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Basic principles of the particle detection and signal processing for

high-energy physics experiments are presented. It is shown that the opt-

imum performance of a properly designed detector system is not limited by

incidental imperfections, but solely by more fundamental limitations imposed

by the quantum nature and statistical behavior of matter

The noise sources connected with the detection and signal processing

are studied. The concepts of optimal filtering and optimal detector/ampli-

fying device matching are introduced. Signal processing for a liquid argon

calorimeter is analyzed into some detail.

The position detection in gas counters is studied. Resolution in drift

chambers for the drift coordinate measurement as well as the second coordinate

measurement is discussed.



Part I.

1. Introduct ion

While detectors and detection in high energy physics do not need an

introduction here we have the feeling that the signal processing does.

Everybody is familiar with (or at least has seen) some detectors

around an interaction region at a storage ring type machine or down-

stream from a target in a classical particle physics experiment. The

title of this school is "Data aquisition in high energy physics" so

everybody knows that the data from the detectors describing the event

is stored in many bits in many registers in form of a digital

information. The signal processing is a way of converting an obscure detector

signal into useful information.

We will study the signal processing in a broad sense. Signal

processing includes signal formation due to a particle passage

within a detector, signal amplification, signal shaping (filtering) and

read out. The basic goal of the signal processing is to extract the

derived and pertinent information from the obscuring factors (or "noise")

usually present. The relative strength of the signal and the noise

is one way to measure the quality of the detection.

The two quantities of greatest Importance to be extracted from

detector signals are their amplitude and time of occurence. The

amplitude information is usually related to the energy or to the nature

of the particle. Also some position sensing detectors give the local-

ization of the particle via signal amplitude, however, the most popular method

of particle localiation in high energy physics experiment is based on

time information.



2. Means of Detection

As will be shown later each detection method has to extract some

energy from the particle to be detected. This is done via the particle

interaction with the detector medium.

Nearly all detection methods (Cerenkov and transition radiation

detector being exceptions) make use of ionization or excitation pro-

duced in a detection medium as a result of the particle interaction.

This interaction changes some quantities characterizing the detected

particles.

This very fact imposes the final limitation on the accuracy of

some measurements as required by laws of quantum mechanics. In this

lecture we will find that usually the other physical phenomena in

particle detection impose larger limits on the precision of measure-

ment.

Returning to the detection process; in the case of charged

particles, ionization and excitation is produced directly by the

interaction of the particle electromagnetic field with the electrons

of the detection medium. The resultant ionization and exitation is

distributed along the path of the particle. A typical particle energy

in today's experiments is of the order of few CeV, while the energy loss

can be below the MeV level. This is an example of a non-destructive method

for detection of charged particles.

All neutral particles must first undergo some process which

transfers all or part of their energy to charged particles. The

detection method is destructive. The interaction cross section

for the neutral particle can be quite small and therefore a large amount



of material may be needed for such a detector. A great variety of detectors

for electromagnetic and faadron cascades have been recently
•i

developed.

3. Detection of Ionization and Excitation

In most ionization detectors the total ionization is collected using an•

externally applied electrical field. Sometimes an amplification

process by avalanche formation in a high electrical field is used.

Examples of detectors are

a) Proportional chamber (drift chamber)

b) Liquid argon chamber

c) Semiconductor detector

Detection of excitation is a multistep process. The excitation is first

converted into luminescent light by emission, and then the light into an elec-

trical signal. The most used light to electrical signal converters are

photomultipliers, however, the use of micro-channel plates and vacuum

and solid state photodiodes in high energy physics is steadily increasing.

As can be seen from the short list of detectors, all of them provide a

certain amount of charge onto an output electrode. The electrode represents

a certain capacitance so from subsequent signal processing point of view these

detectors are capacitive sources, i.e. their output impedence is dominated by

the capacitance.

This common feature of all detectors for particle physics allow

rather unified approach to the signal processing.

The science of signal processing for semiconductor detectors was

basically developed during the last 20 years. Most of the rules are

directly applicable to our detectors. However, in spite of common



T -U

features among various detectors used in high energy physics we should

not underestimate the differences among them. The typical total charge

at the detector outputs can differ by six orders of magnitude for two

different kinds of detectors and the output capacitances can differ I

by the same factor. What is important for one kind of detector can be

irrelevant for another and vice versa.;

In a majority of detectors the signal produced by the detected:

particles is relatively small and is contaminated by noise generated by

the detector itself and by the amplifier. We can ask a few "fundamental"

questions. What is minimal signal which we can detect? (That means to

measure its amplitude and the time of its occurrence). How does it depend

on the shape of the waveform? What is the amplifying element which

we have to use to obtain this optimum condition? Is the optimum

solution also practical for a big detector system so typical in a high

energy physics experiment?

We will try to answer such questions. We will see that the optimum

performance of a properly designed detector system is not limited by incidental

imperfections but solely by more fundamental limitations imposed by the

atomic structure and statistical behavior of matter. The presence of

noise in the detection system is a manifestation of the phenomena

governed by the laws of statistical mechanics which has to be taken into

consideration at the design stage of the detector system to minimize

its effects.

The meaning of the word "noise" is unfortunately different for

different detectors. This is extremely confusing, but now it is already

too late to change the tradition. For ionization detectors, noise has
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the meaning of the electrical noise in the amplifier circuitry. Fluctua-

tions due to other effects in particle detection (statistical fluctuation

of collected charge for semiconductor detectors, sampling fluctuations

in calorimeters, etc.) are usually treated as a separate factor limiting

the detectability or detector resolution.

In photon detection the word noise usually includes all fluctuations

including those due to the quantum nature of the light.

We would like to stress that noise in these notes always denotes the

intrinsic noise related to the basic nature of the detection process. A

broad class of man-made disturbances (radio and TV signals, switching,

sparking, etc.) picked up by detectors is not a topic of these lectures.

These interferences are sometimes called noise, but their presence can be

reduced to the negligible level by proper shielding.

4. Outline of the Paper

These notes are intended for the summer School of Physics and in prin-

ciple their text should be understandable without any references. Some

references are given for readers more deeply interested in a particular

subject. Their list is not intended to be complete and we apologize to all

of those who have contributed tc the art of signal processing and are not

quoted here.

In Part T.I we will develop a technique for treating the noise propagation

in electronic systems. Shot and thermal noise sources will be defined and

studied in the time as well as in the frequency domain.



Part III will treat the general problem of the charge measurement in

the presence of noise. The concept of matched filters for the charge

contained in the signal and for the time of the signal occurrence will be

introduced.

In Part IV we will find the optimal filter for the charge measurement

under additional constraints imposed by today's high-energy physics exper-

iments. We will define the optimal matching between detectors and amplify-

ing devices. The signal processing for a aid argon calorimeter is

treated in some detail.

Part V will give a short overview of methods of the position sensing in

gas detectors. Basic phenomena of the gas counter detection will be presented.

Limitations of the position measurement in drift chambers will be studied,

the second coordinate read-out in drift chambers will be discussed.
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Part II. Noise Analysis in Linear Systems ' '

1. Introduction

Noise analysis has a reputation for difficulity and obsurity.

The reason may be that the study of noise is based on results from three

different, rather disparate disciplines: statistical mechanics

(thermodynamics), circuit theory and statistical analysis. The

fundamental processes which give rise to noise in electronic components

are in the realm of statistical mechanics. The noise signal enters and

propagates through an electronics system requiring techniques of circuit

theory. Finally, the results have to be interpreted in statistical

terms.

In these lectures some fundamental knowledge of all three dis-

ciplines is assumed. Requirements on the knowledge of statistical

mechanics and statistical analysis are well below the level of physics

graduates. Circuit theory will be limited to the analysis of linear

time invariant systems, and some knowledge of Fourier series, Fourier

and Laplace transforms is assumed.

2. Random Processes

An example of a noise signal as could be seen on the oscilloscope

is shown on Fig. 1. The random signal waveshape has an irregular,

unpredictable appearance. We call this random time-varying function

a random process v( t ) . A sample of v(t) take, at an arbitrary time (t) is

a random variable with some probability-density function f ,.(v). We



generally assume a gaussian noise distribution around a mean value E(v).

I In these notes E(x) wil l denote the expectation value of x or ensemble

average.! This assumption i s based on the central l imit theorem, but in

any case, i t i s exceedingly unlikely that a single reading wil l depart

from the mean value by more than a few times the r.m.s. (root mean

square) for any "realistic" distribution. We, therefore, adopt r.m.s.

to describe the probability-density function.

To determine f (v) we have to use the concept of an ensemble from

sta t i s t i ca l mechanics. Let us consider v as a voltage across a 100ft

res is tor . A complete specification of the macroscopic state of the
23resistor would involve giving the coordinates or momenta of a l l the 10

particles constituting the res is tor . This task i s clearly beyond the

bounds of practical poss ib i l i ty . Instead we have to accept a much

cruder description of the res is tor . We wi l l assume i t to be in thermody-

namic equilibrium with the outside world.

In some of the possible configurations of the res is tor , the potential

difference across the resistor might be between v and v+Av. We can also

describe this by saying that if we had an ensemble of identical res is tors

specified macroscopically in an identical way, then for some fraction

ft JJ.C(V) • Av of a l l the resistors the voltage would be between

v and v+Av.

In s ta t i s t i ca l mechanics we assume that a proper s ta t i s t i ca l

ensemble contains one copy of the original system in every single pos-

sible macroscopic configuration compatible with the macroscopic

description of the res is tor . We can see immediately that 8MAC(v)AV=f (v)-AV.

Another "experimental" approach to determine the probability density

function f£(v) would be to sample the value v(t) at intervals far
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enough apart to ensure the s ta t i s t i ca l independence of the samples.

A random process v(t) i s said to be an ergodic process if the pro-

bability density functions obtained by both the ensemble and time approaches

are identical. We wil l encounter only ergodic processes in these lectures .

Before deriving the general relation between the noise description

in the time and frequency domain, l e t us consider a special and impor-

tant example - shot noise.

3. Shot Noise

Shot noise occurs whenever a noise phenonenom can be considered

as a series of independent events occuring at random. It i s

important, for example, in emission of electrons by a photocathode or

in minority carrier devices.

If we take a sufficiently short interval of time At, the probability Ap

that an electron i s emitted within this interval i s proportional to At

AP - v^t (2-1)

where \> i s the mean rate of emission.

It can be easi ly shown that the mean number of electrons emitted

during an interval T

E(n ) • v ' T

and E(n ) » v T + VT (2-2)
2

or E(An ) » VT

(This i s the well known result for the variance of Poisson distribution.)

Let us try to measure the current due to the electron emission

during the time T. The mean current i s

E(I) * -1 . E(nT) - qv
(2-3)
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where q i s the electron charge.

Fluctuations of the current expressed by the variance.
2 2

E(AI2) - (^) . E(AnT)2 "3^L mSL . E ( I ) (2_4)

This result agrees with our intuition. The fluctuations of I decrease

as T increases.

We will now study a more interesting case when this current is

applied at the input of a linear system with an impulse response h(t).

Because the current is constituted from random pulses with a mean rate

i
v we can apply the Campbell theorem:

If the impulse response of a linear system is h(t) then the mean

response of the system to a random series of pulses occuring at

a mean rate v is
CO

E(v) - v / h(t)dt

2 °° 0
and variance £(Av ) - v / h (t)dt (2-5)

Proof of the theorem i s l e f t for the reader. Campbell's theorem i s

a very powerful tool for noise calculations in the time domain. If

any kind of noise, at the input of a linear system, can be expressed

as a sequence of uncorrelated impulses then the equation (2-5) gives

directly the noise at the output of the system.

4. Noise Power and Spectral Representation of Noise.

The majority of electronics systems are more easily analyzable

in frequency domain. The frequency or spectral analysis of random noise

signal differs somewhat from the standard analysis of deterministic

signals .
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Let '<s expand the random signal v(t) in Fourier series along an

interval T. Thus,

v(t) - f Z c *>»* un L T
n - -»

T/2
w h e r e c - / v(t) e ^ V d t

n -T/2 (2-6)

Note that c is a random variable because v(t) is random. Because v(t)n

is a real, c * - c_ . If the process is stationary, the expectation

value of v(t) must be time independent.
CO

£ E(c Je-1"^

" • - " (2-7)

So all expectation values of the Fourier coefficient c except for

E(c ) w st equal 0.o n

So we are now in the peculiar situation of having a Fourier-series

representation of v(t) which is valid for the particular time interval T,

but which varies statistically with the chosen member of the ensemble.

To obviate this difficulty let us calculate

and again if v(t) is a stationary random process expression (2-8) must be

independent of t and all expectation values E(c c *) must vanish except
m n

when n " m, so

' A J ^ n O * E(co2) + 2 ^ ̂  Vn*>

From equation (2-7) E(c ) is the time-average value of v(t) over the

period T. If we take T large enough and assume that the system is ergodic

cQ is the same for all systems in the statistical ensemble.
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Thus [E(c ) | • c • E(c ) an<* t n e expected fluctuations of v(t) from

equation (2-8) are

:Lv(t)2\ - 2 Z E(c c *)
\ / n - 1 n n (2-9)

As T i s made "very long", the interval 1/T between the frequencies of

successive Fourier components becomes "vary small". Provided that

E(c c *) varies smoothly with n we can rewrite equation (2-9) as

Li. 2 =

c(f) -c (f) df - / w(f)df/ 2T-E|c(f)'C*(f)J
(2-10)

where w(f)df = lim TE(cnc *) , f » I
X •*• » /

The function w(t) has dimension of square voltage for unit bandwidth.

Divided by resistance It becomes the power density. It. i s called the

power spectral density function or power spectrum. Let us show that

knowledge of a power spectrum w(f) at the input of a linear system

allows the determination of a power spectrum function w (t) at i t s

output.

If v (t) i s presented as the input to a linear system described by

transfer function H(f) (Fourier transform of I ts impulse response h(t))

the output can be written

V 0 ( t ) - Z
n •

so

and

H(0) -C

2E H(^-H(f)E(cn-cn

n»l
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which in the limit T ->• °> can be written as

|H(f ) | 2
 W i ( f ) df

or , (2-11)
wQ(f) - w±(f) • |H(f)| Z

The equation (2-11) i s an extremely important relation for the fre-

quency analysis of random signals passing through a linear system.

Th~ spectral analysis of random signals focuses on the power d i s -

tribution. This i s related to the integrated square of signals and

accounts for the |H(f)j term appearing in the transfer relation (2-11).

The band-limiting effect of a linear system on a random input signal

i s expressed by multiplication of the imput spectral density by |H(f)|

This i s a direct analogy to the multiplication of the input Fourier

transform by the transfer function H(f) for deterministic s ignals .

Here we can ask a question. Can we carry this analogy also

into the time domain? The answer i s posit ive, but before going into detai l

l e t us return for a moment to our example of shot noise.

5. Power Spectrum of Shot Noise

Let us rewrite the Campbell theorem (2-5) using the Fourier

transform H(f) of the impulse response h(t) of the linear system.

(H(f) i s a well-known system transfer function.)

2 " 2 " *
E(Av ) - v/li (t)dt - vf H(f)-H (f)df

- 0 0 - 0 0

We have used Parseval's theorem. Since h(t) i s a real function of time

H(-f) - H*(f) and H(f) H (f) i s an even function of frequency we can write

E(Av2) - 2v / |H(f) | 2 df
o - (2-12)
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The form of equation (2-12) is similar to (2-11/. Let us substitute v

with direct measured quantities. If a current I axhibiting only shot

noise is presented at the input of the linear system (v • —; individual

pulses (electrons) have a charge q, so the linear system responds as ,

q h(t), q2h2(t)) we can substitute for v in (2-12) and obtain

2 - • qZ/|H(f)|2df - 2ql/ |H(f) |2df (2-13)
q o o

This result can be interpreted according to the equation (2-11)

as a power spectrum at the output of the linear system with the power

spectrum w(f) » 2ql imposed at i ts input. We have so shown that shot

noise (or more generally any Poisson-like fluctuations) has the power

spectral density w (f) - 21q (2-14)
s

6. Autocorrelation Function

Let us return to the question raised in Section 4 about analogy of the power

density function in time domain. Basically, we require some measure of how

the noise process varies with time. Specifically, if we consider the noise

waveform v(t) of Fig. 1, we note that as t_ -*• t., v(t,) , regarded as a

random variable,becomes more closely related to the v ( t . ) . As tn~il

increases we see less dependence of v(t ,) on v( t j ) . We make this

concept more precise by defining the autocorrelation function

2
It is apparent that if t2 -»• t̂  R -»• E(v ) or autocorrelation becomes

the statistical second moment. If at some value of the difference

and v(t2)
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are statistically independent Ry -• E (v) . (0 if E(v)-O.) Ry (t^.tj,)

thus provides one possible measure of how rapidly v(t) changes in time.

For s stationary process R (ci »c
2) c a n d eP e n d c n l v o n t l i e t i m e

difference t2-t- - T so that we can write

- E|vRv(T) - E|v(t)-v(t + T)j (2-15a)

For an ergodic process we can replace the ensemble average E by time

average and write

1 T

R (T) = lim - ^ | v(t)«v(t + T)dt (2-16)
v x*0 0 -T

The relationship between the power spectral density w(f) and the

8 ?
autocorrelation function i s given by (Wiener-Khintchine theorem) f

R(T) - / w(f)'eJUT df#

' e J U T df
(2-17)

00

w(f) - 2 / R(T)«e~ja)T dr ; f > 0
—CO

So that R(T) and w(f) are almost a Fourier transform pair. (If we define

"mathematical power spectral density" w (f) as w (f) » ^iv(f) If f>0 and
m m —

w (f) - -w (-f) for f<0; w (f) and R(x) are a Fourier transform pair.)m m m

The autocorrelation function is a means of characterizing the noise in

the time domain as the power spectral density is in the frequency domain.

The physics phenomena producing the noise may be more easily analyzable

in either one domain or the other so relations (2-17) allows us to trans-

late the noise description from one domain into another.

Let us return again to the example of a shot noise. A succession

of pulses occuring randomly in time can be most conveniently described
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in the time domain. In this case R(T) is zero for all values of T except

T » 0 and has the form of a "delta function." Its Fourier transform

has all frequencies present in equal proportion. Calculation can be

carried out and not surprisingly the result is identical with already

known relation (2-14).

The thermal noise which we are going to investigate next has its

origin most easily analyzable in the frequency domain.

7. Johnson or Thermal Noise

Johnson noise arises from the thermal motion of the charge carriers

in a resistor. In its equilibrium with the surroundings at the temper-

ature T the average potential difference from one end of an isolated

resistor to the other is zero. However, energy fluctuations of

the order kT per degree of freedom manifest themselves as a power

no is? source.

Thermal noise was first studied experimentally by J. B. Johnson
10

in 1928. A. Einstein had predicted in 1906 that Brownian motion of the

charge carriers would lead to a fluctuating e.m.f- (electromotive force)
ft

across any resistance in thermal equilibrium. The power spectrum was

calculated by H. Nyquist in 1928 based exclusively on thermodynamic

(Z

reasoning. We will briefly repeat his treatment.

Let us consider a resistance R connected to one end of an ideal

transmission l ine of characteristic impendance R, length 1 and wave

velocity c that i s shorted at the other end. After a while a state of

equilibrium i s reached. This means that power flowing from the resistance

into the l ine i s the same as the power flowing from the l ine into the



resistance. The energy Inside the transmission line flows in two differ-

ent directions; one half to the left and one half to the right. Power

flowing into the resistor is , therefore, equal

P - - | c | (2-18)

where E is the energy of electromagnetic waves inside the transmission line.

To calculate the energy we can, according to the rule of statistical

thermodynamics, give to each normal mode of the line an energy

~ - =• kT in the frequency range of interest (2-19)
ghf/kT _ 1

whero

T - is the absolute temperature

h - Plank constant

k - Boltzmann constant

To calculate the number of normal modes we can short also the other

end of the transmission line. (The line is still in equilibrium at T

since, if we connect it back to the resistance no net power transfer to

or from the line will occur.)

For the shorted transmission line modes are related with frequency

according to

n \ - U - £ (2-20)

where n i s an integer. Thus if 1 i s "large" ~t.s number of modes in df i s

dn » - ^ df

and the mean energy in frequency intervals df, trapped in the transmission

l ine from equation (2-19) i s

dE - — • kT df
c
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or using relation (2-18)

d? - kT df (2-21)

We can see

i)The noise power is independent of resistance

ii)The noise power is white (independent of frequency)

iii)The noise power is independent of the charge or the electron

(q - does not enter Into relation (2-21)

The relation (2-21) is usually written in one of two following forms.

w£(f) - 4kT/R (2-22)

or wv(f) - 4kT«R (2-23)

Equation (2-22) refers to Fig. 2a, where a physical resistance R was

replaced by an idealised noiseless resistance R and a noise current

generator in parallel. If the current power density of the generator

is w^f) • 4kT/R the maximum power density available for an external

circuit is

. ^ | - R«w.(t)/4 - kT so relation
at l

(2-22) agrees with relation (2-21).

Similiarly equation (2-23) refers to Fig. 2b where a physical resistance

was replaced with a noiseless resistance and a noise voltage generator

in series. It can be shown again that formulae (2-21) and (2-23) are

identical.
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8. Comparison between Shot and Thermal Noise

Let us comment about differences and similarities between shot and thermal

noise. Shot noise depends on the number of the flowing charge carriers, thermal

noise does not. Shot noise is a fluctuation in the number of charge carriers.

It involves fundamentally a directed motion with random transit. Thermal noise

is a fluctuation in the velocity (direction as well as magnitude) of the charge

carriers.

Whether we have shot or thermal noise is essentially a question of whether

or not the number of current carriers is proportional to the current. In a np

junction or vacuum tube there are almost no current carriers normally present.

Fluctuations must be associated with the number of current carriers that enter.

(I in equation 2-14). In a resistor a very large and constant number of currant

carriers is always present. The net flow of current is a negligible perturba-

tion of the random thermal motion of the carriers. Thus, we have the noise

independently of the current, i.e. equations (2-22), (2-23).

Equations (2-22) and (2-23) are sometimes used to define equivalent

noise resistance. It is simply a value of resistance which gives the same

noise power as the noise source under study. For example, we can define the

noise resistance corresponding to the shot noise due to the current I. From

equations (2-14) and (2-22) we obtain

50 "' ' (2-24)

at room temperature.

We can carry this parallel between shot and thermal noise even further.

Because both have the same form of the frequency spectrum and because

of Wiener-Khintchine theorem (Equations (2-17) they have also the same

form of the autocorrelation function. Therefore, we can Imagine the

thermal noise in the time domain in the same way as the shot noise,

that is , as a succession of pulses occurring randomly in crime, and use
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Campbell's theorem. (2-5)

More formally, if we connect a voltage noise source e with a

voltage power density w (t) =• 4kTR to the input of a linear system with

the impulse response h(t) the fluctuations at the output are given

(according to (2-11))'

E(AV2) - w / |H(f)|2 df - \ w / |H(f)|2 df
0 -co

where H(f) i s the Fourier transform of h(t). (Because h(t) is rea.T H(-f)
2

« H*(f) and (H(f)) is an even function of f we can extend the lower

integration limit to -°° and take one half of the integral.)

Using Parseval's theorem we can write

E ( A v 2 ) - i w v ^ h2(t) dt ( 2 _ 2 5 )

which can be considered a form of the Campbell theorem (2-5) with a "rate"

equal 1/2 of the noise power density.

We will conclude this part with a remark about the excess noise.

9. Flicker Noise.

In addition to shot noise and thermal noise which are white noise sources,

there is often another noise source in many devices which predominates at lower

frequencies. This flicker noise has a spectral density w(f) propor-

tional to l/fu where u is between .8 and 1.5. Origin of flicker noise

is poorly understood. In frequencies of interest In signal processing

it should not present a problem. Paradoxically, the devices intended

for high frequency use exhibit the smallest amount of flicker noise,

i.e. they have the smallest noise at lowest frequencies as well. This is

probably related to the better care taken in production of high fre-

quency devices.



Part III

MEASUREMENT OF SIGNAL CHARGES
IN PRESENCE OF NOISE

.. Noise in Signal Amplification

We have seen in Part I that particle detection in high energy physics ex-

periments requires the measurement of the charge delivered at the output electrode

of the detector. To optimize the signal charge measurement under conditions

imposed by the experiment is the main subject of the signal processing.

The detected charge has to be amplified early in the process to avoid possible

addicional contamination by other noise sources. From many different physical

systems capable of providing gain mechanism, direct charge controlled amplifiers

are the only amplifiers used in particle detection.

In this type of amplifier there is a charge in transit through the device

(i.e., current is flowing), and its transport properties are modulated by charge

on a separate control electrode. Examples are vacuum tubes (historical) and field

effect transistors in which carrier transport is effected directly by the electric

field of the grid or gate. Also, the bipolar transistor belongs to this category.

Modulation of the charge in the base-emitter junction alters the base emitter

voltage, hence the injection current. We stress here that bipolar transistors at

the frequencies of interest are not current controlled devices. The noise analysis

of all charged controlled devices is identical. The method consists of examining

the noise in the current flowing through the device and then pretending that this

noise is actually due to a noise voltage generator connected in series with the

control electrode (Fig. 3). This is the series noise voltage and can be expressed

as a series noise resistance. (According to relation [2-23] e^ » 4 kTR, where we

write e instead of W,(f). The series noise voltage always appears as linearly

added to the signal, therefore the signal-to-noise ratio is degraded.



The required connection between the magnitude of noise current fluctuation

at the amplifying element output and the magnitude of the voltage source e at

the control electrode (see Fig. 3) to produce such noise current fluctuations

is given by the mutual conductance g .

Mutual conductance is defined as a ratio of a change in the controlled

current through the device and a change in the control electrode voltage.

(3-1)

(This is correct for all input voltages, not only for noise.)

Using Eq. (3-1), we can write

where i is the output current noise source of the device,
n

The next important source of noise is due to the fact that the input

impedance of the amplifying element is not infinite. Consequently, there is

some current i flowing into (or out) of the control eleetrod... This current
o

exhibits fluctuations Ai and produces corresponding voltage fluctuations Z Ai ,
8 3 g

where Z is the impedance of the source. The control electrode "leakage" current

noise can be equivalently represented by a parallel noise current generator

tnp (Fig. 4a).

For detectors where Z is often capacitive and signal can be represented

by a current source parallel to the capacitance, it is convenient to replace the

series noise source e with an equivalent current source i * e /Z. parallel
ns ns ns in r

to the input impedance so signal and all noise sources are situated at the same

place at the input and are directly comparable (Fig. 4b).



Suomarizing, we have seen that the charge controlled amplifying device haa

two uncorrelated noise sources to be considered with it; the series noise source

e and the parallel noise source i . Transforming the series noise as shown in
n n

Fig. 4b, we see that the effect of the parallel noise is independent of the

detector impedance while the effect of the series noise is inversely proportional

to the detector impedance. (There is some correlation, its effects are negligible

in first order analysis.)

2. Series Noise in Bipolar Transistors

Series noise analysis of a bipolar transistor is particularly clean and

Or
instructive. The operation of a bipolar transistor is generally known, but we

have the. feeling that in order to prevent some misunderstanding we will outline

some of its properties important for our analysis here.

Let us start by considering a forward biased n+~p junction (i.e., very

heavily doped n-type on lightly doped p-type semiconductor semiconductor). For

an idealized case under consideration, the forward current is given by

*f =* *o <e S "l> * V g • <3"3>
where 1 is the reverse saturation current

V - voltage applied to the junction

q - charge of an electron

k - Boltzmann constant

T- - absolute temperature.

In the vicinity of the junction in the p-type part of the device, the bulk

of the current is carried by free electrons and their density falls off exponentially

with the distance x (see Fig. 5a)
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ne(x) - ne • e" ** , (3-4)

where £ is the electron diffusion length in the p-type material. If the

p region is made extremely thin (compared to i ), and it is followed by a

reverse biased,lightly doped n region (Fig. Sb), then electrons injected from

the emitter into the base have a high probability of reaching the edge of the

collector-to-base depletion layer and being collected.

In the usual way, we will define a and 0 of a transistor. If the emitter

current is I , then some fraction a (0 < a < 1) of it will be collected and will

appear in the collector circuit as the collector current I . The difference

between I_ and I constitutes the base current.

E C -

Xc = ttIEIB - d-a)IE

( 3 " 5 )

The quantity 8 relating I and I_ is called the current gain of the transistor

and can be made large (up to ̂  1000 in today's transistors).

Let us calculate g of a transistor in grounded emitter configuration, i.e.,

the transistor's base is the control electrode and the modulated device current

is the collector current.

If the base voltage is V_, Eqs. (3-3) and (3-5) give
a

kT
c o e

or by differentiation with respect to V_
a

dVB
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By using Eq. (3-1), ^ - & • Ic <-

at room temperature.

The value of mutual conductance is directly traceable to the Boltzmann

factor of Eq. (3-3), i.e., it is controlled by the thermal energy distribution

of carriers at junction (ambient) temperature. It follows that no charge con-

trolled amplifier in which the carriers are at the same temperature as the tran-

sistor can have higher 2 than a transistor operating at the same current.

We can now easily derive the formula for the series noise of a transistor.

The collector current I exhibits full shot noise (since the carriers constituting

this current are minority carriers in the transistor base and at the collector

depletion layer are being collected independently).

Recalling (2-14), we can write the power current density as

J , (3-7)

or by using (3-2) and (3-6), we can express aeries noise power density

e* - -i- • 2kT . (3-8)
n gm

It is convenient to express the noise e as being generated by a resistor
n

R . Comparing (3-8) with formula (2-22), we obtain

h - z h • (3-9)

In practice, formula (3-9) holds down Co E » 50fi. Below that value, the
s

other series noise sources became important. The most evident is the actual

series resistance in the base structure and the connecting leads. In the absence
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of excess noise their noise resistance is equal to the ohmic resistance, so we

can write

*s " I t + *ex ' C3-10)

Before concluding this section, let us study the base diffusion capacitance

of the bipolar transistor. This capacitance is the dominant base-to-emitter

capacitance and plays an important role in the charge detection by bipolar

transistors. It is not a geometrical capacitance, but a consequence of the

transistor amplification mechanism.

The concentration of the minority carriers in the base is proportional to

the collector current. The constant of proportionality is just the time T

necessary for carriers to diffuse across the base.

QB - T • Ic . (3-11)

The same amount of charge of the opposite polarity has to bj supplied to the

base to be electrically neutral. This charge of base majority carriers must

be supplied through the base lead. That means that the change of the charge

stored in the base can be related to the change in the flow of the collector

current and via mutual conductance back to the change of the base voltage. We

can write

AQ. = T • AI " T • a • AV_
i> c in H

or

f*ere CDIF " r «te
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The total base-to-emitter capacitance in a real bipolar transistor is the

sum of the dominant: diffusion capacitance (?-12) and all geometrical capacitances.

3. Series Noise in Field Effect Transistors

The amplification action of a field effect transistor is based on voltage

control of majority carriers flow through a semiconductor channel. The effective

width, and with it the conductance of the channel is varied by reverse potential

of the gate-channel junction (Fig. 6). The gate is the control electrode. The

two channel ends are called drain and source. The drain is that channel-end

which is at higher reverse voltage with respect to the gate. There is usually

no structural difference between drain and source.

The basic noise source in the field effect txansistor is the thermal noise of

the conducting channel. It can be shown that this noise is equivalent to a noise

current generator connected between the source and drain of magnitude.

i^ a 0.7 x 4 kl ^ . (3-13)

From this relation, we can write the series voltage noise and the series noise

resistor

Comparing (3-14) and (3-9), we see that the series noise of junction field

effect transistors and bipolar transitstors are comparable.

Vacuum tubes (mentioned here mainly for historical reasons) have higher

series noise. For vacuum triode we have

K " T" w i t h 2.5 < a < 4 . (3-15)
8 sm
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4. Parallel Noise

As has been mentioned in Section 1. any current flowing to or from the

control electrode produces the noise. This was represented in Fig. 4. Assuming

the full shot noise of the central electrode current , the noise current power

density is given by

i2 - 2ql

where I denotes .'.he current flowing through the control electrode. For junction

field effect transistors, the Ig values are in 10~10 - 10"1* A range. The bipolar

transistor has a much higher base current I " I /3, at least in the 10~ A regbn.

The parallel noise is therefore much smaller for a FET. In many cases the

parallel noise is important and then a field effect transistor is the best ampli-

fying device.

We will return to the question of the most suitable amplifiers after

determining the relative importance of noise sources for Che charge measurement.

5. Optimum Filtering for Charge Measurement '

Now we are going to answer one of the fundamental questions we asked in

the Introduction. What is the minimal charge that we can detect on the output

electrode of a detector? As a criterion for this minimal charge, we will

adopt equivalent noise charge (ENC). ENC is the quantity of charge which,

appearing on the detector, would give an output pulse of height equivalent to

rms (root mean square) of the noise. (To see a signal on the screen of an

oscilloscope,it has to be at Iea3t three ENC if the scope is independently

triggered. If we use the oscilloscope in the self-triggered mode, the signal

should be at least 5 ENC.)
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The basic equivalent circuit of a detector and amplifier is shown in Fig. 7.

The signal is represented as a current source in parallel with the total input

capacitance. Noise sources were represented by the current generators also in

parallel with the total input impedance. The amplifier is shown as an ideal

noiseless amplifier followed by additional amplifiers which includes the filter-

ing or "pulse shaping". It is important that filtering is performed after

amplification so that no noise is added by dissipative filter components.

The whole linear system from the detector to the output of the filter is

described by its impulse response h(t) in the time domain or equivalently by its

transfer function H(f) in the frequency domain. We assume that the shape of the

signal s(t) is known and we are measuring the amplitude A of the signal A«s(t)

in the presence of noise. Our problem is to find the pulse response of the system

h(t) which gives the best measurement of A, i.e., we have to find a filter which

maximizes the signal-to-noise ratio at the output of the system at some appropriate

"readout" time t .
o

The filter output-at t , due to the signal A s(t), is determined by the

Fourier transform of the filter output frequency spectrum AS(f)*H(f). [S(f) is

the Fourier transform of the signal s(t)].

CO

g(to) =• A j S(f) H(f)e3tuto df (3-16)
—00

The fluctuations at the output due to the noise power density

2 o
2w(f) • i + i at the input according to Eq. (2-11) are equal

_ ^ CO 03

(Av2) - J 2w(f)-|H(f)|2df - J w(f)-|H(f)|2df . (3-17)
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Ihe signal-to-noise ratio p to be maximized is

P - (g(tQ))
2/(Av2) . (3-18)

Let us recall the Schwarz inequality for complex functions

|Ju • v df|2 5 J|u|2 df • J|v|2 df . (3-19)

The equality holds only if

u(f) =• a-v*(f) . (3-20)

If we substitute u(f) =* H(f) • w (f) and

v(f)

and apply inequality (3-19) to the ratio (3-18), we obtain

00

2 P ls(f)|Z - ,

and p is maximum, i.e.r equality sign holds if

H(f) - a j£g* • e"ju*o . (3.22)

It is convenient to split the optimum filter H(t) into two parts. The first

part H.(f) transfers the noise spectrum w(f) into a white spectrum w and the

second part H (f) completes the maximization of signal-to-noise ratio. If we

denote by S1(f) - S(f)*H1(f) the signal Fourier transform modified by the filter

Hj^f), we can directly apply relation (3-22) to find the optimizing filter HQ(f).

HQ(f) - S1*(f)-e'
ju)to (3-23)

where we have chosen a • w .
o
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The filter pulse response, determined as the Fourier transform of the transfer

function (3-23), is

hQ(t) - a1(to-t) , (3-24)

which is the mirror image delayed by t of the signal s..(t) at the input of

the optimizing filter. The filter is called a matched fi lter, since it is

matched to a particular waveform.

The maximum signal-to-noise ratio for the matched filter with a white

noise source at the input obtained from Eq. (3-22) is

A2J |s1(f)|2df A2J (3l(t))2dt
p

|̂_
max wQ w w . (3-25)

u o o

Because the numerator is equal to the energy E of the input signal. Eq. (3-25)

shows that the matched filter uses the full signal energy. (It is not the energy

of a detecting particle nor the energy loss of a particle in the detector.)

Eq. (3-25) allows us to define the nois e equivalent energy (NEE) =• w . This

quantity is directly related to the above defined noise equivalent charge.

The optimum filter pulse response (Eq. [3-24]) can be found alsc directly by

a similar analysis in the time domain. Let us show that the output waveform of the

matched filter is symmetrical with respect to measured time t so any practical

output waveform has a maximum at that time.

The output of the filter can be obtained as the convolution integral of the

signal and the filter pulse response (3-24).

g(t) - J 3l(\) hQ(t-\)dX - J 81(X)s1(to-t+X)dX

or for t - t + T ,
o
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i S 1 ( X ) si&" r>d* - J S1(X'-K) • 3 i a ' ) d \ / = g(to-T) . (3-26)

Before applying the derived formulae to the practical detection, let us study a

closely related problem of extracting the time information from a signal in the

presence of noise.

6. Optimum Filtering for Time Measurement

Let us consider the same basic equivalent circuit (shown in Fig. 7) as in

the previous section, the input signal A«s(t) has a known shape s(C) with an

unknown amplitude A. To measure the time related with the time of occurrence

of the signal, we have to maximize the signal slope to noise ratio. We decided

to perform the measurement at some later time with respect to the occurrence of

the signal.

the filter output at t is again given by relation (3-16) so the slope of

the output waveform at the time t is

g'(tQ) - j ju)S(f) H(f)e
juJt° df . (3-27)

• GO

The fluctuations at the output are given by (3-17), so the signal slope-to-noise

ratio to be maximized i s ,

6c' p ̂ r C3"28>
Applying the Schwarz inequality we obtain,

r i«g(f)i
0 f £\

2

p s A" '"-wi , (3-29)
W(f)

and the equality sign holds if

H ( f ) , a -,1wS<f? • e j t u t o . ( 3 . 3 0 )
w(f)



/// - 13 -

We can again split the optimum filter into two parts; first the prewhitening

filter H7(f) and the second filter H (f) for which we can apply the relation

(3-30), put a • -w and obtain

HQ(f) - juS*(f) ' e"
jU)to . (3-31)

The filter impulse response is

hQ(t) - f HQ(f) • e^df - A j°°S*(f) • e^^-^df .

or taking complex conjugated equation we can write

ho(t) ' A S 1 ( V C ) ' (3"32)

Comparing Eqs. (3-32) and (3-24), we see that the pulse response of the optimum

filter for timing neasurements in the presence of white noise is the derivative

of the pulse response of the optimum filter for the amplitude measurement. This

is true for any noise power spectrum. (It follows from relations (3-30) and (3-22.)

For a matched filter, we can find the p which corresponds to the minimized

error in the timing 6t. From Eq. (3-29), written for the case of the white noise

and Eq. (3-31), we obtain

( ^ > 2 - < W J-J IjofiiWl2"- ^-f(8{(t))Zdt . (3-33)
O -co O -oo

We can see that the matched filter for the best timing uses in an optimal

way the derivative of the signal waveform to extract the time occurrence of an

event. We will show that at the measured time t , the resulting waveform g(t)

crosses 0. Hence, the best timing results from a zero crossing method which has

the well known antiwalk properties as well. Let us show something slightly more
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general, namely that the output waveform g(t) is an odd function of time around

the time t . By analogy with the previous section, we can write

g(t) « J Sl(t-\) • ho(X)d\ - J 3l(t->.) jg- s1
—00 —OB

- J •% s1(t-\).s1
-00 -03

Where we used integration per parts. The signal has to vanish for t -« ± <*> and

by simple manipulation similar to those for obtaining relation (3-26) we can

show that

g(tQ-T) =» -g(tQ+T) . (3-34)

7. Feasibility of Detecting the Macroscopic
Electromagnetic Field of a Relativistic Particle

As an illustration of the fundamental character of the previous sections,

let us analyze the detectability of a relativistic particle via its macroscopic
17

electromagnetic field.

The basic motivation for wishing to directly detect the electromagnetic

field of a relativistic particle is the fact that the shape of the field depends

strongly on the y (» —) of the particle. Let us assume that with a suitable probe

we can extract all electromagnetic field energy U contained outside a cylinder of

radius r around the trajectory of the particle. Let us also assume that the full

extracted energy is brought as a signal to the input of an amplifier. Electro-

magnetic energy U can be expressed as

q 2 Y

U= 317V <3"35>
o o
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where r and Y were defined above and
o

q - is the charge of the particle

1 2 - 7
eQ - is the absolute dielectric constant ( , » c x 10 )

We see that the extracted energy is proportional to the particle energy y.

We can calculate the value of V for which the signal energy equals the noise

power of the amplifier. Without goint into detail, we know that the noise power

mulct be according to the Eq. (2-21) of the order of kT. (This time we deal with

the real physical power and energy instead of square of current or voltage as

usual.) Calculating y we obtain

32e r kT

for r =» 1 cm, kT = 25 meV , we obtain y . • 5 x 10 which is too large for
o m m

the method to be practical. (It can be shown that the length I of the "extracting

probe" is t. * y«r , which makes the detector several km long.)



Part IV. Charge Measurement for Practical Detection Systems.

1. Charge measurement under additional constraints.

Let us return to the measurement of the charge signal. The input

circuit with the parallel and series noise sources is shown in Fig. 7.

Let us calculate the impulse response of an amplitude matched

filter for the detector signal being an impulse of current containing

t' cal signal charge Q.

s(t) - Q • 5(t) (4-1)

The total noise current power density 2w.(f) at the input is

where R - is the equivalent parallel noise resistance

R - is the equivalent series noise resistance

7 =

jcuC i s the input impendance

C - total input capacitance

We can rewrite equation (4-2) using the "noise corner time constant"

T » C. . /R R asc t s p

2w.(f) - ^ (1 + u \ *) (4-3)
p

To obtain white noise we have to pass the noise and signal through a

prewhiteninR f i l t e r with the transfer function H(f) » "

The noise then becomes white: c

2wo * I T (4-4)
p



and t h e s i g n a l becomes

-t

Sl(t) - ̂  • « Tc t>0 (4_5)

= 0 1°
Now we use equation £3-18) to calculate the square signal to noise ratio

for the matched filter.

p max = 4kTC fW f 4_6-j
C ' Rp K '

From equation (4-6) we obtain the minimal equivalent noise charge

(ENC)2
opt - 4kTCt • / I T " ( 4 _ 7 )

Rp

Under the most favorable conditions (usually not present in particle

physics experiments) ENC can be below 30 electron charges (as low as ̂  10).

Equation (4-5) shows that the signal waveform s. (t) has an infinite

dur?tion, so the matched filter requires an infinite delay to respond in

a symmetrical way. Such a filter can never be built in practice.

The impulse response of an ideally matched filter

with the time origin shifted in such a way that the waveform peaks at

/ - M\
zero i s shown in Fig. 8. lh( t ) * e T J

We n o t i c e t h a t f o r | t [ > 2 T t h e i d e a l p u l s e r e s p o n s e i s n o t

very different from 0. Since the ideal response corresponds to a

stationary function a small ctiange in the shape of the function should

not increase the ENC too much. Intuitively we expect that the exact shape

of the impulse response i s not very cr i t i ca l to obtain low noise

performance of the system. For any f i l t e r we can define the ratio n

of the ENC obtained with that f i l t e r and the E1CC of the matched f i l t e r . The

ratio n measures how much of the noise performance we are sacrificing

with a given f i l t e r .
(ENC)Filter

nFilter (ENC)Matched , . a .
OPT ^ ~ 8 }
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Let us calculate this ratio for a f i l t e r with the triangular impulse

response shown in Fig 8.

Mt) - 1 - tm | t | < t m

» 0 otherwise (4-9)

The calculation of the ENC can be conveniently done in the time domain

For the parallel noise we can use Campbell's theorem which i s directly

applicable because the noise 3ource can be thought as a sequence of

random impulses. (See equation (2-5 )

The contribution of the parallel noise into ENC can be

written as

2& • fUt)
\ J \

2 A.E^JL f I . / . \ l ' " J . .

% ~p J lMtV ^ (4-10)

To write the expression for the contribution of the series noise

source e we have to take into account that the voltage source is placed

differently at the input and therefore its impulse response is differ-

ent from the impulse response of the signal. It is easy to see that the

impulse response of the voltage source is C -r- h(t) where h(t) is the

impulse response due to a unit signal charge. So substituting for h(t)

into equation (2-5) we can express the series noise as:

(4-11)

Straight forward evaluation of integrals gives the following results.

2kT 2
R

P " 3 m (4-12)

f
m



The ENC ratio n of the triangular filter has a minimum for t =

/3 . T an its minimal value is about 1.08. We see that the noise
c

of the system is only about 8% above the theoretical limit.

We note also that for t » / T * T , parallel and series noise contribute
m C v

the same amount to the total noise. From the equations (4-12) and

(4-13) we see that the contributions of the parallel noise increases
with the time t while the contribution of series noise decreases withm

the shaping time t .

This general behavior i s independent of the precise shape of

the impulse response of the system and can be intuit ively understood.

The parallel noise source feeds the same impedance as the detector

signal. Since the noise can be thought of as a sequence of random impulses

a longer shaping time allows more noise pulses to contribute to the

output. This process i s similar to the random walk which also gives a

deviat ion proportional to the square root of the processing time.

Random voltage pulses from the series noise source are equivalent

to current "doublet" pulses when transformed to the same point

at the f i l t er input as the detector signal. Current "doublet" pulses can be

visualized as derivatives of the Dirac delta function 5(t ) , i . e . , as a

pair of impulses of opposite polarity separated by At, where the product

of the pulse area and At equals unity. A doublet passing through a

f lat part of the impulse response function gives zero contribution

to the output because the contribution from the f i r s t pulse of the

doublet i s exactly canceled by the contribution from the second pulse.

Only when impulse response function has a steep part two pulses of

the doublet produce different responses at the measuring time giving



a non zero contribution to the noise.

The triangular pulse response can be realized in practice. It has

the final time duration 2t . The detection rate of the system is lim-
m

ited to l/2tffl level. The choice of tm= TC which gives the best noise

performance is often impossible in high energy physics experiments

because the noise corner time constant is too long (̂ 10 to 10 sec) and

the resulting rate limitation unacceptable.

If the duration of the system impulse response is much shorter

than the noise corner time constant the contribution of the parallel

noise (equations 4-10, 4-12) i s negligible and the ENC is given by

equation (4-11) and (4-13).

We would like to stress that the length of the filter pulse response

t has nothing to do with the speed of charge removal from the detector

capacitance. We will return to this point later in the section dealing

with amplifiers.

Up to now we have assumed the detector input is a current impulse

6(t),or practically a pulse of a duration much shorter thai! the

filtering time t . If the signal has a duration which can

fluctuate, the system impulse response has to have a flat top of the

duration about equal to the longest signal charge collection time. If the

signal duration does not fluctuate and the total charge must be measured

the total length of the system impulse response has to be longer than

the duration of the signal. This can limit the rate performance

of the system. If the charge collection time is too long, it is possible

to have a system in which the duration of the output signal is shorter than

the duration of the signal at the input. In these cases only a part



of Che signal i s used so ENC i s usually much larger.

2. Optimal Matching between Detector and Amplifier

We are going to answer another important question asked in the

Introduction. What i s the "best" amplifying device to be used with a

given detector?

Let us assume that the duration of the output waveform i s limited

by the rate considerations so the total noise i s due to the series noise

source of an amplifying device. Also we wil l assume a triangular

shaping of duration 2t at the base ( this assumption i s not essential ,

we could do the analysis with any suitable shaping function) so the

equivalent noise charge (ENC) can be written as

(ENC)2 = 4kTRs (CA+ CD)2/tm ( 4 _

The relation (4-14) i s exactly the relation (4-13) where we have written

expl ic i t ly the total input capacitance as a sum of detector and ampli-

f ier capacitance.: , From section III-3

know that the noise series resistance

R can be written as

Rs " 4 (4-15)

where a - .5 and .7 for bipolar and junction f ield effect transistors

respectively, (a • 2.5-4 for vacuum triodes) .

To reduce the noise series resistance R , we have to increase the

mutual conductance of the amplifier. This can be in principle achieved

by paralleling several amplifying devices. If we ca l l the number of

amplifying devices n the equation (4-15) can be written as
A
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( E N C ) 2 - 4 k T ^ ( n A C A + C D ) 2 / t f f i

(4-16)

(We must not forget that paralleling of amplifiers increases the

total input capacitance.) Equation (4-16) has a minimum for

s

which gives the (ENC) „ aaopt

(4-17)

2 a CA 1(ENC ) - 16kTC,, —a • —opt D gm t n ( 4 _ 1 8 )

The equation (4-17) says that the lowest noise can be achieved when

the capacitance of the amplifier equals the detector capacitance. I t

i s easy to see that under this condition the maximum of the signal energy

from the detector electrode i s transferred to the preamplifier so the

condition (4-17) also maximizes the signal energy E as defined in (3-25).
s

(To be really precise, if we consider a broader c lass of connections

between the detector and the preamplifier by using an "ideal" inductance

we can increase the signal energy E at the preamplifier and hence
s

. Zl
improve ENC up to the factor / 1.5. The stray capacitances of real inductors
make this solution impractical in cases of low amplifier capacitance.)

For the optimal capacitance matching between the detector and the

preamplifier the ENC as given by (4-18) depends on the amplifying

device only via the ratio A/gm (a - is practically the same for

bipolar and FET transistors)

Discussing the bipolar transistor (in Part II.3) we have seen that

the ratio of the predominant, i.e., diffusion capacitance C. , and the
dirr



mutual conductance gm is the transit time T. of the minority carriers

across the base of a bipolar transistor. For a junction field effect

transistor we can find a very similar relation. The A/g ratio is
in

practically equal to the transit time T, of the majority carriers

through the FET channel. The transit time T. is a measure of the reciprocal

of the unity gain frequency f of the amplifying device.

Using f we can rewrite the equation (4-18) as

( E N C ) 2 -16kTCD j^- ( 4_ 1 9 )

T m

We have found that the unity gain frequency f of an ampli-

fying device i s the only parameter defining the noise performance of

the signal orocessing system under a l l the above assumptions. Devices

intended for the use at the highest frequencies, which have the highest

f , give also the best noise performance. The state of the art s i l icon junc-

tion FET have f around lGHz, bipolar trans is tos up to 5GHz and the

f of GaAs FETs can be as high as 20 GHz. The extremely small

Ĉ  (M.pF ) which makes the capacitance matching d i f f icu l t particu-

larly at higher frequencies and the excess flicker noise up to 100 MHz

have prevented the wide use of GaAs FETs as amplifying devices so far.

The shot noise of the base current (source of the parallel noise)

l imits the use of bipolar transistors for the applications with shaping

time shorter than few 10 sec. Silicon junction FETs give the best

performance for tfiI> 10~ sec. The situation i s summarized in Fig. 9,

where the ENC versus t^ i s plotted for several detectors and amplifying

devices.

Optimal capacitance matching can be obtained by several means. There

i s a wide scale of FETa with different C.. If necessary several FETs are



usually used at the preamplifier input. A bipolar transitor offers a

range of C. as a function of its standing current Ic (equation 3-6).

For a detector with a very high capacitance the only practical match-

ing is by transformer matching. Liquid argon calorimeters provide

a very important example of a detector for which the transformer

matching is a necessity.

3. Signal Processing for Liquid Argon Calorimeters

3.1 Signal Formation in Liquid Argon Calorimeters ""

As it was mentioned in Part I calorimeters measure the energy and

position of particles through the process of total absorption . In

this process, secondary particles are generated, which themselves react

inside the detector. Finally, almost all of the incident energy of the

particle will be converted into heat (hence the name "calorimeter" ).

The increase of the temperature is obviously too small to be measured

and ionization or excitation in a detection medium are used to produce

a measurable signal. The use of calorimeters is increasing in high

energy physics experiment for the following reasons (i) it is the only way

to detect and measure the energy of the neutral particles, (ii) the

accuracy of the energy measurement due to detector factors improves

as the square root of the particle energy, (iii) signal from calorimeter

which carries the information about the energy deposition is available

at very short time scale for the event selection (triggering).

A liquid argon calorimeter uses liquid argon as a detection medium

and measures total energy via the ionization sampled in the liquid argon.



This technique is now very popular mainly for electromagnetic calorimeters.

Roughly speaking, the liquid argon calorimeter consists of parallel conducting

plates (electrodes) a few mm thick and a few mm apart immersed in liquid argon.

Advantages of using ion chamber approach for the energy sampling are:

(i) Simple high-accuracy charge calibration is possible.

( i i ) The detector has uniform sensitivity over the whole detector volume.

( i i i ) The detector can be practically arbitrarily subdivided and so provide

position resolution,

(iv) Large detectors of arbitrary shape can be constructed.

On the negative side we have the rate limits given by the mobility

of electrons in the liquid argon and the requirements of the operation

at cryogenic temperatures.

To study the signal from a liquid argon ion chamber we have to take

into account that the liquid argon is a single carrier medium as far

as charge collection is concerned. The positive ions do not contribute to

the signal charge due to their very low mobility. The basic rela-

tions for the current and charge waveform for planar electrode geometry

are illustrated in Fig. 10. Part a of Fig. 10 shows the current

and charge in an external circuit for one ion pair. The current, due

to one carrier (electron), is determined as q/t, , by the drift time t ,

across the gap. (See also Appendix 1). The charge measured in the

external circuit is determined by the ratio of the distance traversed

by electron (d-x) and the electrode spacing d,

(4-20)



If ionization i s uniformly distributed across the inter-

electrode gap as in the case of ionization resulting from a passage

of a charged particle the induced signal equals one half of the ionization

charge on the average. (Fig. 10b ) . The resulting current and charge

waveforms are different for localized and for uniform ionization

across the gap. We can note that for uniform ionization three quarters

of the observable charge i s collected in one half of the drift time

across the gap. The saturated drift velocity of the electron in liquid

argon i s around 5 mm/ us as so for a typical gap width of 2 mm the

col lect ion time i s about 400ns . Standard rate considerations in

high energy physics experiments l imits the resolving tine to the

1 us region. The signal current cannot be considered as an impulse

compared with the duration of the f i l t e r , so the output amplitude due to a

unit charge signal wi l l be smaller than the amplitude due to the unit charge impulse.

Let us estimate the amount of charge produced by absorption of,

l e t us say, an electron of total energy E. Liquid argon samples

typically between (10-20) 7. of the total energy. The energy loss to

produce 1 ion pair in liquid argon i s I2SeV. Taking into account that

we see only one half of charge the energy loss per observed electron i s

50 eV. If we sample 102 of the energy we need effect ively 500 eV to

produce an electron charge. In other unit, one GeV of energy deposited

inside the calorimeter gives a signal of .32 pC.

3.2 Detector-Preamplifier Matching for Liquid Araon Calorimeters.

In the preceding section we have determined the quantity of charge

in typical sampling liquid argon calorimeters. Calorimeters involve a



large number of plates and, therefore, a large capacitance. The

capacitance of a bigger section of a calorimeter Cd can

reach up to 10~ F. Connected directly to the gate of a junction FET

with an input capacitance of lOpF the amplifier would see only one

4 4

part in 10 of the total charge. Paralleling of 10 input FETs

is not a practical solution; therefore, the capacitance matching has to

be accomplished by a transformer.

The detector-amplifier circuit configuration with a matching

transformer, provisions for detector biasing, and charge calibration i s

shown in Fig. 11. Due to the large detector capacitance the blocking

capacitor C, cannot be much bigger than the detector capacitance C,

so i t has to be taken into account. An equivalent c ircuit showing

the essential elements for noise analysis i s given in Fig. 12. The

shape of the Impulse response i s also shown in Fig. 12. Bipolar shape

of the total duration X i s assumed. Bipolar shape i s a necessity if

the shift in the energy spectrum due to the pile-up has to be avoided.

We are going to calculate ENC of the configuration shown f i r s t

assuming that ths signal i s a current Impulse. We wil l transform

the signal charge and the detector capacitance and the blocking

capacitance to the secondary of the matching transformer and use

equations (4-10) and(4-ll) with an Impulse response as shown in Fig. 12.

We can write the following equations for the transformed signal

charge and capacitancies:

Q(T) , a

C ( T ) - C (4-21)
n^

where n is the transformation ratio.



(T)The transformed blocking capacitance C acts as a capacitive

(Tidivider between transformed detector capacitanceC, and amplifiera

capacitance C. . Hence, the relation between the transformed charge at

the detector Q^'and the voltage at the preamplifier input VpR can be

written as C \

V A\ "cT" / d. J * PR
X ^ b / (4-22)

which allows us to write equation (4-11) in the following way:

f d \ 2
'—- h(t) I dt
i d t i

| C . I l + C , J + C V ' I I I d t

(4-23)

or after substituting for transformed quantities from (4-21) and eval-

uating the integral we can express the equivalent noise charge (not

transformed) of the series noise source as

2

(ENC) 2 - 32kTR j „-. ...
s s X ^ A ̂  Cb

In a similar way we can find the expression for the equivalent noise

charge due to parallel noise sources.

p . | k T ± .B

For the short duration of the f i l t e r impulse response X as used

in practical calorimeters the parallel noise can be kept small compared

with the series noise and can be neglected. The total ENC i s thus given

by (4-24). There i s an optimum transformer ratio for which the ENC has

a minimum.

C /l+ fd \ (4-26)
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From equations (4-21), (4-22) and (4-26) we see that the optimal

noise situation is obtained with the transformer ratio which equals

transform detector capacitance to the capacitance of the preamplifier.

(Modified sl ightly by the effect of a f in i t e blocking capacitance Cfe.)

The condition (4-26) maximizes again the transfer of the signal energy

from the detector to the preamplifier.

To keep the parallel noise small requires certain care. A liquid argon

ion chamber does not have significant leakage current. The dominant

source of parallel noise in the input circuit are the losses in

the ferri te core of the matching transformer. We will not analyze

the noise performance of the transformer here. With a correct choice

of the ferr i te core with the right number of transformer turns wound

in a correct way the parallel noise due to the'transformer looses can

be kept sufficiently small.

The leakage inductance of the transformer plus the inductance

in the connection between the detector and amplifier requires a

damping to prevent osc i l lat ions in the input c i rcu i t . An amplifier

input Impedance of 500-lOOOil i s required for an aperiodical waveform.

The damping has to be implemented with no res i s t ive component con-

nected to the input. We wil l describe an amplifying configuration

satisfying the above condition ("cool resistor") in some detai l la ter .

Substituting n0DT from equation (4-26) into (4-24) we obtain

the minimum equivalent noise charge due to the series noise



Equation (4-27) shows that for an optimal matching the ENC increases
Cd

with the square root of detector capacitance. (We can assume -g- » constant)
b

Let us consider two sections of a calorimeter each matched to i t s preampli-

f i er . Noise at the output of one section i s uncorrelated with the noise

at the output of the other section. The square of the noise of their

linear sum thus equals the sum of noise squares from individual sections

which i s the same (according equation 4-27) as the noise coming from a

section with the capacitance equal to the sum of two capaci-

tancies. We see that for an optimal matching the noise i s given by

the capacitance of the considered section independently of the number

of subdivisions and other read-out de ta i l s . A fine subdivision can

improve the signal to noise ratio at the later stage of the analysis,

because for a given event we can exclude the subsections without the

signal and so decrease the effective capacitance of the detector.

This approach i s not practical in triggering when the signal from the

calorimeter i s used to provide the total energy for the event select ion. In this

case we have to take the signal from a major part of the calorimeter

which has the equivalent noise charge given by equation (4-27) independ-

ently of a l l detai ls of the detector segmentation.

3.3 Optimization of Electrode Distance in Liquid Argon Calorimeter * "

All noise relations for the liquid argon calorimeter were derived up

to now under the assumption of an Impulse (delta function) signal.

We have already seen that real signal due to uniform ionization across

the gap has a "sawtooth" waveform (shown in Fig. 10b)

(4-28)



If this waveform i s presented at the input of the preamplifier-fi lter-

amplifier system whose overall impulse response h(t) i s our well-known

bipolar function with triangular lobes the output waveform i s the

convolution °f these two functions. Fig. 13 shows the result of the

convolution. Tw° effects are apparent, i) The width of the output

waveform, i . e . , the resolving time X , i s the sum of the electron
m

drift time across the gap and the width X of the system impulse

response;

X • X + t. (4-29)
m d

i i ) The amplitude of the output i s reduced compared to that of h(t)

for impulse excitation of the same charge.

We are going to find an "optimal" gap width under two constraints

The f irs t i s the resolving time X and the second i s the constant ratio
m

of the energy sampled in liquid argon. The f i r s t constraint i s given

by the rate requirement. The second constraint defines the total volume of

the detector. Let us change the detector gap d. If d i s very small,

the capacitance of the detector i s high and according to equation (4-27)

equivalent noise charge rather high. If we increase the gap width, the

detector capacitance decreases, but so also the amplitude of the output

waveform which reaches 0 when the electron drift time t , i s equal to

the resolving time X (X • X - t » 0 ) . Intuit ively there i s an

optimal gap width which gives the lowest ENC.

(There are many other important parameters entering into thp choice

of the gap width and hence the granularity of sampling for this kind of

detector. The present optimization i s only with respect to the electronic

noise which may not be the limiting factor for a particular calorimeter
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under consideration.)

Let us make our intuit ive argument more quantitative. If we set

a constraint on the resolving time X , and vary the ratio of t . to X from
m a m

zero to one, maintaining the total charge constant, then the amplitude

of the output decreases from unity to zero as shown in Fig. 14. Calling

this amplitude a (t./X ) we can obtain the equivalent noise charge for

the case of the "sawtooth" signal from equation (4-27) by dividing the

ENC for the impulse case by a (t,/X )
a m

,2 , _ /,.CdENC' - 128kTR, C^l+^J o/tj \ (4-30)

-— 1 . X

The capacitance of the detector C, depends on the gap width. If we

use the second constraint of constant ratio of liquid argon and plate

material the detector capacitance C. is inversely proportional to the

square of gap width C, » -—•. (Capacitance of one gap goes as 1/d and
d

the number of gaps in the detector has also 1/d dependence.) Substi-

tuting d » v • t. and neglecting the term C./C. we can write equation

(4-30) as

ENC « / kTR C.' v
s A e

-1

(4-31)

The dimensionless term in the square bracket is plotted in Fig. 15.

It has a minimum value of 6 at t./X £ 1/3.
d m

Thus, there i s an optimum value of the interelectrode gap deter-

mined by the required resolving time X and by the electron drift
velocity v

d « \ v e • Xm (4-32)
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To conclude this part we would l ike to stress that the event

resolving time X does not define the l imit on event timing in the liquid
in

argon calorimeter. The best possible time resolution of the occurence

of an event in liquid argon calorimeter i s given by equation (3-33).

For a bipolar shaping considered here and the "sawtooth" form of the

input current, the time j i t t e r of an event with the total charge Q at

the zero crossing i s

ENC
5 t * 77T (4-33)Q 4a( pf

d
where ENC i s given by equation (4-27) and a i s plotted in Fig. 14,

As an example for C^ • 10 F; A - 1 us, a - .6 and the 1 GeV of the deposited

energy in the calorimeter with 107. of energy sampled by liquid argon

the time j i t t e r 6t i s 6 ns.



Part V.

POSITION SENSITIVE GAS DETECTORS

1. Fundamentals of Particle Detection
in Proportional Gas Counters

Today the position-sensitive detectors in high energy physics experiments

are dominated by multiwire gas counters operated in the proportional mode.

Detectors come in a large variety of sizes and arrangements, but the underlying

physical principles of detection are the same. Gas counters have an appealing

initial simplicity with a great design flexibility, but the details of their

operation are surprisingly complicated when closely examined. In these notes,

the emphasis in on the signal processing, so only very brief descriptions of

2* 2C
the fundamentals of gas counter operation are presented. '

The physical processes involved in detection by gas proportional counters

are: i) Primary ionization of the gas atoms and molecules by the dectromagnetic

field of high energy particles; ii) secondary ionization by some electrons produced

by the primary ionization; iii) drift of electrons toward the anode wire; iv) impact

ionization of "hot" electrons in the high electric field near the anode wire pro-

ducing the charge multiplication (avalanche gain mechanism); v) collection of

electrons by the anode and an exchange of remaining positive charges among various

components of the gas mixture; vi) drift of positive ions toward the cathode and

signal formation on the surrounding electrodes; and vii) signal processing and

readout.

As mentioned above, the main purpose of wire chambers in high energy physics

experiments is to provide position sensing detection. In some applications, the

measurement of the ionization due to the high energy particle (or the accompanied

x-rays) is also required. Examples are: gas proportional chambers used as sampling

detectors in calorimeters, chambers intended for particle identification via ioni-

zation in relativistic rise region, and detection of transition radiation x-rays, etc.
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A proportional gas counter consists of a thin wire stretched at the axis of

a conducting cylinder filled with a suitable gas. The electrons liberated in the

gas by an ionizing radiation drift toward the central wire at a positive potential

relative to the cylinder. Electrons arriving in the high field region in the

vicinity of the wire experience inelastic ionizing collisions, forming a multi-

plication avalanche, the pulse induced in an external circuit between the anode

and the cathode is mainly produced by the motion of positive ions. (Appendix 1)

Multiwire proportional chambers usually consist of a plane of equally spaced

anode wires, sandwiched between two cathode planes. In the major part of the

chamber volume the electric field is uniform, but close to the wire it is almost

identical to the field of a cylindrical proportional counter. The simplest loca-

lization is done by identifying the wire which has produced an avalanche.

The relation between the position of the ionizing column created by a particle

and the avalanching process, due to the arrival of electrons at the anode, can be

used for an accurate position meaaurement. A gas detector designed to operate this

way is called a drift chamber. A possible configuration of drift chamber electrodes

is shown in Fig. 16a. '' Electrons produced at time t0 by incoming charged particles

drift against the electric field and reach the anode wire where avalanche multi-

plication occurs at a time Cj^ The distance of the track from the anode wire is

therefore given by

X » J wDt , (5-1)

o

where wQ is the drift velocity of electrons. Before studying the main limitation

of the position accuracy obtainable by drift chambers, let us say a few words about

the charge multiplication in a avalanche process.
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A passage of a charged particle through a 1 cm thick layer of gas produces,

typically, about 100 electron-positive ion pairs. We already know that this

amount of charge is not large enough for direct detection. The amplification

in an avalanche brings the signal into a detectable level. However, there is a

penalty to pay. The avalanche process is a stochastic (random) process itself

and introduces additional fluctuation into the detection. (Its name is "linear

birth process".) If we study avalanche processes originate! by a single electron;

we see that resulting total charges have a broad distribution. This kind of

distribution is very common in detection and is called the Furry distribution. In

the case of the avalanche multiplication process in gas detectors, the probability

density function of the gain distribution can be approximated by a simple exponential

P(g) " 7~ • a" g0 (5-2)
So

where P(g)*Ag is the probability for the gain to be between g and g+Ag and gQ

in the mean gain.

If we detect n primary electron charges having the mean value E(n) and the

variance var(n) via an avalanche process described by Eq. (5-2), the mean value E(n)

and the variance of the total number of charges var(N) after multiplication can be

expressed as *'

E(N) - gQ- E(n)

var(N) - g^ • var(n) + E(n)«var(g) (5-3)

(var(x) - E(x2) - E(x)2)

The variance of g is directly calculable from the probability density function (5-2),

and its value is g2. For the square of the relative width we can obtain from

Eq. (5-3)

var(N) m var(n) + 1 (5-4)

E2(n) (>
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If the distribution of the number of primary electrons n has Poisson statistics,

2
var(n)/E (n) » l/E(n), we see that the relative width of the number of electrons

after multiplication in the avalanche process (5-2) is degraded by a factor of

Jz". In the measurement of x-ray energy, the distribution of the number of

primary electrons is narrower than the Poisson distribution with the same mean

number of electrons. (Fano factor) therefore, the relative importance of the

second term in Eq. (5-4) is greater and the energy resolution degradates typically

by a factor of 2. (Broadening of the resolution given by Eq. (5-4) does not

depend on Che mean gain gQ. It can be shown, however, that the stability of the

mean gain decreases with the value of mean go.)

The loss of the energy resolution is of little importance for chambers where

only position information is required. Low gas gain has, however, enormous

practical advantages for the chamber operation, llie lifetime of the chamber is

extended, external and internal high voltage discharges are easier to prevent.

Positive ions produced by an avalanche at the anode of a drift chamber move slowly

toward the cathode across the drift volume. The presence of the positive charges

inside the drift volume can seriously affect the electric field and hence the drift

velocity of the primary electrons. The velocity in Eq. (5-1) can become dependent

on the past chamber history and the method stops to work. The effect depends on

the total charge in the drift volume which is product of the detection rate and

the mean gain. Smaller mean gain allows operation of the chamber at higher rates.

2. Position Resolution in Drift Chambers

The space resolution in drift chambers is mainly limited by two factors:

i) diffusion of electron during their drift toward the anode and ii) discontinuity

of the primary ionization.
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The resolution for a track close to the anode wire is limited by the fact

that the ionization left by a fast particle, instead of being a "continuous"

line, is concentrated in separated clusters. The effect is shown in Fig. 16b.

A track with drift path 0 (crossing the anode noise) gives a reading which

corresponds to the distance of the closest ionization cluster to the anode.

If the mean number of primary clusters per cm is N, the probability of zero

clusters within the distance d from the anode is

Po(d) = e"
2dN . (5-5)

From this probability we can derive the mean distance of the closest

cluster E(dmin) =• 1/2N and the variance
 v a r( d

m i n) * 1/(2N)
2. We see that

the drift distance measurement has a systematic error 1/2N (we cannot measure

negative distances) and also the spread <T » 1/2N. We can take their sum in

quadrature as the contribution of the primary ionization effect to the space

resolution (for a particle passing through the anode).

5 xi(°> " -~ • (5-6)

21
For gases used in drift chambers, N is about 25/cm, so £ x W o ) is about

300 \x (for a track crossing the anode wire). The importance of the fluctuation

in the ionization decreases rapidly with the track distance from the anode wire x.

Assuming a constant drift velocity, we can write

6 xt(x) - ft x±(o) - dJx£+ fi^o) - x) i . 6iX(o) • — ^ — (5-7)

so already 3 mm from the anode wire the fluctuations in the primary ionization

contributes only 30 u to the total resolution.
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The effect of the electron diffusion is more important in the major part

of the drift cell. For a single electron drifting during the time t the rms

displacement 6x , with respect to the mean drift path x, is

6x - ./5Dt » v^Dx (5-8)
M-E

where D is the diffusion constant, |_t is the electron mobility and E the electric

field, the diffusion constant D i3 given by the Einstein relationship

u (5-9)

where k, T, q have their usual meaning and Q is the ratio of the effective

electron temperature and the gas temperature T. The reason for having the

electron agitation ratio Q in the~Eq. (5-9) is that free electrons in gas

under the influence of an external electric field are, in general, not in

thermal equilibrium with the gas. From Eqs. (5-8) and (5-9) it follows that

the mixtures used in the drift chambers should have the electron agitation ratio

close to one. (We can notice that the diffusion of electrons in gases and thermal

noise in resistors are basically the same effects.)

Combining Eqs. (5-8) and (5-9), we can write

6xD

It looks as if we could improve the diffusion by simply increasing the electric

field E. This is correct for low values of E. Physically it means that the

drift velocity increases with the electric field and therefore the electron drift

time decreases. At the some value of E, the drift velocity stops to increase (for

some gas mixtures it even starts to decrease!) and5xD stops to improve with
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the electric field. It means that electrons are heatid and the increase of the

agitation electron velocity decreases the electron drift velocity. The majority

of the drift chamber works in a plateau region of the drift velocity as a function

of the electric field. The independence of the drift velocity of the electric

field removes the constraint of the uniform electric field inside the drift cell

and allows a much wider variety of electrode configuration in a drift chamber

design.

Since in a drift chamber a swarm of electrons are drifting from the particle

track to the anode wire, the diffusion effect on the position resolutinn is smaller

than 5x for one electron giveu by Eq. (5-10). The rms of the total resolution

can be written as

(5-11)

where A is the factor which accounts for the statistical effects in the diffusion

2
of the electron swarm and 6 are the fluctuations in the drift time measurement.

A typical resolution versus drift distance curve is shown in Fig. 16c. We see that

increasing the drift path from zero (anode wire), the resolution at small x improves

due to the decreasing importance of the ionization density effect but at large X

increases as the total error starts to be dominated by diffusion effects.

The drift time measurement includes the measurement of the particle passage

time through the chamber (usually provided by a scintillation counter) and the time

of the avalanche at the anode tire. Two examples of signals at the output of the

preamplifier connected to the drift chamber anode are shown in Fig. 17b and c.

Output waveforms are very irregular as can be expected from the ionization randomly

clustered along the particle path. (This is in contrast to a regular waveform due to

the point-like ionization of an Fe^5 6 keV x-ray.) The irregularity of the waveform
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prevents us from using any matched filter for a optimal timing. The best results

for a standard drift chamber, where the information about the drift path is contained

only in the time of arrival of the first cluster, were obtained by a leading edge

timing method. From the signal processing point of view, standard drift chambers

can use only very small portions of the signal to derive the time and hence the

position information. Any drift chamber electrode configuration capable of equal-

izing the drift time for all clusters produced by ionizing particles would improve

the chamber performance. Not only the available primary signal would be much larger,

but also the effect of the diffusion would be decreased by full use of the statistics

of all primary clusters.

Let us return to the Eq. (5-11) describing the resolution of drift chambers.

The contribution of fluctuations in drift time measurement 6 - to the total drift

chamber resolution depends on the signal from the chamber and on the noise of the

amplifier. We will calculate the minimal gas gain of the chamber, i.e., the gain

which makes the anode signal sufficiently large so the time jitter in the timing

circuit, due to the amplifier noise and hence 5 , 13 negligible compared with
e£

other terms in Eq. (5-11).

We will use results of the noise analysis from Section IV.2. A typical

capacitance of the anode wire is 25 pF, (as 10 pF/m, plus additional capacitance

in chamber feed-throughs). The measurement time t is very small. The best amplifying

device under there conditions la a bipolar transistor with high f. Taking f_ •

3 GH, t • 10 ns, the ESC calculated from Eq. (4-19) is equal to about 1000 electron

charges. The time jitter can be written as

t «ENC
At - -S (5.12)

where Q is the part of the wire chamber signal utilized for timing and t is

the half width at the base of the assumed filter impulse response. The product



of the time jitter and the drift velocity should be small compared with the dif-

fusion limit of the chamber which allows us to write

Taking 6x = .1 mm, w • 5 cm/|js, the required signal charge for timing Q is

about 5000 electrons. In the first 5 ns only about 10% of the avalanche charge

is induced on external electrodes (see Appendixl). If we assume an average of

5 electrons contributing to the signal, the minimal gas gain is about 10 .

The calculation was done for the optimal capacitance matching and for a

transistor with high f̂,. The choice of the "best first transistor" is sometimes

comprised by an additional requirement for the device to survive possible in-

stabilities and discharges in the chamber. If the electronic noise is increased,

the gas gain has to be increased by the same factor resulting in rate limitation

and other disadvantages as described in the previous section.

To conclude, we would like to stress that drift chambers are detectors still

in a development stage and substantial improvements in their performance are very

likely to occur.

3. Second Coordinate Readout in Drift Chambers

We have seen that position resolution in a drift direction of the drift chamber

can be around J. mm. Such a fine resolution is difficult to achieve by other position

detection means for the comparable active areas. A stereo view is the most popular

way to obtain particle coordinates in space. There is, however, a very wide class

of experiments performed at colliding beam facilities where the implementation

of stereo views presents considerable problems.
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In a typical colliding beam experiment, the anode wires are oriented parallel

to the beam axis and to the magnetic field. The position in the direction of

the magnetic deflection is measured by the drift time method. The problem arises

in determining the second coordinate along the anode wire. Second coordinates are

used to define the polar angle of particle tracks and to establish the consistency

of the track recognition. Usually the position accuracy sufficient for this direc-

tion is lower than the position accuracy perpendicular to the anode wire.

There are many second coordinate readout methods. These methods can be divided

into two groups. Methods within the first group utilize the signal induced on the
(•c)

cathode for the second coordinate measurement. The cathode strips and delay line

(20
parallel to the anode wire are the methods most frequently used.

The cathode strips method (we can include here, also, a graded density cathode

method) can achieve the greatest position accuracy for a given gas gain of the

chamber, but it presents the well known ambiguity problems and therefore recons-

truction difficulties for multiparticle events. The delay line parallel to the

anode wire can limit the rate capability of the chamber and its physical presence

in the drift volume can interfere with the drift field requirements. All methods

within the first group require additional material within the drift chamber volume.

This usually complicates, considerably, the mechanical construction of the chamber

and introduces multiple scattering which may finally limit the precision of the

momentum measurement.

Methods within the second group utilize the anode signal for the second coordinate

measurement and so do not require any additional material inside the chamber, i.e.,

in the particle path. The position determination by charge division and the second

coordinate measurement by timing of the electromagnetic wave propagation along the

23
anode wire (direct timing) belongs to the second group. The first method requires the
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resistive anode and gives a constant relative error A-?/-t for a given signal charge.

The direct timing method requires a high conductivity anode and gives the resolution

M largely independent of the length of the wire j>_ for a given signal charge.

We will analyze a few of the methods in detail.

4. Charge Division Readout in Drift Chambers

the principle of the method is shown in Fig. 18. The resistive anode wire of

a proportional detector is terminated with low impedance (Z=o) amplifiers at both

ends. If the signal charge is injected at the distance x from the A end of the

wire, the ratio of the charges collected at the two ends is the inverse ratio of the

wire?resistances between the injection point and the wire ends. For the usual case

of the uniform wire resistivity, we can write

(5-14)

where q., q are charges collected at A and B ends of the wire and I the faigth of

the wire.

The Eq. (5-14) is evidently correct for the DC current for which the presence

of distributed capacitance C(x) and inductance L(x) as shown in Fig. IS is ir-

relevant. For the real chamber signal, which contains components at very high

frequencies, the presence of C(x) and L(x), together with the wire resistance R(x),

defines the signal propagation from the injection point to the wire ends." The

first question to ask is the following. Is Eq. (5-14) correct also for an impulse

injection into the anode wire? Is the charge division method correct also in cases

where the signal propagation along the anode wire is mainly electromagnetic wave

propagation? The second question considers the compatibility of the drift time
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measurement with the charge division method. What is the degradation of the signal

rise time due to the resistive anode? How long does it take for the injected charge

to be collected by the amplifiers at the wire end and does this collection time

limit the rate of the chamber?

The answer to the first question is positive. The charge divides between

the two ends according to Eq. (5-14) independently of the distribution of inductance

capacitance along the line. Reference 35" contains a general proof of relation (5-14).

This intrinsic linearity of the charge division method is particularly important for

a large detector system with many wires where differences in L(x) and C(x) from wire

to wire can be expected. The linearity also justifies a relatively simple calibration

at two points along the wire.

To answer the second question, we note that the anode wire plus surrounding

electrodes form a transmission line and we are going to study the signal propagation

along this line. Let us assume a special case of a homogenous line where all three

line parameters (resistance R, inductance L, and capacitance C per unit length) are

constant. The differential equation describing electromagnetic behavior of the

line is the well known telegrapher's equation

du2(x,t) ou2(x,t) 3u(x,t)
5 = CL 5 + RC , (5-15)

ox ht* 3t

u(x,t) - voltage

x - position coordinate of the Ine

t - time

R,C,L - resistance, inductance, and capacitance of the line per unit length

I - length of the line
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The first term in Eq. (5-15) represents electromagnetic wave propagation and

the second term diffusion. The boundary conditions due to low impedance pre-

amplifiers at the ends of the wire are

u(o,t) =uU,t) - 0 . (5-16)

Eq. (5-15), with the boundary condition (5-16), can be solved by the Fourier

series method. Let us assume the solution in the form

u(x,t) = Z X (x) • T(t) . (5-17)
n«l n n

After standard manipulation, we can write for X (x)
n

where all A have to be defined from the initial conditions,
n

Time equations then become

CL —^ + RC f£ + X T - 0 (5-19)
at2 9t n n

which are simple linear second order differential equations with constant coefficients.

The complete solution can be carried out by the reader or found in ( ). We will

concentrate here on the fundamental harmonic (nal) which has the slowest decay rate

and, therefore, it defines the discharge time of the line. Substituting rr/i for \,,

the character of the solution of the main harmonic time Eq. (5-19) can be periodical,

aperiodical, or critically damped. Thus we can define an RCL line to be

i) underdamped line for £R<2TT V L/C

ii) overdamped line for s$>2rt J~Uc~ or

iii) critically damped line for /,R =• 2TT ,/ L/C

(Because 7 L/C is about 350Q for the majority of chambers, '.RCR1T = 2kH.)



As is well known, critical damping gives the most rapid decay ~e * e

- -5*
For an underdamped line, all harmonics are also decaying as e 2L , but the R is

smaller. An example of the voltage along a 2 m long anode wire at different times

after an infinitely sharp charge was injected at the wire center for an underdamped

line is shown in Fig. 19. He see the for this line with a resistance equal to %

of the critical resistance the electromagnetic wave propagation is more important

than the electric diffusion as the line propagation mechanism. The reflections of

the wavefront are well visible and wavefronts contain more charge than the total

amount of the diffused charged in the line.

For an underdamped line, the diffusive propagation dominates. The first

harmonic has an aperiodical solution and slower decay time than a critically-

damped line.

It can be calculated that for a critical damped line the rise time of the

currrent pulse at the line end is about 1 ns (for an impulse injection), and about

407. of the total charge is delivered to the preamplifier within this time. We

see that the deterioration of the rise time, due to the resistive anode, is

negligible for the drift time measurement. Let us calculate the amount of time

needed to discharge the line and to compare it with the time spread of the primary

lonization arriving to the anode wire in a typical drift chamber (Fig. 17b,c).

For a critically damped line, the time constant of the decay is

C RCRIT 2TVL7C ™ " l }

where c * lA/LC i3 the speed of electromagnetic wave propagation along the line

(vacuum) and TQ * l/c Is the time for the signal to travel the single length of

the line. Let us take six decay time constants as a criterion for the line dis-

charge time (.27. of the charge left). This discharge time is equal to the time

needed for light to travel twice the length of the line (= 15 ns).
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Thus, In practical drift chambers, the charge collection time at the wire

end is limited by the time spread of ionization arriving at the wire and the

use of wires with higher resistivity does not limit the rate capability of the

chamber. If the wire resistance is large, compared with critical resistance,

we can neglect L in Eq. (5-15) and obtain the well known diffusion equation.

The first term in the time equation (5-19) becomes zero and we can easily obtain

the line discharge time constant TD for a diffusive RC line.

* £ (5-20)

5. Position Resolution of Charge Division Method

We will use the results of the noise analysis from Section IV.1 to calculate

the resolution of the method. Since the resistive line represents a dlssipative

position sensing medium, its noise is inherently present with the signal. The

basic equivalent circuit is shown in Fig. 20a. It is, essentially, Fig. 7 with

a physical resistance IL, shorting the input. (We have shown only one end of the

line; the other is connected to the ground for our analysis.) Equation (4-10) I

is directly applicable, so parallel noise can be written

«- T p J (h(t))2dt . (5-21)

To write down the contribution from the series noise e , we have to take into account

that now we have a real resistance connected to the input, so the input admittance

is 1/R^ + ju£. . The impulse .response of the voltage source Is (l/IL+C. d/dt)h(t),

where h(t) is the impulse response due to a unit signal charge. Following the same

arguments as in Section IV.1, we can express the series noise as

qns " 2 k T Rs I a/Rph(t)+Ctnd/dt h(t))
2dt - 2kTRgCin

2 -J [l/Tln
2 h2(t)+(d/dt h(t))2]dt

— ••00

(5-22)
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where T. = Rp'Ci is t h e i nP u t circuit time constant. (The cross term in integral

(5-22) is zero as can be seen by per partes integration. It means that impulses

and doublets with the same time origin are uncorrelated and the total series noise

is the sum of their mean square contribution (Fig. 20b).

Let us now study the requirements on the pulse response of the overall filter

h(t). In order to preserve the intrinsic linearity of the charge division, we have

to collect practically all charge. This means that the flat part of the impulse

response has to be at least five time constants long (.2% nonlinearity), plus the

time spread in the arrival of the primary ionization to the anode wire. Let us

assume: i) the wire resistance is sufficiently high so the line discharge time

constant r is given by Eq. (5-20) and ii) the!.time spread of the arriving ionization

is small compared with T .

Because the line is "shorted" at the other end, a part of the line capacitance

seen at the input circuit is "missing".It can be shown that the effective line

37
admittance in frequencies of interest is approximately

Y " 7R + jUJ IF * (5"23)

To evaluate the relative importance of the parallel and the series noise, let us

calculate the noise corner time constant T (see Eq. 4-3).

Tc - (CA+tC/3)'(/.R*Rgr(*3O ns) (5-24)

For C. = 10 pF, t£ * 30 pF, -tR * 10 kO and R • 500. The value of the noise corner
A S

time constant r has to be compared with the duration of the flat part of the filter

impulse response T_. According above assumptions
r

25-TD - ^ ^ - <* 150 ns) . (5-25)
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for the same values of line parameters. We see that T » T , so the parallel

noise dominates.

Referring to Fig. 21 for the definition of the filter impulse response, we

can evaluate q2 'from Eq. (5-21),

q2 = jf- x 1.2 T_ * 1.2 kT • (d) (5-26)
np ^K c

where we substituted for T from Eq. (5-25). This noise adds to the position
F

signal q • (The noise in q + q £g. much smaller since for T a 5T ,it is anti-
A A IS r JJ

correlated at the two ends of the line.) The position resolution is then,

The position resolution for the charge division as given by Eq. (5"27) is determined

only by the total line capacitance (C-t,), and is independent of the line-resistance.

This is a direct consequence of the fact that the dominant noise is a thermal noise

of the resistive anode in parallel to the input. If we try to decrease the anode

noise by increasing the anode resistance, the filtering time has to be increased

by the same ratio (Eq. 5-25), and the noise remains the same.

The result (5-27) holds only when the duration of the flat top of the filter

impulse response is dominated by the time constant of the diffusive anode line.

If the filter response is determined from the time spread of the arrival of the

primary ionization to the wire Tp is not determined by (5-25), and the noise is given

by the first part of the Eq. (5-26).

The amount of signal charge required to obtain 1% resolution by charge division

method is few time 10 electrons for a typical drift chamber. The method uses total
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ionization charge a. che anode wire, so the gas gain required for the charge

division method and the gas gain for drift time measurement are comparable.

6. POSITION SENSING WITH DELAY LINE

Position sensing with delay lines is based on conversion of position information

into a time difference between two signals from delay-line ends (Fig. 22a). The delay

line is in principle a non-dissipative position-sensing medium. The noise in this sys-

tem is generated in the line terminations and in the amplifiers. The position resolu-

tion is ultimately limited by the fluctuations in the shape of the avalanche around

the anode wire. The electronic noise determines the magnitude of the signal required

to achieve this resolution.

We are going to show that the delay-line termination can be realized without con-

3*
necting any dissipative elements to the preamplifier input. In this way no additional

noise source is added into the system, and the noise at the output should be smaller

than the noise of a system with a conventional resistive termination.

Figure 23 shows a basic circuit configuration of a charge-sensitive preamplifier

with a capacitance Co at the collector of a cascade transistor. Similar configurations

are commonly used in low-noise preamplifiers because they do not contain any dissipative

element at the input. (Resistor R~ can be made sufficiently large so its contribution

to the total noise is negligible.) Let us calculate the input independence of this

preamplified configuration.

The voltage at the output of the preamplifier is the current from the g element

integrated on the capacitance Co:

out " Sm jwCo + 1/RO * in ' (5-28)
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and the apparent input current flowing through the feedback impendance Zf is given by

I. - U /Z, . (5-29)
in out f

From equations (5-28) and (5-29) we can calculate the input independence

Zin " IT ' T ' h <**• + £> • (5-30)
in m

At frequencies where 1/R.o « jcuCo and for a pure capacitive feedback (Z. » 1/jwC,),

equation (5-30) becomes

We see that Z. in (5-31) is real, i.e. a resistive termination was achieved by capaci-

tance in feedback. Thus, termination can be realized without connecting any dissipative

element to the input. The termination, however, cannot be noiseless since it is realized

by a physical amplifier. Because of the feedback, the equivalent series noise voltage

e2 =• 4kTR appears at the input terminal.
XI 5

If we now terminate a delay line of a characteristic impendance Zo with a preampli-

fier having Z. adjusted to equal Zo, we have only noise from the preamplifier in the

system (Fig. 22c). The noise source e sees the input impendance 2Z0 (Zo of the pream-

plifier in series with the line impendance Zo), so the spectral density of an equivalent

parallel (across the input terminal of the amplifier) current noise-source generator is

— Rs
12 = 4kT 2— x 2 , (5-32)
np (z 0)

2

where we have multiplied by a factor of two because of the same amount of noise gener-

ated at the other line-end.
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APPENDIX

Signal Induced by a Moving Charge

Ion iza t ion d e t e c t o r s use the i o n i z a t i o n produced by a f a s t moving charged

particle to detect and measure some quantities associated with a particle. The

signal seen on the external electrodes of a detector, however, Is due to the

movement of the charged carriers inside the detector volume. The charged

carriers move In an external electrical field which must be provided (by apply-

ing a bias voltage) in order to Induce a signal.

To calculate the amount of the induced charge on outside electrodes, we

will assume that the velocity of the charged carrier is much smaller than the

light velocity so the system can be considered to be In an electrostatic equil-

ibrium at any time. Expression for the Induced charges can thus be obtained

based only on the electrostatics.

Let us start with the Green's theorem^ ' (called also the Gauss identity in

German and French literature) which considers a set of conductors in two electro-

statically possible states characterized by total charges Q.,Q' and voltages

V.,V! , respectively. Green's theorem can be written:

Z Q y _ ^ Q1 v (A-l)

where summation has to be performed over al l conductors of the considered set.

Q-s and V-s are the charges and voltages of the first electrostatic state.

Let us apply the Green's (Gauss') theorem to the conductors 1 and 2 shown

on Fig. 24. The two electrostatically possible states are

and

q , \ , Q2; v ( p ) , ̂  - o, v2 - o

• o, Q^, Q£ ; v { p ) , v^, v^



A.2

The first state has the charge, Q, at the point, P, and both conductors are

grounded. The second state is free of the charge, q, and has only the second

conductor grounded. Equation (A-l) can be written

q • V'CP) + QXV^ + Q2 ' 0 - O-VGP) + Q^-0 + Q£-0

(A-2)
or

• q

"i

Equation (A-2) gives the Induced charge, Q, on the conductor, 1, connected to

the ground due to the presence of the charge, q, at the point, P. The ratio

V'(P)/V* is the voltage at the point, P, due to the unit voltage applied to the

consider electrode (conductor #1) while all other conductors are grounded and

the space is free of the charges. Equation (A-2) is always correct and applica-

ble to the multielectrode detectors (cathode readout for example). The Identi-

cal result can be derived from the energy balance equation. It holds

also for semiconductor detectors where we have a fixed space charge present in the

active (depletion) region of detector. The fixed charge modifies the real electrical

field inside the junction, but because i t does not move the induced charge is

the same as without it (given by A-2) assuming the same motion of the free car-

riers. (This is a direct consequence of the linearity of the electrostatics.)

Ve will stress again that V'(?) is a fictitious field and not the real field in-

side the detector. The real field is responsible for the carrier motion, the

fictitious field, V'(P), is a tool for the signal calculation.

Now we are ready to calculate the induced signal in ionization detectors.

First, let us consider a parallel plate ion chamber having the gap distance, d

(Fig. 10). We will assume that an electron-positive Ion pair was created at the

point, P, at the distance, x from the cathode (Fig. 10a). The net charge induced

on the electrode (for example, anode) is the sum of charge induced by the
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electron and the pos i t ive Ion.

VACP)

vp>
A ' i O n q VA d

He can see that at the time of the ionization the Induced charge on the anode

due to the electron i s canceled by an equal amount of the induced charge of the

opposite polarity due to the posit ive ion. If we assume that electron dr i f t s

immediately towards the anode with the velocity vd - d/td ( t , i s the electron

drift time across the gap) a constant induced current flows in the external

circuit for which we can write

" ' d dt " - t d • ( A~ 3 )

This current flows for t - — : :-^ so the total Induced charge Is

(d-x)
s d

which i s the equation (4-20).

In cylindrical proportional chambers charge multiplication process takes

place c lose to the anode wire. About 98% of the charge i s created in l e s s than

5 mean free paths from the anode. We wil l neglect this small motion of electrons

before reaching the anode and consider the proportional chamber signal to be formed

by a cloud of posit ive Ions leaving the anode.

The ratio of V ( P ) / V . f ° r t l l e case of a cylindrical geometry can be

easi ly found from Gauss' theorem and.,.is equal.

V|(P) , I
anode In j

where r - i s the distance of the point F from the center
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r - i s the anode radius
a

r - i s the cathode radius .
c

The induce current on the anode due to the total (multiplied) charge Q is

. __ d /v ' (P )
1 * " t̂ ' dt I V7""?

V "•
\ „ 1 1 <*r /-A «
. ) - « « • — « ^ • » • * ( A - 5 )

anode
/

dr/dt i s the radial drift velocity of positive ions in the real electrical

field of the proportional chamber. Assuming that the drift velocity i s given

by the external f ie ld, E, and by the Ion mobility, U, we can write

ff - « D * )• - 5£& • U (A-6)

where E i s the real electrical field on the anode surface. Equation (A-6) i s
3

the equation of motion for the positive ion which has an elementary solution

r 2 ( t ) - 2Eara wt + T\ (A-7)

where we have assumed r(t-O) - r . Substituting the equation (A-7) (and i t s

derivative) into (A-5) after simple manipulation we obtain

where

t m a

o 2E ua

We have referred to equation (A-8) in Part V. The induced charge i s given by:

Qs(t) - io-tQ In (1 + t/tQ) (A-9)

The signal current stops at t - t ^ , that i s , at the arrival of the positive

anode to the cathode. It can be shown that Q (t « t ) - 0 .
s max ^t

This research supported by the U.S. Department of Energy under Contract

DE-AC02-76CHO0016.



Figure Captions

Fig. 1. : A possible oscillogram picture of noise. The displayed voltage

is a random process. If we consider the predictivity of

v(t2> from the knowledge of v(ti), we arrive at the concept .

of the autocorrelation function.

Fig. 2. : a) Physical resistance R represented by a ncuse current source

parallel to an idealized noiseless resistance R.

b) Physical resistance R represented by a noisa voltage source

in series with an idealized noiseless resistance R.

Fig. 3. : Series noise iu charge-controlled amplifiers. Fluctuations in

controlled output current are thought to be caused by a noise

voltage generator in series with the control electrode.

Fig. 4. : a) Fluctuations in current flowing into (or out of) the control

electrode represented by a parallel noise current generator

V
b) For a current signal the series noise voltage source e. re-

ns

placed by an equivalent current source i » e It. parallel

to the input.

Fig. 5. : a) Forward-biased n p junction. The density of current-carrying

electrons in the p part of the junction falls off exponentially.

b) Schematic of an npn transistor. Ike P-region is made ex-

tremely thin and is followed by a reverse-biased lightly

doped n region.

Fig. 6. : Schematic representation of an n-channel junction field-effect

transistor.



Fig. 7. : The basic equivalent circuit of the detector and amplifier.

The system is described by the over-all impulse response

h(t). The series voltage noise source was replaced by an

equivalent current noise source parallel to the detector.

Fig. 8. : a) The impusle response of an ideally matched filter with

the time origin shifted in such a way that the waveform

peaks at zero. The filter requires an infinite time to

respond and is unfeasible.

b) Triangular impulse response of a realizable filter. The

noise is increased by only 8% compared with the noise of

an ideal filter.

Fig. 9. : Equivalent noise charge (tNC) versus detection time t for

different detectors and different amplifying devices.

Fig. 10. : Charge collection in the liquid argon ionizacion calorimeter:

a) charge due to a single ion pair formed at a distance x

from the negatively biased plate (s. .id line) and for an

ion pair formed very close to the negatively biased plate

(dashed line).

b) charge due to uniform ionization.

Fig. 11. : Detector/preamplifier circuit configuration.

Fig. 12. : Equivalent circuit of detector and preamplifier for noise

analysis. System pulse response of duration X is shown at

the bottom.

Fig. 13. : Top: current input signal i(t) from the liquid argon ion

chamber. Bottom: impulse response of the system h(t) and

the system response to the current signal at the input.



Fig. 14. : Relative amplitude of the system response as a function

of the ratio of the input pulse duration t^ and the duration

of the output pulse X .

Fig. 15. : Equivalent noise charge (ENC) at the output of the calori-

meter as a function of the ratio of the input pulse duration

td and the output pulse duration X .

Fig. 16. : a) Electrode configuration of multiwire drift chambers with

ralatively long drift path. Cathode wires are connected

to uniformely decreasing potentials starting from ground

in front of the anode. Field wires define the field at

boundaries of two drift cells.

b) Effect of m e discontinuity of the primary ionization

to the drift chamber resolution.

c) Resolution of drift chamber versus drift distance.

Fig. 17. : "Current" waveforms at the preamplifier output:

a) Signal due to the point-like ionization of an S5Fe

6 keV X-ray.

b,c) Signal due to the ionization of a minimum ionizing particle.

Fig. 18. : Principle of the charge division method. Charge is injected

at the distance xo from the A-end of the anode wire. The anode

wire plus the surrounding electrodes form a distributed RCL line.
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