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Abstract

New techniques have been recently developed that allow unstructured, free meshes
to be embedded into standard 3-dimensional, rectilinear, finite-difference time-
domain grids. The resulting hybrid-grid modeling capability allows the higher res-
olution and fidelity of modeling afforded by free meshes to be combined with the
simplicity and efficiency of rectilinear techniques. Integration of these new meth-
ods into the full-featured, general-purpose QUICKSILVER electromagnetic, Particle-
In-Cell (PIC) code provides new modeling capability for a wide variety of electro-
magnetic and plasma physics problems. To completely exploit the integration of
this technology into QUICKSILVER for applications requiring the self-consistent
treatment of charged particles, this project has extended existing PIC methods for
operation on these hybrid unstructured/rectilinear meshes. Several technical issues
had to be addressed in order to accomplish this goal, including the location of par-
ticles on the unstructured mesh after transport, the allocation of each particle’s cur-
rent and charge to the unstructured mesh, adequate conservation of charge, and the
proper handling of particles in the transition region between structured and
unstructured portions of the hybrid grid.
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Introduction

A significant impediment to the use of time-dependent, full-wave electromagnetic (EM)
codes for the simulation of moderately complex devices is the limited resolution that can be
achieved affordably with currently available computers. This is particularly true in three
dimensions, where even small improvements in resolution quickly consume available
processor and memory resources for conventional structured-grid, rectilinear finite-difference
algorithms. When such codes are extended to self—consxstently treat the motion of charged
particles usmg Particle-in-Cell (PIC) methods,! the conventional rectilinear-grid approach,
because of its “stair-stepped” approximation of complex surfaces, limits our ability to resolve
particle motion near such surfaces accurately.

In order to circumvent this problem, previous work has focused on the development of
ennrely new algorithms based upon both structured non-orthogonal gnds and unstructured
grids. 4 However, these approaches have shortcomings, most notably that the considerable
investment in existing rectilinear-grid codes is lost and that, for most applications, the added
overhead of unstructured grids is wasted on all but a small fraction of the simulation volume.
However, new techniques have been recently developed that allow unstructured, free meshes
to be embedded into standard 3-dimensional, rectilinear, finite-difference time-domain gnds
The resulting hybrid-grid modeling capability allows the higher resolution and fidelity of
modeling afforded by free meshes to be combined with the simplicity and efficiency of
rectilinear techniques.

This report details the issues and methods involved in extending standard PIC
techniques to a hybrid grid. This has been accomplished by modifying the rectilinear
structured gnd PIC code QUICKSILVER 8 to include the unstructured- grid EM solver
voLMAax%%10 and then generalizing and extending QUICKSILVER’s particle handling methods
to the unstructured grid. This extension presented many challenging problems that needed to
be solved before a satisfactory implementation could be achieved. These problems included
the space-charge-limited emission of particles, locating particles on the unstructured grid after
transport, allocating each particle’s current and charge to the mesh, adequately conserving
charge, and proper particle treatment in the transition regions between structured and
unstructured portions of the hybrid grid.

Background

The work described in this report is built upon the two Sandia-developed simulation
codes: QUICKSILVER and VOLMAX. A brief summary of the capabilities and features of those
two codes follows.

QUICKSILVER: A Time-Dependent, Finite-Difference EM PIC Code

QUICKSILVER is a three-dimensional (3D), time-dependent, EM PIC code whose field-
solving algorithm is based upon a finite-difference formulation of Maxwell’s equations on a




multiple-block, rectilinear structured grid. A structured grid is one in which every grid
element is associated with its nearest neighboring grid elements though a logical mapping to a
three-dimensional cubical lattice. A rectilinear structured grid also has the property that its
elements are arranged conformal to a standard orthogonal coordinate system;, e.g.,
QUICKSILVER’s grid is conformal to Cartesian, cylindrical, or spherical coordinates. Other
codes (see, for example, Refs. 2 and 3) are implemented on more general structured grids that
are neither coordinate-system-conformal nor orthogonal. By multiple block, we mean that the
grid is composed of logically connected blocks, each of which is a coordinate-system-
conformal region of space with its own local grid. Each block has a small region of overlap
(two cells) with its neighboring blocks which allows the fields in each block to be advanced in
time independently; the fields at the outer edges of a block are then supplied as a boundary
condition from the overlap region of the appropriate neighboring block.

QUICKSILVER is actually a suite of codes; in addition to the main simulation code there
are several support codes. The problem geometry is generated using various preprocessors and
the simulation results are examined with one or more postprocessors. The original MERCURY
command-driven preprocessor assists the user in defining the mesh, boundary conditions, and
other input parameters. Recently, a set of widget-based tools has been developed to further
simplify the process of mesh generation. These widget-based tools, built upon the IDL data
analysis and visualization tool’ have been incorporated in PFIDL!!, QUICKSILVERs primary
simulation data postprocessor. In its role as postprocessor, PFIDL provides the capability to
manipulate and examine 3D scalar and vector field data as well as 6D particle phasespace
data. Additionally, PFIDL can be used to examine and manipulate time histories of various
simulation quantities. Avs? is used for the visualization and/or animation of field and particle
distributions as well as the 3D model geometry. These pre- and postprocessing tools are
available on a wide variety of platforms. The potentially vast amount of simulation data is
shared between the simulation code and the postprocessors via the Portable File Format
(PFR)12, a portable, compact, machine-independent binary file format developed expressly for
the QUICKSILVER suite but widely used for many other applications.

Generating input data for three-dimensional simulations can be difficult,
time-consuming, and error-prone. MERCURY is a command-driven preprocessor that is used in
defining the finite-difference grid, the problem geometry, the boundary conditions, and other
input parameters. MERCURY allows free-format input and provides menus for guiding
simulation setup and on-line help. It processes all input for a QUICKSILVER simulation and
checks for errors and inconsistencies. QUICKSILVER uses a nonuniform, multiple-block,
rectilinear grid with staggered grids. The MERCURY grid generator provides straightforward
tools to facilitate the generation of these multi-block, nonuniform grids, automatically
ensuring that the grid is both continuous and smoothly varying. Cartesian, cylindrical, and
spherical coordinate system multiple-block grids can be generated. Conducting and dielectric
volumes are easily generated with MERCURY by combining (sequentially adding or removing)
objects selected from a provided set of simple solid-object primitives. MERCURY then fits the
resulting compound volume description to the simulation’s underlying finite-difference grid.

DL is a product of Research Systems, Inc., 2995 Wilderness Place, Suite 203, Boulder, Colorado 80301.
*Avs is a product of Advanced Visual Systems, 300 Fifth Ave., Waltham, MA 02154.




MERCURY also computes the memory requirements for arrays in QUICKSILVER so that only the
minimum memory required for a simulation is used.

In addition to MERCURY’s capabilities, widget-based tools have been added to PFIDL to
ease some of the more difficult facets of simulation setup. For example, since often a
description of the problem geometry is available from solid modeling or CAD tools, PFIDL
currently has a tool for editing DXF' or ACIS? files and converting them to a format
compatible with MERCURY.

QUICKSILVER, the member of the suite J
for performing 3D physics simulations, can
be divided into two distinct parts, the field ,*
solver and the particle handler. The P ~
QUICKSILVER field solver utilizes - T~o
explicit!>!* and implicit"> finite-difference, G+1k+1).<~ E 4(i:j:) T~ i+ L,j+1k)
leap-frog algorithms. A single cell of a 4 .. ’,"\ H, Gj k)?
QUICKSILVER grid is depicted in Figure 1, k) IR
which shows the staggered spatial locations dk) :

GEy (bjsk):

of the electric and magnetic field
components in the differencing algorithm.
The 7, J, and X subscripts on the field

components indicate the corresponding (+1,}:k)

coordinate direction in one of the three K ~  HGik I
supported coordinate systems. Multiple el ,,"

lossy, non-dispersive dielectrics are allowed ‘\.,"

for regions without particles. Available i+1,j.k+1)

boundary conditions include conductors, Figure 1. Spatial location of electric and
inlet and outlet boundaries, mirror magnetic field components in a single cell
symmetry, and periodic symmetry. of the QUICKSILVER grid.

Currently, inlet wave boundaries can be

driven either with multiple, independent TEM modes or a 1D, multi-line Telegraphers’ model.
In both cases, outgoing waves are treated with a 1st-order Mur-like!® radiation-absorbing
boundary condition.!” The code also supports other outlet boundary conditions, i.e., 2nd-order
dispersive18 and the Perfectly Matched Layer (PML).!® QUICKSILVER also has models for
embedded current source excitation and surface impedance boundary conditions.

The second major portion of the QUICKSILVER code is its particle handler, whose jobis to
advance particle positions with 3D, fully-relativistic kinematics and to subsequently allocate
each particle’s contribution to the current back to the finite-difference grid for use by the field
solver. QUICKSILVER s particle handler allows multiple particle species with particle creation
via preloading, beam injection and space-charge-limited (SCL) field emission. It supports the
same boundary conditions and coordinate systems as the field solver. Currently the code uses

TDXEF is a registered trademark of Autodesk, Inc., 111 McInnis Parkway, San Rafael, California 94903.

fACISisa registered trademark of Spatial Technology, Inc., 2425 55th St., Bldg. A, Boulder, Colorado
80301.




a current/charge density allocation algorithm that locally conserves charge exactly.

The QUICKSILVER code has a wide variety of diagnostics available to the user which can
be divided into two basic types: snapshots and time histories. Snapshot diagnostics provide
detailed spatial information about some simulation quantity at specified instants of time (or
averaged over specified intervals of time). On the other hand, time histories provide, as a
function of time, a simulation quantity at a fixed spatial location or integrated over some
spatial region of the simulation. QUICKSILVER can provide snapshots of both vector and scalar
field quantities as well as snapshots of simulation particles in 6D phasespace (x, Y, z, Py, Py,
D), or a subset of that phasespace. Time histories can be requested for p or any component of
E, B, or J at any spatial location in the simulation. In addition, line, surface, and volume
integrals are available, each over one or more coordinate-conformal subpaths, subareas, or
subvolumes, respectively. Time histories are also available for several particle-related items,
including count, energy, or charge of surviving, created, or killed particles, by species. To
examine simulation charge conservation, maximum and RMS values of the error in charge
conservation (V - D — p) are also available as time histories.

VOLMAX: An Unstructured Grid, Time-Dependent, Finite-Volume
EM Simulation Code

VOLMAX is a three-dimensional
transient volumetric Maxwell equation
solver that operates on standard rectilinear
finite-difference time-domain (FDTD) grids,
non-orthogonal, unstructured finite-volume
time-domain (FVTD) grids, or a
combination of both types (hybrid grids).
The algorithm is fully explicit. Systems are
typically simulated by embedding multiple
unstructured regions into a simple rectilinear
FDTD mesh. Boundary conditions are
supplied to the system on the exterior FDTD
mesh. A wide variety of boundary FDTD REGION
conditions are available on the structured Figure 2. The VOLMAX hybrid grid interface.
grid, comparable to those described for
QUICKSILVER in the previous section. The grid types are fully connected at the mesh interfaces
without the need for complex spatial interpolation. The approach permits detailed modeling of
complex geometry while mitigating the large cell count typical of non-orthogonal cells such
as tetrahedral elements. To further improve efficiency, the unstructured region carries a
separate time step that sub-cycles relative to the time-step used in the FDTD mesh. A cross
section of the interface between the FVTD and FDTD grids is shown in Figure 2. The
“wrapper layer” is a hexahedral region that encloses the unstructured grid and provides nodal
connectivity to the surrounding FDTD mesh. The wrapper is constructed automatically based
on the unstructured-grid topology. The unstructured region may consist of a single rectangular
block, or be of a multiple, block-on-block form.
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As shown in Fig. 2, VOLMAX is based on a staggered grid formulation. Primary and dual
grids are used. The dual grid is constructed automatically based on the topology of the user-
specified primary grid. Note that the wrapper layer consists of rectangular cells for its primary
grid, but the dual cells on the wrapper inner boundary are generally non-orthogonal. As a
consequence, the wrapper layer is common to both the FVTD and FDTD grids. For the case
that the unstructured-grid consists of uniform rectangular elements, the algorithm is
equivalent to the FDTD algorithm used by QUICKSILVER (even though the cells are referenced
in an unstructured manner) and is second-order accurate both in space and time.

For the unstructured portion of the mesh, VOLMAX must maintain a database that
describes the various properties of the elements of the mesh as well as the relationships
between mesh elements that describe the mesh’s connectivity. This is accomplished by
maintaining a list for each primary cell of the primary faces that enclose that cell. Then, for
each primary face, it maintains a list of the primary edges that define that face. Finally, for
each primary edge, there is a list of the two primary nodes defining the edge. Similar lists
describing the relationships of the dual mesh elements are maintained. To relate the primary
and dual grids, mappings between their corresponding elements are also maintained. For
example, for each primary cell there is a corresponding dual node; for each primary face there
1s a corresponding dual edge, etc. Note that this means, for example, that to find the primary
nodes of a primary cell, you must successively traverse the list of faces for that cell, then the
list of edges for each face, and finally, the list of nodes for each edge. The VOLMAX database
also contains property information, such as cell volumes, face areas and normals, node
location, etc.

The field advancement scheme for the VOLMAX hybrid mesh is the following. The
electric fields in the FDTD region are initially advanced based on time step, Af. On the outer
boundary of the wrapper, the tangential electric fields are second-order time interpolated to
provide a Dirichlet boundary condition for the FVTD region. The electric and magnetic fields
in the FVTD region are advanced an integral number (Ny;) of sub-time iterations relative to At.
At the completion of the sub-cycling, the tangential electric fields on the inner boundary of the
wrapper are used to provide a Dirichlet boundary condition to complete the magnetic-field
advancement in the FDTD region. An alternative scheme could map the magnetic fields in the
wrapper layer into the respective FDTD locations after the FDTD magnetic fields are
advanced in time.

VOLMAX is currently integrated to the commercial CAD package SDRC 1-DEAST. Solid
model design, mesh generation, and post-processing are all accomplished through the I-DEAS
interface. Electromagnetic properties, such as voltage sources, local boundary conditions,
current observers, input and output ports, slots, wires, etc., are implemented by assigning
nodal attributes. The file containing the primary grid generated by I-DEAS is input into the
VOLMAX preprocessor, PREVOL, which builds the wrapper layer, completes the connectivity
for the primary grid, and constructs the dual grid. Grid construction by PREVOL is
accomplished at the rate of 50,000 to 100,000 cells/minute on a single, high-end processor.
Construction time scales linearly with cell count.

20

¥1-DEAS is a product of Structural Dynamics Research Corporation, Milford, Ohio.
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Outline of Report

The development required to extend PIC methods to hybrid grid EM solutions can be
divided into three distinct categories. First, the new issues associated with pushing particles on
unstructured grids must be addressed. This includes determining a particle’s new location on
the mesh after it has been advanced in space, interpolation of mesh quantities to and from a
particle’s position, and dealing with new complications regarding the non-conservation of
charge. Second, these additions and modifications must be properly synchronized in time. A
third category involves particle treatment and significant new complications in field continuity
at the hybrid grid interface. Each of these areas will be elaborated in detail in subsequent
sections of the report. Additionally, there will be sections describing algorithm testing and
performance as well as a short discussion of current status and future direction.




Unstructured Grid Particle Handling

There are several specific components of any algorithm that handles the motion of PIC
particles and their interaction with the fields on the underlying computational mesh. In this
section, we will address the issues and complications associated with extending each of these
components to properly treat particles when the underlying grid is unstructured. To the extent
possible, we will defer until later in the report discussion of the integration of these
components with each other as well as their integration with their structured-grid counterparts.

Particle Location on Unstructured Mesh

In-a PIC code, it is important to be able to determine a particle’s location relative to the
grid so that the particle’s effect upon field quantities defined on the grid and the effect of the
fields on the particle can be ascertained. In typical PIC codes on rectilinear, structured grids,
determining a particle’s location (what cell is it now in) after its position has been advanced in
time is a straightforward, almost trivial exercise — typ1ca11y a particle is constrained to move
no more than one cell by Courant stability requirements?! of the field solution, so we simply
need to check if it crossed the upper or lower cell boundary in one or more of the three
coordinate directions. If it has left the cell, we can easily determine into which cell it has
moved because of the underlying implied grid connectivity due to the separability of the grid
in the three coordinate directions.

Contrast this to the same question on an unstructured grid. As with the rectilinear grid,
we can determine if a particle has left a cell by checking if it has crossed any one of the faces
of the cell. However, since the faces are not in general conformal to the coordinate system,
testing for this condition is much more complicated and time-consuming than the simple
comparison of one component of the particle’s spatial position with a cell grid value. In
addition, faces with more than three nodes are in general not planar, so even the concept of
upon which side of a face a particle resides is not clearly defined without a convention for
subdividing such a face into a set of planar facets.

The prescription for
determining whether or not a gy
particle is beyond one of a cell’s
faces is straightforward for A
planar faces. If a vector Vp is ~
constructed from any point in
the plane of the face (e.g., one of A
the face’s nodes) to the particle F2
location, and the dot-product of
this vector with the face’s Figure 3. 2D example of using dot products to determine
outward normal is positive, then  upon which side of a face a particle is located.
the particle is beyond that face.
This is shown in 2D in Figure 3, which graphically shows the positive dot product of the test
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vector Vp with the normals of two of the three faces. Note that the dot product with the third
face’s outward normal is clearly negative. In the special case that a particle is located precisely
in the face between two cells, there is a potential for floating point roundoff to cause problems.
The worst scenario is that due to roundoff the algorithm would determine the particle to be
slightly outside of both cells, and any algorithm to find the cell containing the particle would
certainly fail. One the other hand, if the particle were so close to a face that both cells sharing
the face would claim the particle, it would not really matter to which cell the particle was
assigned. As will be seen in the next section, the particle’s weighting factors to nearest nodes
would be essentially the same since the only non-vanishing weights would be to the nodes of
the shared face. Consequently, the actual algorithm to determine if a particle is outside a cell
compares the face dot-products to a small positive value (small compared to the average
length of grid edges) rather than to zero.

Once it has been determined that a particle is beyond one or more of the original cell’s
faces, we still must find in which cell the particle now resides. Since cells in an unstructured
grid aren’t arranged in a lattice, we require a mapping from each cell’s face to the neighboring
cell that shares that face. (Such a mapping is available in the VOLMAX code). However, it is
possible that the particle is not in the neighboring cell, so we must go through the same
process of comparing particle position to the new cell’s faces to find if the particle is in that
cell, or if not, another cell in which to look. This process is continued until we find a cell
containing the particle. We will use the obvious strategy to optimize such a search of choosing
the next cell in the search based upon which dot product was most positive.

This is best illustrated by example. Figure 4 shows a simple 2D example of a portion of
an unstructured grid. Also shown is a particle that has moved from x; in cell 1 to X¢in cell 4
along a straight path. Note that its final position is beyond both the upper and right face of cell
1; consequently our search algorithm could take us first to cell 2 or to cell 5. In this case, since
the dot-product is most positive for face shared with cell 5, it would be selected. It is easy to
see that in either case, successive application would eventually lead us to cell 4.

So far we have not considered the effects of model structure upon particle location.
Consider the 2D example shown in Figure 5. This is identical to the first example except that
cell 5 no longer exists, and cells 1 and 4 now each have faces that are not shared with other
cells but are instead at a simulation boundary, typically a perfect conductor. A particle

— ®Xg
TTTUNN NN

N
§
N
N
Figure 4. Simple 2D example of Figure 5. Simple exampie of particle
unstructured grid particle location. location in the presence of model
structure.
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encountering such a face would need to be removed from the simulation after allocating the
current associated with its motion from its initial position to the point where its path intersects
the boundary face. It should be noted that this same situation could exist in the example of
Figure 4 if cell 5 were tagged with a special material attribute indicating it was a perfect
conductor. If the dot-product algorithm is applied in this case, we would first attempt to cross
the boundary face on the right side of cell 1. However, a critical question becomes whether or
not the particle’s path actually intersects the face. If it does, we simply need to find the
intersection point and remove the particle from the simulation. If, as shown in the example, it
doesn’t intersect the face, we need to look for an alternate path from cell 1 (in this case
through cells 2 and 3) to find the particle’s final location. An important issue is how to
efficiently determine if a particle’s path intersects a cell face. The method we eventually
settled upon first determines the intersection point between the path and the plane containing
the face. Note that if the path in fact intersects the actual face, this location is needed anyway.
We next determine whether or not this new point lies within the original cell using the dot-
product algorithm, which for the reason described earlier, will determine that a particle
located within numerical roundoff of one of a cell’s faces is within that cell. If the point is
found to be within the cell, the path intersects the face — if not, we must look for an alternate
path through another face of the original cell.

We presently have an implementation of this algorithm that is being successfully used to
locate particles on unstructured meshes. It is presently limited to meshes whose faces are
planar. It should be noted that several mesh-related quantities are needed for the computations
required:

» a list of faces for each cell,
+ a list containing the neighboring cell, if it exists, for each face; otherwise an indication
that the face is a boundary face,
« anormal for each face and a means to determine whether it is inward or outward relative
to the cells sharing the face,
« a list of nodes and their locations for each face.
The original VOLMAX field solver provided most of these quantities. The major exception was
that there was no way to determine the orientation of a face’s normal relative to cells
containing the face. To accommodate this new requirement, minor modifications were
required in VOLMAX's mesh database. Basically, the sign of the face number on the list of a
cell’s faces is now used as a multiplier of the face normal to insure that it is outward directed.

Weighting Factors for Particle/Mesh Interaction

PIC codes require weighting factors to account for interaction between simulation
particles and the simulation fields located on the finite-difference grid. These factors are used
to interpolate field values from the grid to the particle’s spatial location, as well as to allocate
the current and charge associated with a particle and its motion to the grid-based current and
charge density fields. In typical PIC codes on rectilinear, structured grids, computing the
weighting factors is straightforward; they are simply the product of linear weights in the three
coordinate directions. For example, in 1D, for a particle at xp located between two grid points
x; and x,, the linear weights are simply:
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In three dimensions, there are eight weights associated with the eight nodes (corners) of the
right-hexahedral cell, corresponding to the eight permutations of the product of the 1D
weights in the three coordinate directions. These weights have several important properties.
First, their sum is always one. Second, as the particle approaches any one of the eight grid
nodes, the weight associated with that node approaches one. As the particle approaches any
face (or edge) of the cell, only weights associated with the nodes on that face (or edge) are
non-zero. In a qualitative sense, there is a sensible correlation between the magnitude of a
node’s weight and the proximity of that node to the particle. Finally, their computation is
reasonably simple and efficient.

On a fully general unstructured grid, the situation is much more complex. For the most
general types of unstructured-grid cells, developing a weighting scheme that possesses the
attributes described above is quite difficult, and any implementation would be extremely
computationally intensive. However, if we restrict ourselves to a limited subset of cell types,
the task is much more tractable. We have chosen to implement weighting schemes for three
basic cell types: conformal linear right hexahedra, extruded linear triangular prisms (wedges),
and linear tetrahedra. This subset still allows efficient modeling of very complex geometric
structures and has the benefit that the faces of these cell types are planar. It should be noted,
however, that VOLMAX’s dual grid, which is generated automatically as a result of topology of
the primary grid, will in almost all cases be composed of a bewildering array of cell-types,
most of which are not among the three types to which we have limited ourselves.
Consequently, we have restricted ourselves to weighting to and from primary nodes. Thus, any
field quantities that are involved in such weighting need to be mapped to primary nodes. This
means that current density and charge will be located at primary nodes. In addition, magnetic
fields are located at the dual nodes in VOLMAX’s field solver. Since we need to interpolate
magnetic field to a particle’s spatial location in order to calculate the forces on that particle,
we will need to first obtain an “average” magnetic field from the dual node values at the
_ primary nodes.

Before describing the weighting algorithm for each of these three cell types, it is useful
to discuss some issues that pertain to weight computations in general. For the computation of
weighting factors as well as for their subsequent application, it is important that the nodes
associated with a cell are known, and even more, that each node’s relationship to the cell is
known. Unfortunately, since this is irrelevant to the EM field solution, the original version of
VOLMAX did not directly store this information. Instead, it maintained muitiple lists relating
cells to faces, faces to edges, and edges to nodes as described earlier. Unfortunately, traversing
each list in succession generally finds every edge twice and finds every node a multiple,
indeterminate number of times. In addition, there is no topological information that relates the
nodes to the original cell. Since all this information is typically required for every simulation
particle one to two times per simulation timestep, the computational cost is staggering and it is
quickly apparent that an addition was required to the VOLMAX mesh database. This addition
was simply a new list that provided the nodes associated with a cell for each primary cell in
the simulation. This list is constructed by traversing the multiple lists as described above and
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removing the multiple node instances. At the same time, the nodes are ordered by conventions
distinct to each cell type, so that their topological relationship to the cell can be inferred. In
addition, a CellInfo array was added that contains tags that indicate various properties of each
cell. A “cell-type” tag was then associated with each cell so the weighting (and location)
algorithms can easily utilize cell-type-specific methods. It should be noted that the code
required to construct this list is extremely complex and requires significant computation.
Without constructing this cell-to-node mapping a priori, the cost of determining it every time
a particle is processed would be prohibitive.

Weighting for Conformal Linear Right Hexahedra

Conformal right hexahedra are exactly the cell type used in a standard rectilinear grid
PIC code. These cells are needed for two reasons: first, the “wrapper” cells that connect the
structured and unstructured regions of the grid (cf. Figure 2) are by necessity of this type, and
second, it is useful for the purposes of testing and validation to construct an unstructured
equivalent of a structured rectilinear grid. Since this is just a standard rectilinear cell we can
use the linear weighting scheme described in (1), the only complication being that we need to
know the location of the upper and lower comers (X, and X;) of the cell. This is accomplished
be ordering the eight nodes based upon their relative position in the three coordinate
directions, i.e., (X3, Y1, 2p), (X4, Y1, 21), (X Yyo Z1)s s (X Yu» Z,). Consequently, the coordinate
limits of the cell are defined by the spatial locations of its first and eighth nodes.

Weighting for Extruded Linear Triangular Prisms

Extruded triangular prisms, or wedges, are useful for modeling complex structures that
have translational or rotational symmetry. Weights for these cells are constructed as a product
of two weights, a 1D weight in the direction of the extrusion and a 2D transverse weight over
the triangular cross-section of the prism. The 1D weight is again the simple linear weight
described in (1), the complication being that we need to know the coordinate direction (X, y, or
z) of the extrusion and the spatial range of the cell in that coordinate. Presently, the extrusion
orientation is contained in the cell’s “cell-type” tag, i.e., there are three prism types: X-prisms,
Y-prisms, and Z-prisms. However, it would be relatively easy to extend this to support more
general non-conformal extrusion orientations. The range of the cell in the extrusion coordinate
is determined implicitly by the cell ordering — the first three nodes are located at the “low”
end of the extrusion, the remaining three nodes at the “high” end. In addition, the nodes at
both ends of the extrusion are arranged in the same order relative to the 2D triangular cross-
section. : '

Computation of the transverse weighting is based upon an area-weighting concept
similar to that which can be used to describe the standard rectilinear method. Figure 6 shows a
particle’s location (X,) in the transverse cross-section of the prism. Three sub-triangles are
constructed by connecting the particle location to each of the three nodes. The weight of each
node is then taken to be the ratio of the area of the sub-triangle opposite that node to the area
of the entire triangle. For example, in Figure 6, the transverse weight associated with nodes 1,
2,and 3 would be A;/A, A,/A, and A3/ A, respectively, where Ay, Ay, and A3 are the areas
of the three sub-triangles and A is the area of the entire triangle. Note that these would also be

17




the transverse weights of nodes 4, 5, and 6 (the nodes extruded from 1, 2, and 3), respectively.
Also note that these weights possess all the characteristics previously described.

To compute the areas of the sub-
triangles, we can use the face dot-products
computed previously (cf. Figure 3) in the
process of particle location. The height of
the particle above the primary edge that
forms the base of a sub-triangle is the
negative of the dot-product for the face
extruded from that edge. With this height,
the sub-triangle’s area is easily computed,
e.g.

14f : Figure 6. Transverse cross-section of an
Ay = ‘§'f(“F - Vp), extruded triangular prism showing the

. . . transverse weighting scheme.
where L is the extrusion length, Ag is the ghing

area of the extruded face opposite node 1,
and the dot-product is the face dot product for that same face. Since A can be expressed as the
ratio of the cell volume to the extrusion length L, the transverse weighting factor becomes

W= Mg v

trans 2 VC F P/»

where V¢ is the volume of the extruded cell. VOLMAX already stores both the area of all faces
and the volume of all cells. Also note that we have assumed an implicit relationship between
nodes and the extruded faces. This is in fact accomplished by reordering the list of faces for
each cell of this type so that the three extruded faces are first ordered to correspond with the
order of the nodes opposite those faces on the list of nodes for the cell. The remaining lower
and upper triangular faces are ordered as faces 4 and 5, respectively.

Weighting for Linear Tetrahedra

Tetrahedral cells are the most
common type of non-orthogonal cell used
in VOLMAX and provide the most
modeling flexibility. The weighting
scheme employed for tetrahedra is the 3D
extension of the method used for the
transverse weighting in wedge cells
described in the last section. In this case,
sub-triangles become sub-tetrahedra and
the weights become the ratios of the
volumes of these sub-tetrahedra to the
volume of the entire tetrahedral cell. Figure 7. Depiction of the weighting
Figure 7 shows a particle’s location (Xp) in algorithm for a linear tetrahedron.

a tetrahedral cell. A; is the area of face 1.
The four nodes associated with the cell
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have been ordered so that each node is opposite to the corresponding face on the list of faces
for the cell. A sub-tetrahedra (whose base is opposite node 1) and its height 7 are also shown.
Note that all the criteria for weight factors are satisfied by this scheme. As in the case of the
wedge cell, we can make use of previously computed face dot-products to compute the
weights. Knowing that the volume of a tetrahedron is one-third the product of the area of its
base and its height, we obtain:
14r .

Wy = —§Vé(np - Vp),
where V¢ is the volume of the tetrahedral cell, Ax is the area of the face opposite node 1, and
the dot-product term is the face dot-product for that same face.

Current and Charge Allocation

After the particles in a PIC simulation have been advanced in time, their motion, which
reflects a current, needs to be apportioned to the simulation grid. This provides the means by
which the EM fields are affected by the motion of the free charge in the system. The choice of
algorithm for this allocation is always a trade-off between the factors of accuracy, numerical
discretization noise, and computational efficiency. For example, in a standard rectilinear PIC
code, an algorithm might be efficient and conserve charge but introduces unwanted numerical
noise. On the other hand, a different approach may be relatively noise-free, but introduces
significant errors in charge conservation. In general, both of these problems are increasingly
mitigated as the computational complexity and load of the allocation scheme are increased.
For example, the QUICKSILVER allocation scheme opts to conserve charge and be reasonably
efficient at the cost of significant numerical noise. This undesirable result is then mitigated
through modifications to the EM field algorithm that provide low-pass filtering to reduce the
noise.

Although charge conservation is certainly desirable, implementing a charge-conserving
allocation algorithm on a general unstructured grid is significantly more complicated and
expensive; consequently, we have decided to use a less expensive, less-noisy algorithm. This
pushes the issue of charge conservation to another part of the code. A detailed discussion of
this issue is deferred to the next section of the report.

As described in the previous section, other choices have restricted us to allocate both
current and charge to primary nodes. However, we still have some freedom on exactly how
this is done. For example, consider the case of a particle moving through the unstructured grid
shown in Figure 4. Allocation of charge is reasonably straightforward since charge and
particle position are co-located in time. The obvious choice (and that made for most rectilinear
algorithms, including QUICKSILVER) is to allocate the entire charge of a particle to the cell
associated with its final position, using the nodal weights appropriate for that cell’s type. In
the example of Figure 4, this means the charge would be entirely allocated to the nodes of cell
4. Allocation of current is more difficult. In our example, the particle moves through celis 1, 2,
3, and 4. Since current is located in time one-half timestep away from particle position, one
possibility (used in many rectilinear codes) would be to allocate current to the cell that
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contains the midpoint of the path between the particle’s initial and final positions. Note that
this in general requires the computation on an additional set of weighting coefficients for this
intermediate cell, and also requires that the particle location algorithm be used to find two,
rather than one, particle positions for each particle at each timestep. An even more expensive
but probably less noisy method would be to divide the particle’s path into subpaths that are
each confined to only one cell and then allocate some fraction of the particle’s motion to each
path. In our example, current would be allocated separately to all the nodes in cells 1-4. This
is clearly much more expensive since you would now need to find the intersection of a
particle’s path with every face it crossed rather than only boundary faces. In addition,
weighting factors would need to be computed for every cell along the path. Any sensible
means of apportioning the current to each cell would probably require computation of each of
the subpath lengths as well.

Because particles are constrained by the field solver’s Courant limit to move at most
some fraction of the average edge length, multiple face crossings, as in the case of our
example, are limited to situations where the particle’s path cuts through corners of cells very
near a vertex that is shared by the initial and final cells. This means that contributions to nodes
of cells other than the initial and final cells would be small by the very nature of the weight
factors. Consequently, we have chosen to initially implement yet another variation, i.c., we
will allocate one-half of the particle’s current in the initial cell and one-half in the final cell. In
our example, we would allocate to the nodes of cells 1 and 4. Note that this does not require
any additional location or weight computation. Also note that in the case that a particle does
not actually leave its starting cell, all these schemes are equivalent. In the case that its path
falls in only two adjacent cells, it is less noisy (has a larger stencil) than the midpoint method,
and is the same as the subpath method except for the relative apportionment of current to the
two cells. In the case that more than two cells are traversed, the subpath method is probably
the least noisy.

Next a brief discussion of the mechanics of allocation is in order. As particles
move through the grid, their charge is accumulated to the appropriate primary nodes
according to the weighting factors. After all particles have been advanced for a given timestep,
the charge accumulated at each primary node represents the total charge at that node, or
alternately, the total charge within the dual cell containing the primary node, and is given by

Oy = ;QPWN,P’

where gp is each particle’s charge and Wy p is the weighting factor for node N and particle P.
In contrast to the structured-grid algorithm, we choose to save the charge, rather than the
charge density, at each node. However, to get the charge density at the node, we simply divide
the allocated charge by the volume (Vp) of the dual cell corresponding to the node.

Current density is somewhat more complicated. Since the current density is simply the
product of the charge density and the particle velocity, we can express the current density
associated with a single particle as

J =pv =[gp/V] [(xf ~X;)/At],
where x; and Xpare its initial and final position, Az is the timestep, and V is the volume
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occupied by the particle. Consequently, as the particles are advanced, we accumulate at each
node N to which the particle contributes the vector quantity

Ty = ;qPWN,P(Xf"Xi)'

After all particles have been advanced for a given timestep, we then convert T at each node to
current density as follows:

where Vp, is the volume of the dual cell containing node N and the factor of two accounts for

the fact that we have allocated one-half of each particle’s motion to the nodes of both its initial
and final cells.

One complication that is introduced is that although it is necessary to know J at the
boundary nodes of the grid, there is not strictly a dual cell associated with such nodes, nor
consequently a dual cell volume. It is useful to consider a 2D example of this situation before
dealing with the 3D problem. Figure 8 shows a 2D grid in the vicinity of a primary node Np

Figure 8. 2D example of a “partial’ dual cell at the simulation boundary.

residing on the boundary of the grid. As in Figure 2, primary edges and nodes are depicted as
solid lines and filled circles, respectively. Similarly, dual edges and nodes are shown as dashed
lines and open circles. As seen in Figure 8a, there is no complete dual cell associated with the
boundary node Np because the node is not completely enclosed by dual edges. However, we
can construct new “‘partial” dual edges by connecting the “hanging” dual nodes to the
boundary edges (see Figure 8b). We can then construct a “partial” dual cell (shown as the
shaded region in Figure 8b) whose boundary is defined by the original dual edges, the
constructed “partial” edges, and the primary edge boundaries.

The procedure for defining a “partial” dual cell in 3D is analogous but more compiex. In
this case, a given primary node Np on the boundary has an incomplete set of dual faces (one
associated with each of the primary edges connected to Np not in the boundary). If we can
augment that set with constructed “partial” dual faces, we can close the volume to the grid
boundary, defining a “partial” dual cell whose properties, including the volume, can be
determined. It turns out that there will be a new “partial” dual face associated with each of the
primary edges connected to Np that lies in the grid boundary. The path defining this face is
chosen to start at the midpoint of this boundary primary edge, connecting to the barycenter of
one of the two primary boundary faces that share that primary edge. (The barycenter of a cell
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or face is defined to be the mean of the positions of all the nodes that define that cell or face).
From there, the path goes to the dual node that is the barycenter of the primary cell bounded
by the primary boundary face. From this point, a path of zero or more existing dual edges
eventually takes us to a dual node that is the barycenter of the primary cell that is bounded by
the other boundary face that shares the original primary edge. The path is then completed by
continuing to the barycenter of this other face and back to the starting point at the midpoint of
the primary boundary edge. One can visualize this construction by examining Figure 8b, but
interpreting Np to be the midpoint of the boundary primary edge and the solid (dashed) lines
to be cross-sections of primary (dual) faces. Note that the constructed face will not in general
be planar, and the figure represents a projection of the actual face.

Incorporation of Current Density into the voLmAX Field Solver

Current density due to the motion of free charge contributes to Ampere’s Law. In
VOLMAX, Ampere’s Law is used to update the normal component of the electric field for each
dual face. If the current density is included, the update equation becomes

eg—tjsE-dA = §CH-dl - J‘SJ-dA , 3)

where S is the surface of the dual face, and C is the closed contour around the face. Since we
know the vector current density (J) at primary nodes, we will approximate its value over a
dual face by the mean of its value at the two nodes of the primary edge associated with the
dual face, i.e.,

J3-aa = [ -ﬁF]AF , @

where fip is the dual face normal, J; and J, are the vector current density at the two primary
nodes, and A is the area of the dual face.

VOLMAX also updates the vector electric field at the primary nodes using the volume
integral form of Ampere’s Law, in which case the current density contribution must be taken
into account. That update equation then becomes

eéa-tjvEdv = § dAxH- [ Jav 5)

where V is the volume of a dual cell and S is the closed surface of that cell (the combined
surfaces of all the cell’s faces). Since we know current density at the primary nodes from (2),
we simply approximate the J integral term by the product of J with the dual cell’s volume.

Charge Conservation

One of the traditional difficulties associated with PIC simulation is charge conservation.
This difficulty arises because the EM field algorithm advances the electric and magnetic fields
by integrating Ampere’s Law and Faraday’s Law (the two Maxwell “curl” equations). Gauss’
Law (V- D = p)is satisfied implicitly if there is no free charge in the system. However,
when there is free charge, Gauss’ Law is satisfied only if the continuity equation
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( ) is satisfied. Unfortunately, simple choices of particle current density
allocation schemes and their associated weight factors do not in general satisfy the continuity
equation and a spurious electrostatic field associated with this error in charge conservation
results. If of a sufficiently large magnitude, this error can have an unacceptable affect upon the
fidelity of the simulation.

Several approacheszl’22 have been taken to correct this problem; we have chosen to
implement the technique22 proposed by Marder, which he refers to as the “pseudo-current”
method, but has become commonly known as the “Marder” correction. In this method, a new
field is defined,

F(x,t) =V-D-p ©)
which represents the error in charge conservation. Ampere’s Law is then modified by adding a
multiple of the gradient of F to the right-hand side:

dE/3t = C'VXB-J/e+dVF, |
where d is a numerical constant. The added term is referred to as a “pseudo-current” (actually
€ times the “pseudo-current”) since it appears in the equation in a current-like fashion. It can
be shown?? that F satisfies an inhomogeneous diffusion equation

3F /3t —deVF = —(3p/3t+V - J).
Note that if F is set to zero on the boundaries, the code will diffuse the errors to the boundary.
The constant d controls the diffusion rage; its maximum value is limited numerically by the
Courant stability constraint 2de At/Ax” < 1 , where Ax is the 1D-equivalent cell size. For
the unstructured grid, we typically choose Ax to be the length of the shortest primary edge.

The implementation of the Marder correction is straightforward on a rectilinear grid.
Since electric field components are located spatially along the orthogonal cell edges, the
divergence is naturally centered at the cell nodes, which is also were the charge density is
located; consequently, F is naturally located at the cell nodes. Gradients of values located at
cell nodes are naturally centered on the cell edge connecting two nodes. This is precisely the
location of the current density; consequently, the “pseudo-current” (de VF') can be easily
combined with the actual particle current in Ampere’s Law.

On an unstructured VOLMAX grid, computation of F is also straightforward. If we
consider the volume integral of F over the dual cell that contains a given primary node,

jVde = jVV-D dv—jvpdv = e'§SE~dA—QC, )

where Q¢ is the total charge in the dual cell, S is the surface enclosing the dual cell (the union
of all the dual cell’s faces), dA is a vector differential area element of S in the outward normal
direction, and we have made use of the divergence theorem to obtain the surface integral term.
If we now divide by the volume of the dual cell, we obtain an average value for F at the
primary node. VOLMAX already computes the electric field component normal to all dual
faces, which together with the dual face areas, allow computation of the surface integral in (7).
Since the weighting factors described in previous sections relate particles to primary nodes,
we will in fact accumulate total charge at the primary nodes, which can be interpreted as the
total charge in the dual cell containing the primary node.
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The computation of the gradient of F is less straightforward. The VOLMAX algorithm for
advancing Ampere’s Law (3) requires the component of current density normal to each dual
face. Consequently, we need to be able to compute VF - fip on the dual face, where fiy. is the
dual face normal. Since F is located at primary nodes, it is natural to compute the component
of the gradient along primary edges (VF - iy, where (i is a unit vector from node 1 to node
2 along the primary edge). In the rectilinear case, this unit vector is aligned with the associated
dual face normal, which is why the gradient of F is aligned with the current density and is
straightforward to compute. In contrast, on an unstructured grid, fir and @i are in general not
aligned, and consequently there are several different approaches to compute VF - fi; . All
involve determining a vector approximation for VF at the primary nodes. There are two
different approaches that can be used. First, one can divide its integral over the volume of the
associated dual cell by the dual cell’s volume. This integral can be converted to a surface
integral using the gradient form of the divergence theorem, giving

VF=[ jv VFdV)/Vp = [§SﬁdA]/VD : ®)

where Vp is the volume of the dual cell and F isthe approximate value of F at each dual face,
which we take to be the mean of the values of F at the two nodes of the primary edge
associated with the dual face.

A second approach to approximating VF at the primary nodes starts by computing

VF -1 for all primary edges: :
Gg = VF -pg=(F,-F)/Lg, )]

where F; and F, are the values of F at the nodes 1 and 2 of the primary edge, respectively, and

Ly is the length of the primary edge. Then for a given primary node, VF is approximated by a

least-squares fit to the G for all primary edges containing the given primary node. VOLMAX

presently uses this same technique to approximate the vector electric field at primary nodes

from normal components of the electric field on the associated dual faces.

Once the primary node vector gradients have been obtained using one of the two
methods just described, there are two different approaches to finding the normal component
on the dual faces. The first simply approximates the value at the face by the mean of the values
at the two nodes of the primary edge associated with the dual face and then takes the dot-
product with the face normal, i.e., VF - fi, where

VF = 2(VF, +VFy) (10)

and VF, and VF, are the values of VF at the two nodes of the primary edge. The second
method is based on the premise that the edge components of the gradient are more accurate
than the vector approximations at the primary nodes and that the dual face normal is
predominantly in the direction of the associated primary edge. If we decompose the gradient
into two components, one parallel to and one perpendicular to the primary edge, and use the
vector gradient only to determine the perpendicular component, we obtain the following
approximation for the face-normal component of the “psendo-current”

VF - fip = {[VF — (VF - ig)iy] + Ggiig} - fip . 11)
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Particle Emission

There are two primary means of introducing particles into a PIC simulation: via beam
emission and via space-charge-limited (SCL) field emission. In either case, particles are
introduced from a conducting surface. Clearly, introducing charge anywhere else in the space
will violate charge continuity since we would in essence be creating charge out of “thin air”.
For beam emission, the particles are injected into the simulation with prescribed density and
velocity distribution. Consequently, the injection of beam particles is straightforward; at an
appropriate rate, we introduce particles at the emission surface, with the correct velocities and
with sufficient charge, to produce the prescribed density and velocity distribution.

In contrast, the density and velocity of particles introduced due to SCL emission are not
prescribed but is instead determined by the electric fields local to the site of emission.
Specifically, an SCL emission surface is assumed to be an unlimited source of free charge and
the current extracted from such a surface is limited only by space charge — eventually the
electric field that provides the accelerating force for particles leaving the surface is driven to
zero by the electrostatic field of the emitted particles’ own charge. Consequently, an algorithm
for SCL attempts to introduce just enough charge at the emission surface so that the electric
field normal to the conducting surface will vanish.

A typical approach to accomplish this is to apply Gauss’ Law over the volume of the
“partial” dual cell associated with a boundary primary node on an SCL emission surface, i.e.,

Oy =¢f V-EdV = ef E-dA, (12)

where Q) is the charge at primary node Np, V is the
volume of the “partial” dual cell, and S is its enclosing
surface. Remember that the charge accumulated at the
primary node Np represents the total charge in the partial
dual cell. The geometry associated with (12) is shown
schematically in Figure 9, which shows an emission site at
a primary node Np as well as the dual faces and their
corresponding face-normal electric fields. In addition to
the “full” dual faces, the enclosing surface includes the
partial dual faces as well as the portion of the boundary
primary faces intercepted by the partial faces. For SCL,
the normal component of electric field at the boundary
vanishes and hence the contributions from the boundary
primary faces to the surface integral in (12) is zero. To first order, the integrals over the partial
dual faces also vanish since the fotal electric along the boundary primary edges that pierce the
partial faces is zero. Using this information, assuming that the normal component of the
electric field is constant over a dual face, and splitting Qp into two portions (Q ;s and Q;yip),
(12) becomes

Qaddzez(E Bp)Ap =0y (13)
F

where the sum is over all the dual faces, (E - fir) is the known face-normal electric field, Ag
is the area a dual face, Q;,,, is the charge already in the dual cell before emission, and Q4,15

Np

Figure 9. lllustration of use of
Gauss’ Law for SCL emission
algorithm.
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the amount of charge that needs to be added to the dual cell to force the surface electric field to
vanish (SCL). Typically, the emission from an SCL surface is only one species, or at least
multiple species of the same polarity (e.g., only electrons or only positive ions). Consequently,
if the sign of @, is the same as that of the emission species, O, is the amount of charge to
be emitted by the algorithm. If on the other hand, the signs are opposite, there is already too
much charge in the cell and no particles will be emitted.

Particle Data Management

In the QUICKSILVER code, for reasons of efficiency, particles are not handled
individually, but in groups of many particles. In addition, only a few pieces of information
about a single particle need to be persistent (i.e., saved from one timestep to the next);
however, much more information is required per particle while they are being processed to
determine their motion and allocate that back to the grid. For this reason, particles are in fact
arranged in a hierarchical fashion. First particles are grouped into vectors; a vector contains
the maximum number of particles that will be processed at any given time. The size of a
vector is determined by the opposing constraints of having a large vector for efficiency, but a
small vector to reduce memory usage required for each particle while they are being
processed. These particle vectors are then grouped into caches, which contain only persistent,
timestep-to-timestep particle data. QUICKSILVER provides extensive methods for efficiently
managing particles in this data structure, and it was decided to utilize that structure as much a
possible to handle particles moving on the unstructured grid.

First consider the persistent information required to describe the state of a particle —
charge, species, spatial position, and momentum. For convenience, we also carry a random
number, generated at a particle’s time of creation, for each particle. This is useful for several
models and diagnostics. Finally, we must save enough information to locate the particle
relative to the grid through which it is moving. For a structured multi-block QUICKSILVER grid,
this requires four integers, three coordinate indices and a block number, which are typically
packed into a single integer. For an unstructured grid, only a single integer, the primary cell
containing the particle, is required. Note that this last item is the only difference between the
requirements for the two grid types and it is consequently straightforward to use a standard
QUICKSILVER cache for particles in the unstructured grid — we simply interpret one member
of the cache data structure in a different way. We need to add a new list containing all the
caches currently in use for unstructured-grid particles, which is analogous to the one already
used for caches for structured-grid particles.

Armed with the cache structure, we can now outline the procedure for combining all the
particle-handling components described in this section in order to process particles on the
unstructured grid. For each cache of particles on the unstructured grid’s cache list:

1. We extract the persistent data of particles from the cache one vector at a time.
2. The particles in the vector are then processed. This involves:

a. Advancing their momentum and position in time,

b. Allocating current density and charge to the grid,

c. Checking if the particle has crossed a boundary requiring some further pro-
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cessing (e.g., removal from system),
d. Extracting any requested diagnostic mformauon
3. The persistent data of any of the vector’s particles that remain, after advancement,
on the unstructured grid are stored into a cache of already-processed particles for
storage until the next timestep.
4. Any particles newly created in the unstructured grid this timestep must be placed
in the cache of already-processed particles.

Note that the management approach outlined so far does not account for treatment of
particles that, during their processing during a single timestep, move from the unstructured
grid to the structured grid, or vice versa. Discussion of the management of such particles will
be deferred until a later section that describes particle handling through the interface region in
detail.
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Time Synchronization of Structured-Grid/Unstructured-Grid
Solution with Particles

In order to understand the relationship and interaction between the solutions on the two
grid types, it is useful to understand the flow in time of the algorithm that updates the fields
and particles. First, the algorithm used by QUICKSILVER will be described to show the
interaction between fields and particles. Next, the flow of the VOLMAX algorithm will be
shown to provide an understanding of the way the solutions in the structured and unstructured
grids are combined. Finally, we will describe the algorithm that results as a combination of the
two capabilities. A detailed discussion of grid interface issues is deferred to the next section.

In the following descnptlons, we will use superscripts to indicate the temporal location
of a given value. For example, E* represents the electric field at the kth timestep (f = kKAf).
Similarly, Hk+172 represents the magnetic field at # = (k + 1/2)At. The algorithms are “leap-
frogged” in time, i.e., various state variables are located at different times, separated by one-
half the timestep, in order to center the numerical approximation to the time derivatives.
Variables can be thought of as full-step or half-step values (e.g., E* and H¥*1/2 , Tespectively)
based upon their temporal location.

Original QuICKSILVER Algorithm

The original QUICKSILVER algorithm assumes that at the beginning of the (k+1)th
timestep [the timestep that advances tgle simulation from kAt to (k+1)At], the following state
variables of the system are known: E H P X P , where E and H are the electric
and magnetic fields, p and J are the charge and current densmes due to particle motion, and x
and p are the position and momentum of each particle. gp is used to denote the charge of a
single PIC particle. The algorithm proceeds as follows:

k_k-1/2

1. Create new particles (p —X,p dp)
2. Advance all particles
a. Advance particle momenta (pk 172 Ek Hk HEN pk * 1/2)
b. Advance particle position (xk,pk+ 2, pk * 1,J ke l/z,xk +1 )
3. Advance the electric field (EFHF P12 gk 12 ghrly
4. Advance the magnetic field H V2R S H Y,

Note that in this simple flow description some steps have been omitted, for example, the
required normalization of the current and charge densities as well as the application of
boundary conditions to the electric and magnetic fields. Also note that QUICKSILVER actually
advances the magnetic flux (B) rather than the magnetic field intensity (H). The flux and field
intensity are related by the permeability of the medium (u), i.e., B = pH. Finally, since
QUICKSILVER’s current density allocation scheme conserves charge exactly, it does not include
a Marder correction. However, if it did, we would need to add a new step after step 3 that
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computes F**1 from E¥*! and p**1, and step 3 would need to include a “pseudo-current”

computed from the gradient of F to advance the electric field.

Original voLMAX Algorithm

The VOLMAX algorithm does not have the complication of particles and their associated
space charge, but it does have complications due to performing field advancement on two
separate grids, each with its own timestep. At the be%cmmnglof the (k+1)th timestep, the
following state variables of the system are known: E H EO,H1 /2> Where we have
added the notation that variables with subscripts are unstructured-grid variables. The subscript
denotes after which sub-step of the unstructured-grid solution the variable refers. For
example, §k refers to the value of the variable € at ¢ = (k + j/Ny)At, where Ny is the
number of sub—nmesteps used by the unstructured-grid solver in a smgle timestep of the
structured-grid solver. Note that this definition implies that &fv +j = Q *1 . The VOLMAX
algorithm proceeds as follows:

1. Advance electric field on structured grid EHTSE
2. Advance unstructured-grid fields over Ny; sub-timesteps
Loop over j from 1 to Nyy
a. Advance unstructured-grid electric field (E;f_ 1,H];-_ /2= E]]‘-)
b. Advance unstructured-grid magnetic field (H’;_ 1 /Z,EI; - Hf +1/2)
State at end-of-loop: EN ,H Ny +1/25 E](§+ ' Hf;zl
3. Advance magnetic field on structured grid (Hk +172 ,E,c RS : WA )-

Figure 10 shows a timeline over one timestep for the special case that Ny; equals two.
The field quantities referred to in the above algorithm aI:cre shown in thelr I proper location along
the timeline. From this diagram it is easy to see that E; =E N, = Eo

For this case, a brief word about boundary conditions is in order. After step 2a above, the
electric fields on primary edges lying in the wrapper outer boundary are not correct, but need
to be in order to proceed to step 2b. These values need to be supplied by the structured-grid
solution at the same spatial locations. Note, however, that the temporal location of the two
solutions does not match — the latest structured-grid values are ahead (in time) of the

Structured:  Ef H* Ef
Unstructured: Elf, H’f P E’f H]3( /2 El; f
----- >
I . |
kAt (k+1/2)At (k+DAt

Figure 10. Timeline diagram showing the temporal location of the field
quantities for both the structured and unstructured grids (Ny = 2).
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unstructured-grid solutions until the last sub-timestep. Consequently, the proper time location
is obtained by interpolation from the latest structured-grid values as well as values from
previous timesteps. For example, if we use linear interpolation, we obtain

Ei=CoE‘ +CiE**, Cy=1-8, C,=8, 8=j/Ny , (14)
where E is an edge component of the electric field in the wrapper outer boundary. Note that
for purely EM applications, VOLMAX is typically used with quadratic interpolation, i.e.,

Ei=CLE 4 CoE +C EFY, (15)

where
1 2 1

Similarly, after step 1 above, the electric fields on primary edges lying in the wrapper inner
boundary are not correct, but need to be in order to proceed to step 3. However, at the end of
step 2, we know the values of the field at these same spatial locations and at the same time.
Consequently, at the end of step 2, these values are supplied to the structured grid directly
from the corresponding values in the unstructured grid.

It should be noted that when Ny; is one, the time advancement algorithms on both grids
are completely aligned and the need for interpolation is gone. Indeed, in this case both (14)
and (15) degenerate to the latest structured-grid electric field edge component, E*1. Also note
that in this case, all electric fields are advanced (steps 1 and 2a), then all magnetic fields are
advanced (steps 2b and 3).

The Combined QUICKSILVER—VOLMAX Algorithm

The combined QUICKSILVER—VOLMAX algorithm assumes that at the beginning of the
(k+1)th timestep, the following structured-grid state variables of the system are known:

kyek+1/2 k _k _k-1/2
E 9H * vp X yp .

In addition, the following unstructured-grid state variables are also assumed to be known:
k ook k ok kK k
EoH,,2.00.F ¢ X0:P 1 /2>

where Q is the total charge accumulated at a primary node and F is the measure of charge
conservation [cf. (6)] at a primary node. The algorithm proceeds as follows:

1. Create new particles on structured grid (pk - xk,pk_ l/z,qp)
2. Advance particles on structured grid
a. Advance particle momenta (pk - 1/2,Ek,Hk M E N pk * 1/2)
b. Advance particle position (xk,pk *172 - pk * 1,Jk * 1/2,xk 1 )
3. Advance the electric field on structured grid (B HET2 gt 2 L g

4. Advance unstructured grid fields over Ny; sub-timesteps
Loop over j from 1 to Ny
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. . k ko k
a. Create new particles on unstructured grid (Q;_1=X;_1,Pj_3/24p)

b. Introduce any particles that have come from the structured grid (at step 2
above) for sub-timestep j

¢. Advance particles on unstructured grid

k k k

momenta (p§_3/2’Ej—1’Hj—1/2_> Pi_1/2)
position (X];_ 1,D§_ /2> QfJf_ 1 /2,X§)
d. Advance unstructured-grid electric field  (E_ 1 Hi_; /0 F5_1. 351, > E%)
e. Compute F; (E]](-,Qﬁ —-F I;)
f. Advance unstructured-grid magnetic field (H];- 1 /2’E]; - Hl; +1/2)

‘ koook kok ok k
State at end-of-loop: Ey Hy . 1,2.0y Xy Pn,-1/2F N,

k1 gk +1 Sk+1 k41 k+1 k41
=E; Hi,5.00 X0 P.1,2Fp

k+1/2 k+3/2

5. Advance magnetic field on structured grid (H E* ' L H )

As in the original VOLMAX algorithm, after step 4d above, the electric fields on primary
edges lying in the wrapper outer boundary are not correct, but need to be in order to proceed to
step 4e. However, if these field are corrected using just the original method outlined in the
previous section, there will be a slight error. This is because the computation of the structured-
grid electric field on the wrapper outer boundary in step 3 is in error to the extent that it did not
include the effects of particles moving over that timestep on the unstructured grid in the
wrapper cell layer. These effects are not even known until step 4¢ is completed for the last
sub-timestep. To correct the error, we must accumulate a correction term due to this current
over all the sub-timesteps, and add it to the time-interpolated value from the structured grid.
Note that because of the aforementioned error in the structured-grid electric field on the
wrapper outer boundary (and all the edges connecting the wrapper inner and outer
boundaries), when we supply field values from the unstructured grid to the structured grid for
the wrapper inner boundary at the end of step 4, we must also supply the corrected values for
these additional structured-grid electric fields.

Charge will be accumulated at the nodes on both the wrapper inner and outer boundaries
on both grids in steps 2 and 4c. Consequently, charge on both grids at these nodes must be
combined before any calculation requiring charge, on either grid, is performed. For example,
to compute F on the unstructured grid for any of these nodes requires that the charge that was
accumulated on the corresponding structured-grid nodes be included. Since the charge is co-
located in time with the electric field, its structured-grid value similarly needs to be time-
interpolated to the current unstructured-grid time value [cf. (14) or (15)]. Also, after
completion of step 4e, the values of F on the outer wrapper are not correct since not all of the
electric field values required for their computation are within the domain of the unstructured
grid. They will be needed to compute the “pseudo-current” term on the next timestep.
Consequently, F for these boundary nodes will need to be computed on the corresponding
nodes and subsequently supplied to the unstructured grid.
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Structured-Grid/Unstructured-Grid Mesh Interface Issues

The hybrid grid algorithm embodied in VOLMAX basically integrates Maxwell’s
equations over one timestep independently in both the structured and unstructured regions of
the simulation domain. As described in the introduction, these two independent solutions are
then coupled at the boundary that separates the two grids. The coupling is accomplished by
allowing a one-cell thick overlap, the wrapper layer (see Figure 2), between the two grid
regions; field values one cell inside the structured grid provide the boundary condition for the
unstructured-grid solution and conversely field values one cell inside the unstructured grid
provide the boundary condition for the structured-grid solution.

When free charge is added (i.e., PIC is used) the situation becomes more complicated.
However, the view that the solution in each grid region is driven at the boundary by the other
grid’s solution is still basically valid. The complications arise from the need to pass more field
information back and forth between the two grids (H, J, p, F) and that J and p values of the
two solutions in the shared wrapper layer must be combined to account for the fact that
particles moving on both grids can contribute to those quantities. This also means that the
electric field advancement on the structured grid, which happens before the corresponding
unstructured-grid advancement, cannot correctly compute the electric field on the edges of the
wrapper cells, since we don’t yet know the current provided by particles moving in the
wrapper cell on the unstructured grid; consequently, we need to correct those fields a
posteriori. A final complication is that we need to properly transition particles from one grid
to the other as they move through the wrapper cell region. These issues will be treated in detail
in the remainder of this section.

Additional Requirements for Field Quantities at the Grid Interface

In a discussion of the requirements for properly treating field quantities at the structured/-
unstructured grid interface, we will continually be referring to values defined on both primary.
edges and nodes in the vicinity of the interface. Consequently, we will define some terms to
locate those edges and nodes that will be used throughout the remainder of this section. First,
all primary edges located in the wrapper outer boundary (cf. Figure 2) will be referred to as
outer edges. All primary edges located in the wrapper inner boundary will be referred to as
inner edges. Similarly, all nodes lying in the wrapper outer (or inner) boundary will be
referred to as outer (or inner) nodes. Finally, all primary edges that connect an inner and outer
node will be referred to as connecting edges. Note that outer edges connect two outer nodes
and that inner edges connect two inner nodes. These three types of edges are the set of all
edges for which the two grids share values of electric field, and are also the edges where
structured-grid current densities are accumulated that are initially missing contributions of
particles moving on the unstructured grid. The two types of nodes (inner and outer) are the set
of all nodes for which the two grids share values of charge density (charge on the unstructured
grid) as well as the nodes at which the unstructured grid accumulates current density
contributions that need to be included a posteriori in the structured-grid solution. These are
also the nodes at which the two grid solutions must interact to properly compute the scalar
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measure of charge conservation F.

From the previous discussion of the QUICKSILVER-VOLMAX algorithm on page 30, we
remember that the structured-grid solution for the electric field steps ahead of the unstructured
grid-solution, which then catches up with one or more sub-timesteps. Structured-grid values
for electric fields on the outer and connecting edges are interpolated in time at each sub-
timestep to bound the unstructured-grid solution using (14) or (15). Using the same approach,
charge density, which is temporally collocated with electric field, can be interpolated from the
structured grid to the current sub-timestep of the unstructured-grid solution. Note that the
situation for current density, which also needs to be shared between the two grids is somewhat
different. The structured-grid solution is located at the half-timestep, meaning it is advanced
in time one-half timestep ahead of the unstructured-grid solution. Note that this means that,
for cases with multiple sub-timesteps (Ny; > 1), the unstructured-grid solution will actually
compute currents that advance ahead of the time of the last structured-grid current density.
Consequently, the algorithm for passing structured-grid current density information to the
unstructured grid will actually involve extrapolation. Since extrapolation (other that constant)
can often be unstable, we have chosen to simply use the last structured-grid value at (k+1/2)Ar
for all unstructured-grid sub-timesteps from kAf to (k+1)Az. Note that this constant
extrapolation is equivalent to viewing the structured-grid current density as a piecewise-
constant function of time, centered at the half-timestep.

As stated earlier, the original VOLMAX algorithm interpolated the structured-grid electric
fields at outer and connecting edges to supply boundary conditions to each sub-timestep of the
unstructured-grid solution. After all sub-timesteps are complete, the values of the
unstructured-grid electric field at inner connecting edges are supplied as a boundary condition
to the structured-grid solution. (It should be noted that, although not strictly required for
bounding the unstructured-grid solution, the connecting edge fields will be computed to have
the same value on both grids due to the topology of the wrapper and the design of the
unstructured-grid solver.) However, when particles are added, the structured-grid field values
on the outer and connecting edges are not correct due to motion of particles moving in the
wrapper layer on the unstructured grid. However, on a sub-timestep by sub-timestep basis, we
can compute a correction to the electric field at any one of these edges, i.e.,

E -E +AE

where E is the corrected edge electric field at the jth sub-timestep, and E is the electric field
mterpolated from the structured grid using (14) or (15). The correction a.fter J sub-timesteps,
AE;, is given by

AE; = —— 2 @y +3)5_,,, 0, (16)
i=1

where A#/Ny; is the unstructured-gnd sub-timestep, J; and J, are the currents collected on the
edge’s two nodes from particles moving in the wrapper cell, and {5 is the edge-directed unit
vector. This correction is applied to the corresponding unstructured-grid edge electric fields
after step 4d of the QUICKSILVER-VOLMAX algorithm. At the end of the last sub-timestep, when
the VOLMAX algorithm would normally supply unstructured-grid field values at inner
connecting edges back to the structured grid, we also now need to supply the unstructured-
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grid field values at outer and connecting edges, since they include the correction term (16) and
are now cotrect.

Note that for connecting edges, one of the two nodes referenced in (16) will be an inner
node, which accurnulates current both for particles moving in the wrapper layer as well as
particles moving in unstructured-grid cells interior to the wrapper inner boundary. Since we
want to include only the current of particles moving in the wrapper layer in this correction, we
need to separate the current collected at inner nodes into that due to wrapper cell particles and
that due to non-wrapper cell particles. On the other hand, the vector current density needed by
the field algorithm [see (3)—(5)] at inner nodes needs to include both the wrapper and non-
wrapper contributions. It should be pointed out that implementation of the capability to
separate current and charge contributions at the inner nodes in this fashion requires significant
additions to the VOLMAX’s database.

Strictly speaking, since J on the structured grid has already been used to advance the
structured-grid electric fields at the time (16) is computed, it is not necessary to correct the
structured-grid currents themselves but to instead correct the affected electric fields, as
described previously. However, for diagnostic purposes, it may be desirable to correct the
current density on these structured-grid edges anyway. If the number of unstructured-grid sub-
timesteps per structured-grid timestep (V) is odd, the unstructured-grid current density at
sub-timestep (Ny+1)/2 is collocated in time with the structured-grid current density, and
consequently that single sub-timestep’s current density contribution to (16) can be added to
the corresponding structured-grid current. If Ny; is even, the mean of the contributions from
substeps Nyy/2 and (Ny/2)+1 is collocated with the structured-grid current density, and that
mean can be added to the corresponding structured-grid current.

The correction described by (16) allows the structured-
grid electric fields affected by particle motion on the
unstructured grid to be properly determined. Similarly, we need
to insure that electric fields computed on the unstructured grid
that are affected by particle motion on the structured grid are
treated properly. This translates to making sure that the vector
current density on the unstructured grid on the inner nodes
includes the current of particles moving in the wrapper layer of
the structured grid. Since current density on the structured grid
is spatially located on the cell edges (collocated with the
electric field), currents that affect the inner nodes lie on the Figure 11. Diagram showing
inner and connecting edges. For example, Figure 11 shows an  structured-grid current density
x-y cross-section of the interface between the structured and contributions to unstructured-
unstructured grids. Note that an implied third subscript () has ~ 9rid inner nodes.
been omitted from the currents shown in the figure to simplify the notation. The unstructured-
grid node Ny, maps to the structured-grid location (/,m,n). Particles moving in wrapper cells
on the structured grid (shaded region) contribute to the current densities bounding the wrapper
cells but not those beyond the wrapper inner boundary; e.g., for the example in Figure 11,

Jx1 m on the structured grid never accumulates any current; the other three J°s shown (as well
as the Jz components not shown) do accumulate current. Note that a reasonable
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approximation to each vector component of the structured-grid current density at Np,,,,,, is
obtained by taking the mean of the two edges aligned with that component, i.e.,

Tx(bm, n) = SUx(=1m, )+ Ty(Lom m],
Fytm,n) = 3Uy(Lm=1,n) + Ty(m, m)],

Tzl n) = 375 (bm n=1) + Ty(bm, n)], a7

where we are relying that any contributions from structured-grid edges beyond the wrapper
inner boundary are zero. Thus we obtain for the total vector current density at the inner node
Njpner at the jth sub-step of the kth timestep, '

k k. =k
(JTotal)j = (JUnstructured)j +J *

where Jyusrucrured 18 the vector current density allocated to the node by particles moving on
the unstructured grid only, and J  is the structured-grid correction term whose components

are given by (17). Note that since the structured-grid current density is temporally located at
the half-timestep, we will assume the structured-grid contribution to be constant for all sub-
timesteps.

As discussed previously in the section on computation of particle weights (see page 15),
the magnetic fields on the unstructured grid must be interpolated to the primary nodes from
their location at the dual nodes in order to use those weights to determine the magnetic field at
the location of any particle. This interpolation can be accomplished in a straightforward
manner by taking an average of the magnetic fields at the nodes of the dual cell containing the
primary node. However, this technique cannot be used for outer (wrapper) nodes since an
enclosing dual cell does not exist. In fact, this information can only be provided using the field
values from the corresponding nodes of the structured grid. Since the magnetic field is
temporally located at the half-timestep, we will, in the same spirit as our treatment of current
density, assume that the structured-grid magnetic field at time (k+1/2)Az can be assumed
constant over the entire unstructured-grid advancement from kAt to (k+1)Az. Consequently, it
is sufficient to set the unstructured-grid magnetic field at the outer primary nodes from the
corresponding values on the structured grid before proceeding to step 4 in the hybrid grid
algorithm outlined on page 30.

A similar analysis of the proper treatment of charge in the vicinity of the interface is
needed. This is simpler than the analysis for current density for two reasons: first, structured-
grid charge is not needed in the time advancement algorithm until after any corrections due to
particles on the unstructured grid can be made; and second, the charge on both grids is
spatially located at the nodes. On the other hand, charge density is stored on the structured
grid and charge is stored on the unstructured grid, requiring a conversion from one grid to the
other. Also, since charge density on the structured grid is temporally located on the full-
timestep, we will need to interpolate using (14) or (15) to the sub-timestep of the
unstructured-grid solution.
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The overlap in the charge allocation for the two grids occurs on the inner and outer
nodes. Analogous to the electric field, the structured-grid charge density is advanced in time a
full imestep, and then the unstructured-grid charge “catches up” over one or more sub-
timesteps. Consequently, if computations are made using inner or outer structured-grid charge
density values before that density has been corrected for charge collected on the
corresponding unstructured-grid nodes, those computations must be corrected as well. For
example, if we have computed the charge error measure F for outer nodes on the structured
grid (which uses the structured-grid charge density at those nodes), we will need to correct
that value of F to reflect the additional charge collected at the nodes on the unstructured grid
after the unstructured-grid advancement is completed. Inspection of the hybrid algorithm
described on page 30 reveals that we have deferred the use of structured-grid values of charge
density in subsequent calculations until the unstructured-grid advancement (step 4 of the
algorithm) is complete in order to avoid this complication. Consequently, we only need to
ensure that the time-interpolated structured-grid charge density is properly included in
computations requiring the charge in the unstructured-grid advancement and that after that
advancement, the charge density associated with the charge at unstructured-grid inner and
outer nodes is added to the charge density at the corresponding nodes on the structured grid.
Note that both these steps require the conversion of charge to charge density (and vise versa)
by the division (multiplication) of an appropriate volume. This volume is in all cases the
volume of the equivalent dual cell on the structured grid.

It is worth describing in more detail the computation of the charge error measure F for
outer nodes. This is needed on the unstructured grid as a boundary condition. Since
QUICKSILVER’s algorithm for current allocation conserves charge exactly (within numerical
roundoff), F is zero (or essentially zero) at all structured-grid nodes that do not overlap with
the unstructured grid. Consequently, we do not need to include “pseudo-current” terms for any
of the edges connected to these nodes; thus we need to include “pseudo-current” only on the
unstructured grid. We also know that any error in charge conservation (nonzero F) at the outer
nodes is due only to charge and current density allocated on the unstructured grid. Thus if we
provide the unstructured grid with the value of F computed from the structured-grid electric
field and charge density at an outer node, we can correct it at each sub-timestep for the charge
collected from particles on the unstructured grid and for any electric field corrections (16) on
the edges connected to the outer node. In QUICKSILVERs structured-grid algorithm, F can be
computed at any node (/,m,n) on the structured grid by finite difference approximation:

F(l,m,n) = elD}, E,(I-1,m,n) + Dy, E. (L, m,n) + Dy E (I, m—1, n) (18)

Imn
+DLEE (I, m, n) + DyE (L m,n—1) + Dy P E (I m, n)]
-p(l,m,n)

where the various D terms are difference coefficients, each associated with one of the edge
electric fields that contributes to the divergence.

Note that if ({,m,n) corresponds to an outer node of the wrapper N, some of the electric

field edges in (16) are affected by particles in the wrapper layer of the unstructured grid.
Consequently, we can compute F at each unstructured-grid sub-timestep as
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Imn

Fi(N) = F*(lm,n) + €Y DLIAE () - Q5 (N) /v (1, m, m), (19)

where Fk(l,m,n) is computed from the structured-grid fields at time kAt using (18), Q(N) is the
charge collected at the unstructured-grid node N at the jth sub-timestep, and V(/,m,n) is the
volume of the structured-grid dual cell. The sum in (19) is over all outer and connecting edges
that are connected to node N, DP*4 is the appropriate difference coefficient for each edge from
(18), and the AE]- is the edge electric field correction given by (16).

Although QUICKSILVER'’s structured-grid algorithm does not presently use F to compute
a “pseudo-current” correction, there are reasons why it might be desirable to do so. For
example, one might want to switch to a less-noisy, but non-conserving algorithm, in which
case a “pseudo-current” correction would be appropriate. In this case, it should be noted that
only minor modifications would be required to accommodate the change. The hybrid grid
algorithm described on 11)age 30 would need to add a new step, immediately following step 3,
that would compute F¥*1, using the algorithm described in (18). In (19), F¥(I,m,n) would need
to be replaced by a time-interpolated value [cf. (14) or (15)] of the structured-grid F.

Particle Handling Through the Interface Region

As particles move, they interact with the fields defined on the grid in two ways: they use
the fields on the grid to determine the EM forces that control their motion and they provide
current that affects the fields on the grid. Consequently, since the wrapper layer provides a
one-cell thick layer of cells in both the structured and unstructured grids, particles moving in
that layer can interact with either grid. Note, however, that once such a particle moves across
the wrapper inner boundary, it can no longer interact with the structured grid; similarly, once
that particle crosses the wrapper outer boundary it can no longer interact with the unstructured
grid. Since a particle starting in given cell can always potentially leave that cell in a single
timestep, it is impossible, with only a single-cell wrapper layer to guarantee that over one
timestep the interaction of a particle starting in the wrapper cell in either grid can be treated
properly on that grid throughout the entire timestep. For example, a particle starting ina
wrapper cell of the structured grid can cross the wrapper inner boundary. To correctly account
for its interaction with the grid, at least that portion of its path inside the inner boundary must
be accounted for on the unstructured grid. Consequently, we have a choice: either we increase
the thickness of the wrapper layer to two cells, or we are forced to allow for allocating at least
a portion of a particle’s motion over a single timestep to a different grid than the particle
started in. Note, on the other hand, that a particle initially located in an interior (non-wrapper)
cell of the unstructured grid cannot possibly leave the unstructured grid (including the
wrapper) in a single structured-grid timestep (remember that the structured-grid timestep can
be an integer multiple of the unstructured-grid timestep).

Since the VOLMAX algorithm advances the structured-grid fields a single timestep before
it advances the unstructured-grid fields with a series for one or more sub-steps, the structured-
grid fields repeatedly leap ahead of the unstructured grid and the unstructured-grid fields are
then “caught up” during the unstructured portion of the advancement. As a result, particles on
the structured grid will be advanced before particles on the unstructured grid. Consequently, it
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is exceedingly difficult to allocate the motion of an unstructured-grid particle that crosses the
wrapper outer boundary back to the structured grid because the structured-grid current
densities have in fact already been used to advance the structured-grid electric field. In
contrast, it is less difficult to allocate the motion of a structured-grid particle that crosses the
wrapper inner boundary back to the unstructured grid because we haven’t yet even advanced
the unstructured-grid particles for this timestep.

Based upon the arguments made above, we have chosen to adopt the following model to
deal with this issue:

+ We will continue to use a one-cell thick wrapper layer —the added complexity in adding
an additional layer of wrapper cells in both VOLMAX and PREVOL is not worth the benefit
gained.

« The motion of any particle on the structured grid that crosses the wrapper inner bound-
ary will be divided into two segments at the point where it crosses the inner boundary.
Only the motion along the portion of the path within the wrapper layer is allocated to
current density on the structured grid; treatment of the remainder of the path will be
deferred for processing on the unstructured grid.

« Any particle on the unstructured grid that is located in a wrapper cell after completion of
all sub-steps of the current timestep will be moved to the corresponding structured-grid
wrapper cell for further processing there on the next timestep. Consequently, no particle
will ever start a timestep in an unstructured-grid wrapper cell, and therefore cannot
leave the unstructured grid in the course of the timestep.

The structured-to-unstructured transition is shown g = = =
schematically in 2D in Figure 12. Note that the need for this

transition is detected by determining that the particle’s final x. |.-*x .
position is in a structured-grid cell that is “beyond” the wrapper e I _J: -
layer (indicated by the dashed cells in the figure). This requires x~/

that all such structured-grid cells be tagged with this property. In
addition, we also tag such cells with the number of an
unstructured-grid wrapper cell that corresponds to the adjacent
structured-grid wrapper cell. This information allows us to Figure 12. llustration of
efficiently find the unstructured-grid cell into which the particle treatment of a particle leaving
passes at the wrapper inner boundary using the particle location the structured grid.
algorithm outlined in the previous section.

i
i 1
1
1

- - -

Once it has been determined that the particle moved beyond the wrapper inner boundary,
the particle’s motion from X; to X, (see Figure 12) is allocated to the appropriate structured-
grid current densities. We then need to save the particle’s persistent state information (charge,
momentum, position, random number, species, grid location) for later use during the
completion of that particle’s advancement on the unstructured grid. Note that the position
saved is the point X, where the particle enters the unstructured grid and the grid location is the
number of the unstructured-grid cell into which the particle immediately passes at the inner
boundary. However, we also need to save one extra piece of information — the fraction of the
timestep for which the particle still needs to be advanced. We assume this to be the fraction of
the path from x; to X that is beyond the wrapper inner boundary (|x,—x J/|x ;- x;|). This
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extra information is needed so that the unstructured-grid particle handler can determine in
which sub-timestep to introduce the particle and what fraction of that first sub-step to advance
the particle. In this first sub-step, the particle is advanced as any other particle, except that we
do not use the fields to advance the momentum, and the position is advanced only by the
supplied fraction of the sub-timestep. Note that if there remains only one sub-step (or fraction
thereof), this algorithm will move the particle to precisely the location originally computed by
the structured-grid advancement, Xf. Otherwise, the final position after the last sub-step will be
somewhat different due to the refinement of the timestep on the unstructured grid.

Some discussion of the caching strategies for the persistent data required for particles
moving from the structured to unstructured grids is in order. Since the timestep fraction is also
required for each of these particles, they do not readily fit in the existing cache structure. In
addition, there are typically relatively few of these particles in comparison to the standard
particle cache size. Finally, since only a subset of such particles need to be processed in a
given sub-timestep of the unstructured-grid solver, it is convenient to put particles that will re-
enter the simulation on different sub-timesteps in different caches in order to avoid processing
each of them every sub-timestep. For these reasons, a separate structure of smaller caches,
each with space for one extra word per particle, was set up. In addition, a separate list of
caches is maintained for each sub-step. Then, at each sub-step of the unstructured-grid solver,
the particle handler processes only those caches in the appropriate list, thus avoiding needless
processing.

Although the treatment of particles moving from the unstructured grid to the structured
grid is much simpler, a few details are worth mentioning. When, at the end of the last sub-
timestep of the unstructured-grid solver a particle is determined to be located in a wrapper
cell, instead of storing its persistent data to a cache of already-processed unstructured-grid
particles, we instead add that data to an appropriate cache of already-processed structured-
grid particles. However, as discussed in an earlier section, the required persistent data is
somewhat different; a particle’s grid location is determined by a block number and three
coordinate indices rather than by a primary cell number. Consequently, we need to be able to
map the unstructured-grid wrapper cell in which the particle is located to its structured
counterpart. This is accomplished as follows. Every cell on the unstructured grid has a tag in
the Celllnfo array that indicates whether or not it is a wrapper cell. This tag is used to
determine whether or not a particle is located within a wrapper cell. For cells that are wrapper
cells, the CellInfo array also contains a pointer to the cell’s position on a list of all wrapper
cells. With this pointer we can access the block number and coordinate indices that map the
cell to the corresponding wrapper cell on the structured grid. These mapping values are
packed into a single integer for each element of the list of wrapper cells. Note that the
indirection to an intermediate list of wrapper cells and the packing of the values describing the
structured-grid location are both used for purposes of efficiency in memory usage.
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Testing

The testing of the software developed in this project falls into two broad categories:
algorithm testing and integrated testing. First, the implementations of each of the algorithms
developed over the course of the project were tested in a stand-alone environment. For
example, the particle location algorithm described on page 13 was tested by randomly
choosing a cell (N) within an unstructured grid and a random position within or slightly
beyond the range of the grid (Xp). Starting from the barycenter of N (x;), we attempt to locate
the cell containing Xy, or in the case that X, is beyond the grid, the face and spatial location
where the line connecting X; and X,leaves the grid. Note that this test is in general more severe
than is required since particles can only move a limited distance in a single advancement,
whereas this test allows for a search that could extend across the entire grid. Each algorithm
developed, as well as the routines that initialized the extensive new data structure required by
the new algorithms, were similarly tested.

Although the verification of each of the new algorithms through this stand-alone testing
provides an efficient approach to making this new code work, it is not sufficient, and must be
augmented by integrated testing of the entire code. This is the only way to insure that all of the
individual algorithms work together to provide the correct answer to a real problem.

Perhaps the most basic integrated test
that can be performed consists of a closed E— Structured grid region
rectangular box. Within the box is a "
structured grid containing an embedded
unstructured grid over a smaller sub-volume
inside the box. A 2D cross-section of this
geometry is shown in Figure 13. A low-
current, high-energy beam of electrons is
emitted from one face of the box. By low-
current, high-energy beam we mean that its
current is su.fﬁcicntly low relative to its {:El ectron Beam  “— Wrapper layer
energy that its space charge does not
significantly affect its momentum.
Consequently, we expect all beam particles
emitted at the same time to arrive at the box’s far face at precisely the same time, with the
same momentum, and at their original transverse (to beam direction) spatial position. This
should be true of all particles, whether or not they cross through the unstructured grid region
of the simulation. This tests the handling of particles in the unstructured portion of the grid as
well as their transition between the two grid regions. Specifically, we test the following issues:

« that particles are properly placed in the special cache for structured-to-unstructured tran-
sitions,

« that particles are properly extracted from those caches at the proper sub-timestep and
with the correct fractional sub-timestep,

« that the unstructured-grid particle advancement works properly,

» that the new cache structure for unstructured-grid particles works properly,

Unstructured grid
region

Figure 13. 2D view of simple “beam-in-a-box”
test simulation.
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+ When re-entering the wrapper layer from the unstructured grid, that particles are prop-

erly placed back into a cache of structured-grid particles,

« that no particles become lost or otherwise “confused” throughout this entire process.
Although this list of features tested may seem a limited subset of the features that need to be
tested, it should be realized that it does exercise a very large fraction of the new code written,
and in fact, some of the most complex, particularly with regard to particle cache management
and the interaction of those caches. In fact, this test, before it was successfully completed,
unearthed the majority of bugs found in the entire testing process.

A logical extension of the previous test is to place a conductor inside the unstructured
grid. Note that such an inclusion actually eliminates a portion of the unstructured mesh and
the volume of the conductor is “outside” the grid. For example, by inserting a conducting plate
whose cross-section intercepted some fraction of the beam traversing the unstructured portion
of grid, we were able to test if particles encountering the grid boundary were properly
eliminated from the simulation and that the cache management associated with that operation
was performed correctly. Several variations of this test were successfully performed.

The next simulation that we will describe tests
most aspects of the interaction of particle motion with
the EM fields. The geometry for this test problem is
shown in Figure 14. It consists of a capacitor formed Unstructured grid
by two concentric cubic conductors whose sides are region
44 cm and 6 cm. A high-energy beam is injected from '
a subsurface of one of the faces in such a way that the
entire beam is intercepted by the inner cube. The
beam current is a 2.5 ns pulse with amplitude of one
ampere, which will charge the inner cube with
2.5x10™ coulombs. This charge will cause a potential
difference between the two cubes of a few hundred
volts (based upon a simple estimate of the Wrapper layer
capacitance of this geometry). This geometry is Figure 14. 2D view of simple “beam-
simulated in two ways: first, as a control, we use only  charged capacitor” test simulation.

a structured mesh, and second, we embed the inner
cube in an unstructured grid which is then embedded in an interior sub-region of a structured
mesh. The structured mesh is uniform with a cell size of two cm. The unstructured grid is
bounded by a cubic outer wrapper boundary, concentric with the two conductors and whose
side is 24 cm. By comparing time histories of voltages at several locations between these two
simulations, we can verify the proper operation of several code features. Specifically, this
comparison tested the following additional features:
» that the fields driven by particle motion on the unstructured grid are consistent with that
motion,
« that the issues associated with allocating current and charge in the wrapper layer on both
grids are properly handled,
« that we properly treat the now larger set of field information that must be exchanged at
the interface between the grids.
The unstructured-grid version of this simulation was performed in three distinct ways. Two of

Structured grid region

11
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the simulations were done with a purely rectilinear unstructured grid that exactly matched the
structured grid, one with Ny; (the number of unstructured-grid sub-steps per structured-grid
timestep) equal to one and the other with Ni; equal to three. The third simulation used a
tetrahedral grid with ~9200 primary cells; the minimum primary cell edge was slightly less
than one cm and Ny; was eight.

First we will describe the comparison of the two hybrid-grid simulations with the
embedded rectilinear unstructured grid to the purely structured-grid simulation (which we
assume to be correct since the QUICKSILVER code is extremely well validated for problems of
this type). Standard macroscopic diagnostics such as voltage, current, field energy, as well as
particle count, charge, and energy differ by less than 0.1 percent between the three
simulations. This is not particularly surprising since the grids are in fact the same — the only
real difference between the structured-grid solution and the two hybrid solutions is that the
algorithm for allocating charge is different for the unstructured grid region of the hybrid
solutions. However, the result is significant since all of the complications of sub-timestepping
have been tested. In addition, the hybrid-grid simulations do not conserve charge exactly, and
the results give us our first indications that the degree of charge conservation on the
unstructured grid is acceptable. In fact, for this test the “pseudo-current was not used to reduce
the error in charge conservation.

The more interesting comparison is of the Voltage Through Beam Axis
hybrid-tetrahedral-grid simulation to the original ) ' ) X
purely structured-grid simulation. A comparison
of the voltage measured through the axis of the 400} ¢ Y
electron beam between the inner and outer ! L
cubical conductors is shown in Figure 15. The

Volts

figure shows the voltage rising until ~4 ns, by 2001 ]
which time the entire beamn has been collected on ] ——  Hybrid

the inner conductor. The voltage continues to 0 . oy, Studured
oscillate about a constant d.c. value due to 0 5 o 15 2 2

. . . Time (ns)
interaction of the current pulse with the Figure 15. A comparison of voltage through

resonances of the structure. Note that the the beam axis between a structured-grid and
agreement between the simulations is quite good  hybrid-tetrahedral-grid simulation.

with differences less than 5%. In fact, since the '

tetrahedral mesh has finer spatial resolution (as much as a factor of two) and eight times the
temporal resolution, one would expect a somewhat different answer. For this simulation, the
“pseudo-current” correction for charge conservation was turned off; consequently, the
unstructured-grid simulation could be somewhat in error due to that effect. Figures 16 and 17
show similar comparisons of voltage. Figure 16 shows the analogous measurement to that of
Figure 15, but on the opposite side of the structure. Figure 17 shows a similar measurement
between the inner and outer faces in the direction transverse to the beam (because of
symmetry, all four such measurements should be and are the same). Note that both exhibit
similar behavior to the voltage measured on the beam axis and the differences between the
two solutions are comparable.
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Voltage Opposite Beam Axis Voltage Between Side Faces
600 ' T T 1 600 g T T T
400:- 400k WL WYY Y \’\-
200} 200 L
——  Hybrid ——  Hybrid
0- . T Struc?ured 0' ) L mmm— Slruc‘:ured
0 5 10 15 20 25 0 5 10 15 20 25
Time (ns) Time (ns)
Figure 16. A comparison of voltage at far Figure 17. A comparison of voltage
end of capacitor between a structured-grid transverse to the beam axis between a
and hybrid-tetrahedral-grid simulation. structured-grid and hybrid-tetrahedral-grid
: simulation.
The final test to be reported here, we take Voltage Through Beam Axis
the geometry of Figure 14, with the same hybrid- 600 " ' ' .
tetrahedral grid, but reverse the direction of the 500
beam such that the electrons flow from a face of 400F
the inner cube to the corresponding face of the 2
. © 300
outer cube. As a result of this change, we expect >
the d.c. voltage to reverse, and oscillations should 200F] 7 Hybrid
be similar in character. However, they should be 100  ----- Structured
somewhat different due to the fact that during the 0 T Stuctured (erginal
electron transit time at the beginning and end of 0 5 s 20 2%

the Rulse, 'the SP‘?“al distribution of current . Figure 18. A comparison of voltage through
density will be different due to the propagation  iha peam axis between a structured-grid
direction of the beam. Note that this simulation  and hybrid-tetrahedral-grid simulation for the
tests the feature of beam emission on the reversed beam case.

unstructured grid, which up to this point has not

been tested. Figure 18 shows a comparison of the voltages measured along the axis of the
beam (analogous to Figure 15 for the previous test). Note that we have reversed the sign of the
voltage for purposes of display. Again, the agreement is comparable to the previous test and
the voltage behaves as expected. This comparison is representative of comparisons of the
other macroscopic observables in the simulations. For reference purposes, the same
measurement from the original beam orientation (from Figure 15) is superimposed.

Early Estimates of Numerical Performance

Using timings from our various test simulations, we are able to make some estimates of
the computational efficiency of the new particle-handling features of the code. As a point of
reference, we observe that the cost of advancing the fields one sub-timestep for one cell of the
unstructured grid is approximately a factor of 3—6 more expensive (depending upon the type
of unstructured-grid cell) than a similar one-timestep advancement of the fields for one cell on
arectilinear structured grid. A similar comparison of the time required to advance one particle
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one sub-timestep on the unstructured grid to the time required to advance one particle one

~ timestep on the structured grid, shows the unstructured-grid advancement to be approximately
four times as expensive. Note that the times stated for unstructured-grid field and particle
advancement are for a single sub-timestep; consequently, the time ratios quoted must be
multiplied by a factor of Ny; if we want to know the cost ratio between the two grid types for
the same time advancement increment. In general, we are quite pleased with the efficiency
observed for the unstructured-grid particle advancement. since we had in fact originally
anticipated that it might be as high as a factor of eight. Also note that no particular attempt has
yet been made to optimize the unstructured-grid particle advancement so there are
opportunities to improve its performance somewhat more.
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Current Status and Future Development

At the end of the project supporting this work, most of the basic algorithms required to
apply the PIC method to hybrid grids have been designed, implemented, and integrated into a
new QUICKSILVER/VOLMAX simulation code. Most, but not all, of the features of this new code
have been successfully tested in an integrated manner for some simple test problems. This
section of the report will detail the code’s current status by way of describing the basic
capabilities that remain to be integrated and subsequently tested. From that point, we will
discuss the development of some more advanced capabilities, that although beyond the initial
scope of this project, would be useful to extend the range and/or improve the usability of the
code. :

Basic Capabilities Not Yet Implemented

There are two basic capabilities that have not yet been implemented into the integrated
code. The first is SCL emission, the algorithm for which is described in a previous section
(page 25). As currently envisioned, this algorithm will emit from user-specified boundary
faces, using charge information at each face’s nodes to determine the amount of charge to
inject into the simulation. Note that most of the components required for such an algorithm
already exist — we already compute all the terms that contribute to the calculation of charge
to add at each emission node (13) and the beam emission algorithm contains the tools to locate
and build Iists of the surface faces that comprise an emission surface. The only new code
remaining to be implemented is the computation of the nodal charges and their subsequent
distribution to the associated emission faces.

The second basic capability that remains unimplemented is the interaction of particles
moving on the unstructured grid with symmetry boundaries, specifically those boundaries
with mirror (also referred to as perfect-magnetic-conductor or PMC boundaries) and periodic
symmetry. Currently, the particle advancement routine contains tentative code, as yet unused,
to implement this interaction. We could proceed no farther, because the support for these
boundaries in the VOLMAX field solver was not available during the project period. However,
the mirror algorithm became available about one month after our project’s completion and we
expect the periodic algorithm to be ready in the very near future. We now need to adjust our
tentative code to reflect the final details of the field algorithm’s mirror implementation and test
it. When the periodic boundary is available, we will need to repeat this process.

Although presently implemented, we are not currently satisfied with all aspects of the
performance of the “pseudo-current” charge conservation algorithm. In our previous
discussion (see page 22), we outlined two distinct approaches to compute the vector VF at
the primary nodes and also two distinct approaches to computing the dual-face-normal
components of VF . In our current implementation, we use the divergence integral algorithm
(8) to compute the primary node vector, and use the node-average technique (10) to obtain the
face normal components. After observing the performance, we believe that the alternate
approach to computing the face-normal components of the gradient, using (9) and (11), will
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provide much better accuracy and finer resolution of its spatial variation. We would also like
to assess the alternate “least-squares” technique for computing the primary node vectors from
the edge-directed components defined by (9).

Advanced Development for the Future

Most of the development issues that will need to be addressed in the future are related to
the ease-of-use for the code as a production simulation tool. These divide into three broad
categories: : '

+ Problem definition and setup,

« Integrated diagnostic capability,

« Capability and performance for large and/or complex simulations.
We will discuss each area in turn.

Presently, in order to perform a simulation, we must set up the unstructured portion of
the mesh using the I-DEAS CAD package. Concurrently, the structured portion of the grid must
also be constructed using QUICKSILVER’s preprocessor, MERCURY. The user is entirely
responsible for insuring that the overlapping wrapper layers of the two grids are totally
consistent (not an easy task for a simulation with any complexity). In addition, it is also the
user’s responsibility to insure that any geometric structure is also consistent between the two
grids. Note that such structure must be separately provided to both I-DEAS and MERCURY by
significantly different means. It is highly desirable to remove as much of this burden as
possible from the user, and place it upon the tools themselves. This will require significant
changes to both MERCURY and our customizations of I-DEAS or else we will need to find or
develop a single integrated tool to build the entire hybrid grid as a single entity.

A related issue is that of diagnostics. For example, consider the work that is now
required to obtain something as simple as a voltage from a hybrid grid simulation, such as
those shown in Figures 15-18. Since the voltage is obtained by integrating the electric field
along a path, if that path lies in both grids, we need to include the contribution of each sub-
path. Presently, we need to specify the structured-grid portion of the path to MERCURY, which
causes QUICKSILVER to compute that quantity and store the accumulated time history in a PFF
file. Similarly, we need to also identify the unstructured-grid portion of the path in I-DEAS by
tagging each node of the edges that comprise that path with a special tag. For a complex
system this can be a laborious and error-prone process. Once these nodes are tagged, VOLMAX
can obtain the integral over its sub-path at each timestep. These are then saved, each in its own
file and in a format different from the PFF format used for the structured-grid data, for post-
processing. After the simulation is complete, the user must, by using the data manipulation
capabilities of the post-processing tool, e.g., PFIDL, read in both components of the diagnostics
from their respective sources and then combine them, with the proper signs, into the single
desired time history. This is just an example of several diagnostics, such as energy and flux
integrals, snapshots in time of planes of field data, etc., that are presently quite difficult to
obtain.

It should be noted that we have begun to design and develop the required tools to
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simplify this procedure. For instance, for the example just described we have outlined a
procedure by which the integration path could be specified to MERCURY alone, which would
know how to subdivide the path into its structured-grid and unstructured-grid portions.
QUICKSILVER could then find the best fit to the unstructured-grid portion of the requested path
by constructing a sequence of connected edges through the unstructured grid. Using this
information, its routines to gather history information could be generalized to access and
include the unstructured-grid portions of the integral with the structured-grid portions, and
finally write only one set of data to one PFF file. We have presently written the routines that
will allow MERCURY to subdivide the path and to construct the unstructured-grid sub-path, but
need to integrate them, along with the other needed modifications, in the code. A similar tactic
could be used to integrate most if not all diagnostics for hybrid grid simulations.

As a final point, we will touch on the issue of performing large simulations. Presently,
both the QUICKSILVER and VOLMAX codes are being ported to run on Sandia’s Intel Tc:raFlop23
distributed-memory, massively-parallel supercomputer. We need to include the new features
that have been added by this project to support PIC techniques on hybrid grids into the parallel
implementations of QUICKSILVER and VOLMAX.
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