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Introduction

Hozslinear nagnetic forces becocs more important
for particles in the codern large accelerator3.1 These
nonlinear eleizenEo ars introduced either intentionally
to control bean dynainico or by uncontrollable ra&doo
erroro.2 Equations of notion in the nonlinear
Haiailtoaian are uouolly aon-integrable. Because of the
nonlinear part of the Eaailtonian, the tuna diagram oi
acceleracofD io a jungls. Nonlinear magnet railtipoles
are important in keeping the accelerator operation point
in the cafe quarter of the hostile jungle of resonant
tunes. Indeed, all the modern accelerator design have
taken advantages of nonlinear mechanics. On the other
hand, the effect of the uncontrollable random multipoles
should be evaluated carefully.^ A powerful method of
studying the effect of these nonlinear railtipoles is
using a particle tracking calculation, where a group of
test particles are tracing through these magnetic
multipoleo in the accelerator hundreds to millions of
turns in order to test the dynamical r- -rture of the ma-
chine. Thaoe insthodo are QjcLreics1" "isatul in the design
of a large accelerator such ao SbO, LEP, HEHA and RHIC.
These calculations unfortunately takes tremendous amount"
of computing titna. in this paper, we are trying to
apply the existing tcathod in the nonlinear dynamics to
study the possible alternative solution. When the
Hainiltonian motion becoces chaotic, the tune of the ma-
chins beccraes undefined. The aperture related to the
chaotic orbit can be identified ss chaotic dynamical
aperture. In the following review the method of deter-
mining chaotic orbit and apply the method to nonlinear
problems in accelerator physics. W-2 then discuss the
scaling properties and effect of random sesctupoles.

Chaotic Transition

The equations of motion of a particle in the
Hamiltonian system is given by

3H

a q :

(i = 1, Ni (1)

with certain given initial values (q£(Oi, p^(011.
Nonlinear Hsrailtonian are in general non-integrable.
Henon and Heiles^ found that a nonintegrable motion does
not lead to chaos, which is in accord with the KAM
theorem.5 As the asplitude of the Haiailtonian motion
?>rows, the motion may become chaotic because of larger
nonlinear perturbation.

A distinct character of transition to chaos is the
positive Liapunov exponent,^ which was observed in the
numerical experiment of Henon-Heiles potential.^ For a
chaotic orbits, the distance between two trajectories,
with infinitesimal separation initially, will grow
e:q>onentially with "timo". The growth rate is called
the Liapunov exponent. For a regular orbit, the
Liapunov exponent ia zero. A simple test of the
Liapunov exponent criteria is BDT test,? where one study
the Liapunov exponents around the transition boundary
surfaces. To be specific, let us consider two
trajectories (q°Ct), p°(t)) and (q(t), p(t)), with infin-
iteoical separation. Let n and E, be the separation of
theca too trajectories, i.e.

"';-7orlt parf reed under the auspices of the U.S. Depart-
ment of Energy.

n = p - p

K = q - q°

The equation of motion for r\ and £ arcj given by
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op
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where wa have assumed Taylor series expansion for the
Hamiltonian around these two infinitesimal near
trajectories.

A truncation of eq. (21, up to the first order,
gives us a linear system of equations.

(4)

where
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Linear equation can be solved by assuming

(51

(6)

Equation (41 becomes the secular equation for solving
the eigenvalues.

= 0 (7)

The stability or the regulatory of the Hamiltonian mo-
tion requires that the real part of the eigenvalues are
negative on ths invariants of the Hamiltonian. This
method has been successfully applied to analyze
Hamiltonian systems. As an example, the eigen-exponents
are found to be negative for the Henon-Heiles potential,

H = - + y2 + x2 + y2) + (x2y - -|y3) , (81

provided that the energy E < 1/12. The escape energy
is E e s = 1/6 for the Henon-Heiles potential.

Application to Accelerator Physics

Strong focusing large accelerator has alternate
focusing and de-focusing elements. The average effect
for a particle moving in the accelerator will experience
a transverse focusing and moves approximately in a har-
monic oscillator potential wall. Because of strong fo-
cusing, the particle in the bean will suffer chromatic
effect. Sextupole elements are used to correct the
chromaticity of the accelerators. The Haniltonian for
a particle in the accelerator can be expressed ao
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Here s is Ehs position along the accelerator aod x =
dx/ds y = dy/ds and bj/s), b2(s) are respectively
strengths of quadrupoies and sextupoles. The
Hainiltonian is piecewise conserved. The Hamiltonian is
ho-.jevar not conserved along the accelerator. Without
the sextupoles, the conserved quantity is the Courant-
Stiyder invariant** or ths emittaace of the beam. Because
cf the alternating gradient principle and Email betatron
phase advance across each elements, we approximate the
Eaiailtoraian by the average focusing and sextupole
strength, i.e.
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where L, U and <]) are respectively length, phase advance
and beam bending angle of the FODO cell. 6 is the qua-
drupole focusing strength, rB'dS./BP, and bj a B!/E0 is
the renormalized quadrupole gradient. Tlie natural chro-
matic ity can be obtained from

1
(16)

Let us change Che coordinate into £ and 1, with

b.

b_ (ID

The transformed Hamiltonian becomes the Henon-Heiles po-
tential, i . e .

The chromatic sextupoles are used to correct Che
natural chronaticity, i.e.

- 6 . x (D)b,(D)a )
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where the sextupole strength is obtained by tasking the
total fhromaticity of the machine zero, 5,jj + £g = 0.

We found that

It is well-kno^Tn that the cri t ical energy for the cha-
otic orbit transition is Ec = 1/12.

Let us now taalce the following assumption: The
energy of the Henon-Heiles potential in eq. (12) is re-
lated to the amplitude of the transverse motion in tha
accelerator, i . e .

(13)

A = .266
o

The amplitude can be translated into the critical
emittance and 8 function as

.266 -!•
(14)
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The average focusing and sextupole strength are
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(19)
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Thus the ratio bj/b2 depends on the length
of the cell only through I/l>, which is a wore or less
constant number for all accelerators. The dynamical
aperture is thus a function of only phase advance U,
i.e.

Thus the critical amplitude of the transverse motion are
related to the average focusing strength and sextupole
nonlinear strength. A larger bj and smaller b2 can
give larger dynamical aperture of the beam. But we
shall see that a larger bj will naturally lead to a
larger i>2«

Scaling Properties of Accelerators

Let us consider a simple large accelerator, which
consists of only regular FODO cells. The following
lattice properties can be deduced

L*(l
.266 (21)
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We note that the dynamical aperture due to the
chromatic sextupoles are larger for smaller phase ad-
vance per cell. This is understandable because we have
assumed only the chromatic sextupoles. Therefore the
strength of sextupole will be much stDBller for a weaker
quadrupole field. As an example, in the SSC reference
design A, L* = 3.25D, U = 80°, we obtain Xg => 690s3.
Tracking calculation gives eOO1™ dynamical aperture^
with only FODO cells. For RHIC, L* = 1.15°, U => 90°



co cjiain nc => ST113. Iks tracking calculation gives xc

- 5Z-ai which icsluflo ttts insertion.

Srgcst of random esatupoles. The estimated random sex-
Eepoles in SSC deoitja A due to errors in roil placement

Sere fore, we havs

-3
(22)

whore P ia the nageetic radius of curvature. For 6.5T
field strength and 20 TeV energy,

and
P => 1.03 * 10* m

=> 1.5 * 10"4 m"3

Since this is nuch larger than the chromatic sestupoles,
wa can itsglect the effect of chromatic sextupoles. The
dynamical aperture becomes

.266 (23)
1.5 * 10

At I = 200^ U =• 80 , t;a obtain 3tc =• 114™. The
dytmnical aperture ia reduced by a factor of silt due to
random sextupolea.

Conclusion
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In conclusion, t;a have made an effort in applying
the nonlinear dynamics to define a chaotic dynamical
aperture for accelerator. We examine, as a simplest ex-
onple, the nrcibleno related to the chromatic correction
sextupole and diacuos the stealing properties of the ac-
celerator. Randca sentupoles are found to be much more
inportant than the chrooatic sestupoles.

Wa did not discuss, at all, the effect of higher
random nultipoles. The analysis becomes somewhat more
complicated. More uork is needed.

In the present analysijs, vre do not discuss the res-
onance condition. Here we have assumed no resonance con-
dition for the tune of the naehine. The effect of reso-
nance raa;» further decrease the dynamical aperture.
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