm.ENC'warift (5-13)

Qg %)) *
Taking 6xD = ,1 mm, v = 5 cm/us, the required signal charge for timing Qs is
about 5000 electrons. In the first 5 ns only about 107 of the avalanche charge
is induced on external electrodes (see Appendixl). TIf we assume an average of

5 electrons contributing to the signal, the minimal gas gain is about 104.

The calculation was done for the optimal capacitance matching and for a

transistor with high fT. The choice of the "best first transistor' is sometimes
comprised by an additional requirement for the device to survive possible in-
stabilities and discharges in the chamber. If the electronic noise is increased,

the gas gain has to be increased by the same factor resulting in rate limitation

and other disadvantages as described in the previous section.

To conclude, we would like to stress that drift chambers are detectors still

in a development stage and substantial improvements in their performance are very

likely to occur.

3. Second Coordinate Readout in Drift Chambers

We have seen that position resolution in a drift direction of the drift chamber
can be around 1 mm. Such a fine resolution is difficult to achieve by other position
detection means for the comparable active areas. A stereo view is the most popular
way to obtain particle coordinates in space, There is, however, a very wide class
of experiments performed at colliding beam facilities where the implementation

of stereo views presents considerable problems.




In a typical colliding beam experiment, the anode wires are oriented parallel
to the beam axis and to the magnetic field. The position in the direction of
the magnetic deflection is measured by the drift time method, The problem arises
in determining the second coordinate along the anode wire. Second coordinates are
"used to define the polar amgle of particle tracks and to establish the comsistency
of the track recognition. Usually the position accuracy sufficient for this direc-

tion is lower than the position accuracy perpendicular to the anode wire.

There are many second coordinate readout methods. These methods can be divided
into two groups. Methods within the first group utilize the signal induced on the
(e
cathode for the second coordinate measurement. The cathodestrips and delay line

IE-¥3]

parallel to the ancde wire are the methods most frequently used.

The cathode strips method (we can include here, also, a graded density cathode
method) can achieve the greatest position accuracy for a given gas gain of the
chamber, but it presents the well known ambiguity problems and therefore recons-—
truction difficulties for multiparticle events. The delay line parallel to the
anode wire can limit the rate capability of the chamber and its physical prese&ce
in the drift volume can intérfere with the drift field requirements. All methods
within the first group require additional material within the drift chamber volume.
This usually complicates, considerably, the mechanical construction of the chamber

and iIntroduces multiple scattering which may finally limit the precision of the

momentum measurement,

Methods within the second group utilize the anode signal for the second coordinate
measurement and so do not require any additional material inside the chamber, i.e.,
3
in the particle path. The position determination by charge division land the second

coordinate measurement by timing of the electromagnetic wave propagation along the

k3

33
anode wire (direct timing) belongs to the second group. The first method requires the
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resistive anode and gives a constant relative error A{/{ for a given signal charge.

The direct timing method requires a high conductivity anode and gives the resolution
At largely independent of the length of the wire ¢ for a given signal charge.

We will analyze a few of the methods in detail.

o~
4. Charge Division Readout in Drift Chambers 34 3<

The principle of the method is shown in Fig. 18. The resistive anode wire of
a proportional detector is terminated with low impedance (Z=0) amplifiers at both
ends. If the signal charge is injected at the distance L from the A end of the
wire, the ratio of the charges collected at the two ends is the inverse ratio of the
wirecresistances between the injection point and the wire ends. For the usual case

of the uniform wire resistivity, we can write

q 4-x
AL o (5-14)
qB Xy

where qA, qB are charges collected at A and B ends of the wire and f the kngth of
the wire.

The Eq. (5-14) is evidently correct for the DC current for which the presence
of distributed capacitance C(x) and inductance L(x) as shown in Fig. 18 is ir-
relevant., For the real chamber signal, which contains components at very high
frequencies, the presence of C(x) and L(x), together with the wire resistance R(x),

" defines the signal propagation from the injection point to the wire.ends.- The
first question to ask is the following. Is Eq. (5-14) correct also for an impulse
injection into the ancde wire? Is the chargé division method correct also in cases
where the signal propagation along the anode wire is mainly electromagnetic wave

propagation? The second question considers the compatibility of the drift time
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measurement with the charge division method. What is the degradation of the signal
rise time due to the resistive anode? How long does it take for the injected charge
to be collected by the amplifiers at the wire end and does this collection time

limit the rate of the chamber?

The answer to the first question is positive. The charge divides between
the two ends according to Eq. (5-14) independently of the distribution of inductance
capacitance along the line. Reference 2 contains a general proof of relation (5-14).
This intrinsic linearity of the charge divisionmethod is particularly important for
a large detector system with many wires where differences in L(x) and C(x) from wire

to wire can be expected. The linearity also justifies a relatively simple calibration

at two points along the wire,

To answer the secdond question, we note that the anode wire plus surrounding
electrodes form a transmission line and we are going to study the signal propagation
along this line., Let us assume a special case of a homogenous line where all three
line parameters (resistance R, inductance L, and capacitance C per unit length) are
constant. The differential equation describing electromagnetic behavior of the

line is the well known telegrapher's equation

auz(x,t) auz(x,t) du(x,t) '
= CL +RC ——— (5-15)
Bzx at? ot
u(x,t) = wvoltage

X =~ position coordinate of the Ine
t = time
R,C,L - resiiztance, inductance, and capacitance of the line per unit length

4 =~ length of the line



YR

RN

‘,"I- 13 -

The first term in Eq. (5-15) represents electromagmetic wave propagation and
the second term diffusion, The boundary conditions due to low impedance pre-
amplifiers at the ends of the wire are

u(o,t) =u(s,t) =0 . (5-16)

Eq. (5-15), with the boundary condition (5-16), can be solved by the Fourier
series method. Let us assume the solution in the form
-]
u(x,t) = L Xn (x) * 'I'n(t:) . (5-17)

n~l

After standard manipulation, we can write for Xn (x)

A e . - LT -
Xn(x) An sinlnx 3 kn 7 (5-18)

where all Au have to be defined from the initial conditioms.

Time equations then become

st
n 9T 2, . -
CL atz + RC 3t + lnTn 0 (5-19)

which are simple linear second order differential equations with constant coefficients.

The complete solution can be carried out by the reader or found in ( ). We will

concentrate here on the fundamental harmonic (n=l) which has the slowest decay rate

and, therefore, it defines the discharge time of the line. Substituting m/s for Ays

the character of the solution of the main harmonic time Eq. (5-19) can be periodical,

aperiodical, or critically damped., Thus we can define an RCL line to be
1) underdamped line for fR<2mw ./ L/C
i1) overdamped line for 2R>2m ./ L/C or

iii) critically damped line for sR = 27 ./ L/C

(Because / L/C. is about 3500 for the majority of chambers, J'RCRIT £ 2K0.)
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As is well known, critical damping gives the most rapid decay ~e = e

For an underdamped line, all harmonics are also decaying as e Eft, but the R is
smaller. An example of the voltage along a 2 m long anode wire at different times
after an infinitely sharp charge was injected at the wire center for an underdamped
line is shown in Fig. 19. We see thst for this line with a resistance equal to X

of the critical resistance the electromagnetic wave propagation is more important
than the electric diffusion as the line propagation mechanism. The reflections of
the wavefront are well visible and wavefronts contain more charge than the total

amount of the diffused charged in the line.

For an underdamped line, the diffusive propagation dominates. The first

harmonic has an aperiodical solution and slower decay time than a critically-

damped line.

It can be calculated that for a critical damped line the rise time of the
currrent pulse at the line end is about 1 ns (for an impulse injection), and about
407% of the total charge is delivered to the preamplifier within this time. We
see that the deterioration of the rise time, due to the resistive anode, is
negligible for the drift time measurement., Let us calculate the amount of time
needed to discharge the line and to compare it with the time spread of the primary

ionization arriving to the anode wire in a typical drift chamber (Fig. 17b,c).

For a critically damped line, the time congtant of the decay is

r
2L 214 2. T (5-20)

T = =

¢” Rgrr  owire TC T
where ¢ = IZJEE_ is the speed of electromagnetic wave propagation along the line
(vacuum) and T_ = 4/c is the time for the signal to travel the single length of
the line. Let us take six decay time constants as a criterion for the line dis-
charge time (.27 of the charge left). This discharge time is equal to the time

needed for light to travel twice the length of the line (= 15 ns).
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Thus, in practical drift chambers, the charge collection time at the wire
end is limited by the time spread of ionization arriving at the wire and the
use of wires with higher resistivity does not limit the rate capability of the
chamber. If the wire resistance is large, compared with critical resistance,
we can neglect L in Eq. (5-15) and obtain the well known diffusion equation.
The first term in the time equation (5-19) becomes zero and we can easily obtain

the line discharge time constant T for a diffusive RC line.

2
- BCL_ -
™ 2 (5-20)

~
C]

S. Position Resolution of Charge Division Method -

We will use the results of the noise analysis from Section IV.1 to calculate
the resolution of the method. Since the resistive line represents a dissipative
position sensing medium, its noise is inherently present with the signal. The
basic equivalent circuit is shown in Fig. 20a. It is, essentially, Fig. 7 with
a physical resistance R.P shorting the input. (We have shown only one end of the
line; the other is comnected to the ground for our analysis.) Equation (4-10)

i; directly applicable, so parallel noise can be written

@, = B[ menia : (5-21)
P -o

To write down the contribution from the series noise ey’ we have to take into account
that now we have a real resistance connected to the input, so the input admittance

is l/R_P + jucin. The impulse .response of the voltage source is (llR.P+Cin d/de)h(t),
where h(t) is the impulse response due to a uniu signal charge. Following the same

arguments as in Section IV.l, we can express the series noise as

qﬁs = 2kTR, La/aph(t)mmd/dt h(t))zdt = ZkTRsCmZ I [1/1-1“2 hz(t)+(d/dt h(t))zjdt

(5-22)
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where Tin = R.P‘Cin is the input circuit time constant. (The cross term in integral
(5-22) is zero as can be geen by per partes integration. It means that impulses
and doublets with the same time origin are uncorrelated and the total series noise

is the sum of their mean square contribution (Fig. 20b).

Let us now study the requirements on the pulse response of the overall filter
h(t). In order to preserve the intrinsic linearity of the charge division, we have
to collect practically all charge. This means that the flat part of the impulse
response has to be at least five time constants long (.2% nonlinearity), plus the
time spread in the arrival of the primary ionization to the ancde wire. Let us
assume: i) the wire resistance is sufficiently high so the line discharge time
constant ™ is given by Eq. (5-20) and ii) the!time spread of the arriving iomization

is small compared with TD

Because the line is "'ahorted" at the other end, a part of the line capacitance
seen at the input circuit is "missing".It can be shown that the effective line

ki
admittance in frequencies of interest is approximately

1 . 4C
@ e gy =2 -
Y 7R 7193 . (5-23)

To evaluate the relative importance of the parallel and the series noise, let us

calculate the noise corner time constant Te (see Eq. 4-3).

r_ = (€ HC/3)" (1RR)) (330 ns) (5-26)

For CA = 10 pF, 4C = 30 pF, 4R = 10 kO and R.s = 507, The value of the noise corner

time constant Tc has to be compared with the duration of the flat part of the filter
impulse response TF' According above assumptions

2
= §er = oSoRCL
T STD 2 (% 150 ns) . (5-25)
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for the same values of line parameters. We see that TF >> Tc, so the parallel
noise dominates.

Referring to Fig. 21 for the definition of the filter impulse response, we

can evaluate qﬁp !from Eq. (5-21),

2kT .
qnp R ¥ 1.2 ) 1,2 kT - (C1) (5-26)

where we substituted for TF from Eq. (5-25). This noise adds to the position
signal q,- (The noise in q, +dp is much smaller since for T, 2 57 ,it is anti-

correlated at the two ends of the line,) The position resolution is then,

AT(C

= 5-27
4 9, 9,Hg ( )

The position resolution for the charge division as given by Eq. (5#27) is determined
only by the total line capacitance (Ci), and is independent of the line-resistance.
This is a direct consequence of the fact that the dominant noise is a thermal noise
of the resistive anode in parallel to the input. If we try to decrease the anode
noise by increasing the anode resistance, the filtering time has to be increased

by the same ratio (Eq. 5-25), and the noise remains the same.

The result (5-27) holds only when the duration of the flat top of the filter
impulse response ig dominated by the time constmant of the diffusive anode line.
If‘the filter response is determined from the time spread of the arrival of the
primary ionization to the wire e is not determined by (5-25), and the noise is given
by the first part of the Eq. (5-26).

The amount of signal charge required to obtain 17 resolution by charge division

method is few time 106 electrons for a typical drift chamber. The method uses total

R
:
i
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ionization charge a. the anode wire, so the gas gain required for the charge

division method and the gas gain for drift time measurement are comparable.

POSITION SENSING WITH DELAY LINE

Position sensing with delay lines is based on conversion of position information
into a time difference between two signals from delay-line ends (Fig. 22a). The delay
line is in principle a non-dissipative position-sensing medium., The noise in this sys-
tem is generated in the line terminations and in the amplifiers. The position resolu-
tion is ultimately limited by the fluctuations in the shape of the avalanche around
the anode wire. The electronic noise determines the magnitude of the signal required

to achieve this resolution.

We are going to show that the delay-line termination can be realized without con-
348
. » 3 - . . 3 ~ s - »
necting any dissipative elements to the preamplifier input. In this way no additional
noise source is added into the system, and the noise at the output should be smaller

than the noise of a system with a conventional resistive termination.

Figure 23 shows a basic circuit configuration of a charge-sensitive preamplifier
with a capacitance Cy at the collector of a cascade transistor. Similar configurations
are commonly used in low-noise preamplifiers because they do not contain any dissipative
element at the input. (Resistor Rf can be made sufficiently large so its contribution

to the total noise is negligible.) Let us calculate the input independence of this

preamplified configuration.

The voltage at the output of the preamplifier is the current from the & element

integrated on the capacitance Cg:

1
Uout: Bm JwCo + 17Ro Uin ’ (5-28)
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and the apparent input current flowing through the feedback impendance Zf is given by

Lin ™ Youe/%s - (5-29)
From equations (5-28) and (5-29) we can calculate the input independence
U,
in 1 (5-30)

. 1
A Zf (jwCe + R—D-) .

in Iin &n

At frequencies where I/R¢ << jwCy and for a pure capacitive feedback (Zf = 1/ijf),

equation (5-30) becomes

1
Zin = 'g—m (5-31)

OIO
=

f

We see that Zin in (5-31) is real, i.e. a resistive termination was achieved by capaci-
tance in feedback. Thus, termination can be realized without connecting any dissipative
element to the input. The termination, however, cannot be noiseless since it is realized
by a physical amplifier. Because of the feedback, the equivalent series noise voltage

EE = 4kTR5 appears at the input terminal.

If we now terminate a delay line of a characteristic impendance Z, with a preampli-
fier having Z; . adjusted to equal Zp, we have only noise from the preamplifier in the
system (Fig. 22c). The noise source e sees the input impendance 2Zy (Z, of the pream-
plifier in series with the line impendance Z;), so the spectral density of an equivalent

parallel (across the input terminal of the amplifier) current noise-source generator is

R .
12 = 4kT —— x 2 (5-32)

(Zo)? ’

where we have multiplied by a factor of two because of the same amount of noise gener-

ated at the other line-end.
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APPENDIX

Signal Induced by a Moving Charge
Ionization detectors use the ilonization produced by a fast moving charged

particle to detect and measure some quantities associated with a particle. The
signal seen on the external electrodes of a detector, however, is due to the
movement of the charged carriers inside the detector volume. The charged
carriers move in an external electrical field which must be provided (by apply-
ing a bias voltage) in order to induce a signal.

To calculate the amount of the induced charge on outside electrodes, we
will assume that the velocity of the charged carrier is much smaller than the
light velocity so the systeam can be considered to be in an electrostatic equil=-
ibrium at any time. Expression for the induced charges can thus be obtained

based only on the electrostatics.

Let us start with the Green's theoran(38) (called also the Gauss identity in
German and French literature) which considers a set of conductors in two electro-
statically possible states characterized by total charges Qi’Qi and voltages

Vi,Vi , respectively. Green's theorem can be written:

Touvi = Fquv (a-1)

where summation has to be performed over all conductors of the considered set.
Q-s and V-8 are the charges and voltages of the first electrostatic state.
Let us apply the Green's (Gauss') theorem to the conductors 1 and 2 shown
on Fig. 24, The two electrostatically possible states are
95 Qs Qs Vipy» ¥y =0, V, = 0
and

q-os Q]'_’ Qi ;VEP), Vi, Vé-o .
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The first state has the charge, Q, at the point, P, and both conductors are
grounded. The second state is free of the charge, q, and has only the second
conductor grounded. Equation (A-1) can be written

q ¢ V') + QV +Q, - 0= 0-V(P) +Q+0+Q;-0
’ (a-2)

or AL

Q = *q
1 v,

Equation (A-2) gives the induced charge, Q, on the corductor, 1, connected to
the ground due to the presence of the charge, q, at the point, P. The ratio
V'(P)/Vi ig the voltage at the point, P, due to the unit voltage applied to the
consider electrode (conductor #1) while all other conductors are grounded and
the space is free of the charges. Equation (A-2) is always correct and applica-
ble to the multielectrode detectors {cathode readout for example). The identi-
cal result can be derived from the energy balance equation. It holds
also for semiconductor detectors where we have a fixed space charge present in the
active (depletion) region of detector. The fixed charge modifies the real electrical
field inside the junction, but because it does not move the induced charge is
the same as without it (given by A-2) assuming the same motion of the free car-
riers. (This is a direct consequence of the linearity of the electrostatics.)
We will stress again that V'(P) is a fictitious field and not the real field in-
side the detector. The real field is responsible for the carrier motion, the
fictitious field, V'(P), is a tool for the signal calculationm.

Now we are ready to calculate the induced signal in ionization detectors.
First, let us consider a parallel plate ion chamber having the gap distance, d
(Fig. 10). We will assume that an electron~positive ion pair was created at the
point, P, at the distance, x from the cathode (Fig. 10a). The net charge induced

on the electrode (for example, anode) is the sum of charge induced by the
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electron and the positive fon.
]
Q - EP—) - lc-
A,fon - 17VF 14

[-NH]

We can see that at the time of the ionization the induced charge on the anode
due to the electron 1is canceled by an equal amount of the induced charge of the
opposite polarity due to the positive fon. If we assume that electron drifts
immediately towards the amode with the velocity vy = d/td (td is the electron
drift time across the gap) a constant induced current flows in the external

circuit for which we can write

dQ
A, el dx
- 94 &X __4 "

1= =3 d at” Tt (a-3)
This current flows for t = dv- X g0 the total induced charge is

d
- (d—x)
Qs 13

which is the equation (4-20).

In cylindrical proportional chambers charge multiplication process takes
place close to the anode wire. About 98% of the charge is created in less than
S mean free paths from the anode. We will neglect this small motion of electrons
before reaching the anode and consider the proportional chamber signal to be formed
by a cloud of positive ions leaving the anode.

The ratio of V'(P)/Va' for the case of a cylindrical geometry can be

node
easily found from jauss' theorem ang 13 equal.
c
1 ln -_—
V') T (a4)
c

T =
v:-.u:zode 1n ( )
Ta

where r - is the distance of the point P from the center
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ra - is the anode radius
rc - is the cathode radius .

The induce current on the anode due to the total (multiplied) charge Qt is
1

= Lafvie) } L  —_— .1 @
1= & V;node Q T, r dt (a-3)
ln(—)
Ta

dr/dt is the radial drift velocity of positive fons in the real electrical
field of the proportional chamber. Assuming that the drift velocity is given

by the external field, E, and by the ion mobility, u, we can write

dr Eaa
i - E(r) "u =— T (A-6)

where Ea is the real electrical field on the anode surface. Equation (A-6) is
the equation of motion for the positive ion which has an elementary solution

2 2
r(t) = ZEara ut + T (a-7)

where we have assumed r(t=0) = L Substituting the equation (A-7} (and its

derivative) into (A-5) after simple manipulation we obtain
i

°
i(t) m-t—o 0<t< toax

where { = Qt:Ea]'l

o r ln(rc)
a ——
Ta

T
a

t o~
o 2Eau

(A-8)

- (2 2
tmax (rb ra)/ 215:31-a Hae
We bave referred to equation (A-8) in Part V. The induced charge is given by:
Qs(t) = io-to In (1 + t/to) (A-9)
The signal current stops at t = tmax' that is, at the arrival of the positive ;

anode to the cathode. It can be shown that Qs(t = tmax) = Q-

This research supported by the U.S. Department of Energy under Contract

DE~-AC02~76CH0001 6.




Figure Captions

Fig.

Fig,

Fig.

Fig.

1.

A possible oscillogram picture of noise. The displayed voltage

is a random process. If we consider the predictivity of

v(tz) from the knowledge of v(ti), we arrive at the concept .

of the autocorrelation function.

a)

b)

Physical resistance R represented by a no.se current source
parallel to an idealized noiseless resistance R.
Physical resistance R represented by a noiss voltage source

in series with an idealized noiseless resistance R.

Series noise in charge-controlled amplifiers. Fluctuations in

controlled output curreant are thought to be caused by a noise

voltage generator in series with the control electrode.

a)

b)

a)

b)

Fluctuations in current flowing into (or out of) the control

electrode represented by a parallel noise current generator

i

np
For a current signal the series noise vaoltage source e e
placed by an equivalent current source ins = ens/Zin parallel

to the input.

Forward-biased n+p junction. The density of current—-carrying
electrons in the p part of the junction falls off exponentially.
Schematic of an npn transistor. The P-region is made ex-~
tremely thin and is followed by a réverse-biased lightly

doped n region.

Schematic representation of an n—channel junction field-effect

transistor.
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Fig.

Fig.

Fig.

Fig.

10.

11.

12.

13.

The basic equivalent circuit of the detector and amplifier.
The system is described by the over-all impulse response
h(t). The series voltage noise source was replaced by an

equivalent current noise source parallel to the detector.

a) The impusle response of an ideally matched filter with
the time origin shifted in such a way that the waveform
peaks at zero. The filter requires an infinite time to
respond and is unfeasible.

b) Triangular impulse response of a realizable filter. The
noise is increased by only 87 compared with the noise of

an ideal filter.

Equivalent noise charge (ENC) versus detection time t for

different detectors and different amplifying devices.

Charge collection in the liquid argon ionization calorimeter:

a) charge due to a single ion pair formed at a distance X
from the negatively biased plate (s. .id line) and for an
ion pair formed very close to the negatively biased plate
(dashed line).

b) charge due to uniform ionization.
Detector/preamplifier circuit configuratiom.

Equivalent circuit of detector and preamplifier for noise
analysis. System pulse respomse of duration XA is shown at
the bottom.

Top: current input signal i(t) from the liquid argon ion

chamber. Bottom: impulse response of the system h(t) and

the system response to the current signal at the input.



Fig. 14.

Fig. 15.

Fig. 16.

Fig. 17.

Fig. 18,

N

Relative amplitude of the system response as a function
of the ratio of the input pulse duration t4 and the duration

of the output pulse lm.

Equivalent noise charge (ENC) at the output of the calori-
meter as a function of the ratio of the input pulse duration

tq and the output pulse duration lm.

a) Electrode configuration of multiwire drift chambers with
ralatively long drift path. Cathode wires are connected
to uniformely decreasing potentials starting from ground
in front of the anode. Field wires define the field at
boundaries of two drift cells.

b) Effect of _ne discontinuity of the primary ionization
to the drift chamber resolution.

c) Resolution of drift chamber versus drift distance.

"Current" waveforms at the preamplifier output:
a) Signal due to the point-like iomization of an 55pa
6 keV X-ray.

b,c) Signal due to the ionization of a minimum ionizing particle.

Principle of the charge division method. Charge is injected
at the distance xp from the A~end of the anode wire. The anode

wire plus the surrounding electrodes form a distributed RCL line.
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