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ABSTRACT

Portable Standard LISP (PSI.), a dialect of LISP developed at the Univelqity of Utah, has
bncn implemented on the CRAY-lS and CRAY X-MPH at ihe Los Alarms N.~tional Labora-
tory and 6t the National Magnetic Fusion Energy Computer Center at I.awrcncc Livcrmorc
National Laboratory. This implementation was dcvclopcd u~ing a highly portable model
nud then tuned for lhc Cray architecture. The speed of the resulting Hyst~m is quite
imprwsivc, nnd lhc environment is very good for rsymbolic processing.
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10 Introduction

Research at the University of Utah toward developing a portable LISP system received
impetus in 1966 [4] when a model for a standard LISP subset was developed to make
the REDIJCE [s] symbolic aigebra package more p~rtabie. This rese~rch effort has since
produced progressively larger and more portable subsets of I/ISP [2], the most recent of
which is Portable Standard LISP (PSL)l.

Among the goals of the designers of PSL were to provide a uniform LISP programming
environment across a spectrum of machines, to produce a portable system comparable in
execution speed to other non-portable LISP systems, and to effe:tivcly support REDUCE
on different machines, PSL has met these goals and is currently being distrib~ted for
DECSystem-20s, VAXS running both UNIX and VMS, HP9836s, Apollos, Suns, IBM 370
class machines with C?vfS, Goulds, and a small version for the Macintosh. PSL is ready
for distribution to Crays running the CTSS operating system and is being developed for
Crays running COS. This wide range ~f machines demonstrates the ease with wl~ich PSL
is ported.

There are several reasons for wanting LISP on Cray supercomputcrs. One is the interest
in having symbolic programming environments on olie of the most powerful machirrcs
available, This would provide the capability of solving symbolic problems that would not
be feasible to SOIVCon less powerful systems. There is also interest in I}IC possibility of
combining symbolic methods with smne of the Iiirgc numeric progriirn~ typical of litrg(>
supcrcotnputcrs,

In this paper wc continue with a discus.. ion of the porting process uwx! to implcrlwnt
l)S1, on ~hc Cra~’, followed by a (lisc!l.ssion of the fu[ling that WM pcrfornlcd. We then
discuss some of the timing results, and conclude with proposals for future work,

2. Porting of PSL
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system is tested, changes may be made to the compiler or machine-dependent source code,
and the process is begun again. In order to more fu!lv understand the implementation
procedure, it is first necessary to take a look at the steps involved in PSI, compilation [3].

The compiler first translates LISP code into instructions for an abstract LISP machine
(ALM). The ALM is a general-purpose machine, with 1.5general registers and a stack. The
stack holds both return addresses and frames which are created upon function entry to
hold saved registers and temporary values across calls. Arguments to functions are passed
in the general registers, and values are returned in the first register. The ALM provides
approximately 50 instructions varying in com~lexity from simple move instructions, to
function calls, to lambda binding. Operands to instructions are either simple structures-
Iike registers, stack frames, and memory-or they are higher levei addressing modes like
car and cdr. ALM instructions are expressed in LISP assembly program (LAP) format,
which has the form:

(ALMopcode ALMoperand- 1 . . . ALMoperand-n)

After translation into ALM instructions, these instructions are then expanded, through
the use of macros, into target machine instruction-expressed in the same LAP format.
This is accomplished using a set of handwritten tables that describe each ALM instruction
as a set of target machim instructions. Several expansions ma~ be described--the expansio:i
chosen depending upon the opcrimds. The tables arc callmi cmacro (compiler lnacro)
cicfinitions.

I’rorr! hue there arc three separate paths that can be taken in the compilation process,
‘1’hc target nlachine ilistructions Cilll be translatc(.i into:

1. machi?~ ? cod{) and plncmi il)to the rrmmory c,f a running 1’SL system,

2, mnchino code and saved in a file for loading at a later time into a rllnning
1’S1, systcnl, or

~1 S2+S3
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Some support code had to be written on the Cray to interface the cross-compiled code
to Cray system functions–for example, input/output routines. The cross-compiled code is
assembled on the Cray and then linked with this support code for execution.

There is a carefullv graded set of tests that is used in the bootstrapping process. Each
test provides an ever increasing subset of PSL to be cross-compiled, shipped to the Cray,
assembled, and executed. A test that fails requires correction of the cmacro definitions or
the support routines (or, rarely, correction of other parts of the implementation procedure).
That portion of PSL that is successfully tested is then used u a basis for succeeding tests.
After all tests are executed, the major portion of PSL has been implemented.

3. Tuning the Implementation

Once PSL was successfully implemented, we ran a set of LISP timing benchmarks
develo~ed by Gabriel [1], The benchmarks were executed on the Cray, and the results
compared to their execution in PSL on other machines, As expected, the benchmarks
ran more quickly on the Cray. However, all the power of the Cray was not realized. For
instance, translating from an ALM with 15 general-purpose registers to the Cray with its
many special-purpose registers was a complicated task, one that the initial implementation
did not do well. None of the temporary (T) registers were used, the arithmetic (S) register
usage was not scheduled, and no vector registers were used.

At this point an optimization effort was undertaken at Los Alamos and the University
of Utah, Several ideas were proposed, some of which were implcrncnted, some rejected
and, at this point, sotne are still being considered, These optimization are dct,ailmi below.

A major feature of the Cray architecture when determining optimizations is the large
ratio between rncrnory and register access tinlc. On thf’ Cray the ratitl is about 14 tc 1,
while on more convcl~tional a.rchitccturcs the ratio is around 4 to 1. Since most of LISI)’S
irltcrnal i~~ti~.ity is accessing memory, w muc} ir, ~orrnation as possible must be maintained
ill registers. The Cray provides block move instructions that permit rmwerncnt of multiple
wor(i~ ‘o 01 from rncrnory at a cost of only 1 extra clock for each additional word, ‘1’hcrwforc,
optimization that combine acccsscs into block movvrncnt i~r~ advisable for the Cray, Using
this concept, wc found a number of potential optirnizations that, attempt to usc the registers
versus memory locations.

‘1’he first ( ptirnization involved moving the stack iilt,o rc~istcrs. one thought was to
II1OVCt}],’ cntirv stack il)to all of the vector registers (8 vc~c,tors , ouch with 04 elcn]cl)ts,

cull 64 hits ‘vidc) providing a ITIUC}Ifaster sutck. IIowvvcr t ! ‘~ . l~rc ar(’ no instruct ioi]s
f{)l’ ilCC(%Sillg a Vilrial)lc vrct,or rugistcr I]or 11Viiriiil)l($ r(!gistor in(lcx; t}llls W(! (:oIll({ IIot,

iln~;lrrucnt a moveahlc top of stack pointor, An idea iilol)~ silnilar Ii]lvs WNI to IIIOV(.

(t)(* stack into the ‘1’ rogistcrsr [C,i rwgistcrs, (M l)it,s wi(lo), hut, they also (10 not pcrnl it,
\:1‘!ill!l(’ ar, (”cw+ to a rogistvr. ‘1’he linal solution WM to nllocntc the currer~t sta(”k frame to
a set of tllr ‘1’rcgistms. S;nc(l nll ncccsrws to frarnc locutions are pcrfortriwl using con)~)ilc
tililc corlst.nllts, regist, crscoul(l ho uwvl ofroctivciy Vor {’XiitIll)l(’ , ac( {w to tll(! first fruillv
location could map into ‘1’20 wnd the rwcond friimv Io( n(,ioil would ho ‘1’21. lJMitlg t,ho ‘1’
r~’gistors, w’rcss to WW}Ifrtinw loc~~tiou is lwrforrIlud ill I clock cycle, instead of the 14
I)($fol(*. ofrsotting this advml)tagv is that upon Iunctior! entry and exit, thv stack fr{tlr]v
mllsl, ho rollwl to and from memory. Ilowevor, this could bc ~~(:corrl~)lisll(g(lusing fwqt block
trml~t+fer, Al~otllcr (lis~~tlvantagc iv tllt~t tho numlwr of ~ivail}tl)lt’‘1’rvgistor:~ j)utt+ n IiI]lit orl
tllo ~izc of n fratrlom ‘1’his li]llit col]ld Iw incrmuwd by ll~illg vector rc~iritorw ir]stcad of T
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registers, but we have not found this necessary.
A similar optimization was to keep heap pointers and other heavily used global variables

in T registers instead of memcry locations. These two sets of opt imizat ions resulted in an
improvement of approximately 25% in speed. However, because of the extra code required
to move the stack frames to ana from memory, the size of the code actually ‘ncreased by
about 10%.

An important optimization in the garbage collector takes advantage of the Cray’s large
word size. PSL on the Cray uses a mark and sweep compacting collector. One feature
of this scheme is that tk.e collector must compute the distance that each word must be
relocated, and then store that distance. Generally a separate relocation table is used to
store this relocation distance for each segment within memory. On the Cray, a 64-bit word
represents each LISi’ item (a LISP cons cell requires two 64-bit words). I?SL’S tagging
scheme allocates 8 tag bits and 24 pointer bits per item, leaving 32 bits left over. Since
the maximum relocation distance can never exceed the addressing size, 24 of the 32 bits
are used to store the rdocatioJA distax’ce for each word, Eliminating the reloc~tion table,
and the extra memory references to it, daubled the garbage collection speed.

An optimization that we have considered, but have not yet implemented, is to us?
the vector registers while performing garbage collection. During the marking and pointer
adjustment phases, each of the primary data structures are scanned to find active data.
The stack and symbol table arc scanned in sequential order, so we could block move them
into a vector register (64 words at a time) and then scan from the vector registers instead
of memory, Since a random. memory access requires 14 clocks, while a block move to
vector registers requires 2 clocks per access, we could rcducc the the access time for these
structurmr by a factor of 7,

Some opclations on the Cray, suc!~ as i]ltcgcr division, are fi~irly difficult to irnplcmcnt
directly in assembly Ianguagc., ; ud so were first implemented as calls to FORTRAN library
routines, Some of these are now irnplemerrtcd as in-line code.

t;encrally, ot}ler implementations of PSL hand cwlc critical t)arts of the systcm to
irnprovc fipccd, me original Cray implementation was the most port,ablc irrl~~icrrlcrltatiorl
to date (which rncant that less hand cra!ting was required to get the inititil version func-
tioning), The Cabricl I)cnchrnarks hclpod reveal areas that required tuning. Generally the
timing ratios bctwwn the Cray and othcl IJSL irllplt:n~cr~tatior~s shoul(i hc fairly consistcilt.
Ratios indicating poor Cray pcrforma,ncc rcvcalcd areas that could bc improved through
hand coding. For Cxarnple, it appcilrs that onc ctindid,ltc is tho !amt~(ia iili(l fluid I)inding
rn~:chanis~n nq illustrated by the rclmtive pcrforrnaucc of S’1’uk ~hown in ‘1’iil)l~ 5 below.
‘1’llis o!)tir:l~xi~tion ha..n’t hcn accolnplishcd yet, but shoIIld rwrult in significant sp(w({ ilrl-

provcrncn[,s in pr ‘grams lik{~lt,l’;il(JCK that tnilk(~ fnirly heavy IISP of flui(l bi]~(llrlg. on tl]c
(Jray, han(l-co(lwl routjinwr F!l,)uld attcrnpt to usc register ~c!leduliilg, as w(’11as rnirlimiziug
rcfv: cnces to rnonmry.
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Table 1 shows the improvements in the Gabriel benchmarks resulting from those op-
timizations that we have currently implemented. The benchmark p~ograms are briefly
described Lelow.

BOYER - a ‘theorem prover” emphasizing the use of “typical” LISP structure manipula-
tions.

BROWSE - an “expert system” emphasizing the use of pattern matching and of frames
for knowledge storage;

DESTRUCT - a program emphasizing the use of destructive list operatiolis such as rplaca
and rplacd;

STak - a program that times function calls using fluid (special) binding;

PUZZLE - a game implemented using many vector references; and

TRIANG - a board game benchmark.

Tah]e 1.
Real Time in Milliseconds

PSL
Benchmark Old New New/Old

BOYER 3.4 2.4 0.71
DROWSE 8.4 6.0 0.71
I) ES TRIJCT (),4 0,3 0.75
STak 1,1 0.9 0.81
I’[JZZI,E 1,0 (1,8 0.80
TILIANG 14,4 12,7 (?,88

4. Timings

Tablrs 2 dnd 3 illustrate the execution speed of 1’S!4 rcliiti” n to that of othw dialects 0!
1,1S1’ on t!~e VAX 1l/7tW. For thv silk(~ of brevity, rw+ultr tire giv{]l) for just a fcw of

Gabriel’s t)cnchmmrks. ‘1’}IVSC rc~ults, however, urc typical. An entry of “-” :nwms thnt o
bcnchltltirk wii~ not iibl(~ to cxcclltc in ttli~t didcct of 1,1S1’ at tll~: time these figures were
coll(!ct(!(lt ‘1’IIWC rctiult,s Sf!(>ln to fItlOW ih~t 1}S14 Ill it v(~ry fii~t l,[S1) 011 “COIIV(!lltiollil l’”

il.rCtl it(wtu r(w,

‘1’/)1)1;!2,
I{,(!NI ‘1’inlu ill Milliw:on(ls

VAX 11/780

INTII;I{.I,IS1’ VAX COMMONI,ISI)” lJltANXl,lS1’ I’sr,

:10%’1’:1{ h:],:] ~?m7 71,5 413

llltowsl’: 111.5 205,() f70,3 50,3
1)1’:S’I’I{,(J(I’I’ !l.4 (),4 1:1!7 :J,f)
$“hik f),7 4.1 0,3 !3.4
I](JfiY,l,l’; 110,:1 47,!i lo,:]
‘1’I{IAN(; I07;;.0 3(X),!) - 2122
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Table 3.
Normalized Execution Times

(shortest execution time = 1.0)
VAX 11/780

INTERLISP ~’AX COMMONLISP FR.ANZLISP PSL

BOYER 1.3 2.1 1.7 1.0
BROWSE 2.2 4.0 3.4 1,0

DESTRUCT 1.4 1.6 3.5 1.0
STak 2.4 1.0 1,5 1,3
PUZdLE 6.8 2.!3 1,0

TRIANG 5.1 1.7 1.0

Onc~ PSL was successfully implemented on the Gray, Gabriel’s benchmarks were executed
and the resldts were compared to their execution on other machines. Tables 4 and 5
summarize these results.

130YE-R
13ROWSE
DESTRUCT
STak
I)[JZZLI;
TRIANG

‘Rhk 4.
]~ea] Time in Milliseconds

PSL

Cray VAX 11/780 DEC-20 lIIM 3081

2,4 41.3 23.6 4.6
6,0 50.3 28.7 6,3
().3 3.9 2.4
0,9 6,4 2,7 1.7
0.8 16.3 15.9 1.5

12.7 212.2 86.9 25.4

‘1’iibl(! 5.
Normalized Nxccution ‘1’ilncs

(shortest execution tirnc -- 1,())
l)sl,

(;r~~y Vk X 1 I/780 l) I~;C-20 II)M 3081

I]OYI’;I? 1!() 17.2 ~).~ 1,{)

I)l{owsh: I ,() 8.4 ‘1.8 l.l
I) II;S’I’I{(J(:’I’ I .() 13,() 8,()
:; ’1’itk I .[) 6.() 3.() l,{)

I)(JZXI l~; I .() 20.4 ]{),{) 1,~)

TltlAN(: 1.(,I 1(;,7 6,8 2.()
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The REDUCE distribution includes a standard timing benchmark. Table 6 presents the
time required for its execution on several different machines. All but the S-810 implemen-
tation are based upon PSI,.

Table 6.
REDUCE Timings in Seconds

S-810 2.8
Cray 3.0
i) EC-20 25.0
HP9836U 55.0
VAX 11/780 60.0
APOLLO 80.0
VAX 11/750 90.0

5. Summary and Areas for Future Work
PSL has been successfully implemented under CTSS on the Cray. Sites currently running
Cray PSL include Los Alamos National Laboratory, the National Magnetic Fusion Energy
Computer Center at Lawrence Livermore National I,aboratory, Kirtland Air Force Base,
and the Center for Supercomputer Applications at the University of Illinois. Performance
studies indicate that this implementation provides one of the fastest LISP environments
currently available, Howeverj all the power of the Cray has not been realized, In mapping
from an ALM with 15 general-purpose registers, it was extremely difficult to make efficient
use of the many special-purpose registers and vector processing capabilities of the Cray,
This resulted ill an implementation with many possible areas of optimization. Some areas
under consideration now include scheduling of registers and using the vector registers
during garbage collection,
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