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The FAR family of computer codes has been developed at Oak Ridge National Labo-

ratory to solve ideal and resistive, linear and nonlinear, 3-D full MHD problems in toroidal

geometry. Extensive application of an incompressible version of these codes has been made

to the linear stability of tokamaks and stellarators,1 ~4 and nonlinear studies have also been

recently completed.5"7 Present work includes generalization of the physical model in sev-

eral respects to incorporate the effects of compressibility, long mean free path, and thermal

conductivity.

A distinguishing feature of the FAR family of codes is the use of a fully implicit

numerical technique to advance the linear part of the equations. The application and

numerical properties of this method are discussed in great detail in the context of an

incompressible linear MHD model in Ref. 8, and its application to stellarators is discussed

in Ref. 9. The most interesting aspects of the fully implicit method as a linear eigenvalue

solver are the abilities to obtain rapid convergence in a small number of iterations and

to calculate instabilities other than the fastest growing mode, with both features realized

through control of the relaxation parameter A (time step size in the small Arf/p <C f^lx

limit).

In spite of proven favorable numerical stability properties in comparison with explicit

and partially implicit techniques, two commonly held notions discourage the use of fully

implicit methods: (1) that fully implicit methods are slow due to the inversion of large

matrices, and (2) that programming for fully implicit methods is difficult. While the first

objection is founded upon a point which is generally true, the iterations in MHD appli-

cations involve the repeated use of the same matrix so long as the relaxation parameter

(for linear calculations) is not changed. Linear calculations typically involve several tens of

iterations and nonlinear calculations involve thousands. In the adopted equilibrium mag-

netic flux coordinate system in toroidal geometry the matrix representation of the MHD

equations is block tridiagonal. We solve this system using the band matrix solver BTMS,1"

which performs an LU decomposition of the matrix, and then solves by forward and back



substitution. The expensive portion of the procedure, namely the decomposition, is per-

formed only once at the beginning of each calculation, and the results stored. Typically

this step requires no more than a couple of minutes on the MFK CRAY-II Computer.

The iterative portion of the calculation, which may require several hours of machine time

for large nonlinear runs, requires only the solution portion of the band matrix solver, for

which the operation count is comparable to that encountered in explicit schemes. Hence,

except for a single decomposition performed at the beginning of each calculation, the fully

implicit method employed in FAR is just as fast as an explicit method. Because of the

large matrices, however, storage requirements are greater than for less implicit methods.

Typical nonlinear calculations (300 radial grid points and 35 modes) require about 10

million words of storage.

The second objection to fully implicit methods, namely that the programming involved

in setting up the matrix is difficult, has been overcome to a great extent by automating

the matrix construction procedure. This automation is based upon our representation of

the MHD equations in toroidal equilibrium magnetic geometry, which yields a coordinate

system (p,0,() in which 0 < p < 1 is a flux surface label and generalized minor radius,

0 < £ < 27r is the toroidal angle. In this system a hnite difference representation is used

in p, and a truncated Fourier series expansion is used for the 8 and £ dependence. Hence,

dynamical quantities are written

(1)

where the coefficients f?£.a\ are represented by finite differences on a radial grid pj, and the

summation is truncated for some desired set of modes. In the angular dependence m0 + n£

the coefficients m and n are called the poloidal and toroidal mode numbers, respectively.

For axisymmetric equilibria, equilibrium field quantities are independent of both t and C

(n — 0 only), and for up/down symmetric equilibria only the cos or sin terms, not both,

are present. The equations are formulated in a manner such that all radial derivatives are

second order or lower. It is then possible to use second order accurate three point finite

difference expressions to couple quantities at radius pj with those at pj+i. The terms in

the linearized equations consist of constant coefficients times equilibrium quantities

g'«{p,6) = £ ( < O ) cos mO + g%*(p) sin m9) (2)



times dynamical quantities, so that there is coupling among the poloidal coitipniit'iits m, in

the ("filiations, but each toroidal component n is not coupled to other toroidal components.

Hence, each toroidal component n is described bv a matrix in the fully inipliui method

Kach row of this matrix expresses a particular poloidal component m of one of I he linearized

dynamical equations ieq at a radius p}. Each column multiplies the t?i' component of

the dynamical variable ivar at radius py by matrix elements which depend upon the

equilibrium, the dynamical equation, and the role of the variable in the equation. By

arranging the matrix in blocks of sequentially increasing radii, the radial differencing yields

a block tridiagonal matrix. Within each radial block our convention is to make sub blocks

for each dynamical equation (rows) and variable (columns), and each sub block contains

the poloidal mode coupling of a particular variable into a particular equation. Using

these conventions we have automated the matrix construction procedure by devising a

subroutine, BLOCK, to fill the matrix. Subroutine BLOCK contains information ab^ut

the equilibrium and dynamical mode truncations, and also the mode coupling coefficient

due to the convolution of such quantities. Also, stored in BLOCK are the chosen forms

of several of the most commonly used radial differencing operators. To construct the

matrix a call is made, for each term in each equation to BLOCK supplying the toroidal

mode number n, the equation and the dynamical variable entering the given term, the

equilibrium related quantity multiplying the dynamical variable in given term, the order

of the 9 and ( derivatives and the radial difference operator of the dynamical quantity

in the given term, and a numerical coefficient. With this information BLOCK enters the

contribution of the given term into the matrix, and the procedure of matrix construction

is reduced to one of categorizing and tabulating the equations, variables, and terms.

We have described two features which render a fully implicit approach to toroidal 3-D

MHD calculations tractable. The first is rapid computation speed which is attained by

performing a single matrix decomposition at the outset, sot that only the fast solution

portion of the inversion is performed during the many iterations. The second feature is the

automation of the matrix construction, which reduces the job of coding to straightforward

bookkeeping and facilitates changes in an equally straightforward manner.
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