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Inlrod^flinn 

The "fast-head-laiT instability has been observed at sev-
ml .-Juragr ring*. This is a singb-bunrh brant instability where 
the unstable motion can occur in either the horizontal or ver­
tical plane. Kohaupt1 and Tnltnan2 have offered a simplified 
tresimcnl of this instability by modeling the bnnch a* two rigid 
macioparticles ewtvting synchrotron csciDalions and that «t-
changing their longitudinal positions periodically. While the 
wake field forces which drive the fast-head-tall instability are 
the same ones which drive toe slew-bead-tail instability,8'4 the 
Rroivih mechanism b considerably different. For the (low-head-
tail instability the chromalicily of the storage ring couples the 
transverse forces and the longitudinal motion such as to produce 
a net damping or growth when the transverse particle motion is 
averaged over a longitudinal oscillation period. The •low-head-
tail effect on the transverse motion is similar to tin resistive 
effect on an oscillator where the sign and strength of (be re­
sistance is determined by the chromatirity. The growth rate is 
typiraliy stow compared with tbe synchrotron frequency. On the 
other hand, the fisl-head-tail instability is similar to the case 
of a parametric oscillator where the particle motion becomes 
unstable when the oscillation frequency is shifted to a resonant 
value. As in the case of the parametric oscillation, the coupling 
at threshold is so strong that a very rapid increase of growth 
rale with hunch current occurs once threshold is exceeded. 

The two particle model describes the particle motion with 
two norma] modes; below a certain stability threshold, these two 
modes are stable with different frequenrie •• '• j the limit of tero 
beam current only one of these modes has a renter-or-cbirge mo­
tion. However, as the current is increased, both modes acquire 
ccnter-of-charge motions and at threshold the eenter-of-eharge 
components of their motions Become equal in magnitude, thus 
when the center-of-charge motion is excited by an impulse as 
by an injection kicker, the relative amplitude of the two modes 
depends upon the ratio of bunch current to the threshold cur­
rent. We shall describe the character of this coherent motion 
both theoretically and expcrhneatafly-

Equation of Motion 
In formulating the equations of motion for (he two marrop ar­

ticle model we shall use a slightly different development from 
Kuhaupt1 in order to compare the particle motion with that 
observed experimentally. The mode) treats a bunch is the stor­
age ring as a pair of rigid macroparticles each containing half 
of the population of the bunch and each osciUatiag longitudi­
nally at the synchrotron frequency exactly oat of phase with 
theotber. Twice in each synchrotron period the two mncropsrti-
clrs pass each other longitudinally and interchange roles as bead 
and tail buncb. As the bunch traverses the vacuum chamber, 
and particularly Ibe it cavities, each macroparticle generates a 
transversely deflecting electromagnetic wake field which persists 
behind the psrticte for a period which is long compared to the 
length (in time) of the bunch but short compared to the orbital 
period. With this assumption about the wake Geld, at any given 
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moment the tail particle feels the wake of the head particle but 
act vice versa. 

We take the free betatron frequencies of the two macropartt-
eles to be equal and constant which is tantamount to setting the 
chromnticity equal to tero. When the head particle is execut­
ing a betatron CisciUatioa and its transversely dcilecUog wake is 
varying accordingly, the tail particle is I :ng driven transversely 
jest at its resonant frequency. -

Let us number tha particles I and 2 o J denote by r, and r, 
their time-displacements from the center o! the bunch, 

f i - ( T ) j f n , ' , ' M d ' » = r' • < 1 J 

where rm is the maximum time separation of the particles— 
related to the bunch length, ( is the aiimuthal position of the 
bunch center, and v, la the synchrotron tune. 

If Vjj Is the betatron tune and l(r) describes the time-
dependence of the transversely-delecting wak ield, the equa­
tions of motion of the two particles when i -tide 1 had* 
particle 2 are 

*7 + 2oVi + t $ i = 0 , d 

* $ + 2 a 4 + P?*'3 s=/('i- a» «I 
(»} 

where J roeams ii/it. The equations of motion when particle 
2 leads particle 1 are 

^ + Sas4+l'2c| = / ( f i - r t ) i i , 

l5 + S«I ,j + ti|l2»cO 

and 
(3) 

The damping eoemcient a can be taken to include both the 
radUtiondampimT^agdanyotbnskwd^nipmg^oftlMcobetent 
motion, such as the stow-bead-taD damping. 

Equations (2) and (3) may be solved analytically for any 
lunctna QrL However, for ease of presentation we will re­
strict ourselves to the case where f(r| is a step function, I.e., 
/(r) = 0 for r < 0 and fir) m If for r > 0 where A' is a 
constant proportional to the bunch current. 

In order to simplify the form of the solutions far <i and i j , 
we use the following definitions: 

f^sd- inur/p, 

«f - «£ -a*audit - tf+oirfAo 
where m is an integer chosen to give 0 < $g < 2r. 

The solutions for x\ and *i can be written in one of two 
forms depending upon the relative position of the two particles 
m the bunch. When particle one leads particle two, Let, when 
0 < *4 < w, we can write the solution in the following form 

v.. 
ft - [MK*j] Pi 

/ z lsms/^ 
(») 

•Slow in this case means damping times bag compared 
synchrotron period. 
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and when particle I traits particle 2, i.e., when IT < 9A < i*, 
the following r^m is used Tor the solution 

m 
r*ii r*«* ft = [IBIW] ft 
IftJ > IftJ (Sni+l)«/l-, 

l i te 4 X 4 matrices lor TA and IB may be written as 

KM t = f ! A / , < 9 « " I B 1 1 

where Af| and Aft are 2 X 8 matrices given by 

(7) 

and 

JUMe^JsBiT^ 

»> 

TE»* ««M»«A 

To obtain the genera) solution at an arbitrary value of 9 
in terms of the initial values of S\, ft, 13 and ft at S = 0 
is now quite simple. First one starts with the initial values of 
the vector 3 «= | i j , ft, t 2 , j y and repeatedly multiplies it 
first by the matrix TAI'/v,), then by TBin/u,), so that one 
obtains the value of vector 2 at the end of every half integral 
synchrotron oscillation. These values (or 3 are then used as new 
initial conditions in Eqs. (5) and (0) to obtain X at values of # 
during other portions of the synchrotron osciUatioa. 

It should be noted tha*. it is only necessary to evaluate the 
total matrix for one complete synchrotron.oscillation to deter­
mine the stability of the motion. However, experimentally the 
motion is observed on a pickup electrode every revolution (i-e., 
every time * — 2*p + s\» with p an integer). If the motion 
was sampled only every synchrotron oscillation period, the ob­
served frequencies of the motion would be different from those 
actually obtained by observing the motion every revolution. In 
Appendix A we follow the development of Kobaupt and consider 
the transverse motion when it is sampled once every synchrotron 
period. If we use (be approximations that v, < Pa and * C 1, 
the instability threshold for K is then approximately given by 

•fftti fttkcU ' 
. 4*0f j W 

An experiment was petionned at PEP where the center-
of-cbarge motion of the beam was excited by a single kicker 
pulse. The resulting motion of the eenfer-of-cherge, observed 
nt a pickup electrode, is shown for several value* of the beam 
current in Figs. 1(a), 2(a) and 3(a). The instability threshold 
current for these series of experiments was 14mA. We note that 
at the current approaches threshold, a beat pattern in the usual 
damped betatron oscillation appears; the amplitude of the beat 
increases while the beat frequency decreases. In the spectrum 

analysn of the motion we also observe an extra frequency ap­
pearing slightly bolow the usual betatron frequency. 

In Figs. 1(b), 2(b) and 3(b) we show the results of a com­
puter simulation for the two-particte model described above. 
The quantity plotted is the eenter-or-cHrge signal of the two-
particle beam sampled every revolution for several values of 
the coupling parameter K as K approaches threshold. Figure 4 
shows the spectrum of the two-partkle motion when K » 0.988, 

Fig. 1. Comparison of experimental measurement with the cal­
culation using the two-particle model. Figure shows the center-
of-cbarge response to a single kicker excitation as sees by as 
electrode pick-up. The beam current is 13 mA. The other pa­
rameters are v# •» 18.10, v, ™ .044, and Jf /ifteraasfat •» 0.77. 

IT* Wz 
Fig. 2. Same as Fig. I, but with beam current increased to 
13mA and K/Kti,t„hM = &•*• 

Fig. 3. Sasne as Fig. 1, but with beam current increased to 
13.8mA and K/Ku,uh<*4 — 0.00. The threshold current is 
14mA. 

0.17 o.ie 
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Fig. 4. Spectrum of the two-particle motion near the threshold. 
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Fig. fi. The frequency spectra of tbe two fast-head-teil modes in 
the tuo-parlicle model. The solid curves are tbe spectra for one 
mode and the dashed curves are for the other mode. Tbe fre­
quencies of the two modes become degenerate at tbe instability 
threshold 9 = K/KthruMi = *• 
which is close lo but still below the Instability threshold value 
of k m i.OS. This spectrum can be repeated for other beam 
currents lo yield Fig. S (see Appendix A). Note the similarities of 
the experimental results and the computer simulations although 
the exact vslues of K used for the comparison have been adjusted 
slightly for these comparisons, 

For the experiment at PEP the approximate value or 
A'ltrMfteM w 1-02 whit* corresponds to a deBection angle of 
an electron In one revolution 

A(j j ) t a f f - lS*rad/mmX**„d . (10) 

This deflection angle b consistent with the estimate of the PI? 
rf cavity transverse impedance. 

Appendix A 
We define the matrix ff is tbe transformation matrix which 

transforms the vector (ij , P%, * j , ^>) at dx-sO to the vector 
•t 9A « 2»M- Therefore 

B - W»A - S»to> X WtA - »M) 1*1) 

Next we define the complex pbamn <j sad d by 

(«W+<t\tv - «"**' C" iu M2> 

If we make tin approximation that vt *C *tj then the matrix 
Miir/v,) from Eq. (8| may be approximated as 

where 9 = A x / 4 i v , is a dimensionless parameter that speeifies 
tbe strength of tbe wake force. 

The transformation of the phasors through one complete 
synchrotron oscillation cycle is then 

U^Ml l I «'» > J U*(0)1 • { M ) 

The motion is stable when g < 1 and we can write the phasor 
eigenvalues as X| = e~'* and Xg =e** with 0 w stn(c>/2). The 
corresponding eigenvectors are 

For the case y > 1 the eigenvalues an given by 

Xi=e"* and Xa = -^ when «<°«Otn(p/2) 
(An) 

and the corresponding eigenvector* ate 

*=L- iJ - * - L A J - <A7) 

For small values of the parameter 2*aft>,, the stability Hmit Is 
li > 0, or 

tf<!i2L!£ or a < l iM) 

In tbe stable region with j < 1, the center-of-charg» signal 
Xt(6) + Xj[6) can be computed not only at half- synchrotron* 
period intervals but for all 9 as described in tbe text. A Fourier 
analysis is performed to yield the spectrum of this signal, The 
result is that one mode contains the frequencies /« + {#/2f) f, 
+ m/> with m = odd integers, while the other mode contains the 
frequencies ff - (cV2*) / , + m/, with m B even integers where 
Sg and f, are the betatron and theaynchrotroa frequencies, The 
spectra of both modes are plotted in Fig. 5 versus the parameter 
9. The amplitude of these spectral lines are lueh that only the 
m = 0 and m= 1 lines are not negligible. These two lines come 
closer as the beam intensity is increased towards the threshold, 
in agreement with the experimental observation. 
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