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ABSTRACT

The response of a structure at low frequencies with
free boundary conditions is dominated by the rigid-
body modes. The displacement shapes obtained from
the low frequency values of the frequency response
functions can be compared with ideal rigid-body
motion to point out errors in the measurements.
Insight is enhanced when the comparisons are made
in the coordinate system of the measurements.
Without this procedure intuition can rarely
determine the proper rigid-body response at each
measurement location. Typical errors identified are
scaling errors, errors in location or directionm,
measurements with poor dynamic range and other
instrumentaion problems. The procedure is
particularly useful when the test object is multi-
dimensional, has a complicated geometry, has
measurements in other than rectangular coordinates,
and where more than one rigid-body mode is excited.
It is suggested that data qualification using this
method would be a useful addition to most modal
tests. A least squares approach, to determine the
proper rigid-body response, is reviewed and several
experimental examples are given.

NOMENCLATURE

a a vector denoting the sensitive axis in local

coordinates of the ith measurement. For
example, if the measurement was in the -z
direction in the local coordinates

3 44
(measurement coordinates) a” = [0 0 -1] and
if the measurement was in the +x direction

then aT == SO0 SR SE 31

e an error vector, the difference between the
measured rigid-body motion and an estimate of
the rigid-body motion (Nm b 300 8}

& the residual error vector when the least
: squares estimate of p is used
:§ when used as a subscript or an argument, the
measurement index
N the number of measurements
m
P a vector of modal participation factors for

each of the rigid-body modes (6 x 1)

a least squares estimate of p
as a superscript, a malrix transpose
,¥,z rectangular coordinates

@a(i) the analytical rigid-body mode shapes, in

terms of the xyz coordinates of the ith
measurement location (3 x 6)

|2 a matrix of rigid-body mode shapes expressed

in terms of the measurement geometry (Nm X 6)

¢b(i) the ith row of & , the analytical rigid-body

b’
modes at the coordinates of the ith
measurement (1 x 6)

@ a vector of experimentally measured rigid-

body motion (Nm 4015
A a matrix to transform the global coordinates

of the ith measurement point into the local
measurement coordinates (3 x 3)

3 normalized square error
INTRODUCTION

The response of a freely suspended structure at low
frequencies is a rigid-body response. The
comparison of the measured responses with the ideal
rigid-body response provides an easy way to detect

errors in the measurements. Several authors(l'z)

have made similar proposals for this use of the
rigid-body modes. These authors suggested measuring
one or more of the rigid-body modes. The resulting
rigid-body mode shapes were then displayed in the
global rectangular coordinates of the system for
comparison with the analytical shapes. This paper

Mx 3o >

will show that it is not necessary to directly
measure the rigid-body modes; the information is
contained in the values of the frequency response
functions (FRFs) at low frequencies. An error mode
shape is also derived which highlights the errors
in the FRFs.

Another improvement is to keep the measurements and
error measures in Lhe local (measurement)
coordinates. This will aid the user in several
important ways. First the errors can be directly
related to a particular measurement. This will be
useful in efforts to isolate the source of an
error. Second, by keeping the errors in the local
coordinate system the requirements for a complete
measurement set (i.e. measurements in all the x,y,z
directions at each measurement location) are
eliminated.

THEORY
Let

Bk B poeTe (1)

The length of the vector @r is Nm’ the number of

measurements, Typically, but not necessarily, three
measurements are made at each location, resulting
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N 1

in measurements at Nm/3 geometric locations.

~

We will find a vector p which will minimize the

. 2
normalized square error, £, where;

2 A A
8 = elestia, p 1T (3 2 D). ()
b b
The least squares solution where the number of

measurements, Nm, is greater than the number of

participating rigid-body modes is given by

» T -1 T
p=lo, o1 9 o. 3

The residual error is given by

~

Cain = % " B P )
The minimum normalized square error is given by
2 T ~.T -
€5 = e e /(13 Pl (2 PD). (5

The product Qb.p is the best estimate of the

rigid-body motion. The difference between this
estimate and the measured rigid-body motion can
tell us a great deal about the quality of
individual measurements.

This information can be displayed in several ways.
First the measured and the estimated rigid-body
motions can be displayed as mode shapes. Any

large differences will be apparent. Displays of the
rigid-body shapes give an immediate feel for how
closely the structure resembles a rigid-body at low
frequencies. Second the error, emin’ can be

displayed as a mode shape; this emphasizes the
errors and makes them more apparent. We will refer
to this as the error shape.

Displaying the error measures as mode shapes has
the advantage of pointing to geometric areas of the
structure with errors, and animating the mode
shapes helps the eye pick out the errors. Mode
shape displays in the global coordinate system

have the disadvantage of making the one-to-one
correspondence with the measurements difficult. The
experimental motion, estimated motion, and error
can also be displayed as functions of the
measurement index. This makes the correspondence
between errors and measurements clear, but can
obscure the geometric relationships. Later examples
will illustrate the advantages of using both
methods.

To solve the ahove equations procedures for writing

the matrices @b and ér must be developed. This will

be done in the following sections.

DEVELOPMENT OF THE ANALYTICAL
RIGID-BODY MODE SHAPES

The rigid-body mode shapes in the measurement

r 1
coordinates can be generated from the geometry file -

in the following fashion. One row of the rigid-body
mode shape matrix is given by,

Qb(i) = aT

i Ai @a(i) (6)

where ¢a(i) is the analytical reference mode shape

given in terms of the measurement geometry by

trans trans trans rot rot rot

x y z  x y z
x 1 o 0 0  z(i) -y(i)
y 0 1 0 -z(i) x(i) O N
z 0 0 1 y(i) =x(i) Y

Rows of the @a(i) matrix represent contributions in

the xyz directions respectively, and columns
represent the rigid-body mode named above the
matrix. The coordinates of the ith measurement
location, in rectangular global coordinates are
x(i), y(i), and z(i) respectively.

The transformation matrix ’Ai’ transforms the

rigid-body modes into the coordinate system of the
measurements. We have implemented this
transformation using Fulerian angles with the

(3

notation of Goldstein. Many of our test items are
frustums of cones and only the first two of the
Eulerian rotations are needed.

The vector ai is a three element vector used to

select the sensitive coordinate axis of the
transducer.

Note, the index i is a measurement index and is not
a geometric location index. Typically, but not
necessarily, three measurements (xyz) are located
at the same location and will have the same Qa’ and

Ai matrices, but a different a; vector.

DETERMINATION OF THE EXPERIMENTAL
RIGID-BODY VECTOR, Qr

The accelerance frequency response functions (FRFs)
(acceleration/force, with free boundary conditions)
will follow a mass line at low frequencies (an
example is shown in Fig. 4). The values of the FRFs
over this region represent the inertia restraint of
the rigid-body suspension modes. In a good
experimental setup, the frequencies, where this
mass like property is observed, is above any of the
rigid-body suspension frequencies, but well below
any flexural frequencies. A single value at one
fivxed frequency can be taken from each measurement
FRF as an entry into the ¢r vector; or because the

measurements are frequently noisy at these
frequencies, the real part of the FRFs can be
averaged over a band of frequencies where the mass
like behavior is observed. If the range is too
close to an elastic mode of the structure, then the
resulting shape will appear as a linear combination
of the desired rigid-body shape and the first
L —d
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zlastic mode., If this is the case, then a
different range can be selected and the rigid-body
shape can be re-estimated. This method was used in
this paper.

A second method is to measure one of the low
frequency rigid-body suspension modes. This is what]

Crowley(1> recommends. The difficulty with this
method is that these modes are frequently not
available in the FRFs. When testing in the "free"
condition every effort is made to force the
rigid-body suspension frequencies as low as
possible. If the experimental setup is good, these
modes can lie below the measurement capability of
the instrumentation system. For example, we
typically will suspend a test item with the rigid-
body modes below 2 Hz. The first flexural mode of
Jinterest might be as high as 150 Hz. The
instrumentation system using piezoelectric
accelerometers and charge amplifiers loses accuracy
below 10 Hz. Also, the resolution of the FRFs,
selected for analysis of the elastic modes, may be
too large to resolve the rigid-body modes.

A third method is to use a curve fitting algorithm
which includes residuals. All the low frequency
elastic modes must be included, but not the rigid-
body modes. The low frequency inertia restraint
residual should be essentially the same value as
the value from the first method, except the effects
of nearby flexural modes will be compensated for
corrcctly. This method should give the hest
estimates available for the inertia restraints. The
disadvantage of the method is the estimates of the
rigid-body modes for use as qualifiers for the data
comes too late. We want to qualify the data before
the curve fitting task. If the mass residuals are
of critical importance for other needs this method
can be used to refine the estimates, and the

~

product @bp can be used to supply the best

availlable estimates of rigid-body motion. Furusawa

(2)

and Tominaga made this suggestion.
ELIMINATION OF EXTREME DATA POINTS TO
IMPROVE THE RIGID-BODY FIT

Data points which include errors beyond the usual
random experimental errors can seriously affect the
least squares rigid-body fit. The fit can be
significantly improved by elimination of these
measurements. This can be accomplished in either of
two ways. The measurement can be removed from both
¢b and @r. This reduces the order of the matrices

by one, for each measurement removed. Alternately,
a weighting matrix can be used which will reduce
the effect of the measurement to zero. We have used
both methods. Using either method, the

‘participation factors, p, are recalculated after
tlie measurements arc climinated and the normalized
error, &, is recalculated. This error should drop
sharply as the extreme measurements are eliminated.
An indication that all the extreme values have been
eliminated and only normal random errors remain is
when the error ceases to drop sharply. The
procedure is stopped at this point and the improved

participation factors, p, are used to recalculate
the analytical rigid-body fit and error shape,
[

[

which includes the extreme values.
IMPLEMENTATION OF TECHNIQUE AND EXAMPLES

The first example uses data from a test of a flat
rectangular plate. The plate is the same plate used

in another study: Measurements were taken on a
5x7 grid resulting in 35 FRFs. Three figures are
included to illustrate the data. Figure 1 is a plot
of the normalized error as a function of the
eliminated extreme measurements, Fig. 2 is a plot
of the error plotted as a mode shape, and Fig. 3
is a plot of the error plotted as a function of
measurement index. Clearly four measurements are in
error; measurements 1, 30, and to a lesser extent 2
and 9. The rigid body fit was not significantly
improved by removing any of the smaller errors.

Two modal surveys of axisymmetric structures were
investigated to illustrate the advantage of using
local coordinates for the calculations and
displays. In both surveys, triaxial accelerometers
were used to monitor the response. The triaxial
blocks, on the exteriors of the structures, were
aligned such that the x-axis of each triaxial
accelerometer was mounted normal to the surface and
the z-axis of the accelerometer lay in the plane
formed by the x-axis of the accelerometer and axis
of symmetry of the structure. Thus, the
measurements at each point on the structure were in
local rectangular coordinate systems. Because of
limitations of the mode shape display software the
rigid-body shapes estimated from the FRF data base
were transformed into a global rectangular
coordinate system for display. Displays which were
functions of the measurement index were left in
local coordinates.

To calculate the rigid-body shapes, the FRFs were
reviewed to determine the range over which the FRFs
followed a mass line, Fig. 4. The real parts of
the individual FRFs were averaged over this range
and entered into the corresponding location in the
rigid-body shape, ¢r Averaging was performed

because of the inherently low signal-to-noise ratio
of the FRFs over the rigid-body response region of
the FRFs. The shape was then transformed into
global rectangular coordinates for display as a
mode shape.

Measured rigid-body responses which deviated
significantly from the from the analytical rigid-
body least squares fit were given zero weighting
and the participation factors for the analytical
rigid-body shapes were re-estimated. This
procedure is repeated until the differences between
the measured and analytical shapes, for the non-
zero weighted measurements, are uniform and are
random indicating the elimination of all
significant bias errors. These eliminated
measurements correspond to measurements whose scale
factor, direction, etc... may be in error.

|

A thin-walled right conic frustum, Fig. 5, was used
for the next example. Figure 6 displays the
analytical least squares shape (solid line) and the
experimental shape (dashed line). While this plot
gives one a qualitative feel as to the overall fit
of the analytical to experimental shapes,
individual bad data points_do not necessarily
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because point(s) in error may not have a
significant component in the viewing plane of the
plot. A more meaningful representation is a plot
of the analytical and experimental shapes as
function of measurement index as in the plate
example. For these plots, each response coordinate
was assigned an integer abscissa value from one to
the total number of response measurements.

Ordinate values were the rigid-body shape entries
for the corresponding response coordinates. Figure
7 displays the experimental (solid line) and
analytical (circled line) shapes. Even more
revealing, Fig. 8, is the error shape, the
difference between the analytical and experimental
shapes. The increasing error on the right hand side
of the plat corresponds to the response of the
first elastic mode of the frustum which is more
apparent towards the large end of the structure.

No significant bias errors are apparent.

The final test case studied was a modal survey of
an earth penetrator. For this survey, three points
on the structure were excited (1X, 1Z, 601X). They
are {llustrated in the undeformed gcometry plot in
Fig. 9. Fifty nine triaxial measurements and four
points on the interior of the penetrator (801
through 804) were monitored.for a total of 181
measurements. The nose of the penetrator appears
deformed because no measurements were performed at
the very tip. Figure 10 shows the analytical shape
(solid line) plotted over the experimental shape
(dashed line) for an input at 1Z. A geometric plot
of the error shape is shown in Fig. 11. The error
shape as a function of measurement index is shown
in Fig. 12. Similar plots were generated for the
other inputs, but are not included here. In each of
the three types of plots, the measurements having
the largest error (802X,Y,Z, measurement 171-173)
are readily apparent; however, plots of the error
shape as a function of the measurement index also
indicated significant errors in the response at
points 801Z, 803X,Y, and 804X,Y,Z. It was
determined that the accelerometers at location 802
were grounded; 801Z and 804Z were mounted in the -Z
direction instead of the +Z direction; and 803X,Y
and 804X,Y were rotated a small angle from the
correct axis during assembly.

CONCLUSIONS
[

The comparison of the rigid-body motion, determined
from the mass line at the low frequencies of freely
suspended structures, with a least squares
analytical estimation of the rigid-body motion
provides a quick and useful evaluation of the FRF
data base. Using this techuique, several common
errors were detected, including; scaling errors,
errors in location and direction and
instrumentation problems. The approach is currencly
being used as part of our quality assurance
procedure far freely suspended modal tests. Similar
procedures are being used for motion controlled
vibration tests.
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