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Introduction

onlinear magnetic forceg becomz more important
for poriicles in the modern large accelerators.l These
nonlinear clements are inteeduced either inventionally
to control beanm dynamico or by uncontrollable ramdom
errorn.? ILquations of notien im the nomlinear
Hamiltomicn are ucually non-integrable. Bacause of the
nonlincar pert of the Hanilconian, the tunes diagram of
accelerators is a jungle. [onlinsar magnet cultipoles
are important in keeping the accelerator operation point
in the safe quarter of the hostile jungle of resomant
tunes. Indeed, all the modern accelerator design have
talken advantages of nomlinear machanics. 0On the other
hand, the effect of the uncontrollable randon multipoles
should be evaluatad carefully.3 A porerful mathod of
studying the effect of these nonlinear multipoles is
using a particle tracking calculation, where a group of
test particles are tracing through these magnetic
multipoles in the accelerator hundreds to millions of
turns in order to tect the dynamical ~- .rture of the ma-
chine. Thage 2thods are exiremzlr 1seful in the design
of a larze accelerator guch as S5¢, LEP, HERA and RHIF.
These calculations unfortunately takes tremendous amount
of computing tiwe. in this paper, we are trying to
apply the exicting w2thod in the nonlinmear dynamics to
study the possible alternative solution. When the
Hamiltonian wotion beco—es chaotic, the tune of the ma-
chinz becones undefined. The aperture related to the
chaotic orbit can be identified as chaotic dynamical
aperture. In the following review the methsd of deter-
mining chaotic orbit and apply the wmethod to nonlinear
problems in accelerator physics. Wz then discuss the
scaling properties and effect of random sextupoles.

Chaotic Transition

The equations of motion of a particle in the
Hamiltonian system is given by
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with certain given initial values (q;(0), p;(0)).
Yonlinear Hemiltonian are in general non-integrable.
Henon and Heiles® found that a nonintegrable motion does
not lead to chaos, vhich is in accord with the KaAM
theorem.® As the amplitude of the Hamiltonian motion
grows, the motiom may become chaotic¢ because of larger
nonlinear perturbation.

A distinct character of transition to chaos is the
positive Liapunov exponent,® which was observed in the
nemerical experiment of Henon-Heiles potential.* For a
chaotic orbits, the distance between two trajectories,
with infinitesimal separation initially, will grow
exponentially with “time". The growth rate is called
the Liapumov cxponent. For a regular orbit, the
Liapunocv exponent is zero. A simple test of the
Liapunov exponent criteria is BDT test,’ vhere ome study
the Liapunov exponents around the transition boundary
surfoces. To be specific, let us consider tuo
trojectories (qO(e), po{t)) and (q(e), p(t)), with infin-
itesiral separation. Let N and & be the separation of
these tuo trajectoriés, i.e.
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The equation of motion for M and & arc given by
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vhere we have assumed Taylor series expansion for the
Hamiltonian around these two infinitesimal near
trajectories.

A truncation of eq. (2}, up to the first order,
gives us a linear system of equations.
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Linear equation can be solved by assuming
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Equation (4) becomes the secular equation for solving
the eigenvalues.
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The stability or the regulatory of the Hamiltonian mo-
tion requires that the real part of the eigenvalues are
negative on the invariants of the Hamiltonian. This
method has been successfully applied to analyze
Ramiltonian systems. As an example, the eigen-exponents
are found to be negative for the Henon~Heiles potential,
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provided that the enevzy E < 1/12. The escape energy
is Beg = 1/6 for the Henon-Heiles potential.

Application to Accelerator Physics

Strong focusing large accelerator has alternate
focusing and de-focusing elements. The average effect
for a particle woving in the accelerator will experience
a transverse focusing and moves approximately in a har-
monic oscillator potemcial wall. Because of strong fo-
cusing, the particle in the bean will suffer chromatic
effect. Sextupole elements are used to correct the
chromaticity of the accelerators. The Hanmiltonian for
a particle in the accelerator cam be expressed as
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Here s is the position along the accelerator amd % =
dxf/ds ¥ = dy/ds and hy(s), bp(s) are respectively
strengths of quadrupoles and sextupoles. The
Homiltonian is piecewise conserved. The Hamiltonian is
however not conserved along the accelerater. Without
the sextupoles, the conserved quantity is the Courant-
Snyder inmvariant® or the emittance of the beam. Because
cf the alternating gradient principle and small betatron
vhase advance across cach elements, we approximate the
Hawiltonian by the average focusing and sextupole
strength, i.e.
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Let us change the coordinate into £ and N, with
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The transformed Hamiltonian becomes the Henon-Heiles po-
tential, i.e.
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It is well-known that the critical energy for the cha-
otic orbit tramsition is E; = 1/12.

Let us now make the following assumption: The
energy of the Henon-Heiles potential in eq. {12) is re-
lated to the amplitude of the transverse motion in the

accelerator, i.e.
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The amplitude can be translated into the critical
emittance and B function as
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Thus the critical amplitude of the transverse wmotion are
related to the average focusing strength and gsextupole
nonlinear stremgth. A larger b; and smaller by cam

give larger dynamical aperture of the beam. But we
shall sge that a larger b) will naturally lead to a
larger by.

Scaling Properties of Accelerators

Let us comsider a2 simple large accelerator, which
consists of only regular FODO cellz. The following
lattice properties can be deduced
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where L, U and ¢ are respectively length, phase advange
and beam bending angle of the FODO cell. 4§ is the qua-
drupole focusing strength, rB'dE/ED, and by = B*/Bp is
the renormalized quadrupole gradient. The natural chro=
maticity can be obtained fronm
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The chromatic sextupoles are used to correct the
natural chromaticity, i.e.
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where the sextupole strength is obtained by making the
total chromaticity of the machine zero, &y + £g = 0.

Ve found that
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The average focusing and sextupole strength are
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Thus the ratio 51/52 depends on the length
of the cell only through L, which is a more or less
constant number for all accelerators. The dynamical
aperture is thus a function of only phase advance u,
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We note that the dynamical asperture due to the
chromatic sextupoles are larger for smaller phase ad-
vance per cell. This is understandable because we have
assumed only the chromatic sextupoles. Therefore the
strength of sextupole will be much smsller for a weaker
quadrupole field. As an example, in the SSC referecnce
design A, Ld = 3.25m, u = 80°, we obtain %, = 69071,
Tracking calculation gives 600™® dymamical aperture?
with only FODO cells. Tor RHIC, Ld = 1.159, u = gp°
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22 chioin 2, = 8770, The trackimg caleulation gives x,
5273, which irclude the ingertion.

Gffoct of ramdom coztunoles. The estimated random sex—
tupoles in SSC desigrm A due to errors in roil placement
are &by = 1.6 % 107 en™2 and Day = 1.4 % 1074 em™2.
ihcercfore, we have
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vhere £ ig the magnetic raodiug of curvature. For 6.57
ficld strength and 20 TeV energy,
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and
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Br = 1.5 10 0 ,
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Sinece this is much larger tham the chromatic sextupoles,
w2 can neglect the effect of chromatic sextupoles. The
dynamical aperture becozes
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At L = 2007 U = 80°, ve obtain x, = 11450, The
dynanical aperture is reduced by a factor of gix due to
randoa sextupoles.

x_ = .266
c

Conclucion

In conclugion, we have mode an effort in applyiug
the nonlinear dynamics to define a chaotic dynemical
aperture for zccelerator. We examine, as a simplest ex-
anple, the problems related te the chromatic correction
sextupole and discuss the scaling properties of the ac-
celerator. Randoa sextupoles are found to be much more
ioportant than the chromatis sextupoles.

We did not discuss, at all, the effect of higher
random multipoles. The analysis becomes somewhat more
complicated. More work is needed,

In the present analysis, we do not discuss the res-
onance conditicn. Here we have assumed no resonance con-—
dition for the tune of the nachine. The effect of reso-
nance mav further decrease the dynamical aperture.
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