LA~UR--86-~831 GON'F 8@"53 =~ ‘,'
DE86 008717 ' RECEIVBd by OS”

APR 0 ‘7 1986

Lot Alsnios Nabonal Laboratory 1§ OPEratsd by the Unwersity of Caisfornua for the Linned Btates Jepartment of Energy under costract W.7405.ING-28,

TITLE: THE IMPLEMENTATION AND OPTIMIZATION OF PORTABLE STANDARD LISP
FOR THE CRAY

AUTHOR(S): .7, Wayne Anderson, C-10 mMASm
Bobert R. Kessler, University of U

William F. Galway, University of Utah

eusmiTTeD T0: The European Conference on Artificial Intelligence
Brighton, England
July 21 - 25, 1986

DISCLAIMER

This report was propared ss an nccount of work s msored by an agency of the United States
CGovernnient. Nelther the United States CGluvernment nor any sgency thereof, nor any of their
employees, makes any warranly, express or implicd, of assumes .y legal linbility or responsi-
bility for the acvuracy, completeness, or usefulness of any informatwn, apparatus, product, or
process disclosed, or represents that its vae would not infringe privately owned rights. Refer-
cnco herein to any specific commercial prodduct, prcess, or service by trade name, trademark,
manufscturer, of otherwine does not nevesaarily constitute o. imply its endorsement. recom-
mendation, nr favoring by the United Stalen CGiovernment or sny agency lhereol. The views
and opintons of suthors expresacd herein do not necossarlly state or reflect those of the
United States CGovernment or any agency thereuf.

By accepiance of this ariicie the publishar recognizes that the U 3 Governmeni reiai:.8 8 nonenciusive royaity-free hcense to publish o reproduce
ihe pubiished form of this contnbution. of to allow others 1o do 80, for US Government purposes

The L0t Alamos Nalonal Labe atory raquesis 1hal the publisher 1dentlify (s srUCie 83 work performed under the auspiLes of Ihe U S Depariment of Energy

L@S AH SMAOS LosAlamos National Laboratory
Los Alamos,New Mexico 87545
:mn:::}:: DISTRIBUTION OF THIS DOCUMENT I8 UNLIMITED \

"

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

The Implementation and Optimization
of Portable Stand-rd LISP for the Cray

J. Wayne Anderson
C-10, Computer User Services
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Robert R. Kessler and William F. Galway
Utah Portable Artificial Intelligence Support Systems Project
Computer Science Department
University of Utah
Salt Lake City, Utah 84112

ABSTRACT

Portable Standard LISP (PSL), a dialect of LISP developed at the University of Utah, has
bren implemented on the CRAY-1s and CRAY X-MPs at ihe Los Alarnos National Labora-
tory and ut the National Magnetic Fusion Energy Computer Center at L.awrence Livermore
National Laboratory. This irnplementation was developed using a highly portable model
and then tuned for the Cray architecture. The speed of the resulting system is quite
impressive, and the environment is very good for symbolic processing.

Work aupported in part by the Burroughs Corporation, the Hewlett Packard Corporation, the International
Business Machines Corporation, the National Science Foundation under grant numbers MCS81-21750 and
MCS582-04247, the Defenne Advanced Research Projecta Agency under contract number DAAK 11-84-K-0017,
and the 11, 8, Department of Energy under contract number W-7405-Eng. 130,

Optimizing PSL for the Cray 1

1. Introduction

Research at the University of Utah toward developing a portable LISP system received
impetus in 1966 [4] when a model for a standard LISP subset was developed to make
the REDUCE (5] symbolic aigebra package more portabie. This reseurch effort has since
produced progressively larger and more portable subsets of LISP [2], the most recent of
which is Portable Standard LISP (PSL).

Among the goals of the designers of PSL were to provide a uniform LISP programming
environment across a spectrum of machines, to produce a portable system comparable in
execution speed to other non-portable LISP systems, and to effectively support REDUCE
on different machines. PSL has mat these goals and is currently being distrib1ted for
DECSystem-20s, VAXs running both UNIX and VMS, HP9836s, Apollos, Suns, IBM 370
class machines with CMS, Goulds, and a small version for the Macintosh. PSL is ready
for distribution to Crays running the CTSS operating system and is being developed for
Craye running COS. This wide range of ruachines demonstrates the ease with which PSL
is ported.

There are several reasons for wanting LISP on Cray supercomputers. One is the interest
in having symbolic programming environments on one of the most powerful machines
available, This would provide the capability of solving symbolic problems that would not
be feasible to solve on less powerful systems. There is also interest in the possibility of
combining symbolic methods with some of the large numeric programs typical of large
supcercomputers,

In this paper we continue with a discussion of the porting process used to implement
PSIL on the Cray, followed by a discnssion of the tuning that was performed. We then
discuss some of the timing results, and conclude with proposals for future work.

2. Porting of PSL

Our Cray implementation began in June 1982 when a meeting was held at the Univer-
sity of Utah to outline the effort. By July of 1984 the PSL interpreter and compiler were
available for 1se on all CRAY-1s and CILAY X-MPs at the Los Alamos National Labo-
ratory. Soon thereafter, PSL was also available on the Crays at the National Magnetic
Fusion Energy Computer Center of Lawrence Liverimore National Laboratory. REDUCE
was subscauently impiemented at both sites. This process took much longer in actual
clapsed time than the typical 6 man months required for most implementations of PSI,.
This i« primarily because it was accomplished using part time eflorts, equivalent to ap-
proximately 12 man months. Many of the carly problems were related to getting reliable
network access to machines, and to delays caused by the transfer of many large files be-
tween the development machines and the targes Cray, The effort required to implement
PSL on the Crays, while non-trivial, was -guch less than that required to implement a
non-portable dizlect.

PSL s transported using a half bootstrap technivque. A cross compiler is built npon a
running PSL. This compiler accepts PSL source code and produces assembly code for the
target machine, The code is then transferred to the target machine, assembled, and linked
with machine-dependent operating system routines to produce an executable system. ‘This

' Work is utder way at Utah to produce a Common LISP compatible subset built upon

PSL.

Optimising PSL for the Cray 0

system is tested, changes may be made to the compiler or machine-dependent source code,
and the process is begun again. In order to more fullv understand the implementation
procedure, it is first necessary to take a look at the steps involved in PSL compilation [3]-

The compiler first translates LISP code into instructions for an abstract LISP machine
(ALM). The ALM is a general-purpose machine, with 15 general registers and a stack. The
stack holds both return addresses and frames which are created upon function entry to
hold saved registers and temporary values across calls. Arguments to functions are passed
in the general registers, and valuec are returned in the first register. The ALM provides
approximately 50 instructions varying in comglexity from simple move instructions, to
function calls, to lambda binding. Operands to instructions are either simple structures-
like registers, stack frames, and memory-or they are higher level addressing modes like
car ang cdr. ALM instructions are expressed in LISP assembly program (LAP) format,
which has the form:

(ALMopcode ALMoperand-1 ... ALMoperand-n)

After translation into ALM instructions, these instructions are then expanded, through
the use of macros, into target machine instructions-expressed in the same LAP format.
This is accomplished using a set of handwritten tables that describe each ALM instruction
as a set of target machinc instructions. Several expansions may be described--the expansioit
chosen depending upon the operands. The tables are called cmacro (compiler macro)
definitions,

From here there are three separate paths that can be taken in the compilation process.
The target machine instructions can be translated into:

1. machina code and placed into the memory ¢f a running PSL system,

2. machine code and saved in a file for loading at a later time into a running
PSL system, or

3. asscmbly language for later assembly and linkage on a target machine.

This third path is the one taken when bootsirapping PSL from a host systen to a
target machine. The original host for the Cray development vas a DECSystem-20 at the
University of Utah, while later at Los Alamos the host was a VAX 11/780 rinning UNIX.

The closer the target machine’s assembly language is to that of the host, the easier the
trauslation will be because the PSL compiler on the host can then be casily modified to
generate assemnbly for the new target, Unfortunately, in the case of the Cray, the match was
not close. For example, consider the following Cray assembly language (CAL) instruction:

£1 52+83

This adds the contents of register 82 to that of register S3 and stores the result in
register S1. Thus the format of CAL instructions is along the lines of.

destination operand opcode operand
which is quite different from LAT format and from the assembly format used by other
machines on which PS), was implemented.
To deal with this problem, we introdt cd one extra step in the translation process,
The target machine instructions are written out as CAL macros that more closely mawch
LAP format. These are then expanded by the CAL assemibler into standard CAIL format.

Optimizing PSL for the Cray 0

Some support code had to be written on the Cray to interface the cross-compiled code
to Cray system functions—for example, input/output routines. The cross-compiled code is
assembled on the Cray and then linked with this support code for execution.

There is a carefullv graded set of tests that is used in the bootstrapping process. Each
test provides an ever increasing subset of PSL to be cross-compiled, shipped to the Cray,
assembled, and executed. A test that fails requires correction of the cmacro definitions or
the support routines (or, rarely, correction of other parts of the implementation procedure).
That portion of PSL that is successfully tested is then used as a basis for succeeding tests.
After all tests are executed, the major portion of PSL has been implemented.

3. Tuning the Implementation

Once FPSL was successfully implemented, we ran a set of LISP timing benchmarks
developed by Gabriel [1]. The benchmarks were executed on the Cray, and the results
compared to their execution in PSL on other machines. As expected, the benchmarks
ran more quickly on the Cray. However, all the power of the Cray was not realized. For
instance, translating from an ALM with 15 general-purpose registers to the Cray with its
many special- purpose registers was a complicated task, one that the initial implementation
did not do well. None of the temporary (T) registers were used, the arithmetic (S) register
usage was not scheduled, and no vector registers were vsed.

At this point an optimization effort was undertaken at Los Alamos and the University
of Utah. Several idcas were proposed, some of which were implemented, some rejected
and, at this point, some are still being considered. These optimizations are detailed below.

A major feature of the Cray architecture when determining optimizations is the large
ratio between memory and register access time. On the Cray the ratic is about 14 tc 1,
while on more conventional architectures the ratio is around 4 to 1. Since most of LISP’s
internal activity is accessing memory, as mucl information as possible must be maintained
in registers. The Cray provides block move instructions that permit movement of multiple
words *o o1 from memory at a cost of only 1 extra clock for each additional word. Thercfore,
optimizations that combine accesses into block movement are advisable for the Cray. Using
this concept, we found a number of potential optimizations that attempt to use the registers
versus memoty locations.

The first ¢ptimization involved moving the stack into registers. One thought was to
move the entire stack into all of the vector registers (8 vectors, cach with 64 elements,
cach 64 bits wide) providing a much faster stack. However, there are no instructions
for accessing a variable vector register nor a variable register index; thus we could not
implement a moveable top of stack pointer. An idea along similar lines was to move
the stack into the T registers (64 registers, 64 bits wide), but they also do not permit
varjable access to a register. The final solution was to allocate the current stack frame to
a set of the T registers. Since all accesses to frame locations are performed using compile
tite constants, registers could be used effectively For example, access to the first frame
location could map into 1'20 and the second frame location would be T21. Using the T
registers, pccess to each frame location is performed in 1 clock cycle, instead of the 14
before. Offsetting this advantage is that upon function entry and exit, the stack frame
mus be rolled to and from memory. However, this could be accomplished using fast block
transfer. Another disadvantage i+ that the number of available ‘T' registers puts a limit on
the size of a frame. This limit could be increased by using vector registers instead of T

Optimizing PSL for the Cray 0

registers, but we have not found this necessary.

A similar optimization was to keep heap pointers and other heavily used global variables
in T registers instead of memecry locations. These two sets of optimizations resulted in an
improvement of approximately 25% in speed. Howcver, because of the extra code required
to move the stack frames to and from memory, the size of the code actually ‘ncreased by
about 10%. _

An important optimization in the garbage collector takes advantage of the Cray’s large
word size. PSL on the Cray uses a mark and sweep compacting collector. One feature
of this scheme is that thLe collector must compute the distance that each word must be
relocated, and then store that distance. Generally a separate relocation table is used to
store this relocation distance for each segment within memory. On the Cray, a 64-bit word
represents each LISD item (a LISP cons cell requires two 64-bit words). PSL’s tagging
scheme allocates 8 tag bits and 24 pointer bits per item, leaving 32 bits left over. Since
the maximum relocation distance can never exceed the adaressing size, 24 of the 32 bits
are used to store the relocation distarce for each word. Eliminating the relocation table,
and the extra memory references to it, doubled the garbage collection speed.

An optimization that we have considered, but have not yet implemented, is to us-
the vector registers while performing garbage collection. During the marking and pointer
adjusiment phases, each of the primary data structures are scanned to find active data.
The stack and symbol table are scanned in sequential order, so we could hlock move them
into a vector register (64 words at a time) and then scan from the vector registers instead
of memory. Since a random memory access requires 14 clocks, while a block move to
vector registers requires 2 clocks per access, we could reduce the the access time for these
structures by a factor of 7.

Some operations on the Cray, such as integer division, are fairly difficult to implement
directly in assembly language, : nd so were first implemented as calls to FORTRAN library
routines. Some of these are now implemented as in-line code.

Generally, other implementations of PSL hand cnde critical varts of the system to
improve speed. The original Cray implementation was the most portable impiementation
to date (which meant that less hand crafting was required to get the initial version func-
tioning). The Gabriel henchinarks helped reveal arcas that required tuning. Generally the
timing ratios between the Cray and other ’SL implenientations should be fairly consisteut.
Ratios indicating poor Cray performance revealed arcas that could be improved through
hand coding. For example, it appcars that one candidate is the lambda and fluid binding
mechanisin as illustrated by the relative performance of STuk shown in Table 5 below.
This ovtimization hasn’t been accomplished yet, but should result in significant speed im-
provements in prgrams like RIEDUCKE that make fairly heavy use of fluid binding. On the
Cray, hand-coded routines ehould attempt to use register scheduling, as well as minimizing
references to memory.

Optimizing PSL for the Cray 0

Table 1 shows the improvements in the Gabrie! benchmarks resulting from those op-
timizations that we have currently implemented. The benchinark programs are briefly
described Lelow.

BOYER - a “theorem prover” emphasizing the use of “typical” LISP structure manipula-

tions.

BROWSE - an “expert system” emphasizing the use of pattern matching and of frames
for knowledge storage;

DESTRUCT - a program emphasizing the use of destructive list operations such as rplaca
and rplacd;

STak - a program that times function calls using fluid (special) binding;
PUZZLE - a game implemented using many vector references; and
TRIANG - a board game benchmark.

Table 1.
Real Time in Milliseconds
PSL
Benchmnark Old New New/Old
BOYER 34 24 0.71
BROWSHE 8.4 6.0 0.71
DESTRUCT 0.4 0.3 0.75
STak 1.1 0.9 0.81
PUZZLE 1.0 08 0.80
TRIANG 144 127 0.88

4. Timings

Tables 2 and 3 illustrate the execution speed of PSL relativ~ to that of other dialects of
LISP on the VAX 11/780. For the sake of breviiy, resulte are given for just a few of
Gabriel’s benchmarks. These results, however, are typical. An entry of “-” :ncans that a
benchmark was not able to exceute in that dialect of LISP at the time these figures were
collected, These results seem to show vhat PSL s a very fast LISP on “conventional”
architectures.

Toablo 2.
Real Time in Milliseconds

VAX 11/780

INTERLISP VAX COMMONLISP FRANZLISP PST,
BOVYER Hh3.3 87.7 71.5 11.3
BROWSE 111.5 205.0 170.3 50.3
DESTRUCT HA 6.4 13.7 3.9
Slak 0.7 1.1 0.3 5.4
BUZZLI 110.3 47.5 - 16.3
TRIANG 1076.5 160.9 - 2122

Optimizing PSL for the Cray 0

Table 3.
Normalized Execution Times
(shortest execution time = 1.0)

VAX 11/780

INTERLISP VAX COMMONLISP FRANZLISP PSL
BOYER 1.3 2.1 1.7 1.0
BROWSE 2.2 4.0 34 10
DESTRUCT 1.4 1.6 3.5 1.0
STk 2.4 1.0 1.5 1.3
PUZ.LE 6.8 2.9 - 10
TRIANG 5.1 1.7 - 10

Onc. PSL was successfully implemented on the Cray, Gabriel’s benchmarks were executed
and the resnlts were compared to their execution on other machines. Tables 4 and §
summarize these results.

Table 4.
Real Time in Milliseconds
PSL

Cray VAX 11/780 DEC-20 IBM 3081
BOYER 2.4 41.3 23.6 4.6
BROWSE 6.0 50.3 28.7 6.3
DESTRUCT 0.3 3.9 2.4 -
STak 0.9 0.4 2.7 1.7
PUZZLE 0.8 16.3 15.9 1.5
TR'ANG 12.7 212.2 86.9 254

Table 5.
Normalized Fxecution Times
(shortest execution time = 1.0)

PSL
Cray VAX 11/780 DEC-20 IBM 3081
BOYER 1.0 17.2 9.8 1.9
BROWSE 1.0 8.4 1.8 1.1
DESTRUCT 1.0 13.0 8.0 -
STk 1.0 6.0 3.0 1.9
PUZLLY 1.0 20.4 19.9 1.9

TRIANG 1.0 16.7 6.8 2.0

Optimizing PSL for the Cray 0

The REDUCE distribution includes a standard timing benchmark. Table 6 presents the
time required for its execution on several different machines. All but the S-810 implemen-
tation are based upon PSL.

Table 6.
REDUCE Timings in Seconds

S-810 2.8
Cray 3.0
DEC-20 25.0
HP9836U 55.0
VAX 11/780 60.0
APOLLO 80.0
VAX 11/750 90.0

5. Summary and Areas for Future Work

PSL has been successfully implemented under CTSS on the Cray. Sites currently running
Cray PSL include Los Alamos National Laboratory, the National Magnetic Fusion Energy
Computer Center at Lawrence Livermore National I.aboratory, Kirtland Air Force Base,
and the Center for Supercomputer Applications at the University of Illinois. Performance
studies indicate that this implementation provides one of the fastest LISP environments
currently available. Hlowever, all the power of the Cray has not been realized. In mapping
from an ALM with 15 general-purpose registers, it was extremely difficult to make efficient
use of the many special-purpose registers and vector processing capabilities of the Cray.
This resulted in an implementation with many possible areas of optimization. Some areas
under consideration now include scheduling of registers and using the vector registers
during garbage collection.

6. Acknowledgnients

We would like to acknowledge the contributions made to the imnlementation effort by
Bruce Curtiss of the National Magnetic Fusion Energy Computer Center and Dana Dawson
of Cray Research, inc. We would also like to thank other members of the Utah Portable
Al Support Systems Pruject for their discussions on potential optimizations. We would
also like to thank Richard Gabriel for the many benchmarks and results he supplied and
allowed us to cite in this paper.

7. REFERENCES

[1] R. P. Galriel, Evaluation and Performance of LISP Systems, MI'T' Press,
1985,

(2] M. L. Gr.ss, E. Benson, and G. Q. Maguire, Jr., “PSIL, A Portable LISP
System,” The Proceedings of the 1982 ACM Symposium on LISP and Func-
tional Programming, Carnegic-Mellon University, Pittsburgh, August 1982,
pp. 88-90.

13] M. L. Ciriss, K. Benson, R. Kessler, S. Lowder, G. Q. Maguire, Jr., and J. W.
Peterson, PSL Implementation Guide, Utah Symbolic Computation Group,
jomputer Science Departinent, University of Utah, Salt Lake City, 1983.

Optimizing PSL for the Cray

[4] A. C. Hearn, “Standard LISP,” SIGPLAN Notices 4,9 {September 1966).

[5] A.C. Hearn, REDUCE 2 Users Manual, Utah Symbolic Computation Group
Report UCP-19, Compr ter Scicnce Department, University of Utah, Salt
Lake City, 1973.

