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POTENTIALITIES OF TEC TOPPING: A SIMPLIFIED VIEW OF PARAMETRIC EFFECTS

James F. Morris
NASA Lewis Research Center
Prepared for
U.S. Department of Energy
Division of Fossil Fuel Utilization

ABSTRACT

Reductions in the cost of thermionic-energy-conversion (TEC) modules
yield direct decreases in cost of electricity (COE) from TEC-topped
central-station power plants. Simplified COE, overall-efficiency charts
presented here illustrate this trend. Additional capital-cost diminution
will result from designing more compact furnaces with considerably in-
creased heat-transfer rates allowable and desirable for high-temperature
TEC and heat pipes. Such improvements can evolve because of the protec-
tion from hot corrosion and slag as well as the thermal-expansion compat-
ibilities offered by silicon-carbide clads on TEC-heating surfaces.
Greater efficiencies and far fewer modules are possible with "high-
temperature, high-power-density TEC": This will decrease capital and
fuel costs much more - and substantially increase electric-power outputs
for fixed fuel inputs. 1In addition to more electricity, less pollution,
and lower costs, TEC topping used directly in coal-combustion products
will contribute to balance-of-payment gains and national energy
independence.

EXECUTIVE SUMMARY

High-temperature, high-power-density thermionic energy conversion
(TEC) offers more power, lower costs, and less pollution from topping-
cycle generation: High temperatures enable substantial Carnot gains,
hence more power and less pollution from a given fuel input. And high
power densities allow great reductions in numbers of converters for a
given fuel input, hence much lower capital investments.

For a TEC-topped steam power plant the net overall efficiency with
0.15 bypass (K) is nygp =~ 0.34 + 0.38 npge or with zero bypass
nyop  0.34 + 0.45 nppes where nppe is TEC efficiency with optimized

leads. The corresponding 30-year levelized cost of electricity in 1975
dollars is for K = 0.15 COE30 ~ 4.9 + (17.6 + 0.064 C + 0.5 n +
75 30 TEC ' rEC
17.98)/(0.9 + nppe) or for K = 0 COE75 = 4.9 + (14.7 + 0.063 Cppi +
0.5 nrge * 15.1N)/0.75 + nTEC)’ where Cope 1S $/kWt for the TEC system

and N is $/106 Btu for fuel. Thus, with a 0.15 bypass 10% nppc vields



117 more electric power than steam alone; 20% NrEC: 22% more power; 30%
NTEC? 34% more power; and 40% Nppes 457 more power. Also increasing
nrrc With constant Cppg ($100/kW, for example) and N (Sl/lO6 Btu and

$4/106 Btu) effects substantial changes in COE;g relative to that for
steam alone:

N, $/lO6 Btu No TEC 107% nTgc 20% nTEC 30% nrEC 40% nrgc
30~V ~ VY ~1NY ~1 LY

1 44.3) mills COE75 6% more 3% less 10% less 16% less

4 104 KW-hr COE%g ~3% less ~12% less ~19% less  ~247 less

Referred to COEgg values for steam alone, 40% NTEC translates to ~7 mills/

kW-hr less COE%g with $1/10% Btu and ~25 mills/kW-hr 1eg% with $4/10° Beu:

Higher fuel costs heighten the influence of Nrgc on COE75.

These numbers indicate parametric effects of TEC and fuel costs as
well as TEC efficiency. But they fail to imply the great cost saving
possible with fully matured high-temperature, high-power-density TEC:

For negligible interelectrode losses and 10% back emission, using 1800 K,
30A/cm2 TEC rather than 1600 K, 5A/cm? TEC produces the same power output
25~to-317% more efficiently with one-seventh the number of converters.
Such gains are certainly worth striving to attain through TEC applied
research and development.

Recent findings on hot-corrosion protection, slag resistance, and
thermal-expansion compatibilities of silicon-carbide~clad heat receivers
predict successful TEC service in high-temperature coal-combustion prod-
ucts. And new compact furnace designs with much greater heat-transfer -
rates optimized for TEC with emitter as well as collector heat pipes
should allow further significant cost reductions.

Thus, high-temperature, high-power-density TEC topping not only
offers more power, lower costs, and less pollution but also promises
contributions toward balance-of-payment equity and national energy
independence.

TEC TOPPING-CYCLE CONSIDERATIONS

Thermionic energy conversion (TEC) brings significant advantages
to topping-cycle power generation: Substantially increased outputs
and decreased costs of electricity are possible through carnot-efficiency
gains inherent with TEC. But, its true potential remained veiled until



recently (refs. 1 to 4) because of the apparently defensive avoidance
of the high temperatures and great power densities attainable with TEC
(refs. 5 to 18). These TEC characteristics are strengths not weak-
nesses. And to amplify that observation this paper further indicates
the potentialities of "high-temperature, high-power-density thermionic
energy conversion' (ref. 1).

Reference 4 adapts partially optimized results for TEC topping of
a steam plant (ref. 3) to the cost-of-electricity (COE), overall-
efficiency chart from reference 19. This adaptation allows the com-
patible comparison of "thirty-year leverlized costs in mid-1975 dollars"
with "fuel cost assumed constant in fixed dollars" at $1/10% Btu for
coal (fig. 1). The "partial optimization of steam-plant topping with
> 20 A/cm?2 TEC yields overall efficiencies near those for the most-
efficacious advanced systems and COE's between the best and those for
conventional steam plants. And as reference "3"' concludes, 'we expect
that further significant improvements can be made by optimizing the
overall system design.' Such results should place TEC, STEAM among
the best systems on figure" 1 (ref. 4).

In the present paper, corrected and reduced reference - 3 equa-
tions imply influences of TEC efficiency (10 to 40%) and cost (100 to
400 $/kWy) as well as fuel cost (1 to 4 $/106 Btu) on overall efficiency
and COE for TEC topping of central-station steam plants. In turn plots
of TEC efficiency and power density reveal the striking performance
gains possible with the hotter emitters at 30 A/cm2 as opposed to 5 A/cmz.

To develop a simplified view of these parametric affects the follow-
ing sections discuss briefly some topping equations, TEC performance cal-
culations, and trends caused by major variables.

SOME RELATIONSHIPS FOR A TEC-TOPPED STEAM POWER PLANT

Reference 3 presents equations for the net overall plant efficiency
(“NOP) and total cost per thermal kilowatt (CTPT) for TEC topping of a
steam power plant:

nNOP = (1-h) {(l = K)nCnTECnI + (1-8)|K+ (1-K)(1- nTEc):' nsnc - f}

(L

In this expression n¢g 1s combustion-system efficiency (0.90); Nrec» TEC-

system efficiency (calculated); ny, inverter-system efficiency (0.94);
ng, steam-cycle efficiency (0.442); K, bypass-heat factor (0.15); S,
steam-system electrical requirements (0.027); £, combustion-system



electrical requirements (0.025); and h, balance~of-plant (BOP) elec-
trical losses (0.015). The parenthetic values allow considerable
reduction of (l):

nyop = 0.34 + 0.38 nprpe (desulfurization losses included, ~0.02) (2)

Although (1) in reference 3 needs only a parenthesis after the

second NrEC? the CTPT equation there lacks nTEC as a multiplier of the

inverter cost (CINV) and fails to pass dimensional analysis (CSTl.Z CCT
should be Cgp + 1.2 Cer)- The authors of reference 3 substantiate the
need for changes, yielding a corrected version of the CTPT equation:

C

) + (1 - K)(C + Kn.C

Cppr = Cp + C e cCsu

TPT + 1.2 (CE + C

H BOP tec ¥ "rEC

+ [%nc + (1 - nTEC)nC(l - Ki]<CST + 1.2 CCT) (3)

In equation (3) the C's are dollars per thermal-kilowatt input for the
furnace system (Cp = 18.0), high-temperature air heaters (Cy = 20.6),
emission control (Cg = 11.5), site labor and other BOP (Cgnpp = 109.0),

TEC system (Cppo variable), inverters (exception: $38.0/kW.), finish-
ing superheater (CSH = 12.2), steam-turbine generator (CST = 16.1),
and wet cooling towers (CCT = 11.6). Again a reduction results:

Cppp = 211.9 + 0.765 Cppg + 6.1 nop. ($/kWy) (4)
Dividing (3) or (4) by (1) or (2) yields the total plant cost per elec-
tric kilowatt:

Crpg = Crpr/Myop ($/kW,) (5)

This equation in turn leads to one for capital cost of the plant:

3
0.18 fixed charge X 10°mills/$ mills

c =C X = 0.0316 C
CPE = ™IPE * 0,65 capacity factor x 8760 hr/yr TPE ki*hr
(6)

Then a 2.004 EPRI factor produces 30-year levelized costs for oper-
ating and maintenance (CS&E, using 2.47 mills/kW+ hr from ref. 3) and' for



fuel (cgg) at N dollars per 10° Btu:

3 3 .
30 N$ x 107 mills/$ x 3.41x10” Btu/kW-hr, mill

C = 2 X = 6.82 N/n ( .
FE 6 , . NOP KW' h
10° Btu X nNOPkW hre/kW hrt

(2R 1"]
~——

(7
mills) @)

30 _ = —_— =

And the 30-year levelized COE in mid-1975 dollars according to the

ground rules governing figure 1 (refs. 19 and 4) is the summation of
(6), (7), and (8):

30 30 30
COEy5 = Cope * Cre * Come 9
The reduced version of (9) is informative:
OB = 4.9 4 (17.6+0.064 Coeret 0.5 Mot 17.9 N)/ (0.9 + Nroc ) mills
75 = % . . TEC™ V2 TTEC : ‘ TEC *W.hr
(10)

Reference 3 discusses increasing overall efficiency by reducing the
bypass factor from 0.15 to zero, which produces the following effects.

nyop ¥ 0.34 + 0.45 n.,.  (desulfurization losses = 0.02) (2)
Crpp = 210.2 + 0.9 Cppe + 7.2 nege ($/kWy) (44)
w0 . . / N mills
COEy¢ =4.9+ (14.7+0.063 Cppo+0.5 nppo+15.1 N)/(0. 75+ nppo) kW-hr)
(104)

Here, subsequent calculations utilize the more conventional 0.15 bypass:

Equations (2), (10), (2A), and (10A) for the variables composing
figure 1 emphasize the importance of TEC performance: "NoP varies



directly with NTEC* And the predominant nppe effect on COE%g derives

from the denominator (= nNOP) of the second term in (10) or (10A); the
numerator nNype effect is nearly negligible. Much stronger influences

result from TEC power densities, which subsequent sections discuss.
Those discussions cover results from converter-performance equations
presented in the next section.
TEC-PERFORMANCE EQUATIONS
The appropriate converter outputs are the current density,
Jo = Jgs ~ Jr (11)
the electrode voltage,

the voltage at optimum-lead terminals,

Voo, = V9 - V. (13)
the electrode power density,

Py = JoV5 (14)
and the effective power density with optimum leads attached to the
converter,

POL = JOVOL (15)

Here @p and §¢ are emitter and collector work functions, Vp is the
interelectrode voltage drop, Vg = ¢C + Vp is the barrier index or total
internal loss, Vp is the equivalent auxiliary input voltage (not used
in the present calculations), and Vi, is the voltage loss required for
optimum leads.

The current-density components correspond to emitter saturation,
2
Jgg = A(1 - Rp) Ty exp (-By/kTy) (16)
which has a collector-saturation counterpart,
2

and to the reverse flow Jrs which includes reflections, backscattering,
back emission, and other effects that diminish the output current



density. In equations (16) and (l17) .\ and K are Richaruson and
Boltzmann constants, TF and TC are emitter and collector temperatures,
and Rg and Ry are emitter and collector rcflection coefficients.

An important theoretic detail relates to a common inconsistency in
the treatment of back emission (refs. 1, 20 and 21): In generalized TEC
terminology back emission subtracts from the emitter current in obtain-~
ing the net output current. This usual definition of bhacl emission
requires it to be onlv that part of the collector emission that reaches
the emitter and thereby diminishes the output current according in a net-
flow balance at the converter boundaries. Thus, back emission is not the
saturated collector emission given by equation (17), regardless of RC
modification, because the emission barrier is incorrect: This observa-
tion derives from the fact that, in the generallyv cited TEC power-
producing mode, the emitter elecctron barrier (motive maximum) is a few
tenths of a volt (the interelectrode voltage drop) above its collector
counterpart. So during steady-state operation the preponderance of
collector saturated emission cannot clear the emitter sheath, even in
the absence of other deflecting encounters. Therefore, most of the
collector saturated emission must return to its source nullifying to a
large extent its effect on the diminution of the net output current.

Unless the interelectrode loss is much closer to zero than to its
currently common value of about a half volt, only a small fraction of
the collector emission, the true back emission Jgp, will reach the
emitter:

2

In this equation the effective back-emission reflection coefficient Rgg
comprises Ry and similar coefficients for all interelectrode mechanisms
that return collector-emitted electrons to their source - except those
for noncollisional repulsion by the emitter sheath. Thus, using equa-
tion (18) without Rgg produces a conservative estimate of the converter
output current. Such an approximation seems reasonable for low cesium
concentrations, reduced enhanced-mode pressures, and small interelec-
trode gaps. Of course, with zero interelectrode losses assumed (ref. 6
for FY 81) as well as negligible interelectrode-reflection effects,
equations (17) and (18) become identical.

A simplified, yet reasonable estimate of TEC efficiency with
optimum-lead losses (ngp) embodies the previously discussed inputs
(ref. 1 based on refs. 22 and 23) and serves as nrect

NoL =
1/2}

a8 2 _ 2
(Jgg - Jgg) {Q’E - @c - Vp - ¥y - 2[2.45X10 7 g (Tp - TR)/ (2 - ngg)]
Tpg (b + 2KTp) = Jpp (@ + 2kT) +5.7 10712[0.05+ 7.5%1073 (z;, - 1000)] (T - T&)

(19)



Here the last term of the denominator approximates nonelectronic thermal
transport while the factor following the first 2 in the numerator repre-
sents the optimum-lead loss Vj. Deleting 2V] from equation (19) trans-
forms that expression into one for the TEC electrode efficiency ngg used
here to compute the optimum-lead loss. Of course, the electrode effici-
ency is the true converter evaluation analogous to other power-generator
performance ratings. But because of relatively high TEC current densi-
ties and low voltages the optimum—~lead efficiency seems more pragmatic.
A discussion of results from (19) as well as (15), (10), and (2) follows.

SOME PARAMETRIC TEC-TOPPING EFFECTS

Figure-1l ground rules apply identically to figure 2, which is
another COE%g, "NOP chart. In fact four representative points from

figure 1 for coal-fed systems using $l/106—Btu fuel appear on figure 2.
With this orienting backdrop, topping results from equations (2) and (10)
offer additional perspective on COE%%, "NOP trends for variations of CTEC
and npgc. Incidentally the steam-plant basis for equations (2) and (10)

at 347% NNOP and 44.3-mills/kW-hr COE30

25 differs slightly from its figure-1
counterpart.

On figure 2 reducing Cpp. from 400 to 100 $/kWy decreases COE%? by

~19 mills/kW+hr at a 10% NTEC (nNOP = 37.8%) and by ~15 mills/kW-hrBSt a
40% NTRC (nNOP = 49,2%). Increasing NTEC from 10% to 40% drops COE75 by
~14 mills/kW-hr at a 400-$/kW. Cpge and by ~10 mills/kW+hr at a 100-$/kW,
Crgc. In accord with equation (2) a 10% nrpc Yields ~117% more electric
power than the basic steam capability; 20% NrECs ~227% more power; 307
NTECs ~34% more power; and 40% NTEC> ~45% more power. And for a

100—$/kwt Cpgc equation (10) indicates that a 10% n produces ~6%

30
E30 than that for steam alone; 20% NTEC? ~37% less COE75 than

75
steam; 30% NTEC? ~10% less COE;? and 40% NTEC? ~16% less COE;?.

TEC
greater CO

Because many feel that such a comparison at $2/106 Btu is more real-
istic than at $1/106 Btu, figure 3 is particularly meaningful. All fig-
ure-2 ground rules, except fuel cost, remain unchanged for figure 3. Note

the higher range and steepening trends for the COE%?, nyop relationships

in figure 3 compared with those of figure 2: Now COE%g's run from ~46 to

~85 mills/kW+hr (a span of ~39) instead of ~32 to ~66 (~34) in figure 2.

As equation (10) shows the COE;g alterations over the CTEC range

persist when only fuel cost changes: On figure 2 (3, 4, or 5) reducing

from 400 to 100 $/kWy decreases COEJS by ~19 mills/kW hr at 10% ngge

Crec 75



and by ~15 mills/kW-hr at 40% NTEC But as figure 3 reveals, increasing

\ige irom 10% to 40% drops c0E§g by ~18 mills/kW-hr at a 400-$/kW_ Cppe

and by ~14 mills/kW-hr at a 100-$/kW. Crgc- Of course the power-output
gains for TEC topping remain unchanged in the transition to figure 3
(or 4 or 5) from 2. However the equation (10) basic-steam COh;g rises

from 44.3 +o0 64.2 mills/kW*hr. And rfor a lOO—$/kwt Crgpc equation (10)

30
75

than steam; 30% NTEC? ~157% less

indicates that a 10% nppc produces ~17% greater COE than that for

30

steam alone; 20% "rEC? ~8% less COE75

COE3Y. 40% nppg, ~21% less.

Reference 4 mentions an effect of a $3/106—Btu fuel cost compared
with that of the $1/100-Btu value used for figure 1. Here figure 4
treats the implications of this fuel-cost change more fully. Again,

the COE;g, NoP relations exhibit an even higher range and still steeper
trends. And for a 100-$/kWy CTgc equation (10) indicates that a 10%

ntge Produces ~27 less cog30

75
less COE;? than steam; 30% NrEC? ~177% less; and 40% Nrgc? ~237% less.

than that for steam alone; 20% nTEb’ ~10%

Reference 18, "'using solvent-refined liquified-coal (sic) at a
levelized cost of $4.66GJ (4.92/106 Btu), "indicates 1978 trends toward
high fuel expenditures, which are even more pronounced today. So compar-
ison of figure 5 results with those of figure 2 is especially significant
in implying effects of sharply increasing fuel costs. To compare fig-
ures 2 and 5 the second paragraph of this section appears again here with
figure 5 numbers in parentheses:

On figure 2 (5) reducing Crec from 400 to 100$/kW,
decreases COE%g by ~19 (19) mills/kW-hr at a 10% NTEC

(nyop = 37-8 (37.8)%) and by ~15 (15) mills/kW.hr at a
40% ntpe (nyop = 49.2 (49.2)%). Increasing nppc from

107 to 407 drops COEgg by ~14 (27) mills/kW-hr at a

AOO—S/kWt Crge and by ~10 (22) mills/kW-hr at a
100-$/kWg5 Crpc. In accord with equation (2) a 10%
NTEC yields 11 (11)% more electric power than the
basic steam capability; 20% nppes 22 (22)7% more
power; 30% NrEC? ~34 (34)% more power; and 407 NTEC?
~45 (45)% more power. And for a lOO—$/kWt Crpc edua-

tion (10) dindicates that a 10% NrEC produces 6%

greater (3% less) COE%? than that for steam alone;
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~3 (12)% less COE30

20% nTEC’ 2 75 than steam; 30% nTEC’
~10 (19)% less COEZ.; and 40% n s ~16 (24)7 less
75 TEC
COE30
75°

For steam alone the COE;? is 44.3 mills/kW-hr on figure 2 for $1/106 Btu

and 104 mills/kW-hr on figure 5 for $4/10% Btu. So the last quoted set of

"40% npge ~16 (26)% less COE??” also means "40% npgo, 7 (25) mills/KW-hr

less COE%g.” As the dotted ''steam—COE" lines emphasize, higher fuel costs

. . 30
heighten the influence of Nppe OO COE75.

TEC-PERFORMANCE INFLUENCES

The importance of converter-performance improvements in TEC topping
of power plants (TOPP) stands out in figures 1 to 5. However, figures 6
and 7 emphasize a far more important characteristic of the results for
TEC with 10% back emission and negligible interelectrode losses: Chang-
ing from low emitter temperatures and low power densities to allowable
high-temperature, high-power-density TEC not only significantly increases
converter efficiency but also greatly reduces the number of TEC modules,
hence the cost, required for a given thermal input or a desired power
output.

Reference 1 indicated this effect in 1977 for space nuclear electric
power utilizing TEC with 925 K collectors. Those results parallel or
analogize TEC-TOPP implications:

These underlined values also reveal the significant output
and efficiency gains for TEC operation at 1800 K and 30 A/cm2 as
compared with 1650 K and 5 A/cmZ (refs. 5 to 8): The 28.5%
increase in optimum-lead efficiency means lighter radiators and
either more output power or smaller nuclear reactors and lighter
shield-dependent weights for NEP. The 10.87% higher optimum-lead
voltage requires less power conditioning capability and results
in lower transmission-line losses for a given quantity of output
power. The 5607% gain in effective output power density allows
many fewer converters and associated current-collecting bus bars
for a given output-power level. And of course the higher emitter
temperature (coupled with greater efficiency) enables the use of
substantially fewer and/or smaller emitter heat pipes. This
reduction in turn should produce significant decreases in
shielding-related as well as reactor weights. The higher emitter
temperature can also make possible considerably increased collec-
tor temperatures if parametric studies indicate the need for lower
radiator weights (the T4 influence).
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"Less power conditioning ... fewer converters and associated current-
collecting bus bars ... fewer and/or smaller, emitter heat pipes' all
relate directly to the TEC-TOPP application.

Similarly, in a comparison of figures 6 and 7 results, using
1800 K, 30 A/cm2 TEC rather than 1600 K, 5 A/cm2 TEC (1) for a given
power output requires about one-seventh the number of converters and
yields 25-to-31%-more efficiency, (2) for a given thermal input pro-
duces 25-to-31%-more power output with less than one-fifth the number
of converters. 1In fact figures 6 and 7 indicate that using 1600 K,
30 A/cm? TEC rather than 1600 K, 5 A/cm2 TEC generates ~12% more output
power within ~79% fewer converters for a given thermal input. These
potentially great cost savings are in no way implied by equations (3)
and (10) or figures 2 to 5.

But are the advantages of high-temperature, high-power-density
TEC attainable? The DOE TEC program aims at approaching converter
capabilities represented by figures 6 and 7. Figure 15 of reference 4
shows the definite progress in that direction. For the fully matured
TEC technology, figures 6 and 7 reveal that the higher efficiencies at
30 A/cm? are available for emitter temperatures down to 1300 K. Fur-
thermore reference 3 predicts much lower costs for converter modules
with the higher power densities in TEC TOPP even with emitters at
1500 K. However TEC service at much higher temperatures in coal-
combustion products appears feasible: References 24 to 28 support
this observation with gratifying findings on silicon-carbide protection
against hot corrosion and slag as well as workable thermal-expansion
compatibilities. And TEC with suitable silicon-carbide cladding appears
substantially more economical than with lower-temperature super alloy
protection (private communication with F. N. Huffman, Thermo Electron
Corporation).

In addition to the preceding potentialities high-temperature, high-
power-density TEC should encourage designs of more compact furnaces with
significantly greater heat-transfer rates. In turn high-temperature-
emitter heat pipes can collect outputs from optimum-cost furnaces and
transform them to TEC-input thermal-power densities. Such increased
degrees of design freedom should facilitate overall-plant optimization,
which could yield even lower relative costs. This capability is impor-
tant because curves for Crgc = 0 fall essentially on the dashed lines
representing figure-1 points.

Thus high-temperature, high-power-density TEC promises greater
efficiencies, far fewer topping modules, and improved overall-plant
optimization - decreasing capital and fuel costs as well as increasing
power outputs. And with lower costs, more electricity, and less pollu-
tion, TEC topping in coal-combustion products will also contribute to
balance-of-payment gains and national energy independence.

The potentialities of TEC topping alone warrant the applied-
research and development efforts required for their attainment.
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