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ABSTRACT

This report, a year's progress on "A Systemtatic Procedure for

Keservoir Claracterization'", deals with a variety of topics all
centered around the main goal of making numerical reservoir simulation
results conform mere closely with geologic descriptions.

The first part of the report discugses results on conditional
simulations of miscible displacements din raudomly leterogeneous
permeable media. The focus here 1s on locct or macroscopic
dispersicn, the dispersion euperienced at a fixed point in the medium.
Macroscopic dispersivity has many of the same dependeucies on
reservoir properties as does megascopic dispersivity, but it seems to
be less time dependent ana is always smaller. We have uot discovered
a mathematical model to describe its behavior.

A  major portion of the report deals, with statistical
descriptions. We investigate the bias and precision of standard
measures of heterogeneity, the Lorenz and Dykstra-Parsons coefficient.
Aiter this, the work explores the benefits o1 using a distribution
type characterization parameter in exploring heterogemeity. Je find
that distribution type 1is as sensitive as mobility ratio iu
determining sweep efficiency. Other statistical topics dealt with
include addressing the sampling issue in correlating log-derived and
core permeabilities and in generating a two-dimensional stochastic
field that mimics an actual eolian reservoir.

The f{inal major portion of the report describes our mapping
efforts ou the Page sandstone outcrop in northern Arizona. The
mapping is to be used in generating both deterministic descriptious

and in calibrating the stochastic descriptions discussed above.



A SYSTEMATIC PROCEDURE FOR RESERVOIR CHARACTERIZATION

Annual Report October 1, 1985 - September 30, 1986

PART I. TINTRODUCTION

We define reservoir characterization as the process of assigning

spatially varying input to a numerical simulator. This input should
reflect the geologic classifications existing at the point to be
estimated and contain the correct deterministic trends if such exist.
The other components will be captured from statistical descriptions
(most 1likelv values, variations, and spatial correlations) for
each geologically distinet wunit. Finally, the dinput should be
adjusted for the scale of the minimum granularity (grid size) of the
simulation.

A possible procedure for reserveir characterization is:
1. Identify and map geologic units present in the reservoir. Unit
boundaries may be observed from well-to-well correlations, assigned
from a geologic model, or taken as stochastic variables themselves,
2. For each geologic unit gather and process data to isolate trends
and to determine the statistical descriptions. Hydrologically homo-
geneous units may then be identified. These mav or may not coincide
with the geologic units. Clearly, this step will place considerable
reliance on outcrop and wellbore (core/log) characterizations,
3. Cover the region of interest in the reservoir with an appro-
priate grid. Each grid falling within a given hydrologic unit is
assigned properties based on the deterministic trends and statistics.

Grids falling on top of unit boundaries require special attentionm,



inasmuch as the nature of the boundary itself (for evample, shale or
erosional surface) will determine parameter assignments.

4, Values assigred in item 3 must be adijusted for the size of the
grid blocks, since blocks are invariably much larger than the scale of
variability. For deterministic trends, this involves assigning
"pseudo" properties; for the other wvariations we will adjust
dispersivities, capillary pressures, and/or fingering factors.

5. Fach ensemble of parameters must be conditioned to agree with
aggregate measures, such as well tests, or with actual measurement if
a grid block happens to contain a well.

The work discussed here can not fully develop this entire plan
in detail. A thorough methodology requires a degree of wvalidation
(comparison between actual and predicted results) which is beyond the
scope of the original work (Lake et al., 1985). In the following
report we propose several steps which are intended to investigate the
validity of the proposed procedure and to expose the strengths and
weaknesses,

This work falls into four parts. Under the heading of
"Conditional Simulations" we discuss results of simulations applied to
stochastic fields. In the area of "Improved Data Handling" we give
results of reconciling core and log data using non-normal
transformations for improved regression, bias of heterogeneity
measures, and methods to generate stochastic fields. Under
"Heterogeneity Classification" we discuss the distribution of eolian
geologic features and relate these to statistical measures.

"Procedure Validation" concludes by giving results of generating




two-dimensional stochastic fields and the results of pore level

modeling.

PART I. REFERENCES
Lake, L. W., M. A, Miller, and G. A. Kocurek, Department of Energy

Proposal, 1985.



PART ITI. CONDITTONAL SINULATICN

Conditional simulation is a stochastic approach to an
indeterminate problem. 0il reserveoirs are invariably heterogeneous.
Normally the only information available is the reasurements at certain
points through the wells, As to the properties between these points,
assuming the measurements at these points are reliable, the best we
can do 1is to interpolate using statistical information: spatial
correlation and variation according to the geological environment.
Both topics are covered in later parts of this report.

When a field is to be simulated, at best the following
information is available:

1. Deterministic properties at certain given points,

2. Spatial distribution or correlation of the properties.

A conventional simulation can use only the deterministic part of
the information; therefore, there is a lot of uncertainty in the
scaling and averaging of permeabilitv wvalues. In a conditional
simulation a stochastic field is generated using the given correlation
function, which mav be obtained from geological characterization, and
then "conditioned" to be consistent with the deterministic
information. A simulation run using this conditioned stochastic field
generates a possible outcome. A large number of such simulation runs
with independent stochastic fields will then give a statistical view
of the problem.

This approach not only gives a more realistic result by including

heterogeneity with both deterministic properties, physics and




indeterministic information, but it also can give an estimate of the
possible error due to the uncertainty of the given information.
Another application of the method is to solve the problem of
scaling. Because of the 1limit on the number of grid blocks in a
computer simulation, details inside the blocks will be averaged out.
Conditional simulations run at different scales can give an effective

scheme for averaging the properties.



MISCIBLE FLOODING SIMULATION

The conditional simulation discussed in this section consists of
first-contact miscible, equal viscosity, equal density displacements
in randomly heterogeneous permeable media. The media are random in
permeability which are distributed according to Heller's method with
preconditioned amount of variability (as measured through a
correlation length). See Part III for theoretical treatments of both
statistical measures of variability and correlation. See also Arya
(1986) for details on the Helier procedure and its properties.

Earlier work (Arya et al., 1986) has established the behavior of
cross— sectionally averaged (megascopic) dispersivities in randomly
heterogeneous media. To summarize briefly, S\E generally varies with
dimensionless time as shown in Fig. II-1. For smalil tD’ aME §,TOWS

s} is constant

indicating channelling; for large trr Oup

lineariy with tD

indicating purely dispersive Dbehavior. The transition Dbetween
channelling and dispersive behavior is smooth and occurs over a finite
time interval. During the channeling mixing zomes grow in proportion

to t during dispersive mixing the zones grow with the square root of

o}
thy but they do not lose the features of the initial channeling

behavior.
Based on the seminal work of Taylor (Arya, 1986) the megascopic

dispersivity varies according to

—tD/AD

a
ME 2
T - [Aptpy=Ap(l - e )]

Uﬁ |<2Or.>

for randomly heterogeneous media with exponential correlatiom. CV is

the coefficient of variation and AD is the dimensionless correlation
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Figure II-1. Schematic diagram - variation of dispersity

with time.



length of the permeability field. The behavior of the above equation
reproduces that in Fig. II-1. Two special cases are of interest. If
the correlation length is much smaller than the medium length (KD <<

1) aME becomes

where the mixing is dispersive. If the correlation length is large we

we have
OE
L
where the mixing is through channeling and the medium is effectively
lavered. If XD is infinite, the medium is strictly layered. Both
cases pertain during certain types of permeable media flow.
In the current section we continue this work through simulations
from which we will derive the macroscopic dispersivity o

MA"®

Macroscopic Dispersion in Permeable Medium - Macroscopic dispersivity

is the point value of dispersivity obtained at any (x,y) location in
the permeable medium. The macroscopic dispersivity, Aya controls the
rate of mixing and thus the formation of a miscible front in solvent
flooding. The variables which affect megascopic dispersivity, such as
the magnitude of heterogeneity (Dykstra-Parsons coefficientVDP), the
spatial correlation for permeability), the aspect ratio of the
two-dimensional model, and the magnitude of molecular diffusion also

influence the macroscopic dispersivity though by a different magnitude

and also in some cases in a different manner than for aME'




Procedure for Calculating Macroscopic Dispersivity - In this section

the method used to calculate macroscopic dispersivity at any point in
the two-dimensional, finite-difference computer simulations is
outlined. Macroscopic dispersivity is a measure of the local mixing in
the permeable medium. It can be measured at any point in the
two-dimensional domain. In a numerical model the dispersivity measured
at a grid-block 1is considered to be macroscopic. Macroscopic

dispersivity « is primarily a function of the local heterogeneity

MA
but 1is influenced by the variations in transport properties of the
entire system under comnsideration.

In order to determine the macroscopic dispersivity at any
location in the numerical model, the concentration history at that
location is required. By "concentration history" we mean the variation
in concentration at any location as a function of dimensionless time
(tD) or injected pore volumes. The arrival of a specific concentration
contour at any location depends on a variety of factors such as the
degree of heterogeneity and the distribution of permeabilities. Thus,
in a heterogeneous permeable medium, at any fixed x-location, the
fluid arrives at different times across the cross—section. This is
because of wvariations in permeabilities being transformed into
variations in fluxes, and therefore, the fluid travels at different
velocities in different regions. This variation in travel velocities
is seen in Fig. II-2, which shows concentration histories at Xp = 0.5
for a simulation case. In this case, the VDP is 0.6 and the aspect
ratio of (L/W) the system is one. There are 40 grid blocks in the y

direction and therefore we have forty different concentration

histories. When the permeable medium is homogeneous, the velocity



00

1.

0.75
1

CONCENTRATION
QISO

0.25
1

10

0.00
L

(&)
o
o

0133 OiSO 0{67 Oi83
DIMENSIONLESS TIME

Figure II-2. Concentration history at xD=O.5, VDP=0.6, L/w=1

1.

00




11

gradients are also uniform. In such a case, the fluid travels
uniformly across every cross-section and at any fixed =x-location
(i.e., location in the flow direction), the concentration is the same
across the cross-section. Therefore, all history curves are identical.
Thus, the width of the band over which the concentration histories are
distributed gives some idea about the magnitude of heterogeneity. A
large distribution of concentrations at any cross-section also means a
displacement with channeling. Large transverse mixing will result in a
narrow band of concentration histories.

This concentration history at any grid block can be matched with
an analytical solution of the one-~dimensional convective-diffusion
(C-D) equation to determine the macroscopic dispersivity in that grid
block. An example of such an analytical solution would be the solution
for the infinite boundary conditions which can be rewritten as
7%

] - erf] ——2
’) i
2en/Npe

@]
1
1|

Rearranging this equation,

*p7tp
2Vt /N D
D' "Pe

The above expression can be written in the form of the equation of a

straight line

D D /N erf l(1-2¢.) (11-1)
/t—— Pe D

. -1 . —
A plot with erf (1—2CD) on the x-axis and (xD—-tD)//td on the y-axis
is a straight line for a fixed value of X This plot is also knowr as

the log-probability plot because plotting concentration (instead of



12

the inverse error function) on a log-probability paper gives the same
figure. The macroscopic dispersivity can be calculated from the slope
which is equal to 2/ﬁ;;. This procedure can be repeated for every
point ir the two-dimensional flow domain. The macroscopic dispersivity
calculated using the above procedure is only an approximate value
since the solution of the C-D equation with boundaries at infinite
distance is used. There is ar additional approximation because a 1-D
solution is used in a 2-D field.

Figure II-3 shows such a log-probability plot at a fixed x
location (at X, = 0.5) for every point in the cross section. Each
point has a unique value of slope which depends on the concentration

history at that point. In this specific case, V is 0.6 and Fig. II-3

DP
is derived from Fig. II-2 which shows the corresponding concentration
histories. This matching procedure is different from the one used to
determine megascopic dispersivities. In the case of megascopic

dispersivities concentration profiles (CD vSs. ) averaged across a

X
D
cross—-section are used to determine dispersivities. But to calculate
macroscopic dispersivities concentration histories (CD vs. tD) at
every grid-block are used. Thus, the megascopic dispersivity Uy is

determined as a function of time and the macroscopic dispersivity OMA
is determined as a function of spatial location (xD, yD).

In a heterogeneous system, the arrival time for concentration at
each block will depend on the path taken by the particle to traverse
from the inlet to its present location. The shortest path is a

straight line, but due to the tortuous nature of the permeable medium,

the path taken by each particle is different. Figure II-4 shows the
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schematic diagram for a hypothetical situation, when two paricles take
completely different paths to arrive at the fixed X location. The
equivalent area travelled bv each particle depends on its path and the

velocity of each is inversely proporticnal to the area covered. The

breakthrough time for anv particle is given as

BT

And that for rarticle "1" i

From the above equations, u, can be expressed as

1

u = u——-—-—t (II—Z)

Therefore from Eq. (II-2),

BT
L tBT t D t = where t_ = St
BT TYTRTEL BT D whe V7
t] tp

BT
However, in an ideal displacement, t = X

t_ D
1T % . BT
Dy
Or in general,

t

t D
P, Y% T T % TBT (I1-3)

i tD
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The above definition for t_. can be used in place of t_ in Eq. (II-1)

Di D

(or Eq. 11-2) to correct for different arrival times for

concentrations at each point across the cross-section at a fixed x

location. This correction results in the arrival of CD = 0.5 for all
points across the cross-section at any location X such that ty = ¥,

Figure II-5 shows such a corrected plot for the results in Fig. II-3.
The slope of each corrected 1line 1s then determined and the
macroscopic dispersivity is calculated using Eq. (II-1). All the lines
in Fig. II-5 are mnot perfectly straight because of the error
associated with the analytical solution which is not exact (Brigham,
1974) . The slope of each curve should be taken in the portion which is
nearly straight and has the best fit (i.e., the highest 1linear
regression coefficient). It was observed that taking the slope at
(0,0) (where XD =tD and CD =0.5), was a very good approximation in
most of the cases. However, if the point of observation is located in
a very high permeability block, the concentration may reach the
maximum very rapidly and in such a case, the slope of the straight
line at (0,0) is very high. Figure II-6 shows such a situation. In
this case, the true macroscopic dispersivity is given by the straight
line portion of the curve and not by slope at (0,0). Thus, care must
be exercised to account for these variations when macroscopic
dispersivities are calculated at each point. The dispersivities

calculated at any fixed x_ location (there are Ny values) are then

D

averaged to determine the mean macroscopic dispersivity at that Xp
location,

It may nrot be possible to determine dispersivities for every

point 1in the cross-section due to one of several reasons. It is
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possible that all the concentrations at a grid-block are either below
or above the (0,0) point in the log-probability plot for
concentration. In such a case that point cannot be used for measuring
dispersivity because the (0,0) point is needed to correct for the
different arrival times. This situation typically arises at points
very mnear or very ifar from the iniection face where concentration
changes occur either very rapidly or very slowly. It can also happen
in regions with very high or very low permeabilities. This results in
a different number of total points (across a cross—section) along the
x locations where macroscopic dispersivities are averaged. The average
aMA values are influenced by the total number of macroscopic
dispersivities used to determine the average. This effect is corrected
by calculating the standard error for the mean aNA at each location.

This standard error calculation takes into account the number of

points used to determine the average o Tn addition to the average

MA®

aNA values, the curves indicating the high (average+standard error)

and low (average-standard error) values for dispersivities are also
shown. The high and low values indicate the degree of variation in

aMA's at that location. The standard error is calculated at the 95

percent confidence level and is «a +1.960/Yn where o is the standard

MA™
deviation of Cyia and n is the number of points in the set.
Macroscopic Dispersivity in a Homogeneous Medium - There are two

reasons for calculating macroscopic dispersivities in a homogeneous
system. First, to determine the accuracy of the procedure described in

the previous section for determining o Second, to determine if the

MA

correction procedure used for correcting megascopic dispersivities for



numerical dispersion is also applicable for macroscopic
dispersivities.

In a homogeneous medium there is no physical dispersion and the
displacement is stable. The concentration front moves uniformly with
the same velocity at every point across a cross-section and the
macroscopic dispersivity 1is the same at every point across any
cross-section. This dispersion 1is solely due to the numerical
truncation error. The magnitude of this dispersicn depends on the size
of the grid block and that of the time-step used in the numerical
model. In a homogeneous medium, we find that the average macroscopic
dispersivity changes little with distance. This observation can be
seen in Fig. II-7, which shows variation in o MA with distance for two
homogeneous cases. The only difference between the two cases is that
one has 40 blocks in each direction and the other has 20 blocks in
each direction. The magnitude of this dispersion is approximately
Ax/2, which is also the value expected from the theoretical results
(Lantz, 1971). In Fig. II-7 dispersivities near the entrance are
higher than the average in the homogeneous system. This behavior is
due to boundary effects. In these analytical calculations to determine

a a solution which assumes that the boundaries are at infinite

MA?
distance is used. However, the numerical simulator models a system
with a finite length. Therefore, the dispersivities calculated near
the entrance show this abnormal variation.

These results for a homogeneous medium show that by making proper

correction for numerical dispersion, the physical macroscopic

dispersion present in the permeable medium can be determined. In all
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subsequent results, this numerical dispersion components is subtracted
from the total macroscopic dispersion to get the true value of aMA'

Effect of Dykstra-Parsons Coefficient ~ In Fig. II-8, the average aMA

vs. distance for four values of Dykstra-Parsons coefficient is
plotted. This figure 1is analogous to Fig. II-1 which shows variation
of OvE with dimensionless time. In all the cases here the correlation
length AD is 0.025. These runs have the same distribution of Heller
points, but have different degrees of heterogeneity (which is obtained
by changing the Heller's parameter aH). In Fig. II-8, the average aMA
values near the entrance are not shown because these averages are
taken over a very few points (sometimes 3 to 5), and these results
have very little meaning. From Fig. II-8, we can conclude that the
macroscopic dispersivity is a function of Xp» specially for cases with
high VD values. In addition, the magnitude of the macroscopic

P

dispersivity increases with V i.e., a more heterogeneous medium has

DP’
more local dispersion. The rate of variation of %A is also higher for
cases with higher heterogeneity. This variation in macroscopic
dispersivity with distance is due to the random heterogeneous nature
of the permeable medium. The fluid travels faster through the more
permeable portions of the reservoir. The net result of this behavior
is the development of channels which start initially due to the local
variation in velocity and are enhanced into instabilities at a larger
scale. Some of this variation may also be due to the statistical error

associated with calculating Gy p @S described above.

In order to understand the nature of macroscopic dispersion, a
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deeper look 1s taken into the displacement mechanism at the local
scale. In Fig. 1II-9, three displacement profiles at different
locations in the system are shown. These profiles represent the
locally calculated macroscopic dispersivities across the
cross-section. In this case the Dyvkstra-Parsons coefficient is 0.6,
the aspect ratio is one, and the correlation length is 0.025. There is
no molecular diffusion. If the permeable medium were homogeneous, this
profile would be a straight line. However, because of the large degree
of heterogeneity, there is a corsiderable amount of variation in Cyra
values. In each case, the average value is represented by the solid
vertical 1line. The average value increases as the fluid travels
further into the medium. This increase in Opra with distance is similar

to the ircrease in aME with time. As discussed above, increasing

dispersivities indicate a non-Fickian displacement. Another important
feature of these Sy profiles is that they give some idea about the
location of high permeability regions where channeling initially
develops. In these regions, the local (macroscopic) dispersivities
are high and the fluid travels very quickly through them. The degree
of variation in Opa at any X5 location also increases with distance.
In addition the number of A values with large deviations from the
mean also increase. As the total number of fluctuations as well as the
magnitude of these fluctuations increases, the instabilities in the
permeable medium also increase.

A comparison of local displacement characteristics between two
heterogeneous permeable systems can also be made by studying local
MA'S for two VDP
values of 0.8 and 0.4 at Xp =0.5 are shown in Fig. II-10. 1In both the

dispersivities. The macroscopc dispersivities a
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cases, other variables such as aspect ratio and the correlation length

are the same. The local GMA’S are nearly the same when VDP =0.4, but
at the higher VDP value of 0.8 there is a lot of variation in ®vA
values., One local value for aMA is much higher than the others,

indicating much larger local mixing than the average. This figure

explains why displacement is uniform (Fickian) at low VDP values and

channeling develops at high VDP values (as local instabilities grow

to become megascopic instabilities). The average a is also higher

MA

for the case with the larger VDP'

The megascopic and macroscopic dispersivities for these cases

can also be compared. In Fig. II-11, aMA and aME for two cases with

V., =0.6 and V P =0.4 are shown. At any V the local (macroscopic)

DP Iy DP

dispersivities are smaller than the corresponding megascopic values.

However, when the degree of heterogeneity (V__) decreases, the

DP

difference between the two dispersivities (u and o also

MA ME)

decreases. At high magnitudes of heterogeneity, there 1is a large
difference between the megascopic and macroscopic dispersivities. This
is a consequence of the scale effect. In a random permeable medium

with heterogeneities approaching those in actual reservoirs (V

DP

0.6), the megascopic and macroscopic dispersivities would be
significantly different. Thus, these results show that in general the
dispersivities determined from displacement experiments on cores

cannot be used to approximate field-scale o values. The core samples

ME

used in laboratory experiments are fairly homogeneous (VDP§O.4) and
have small correlation lengths. The typical o0il reservoirs are fairly

heterogeneous (V__20.6) and the correlation lengths can vary over a

DP

wide range. This observation has a direct consequence on miscible
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displacements in 0il fields where field type displacements (like pilot

floods) are designed on the basis of displacement studies in cores.

Effect of Correlation lLength — Autocorrelation, a spatial property, is

measured for a set of data distributed in the flow domain. On the
contrary, macroscopic dispersivity is a local property measured at a
point. Therefore, no specific relationship may exist between spatial
correlation for flux/permeability and the macroscopic dispersivity. As
described in the previous chapter, the megascopic dispersivity (which
is measured at the same scale as correlation) follows specific trends
depending on the degree of correlation in the spatial data. Somewhat
different trends are observed in the macroscopic dispersion data.
Figure II-12? displavs both megascopic and macroscopic dispersivities
for two sets of data with integral scales of 0.05 and 0.1C. Both sets
have a VDP value of 0.6, an aspect ratio of one and zero molecular
diffusion. When the correlation length is long (AD =0.10) megascopic
dispersivity increases with time. The macroscopic dispersivity for
this case with A_ =0.10 also increases but the rate of increase is

D

considerably smaller. In addition, the difference between aMA and aME

=0.05, both o and o again

is large. In the second case, where A MA ME

D

increase but very slowly, and are nearly constant at late

times/distances. Here, the difference between the two values (aMA and

aNE) is also smaller. This is due to the smaller correlation length
and the near stable nature of the displacement.
These results again demonstrate the importance of the scale

effect. In permeability distributions with large V P (20.6), there is

D

not only a significant difference between megascopic and macroscopic
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dispersivities, but, in addition, the dispersivities measured at a
local scale cannot completely account for regional (or spatial)
phenomera such as correlation. The net result of large correlation in
permeability (or flux) is time-dependent dispersivities. These
time-dependent megascopic dispersivities are due to channeling of
fluid through the more permeable regions of the reservoir. Thus, the
locally measured macroscopic dispersivities cannot be used to model
channeling since it is assumed that all mixing at the local scale is
dispersive mixirg. This observation also implies that macroscopic
dispersivities would be independent of time and spatial position for
purely dispersive flow.

The results for these cases with different Dykstra-Parsons
coefficients and different correlation lengths give some insight into
miscible displacement phenomena at macroscopic and megascopic scales.
It can be concluded that:

1. In general the megascopic dispersivity is 1larger than
macroscopic dispersivity. The difference between the two increases

when V and AD increase (Figs. TI-11 and TII-12) and vanishes when

DP
VDP is small.
2. Megascopic dispersivity aME is a strong function of
correlation 1length but macroscopic dispersivity o is a weak

MA

function, i.e., the rate of variation of dispersivity with AD is much
larger at the megascopic scale than at the macroscopic scale.

3. The instabilities at the macroscopic scale grow with the
distance travelled (or dimensionless time) in a manner similar to the

growth of instabilities at the megascopic scale.
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Effect of Aspect Ratio - In the previous work (Arya, 1986), it was

shown that the aspect ratio is related to the spatial correlation, and
the correlation changes depending on the manner in which the aspect
ratio is changed. Specifically, we concluded that the rate of change
of Cep with distance increases as the spatial correlation increases.
This observation is also true here, because the aspect ratio of the
system influences dispersivities only indirectly (through the spatial
correlation).

Macroscopic dispersivities for four cases with aspect ratios of
1, 4, 5, and 10 are presented here. The same cases were analyzed in
the previous chapter. In Fig. I1I-13, we observe that the variation of
Cya becomes very chaotic (random) at high aspect ratios. In all these
cases VDP = 0.6 and no molecular diffusion is added. The spatial
correlation of transport properties for non-unit aspect ratio cases
depends on the arrangement of grid blocks in the simulation, as
described in the previous chapter. When the aspect ratio is 5 and 10,
there are large spatial correlations because the arrangement of blocks
in these two cases is the same as 1in the unit aspect ratio case,
However, when the aspect ratio is 4, the correlation length is the
same as for L/W=1 because this case has proportionately more blocks
(80 vs. 20) in the direction with the larger dimension. For aspect

ratios of 5 and 10, the variations in « are very large and do not

MA

follow any pattern. In addition, as in the previous section, the

magnitude of average o is higher when the correlation length is

MA

large. One reason for these variations is the unequal number of points

used to determine the average at every X location. In addition,

displacement in these two cases is very unstable and the injected
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fluid channels very rapidly through the most permeable regions of the
medium. This phenomenon has a significant influence on the macroscopic
dispersivity and results in extreme (very low or high) macroscopic
dispersivities. This local effect is not observed in the calculation
of megascopic dispersivity because those values are obtained by
averaging the concentrations across each cross-—section and the extreme
concentrations are averaged out.

The channeling and unstable nature of the displacements in two
cases with large aspect ratios (5 and 10) can be determined by
analyzing the  behavior of local Cria values at different
cross—-sections, In Fig. II-14, three @ profiles for the aspect ratio
of 5 are shown. These megascopic dispersivity profiles are at x

D

values of 0.25, 0.50 and 0.75. The random nature of o is evident;

MA

even the average values at each x, do not follow any pattern. From the

D
previous work we recall that permeable media with large aspect ratios
behave like layered systems. This behavior controls the macroscopic
dispersivities significantly. Each location at a cross-section behaves

like a non-communicating layer and the o values fluctuate by large

MA
amounts. The same behavior 1is observed in Fig. II-15, which shows
local dispersivities for the aspect ratio of 10. In this case, at

XD=O.75 a values at only some locations of the cross-section are

MA
shown. The macroscopic dispersivities at the remaining locations
cannot be determined due to the reasons discussed earlier. In both
these cases VDP=0.6. These profiles confirm the observation that a
randomly heterogeneous medium behaves like a layered medium with large

aspect ratio. These pseudo layers do not communicate and the

displacement is controlled by large convective fluxes in the primary
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direction of flow (parallel to the x-axis).
One possible wav to evaluate these variations in local Casp values

is by calculating the standard error for the « values at each X

MA
Jocation. The standard error at 95 percent confidence level is defined
as 0*1.960/vn where o is the standard deviation for that set and n is
the number of points in the set. Thus, the standard error takes into
account the mnonuniform number of points for calculating averages.
Figure II-16 shows that the standard error increases with the aspect
ratio. This figure shows the average Upa and the Caa *+ standard error
values for aspect ratios of 1 and 10. The standard errors for L/W=10
are much larger indicating the large variations in the local average
values of aMA's.

From these results we conclude that if Oyva is very high and if
there are large variations in the cross-sectiornally averaged values,
there is a good possibility that the displacement is unstable with
little or no vertical communication. In these cases, it is a good idea
to examine the local distribution of aMA's. The variation in Gy, at

any fixed cross-section can help in locating unstable displacements

through high permeability regions.

Effect of Diffusion - The effect of adding molecular diffusion to

macroscopic dispersion is similar to that for megascopic dispersivitv.
With the addition of a diffusion component the total flux increases by
the same amount in both the directions. However, the relative
magnitudes of the convective and dispersive fluxes change and the
ratios of the x and y flux depend on the amount of diffusion added to

the system. One consequence of this additional component is that there
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is enhanced mixing in the direction normal to flow. Because of this
erhanced mixing the fluid travels more uniformly through the permeable
medium and the wvariation in macroscopic dispegsivity at any
cross—-section is much lower.

In this section first the effect of adding diffusion on fluid
transport in homogeneous medium is analyzed. We give results in terms

of the dimensionless diffusion coefficient

_ Dod
D = ul,
where Do is the molecular diffusion coefficient. Figure II-17 shows

the change in a with distance in a homogeneous system at several

MA
levels of diffusion. In all the cases the aspect ratio is one. The
total macroscopic dispersion is due to molecular diffusion and
numerical truncation error. The aMA values are independent of Xp at
lower values of diffusion. At higher values of diffusion, the
macroscopic dispersivity increases with distance for a short distance
before becoming constant. This behavior is due to the very high
diffusion, the total dispersivity is very high and the Peclet number
is very low. And at low values of Peclet number, the solution to the
C-D equation with boundaries set at infinite distance (which is used
here) has a large error component. At low Peclet numbers the size of
the mixing zone is as large or larger than the size of the finite
system modeled in the finite-difference analog. Therefore, additional
terms are required in the analytical solution to account for the
boundary effects. As discussed earlier this problem was corrected in
the calculation of @ by using an analytical solution derived with

ME

proper boundary conditionms.
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Similar conclusions can be drawn from Fig. II-18, which shows the
effect of diffusion on CyA for a heterogeneous system with VDP = 0.6.
In this case there is an additional physical dispersion component
present due to the permeability heterogeneity. Thus, the total
calculated macroscopic dispersivity is higher than that for
homogeneous systems. In all these cases the same permeability
distribution was used and the aspect ratio was one.

Due to the large a values, the boundary effects discussed in

MA
the previous paragraph become important and the dispersivities are not
constant. In fact the channeling tendency is significantly reduced, as
confirmed by the dispersivity profiles. These profiles in Fig. II-19,
are for three cases with different levels of diffusion and are
calculated at Xy = 0.5. In the absence of diffusion (D=0.0), there is

evidence of channeling, as indicated by fluctuations in Gpra values.
One major channel can be seen developing near the upper edge of the
system, With the addition of some diffusion (D=0.01), the degree of
transverse mixing increase considerably and the A profile indicates
nearly uniform displacement. With more diffusion (D=0.05), the profile
is more uniform and no instabilities are present. The growth of the
unstable channel has been controlled by better transverse mixing.

The same conclusions can also be drawn by observing the
concentration histories at any cross-section. In Fig. II-2,
concentration histories at Xp = 0.5 are shown, for a case with VDP
=0.6 and no molecular diffusion. In Figs. II-20 and II-21, the
concentration histories for the same case with D=0.01 and D=0.05 are

displayed. With the addition of diffusion, the width of the band over

which the curves are spread out becomes smaller. This indicates that
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all concentrations are travelling close to each other and more
transverse flow is taking place.

Thus, Just as in the case of megascepic dispersion, diffusion
stabilizes the displacement with enhanced transverse mixing at the
macroscopic scale also. These results also point out the importance of
using proper boundary conditions in the solutions for the C-D
equation. The results can be completely misinterpreted (for example
non-Fickian flow dinstead of Fickian flow), by using an incorrect

analytical solutiom.

Fffect of Anisotropv - One measure of the degree of lateral

communication in a permeable medium is the magnitude of the cross-flow
index, RL' The megascopic dispersivities for all systems with same
cross—-flow dindex behave alike because of the inherent averaging
present at the megascopic scale. However, at the macroscopic scale,
the dispersivities are calculated at individual points and the
dispersivity values can vary widely between adjacent points depending
on the degree of communication present. The macroscopic dispersivity
as presented here is the average value for all locations across a
cross-section at any x position. If there 1is very 1little or no
vertical communication present, these values can differ substantially
from one point to the next across the cross-section. On the other
hand, if the vertical communication is extremely good (as in the case
of vertical equilibrium), all the values across the cross-section
should fall within a narrow range (i.e., very small standard

deviation). In such a case the cross-flow index, RL’ is also high,




47

Results for two cases, one with a low RL =0.1 and the other with
a high RL =5 confirm the observations made in the preceeding
paragraph. In Fig. II-22, the megascopic dispersivities for two cases
with RL = 0.1 are presented. One case has unit aspect ratio with some
vertical communication (ky/k = 0.01) and the other case has an aspect
ratio of 4 and almost no vertical communication (ky/k = (0.000625). In
both cases VDP is 0.6. The Cya values are nearly constant when the
aspect ratio is large (L/W=4), but increase with distance when the
aspect ratio is small (L/W=1). The degree of cross~flow is small in
both the cases. However, when the aspect ratio 1is 4 there are
proportionately fewer blocks in the y-direction. This results in a
lower value of XD and the channeling tendency is retarded. Some
explanation for this difference in the A variation for these two
cases with the same RL can be offered by analyzing the 1local
variations in Gya in Fig. II-23, This figure shows more variations
from the mean when L/W=1 than for the case with L/W=4, even though it
(L/W=4 case) has a lower vertical permeability. This apparent
contradiction is due to the strong influence of lateral boundaries on
the displacement. When the boundaries are very close (L/W=4), the
channeling tendency is retarded and the displacement is more stable
than in the case where both the lateral and longitudinal dimensions
are equal.

When the vertical communication dis high (RL = 5,0), similar
trends in Cyrn values are observed. As seen in Fig. 1I-24, there is no

trend in the variation of Oy with distance and both the cases follow

each other more closely. One of these runs has an aspect ratio of 1

and ky/k =25, and the other case has L/W=5 and ky/k = 1. The CpA
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values for both these cases vary with distance. These variations are
a consequence of unstable flow. The local variations in aMA can be
observed in Fig. II-25, which shows the point values of Gya 3t Xp
=0.5.

These local OpA values are nearly identical across the entire
cross-section for these two cases. These profiles indicate unstable
flow in a small section. The effect of lateral boundaries is once
again evident here. Even though there 1is very high degree of
crossflow, the two dimensions are equal and the instabilities travel
faster than the enhanced mixing due to crossflow.

These results indicate that the dimensions of the system together
with the degree of crossflow present have a considerable influence on
local displacement. In general, large vertical communication does not
guarantee a stable displacement. Similarly, displacement can be stable

if the lateral dimensions are much smaller than the longitudinal

dimensions, even when very little vertical communication is present.

Concluding Remarks - The results presented in this and the preceding

work show that both megascopic and macroscopic dispersivities have an
initial non-Fickian component where dispersivities are time-dependent.
The duration of this non-Fickian flow depends on a number of factors
including the correlation length, the magnitude of heterogeneity and
the aspect ratios. Therefore, under certain conditions it is possible
to have an initial channeling or fingering displacement even in
laboratory cores. This initial non-Fickian period is followed by a
transition period and then finally a Fickian displacement with

constant dispersivities. As discussed here, some factors such as the
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presence of molecular diffusion can retard the growth of channels.
However, if transport in permeable medium is modeled as a purely
dispersive phenomenon, this early time behavior cannot be reproduced.
It is possible to arrive at the same dispersivity (as measured at the
outlet of a core) from a dispersive model and from a model with
Fickian and mnon-Fickian components. However, the concentration
distribution and the fluid recoveries will not be the same. The
initial period of flux-controlled displacement, depending on its
magnitude and duration, can have a significant influence on the
recovery and the economics of the displacement process.

The results of this work demonstrate the drawbacks of using a
purely dispersive model to describe transport through permeable
medium. Such a model not only fails to give an accurate estimate of
the magnitude of dispersivities but also does mnot give any information

about the temporal and spatial variation of dispersivities.
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NOMENCLATURE FOR PART IT

C concentration

D dimensionless diffusion coefficient

D0 molecular diffusion coefficient, L2/t

erf error function

ky/k anisotropy ratio

L medium length, L

NPe Peclet number

NV number of grid points in transverse direction
t time, t

u superficial velocity, L/t

VDP Dyvkstra-Parsons coefficient

W medium width, L

X,y coordinate directions parallel and transverse to flow, L

Subscripts

D denotes a dimensionless quantity
Greek

%yA macroscopic dispersivity, L

OlME megascopic dispersivity, L

A correlation length, L
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ITI. DATA HANDLING

Any characterization procedure based on stochastic variables must
be aware of the inherent limitations of statistics. There are several
excellent and even traditional references of statistics, but few with
the particular orientation of reservoir characterization. The work
described in this section is intended to at least partially provide
this direction. Once again, each subsection corresponds to projects
outlined in the original proposal.

The first section deals with recconciling core and log-derived
porosities through stochastic assignments. Next we discuss the
effects of normality transformations on regression and the statistical
properties of heterogeneity measures. The latter leads to a new
measure of heterogeneity. After this we discuss the analysis and
application of the turning bands method for generating stochastic line
processes, Part V returns to this briefly where it is applied to

two-dimensional fields.
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RECONCILING CORE AND LOG-DERIVED PROPERTIES

Introduction - Lack of adequate specification of reservoir properties

remains a fundamental problem limiting the application of numerical
simulators. Some of the necessary properties are obtained from both
geophysical logs and core. In many cases values from these two
sources are rot in agreement. Within the overall goal of improving
data handling, the objective of this section is to evaluate the causes
of differences in porositv values obtained from cores and logs.

While many differences are because of problems in the measurement
technique itself, we focus only on differences which may be attributed
to the measurements on different scales. Core porosities can be
considered '"point" wvalues and log-derived porosities volumetric
averaged (smoothed) values. The degree to which core (assumed actual)
porosity correlates with and are well represented by Ilog-derived
(averaged) porosity should be a function of the smoothing bias
introduced by the logging technique, the heterogeneity of the system

(rock sequence), and the sampling density.

Premises ~ Qur starting premise is that the variability observed in a
set of measurements (through a rock sequence) can be a direct function
of the scale (volume) of the measurement itself. For a given
heterogeneity, we expect less variance in a data set as the volume
sampled by the measurement technique increases. Thus, for any given
heterogeneous rock sequence, core porosity should show more variance
about the mean porosity value, than log-derived porosity. As the

volume measured by a geophysical logging device decreases and
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approaches that measured by cores, variance in the recorded data sets
will approach one another, and correlation between the recorded
porosity values for the two measurement techniques will improve. For
any specific heterogeneity Fig. III-1 illustrates expected correlation
and variance relationships.

In addition, we expect the degree of correlation between porosity
values for the two measurement techniques to be some function of the
actual heterogeneity existing in the rock sequence. In the limiting
and hypothetical case of a homogeneous rock sequence, actual (core)
porosity at any depth, constant by definition, will obviously
correlate perfectly with averaged (log-derived) porosity values for
the same depth. As heterogeneity increases, the degree of correlation
for anv one averaging measurement technique should decrease. Further,
there should be a family of curves representing correlation obtainable
for a specific averaging measurement technique. The expected
relationship between heterogeneity and correlation is illustrated in
Fig. III-2.

For any given heterogeneity, the degree to which core and
log-derived porosity values will correlate should be some function of
the frequency of core measurements. The higher the density of core
measurements, the more representative the recorded data should be of
the true variability, and the higher the expected correlation with an
averaged measurement obtained by a geophysical logging technique. We
also expect that greater sampling density is required to obtain the
same degree of correlation or precision in determination of porosity

distribution as heterogeneity increases. These expected relationships

are illustrated in Fig. III-3.
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Approach - The initial approach taken in investigating and quantifying
these hypotheses has been to develop a synthetic porosity profile
(porosity distribution vs depth) of a specific heterogeneity (in this
case variance about the mean). The synthetic profile represents
"truth", and the "goodness of measurement" of this "truth" is tested
statistically for different scale-averaging (log-type smoothing)
functions and sampling frequencies. The profile is modified to
simulate various heterogeneities, and the effect evaluated. Families
of curves for different heterogeneities, scale-averaging schemes, and
sample density measurements are being generated.

The resultant family of curves should be useful in defining
heterogeneity from knowledge of the measurement technique and
correlation obtained from recorded core and log data. It may be
possible to obtain a better measure of the "true' heterogeneity based
on observed geophysical 1log-derived porosity data. For a given
heterogeneity and averaging scheme, it may be possible to normalize
the log-derived porosities to "actual" porosities, the greatest
benefit being the ability to produce a porosity distribution which
more closely represents the actual distribution. In addition, this
work may suggest an optimal sampling frequency and smoothing function
relative to the expected heterogeneity or degree of characterization
desired.

Following these synthetic model studies, core and log data from a
location, such as the El Dorado Field, will be used to investigate the

application of the derived techniques.
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OPTIMIZATION OF REGRESSION-BASED POROSITY-PERMEABILITY PREDICTIONS

Introduction -~ Porosity-permeability relationships, developed by

regressing on data from cored wells, are used to predict reservoir
permeability from well logs for uncored wells. Several field studies
(Tootle, 1979; Wendt et al., 1985; Wilson and Hensel, 1978; Brown and
Husseini, 1977; Boyer, 1984; Matiisen and Atwater, 1984) that discuss
the development of the predictive relations indicate widely wvariable
success with standard regression procedures.

Undoubtedly part of the problem in successfully predicting
permeability from porosity is due to the inexact nature of the
porosity-permeability relationship. For example, Levorsen (1969) and
Pottier et al. (1964) indicate that permeability is not a function of
porosity alone. Any procedure using exclusively porosity to determine
permeability is limited in success by the variability of grain size
and other quantities not accounted for by porosity. Furthermore, the
porosity-permeability relationship for a formation is not known prior
to taking core data; we have only empirical observations to guide us.

Nonetheless, several studies (e.g. Wendt et al., 1985) show that
porosity may be a good indicator of permeability for particular
fields. The issue is how to exploit this association to the fullest
to obtain the best estimate possible for permeability. A review of
the literature detailing field studies with permeability prediction
shows features common to many of these reports:

1) Regression is used to relate core permeability k to core porosity

¢;
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2) A linear model of the form log (k) = a¢ + b is assumed, where a
and b are the regression parameters;
3) The permeability estimate (k) is obtained using

ﬁ _ (lo)a¢+b

for a measured value of porosity ¢; and
4) It is not indicated how the predictions are to be used. That is,

whether they will be combined (to give an average permeability

for example) or if they will be treated separately.

In general, the above features may lead to inferior results. The
porosity-permeability relation may not be used to its fullest in
points (1) and (2) because the linear model does not capture any
nonlinearity in the ¢-log(k) association. Step (3) creates a
permeability estimate which typically 1is pessimistic Dbecause
exponentiation is a nonlinear transformation. Finally, item (4) is of
concern since regression is a minimization procedure; it is important
to know if the quantities being minimized are compatible with the
ultimate objective.

Many of these 1issues can be addressed by appropriately
transforming the core data prior to regression. By means of examples,
we show that errors 1in permeability estimation can be reduced
substantially by carefully using transformations. A judicious choice
of transformation may also eliminate the need for weighted least

squares and other, more complicated, regression techniques.
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Theory of Correlation and Regression - The theory of correlation and

regression is well documented in such books as Kendall and Stuart
(1969), Weisberg (1980), and Hald (1952). We address the problem in
the context of permeability prediction using porosity, although what
is Jdiscussed has applications in other relationships. Assume that
some function of porosity, g(¢), and a function of permeability, f(k),
are to be used in determining the ¢--k relationship. For example,
when one sees ¢ versus log(k) plots of data g is the identity function
and f is the logarithmic function. The precise forms of these
functions 1s discussed below. Furthermore, we assume that the
permeability predictions are to be used individually ~- to predict an
injection profile, for example -- or are to be wused in linear
combinations, such as in an arithmetic average to predict arithmetic
average permeability. The reason for this assumption is also
discussed below. We seek a curve which relates f(k) and g(¢). The
curve will be then used to give estimates of f(k) when ¢ is known.
We begin by noting several features about this situation:
1) Both porosity and permeability are random variables, and hence
g(¢) and f(k) are random variables.
2) The form (i. e. equation) of the ¢-k relation is not known prior
to taking data, and
3) The ¢-k relation may change character as the rock fabric changes.
Item (1) implies that the joint probability density function
(j.p.d.f.) of the variables g(¢) and f(k) should be considered when
establishing the ¢-k association. The j.p.d.f. captures all there is

to know about the statistical behavior of ¢, k, and the ¢-k
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relationship. It shows, among other things, the variability of £f(k)
when g(¢) is fixed and vice versa.

Feature (2) indicates that a problem may arise if regression is
used to best fit an arbitrary curve to the data. The form of the
curve is unknown and previous experience, item (3), does not
necessarily help. Hence, fitting a polynomial or some other curve to
the data may not optimally capture the relationship of ¢ and k.

Significance tests for the regression coefficients may be useful
in determining whether the regression has captured the
porosity-permeability association well. However, such tests are
helpful only when the permeability data f(k) are nearly normally
distributed. Another advantage when f(k) is approximately normal is
that the regression curve obtained by least squares may become the
best curve possible under the circumstances. That is, the curve may
give the closest estimate to the correct value of f(k) when f(k) is
approximately normally distributed.

Even if f(k) is normally distributed, the form of the ¢-k
relation is still in question. For example, suppose the g(¢)-f(k)
relationship is quadratic but we have chosen a linear model. Then,
even if we obtain the best linear fit possible, errors arise because
the model is not appropriate for the relationship. However, 1if the
j.p.d.f. for the g(¢)--f(k) relationship is a bivariate normal
distribution, the curve relating g(¢) and f£(k) is a straight line
(Hald, 1952).

For g(¢) and f(k) to be bivariate normally distributed (b.n.d.),

it is a necessary condition that both f(k) and g(¢) are approximately
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normally distributed. Once we know that the j.p.d.f. of g(¢) and £f(k)

is approximately bivariate normal, a simple regression of the form

f(k) = a-g(d)+db

captures optimally the ¢~k relation. A similar situation occurs when
more than one variable is used to predict permeability; a linear
regression model optimally captures the relationship for variables
that are multivariate normally distributed.

Another advantage of g(¢) and f(k) being b.n.d. is that estimator

bias may be accounted for. Consider, for example, the case where

it

g($)

f(k)

¢, f(k) = In(k), and the regression parameters a and b in

ag(¢)+b have been determined. In the regression procedure, the
line y = a¢+b d1s established so that the spread of points above the
line is roughly the same as the spread of points below the line, Fig.
I11-4 (Fig. III-5 referred to on page 76). For any given value of ¢,
call the spread of points above the line 6+y and the spread of points
below the line §_y. What happens to the spread when the line a¢+b is
used to predict a permeability? The line y = ad+b gives the estimate
of 1n(k) with possible error of 5+y too high or 6_y too low. Exponen-

tiating the prediction gives k = expl{y} which may be too high by

(o]
o
n

exply + 5+y} - explyl (I11-1)

o]
o
n

exply} - exply - 5_y} . (I11-2)
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From the definition of k, Eqs. (III-1) and (III-2) become

6+k = k'{exp[6+y} -1}
and
§ k =ke{l - exp[- 6_y]} .

Because the exponential functior is nonlinear, the equal quantities

~ A

6+y and § y give wunequal amounts 6+ k and & _k. Suppose 6+y =
§_y = 1.2 (about 1/3 of a decade). 6,k = 2.3k while § k = 0.7k. So
the regression line gives an estimate i that is, on average, biased.
Below we show how to address this problem of bias when g(¢) and £(k)
are b.n.d.

In summary, 1if £f(k) is epproximately normally distributed
(a.n.d.), several advantages are obtained in the regression. If both
g(¢) and £(k) are b.n.d., then a simple linear regression captures the

¢—-k relationship and bias may be compensated for. How to choose f

and g is the next consideration.

Power Transformations - A data transform h(-) applied to a set of data

{xi} produces a data set {yi}, where
yi - h(Xi)
Data transformations are common in the statistical literature (see,

for example, Hoyle, 1973, or Kruskal, 1968). Data are usually

transformed to achieve one of three objectives:
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Iy Additivity - the primary effects influencing the data combine
linearly;
2) Homogeneity - the variability of the data is constant as

parameters are changed; and
3) Normality - the transformed data become a.n.d.
Often, transformation to satisfy one of the objectives 1leads to
satisfaction of the other objectives. We seek transformations f and g
to give an approximately bivariate normal distributed data set.

A useful transformation is the power transformation. It has the
form h(xi) = (xi)q for some exponent q. Tukey (1957) recognized that
power transformations have many common features. He treated power

transformations as a family:

(xi+c)q, q#0
h(xi) =
ln(xi +¢), q=0

where ¢ is a constant. The choice of function for the case q = 0 may

be surprising until a slightly different family is considered

( (xi + c)q -1
q

» q#0

h'(x

ln(xi + ¢) s, q =20

Y

Both h and h' have the same p.d.f. since only a linear

rescaling is involved. Furthermore, 1im[(z)q - 1]/q In(z).

q*0
Despite its utility, the approach of treating power
transformations as a family appears to be new to the petrophysical

literature. Previous statistical work has concentrated primarily on



the members q=0 (logarithmic transform) and a=1 (identity transform).
Fowever, Langeland and Flotre (1984) discuss the use of power
transformations for porosity~cation exchange capacity relationships
and Jensen et al. (1985) have shown that (k)p is a.n.d. for some p, -1
£ p £ +1. Furthermore, our experience is that usually a value of ¢
may be found such that (qb)q is a.n.d.

By transforming porosity and permeability, the j.p.d.f. we are
concerned with charges. The porosity-permeability relationship does
not change; instead we create 'new" random variables, (qb)q and (k)p,
such that the j.p.d.f. of these variables is close to bivariate
normal. A simple linear regression of the form (k)p = a'(¢)q + b then
expresses the ¢~k relation optimally.

Several methods exist to estimate the exponents p and q.
Gnanadesikan (1977) reviews several of these methcds. We have had
good results using the method of FEmerson and Stoto (1982), which
estimates an exponent based on symmetrizing the p.d.f. While
symmetrical ard normal p.d.f.'s are not necessarily the same, the
method has worked well thus far. Another method is to try several
values of exponent on a data set and determine which exponent value
gives the straightest line on a normal probability plot. This
approach may be the easiest to implement with existing computer
analysis routines.

While values p and q may be found such that both (k)p and (¢)q
are a.n.d., this is not a sufficient condition for (k)p and (d>)q to be
b.n.d. Further tests exist to determine if variables are b.n.d. Hald
(1952) describes one test and Gnanadesikan (1977) devotes a section to

discussing various tests and examples for hypothetical data sets. Our
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experience indicates that transformation to symmetry is usually
helpful regardless of the resulting joint distribution. The results
we show based on the assumption of bivariate normality appear to be
relatively insensitive to this assumption provided that svmmetry is

obtained.

Correction for Estimator Bias - Here we address the problem of how to

predict permeability k given that we have an estimate y = (k)p. We
show that (y)l/p does not necessarily give the best possible estimate
for k. However, a correction term can be calculated to resolve the
problem.

Suppose that (k)p and (¢)q are b.n.d. for some values of p and q.
Define

_ (0P
p

(111-3)

The variable x is normally distributed with mean Mo and variance ci.

At a specified porosity ¢, the variable x is normally distributed with
q . 2 2 2

mean 4 = a*(¢)? + b and variance o = oy(l—p ), where a and b

are the regression parameters of the x versus (¢)q data and p is

the coefficient of correlation (Hald, 1952).

For a given value of ¢, we seek a permeability estimate, k, based

on the estimate x y o= a-(¢>)q + b and Eq. (III-3). The estimate k is

given by

>

E{k|¢} (11I-4)

o
It
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where E is the expectation operator. Using Eq. (III-3), Eq. (III-4)

becomes

k = E{(px + 1)1/P|¢}. (ITI-5)

The exact solution of Eq. (III-5) is shown in Jensen (1985) to be

R 1/p
x = Lp9) 1! exp(- 2 vHTGE +DUGE + 1, v (11-6)
T 4 P P2
where
= L1tpu
po ’

and ¢, T, and U are functions which are defined in Abramowitz and
Stegun (1972). When p = 0 (the case of log-normal permeability),

Eq. (III-6) gives

k = exp{u + % 02} . (I11-7)
Note that if |p| = 1.0 (perfect correlation), 02 = 0 and no bias

occurs, Otherwise, if Ipl < 1,0 and oi is large, a substantial
correction arises. For the log-normal case, the correction 1is to
multiply exp[a'(¢)q + b] by exp(0.502).

Equation (III-6) has an intimidating look, so we present by
example an alternative method of computing k for the case where m =
1/p is an integer and cx/uX £ 0.43, Suppose m = 2, Equation (III-5)

may be expressed as

kK = E{(%x+l)2|¢}

or
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A

< = (% x+ 17+ % o, (I11-8)

where we have used the fact that E(x2|¢) = u2+ G? Using Eq. (III-3)

for p = % and letting v = (k)i, Eq. (8) becomes
kK = F+ga. (111-9)
- X

Note that y is the estimate of (k)° from the regression line 0.5a(4)1
+ 0.5b + 1. The correction term in Eq. (III-9), arising from the
nonlinearity of the square function, depends both on the degree of

2
correlation p and the variability of the data G;. If we denote the

variance of (k)% as 05, Eq. (ITI-9) becomes

A A l)
ko= ¥+ 0;(1 - 09). (111-10)
The Influence of Prediction Usage - The method of least squares

originates from the Gauss-Markov theorem (Liebelt, 1967). This
theorem states how an optimal estimate may be calculated for a
specific problem once certain assumptions are satisfied. One
requirement imposed by the Gauss-Markov theorem is that the estimates
are combined in a linear manner. This requirement affects how the
permeability estimates may be used.

For example, suppose we wish to estimate average reservoir
permeability k using n estimates {ki,i=1...n} from the ¢-k relation.
There are several ways to calculate average permeability. The
arithmetic average, the geometric average, and the harmonic average
are three possibilities. The arithmetic average combines each

prediction linearly:
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o
]
Bl
e ™
=

But the geometric and harmonic averages combine the estimates in a

non-linear ranner:

E - (H ki)l/n
i
and ® = T oapTh
i
respectively. Just as in the preceding discussion, nonlinearity

causes a bias in the estimates of the harmonic and geometric averages.
Consequentlyv, there is no basis for presuming that lirear regression
gives us the optimal estimate of average permeability if we combine
the predictions in a nonlinear manner.

Generally speaking, the problem of obtaining optimal estimates of
quantities which are nonlinear functions of other estimates is a
difficult one. Vhen such estimates come from a regression based on
b.n.d. variables, a correction can be made, just as in the case for
estimator bias previously discussed. The calculations are quite
involved, however. We present an example below to demonstrate how
nonlinear averaging may influence estimates for average reservoir

permeability.

Examples - We begin by analyzing a small data set using the power
transformation scheme just discussed. A good fit to the transformed
data is obtained using a simple regression model. Two larger data
sets are then studied. The first demonstrates how data may behave

with different transformations and how these transformations can
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influence the prediction of permeability. The last data set analysis
shows that ignoring estimator bias can lead to predictions that are 23

percent tco low.

Case 1 - Figure III-5 is a porosity-log permeability plot for sixty
core plug data as reported by Jacquin (1964). We have chosen this
data set because of the strong ¢~k association. Clearly, the
relationship is nonlinear and Jacquin proposes the equation k =

c'(d))lh5 as being a good representation of the relationship, although

he does not specify a value for the constant c. The coefficient of
correlation -~ a measure of the linear relationship between the x- and
y-axis quantities (¢ and log(k) in this case) -- is 0.90 for Fig.
III-5.

Our approach is to determine the values of exponents p and q such
that (k)p and (¢)q are each approximately normally distributed. A
glance at the histograms of porosity and log permeability, Figs. III-6
and III-7 respectively, indicate that no exponents p and q exist which
will transform either (k)p or (¢)q to approximate normality; both
distributions are distinctly bimodal. It appears that there may be
two populations represented by these data. Only eight or ten points
appear to belong to the population represented by the cluster of
points near ¢ = 24 percent and log(k) = 3.5, however. To separate the
data and obtain two ¢-k relationships would probably not be useful
with so few points in the higher porosity and permeability population.
Consequently, we computed values of p and q, based on the method of
Fmerson and Stoto (1982), to symmetrize (as much as possible) the

distributions of permeability and porosity. The values p = 0.05 and q
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= -0.6 were obtained. We chose to use the transformations log(k) and
(¢)—O'6. Figure III-8 1is a plot of the data wusing these
transformations and the coefficient of correlation is -0.98. A simple
linear model, log(k) = a'(¢)_0'6 + b, where a = ~13.,5 and b = 5.51,
fits the transformed data set.

Figure III-9 shows the data and two lines: Jacquin's proposed
curve (A) and the curve based on a least-squares fit of Fig. III-8
(B). The value of the constant ¢ chosen for Jacquin's curve, 0.00319,
was made based on the position of the curve in his Fig. 10. Line B
fits the data better at the low- and high-porosity regions. Without a

statistical motivation for selecting q = -0.6, relating log(k) and

(¢)—0'6 is not an obvious choice.

Case 2 - We turn now to the analysis of a larger (285 points from 16
wells) data set from the Admire sand in the El Dorado field in Kansas.
The data set consists of core plug porosities and permeabilities from
this shallow delta sand. Jordan and Tillman (1982) have reported an
in-depth geologic and petrophysical analysis of the Chesney lease from
which many of the data were extracted. See Jensen (1985) for more
details concerning this data set.

An analysis of these data indicates that estimates for p and ¢
are 0.50 and 5.5, respectively. The effects of transforming porosity
and permeability are shown in Figs. III-10 through III-12, a series of
porosity-permeability plots.

Figure III-10, the ¢ versus log(k) plot, is much like the plots
in other field studies (e.g. Wendt et al., 1985) showing the

porosity-permeability relationship. The variability of permeability
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is much greater at low poreosities than at high porosities. The points
at the extremes of the porosity range have the largest influence on
the least squares line (Hoaglin et al., 1983). One might be tempted
to use weighted least squares for the regression procedure because of
the Jlarge change in variability. ©Note that the datum at ¢ = 13.7
might be branded as an outlier or inconsistent datum from this plot.
The ¢ versus log(k) plot has a coefficient of correlation of 0.791.

Figure III-11 shows some improvement in terms of homogeneityj; the
variation in permeability at fixed porosity is more even than for Fig.
III-10. The cloud of data has a concave upward appearance, cuggesting
that a linear regression model may not be adequate. The coefficient
of correlation dis 0.774, indicating a diminishment of the linear
nature of the relationship from Fig. III-10.

Figure III-12 shows a fairly constant variability in permeability
with porosity. A weighted least squares regression is not necessary
for this case. The '"outlier" (or "rogue" as they are sometimes
called) at ¢ = 13.7 no longer looks out of place. The coefficient of
correlation is estimated to be p = 0.826.

From Figs. ITII-10 and I1I-12 and their associated coefficients of
correlation, a wide wvariation in behavior is reflected in very small
changes in p. The value of p has a statistical interpretation only
when (¢)q and (k)p are b.n.d. A high value of |p| indicates that the
¢-k relationship has a linear component. Whether the simple least
squares regression captures this linearity depends on more than Ip|
being large; the relative positions of the points have an influence on

the regression lines.
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Using the approach previously outlined, we used the regression
curve in Fig. III-12 to predict permeability based on porosity. The
results are shown in Fig. III-13 as curve A. The correction for bias
using Eq. (13), oi(l—pz) = (7.32)2[1—(0.826)2] = +17 md, is small for
this data set. Curve B is computed from the line of regression in
Fig. III-10; it underestimates (relative to curve A) the permeability
by 5 to 80 percent. As in case 1, the improvement in fit 1is primarily
in the low and high permeability regions of the plot. If these
regions of the reservoir are not important, then either curve A or B
suffices to predict permeability. On the other hand, if the low and
high permeability regions are of particular interest (e.g. profile
control or establishing a net pay cutoff), then the error in
prediction would be reduced and the extra computational effort is
justified.

To determine the impact of selecting curve A over curve B to
predict permeability, Monte Carlo simulations were performed to
compare the average reservolr permeability predicted using each curve.
The simulations were performed in the following manner.

D Randomly select N core plugs from the data set (with

replacement), each having a porosity ¢i and a permeability ki’ i

=1,2,...,N.

2) Predict the core plug permeabilities using curves A and B:

>

(5.56 + 1.80 x 10~/ ¢i5'5)2 +17.0

iA

~-0.534 + 0.114¢i

= >
I

= (10)

iB
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3) Arithmetically average the various estimates:

-~
1]
=N I
™M
-

=
i

Bl
o~

where the summations are over n terms.

4) Compute the relative error in the estimates:

e, = (ky, - k)/k
eg; = (g -k/k .
5) Perform steps (1) - (4) another m—1 times and compute the average
relative error,
e = é Loeys
ey = i Loy

and the variability of the error,

2 1 -2
Sp = o1 T o(epy ey
2 1 - .2
Sg = a1 © (epy ~ ep)

where the summations are over m values.
Table III-1 shows the Monte Carlo results for m = 1000 and all

285 core plug values. The error diminishes for increasing numbers of
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TABLE III-1. Monte Carlo simulation results for 285 core plug values.

N €A Sa €p Sg

3 0.060 0.27 - 0.042 0.25
5 0.033 0.20 - 0.066 0.18
10 0.017 0.13 - 0.083 0.12
20 0.0083 0.090 - 0.091 0.082

TABLE ITI-2. Monte Carlo simulation results for core with ¢ =2 28.85

e S e S

N A A B B
3 0.013 0.19 - 0.11 0.17
5 0.00035 0.15 - 0.125 0.13
10 0.0073 0.10 - 0.132 0.090

TABLE ITII-3. Monte Carlo simulation results for 285 core plug values

e S e S

X A A - B B
3 0.17 0.36 0.048 0.33
5 0.15 0.26 0.030 0.24

10 0.14 0.18 0.022 0.17

20 0.13 0.13 0.010 0.12
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predictions (N) when curve A is used. Curve B underestimates the
permeability by ar increasing proportion as n increases. Since hoth
curves approximate well the porosity-permeability relationship in the
central portion (24 £ ¢ £ 29) of the data, the better predictive power
of curve A shows when there is a good chance that a high (or low)
porosity core plug is chosen (i.e N large). Comparing SA and SB
values, both curves have about the same efficiency in prediction.

Since delineation of high permeability zones is important for
some purposes, another lMonte Carlo simulation was made to compare the
performance of curves A and B for the top twenty percent of the data.
Only core plugs with porosities in excess of 28.85 were included,
giving 58 values for use in the simulations. Table ITI-2 shows the
results for m = 200, The average error is diminished by at least ome
order of magnitude using curve A.

The performance exhibited in Tables III-1 and III-2 for each
curve vreflects, in part, the properties of the data set. The
improvement for other fields may be greater or less than demonstrated
for this data set. However, until a plot such as Fig. III-13 is made,
it is not clear how great the benefit may be. The results also depend
on combining the predictions in a linear manner, such as the
arithmetic average.

As previously discussed, nonlinear combinations of predictions
like the geometric average may influence substantially the error

behavior. To demonstrate this, Monte Carlo simulations were performed

using the following formulae for step (3):
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i ( k].)I/N ,
= _ 2 1/N
kA (I kiA) s
and
- 2 1/N
= \
kB ( kiB’ s

where the products are over n terms. That is, the geometric averages
of the perreability estimates were used in the computations. The
results for m = 1000 and 285 core plug values are shown in Table
I1I-3. The performance is quite different from that shown in Table

I1I-1. The estimates from curve A are biased considerably.

Case 3 -This data set also comes from a deltaic sand. A geologic
study by Bover (1984) indicates that well 400 -~ the source of these
core plug data -- is located at the eastern edge of the Sims Sandstone
Unit in the proximal region. Figure III-4 is a plot of the porosity
and permeability data.

An analysis of the porosity and permeability distributions shows
the porosity to be approximately normal while the permeability 1is
approximately log-normal. Consequently, a simple linear regression of
the form 1ln(k) = a<¢ + b appears to be appropriate. The method of
least squares gives a = 0.271 and b = -0.864 and this line is shown in
Fig. III-14., The coefficient of correlation, p, is estimated to be

0.706 and the variance oi is about C.822 for this data set.
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We have all the data we need for Eq. (III-10) to be used in the
2 2
rediction of permeability from porosity. We begin with o7 = ¢ (1 -

2
p)

N

or 5 (0.822)[1 - (0.706)21

to give o 0.412, This result in Eq. (III-10) gives

>

=
il

exp{0.271 * ¢ - 0.864 + 0.5 « 0.412}

>

or k 1.23 exp{0.271 * ¢ ~ C.864}.

Thus, to correct for the nonlinear exponential transformation, the
permeability predicted by the regression line is increased by 23
percent. TFigure III-15 shows the two lines on a porosity-permeability
plot. Line A has no correction for bias while line B includes the

correction.

Concluding Remarks - This section has reviewed some of the salient

features of prediction from regression-based porosity-permeability
models. The issues of which model to choose, estimator bias, and use
of the estimates have been shown to be influential in the optimal
prediction of permeability.

Power transformations of data are a useful method for obtaining
optimal permeability estimates. Transforming data may give new random
variables having desirable properties such as simplifying the model,

allowing standard statistical tests to be used, and correcting for
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transformation of the data. Data transformations have also been seen
to equalize the variability of the data across the range of porosity
values, thereby reducing the need for a weighted least squares
regression. Discordant data points (outliers) may not, in fact,

appear discordant when the appropriate data transformation is applied.
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THE INFLUENCE OF SAMPLE SIZE AND PERMEABILITY DISTRIBUTION

UPCN HETEROGENEITY MEASURES

Introduction - Reservoir heterogeneity has long been recognized as

being an influential factor in determining reservoir performance.
Variations in any reservoir property can degrade the efficiency of a
recovery process. The variability of permeability, however, appears
to be particularly influential. We restrict our attention this
section to permeability heterogeneity.

The two traditional methods of quantifying heterogeneity are the

Dykstra-Parsons (1950) coefficient, and the Lorenz (Schmalz and

VDP’

Rahme, 1950) coefficient, LC. Both measures have values between zero

and one, with higher heterogeneity being represented by the larger
numbers and zero signifying a homogeneous reservoir. Both scales are
such that cases of low heterogeneity occupy the range zero to about
one-half, while the moderate and high heterogeneity cases occupy the
remining half of the scales. Modelling studies (Dykstra and Parsonms,
1950; Schmalz and Rahme, 1950; Warren and Cosgrove, 1964; Koval, 1963;
Craig, 1971; Khan, 1971; Arya et al., 1985) using these measures show
that performance 1is insensitive to the precise value of VDP or LC for

low heterogeneity cases. High heterogeneity however, exhibit a strong

relationship between performance and VDP or L For example, the

c*
Dykstra and Parsons waterflood model shows that, for a producing

water-oil ratio of 100 and a unit mobility ratio, an increase of VDP

from 0.2 to 0.3 decreases the fractional oil recovery from 0.57 to

0.54, a change of five percent. A similar increase of VDP from 0.8 to

0.9, however, decreases the oil recovery from 0.35 to 0.25, a change
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of 33 percent. This feature leads to a problem with these
coefficients: the performance of a model may become very sensitive to
the precise value used for the coefficient.

A question then arises in the use of VDP or LC for moderate to
high heterogeneity cases. A coefficient is evaluated on the basis of
a limited number of permeability samples from the reservoir
population. Since permeability is a random variable, the calculated
coefficient 1s only an estimate of the true reservoir coefficient.
Usually this estimate will not have the scsame value as the true
coefficient. For a small number of data, the error may be quite
large. Intuitively, we would expect that, as the number of data
increases, the computed value approaches the true value. But, if
these coefficients are to be useful as indicators of performance, we
should know how many data are needed to obtain a '"sufficiently
accurate" estimate.

Another issue is that both VDP and LC are one-parameter measures
of permeability variability. Either coefficient can be estimated from
permeability data independently of how the data are distributed.
(Although the Dykstra-Parsons procedure uses a log-normal probability
plot, a best-fit line is used to determine the coefficient.) Several
studies (Lambert, 1981; Goggin et al., 1986; Jensen et al, 1985),
however, have shown that permeability exhibits various distributions.
at predicting the behavior of displacements in

How good are V P and L

D C

reservoirs having different permeability distributions?
The general issues of estimate reliability versus sample size and
estimate sensitivity to the underlying probability density function

(p.d.f.) have been recognized for many years 1in the statistics
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literature. However, very little appears to have been done to assess
the Dykstra-Parsons and the Lorenz coefficients in these respects.
Lambert (1981) studied the effects of sample size on coefficient
estimates bv computing both coefficients for each of several wells.
She found that, as the number of samples decreased, the variability of
the estimate consistently increased.

This study presents analyses of VDP and LC for their behavior as
functions of sample size and permeability distribution. On average,
the estimates underestimate the true population coefficient. The
variability of the estimates increases as the sample size decreases.
The coefficients may also be insensitive to changes in the probability
density function. Some example cases are considered to illustrate the
impact of these insensitivities to predicting reservoir performance.
In view of these findings, we propose a new heterogeneity measure
which is less sensitive to the numbers of samples and which accounts

for the permeability p.d.f. The relationships between this new

measure and the Dykstra-Parsons and Lorenz coefficients are given.

Sample Size Effects on Heterogeneity Measures - We begin bv defining

the terms bias, standard error, and efficiency. The VDP and LC
estimators are studied to determine how the bias and standard error of
each varies with the sample size. Several cases are then cited to
show the impact estimate error may have on reservoir performance.

The two criteria used here to judge the performance of estimators
are bias and standard error (Kendall and Stuart, 1977). Consider the

case where we have a large number (r) of data sets, all coming from

the same population, and which have the same number of data (n) in
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each set. Ve estimate the population parameter (z) by computing r and

estimates zi, i=1, 2, ..., r. If, over all r data sets, the

~

estimates z, are found to systematically over or underestimate the
true value of z, the estimator is said to be biased. An unbiased
estimator is desirable, but is not necessarily the most important
feature since we may be able to apply a correction factor for the
bias.

The estimates ;i’ i=1, 2, ..., r, will differ from z by varying
amounts. Usually, one assumes that Azi = ;i - z is N(mz, sz). That
is, the errors Azi are normally distributed with mean mZ and variance
sﬁ. When m, = 0, the estimator is unbiased. s, is the standard error
of the estimator. The normal p.d.f. implies that estimator l;i - mz|
< s, for about 67 percent of the samples and that l;i - mzl < 2sz for
95 percent of the samples (Kendall and Stuart, 1977). s, is usually a
function of n, with sz decreasing as n increases. Given two methods

to estimate z from a data set, the method having the lower standard

error is more efficient.

Sample Size Effects on the Dykstra-Parsons Coefficient - In Appendix

A, expressions are developed for the bias, mv, and standard error, Sv’

of the Dykstra-Parsons coefficient estimate V For the case where

1))

the permeability p.d.f. is log-normal, they are

- 0.749 [1n(l - V. )1°

N DP)] (1 - v )/N (I11-11)

DP

=}
n

and

]
It

- 1.49 [In(1 - V)1 (1 - VDP)//ﬁ (I1I-12)



where N is the number of data in the sample end VDP is the
Dykstra-Parsons coefficient of the permeability distribution. These
equations assume that N is large, but they give good approximations
when N 2 20 (Jensen, 1986).

Equation (III-11) indicates that the estimate §DP is biased; the
estimator underestimates the true coefficient (mv < 0). The bias m
is proportional to N_1 and reaches a maximum (in absolute value) when
A

DP

VDP

0.87. The bias is small. For example, mv = 0.02 for N = 20 and

0.87. Hence, for any reasonably sized log-normal data set, the
bias m is insignificant.

Equation (ITII-12) on the other hand, shows that Sy is
-1/2

and attains a maximum for V = 0.63. Figure

proportional to N DP

IT1I-16 shows the number of samples n required to obtain a given

standard error as V varies between 0.3 and 0.9. For example, to

DP
maintain s, = 0.05, a data set of 50 or more samples is always
required and 120 samples are needed when V__ = 0.6.

DP

The curves in Fig. III-16 are concave downward because of two

competing effects on the VDP estimator. As formation heterogeneity

increases, more samples are mneeded to adequately define the

variability. This effect is shown in the positive-slope (VD < 0.6)

P

portion of the curves. For VDP > 0.6, the increasing insensitivity of

VDP to changes in heterogeneity level dominates. This is the same

behavior described in the introduction; when VDP is large, the

heterogeneity must change substantially for VDP to be perturbed.

Hence, fewer samples are required to define the variability for high

heterogeneity cases.
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A

To use Fig. JIII-16 for a real situation, VDP would have to be

used instead of VD Knowing the number of data at hand, an estimate

P
of s, may be made. This s, estimate indicates the error associated

with VDP and allows a decision regarding the data set sufficiency to

be made.

Sample Size Effects on the Lorenz Coefficient - An analytical solution

to the sampling error of the L_, estimator is a much more difficult

C

task than for VDP because it involves integration of the area between
two curves. In the statisitcal and economics literature, the Lorenz
coefficient appears to be evaluated using Gini's coefficient of
concentration (Kendall and Sturat, 1977) rather than evaluate the area
between two lines (Gail and Gastwirth, 1978; Gastwirth, 1972). Since
the practice of the petroleum industry is to estimate LC using
integration and no theory is available, we have used Monte Carlo
simulation to address the problem.

Appendix B describes the procedure and associated equations used
to simulate the Lorenz sampling problem. We assume a log-normal
permeability p.d.f. describes the population to provide results for a
typical situation. Figure III-17 shows the bias results for the
trapezoidal method of numerical integration. The vertical axis is
scaled as mL/LC to show the bias as a fraction of the true Lorenz

coefficient. Just as mv is a function of V the bias mL of the

DP’
Lorenz estimator depends on the true value of LC for the population.

The bias is always negative and is significant (m /L., < - 0.06) for
e

small data sets (N < 40) and heterogeneous distributions (LC > 0.6).
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A similar computation using Simpson's rule showed that the bias is
insensitive to the method of integration.
Figure ITI-18 shows the number of points required to maintain the

standard error s of the estimator at given values for 0.3 £ LC < 0.9.

For large s the estimator is quite efficient (requires few points);

L)

for small Sy the estimator requires a large amount of data. The

problem of significant bias of the Lorenz estimator makes the use of

Fig. TITI-18 slightly complicated. Because LC (and not LC) is

available, if LC is used for the abcissa of Figure TII-18, the number

of points and the standard error may be underestimated. A

~

"compensated" value, e.g. 1.05°L_,, would probably be more appropriate

C)

as an estimate for LC.

Comparison of the Dykstra-Parsons and Lorenz Estimators - In terms of

the bias, both the VDP and LC estimators underestimate the true value
of the underlying population. The Lorenz estimator, however, gives
and estimate that is considerably more biased than the Dykstra-Parsons
estimator. This problem is aggravated because there is no analytic
expression for the Lorenz estimator bias. Otherwise, a correction
factor could be introduced.

For an assessment of which estimator is more efficient, caution
should be used when comparing Figs. III-16 and III-18, This is
because LC and VDP have different scales, although the endpoint values

(0 and 1) are the same. When the permeability i1s log-normally

distributed,

L, =erf[- 0.51In(1 - V

C (I1I-13)

pp) !
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where erf is the error function (Jensen, 1986). Using Eq. III-13 we

< < < 1
see that LC VDP for O VDP 0.9. Since LC and VDP have different

scales, s1, and Sy also have different scales.

Small errors in S and s, can be "reconciled” in the following

manner, 7To convert s; to an equivalent error in VDP divide sy, by the

derivative of Eq. III-3:

dL

cC _ 2 -
W exp(~[-0.5 1n(1-V,,) 1) /[T (1-V )] (I11-14)

Using this approach, the Lorenz estimator is usually more efficient
than the Dykstra-Parsons estimator, with the former requiring only
one-fourth the number of points needed by the latter for low (VDP
0.5) heterogeneity cases. As the heterogeneity increases, however,
the Lorenz estimator efficiency decreases until, at V = 0.9, its

DP

efficiency is about equal to that of the Dykstra-Parsons estimator.

The Influence of Estimator Errors on Performance - A number of studies

have related the performance of a particular reservoir model to the
level of heterogeneity (Dykstra and Parsons, 1950; Schmalz and Rahme,
19503 Warren and Cosgrove, 1964; Koval, 1963; Craig, 1971; Khan, 1971;
Arya et al., 1985). By consideration of some examples, the impact
that estimator errors may have on reservoir performance can be
demonstrated.

Koval (1963) discusses the influence of heterogeneity upon
unstable miscible displacements. His figure 20 relates VDP to H,
a heterogeneity factor, which enters into a miscible fractional flow
equation. For a data set of 50 samples from a reservoir having V

DP

0.50 (H =2.9), Sy = 0.073 by Eq. (III-12). Hence, one could expect
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that 0.43 = VD £ 0.57 for 67 percent of all possible data sets, or

P

0.35 = VDP £ 0.65 for 95 percent of such data sets, For the 67

A

percent confidence limits, 2.6 £ H 3.4, a 27 percent spread in H.

A

For the 95 percent confidence limits, 2.3 = ﬁ 3.8, a 50 percent
spread in H. A unit mobility displacement requires 1/H pore volumes
injection for solvent breakthrough. Hence the 67 percent limits give
a 0.09 pore volume uncertainty in the injected volume while the 95
percent limits give a 0.17 pore volume uncertainty.

Craig's monograph (1971) discusses the influence of heterogeneity
upon simulated waterflood performance. A data set of 40 samples from

a reservoir with L = 0.60 gives s, = 0.07 or, ignoring the issue of

c L

bias, 0.53 £ LC £ 0.67 for the 67 percent confidence limits. This

implies that using the Stiles model, the amount of recovered oil may
vary between 25 and 40 percent of the oil recoverable at a 50 percent
water cut. There is a one~in-three chance that the predicted recovery
will fall outside of these 1limits when only 40 samples are used.

Including the bias, 0.50 £ L, £ 0.64, which gives a recovery between

c

28 and 44 percent at the 50 percent water cut.

Finally, the uncertainty in V

pp may be important when comparing

estimates from different methods for a reservoir. Differences between

A

VDP using core data and GDP based on transient tests have been
reported (Warren, 1961), These differences are usually attributed to
the scale of measurement. However, transient test data are usually
few in number so that the variability associated with the estimate may

be quite large. Hence, caution 1s required when comparing such

estimates and drawing conclusions.
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Permeability Distribution Effects on Heterogeneity Measures - Several

studies (Lambert, 1981; Goggin et al., 1986; Jensen et al., 1985) have
shown that permeability may not necessarily be log-normally
distributed. In particular, the previous section has shown that
permeability may be p-normally distributed. That is, (K)P is normally
distributed for some value of p, -1 £ p £ + 1, where k is the
permeability random variable. It dis convenient mathematically to
consider that the quantity x, defined as in Eq. (III-3), is N(mx,

s 2). Recall that the cases p = 0 and p = 1 indicate that the

X
permeability is log-normally distributed or mnormally distributed,
respectively.

We consider the behavior of VDP and LC when the permeability
p.d.f. is p-normal. In doing so, we include two important cases, p =
0 and p = 1, but we also allow for a behavior that does not correspond
to these two cases.

We present briefly some observations concerning p-normal
distributions. See (Jensen, 1986) for a more extensive discussion.
The first moment (i.e. the arithmetic mean) of a p-normal distribution
only exists when p 2 0. The geometric mean of a p-normal distribution
always exists, as do the median and other percentiles.

The ratio . = Sx/mx and the exponent p constitute a useful
measure of the variability of a distribution; they allow two different
distributions to be compared. The variable c is a measure of how
variable the permeability is, but gives no 1indication of how
frequently high permeability values occur relative to the Ilow

permeability values. The exponent p is a measure of how asymmetric

the distribution is; the lower the value of p the longer will be the
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right tail of the p.d.f. (Jensen, 1986). That is, as p decreases,

there is an increasing probability that high (relative to the average

permezbility regions appear in the reservoir.

Permeability Distributions and the Lorenz Coefficient - To create a

Lorenz plot from data, no knowledge of the permeability p.d.f. is

required. However, we are seeking an L_ which is representative of

c

the population and not just a value for the data at hand LC is a
one-parameter assessment of the variability, or heterogeneity, present
in the reservoir. As such, it has several limitations and a knowledge
of the permeability p.d.f. can help us to interpret the estimate
obtained.

The Lorenz plot assumes that an arithmetic mean value exists for

the reservoir population (Gail and Gastwirth, 1978). For the cases -1

A

p < 0, the arithmetic mean does not exist and, hence, the Lorenz
coefficient does not exist. Consequently, for reservoirs where p < O,
estimating a Lorenz coefficient is not useful. When p = 0, a unique

value of L, may be associated with each value of . and p (Jensen,

c
1986). Figure III-19 shows this relationship for the case of a 1000
md median permeability (A fixed median was chosen to keep all the
distributions comparable.) However, for a given value of LC’ the
values of c and p are not uniquely determined. For a fixed value of
c.» LC increases as p decreases. This behavior implies that

permeability distributions with small p values are potentially more

heterogeneous than are distributions with large p values. That is, a
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p.d.f. with a small p value may represent greater heterogeneity,

depending upon the value of .

Permeability Distributions and the Dvkstra-Parsons Coefficient - The

procedure for estimation of VD calls for a log-normal probability

P
plot to be made from the data (Dykstra and Parsons, 1950). The

estimate VDP is based upon a "best-fit" 1line to the plot and,

therefore, does neot strictly require that the data come from a
log-normal population. The line 1is used to estimate the median

permeability, k

0’ and the permeability at the 16th percentile, k16 to

5
give

~

Vo, =1- (k16/k

DP (I11-15)

50)
The use of a best-fit line makes this procedure difficult to quantify
when p # 0, however a few qualitative remarks may be made.

If we ignore sampling error, a p-normally distributed variable
will cause the log-normal probability plot to be concave upward or
dowvnward, depending upon whether p < 0 or p > 0, respectively. Since
the best-fit line procedure calls for weighting the central portion of

A

the plot more than the ends, the estimated median permeability, kSO’

will be close in value to the true median, kSO (Fig. III-20). The
estimate ﬂ16’ however, will be influenced more: if p > 0, then £l6 >
k16 (Fig. 1III-20); if p < 0, then k16 < k16' Hence, from Eq.

(111-15), if p > 0, then VDP < VDP if p < 0, then VDP > VDP'
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When the best-fit line portion of the procedure is discarded and

h
the 16t and 50th percentiles are used to estimate V directly from

DP

the data, some further results may be obtained. For the p-normal

distribution (Jensen, 1986),

N 1/p

kSO = (1 + p.mx) (III-16)
and

k. = [1+pm -s)17P (I1I-17)

16 X x -
Combining Eqs. (III-15) - (III-17) gives

V. =1-1{1-pes_ /(1 +p.m)]/P (I11-18)

DP “Tx Tk

Thus, as is the case for the Lorenz coefficient, V_ _ does not uniquely

DP

define p and c

Permeability Distributions and Reservoir Performance - To demonstrate

the influence that the permeability p.d.f. may have on reservoir
performance, we created nine sets of permeability values which were
divided into three groups. Table III-4 shows the features of the
sets. Each group has three data sets which all have the same VDP but
different exponent (p) values. The permeability sets were then used
in a Dykstra-Parsons layered mode (Dykstra and Parsons, 1950) to
examine the variation in the water-oil ratio behavior from set to set.

All data sets were constructed such that the median permeability
value, k was 500 md. Equation (III-16) then yielded o s since the

50

VDP and p values were already chosen, and Eq. (III-18) was solved for



TABLE ITI-4., Properties of data sets for reservoir simulations.

Set No. Group No. \Y

DP
1 1 0.25
2 1 0.25
3 1 0.25
4 2 0.50
5 2 0.50
6 2 0.50
7 3 0.75
8 3 0.75

9 3 6.75

P m Sy
0.0 6.21 0.29
0.2 12.3 0.97
0.4 27.5 3.26
6.0 6.21 0.69
0.2 12.3 2.24
0.4 27.5 7.27
0.0 6.21 1.39
0.2 12.3 4.20
0.4 27.5 12.8

109
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s . These values are shown on Table III-4. For each data set of n

&

points, the ith datum, k(i)’ was computed as follows.

. = -1 24 - -
X, =m_+ Y2 . s - erf "[(21 1) /n-1] (11I-19)
1
[(1 + p.xi) /p’ p#0
k,.
(i) = 1 (I11-20)
exp(xi), p=0
where erf—1 is the inverse error function and i = 1, 2, ...n.

Equation (III-20) assumes that the ith point has the associated

1/2)/n

probability (k

Figures III-21 through III-24 show log-normal probability plots
for the data sets for which VDP = 0.5 or VDP = 0.75 and p = 0.2 or p =
0.4. Each abcissa is scaled in units of standard deviations for the

normal distribution. Each ordinate (y) is normalized by the mean and

standard deviation of the data set:

vy = [ln(ki) - m]/(/2.s),
where
m = N—lZln(ki),

2in(k)) - m)?,

2 -
s = (N-1)
and the summations are taken from i = 1 to i = N, The values of m and
s are noted on each figure. See Jensen (1986) for more details of how
these plots are generated. As expected, all plots are curved

downward. The straight line on each plot gives the position that the
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plot would have if the data were log-normally distributed with the
stated VDP' In terms of the best-fit line procedure called for by
Dvkstra and Parsons (1950), with weighting the center more than the
outside points, the data calculated do have the desired coefficients.
The data sets were used in a non-communicating layered reservoir model
as described in Dykstra and Parscns (1950). Gravity and capillary
effects are negligible, and the displacement is locally piston-like.

Two mobility ratios, 0.5 and 2.0, were considered. Figures III-25

through III-28 show the model behavior in terms of o0il produced (in

pore volumes) versus the water-oil ratio for the cases VDP = (.50 and
VDP = 0.75.
For the sets with VDP = 0.25, there was only a small difference

in the model behavior as p changed. At higher 1levels of
heterogeneity, however, the influence of p was evident. For example,
when VDP = 0.75, a log-normal distribution and a favorable mobility
ratio (M = 0.5) behaves similarly to a 0,4-normal distribution with an
unfavorable mobility ratio (M = 2.0). For a unit water-oil ratio and
VDP = 0.75, a change of exponent from p = 0 to p = 0.2 implies an
increase of 0.15 pore volumes of o0il recovered. These results
indicate that p may be as influential as M 1in determining oil
recovery.

The above analysis, while specific to V also indicates the

DP’
results that would be observed with the Lorenz coefficient, Figure
I1II-19 shows that an infinite number of (cx,p) pairs may be chosen to
give the same LC value. Those pairs with low p values, however, would

represent reservoirs with higher water cuts.

We conclude from these results that reservoirs with different
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permeability distributions but equal heterogeneity measures may occur.
Information exists within data sets which is not normally used by the
existing measures. The performance of reservoirs may vary

considerably according to the permeability p.d.f.

A New Heterogeneity Measure - From an analysis of the preceding
results, we propose a new heterogeneity measure. It has a
mathematical form similar to the VDP estimator, but it does not

require a plot. An example of the relative performances of the new

measure, V and L, is given.

DP’ C

Desirable properties of a heterogeneity measure - The nature of a
heterogeneity measure, however defined, is to distill in a meaningful
way, the level of permeability variability in a reservoir. The
computation of such a measure inevitably depends on data from a
limited number of reservoir samples. Therefore, it should extract as
much information as possible from those data.

On the basis of the preceding analysis of the traditional
heterogeneity measures, several criteria for estimators are suggested.
1. The estimator should be unbiased.

2. The estimator should be efficient.
3. A measure of the permeability p.d.f. asymmetry (e.g. the exponent

p) should be made.

4. The estimator should have a range of values which allows the
higher heterogeneity cases to be readily distinguished.
5. The estimation technique should be easy to use and should avoid

graphical methods.
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Neither the VDP nor the LC estimator satisfies these
requirements. The issue of scale is particularly important because of
the sampling problem: The =zero-to-one scale of these estimators
compresses the high heterogeneity cases together and the sampling
variability blurs the distinction further.

To suggest a new measure, however, requires some caution. A
substantial amount of work relating VDP or LC to the performance of
reservoir models is available. Any new estimator should give results
that can be interpreted in terms of VDP or LC.
A new heterogeneity measure - We propose that the pair of values, V

and p, where

V=k%k,/k

84 1 (I11-21)

16 ~
be used to assess permeability heterogeneity. The form of Eq.
(I11-22) is similar to the VDP estimator. The coefficient V varies
between zero and infinity with, as for the traditional measures, zero
representing a homogeneous reservoir.

The estimation of the required quantities is straightforward.
The exponent p i1s readily estimated from a data set by one of the
methods discussed above. The quantities k., 6 and k_,, may be estimated

16 84
from a set of n data by the following formulas (Hoaglin et al., 1983)

o~
|

16 = kg * (kgyy) = kg (r = 1)

and

~
|

84 = kj + (kj+1 - kj).(t -3
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where
1 1
r =0.1587 (n + /3) + /3,
£ = 0.8413 (n + 1/3) + 173,
i= [1‘], j= [tl,

[z] denotes the largest integer £ z, and km denotes the mth datum in

the ordered set of permeability data, k, s k, s k3 ... = ky. These
formulas determine the locations of the 16th and 84th percentiles for
an arbitrary number of data. The estimation of k16 and k84 requires
no fitting of lines to data, although plotting may be desirable for
other reasons.

For the case of a log-normal distribution (p = 0), several

results may be derived. The coefficients V, VDP’ and LC are related

by

_ 1/2
Vp = l= (V+1)

and

LC = erf[l/4 . In(V + 1)].

For example, when V = 0.5, V= 3.0 and when L, = 0.7, V = 16.

DP c

Using the approach given in Appendix A, the bias, m s and the standard

error s , of the estimator for V are given by

m, = [(1+ )12 [0.463 - 0.570 (1 + v)~1/2

+-0.570 (1 + V2 - 0.108v]/N (1TI-22)
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m_ = 0.962 . (1 + V).In(1 + V) /vn (I11-23)

An analysis of Eq. (III-23) shows that the bias is positive for V

£ 35 (i.e. VDP £ 0.83) and is negative otherwise. This means that

the V estimator tends to be slightly pessimistic (V too high) for most

reservoirs. Cases of very high heterogeneity (V > 33 or VDP

give a negative bias. If N 2 40, then |mv| £ 0.05V for V £ 225 (d.e

> 0.83)

VDP £ 0.93). Only in cases of exceptionally high heterogeneity (V >

400 or VDP > 0.95) would N 2 50 be required to keep the bias within
five percent of V. A study of the standard error performance of the V
estimator, using the same approach as described for the comparison of

sL and SV’ shows that V is more efficient than VDP (Jensen, 1986).

If, for a given situation, n points are required to estimate VDP with

standard error s then 0.43N points are required to estimate V to an

V,
equivalent standard error. These results are based on large-sample

theory and, therefore, should be used with caution when n < 40.

The Relative Performance of the Three Measures - We compared the
overall performance of the V, VDP and LC estimators by determining the
error of the fractional oil recovered (ER) in a Dykstra-Parsons Model
(Dykstra, Parsons, 1950). For the base case, we took VDP
0.745 and V = 24), M = 1 and an irreducible water saturation of 0.30.

= 0.80 (LC =

Assuming a data set of a given size, six values of ER at a water-oil

ratio of 100 were calculated based on the standard error range of each

. + + + .
estimator: VDP * SV’ LC + mL + SL, and V #* sv (The bias was included

in the Lorenz estimate because of its appreciable value.) This was
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done for a range of data set sizes. A log-normal perreability
distribution was assumed.

The results are shown in Fig. III-29. The base case gives ER =

0.35 (zero error). For any estimator, the spread of points above (ER

> 0.35) and below (ER < 0.35) the base case lire 1is governed by
segveral factors:
1. The standard error of the estimator,

2. the bias of the estimator (signigicant only for LC and

3. the relationship between the heterogeneity measure and reservoir
behavior.
The three estimators perform similarly regarding recovery
overestimates (ER > 0.35), with V performing slightly better than

either V or L

DP c The recovery underestimate behavior (ER < 0.35),

however, is distinctly different for each estimator. The influence of

bias on LC is sufficient to give a constant standard error behavior.

Both L, and V are much less pessimistic than V The high efficiency

C

of the LC estimator, particularly at small sample sizes, makes it

DP*

attractive for this particular case. The relatively symmetrical error
behavior of the V estimator is a result of its zero-to-infinity scale.
This is in contrast to the asymmetrical behavior of VDP and LC - even

at 100 samples where m is small - cased by the zero-to-one scale.

Observations and Conclusions -~ The Dykstra-Parsons and Lorenz

heterogeneity measures have been examined assuming a log-normal p.d.f.
and found to have the following properties:
1. Both measures compress the high heterogeneity cases, which makes

performance predictions sensitive to the precise value used.
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2. Both estimators underestimate, on average, the true reservoir
values. The Lorenz estimate is significantly biased for data
sets having fewer than 40 samples.

3. The Lorenz estimator is much more efficient than the
Dykstra-Parsons estimator in low heterogeneity cases. Both
estimators are equally efficient for very high (VDP z 0.9)
heterogeneity cases.

4, Different reservoirs with the same VDP or LC may behave quite
differently because of the asymmetry of the permeability
distribution.

5. A Lorenz coefficient cannot be defined for some non-log-normal

permeability distributions, V however, always exists.

pP°?

A heterogeneity measure has been proposed which accounts for the
permeability distribution. The measure does not require that a plot
be made, but it does require that two parameters be estimated. For a
log~normal p.d.f., the new measure is always more efficient than the
Dykstra-Parsons estimator and it is more efficient than the Lorenz
estimator in high heterogeneity (VDP 2 0.9) cases.

In comparison to the VDP and LC estimators, more computation is
required to estimate V and p. Information which may be important to
performance prediction, however, is being ignored when only VDP and LC

is computed. In view of the cost of data, it should be worthwhile to

make the added computational effort.
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GENERATING A PERMFABILITY DISTRIBUTICN

We will use the turning bands method (TBM) in Part V to generate
a stochastic field. The method employs a weighted sum of a number of
one~dimensional line processes to generate a 2-dimensional field. The
generation of a line process is considered here.

Let z be the property (permeability here) to be generated

L

> 1 > >
z(x) ==— I gz (x'u,) + ¥ (11T-24)
'/f. 1 i

i=1
> >
where x is the position vector, ui, is the unit vector along line i,
> >
2y is the corresponding value at lire i evaluated at x'ui and L is the
number of lines uniformly extending from the origin (Montoglou and
Wilson, 1982).

The square root on L is in accordence with the law of addition of
random functions. The theoretical mean of this process is zero if the
line processes are generated with zero mean, therefore, the required
mean value M is added after generation.

The major assumptions in this method are that z, are secondary

stationary (stationarity of order two), isotropic and normally

distributed.

Line Process - The 1line process is generated wusing the modified

spectral method (Shinozuka and Jan, 1972),

m
=92 L w' - -
zi(x) 2 A(wk)cos( g Cx ot ¢k) (IT11-25)
k=1
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where

e
]

(k - %)Aw

\
X wk + Sw

£
1l

Alw) = /S(u )b .
¢k are M independent random phase angles uniformly distributed between
0 and 2n. d&w is a fine-tuning small angle to allow fewer terms in the
sum of Eq. (III-25) (smaller m). S is the one-dimensional spectral
density function calculated from the given isotropic autocovariance
function. m should be large enough to achieve accuracv, and mAw
should be large enough so that A(mAw) approaches zero (Montoglou and

Wilson, 1982). Normally m = 100 is sufficient.

Correlogram and Estimate - An isotropic secondary stationary process

is completely determined by the mean

u = E[z(¥)]

and the autocovariance function

C(h) = E[{z(x) - u}{z(x + h) - ul}]

where h 1is the separation distance. If the autocovariance 1is
normalized by the variance, the zero-lag value of the autocovariance

function, it becomes the autocorrelation function

) = £



In other words, 1if the standard deviation g = /—6767 is unity,
autocovariance equals autocorrelation. The autocorrelation function
is a one-parameter special case of a correlation function. In the
following discussion the standard deviation is assumed unity unless
otherwise noted, and the term correlation function is thus used for
both the autocorrelation and autocovariance functions.

When processing data to describe a set of observations, the
correlogram, which is the correlation as a function of separation
distance, can be plotted. If the true mean or the population mean u
is known, an estimate of the correlation function can be calculated

1

Cu(h) =3 b (zi - u)(zi+k - (I11I-26)

i=1
where h is the separation distance between the correlated points at X,

and Xi+k
h = keAx
assuming a uniform grid of size Ax and

z, = Z(Xi)

However, the ©population mean u© 1is rarely available in

characterizing a process, and we must use the sample mean



o
W
(]

as an estimate of the population mean p. The correlogram becomes

N
o (zg =Wz, =W (I11~-27)

i=1

1
CA (h) = '1\7

u

C., is an estimate of C .
I u

Using the sample mean introduces error in the correlation
function since the sample mean can be different from the population
mean. We would like to know when and under what conditions this error

is important.

Deviation of correlogram because of the sample mean - Let the

~

difference between the sample mean and the population mean be du

duy = u -y

then

(2 = W (zgy = W) = (z; = w = dw(z,, - W= du

Af) ~
= (zi - u)(zi+k - u) +dp” - du(zi =tz W)

and the correlation function using the sample mean becomes

|
2

C. () (2 = W (2 = W)

[N
[}

1

[ A

(zi - u)(zi+k - u)

22—
e
1
i

+ (ﬂ - u)2
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- (; - w % z (Zi -yt Zivk T )
= Cu(h) - W= - (;i -w - (;i+k - w}

~

where Hy is z averaged from i=! to N and My from i=1+k to N+k. For

+k
a stationary process, E[ui] = E[;i+k]. Therefore, take the
expectation:
’
E[C.(W)] =C (h) - ¢, " II1-28
[ ﬁ( )1 y ) % ( )

Since the variance of the sample mean ¢ is always positive,

f
C;(h) is a biased (systematically smaller) estimate of Cu(h). We need

"
to evaluate the variance of the sample mean oﬁ“ in order to predict

the bias.

Variance of the sample mean - The sample mean fi is an wunbiased

estimate of the population mean u as its expectation. The variance is

the second moment about the expectation,

oé = E[(n - 7]
N
SElG I oz, -]
i=1
N
=ElG & {z, - uD’]



N
1 2
=El(= I (z, - w7]
i
NT .
i=1
N-1 N-j
2
PELC T T Gy - Wy - W] )
j=1 i=1
2 b nem
o. = N— + N .Z N (IT1I-29)
i=1
where ¢ is the population standard deviation and h = i+Ax is the lag

distance, The first term 1is the same as for independent 2 . The
second term is caused by the correlation between the data points and
cannot be reduced by simply increasing N.

Let us assume an exponential correlation function:
2 2
Cu(h) = g~ exp( -h/A) = 0" exp( - a*i) (ITI-30)

where A 1is the correlation 1length and a = Ax/XA 1is the grid

. , , 2
size/correlation length. The variance of the mean o can then be

N

calculated for a different number of points N and different length a.

The result is

2 N-1
02 _ o~ (1+2 (N - i)exp( - a-i))
fi N 1=1 N

(I11-31)

The standard deviation of the mean % (with o0=1) calculated using Eq.
(I11-31)) is plotted in Fig. III-30 versus Nea (the total sample span
divided by correlation length, NAx/A). Figure III-30 shows that when

the total sample span 1is less than about 20 times the correlation
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length, the standard deviation of the mean increases rapidly and

, . : 2 2 :
approaches the unit population variance, i.e. 0¢,° + 0°. An increase

f
ir the number of sample points N above a certain limit contributes

little to a reduction in the standard deviation of the mean. This can

be derived from Eq. (III-31) by taking the limit a = Ax/X to zero

2 N-1
lim 02 = L (l+2 I (N - 1)6XP(0‘1))
a0 P N N
i=1
.
= X 2 -
i=1
2 N-1 '
= %‘(1+2N—2—2 z %)
i1=]
2

g
= N (1 +2N -2 - N)

02(1 - %)

When the sample span is greater than 20 times the correlation length,
the standard deviation of the mean is small and decreases with an
increase in the number of sample points N. When the correlation is
zero, the process is completely independent, and the equation for the

variance of the mean reduces to

which is the formula for independent samples.
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Verification of the bias of the correlogram - Figures III~31 and

III-32 show the correlogram calculated from a simulated line process
(with an exponential correlation of unit correlation length) using
both the sample mean and population mear. The total sample span N<Ax
over correlation length is 5.00 in Fig. III-31 and 1.00 in Fig.
III-32. Each line process is divided into N=100 grid points. The
plotted curves have been averaged over 100 independent line processes
(100 realizations) to approximate the expected value. These figures
show the systematic error caused by the substitution of the population
mean U by the sample mean ﬂ.

The bias can be predicted from Eqs. (I1I-28) and (III-30).
Equation (III-30) predicts that the bias is constant for different lag
distance h, which is verified by the figures. From Eq. (III-31) we

can calculate UQZ = 0.35 for Fig. I1I-31 (total sample

span/correlation length N*a = 5.00 or a = .05) and Oﬂz = 0.75 for Fig.
III-32 (a = .0l). The correlograms agree with the prediction quite
well. The exponential autocorrelation tends to zero at large lag
distances, while the correlogram using the sample mean tends to a
negative value which approximates OQZ.

The bias is from the true correlogram's estimate wusing the
population mean Cu(h), while Cu(h) itself can deviate from the given
correlogram. See the tails at large lag distance in Figs. ITI-31 and
ITI-32. As we will show later, the uncertainty in estimating the

correlogram is higher with a relatively small total sample span and at

large lag distances.
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A similar argument holds for the variance or confidence interval
of the autocorrelation calculated from sample data. Figures III-33
and III-34 show the simulated results of line processes generated in
the same manner as Figs. TIII-31 and III-32. In Fig. ITI-34, the
standard deviation ¢ = /6;767 of line process i, divided into 100
points, uses population mean yu. The four curves, plotted as a
function of correlation 1length, have been calculated from 100
independent lines (100 realizations) for each correlation length.
They are,

(1) the averaged standard deviation,

Qal
i
2z~
o=

e
ft
finiy

(2) the estimated standard deviation of ¢ = VC 50),

N
2 1 -2
(o of oi) =5 I (oi - o)
i=]
(3) the maximum g,
Opax = max{ol,---,oN}
and
(4) the minimum g,
Orin min {cl,...,cN}
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As the sample span becomes less than about 20 times the
correlation length, the standard deviation of the sample variance
increases rapidly and the possible outcomes of the sample standard
deviation becomes erratic, even though the average standard deviation
using population mean is not biased.

Figure III-34 is the standard deviation of the correlogram of
simulated data from 07 to 607 lag distance of the total sample span

N

{spof C. M2 =% £ {c (n), - C.W}
H N u i H
i=1

Each curve is from 100 line processes of the same correlation length
and each line process divided into N=100 data points. These curves
show that the uncertainty in estimating the correlogram is again
controlled by the ratio of the total sample span to the correlation
length, with a critical number 20 for the exponential correlation
used. The uncertainty increases quickly as the ratio becomes lower
than 20, and is relatively constant for different lag distances for a
fixed total sample span/correlation length. But there is a slight
increase at larger lag distances because of the decrease in the number
of data points in calculating Cu(h). For larger sample spans (total
sample span/correlation length greater than) the effect of the
correlation on the uncertainty is negligible, as can be seen from the
two curves with a ratio of 20 and 200. When the grid size is equal to

or greater than the correlation length, the deviation appears less

smooth, as in the curve with a ratio of 100.
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Variogram and Its Estimate- To avoid the systematic error caused by

the variance of the sample mean, a variogram, which is defined

independently of the mean,

2y(h) = E[{z(x) - z(x + h)}°] (I1I-32)

can be used to regress the standard deviation and the correlation
length with a given model. The varilogram (sometimes called
semi-variogram, due to the presence of the 2) can be related to the

correlogram:

N

Y = 2 E[(z -z )1°

E[({z, - u} - {z_,, - uh?]

N =t

El(z, - W+ (2 - W7 = 2z = Wz, = W]

N

= 2El(z, -~ (2, - W - Bl - Wz, - W]

o% - c(h)

Where stationarity is used to assume that the expected value at x is
equivalent to that at x + h.

In practice, let V(h) represent the estimate of the variogram

v(h)
N
v(h) = %N L [(zy zi+k)2]
i=1
1 2
= oy b [({zi - u} - {zi+k - w7

i=1
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N
o R T DR CHIERO LT CHEN Ry
i=1
N N
o R (CTRD LR CHIERO L I S R (CTN S CTEEN
i=1 i=1
- 2_
=0 Cu(h)

0 is an estimate of the population standard deviation using the
population mean ¥ which does not appear explicitly in the equation for

the variogram. On the other hand, if the sample mean u is assumed

implicitly, the result will be

N

V() =35 T [z - oz,,00
1=1
N
B (CCTIRt S GO h
i=1
N
o gy - (g, - W - 2z, - W (2, - W)
2N i i+k i i+k
i=1
N N
—-;_N z [(zi—u)2+ (zi+k_ u)z} _-I]‘? bX [(Z _U)(ZZ'L'H(—U)]
i=1 i=1
= o -y

~

where 0 1is an estimate of the standard deviation using the sample

mean. This shows that the bias caused by the deviation of the sample

mean from the population mean is the same in 0 = Cﬁ(O) and in Cﬁ(h)
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and, therefore will cancel out.

From this relationship, a correlation function model can also be
used for the variogram without the bias caused by the deviation in the
sample mean. However, the uncertainty of the variogram is still large
if the total sample span is not at least ten times larger than the
correlation length.

Figure III-35 shows the standard deviation of the variogram of
the same simulated data as for Fig. IIT-34 from 0Z to 607 lag distance
of the total sample span. The effect of the total sample
span/correlation length also shows a critical number of 20 as for the
correlogram. Below this ratio the uncertainty of the variogram
increaes. The curve with ratio 200 does not follow a consistent
trend, except for the zero-lag point, since the grid size is smaller
than the correlation length and the data can be considered virtually
uncorrelated.

The observation is that for a total sample span/correlation
length greater than 20, the uncertainty is about the same for both the
variogram and the correlogram.

What 1s different from the correlogram case 1is that the
uncertainty increases with lag distance, particularly for curves with
smaller total sample span relative to the correlation length. One
reason is that the variogram has a smaller value when the lag distance
is less than the correlation length. Also the correlation makes this
portion of the variogram more regular. By definition the variogram
has a zero value (and therefore zero standard deviation) with lag
distance equals zero, which is not the case for th correlogram (the

correlogram can be normalized by C(0) to force the zero-lag point
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equal to unity but the uncertainty in the estimate of C(0) remains).
The conclusion is that the correlated portion of the variogram always

shows a smaller uncertainty than the correlogram, i.e.

h
a < 0o when - < 1
var corr A

Figure III-36 compares the two smaller sample span curves from
Figs., III-34 and TIII-35, For the curves with total sample
span/correlation length 2, a lag distances less than 507 of the total
span will have h < X and the standard deviation is smaller for the
vriogram. For the other pai with ratio 10, 10Z lag of the total span
will have h < A and also the uncertainty for the variogram is smaller.

The spherical model 1is commonly wused for variograms.
Curve-fitting an exponential model with the spherical model turns out
an equivalent correlation length about twice that for the exponential
model. Subsequently the equivalent correlation length was used to
generate and plot curves using the spherical model similarly to those
in Figs. III-33 and III-34, and the results were about the same. This
shows that the conclusions drawn with the exponential model can be
similarly applied to other correlation models 1if an equivalent

correlation length can be established.

Standard for Correlation - Recommendations for estimating spatial

correlation are,
1) Very small correlation - When the correlation length 1is smaller

than the grid size

A < Ax
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the data will appear independent and there is no way to estimate the
actual correlation from the generated data. Only the standard
deviation will be significant in this case.

2) Small correlation - When the total sample span is larger than 20

times the correlation length (10 times for the spherical model),

N+Ax > A+20

the uncertainty is small in estimating either the variogram or the
correlogram, and the bias in estimating the correlogram using sample
mean is also small. As far as accuracy is concerned, there is little
difference in using either.

3) Large correlation - When the total sample span is less than 20

times the correlation length (10 times for the spherical model),

NeA: < A+20

the estimate of correlogram using the sample mean is substantially
biased and should not be used. The uncertainty is large in estimating
either the variogram or the correlogram, but it is smaller within the
correlated range for the variogram. Also the correlogram cannot be
unbiasedly estimated without knowing the population mean. Therefore,

the variogram should be used.

Input/output parameters - The parameters curve-fitted to the variogram

calculated from a simulated process (output parameters) are more oOT

less different from those given to the generator (input parameters).
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Which should be used as the standard? In order to use the data in a
reservolr simulation study, we would expect the data to have the same
correlation structure as specified. Therefore the output parameters
should be used as the standard.

Fixing the set of random numbers used in the simulation, the
input standard deviation and correlation length can be changed to
achieve the specified output parameters. The generator can
automatically least-square-fit a variogram to the variogram calculated
from generated data to get estimates of the output standard deviation
and correlation length. For example, when a standard deviation of 100
is required but the first run of a simulation generates a varogram
best fitted with a standard deviation equal to 94, we can input a
standard deviation of 105 for the next run that would probably produce

100 in the output standard deviation.

Non-Normal Distribution - As to the distribution of the points,

probability plots show that line process generated by the TBM is
approximately normally distributed. Figure ITII-37, a probability plot
of normalized data value (permeability) versus the inverse error
function (Jensen et al. 1986), shows different line processes covering
different total sample spans over correlation 1length. For large
sample spans over correlation length, the data are very close to the
theoretical normal. The deviation from the normal distribution is
largely caused by the correlation between sample points. This
indicates that for small sample span or highly correlated data it is

not easy to test the normality of the distribution.
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If a non-normal distribution is to be simulated, a transformation
can be done after the normally distributed process has been generated,
in a reverse direction to the transformation to normal. For example,
an exponential of the process which is normally distributed would
result in a log-normal distribution, since the logarithm of this will
bring it back to a normal distribution. The relation between normal

data z from the TBM and log-normal data can be derived:

Z1og-normal = exp(z)

while for p-normal where p # 0

2 normay = [max(0, z+p + 111?

In this tranformation any negative number will be set to zero, since
we cannot raise a negative number to real power.

After the transformation to p-normal, the coefficient of
variation (the ratio of the standard deviation to the mean) will be
changed. Because the transformation involves raising the variable to
the power p, addition or subtraction would change the index p.
Therefore only multiplication can be used after the transformation
because this will not change the coefficient of variation.

To achieve the required coefficient of variation after the
transformation, a different coefficient of variation should be used to
generate the data. Because the standard deviation 1s a parameter to
be adjusted in the generating program , it is more convenient to
change the input standard deviation also to fit the required
coefficient of variation after the transformation to p-normal, i.e.

the output parameters will be estimated after both the transformation
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to p-normal and the adjustment for the mean. The adjustment on the

nean will be achieved by multiplication

Z,;o ¥
ky = N
N g Zy
i=1
so that
N N zZ,* M
Loy =1z i = U
N i N N
i=1 i=11 T
N Zj
j=1

Alternatively the p-normal average can be used instead of the
arithmetic average, but it is too complicated and usually not readily
available.

After the transformation to p-normal, the variogram may be
changed a little, but the shape is about the same, and the correlation
length is 1little affected. Figure II-38 shows the effect of this
transformation on the variogram with a unit coefficient of wvariation
before transformation and normalized to the same variance after the
transformation. p=1 means normally distributed, and the option of
omitting the negative values 1is included since that is required in
transforming to p-normal.

With a coefficient of variation as large as 1, a substantial part
of the data would be negative for a true normal distribution. In a
permeability field, or any p-normal distribution where p#1, there can
not exist negative values. Setting the negative values to zero solves

this problem but at the same time distorts the probability
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distribution. Figure II-39 shows how the transformation affects the
probability density function.

Why does the transformation change the probability density much
more than the variogram? It is because the probability density is
grouped by the value of the data which is what the transformation
changes directly, but the variogram shows the variation over a
separation distance and is averaged over the whole area; therefore,
the change in data value at one point would not be much different from
that at the other and the variation between these two points would
remain much the same. For the portion of negative values set to zero,
it will appear collectively in the probability density function at one
end, but in the variogram it 1is scattered among the averaged
variations and therefore will not affect the shape (the standard
deviation will be different).

For transformation to approximately normal, see Jensen's paper

(1985).

Spectrum - The spectra density function w can be calculated from the
generated data by
w(a) = L {(Zz,cosax )2 + (Iz.sinax )2}
i i i i

SD2N

Theoretically the spectral density contains as much information as the
autocorrelation, and a relation between the two is unique. It also
contains the standard deviation explicitly and therefore is subject to

the same error as the correlogram. Furthermore, the spectrum for a
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single realization 1is quite irregular and cannot be used quantita-
tively to estimate the spectral density.

Qualitatively, the spectrum <can be used to check the
correspondence of the simulated data with the model used by plotting
the theoretical together with the spectrum calculated from the

generated data.
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APPENDIX A - BTIAS AND ERROR OF QUANTILE ESTIMATORS

We wish to eatablish the bias and standard error associated with

quantities of the form
vV = (Yr - Yt)/Ys (A-1)

where §u is an estimate of the quantile of the log-normal distribution
for the decimal fraction u and 0 £ t £ s £ r £ 1, The theory for this
problem is set out in Chapter 10 of Kendall and Stuart (1977). We
consider the general problem initially and then take the specific case

of the Dykstra-~Parsons coefficient, for which r = s = 0.50 and t

Vpp?
= 0.1587.
For a sample of size N of the random variable y with p.d.f. Py’

-

2
3 J - \g -
Y, is N[Y,, y(1-u)/@R “(Y))] (4-2)
when N is large. Suppose that 1In(y) is N(mx, sxz). It follows from
the properties of the log-normal distribution (Johnson and Kotz, 1970)

and Eq. (A-2) that

E(Yu) = exp(mx + Sx'wu) (A-3)
and
> 2
Var(Yu) = Au(l-u) exp(2mX + st.wu + v, ) (A-4)
2. -1 -1 .
where A = 2st N 7, v, = % “(u), E(*) denotes the expectation, Var(-)

denotes the variance, and ¢ is the probability integral (Johnson and



158

Kotz, 1970). Kendall and Stuart (1977) also show that, for two

quantile estimates Yu and Yv’
Cov(Y ,¥.) = Au(l-v)exp[2m + s (w+w) + 1/2(w 2 +w. )] (A5
ov(Y ,Y ) = Au(l-v)exp[2m s, (w tw_ v, v,

where Cov(*,*) denotes the covariance.

Equation (A-1) 1is a nonlinear combination of the quantile

estimates. Some work is involved in establishinrg E(V) and Var(V) in

terms of the quantile estimate properties. Consider a function g of
the form
g(xps X, %4) = (x5 = %)) /x, (A-6)

By taking a Taylor series expansion of g about the expected

values of random variables x and x and truncating we obtain

1’ X2, 3?

for the expectation and variance of g(x):

Efg(x)] = g(a) + 1/2[ZgiiVar(xi) +
ZZgijCov(xi, xj)] (A-7)
i#]

and

Var[g(x)] = Z(gi)zVar(xi) +
zzgigj Cov(x,, xj) (A-8)

143
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where x = (x,, X,, x3), a = (E(x{), E(x,), E(x3)), gy = (Bg/Bxi)
]
evaluated at x = a, Bii = (Bkglaxiaxi) at x = a, and the summations
) o

are i, § = 1 to 3. For the case under consideration, Eqs. (A-7) and

(A-8) are correct to order N—l.

Application of Eqs. A-3 through A-5 in A-7 yields

E(V) = V + Aexp(-s w ) {Vs(1-8)F(w ) +
t(l—s)exp[sxwt + 1/2(wt2 + wsz)] -

2 2
s(l-r)exp[sxwr + l/2(wS + v

)1} (A-9)

where f(w ) = exp(2s w + w 2). The bias m dis obtained from m =
u X u u v v

E(V) - V. Hence, the bias is given by the second and subsequent terms

on the right side of Eq. (A-9). Equations (A-3) through (A-5) in

(A-8) yield

Var(%) = Aexp(—ZSst) {t(l—t)f(wt) +
r(l—r)f(wr) - 2t(1—r)h(wt, wr)] +
st(l—s)f(ws) + 2VE(l-s dh(w,, ) =
2Vs(1—r)h(ws, wr)} (A-10)
where

2
h(wu,wv) = exp[sx(wu + wv) + 1/2(wu

2
+ oW ).
For the special case of the VDP estimator, r = s = 0.50 and t =

0.1587. Hence w, = -1 and LA 0.0. Equations (A-9) and (A-10)

become



- s 2 -1
E(VDP) =V - (0,7488 s, exp(-sx)N

DP

and

~

n _
A\ = - -
.ar(VDP) 2.207 S exp ( SX)N

1

Hence, the bais m and standard error sV are

2 -1
. 0.74885X exp(—sx)n

=}
il

and

/2

“n
[

. -1
1.4865x exp(—sX)N

For the Dykstra-Parsons coefficient, V

(A-13) and (A-14) may be expressed in terms of VD

pp = ! - exp(—sx).
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(A-11)

(A-12)

(A-13)

(A-14)

Hence, Egs.
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APPENDIX B - BIAS AND ERROR OF THE LORENZ ESTIMATOR

This section describes the Monte Carlo simulations which were
made to establish the bias and standard error behavior of the Lorenz
estimator. A log-normal p.d.f. is assumed for the permeability data.
The algorithm steps are as follows:

1. Obtain N normally distributed data, xl, x2, x3, cees XN where x
is N(0,1). The commercial IMSL routine, called GGNQF, was used.
2, Transform the data to a log-normal distributed set.
vy = exp(a.xi),

for i =1, 2, ..., N, and where a = 2erf_1(LC) and LC defines the

Lorenz coefficient of the data. We started at LC = 0.3 and
incremented in steps of 0.1 to LC = 0.9,
< <
3. Reorder the data so that Y1 < Y2 < Y3 < ... <Yn'

4. Estimate LC by the trapezoidal rule

~

Lor = 2/N . (i.y, [ Iy) - /N - 1.

Cl
where the summations are over i from 1 to N, or by Simpson's rule

N-1 i

- 2_ q(i)

= 1.0 3N (1L+2 £2 Zyj / Zyi)
i=1 j=1 i=1

~

Lc"
where q(i) is the modulo two function (i.e. q(i) = 0 for 1 even
and q(i) = 1 for i odd).

5. Repeat steps 1 through 4 another m-1 times to obtain m estimates

i=1, 2, ..., m.
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Estimate the bias, m and sampling error, Sy

-~

m = 1/m ¥ LCi - LC,

~ ~

2 2
s = 1/(m-1) £ (LCi - Lo - mL) ,

where primed or double primed quantities (i.e. trapezoidal or
Simpson's rule integration) are used as appropriate.

Figure III-17 is a plot of N versus mL'/LC for m = 2000. Figure

versus N for four different values of s_':

TI1I-18 is a plot of LC L

0.10, 0.05, 0.02 and 0.0l1. Because of the computational effort
required to order several thousand points for small s ', m was

not held constant for all simulation rumns. For sL' 2 0.05, m =

20005 for s.' = 0.02, m = 1000; and for s.' = 0.01, m = 400.

L L
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NOMENCLATURE for Part III

a ~ sample span/correlation length

A ~ amplitude

a,b ~ regression coefficients

c ~ constant

CZ ~ coefficient of variation of an estimator z
e ~ relative error

ER ~ fractional oil recovery

erf ~ error function

f,g,h,h' ~ functions of one variable

h ~ lag spacing

k ~ permeability

LC ~ Lorenz coefficient

M ~ mobility ratio

m,n ~ number of data or iterations, integers
m, ~ bias of an estimator z

N ~ number of datum in set

N(x,y) -~ mnormal distribution with mean x and variance
Psq -~ exponents

r ~ number of data sets

S2 - error variance

Sz ~- gtandard error of an estimator z

VDP ~ Dykstra-Parsons coefficient

VisX,;¥,2 ~ dummy variables

w -~ spectral density function
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Greek
6+,6_ ~ spread of data above (+) or below (-) regression line
H - mean value
¢ - porosity
p - correlation coefficient
c ~ standard deviation
2 .
Y - varilance
w, ¢ - angles
Superscripts
” - estimated quantity
- ~ average
Subscripts
A,B - pertaining to curve A or B
i - ith datum, an integer

X,y ~ pertaining to variable x or y
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PART IV. HETEROGENEITY CLASSIFICATION

Part ITI gave the groundwork for a statistical classification of
reservoir heterogeneity. A second way to classify heterogeneity is
through the categories of geologic observation. Such observation ties
nicely with statistics for it can provide a model upon which to begin
the analysis.

This part presents the results of a geologic study on an eolian
outcrop. The study is intermediate to two other goals: 1t will
provide a basis for the heterogeneity classifications discussed in
Lake et al. (1985), and it will be the basis for some rigorously
realistic fluid simulations which will be performed in the third

contract year.
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DISTRIBUTION OF GEOLOGIC FEATURES IN EOLIAN SANDS

With the pessage of eolian facies modelling from infancy,
criteria for bedform reconstruction and interpretation are beginning
to be recognized and applied. Armed with such tools, ancient eolian
sequences can now be identified with a high degree of confidence, and
specifics of their morphology more sharply delineated. Details of
eolian deposition are derived from observations of modern and
ancient dune, interdune, and sand-sheet environments, but studies
have relied heavily on theory; the internal structure of dry, sandy
bedforms does not lend itself readily to observation, and the
typically small fraction of the dunes actually preserved (Rubin and
Bunter, 1982; FKocurek and Nielsor, 1986) restricts interpretationmn.
The resultant models of eolian bedform reconstruction draw upon the
two fundamental aspects of bedform morphology: the hierarchy of
erosional surfaces that separate the successive units in a sequence
{(bounding surfaces of Brookfield, 1977), and the deposits themselves,
By noting, on a wunit-by-unit basis, the geometry and internal
characteristics of both the bounding surfaces and the stratification
it 1is theoretically possible to characterize the succession of
bedforms represented by a particular eolian sequence.

As noted by Hunter and Rubin (1985), the tools exist whereby:
(1) processes responsible for the development of bounding surfaces
within a given sequence can be identified, (2) low-angle stratified
deposits of dune aprons, interdunes, and sand sheets can be
distinguished, (3) specifics of dune morphology can be outlined (i.e.

the relative degree of curvature of the crestline determined, dune
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height and width roughly estimated, and where compound bedforms are
implied, the trend of the superimposed dune relative to the primary
bedform can be derived), (4) the role of secondary flow can be
considered, from which generalizations concerring bedform dynamics
might be made, and (5) where cyclic cross-bedding inferred to result
from seasonal wind patterns is present, bedform migration rates can be
estimated.

Components of the model of eolian bedform reconstruction have
each been documented and tested, but there lacks an updated
applicaticn of all the available tools to an ancient eolizn sequence.
Hence, the objective of this work: to test the degree to which current

theory can reconstruct and interpret preserved eolian deposits.

Tools For Bedform Reconstruction and Interpretation - Within ancient

eolian sequences cross-stratified sets are invariably separated from
each other by subhorizontal bounding surfaces (Fig. IV-1). Present
theory holds that first-order bounding surfaces (terminology of
Brookfield, 1977) form primarily by dune migration and climb
(Kocurek, 198la, 1984; Rubin and Hunter, 1982, 1984; autocyclic
hypothesis of Simpson and Loope, 1985). In contrast, regional
bounding surfaces represent relatively isochronous deflated horizons
that formed in response to "extra-erg events" such as climatic
change, sea-level fluctuation, or erg migration (Loope, 1981, 1984;
Kocurek, 1984; Talbot, 1985; super surfaces of Kocurek and Oakes,
1985). The water table or any overlying resistant horizon or crust

may have served as base level of deflation. Bedforms probably
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Figure IV-~1l. Subhorizontal first-order bounding surfaces

separating cross-bedded Units of the study site.
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migrated across these surfaces at zero or slightly negative angles of
climb (Rubin and Hunter, 1984). A complex sequence of amalgamated
interdune deposits and lenses of cross-bedded dune sands has been
interpreted by Simpson and Loope (1985) to represent a specific case
where the angle of dune climb varied with a fluctuating sand supply.

Overlying extradune deposits would, of course, indicate a change
in the conditions of deposition and concurrent development of a
regional bounding surface (e.g., Blakey and Middleton, 1983; Driese
and Dott, 1984). Evidence of long-term exposure may also be used to
help identify regional bounding surfaces. A brief hiatus in sand-sea
deposition and the concurrent development of a regional bounding
surface are suggested by enriched zones of fines, deflation 1lag,
evaporites (or indications of their former presence) immediately below
the truncation surface, and paleosol development (Loope, 1984; Rubin
and Hunter, 1984, Talbot, 1985). Unfortunately, these structures are
not always preserved, nor does their presence absolutely disqualify a
first-order bounding surface interpretation (Rubin and Hunter, 1984).

Because they develop in response to processes other than bedform
migration, regional bounding surfaces do not show any directional
relationship with the overlying strata. Relative to
'paleo-horizontal', regional surfaces should generally lie flat or dip
slightly basinward. Within a particular eolian sequence, they should
consequently all be oriented in roughly the same direction, barring
major changes in basin configuration.

First-order bounding surfaces are suggested by a wuniform
cross-bed set thickness, and by the presence of thinly bedded

interdune deposits (Kocurek, 198la; Rubin and Hunter, 1982; Blakey
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and Middleton, 1983; Talbot, 1985). Trough-shaped first-order surfaces
are generated by migrating three-dimensional bedforms (McKee, 1979c)
or by scour pits that, as they migrate laterally along the base of a
lee slope, produce a scalloped geometry (Rubin and Hunter, 1983).

The relationship of overlying foreset dip direction to
first-order bounding surface orientation is very complex and remains
poorly understood. For example, fleld measurements may show surfaces
dipping upwind, downwind, or lying flat, because dunes climb at very
low angles with respect to the depositional surface, which does not
necessarily correspond to horizontal. Further complications arise
from the lack of studies relating dune dynamics to bounding surface
orientation. Bedform-climb has been documented (e.g. Kocurek, 1981la,
b), but present theory strictly applies only to transverse bedforms.
If a directional relationship could be established, yet another
criterion for distinguishing types of bounding surfaces, and possibly

for interpreting bedform morphodynamics, might be found to exist.

Second- and Third-order Bounding Surfaces - Second- and third-order
bounding surfaces are comparatively steep, less extensive, truncating
surfaces that may or may not be present within any particular set of
eolian cross-strata. As superimposed dunes migrate down or across
the lee-face of a large compound bedform or draa, second-order
bounding surfaces are generated and compound cross-bedding 1is
deposited (Brookfield, 1977; Kocurek, 198la; Rubin and Hunter, 1983).
In contrast, third-order or reactivation surfaces are found in
both simple and compound cross-bedding, and develop in response to

changes in wind velocity or direction or both (Brookfield, 1977;
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Hunter and Rubin, 1983). If fluctuating flow conditions occur with
any sort of regularity (for example, seasonal wind variability) cyclic
cross~stratification will result. The observed cyclicity may consist
of a conformable alterrmation of wind-ripple, grainflow, and possibly
grainfall deposits (Hunter, 1977; FKocurek, 198la; concordant cyclic
cross-bedding of Hunter and Rubin, 1983). Alternatively, localized
scour may generate reactivation surfaces and ‘'compound' <cyclic
cross-bedding that resembles compound cross-strata deposited by
migrating superimposed bedforms.

Hunter and Rubin (1983) present the most complete summary to date
of the criteria by which second- and cyclic third-order bounding
surfaces may be distinguished. Unless the bedform is highly sinuous,
reactivation surfaces will develop along the entire width of the
slipface, whereas the widths of second-order surfaces are limited by
the dimensions of the superimposed bedforms, the subsets consequently
appearing lenticular in transverse cross-section. In longitudinal
cross—section, second-order surfaces are extensive relative to
subset thickness because their length is a function of the migration
distance of the superimposed bedforms. On the other hand, the length
of reactivation surfaces is practically limited by the length of the
reworked lee-face, and will appear much shorter relative to subset
thickness. Evidence of periodically reversed winds likewise
supports a fluctuating flow model and the presence of reactivation
surfaces. Caution must be exercised, however, as features indicating
reversed flow may also be produced by secondary currents generated on

the lee-side of a compound bedform.



175

Interpreting Low-angle Stratification - Low-angle (V215° eolian
stratification (215 deg) may be deposited as sand-sheets, interdunes,
or as dune aprons or plinths (Kocurek, 1985). Because sand-sheets
form a distinct subenvironment typically at the erg margin,
distinguishing these deposits carries important implications regarding
ancient erg dynamics and morphology (e.g. Kocurek, 1981b; Ross, 1983;
Porter, 1986). Guidelines for determining the depositional
subenvironment of any low-angle-stratified sequence have been outlined
by Kocurek (1985) and include the following key points:

(1) Sand-sheet deposits commonly occur at the base, at the top, or
laterally along the edge of an eolian sequerce. Interdune deposits
overlie first-order bounding surfaces and alternate with dune
deposits,

(2) The geometry of dune and interdune deposits vary predictably as a
function of dune shape and migration patterns, whereas sand-sheets may
occur as extensive deposits up to several meters thick.

(3) Factors that promote sand-sheet development, such as a high water
table, surface cementation or binding, vegetation, and coarse grain
size (Kocurek and Nielson, 1986, a), likewise inhibit dune
development.

(4) Dune apron and plinth wind-ripple laminae dip up to 20-25°, show
a marked parallelism within each package, and may include conformable
grainflow and grainfall stratification. Conversely, sand-sheet and
interdune deposits are gently-dipping (except where coarse~grained
zibar deposits occur), typically drregularly laminated wind-ripple
strata, that may show sedimentary structures reflecting moist or wet

depositonal conditions. Finally, (5) interdune sands are bimodal
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and are typically more poorly-sorted than dune deposits (McKee and
Tibbitts, 1964; Folk, 1968; Wilson, 1973; Ahlbrandt, 1979).

Also, a trend from dunes to =zibars to granule ripples
accompanies increasingly coarser grain size for eolian sediments.
Zibars are slipfaceless, low-relief, coarse-grained bedforms common to
sand~sheet and interdune corridor environments (Holm, 1960; Nielson

and Kocurek, 1985).

Bedform Reconstruction Sensu Stricto - Dune Morphology - The character

of the deposits 1left by different dune types 1is a complex,
interrelated function of both bedform morphology and dynamics - the
response of a dune to primary and secondary airflow patterns.
Separate discussions of these two factors is therefore somewhat
artificial, but at this early stage of understanding, is nonetheless
warranted. As it stands, the model of bedform reconstruction sensu
stricto supplies the tools with which crestline curvature, dune

dimensions, and draa geometry can be approximated.

Crestline Curvature - Simple cross-bedded sets in an eolian sandstone
may represent the basal portions of barchan, crescentic ridge, linear,
star, blowout, or parabolic dunes (descriptive classification of Breed
and Grow, 1979, differentiating isolated barchans from crescentic
ridges; McKee, 1979b, c¢). Recognizing a particular morphology 1is
basically an issue of determining the degree of crestline sinuosity
and the number and relative orientation of slipfaces (McKee, 1979a;

Ahlbrandt and Fryberger, 1982).
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The degree of curvature of the original bedform is reflected in
bounding surface and interdune geometries, in the degree of foreset
dispersion, and in the distribution of stratification types. Tabular
or sheetlike interdune deposits imply migrating linear (i.e.
straight-crested) bedforms, while lensoidal, broadly lenticular, and
irregular, interdune deposits suggest barchan, crescentic ridge, and
star dune shapes respectively (Kocurek, 1985). The degree of foreset
dispersion across a single cross-set has long served as the classic
criterion (Reiche, 1938; McKee and Tibbitts, 1964; Fryberger, 1979;
McKee, 1979¢). The spread of cross-strata dip directions is a very
useful tool for determining crestline sinuosity, but determining the
number of slipfaces using the same criterion may prove misleading,
owing to the potentially complex nature of bedform dynamics (Rubin and
Hunter, 1985). The final tool, the distribution of stratification
types, is the single most useful criterion for estimating not only
dune shape but also bedform dynamics.

The stratification styles present within a preserved set provide
a map of the surface processes acting across the base of the original
bedform (Hunter, 1977, 1981; Kocurek, 1981b; Kocurek and Dott, 1981).
See Figs. IV-2 through IV-4. Grainflow cross-strata are deposited by
avalanching down the active slipface of the dune. Wind-ripple strata
occur in areas exposed to moderate wind stress on the stoss slope, on
the flanks of crescentic dunes, and at the base of the lee-face as an
apron. Thin wind-ripple laminae may also be found separating
grainflow sets, marking brief periods of reworking between avalanche
events (Kocurek and Dott, 1981). Finally, grainfall deposits

represent fallout from suspension onto portions of the dune adjacent
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Figure IV-2. Grainflow and wind-ripple deposits on a small (approx.

6 m) slipface, Algodones Dune Field, California. The

distribution of stratification types across an eolian

bedform provides a map of local surface processes.
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Figure IV-3. Grainflow stratification in the Page Sandstone at the
study site. Packages of strata 20 to 40 cm thick are
separated by thin, resistant wind-ripple laminae Table

Iv-2). Staff is marked in one-foot increments.
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to the active slipface where wind stress was too weak for ripple
growth. They are, however, generally limited to preserved deposits of
smaller dunes and are rarely observed in the eolian record (Hunter,
1977, 1981).

Unless a lateral transition across a set from e.g. grainflow to
wind-ripple deposits marks fluctuating flow conditions with time
(concordant cyclic cross-bedding of Hunter and Rubin, 1983), a
nonlinear dune shape may be invoked as an explanation. Curved
bedforms exhibit complicated secondary flow patterns across their
lee-face (Havholm, 1986; Hunter, 1981), producing an equally complex
distribution of surface processes. For example, relatively protected
areas along a slipface (such as the saddle of a crescentic bedform)
may escape reworking, while adjacent peaks (or alternatively, flanks)
might show a highly wind-rippled surface as grainflow and grainfall
deposits are reworked. As these peaks and saddles (convex and concave
portions of the lee-face respectively) migrate along the crestline in
the course of bedform evolution (Bagnold, 1941; Tsoar, 1983), an
alternating series of grainflow and 'reworked' grainflow sets should

be deposited and possibly preserved.

Dune Dimensions =~ If the quality and the extent of an exposure are
adequate, original dune width and wavelength may be directly measured;
Kocurek (1981b) measured lenticular interdune deposits perpendicular
to the inferred migration direction. He determined that crescentic
bedforms of the Entrada Sandstone were approximately 80 meters wide.
In the same study, the wavelength (1.6 km) was assumed equal to the

distance, measured parallel to migration direction, between two
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successive first-order bounding surfaces observed to c¢limb and
intersect a horizontal "time line".

Unfortunately, such measurements cannot always be made.
Assessing original dune dimensions therefore relies heavily on
empirical relationships and qualitative observations. Work by Breed
and Grow (1979) forms the framework with which dune width, length, and
wavelength may be estimated. They show that modern dunes exhibit a
predictable scale of proportions regardless of geographic location.
If one of these dimensions can be determined independently, the
others can be approximated by applying the empirical formulas that
express these relationships (see Breed and Grow, 1979). Similarly,
Wilson's (1972, 1973) observations of modern crescentic draas revealed
a 1:15 ratio of height to wavelength. Applied to cross-bedded sets of
the Entrada, Kocurek (1981b) estimated an original draa height of 110
meters. Modern draas range from 20 to 450 meters high (Wilson, 1973;
Brookfield, 1984).

The direct relationship of dune height to individual grainflow
lamina thickness provides a highly practical, independent means of
estimating original dune height (Hunter, 1977, 1981; Kocurek and Dott,
1981). Grainflow lamina thickness remains fairly consistent across a
cross-bedded set and is often easily measured. Although the exact
function remains unknown, an empirical formula derived by Kocurek and
Nielson (1986b) gives reasonable estimates of original dune height.

In cases where quantitative estimates cannot be made, the
distribution of stratification types across a set can serve as a
qualitative guide to ancient bedform size; larger dunes are indicated

by a lack of grainfall deposits, wide grainflow sets as observed in
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transverse cross—-section, and a relatively large scale distribution
of stratification types (Hunter, 1977, 1981; Kocurek and Dott, 1981).
In general, draas (compound or complex bedforms of Breed and Grow,
1979; McKee, 1979) are larger than simple dunes (Wilson, 1972;
Kocurek, 1981b). Compound cross-bedding therefore also suggests

greater primary bedform size.

Draa Geometry - The orientation of second-order bounding surfaces is
controlled by the draa slipface and by the angle of climb of the
migrating superimposed dunes. Because the angle of climb is typically
small, second-order surfaces dip almost parallel to (and therefore
approximate) the dip direction of the primary slipface. Cross-bedding
orientation reflects the combined influence of the migration direction
of the superimposed dune and gravitational forces working on the steep
draa slipface. Foresets consequently dip at an oblique angle relative
to both the primary and superimposed lee-face dip directions (Rubin
and Hunter, 1983; Havholm, 1986). The orientation of the superimposed
bedforms on the draa must therefore be determined indirectly. This
trend 1is approximated by the line of intersection between the planes
defining second-order bounding surface orientation and foreset dip
direction (Rubin and Hunter, 1983). Correcting for this divergence
gives a more accurate estimate of superimposed dune orientation.

As documented by Havholm (1986), draas usually exhibit marked
morphological variation laterally across their lee-face. Figure IV-5
shows the lee-face of a transverse draa. Within one kilometer,

areas lacking superimposed dunes occur adjacent to portions of the
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Figure IV-~5. The lee-~-face of a transverse draa and a vegetated
interdune corridor, Algodones Dune Field, California.
Height of slipface is roughly 30 m. and is scarred by
dune-buggy tracks. Areas dominated by avalanche
deposition down the main slipface (left and right sides
of the photo) commmonly occur adjacent to areas of the
lee~-face where superimposed dunes migrate alongslope

and obliquely downslope (center of photo).
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slipface where smaller dunes are migrating both alongslope and
obliquely downslope (Havholm, 1986). Interpretations of ancient draa
sequences have not yet considered this lateral variation. 1Indeed, the
distribution of stratification types that would result from such a
complex configuration might easily be misinterpreted as a series of
simple dunes and draas of varying orientations. More studies of the
internal structure and dynamics of draas are required before
reconstructions can be made with any degree of confidence.
Nonetheless, careful observations of bounding surface orientation and
the details of stratification may render at least a gross

interpretation.

Bedform Dynamics ard the Relative Importance of Secondary Airflow -
The interdependence of dune shape and relative orientation to primary
and secondary airflow patterns, constitutes the framework from which
dynamic and depositonal models for the various dune types are derived.
The morphodynamic classification proposed by Hunter (1983) and others
is based on the angular difference between average dune trend and
long~term resultant sand-transport direction. Initial boundary
conditions established by the authors define transverse and
longitudinal dunes as those oriented within 15 degrees perpendicular
and parallel to the transport direction, respectively, with those in
intermediate postions termed oblique. Complex flow across the
lee~face of draas justifies separate consideration of compound
bedforms. Details of stratification are the key tools by which these
four dune types might be recognized in ancient sequences. Bounding

surface orientation relative to foreset dip direction for different
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dune types has not been studied, but theoretically, a wuseful

relationship should exist.

Transverse Dunes - Transverse dunes develop and migrate in response to
unimodal wind regimes (Frvberger, 1979; Wasson and Hyde, 1983).
Because their crests are perpendicular to a primary wind direction
that exhibits low directional variability, secondary airflow across
the lee face consists primarily of weak, variable back-eddy currents
(Hunter, 1981). As a result, transverse dunes do not have significant
wind-rippled aprons at the base of the active slipface. For reasons
as yet unknown, straight-crested transverse bedforms are not a stable
configuration. To some degree, all transverse dunes are crescentic or
barchanoid (Breed and Grow, 1979; Hunter, 1981; Rubin and Hunter,
1985). Curve width remains fairly constant along a transverse
crescentic ridge, but varies between dunes of different ergs. Local
areas of weak, variably directed, secondary airflow will consequently
develop on the lee face of these curved bedforms (Hunter, 1981).

As a result of the primary ard secondary airflow patterns briefly
described above, transverse dunes should deposit units: (1) that
reflect a unimodal wind regime, including a relative absence of both
reactivation surfaces and oppositely dipping slipface deposits, (2)
that consist primarily of grainflow deposits extending to the base
with minimal apron development, although wind-rippled flank deposits
may be present, (3) that show evidence of crestline curvature,
including a relatively broad spread of strata dip directions (Hunter,
1981; Rubin and Hunter, 1985), and (4) whose first-order bounding

surface can be shown to dip upwind relative to the depositional
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surface (Kocurek, 198la). Because it is relative to the depositional
surface and not to 'paleo-horizontal', the observed dip direction of
the first-order surface may parallel or may oppose the migration
direction (which equals the foreset dip direction on transverse

dunes), or it may rest flat.

Oblique Dunes ~ A dume crestline oriented obliquely to the resultant
sand-transport direction may reflect any one of a number of
conditions. The bedforms may be out of equilibrium with the 1local
wind patterns, or alternately, may represent a stable configuration
that 1is maintained by secondary flow. Lateral variations in dune
height may rotate a dune to an oblique position by producing local
changes in wind speed and direction (Rubin and Hunter, 1985; Havholm,
1986). Variable wind patterns may also effect an oblique orientation.
Hunter and others (1983) observed that oblique dunes in Oregon are
oriented exclusively by the stronger component of a bimodal wind
regime. Winds blowing from the other prominent direction are too weak
to control dune trend, but are persistent enough to influence the
resultant sand-transport direction.

By virtue of their non-transverse orientation, the lee faces of
oblique dunes are characterized by alongslope-~directed secondary flow,
which strengthens as primary winds intersect the crest at angles
approaching parallel (Tsoar, 1983; Rubin and Hunter, 1985; Fig. IV-6).
The strong component of alongslope flow locally diverts the
sand-transport direction and reworks slipface deposits to produce a

thick wind-rippled apron. Any morphological features present on the
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oriented dune, Oregon coast, July 1978. Hunter (1981)
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lee face of an oblique dune (e.g. scour pits, superimposed bedforms)
should migrate preferentially alongslope (Rubin arnd FEunter, 1985).
Finally, oblicue dunes tend to show straighter crests than transverse
forms because secondary flow reworks the slipface (Hunter et al,
1983).

Alongslope-directed secondary flow figures prominently in
dictating the character of the deposits left by migrating oblique
dunes. Reactivation surfaces and other indicators of a variable wind
regime may be comparatively common, although strata should exhibit a
unimodal dip pattern. Wind-ripple-stratified apron deposits comprise
most (if not all) of the preserved remnants, and indications of
crestline sinuosity should generally be absent. For example, the
straight-crested morphology of oblique dunes relative to transverse
forms results in a comparatively tight distribution of cross-bed dip
directions (Hunter et al, 1983). Finally, the relationship of
first-order bounding surface orientation to foreset dip direction for
oblique dunes has not been documented, but it is not an unreasonable

conjecture that an angular divergence exists.

Longitudinal Dunes - Longitudinal dunes parallel the long-term

sand-transpert direction and are generally associated with variable
wind regimes (Hunter et al, 1983; Fryberger, 1979; Tsoar, 1983).
Morphologies range from straight-crested forms typified by the "seifs"
of Australia (Folk, 1971) to more sinuous shapes (e.g. longitudinal
dunes of Algodones dune field; Nielson, 1986).

Considering their common occurrence in modern ergs, anomalously

few eolian sandstones are interpreted as having been deposited as
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longitudinal dunes. Although some are non-depositional features (for
example, helical flow has cut into fluvial sediments to form the siefs
of Australia; Folk, 1971), it is likely that their deposits are not
being recognized because the original criteria for identification are
inaccurate (Rubin and Hunter, 1985). Recent studies have, however,
shaped a refined model of stratification that should help to identify
preserved remnants of longitudinal bedforms. Rubin and Hunter (1985)
argue that longitudinal dunes must migrate laterally, unless seasonal
sand-transport directions perfectly balance against a long-term
transport direction that is exactly parallel to the dune crest.
Observations by others show that alongslope-directed flow commonly
reworks the slipfaces of longitudinal dunes to produce a thick,
well-developed, wind-rippled apron (Hunter, 1981). Finally, complex
airflow patterns across many longitudinal bedforms result in an
equally complex distribution of surface processes (Nielson, (1986).
From these contentions, it follows that typical longitudinal dune
deposits are composed primarily of moderately to gently dipping
wind-ripple strata that exhibit a unimodal pattern of cross-bed dip
directions (Rubin and Hunter, 1985). Trenches of longitudinal dunes
in the Algodones dune field confirm, at least locally, a unimodal
distribution (Nielson, 1986). Nonetheless, where sinuous crests
and/or highly variable wind patterns are implied, a complex
distribution of stratification types and orientations occur, and
reactivation surfaces might be common (Nielson, 1986). As with
oblique dunes, the directional relationship between first-order

bounding surface and cross-stratification is not known, but theory
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suggests a slight angular divergence.

Draas - Because of their larger size and greater complexity, draas
behave differently than their simple counterparts. A study by Havholm
(1986) of the morphodynamics of a transverse draa reveals two details
that should be kept in mind when reconstructing and interpreting
ancient eolian deposits. Transverse draas (i.e. compound or complex
bedforms that trend normal to the resultant sand-transport direction;
Hunter and others, 1983) associated with variable wind regimes may
exhibit a well-developed component of lee-side flow that parallels
the main crest. Aerodynamically then, these draas more closely
resemble simple oblique dunes than they do transverse forms (Havholm,
1986) . In a compound cross-~bedded sandstone, evidence that
superimposed dunes systematically migrated alongslope does not,
therefore, automatically eliminate a transverse draa interpretation.
Secondly, Havholm notes a possible relationship between dune height
and the presence or absence of a basal apron. The great height of
some draas may effectively limit the amount of sand supplied to the
lee face, thereby restricting apron development. Moreover, wind
velocities in the lee of large draas are considerably weaker, which
would likewise prevent reworking of slipface deposits into
wind-rippled aproms. Such observations in modern environments
emphasize both the complexity of eolian depositional environments and

the limited interpretive resolution of ancient sequences.

Estimating Bedform Migration Rates - When cyclicity observed in a

cross-bedded sandstone can be attributed to seasonal fluctuations, a
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quantitative estimate of the annual migration rate of the ancient
bedforms may be made (Hunter and Rubin, 1983). Care should be taken
to assure the reasonableness of an estimate; measurements taken in
modern eolian environments indicate that large dunes migrate slowly -
typically a few tenths of a meter per year (Wilson, 1973; Hunter and
Rubin, 1983; Havholm, 1986). Factors that control the rate of dune
advance include prevailing wind velocities and variability, as well as

dune size, shape, and relative orientation.

The Study Site Location - The study site is located in the Glen Canyon

National Recreation Area near the town of Page, Arizona (Fig. IV-7).
A  knob of weathered sandstone approximately 36 meters high,
extending over a 0.1 km2 area, was specifically chosen for its
unobstructed, three-dimensional exposure (Fig. IV-8). Deposits of the
Page Sandstone compose the knob and nearby buttes and mesas. The type
section for the Page is found immediately adjacent to the study area
on Manson Mesa. Comparing the height of the knob with the total
thickness of the type section, the uppermost 18 meters of Page

Sandstone appears to have been eroded from the study site.

Stratigraphic Setting of the Page Sandstone - The Page Sandstone was
first described by Peterson and Pipiringos (1979) as a cliff-forming,
cross-bedded, quartzose sandstone exposed in southern Utah and
northern Arizona. Tabular- and wedge-planar cross-stratified sets 1

to 6 meters thick are the predominant features of the formation,
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although trough-cross-bedding, horizontal lamination, and interbedded
siltstones also occur (Blakey et al., 1983).

The J-2 unconformity (also known as the chert-pebble
unconformity) separates the Early Jurassic Navajo Sandstone from the
overlying Middle Jurassic Page and the Middle to Upper Jurassic
Carmel TFormations. Extending across the Western Interior of the
United States, J-2 is marked by abundant chert pebbles and by
dessication features that exhibit a polygonal plan-view geometry
(Pipiringos and 0'Sullivan, 1979; Kocurek and Hunter, in press; Fig.
IV-9). Up to 1l meters of relief on the surface has been observed
north of the study area. Smaller-scale irregularities of a meter or
less also occur, suggesting that the eroded top of the Navajo was
fairly well 1lithified when the sands of the Page were deposited
(Peterson and Pipiringos, 1979).

To the northwest, sandstones, siltstones, and evaporites of the
Carmel Formation interfinger with the Page Sandstone. The Judd Hollow
tongue of the Carmel extends into the Page as far southeast as the
town of Page in the vicinity of the study area (Caputo, 1980; Blakey

et al., 1983).

Paleogeographic Setting of the Page Sandstone -~ Middle Jurassic
paleogeography of the Colorado Plateau consists of shallow marine
conditions to the north and west, and sabkha and erg environments
inland to the southeast (Blakey et al, 1983; Fig. IV-10). The area
was located in the trade-wind belt (between 10 and 20 deg. north

latitude), and so was probably characterized by hot, dry conditions
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The J2 surface adjacent to the northwest wall of the
study site. The distinctive polygonal pattern produced
by dessication structures averages 2 meters wide

(Kocurek and Hunter, 1986).
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Figure IV-10.

(Blakey et. al., 1983)

Paleogeographic setting during the Middle Jurassic,
during Page deposition. Study site is located near the

town of Page. From Blakey et al., (1983).
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and prevailing winds from the north and northeast (Poole, 1962;
Locurek and Dott, 1983).

A minor transgression earlier in the Jurassic reduced the amount
of sand supplied to the regionally extensive Navajo erg, forcing it to
retreat southward. The Page Sandstone represents a northward
progradation of thie sand-starved Navajo erg (Xocurek and Dott, 1983).
Sands of the Page were deposited atop a deflated tidal flat as
sand-sheets, dunes, and interdures. In the course of Page deposition,
the study site continued to be located only a short distance from
restricted marine or sabkha conditions. Polygonal fractures, formed by
thermal contraction of exposed evaporite surfaces, occur along the J-2
surface and locally along four other horizors within the Page
Sandstone, Fig. IV-11. DMoreover, extra-erg deposits occur in the
general study area as thin beds of brown sandstone, mudstone, and
limestone, recording minor sea-level fluctuations and brief periods

of Page erg retreat (Blakey et al, 1983).

Method of Study - The study knob was mapped using a Lietz SDM3E

electronic tacheometer, a surveying instrument that measures travel
times of an oriented laser beam to calculate absolute and relative
distances. Five-hundred eighty-eight points along first- and
second-order bounding surfaces were marked for surveying. Each point
was then assigned three coordinates defining its relative position
north-south, east-west, and vertically x, y, and 2z coordinates,

respectively, Fig. IV-12. Coordinates calculated and displayed by the
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Figure 1IV-11,

Cross-sectional view of a polygonal fracture,

Page
Sandstone. The fracture is found at the study site

along the bounding surface underlying deposits of unit

C13 (Table 1IV-3). Staff d1s marked din one-foot

increments.
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tacheometer are relative to the instrument's location. Because the
tacheometer had to be set up at numerous sites around and on top of
the knob, the measured velues had to be adjusted to a single,
arbitrary reference point. This was achieved by 'shooting' some ol
the poiuts 1rom more than one cacleometer site. An  estimated
measurement error oi 10-20 centimeters was determined by wnoting the
Giscrepancies that arose while mormalizin, the data set.

A planimetric base map showing bounding surfaces was constructed
by plotting the xy coordinates at a reasonably large scale and
counecting the appropriate points (Fig. IV-13). For cross-sectional
views, xy coordirnates were projected from their planimetric position
onto one of five linear trends that together approximate the shape of
the knob. Their positicns along the lines onto which they fall define
a single xy coordinate, which was then plotted against the original z
(height) cocrdinate. Accurate cross—sectional base maps of first- and
second-order bounding surfaces result by again connecting the
appropriate points.

During subsequent field visits, these base maps were used to
locate each of 718 strike and dip measurement sites, and to sketch in
the distribution of the stratification types and reactivation
surfaces. Betore the stratification could be added to the final maps,
the appavent dips in the plane of the appropriate cross-section had to
Le calculated <{or each muapped measurement. The  resultant
cross—-sections, showu in Fig. IV-14 through IV-17, are very accurate
quantitative reconstructions. In some areas where bounding surface

geometry appears distorted, data points were taken farther up or down
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which it calculates.
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A reconstruction of the northwest side of the study knob.
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Figure IV-17. Reconstruction of the northeast side of the study knob.

54 tests (Tables IV-1 through IV-5).
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the dipping bounding surface around topographic spurs or in coves, or
near the top of the knob where there is a prominent flat-lying ledge
(Fig. IV-14).

To determine bounding surface orientations, trend surface
analysis was appiied to the normalized data set. First-order trend
surface analysis fits a planar surface to a given set of measurements
and reports the residual, or deviation of the calculated from the
measured values (Chorley and Haggett, 1965). For each case, the level
of significance was determined to assess whether the planar surface
accurately described the bounding surface; at 1least 957 of the
variation was explained in 39 out of 54 tests (Tables IV-1 through
IV-5). From the equations defining each plane, the strike and dip of
the bounding surfaces were calculated (See Appendix). To correct for
the post-depositional dip component, each surface was rotated about a
plane dipping 1.3 degrees NO9W. This plane equals the average
orientation of 3 of the 4 horizons within the Page Sandstone that
locally exhibit polygonal fractures (Fig. 1IV-11); data for the
uppermost, polygonally—-fractured horizon do not significantly define a
planar surface. These 3 reference horizons are very nearly parallel
and are interpreted to represent flat-lying 'Stokes-type' bounding
surfaces, formed by water table-controlled deflation (Stokes, 1968).
Kotating the reference surfaces about the calculated mean yields a
total wvariation in the dip angle of 0.16 degrees, Any surface
calculated to dip at an angle less than or equal to this value is
therefore statistically lie flat.

Where the size of the data set for a bounding surface is

sufficiently large, data points were also fit to a second-order



(quadratic) surface. The calculated 1levels of significance were
compared to the first-order results; 21 of the 32 bounding surfaces
were sigrificantly better described by quadratic surfaces than by
plarar surfaces, indicating a locally ronplanar geometry (see Davis,
1973 for a description of the procedure). However, the accuracy of
the strike and dip calculations is inferred from the significance of
the first-order results.

In most cases, the average stratification dip direction
reported in Tables IV-1 through IV-5 is the calculated mean for each
unit. The degree of foreset dispersion is indicated by the level of
significance, which is based on the standard deviation. Stereonet
plots on a wunit-by-unit basis also convev a sense of the degree
of directional spread (Figs. IV-18a, b). Where a bimodal distribution
of cross-bed data suggests a nonlinear dune shape, the average dip
direction of each mode 1is <calculated separately. The reported
orientation is the mean of these two averages. In cases where the
stratification dip direction rotates along the length of a unit, from
gently dipping wind-ripple laminae to gradually steepening grainflow
deposits, the orientation of the most steeply dipping foresets better
approximates flow conditions, and so 1s reported instead of the mean
(Reiche, 1938; Tables IV-1 through IV-5).

In conjunction with eolian reservoir and fluid-flow modelling
studies, the study knob was drilled, logged, and cored (Goggin et al,
1986; Chandler and Kocurek, 1986). Many of the bounding surfaces and
stratified sets seen in the core can be correlated with the mapped
units (Fig. IV-19), although a certain degree of heterogeneity and

measurement error is apparent. Lacking the resolution of the main



“BOUNDING SURFACES (BS) - TREND SURFACE ANALYSIS

unit CROSS STRATIFICATION (XB) Angular diffesnn s
Sample size Level of Significance Dip direction, dip Sample size Level of Significance tlaan dip direction Dip range between B85 and xB
Ist order 2nd order before rot. after rol. artentalion
Al IS «75% 04
A2 10 99. 5% 306 [}
6 ) 99.5% 138
A3 2 . 35% 322 19 ¢4
A4 [} 75X 75% 356,0.2 176,1.1 8 ) 99.5% 276 (100)
6 99.5% 177 2-8 (1)
6 . 90% 81 (103)
AS 7 97.5% 357, 1.9 357, 0.7 13 <75% [N
A6 21 99.5% 301, 2.3 301, 1.5 8 99% 250 16 S1
A7 15 99.5% 277, 2.3 277, 2.0 19 99.5% 278 2 1o 1
A8 6 75% 97.5% 10 99 X% 182 725
A9 t7 g9.5¢% 46, 0.7 Flat 20 39X 161 110
ALO 14 99.5% 8a, 2.3 88, 2.2 9 99.5% 13 4 2%
Al 15 99.5% 89, 2.6 89, 2 B 99.5% 140 6 18 951
Ala L oy 99X 202 25
Table IV-1. Bounding surface and stratification data for units of the A-complex. In last column, these

values 1in parentheses are calculated using insufficient data.

distribution of stratification dip directions is indicated (A4),

each mode was calculated separately,

Where

a bi- or trimodal

the mean dip direction of
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TUNT | BOLKDING SURFACES (BS) - TREND SURFACE ANALYSIS CROSS-STRATIFICATIOH (XB) T T Teakeatated teena
Sample size  Level of Significance Dip directon, dip Sample size Level of Significance Mean dip direclion Dip range | of supestmposert
Isl order 2nd order belore rol. aftler rot. bedforms
B1 8 99.5% 58, 5.2 58, 4.7 3 99 5% 157 25 (/6)
82 8 99 5% 1t 11-24
B3 2 ' 99% 135 25
B4 4 99.5% 1?7 12-24
BS b) 99.5% 123 11-18
86 4 ’ 99.5% 123 12-14
B7 S 95% 342, 0.8 162, 0.5 6 99 5% 145 6-16 (61)
B3 S «75% 79, 23.5 79, 23.5 3 ' 99.5% 105 3-8 (164)
B9 3 \ 99x 127 17-26
BI10O 4 752 78, 35.3 78, 35.2 3 99.5% 107 8 18 (150)
811 4 958 224, 19.9 224, 19. 8 maximum valus used (122) - curved 4-15 166
BI2 4 , 97.5% 183 8 16
B13 ? 99.5% 217, 27.2 217,26 3 6 , 99 5% 183 6-26 primary sitplace
B4 4 «75% 38, 7.2 38,6.4 6 99.5% 191 14-27 ((216))
B15 6 99.5% 48, 19.0 48, 18.3 S ‘maximum valus used (1es) 5 24 (22N
816 6 99 5% 105, 5.9 105, 5.4 13 maximum velue used (180) - curved 4 27 (103)
B17? 4 99 5% 142 curved 725
3 i 99 5%
818 2 98 417
819 2 g95x 141 curved 12 14
3 99 5%
820 4 <73% 112, 16.2 112,15.7 9 99 Sx 126 curved 9 13 (182)
Bzt 4 99 13 6 27
822 4 99.5¢% 119, 12.4 119, 11 9 7 99 5% 86 9 24 (122}
823 4 90% 68 24 28
824 4a 7 97 S% 100 curved 128
1 99 5%
B1a 14 99 5% V72 18 26 primary slipface
628 | 108 8
B3s 10 99,51 200,15.4 216,043 5 93 o _en Qo
Table IV-2.

Bounding surface and stratification data for units of the B-complex. The calculated trends of

superimposed bedforms (second column from the right) were determined using methods suggested

by Rubin and Hunter (1983).

surface dip direction that deviates
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180 degrees
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T "BOUND 1HG SURFACES (BS) - TREND SURFACE ANALYSIS (15A) |

CROSS-STRATIFICATION (XB) | Angular differ enc e
Sample size Level of Significance Dip direction, dip Sample size Leve! of Significance Itean dip direclion Dip rangs belweaen B3 and xp
tst order 2nd order before rot. after rot. orlantation
R 13 99. 5% 83, 0.1 272, 1.2
cl
c2 44 99.5% 77, 0.8 77,0.8 18 99. 5% 136 6-26 59
c3 10 99.5% 14, 2.5 14, 1.3 7 99.5% 148 5-24 134
12 9 99.5% 303, 1.9 303, 1.0
Cc4 12 «75% 99.5% 0, <0.1 180, 1.2 8 99. 5% 142 19-25 (38)
13 8 99, 5% 340, 1.3 Flat
cs 2 95%x 153 17-25
Cla | 132 1?7
c6 ' ' 252 37
Cib 3 97.5% 314, 3.8 314, 2.8 4 ! 99.5% 165 8-22 119
C?7-2b 14 99.5% 342, 1.0 162, 0.4 12 . 99.5% 148 2-2! 11
C3b 6 97.5% 289, 3.5 289, 2.9 R} ) 99.5¢% 180 327 109
cs 14 99.5% 153, 1.1 Flat 9 ! 99.5x 152 0 23
9 9 99. 5% 90, 1.4 Flat 8 ' 99.5% 178 2-25
cio 6 99.5% 206, 2.9 206, 1.9 [ 99.5% 174 5-26 32
c1 31 99.5% 42,2.0 42, 1.2 27 99.5% 148 1-27 106
[ 4 7 90% 75% trough axls calculated 7 99.5¢% 193 18-30 (s)
by TSA 198 4 99.5%
Ci13 31 99.5% 355, 1.4 Flat by def. 48 99.5% 185 5-18 | o ]

Table IV-3. Bounding surface and stratification data for units of the C-complex. In the last column, these

values in parentheses are calculated using insufficient data.
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T BOUNDING SURFACES (BS) - TREND SURFACE ANALYSIS (TSA) T CROSS-STRATIFICATION (XB) - “Angular differenca
Sample size Level of Significance Dlp direction, dip Sample size {Level of Significance Hean dip dirsction Dip range between BS and xB
I1st order 2nd order beforerot. after rot, ortentation

Dia Rests on (lat reference surface 2 90x 293 12-22

DI Rasts on flat reference surface 1 254 8
D2/D8 Rests primarlly on flat reference surface 45 99, 5% 172 7-28

DIb 2 97.5% 233 22-25

D2b 2 90X 277 20 26

03 3 90X 307 12 26

D4 2 90X 284 2-26

[] 3 95x 272 14-24

b6 4 <75% 56, 10.7 56, 10.2 3 95% 273 16

07 2 97.5% 161 16 17

09 | 254 19

D10 5 99.5% 279, 21.4 279, 21.0 4 99.5% 276 19 26 3

on 4 90X 65, 8.1 65, 7.8 3 97.5% 273 20 26 (152)

D12 8 99.5% 286, 8.3 286, 7.8 10 99.5% 275 9 28 B}

D13 2 35% 264 21-23%

| D14 2 90% 259 426 |
Table IV-4. Bounding surface and stratification data for units of the D-complex. In last the column,

these values in parentheses are calculated using insufficient data.
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UNIT BOUNDING SURFACES (BS) - TREND SURFACE ANALYSIS (TSA) CROSS STRATIFICATION (XB) 1 Angular ditterene |
Sample size  Level of Significance Dip direction, dip Sample stze Level of Significance lledn dip direclion Dip ranye | bolwech Bo and abs
Ist order 2nd order_ before rot. after rol. ofrtentation
£l Rests primartly on flat reference surface 10 99.5x 150 - curved 1t-30
8 99.5%
£2 4 99% 165 13 19
£3 3 90X 230 9-23
£la 10 99.5% " 22 - curved 1-14
E2a 1 64 14
£E4 7 <75% 90x 357, 3.5 357, 2.3 16 maximuin value used 140 - curved 4-28 (143)
£S 10 90X 99.5% trough axis calculated 1] trough axis measured 145 12-25 (30)
by TSA 175 in fleld
£6 1 99.5x% 314, 5.5 314, 4.5 14 99% 147 - curved 6-26 167
£7 Rests on (lat reference surface 12 99. 5% 195 2-23
£8 Resls primarily on flat reference surface 9 99.5% 202 - curved 6 19
t9 Rests primarily on flat reference surface 7 99.5% 201 5-22
£10 6 75X <75% 66, 0.5 66, 0.2 6 99.5% 157 4-14 (g1)
£En Resls partially on polygonal time line 8 99.5%x 126 3-25
E12 18 99.5%x 319, 1.9 319, 0.8 8 99. 5% 131 25 172
£13 9 75X <75% 264, 0.5 Flat 7 99.5%X 137 6 17
£14 16 75% 95% 116, 1.6 116, 0.9 8 99.51 144 21 26 (28)
£lb 2 99% 175 615
Eo | - _ A ;. S |- S s |
Table IV-5. Bounding surface and stratification data for units of the E-complex. In the last column,

these values in parentheses are values calculated using insufficient data.
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Figures IV-18a. Stereonet plots of stratification and bounding

surface dip directions for units of the study area.
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Figures IV-18b. Stereonet plots of stratification and bounding

surface dip directions for units of the study area.
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Figure IV-19.

Description of the core retrieved from the study site,
Jaruary 1986. For comparison with the results of trend
surface analysis, the depth reading on the core and of

the regional bounding surface associated with the

extra-erg deposits of the Carmel Formation (I3) was set

equal to the depth as predicted by trend surface

analysis.




data set, depth measurements from the core could not be used directly
in trend surface analysis. Core data did, however, support the

findings of the study.

The Study Knob Reconstructed - A total of 92 depositional units were
identified at the study site. Details of their stratification, and of
the bounding surfaces separating them are summarized in Figs. IV-14
through IV-17 and in Tables IV-1 through IV-5. The entire sequence
can be divided into five subfacies or complexes. Differences in
depositional style distinguish the subfacies, which form the
framework for the final dinterpretation. Units are prefixed
with the letter corresponding to the complex to which they belong.
Where stratigraphic relationships cannot be resolved, a subset of omne
or more units identified with lower case letters is established (for
example, Unit Ala forms a part of the A~complex, but it cannot be

correlated with other units of the same complex; Figs. IV-14, IV-17).

A-Complex - The A-complex consists predominantly of reddish-brown
wind-ripple strata deposited directly on the J2 unconformity (Figs.
IV-14, 1IV-20). Twelve of the 13 units of the complex are confined to a
Jocal depression in the J2 surface, where polygonal fractures are
notably conspicuous (Fig. 1IV-21). They are distinguished from
overlying units by their darker color, greater degree of cementation,
and their coarser, bimodal texture; maximum grain size approaches 1 mm.
A8 holds distinction as the single occurrence of grainflow deposits in

this basal sequence (Figs. 1IV-14, IV-20), where roughly 30 cm. thick
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Figure IV-20. The wind-ripple-stratified deposits of the A-complex,
northwest wall of the study site. The gray, lens-
shaped unit is the single local occurvence of grainflow
stratification within the A-complex (A8; Table 1IV-1).
Unit All, which caps the A-~complex, 1is the set of
relatively steeply-dipping, striped strata in the
middle of the photo, and are interpreted to have been

deposited by migrating zibars.
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Figure IV-21. Structure contour map of the J2 surface at the study
site, The thickness of the overlying A-complex is
represented by the shaded bands. Deposits of the
A~complex appear to be restricted to a local depression

in the J2 surface.



couplets of cecarser and finer-grained strata bounded by thin wind-
ripple laminae define its cyclic depositional character.

Proceeding upwards through the complex, wind-ripple deposits very
generally exhibit an improved sense of directionality and increasingly
steeper dip angles. Accompanying this trend, the mean stratification
dip direction of successive units sweeps from the southwest to the
southeast (Fig., IV-18a, Table IV-1). Within each unit, wind-ripple
laminae show a marked parallelism, and dip in the same direction or

slightly oblique to the corresponding bounding surfaces.

P-Complex - The B-complex is a compound cross-bedded set that locally
trurcates the A-complex and rests on the elevated portion of the J2
surface (Figs. IV-16, IV-17). Within the sequence, three 'episodes'
occur, where units dominated by steeply dipping grainflow give way to
units composed exclusively of gently dipping wind-ripple
stratification (Bl through B8, B9 through Bl2, and Bl6 through B20;
Table IV-2). Individual grainflow strata are particularly thick- up
to 11 ¢m -- in units Bl3 and Bla. Basal apron deposits for both units
are relatively thin, although Bla grades laterally into wind-rippled
flank deposits. Two scales of cyclicity are apparent in Bla: packages
of grainflow strata from 20 to 40 cm. thick are bounded by thin but
distinct wind-ripple laminae (Fig. IV-3). Additionally, grainflow
deposits showing a greater degree of reworking ('wind-rippled
grainflow') define a poorly-developed cyclicity on the order of ten
(?) meters.

Deposits of the B-complex dip consistently towards the southeast

quadrant (Fig. IV-18a). The distribution of dip directions across
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some of the units suggest curved crestlines, although the evidence is
generally very subtle. Lateral truncation of these compound
cross-bedded units contributes to the restricted range of foreset
dispersion, which 1s as 1little as 25 degrees. Both planar and
trough~shaped second-order bounding surfaces occur within the
B-complex. Of the bounding surfaces significantly described by trend
surface analysis, most dip 15 degrees or less (Table IV-2). The
second-order surface associated with unit B13 dips most steeply - 26

degrees to the southwest.

C-Complex - The C-complex includes both laterally extensive simple
cross~bedded sets and thin, horizontally laminated to massive
deposits., Most of the cross-stratified units feature wind-rippled
apron deposits at their base, in some cases to the exclusion of any
preserved grainflow deposits (for example, C10; Fig. IV-15b). The
notable exception is unit C4, where packages or bundles of grainflow
laminae roughly 13 cm. thick extend to the base of the unit.
Individual grainflow stratum thickness for units of the C-complex
ranges from 3 to 6 centimeters, Larger-scale cyclicity defined by
intervals of reworked grainflow occurs in some of the units as
discontinuous patches. As in units of the subjacent B-complex, strata
of the C-complex dip to the south and southeast, although any sense of
depositional episodicity is lacking.

Units Il and I2 (Fig. IV-15b, IV-16) are composed of indistinct,
horizontal wind-ripple laminations that are texturally less mature
than the cross-bedded sets (See Chandler and Kocurek (1986), for

textural details of the deposits of the study site). These deposits
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overlie first-order bounding surfaces and are thin and broadly
lenticular. Unit I3 stands out as a deep red, texturally immature bed
approximately 1 meter thick, which can be traced northwestwards to the
Judd Follow tongue of the Carmel Formation.

After correcting for post-depositional subsidence, I3 appears to
have been deposited upon a flat bounding surface. Two other horizons
within the complex, as well as the polygonally-fractured reference
surfaces bounding unit Cl13, also lie flat (Table IV-3). With the
exception of units C4 and Cl2, all bounding surfaces to which trend
surface analysis was applied are very accurately described by a planar
surface. C4 1is the ome unit of the C-complex that lacks apron
deposits, and Cl12 is a trough-shaped unit near the top of the complex
(Figs. IV-14, iv-15a). Going upwards through the C-complex, bounding
surface dip directions show no predictable pattern, much less a
consistent orientation, and their relationship to corresponding
stratification dip directions varies from highly oblique orientations

to nearly parallel (Figs. IV-18a, IV-18b).

D-Complex — Units of the D-complex are highly weathered deposits atop
the southwestern portion of the study knob. Their exposure on a
prominent ledge makes these deposits appear distorted in cross-section
(Fig. IV-14). The planimetric view detailed in Fig. IV-22 is a more
realistic representation. Within the sequence, grainflow-stratified
units dipping west north-west show a complex stratigraphic
relationship with the southward-dipping deposits of D2/D8. Deposition
of the D2 component preceded deposition of units D3 through D7. The

character and the orientation of the deposits of the D8 component are
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Figure IV-22.
units of the D- and E-complexes that are exposed on a

flat-lying ledge near the top of the study site.
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identical to those of the D2 component, vet thev overlie the
southward-dipping sliver D7. It is not an unreasonable contention
that D2/D8 represents a time-transgressive unit whose downdip
migration ard deposition was interrupted by local deposition of sands
dipping westward. Units D9 through D14 cap the sequence and likewise
dip west north-west. D2/D8 consists mostly of individual grainflow
strata up to 6 cm thick, crossed by numerous reactivation surfaces.
Low~angle apron deposits occur discontinuously across its length and
otherwise constitute a minor proportion of the total set.

D2/D8 strata rest primarily upon the same flat reference surface
that truncates the wind-rippled deposits of Cl13 (Fig. IV-19). Where
trend surface analysis yields significant results for the other units
of the D-complex, bounding surfaces dip steeply to the northwest,
parallel to the stratification dip direction (Table 1IV-4; Fig.

IV-18b).

E-Complex — The E-complex includes the uppermost 18 units of the Page
Sandstone at the study site (Figs. IV~14 through IV-17), Like the
C-complex most of the units of the E-complex consist of
grainflow-stratified sets 3-5 cm. thick over relatively thick
wind-rippled apron deposits. Units El and El4, the lowest and highest
members of the complex respectively, lack apron deposits and exhibit a
poorly developed, larger-scale cyclicity defined by reworked grainflow
deposits.

The distribution of foreset dip directions across many of the
lower units suggest curved crestlines (Fig. IV-22), Strata dip

generally to the southwest or to the southeast and show more inter-



225

and dintra-unit variability than the comparatively wunidirectional
deposits of the C-complex (Table IV-5, Fig. 18b). El is a particularly
complicated unit where compound cross-bedding dipping to the east and
northeast 1is separated from southward-dipping, simple cross—sets by
numerous reactivation surfaces (Figs. IV-22, IV-23). Together, these
components define a strongly curved sequence whose mean dip direction
to the southeast compares with other units of the E-complex.

Two polygonally fractured surfaces occur within the E-complex,
the uppermost not accurately described by trend surface analysis.
Like other units resting atop such horizons, E7 contains numerous
reactivation surfaces. There dis also a correlation between
polygonally fractured surfaces and trough-shaped units at the study
site; Cl2 and E4, the two distinctly trough-shaped units found locally
within the Page, are both truncated by a polygonally fractured horizon

(Figs. IV-15a, IV-b).

Eolian Bedform Reconstruction - (An Application of the Tools to the
Deposits of the Study Site) -~ Armed with observations and data that
characterize the deposits of the study knob, the ability of the tools
described above to reconstruct and interpret eolian bedforms can be
tested. The resolution and the limitations of each tool, as applied
to the deposits of the Page Sandstone, reflect in part the present

level of understanding of eolian depositional systems and processes.

The origin of bounding surfaces - Regional bounding surfaces within
the sequence studied are identified by the overlying extradune

deposits of I3 and by polygonal fractures, both of which mark a hiatus
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Figure IV-23., The compound cross-bedded deposits of unit El. Specific
location of photo is indicated by a "#*" in Fig. IV-22,
Reactivation surfaces (left) separate the simple
cross-bedded deposits of El (not shown in photo) from

steeply dipping compound cross-sets (right).
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in sand sea development (Fig. IV-24). Within the resolution of the
data, the lowermost 3 of the 4 polygonally fractured horizons within
the Page, and the bounding surface associated with I3 parallel each
other, and are assumed to define 'paleo~horizontal'. Local J2 relief
overprints the regional trend of the J2 unconformity (Fig. IV-21), and
so does not appear to parallel the orientation of the other regional
bounding surfaces in the sequence. Other surfaces found locally
within the Page exhibit a parallel orientation (those surfaces listed
in Tables IV-1 through IV-5 as lying flat after rotating their
first-order planes about the orientation defining 'paleo~horizountal'),
but otherwise lack any indications of prolonged exposure and changing
depositional conditions. The subhorizontal bounding surfaces of the
C- and E-complexes are interpreted to represent first-order bounding
surfaces on the basis of uniform spacing within the sequence and the
presence of thin interdune deposits.

Compound cross-bedding of the B- and D-complexes were deposited
by superimposed bedforms migrating across the lee face of a draa (Fig.
IV-24). 1In both cases, the transverse extent of the surfaces appears
small, and evidence of variable winds and flow reversal are lacking.
Reactivation surfaces within the B-complex, trurcated by the
second-order surfaces, are relatively sparse. Moreover, compound
cross—-strata in both complexes grade laterally into simple
cross~-bedded draa slipface deposits (Bla and B13 for the B-complex,
and D2/D8 for the D-complex). Reactivation surfaces are particularly
common in those units associated with regional bounding surfaces (Cll1,
C13, D2/D8, E7) and lack the ecyclicity of compound cross-bedding

deposited by superimposed bedforms.
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Figure 1IV-24. Schematic cross-section and interpretation of the

cross-bedded sequence of the Page Sandstone at the

study site.
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Interpreting Low-angle Stratification - Coarse grain size, evidence of
the former presence of evaporites on the polvgonally-fractured J2
surface (see Kocurek and Hunter, 1986), and their position at the base
of the Page Sandstone in a local depression, favor a sand-sheet
interpretation for the wind-ripple-stratified deposits of the
A-complex (Fig. 1IV-24). Sands of the A-complex are too coarse to
represent dune apron deposits, and the presence of evaporites would
have likewise inhibited dune formation.

The Jnternal parallelism of gently dipping laminae 1is not
characteristic of sand-sheet deposits, but may reflect the control of
J2 relief on deposition, which wunder relatively sand-starved
conditions was restricted to depressions 1in the otherwise
deflationary J2 surface. Complex primary and secondary airflow and
the deposition of variably oriented wind-ripple strata were succeeded
by a more unimodal sand transport pattern as J2 relief was subdued by
infilling. As airflow became less variable and/or net sand supply
increased, migrating zibars deposited the unidirectional,
moderately-dipping wind-ripple strata of All.

Other low-angle wind-ripple sets in the sequence represent either
interdune or dune apron deposits. Interdune deposits in the study
area (Il and I2) tend to be thinner, more poorly sorted (Chandler and
Kocurek, 1986), and component laminae more gently dipping than dune
apron deposits. Unit Cl2 1is an example of a locally-occurring dune
apron deposit characterized by moderately dipping wind-ripple strata,
whose thickness and lateral extent are comparable to other deposits in

the sequence left by migrating dunes (Fig. IV-19).
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The degree of crestlire curvature - A gradual swirg in foreset dip
direction along the lengths of many of the units of the B-complex and
the E-complex suggest that the bedforms represented were nonlinear. A
three-dimensional bedform interpretation is supported by trend surface
analysis, which indicates that bounding surfaces within the E-complex
are relatively nonplanar. The original bedforms that deposited the
C~complex were comparatively linear, although broadly 1lenticular
interdune deposits and larger-scale cyclicity of reworked grainflow
deposits suggest some degree of crestlire curvature. In fact, most of
the units in the study area include at least one nonlinear dune shape
indicator. That intervals of reworked grainflow deposits present
within a unit result from the shifting morphology of a curved bedform
is conjecture at this point; further studies are recommended before

their presence is cited as conclusive evidence of crestline curvature.

Dune dimersions - Estimates of the dimensions of the original bedforms
are summarized in Table IV-6. Followirg Wilson's (1972) observations,
bedform wavelength is assumed to be roughly 15 times dune height,
which was calculated using the empirical relationship between bedform
height and grainflow stratum thickness (after Kocurek and Nielson,
1986). Dune width and length were then estimated using the empirical
relationships established by Breed and Grow (1979, p. 274) for
crescentic bedforms. Reported values should be treated as first-order
approximations; a l-cm difference in the reported grainflow stratum
thickness translates into a difference in the other calculated
dimensions of hundreds of meters. For C2 and B24-4a, estimates of

original dune length and wavelength are based on direct measurements



UNIT

WIDTH (m., +10m.)
(D1 ect measurement)
WIDTH (m., +50m.)
(Breed and Grow, 1979)

LFNGTH (m., +50m)
(Breed and Grow, 1979)

WAVELENGTH (m., +50m)

(Breed and Grow, 1979)

WAVELENGTH (m., +50m)
(Wilson, 1972)

GRAINFLOW THICKNESS (cm.)

Direct meas., +0.5 ¢m.
HEIGHT (m., +5m.)

HE IGHT:WAVELENGTH RATIO

(kocuret and Nlelson, in press)

SEASONAL PACKAGE THICKNFSS
(Direct measurement, +Scm)

A8 B1

3 3-4
15 15-20
25-30

B16,B18 B24-4a Bla

150 140
1800
100-200 1100 50-200
500 500
1500
3-4 3-4 11 max 4-5
15-20 15-20 100 20-30
1:25 (1:15) 1:17
20 20-40 10-15

C2 (1) C-CONPLEX

?-350

0-50

250-600

3-6

15-40

(1:15)

10-20

Table IV-6.

D2/D8 £l

100 40
<50 ?
450 300
5 K}
30 20
(1:15) (1:19)
15-20

Dimensions of some of the bedforms represented by units of the study knob.

1€¢
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of dune width (Table IV-6). The lens-shaped interdune deposit 1Il,
measured perpendicular to the mean dip direction of overlying C2
strata, approximates the minimum possible width of the bedform
represented by C2. Calculated ratios of B24-4a and C2 dune height to

wavelength compare favorably with Wilson's 1:15 ratio (Table IV-6).

Draa Geometry - The relative orientation of the components of the
compound bedform represented by the B-complex were determined using
Rubin and Hunter's (1983) suggested methods (Table IV-2, Fig. IV-25).
Superimposed dunes migrated along as well as down the lee face of the
draa; whether dunes actually migrated obliquely upwards, as is shown
for Bl and Bll, is debatable. By not rotating their respective
bounding surfaces 180 degrees to dip in the opposite direction,
superimposed dunes of Bl4 and Bl5 (those marked with a double set of
parentheses in Table IV-2; compare with Figure IV-18a) would have been
calculated to have migrated almost directly upslope. Such a rotation
is deemed justified by noting that bedforms migrating parallel to the
local airflow direction should theoretically scour a bounding surface
whose strike parallels the normal to the migration direction but may
dip either way. That such assumptions need be made, emphasizes that
interpretation of the deposits of the B-complex should be made
conservatively. Moreover, most of the second-order bounding surfaces
of the B-complex dip at 15 degrees or less (Table IV-2), rendering the
assumption that bounding surface orientation approximates draa
orientation less reliable (Rubin and Hunter, 1983).

A reconstruction of the deposits of the B-complex nonetheless
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reveals detail heretofore undocumented in ancient eolian sequences:

the importance of secondary airflow in depositing compound
cross-bedding is documented by the oblique orientation of Dboth
superimposed dunes and stratification relative to the primary (main)
slipface. Additionally, the primary slipface deposits of Bla and B13
are distinguished from the other units of the complex by their
relatively thick grainflow strata deposited almost directly down the
draa slipface (Fig. IV-3, IV-25). While primary slipface deposits dip
to the south, possibly identifying the dominant dip direction of the
draa, a shifting draa slipface orientation is indicated by the
variably directed second-order surfaces. The continuation of bounding
surface trends through three or more successive units of the B-complex
suggests that shifts in the draa slipface did in fact occur, probably
the result of a curved draa slipface. The larger-scale cyclicity of

reworked grainflow deposits observed in Bla supports this contention.

Bedform Morphodynamics ~ Most of the units that comprise the study
area exhibit well-developed apron deposits and are therefore
interpreted to represent dunes oriented oblique to the Ilong-term
sand-transport direction. Notable exceptions include the grainflow
deposits of A8, Bla, C4, D2/D8, El, and El4 (Fig. IV-14 through
IV-17), which are inferred to have been deposited by at least locally
transverse forms. The relationship between crestine curvature and
morphodynamic dune type 3Is not clearly expressed in the studied
deposits; mnot all transverse bedform deposits are conclusively
three-dimensional. For example, C4 shows the tightest distribution of

stratification dip directions of all the units (Figure IV-18a), yet
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the associated bounding surface is the only nonplanar bounding surface
of the C-complex. Many oblique dune deposits likewise show some
evidence of a curved bedform shape. However, indications are commonly
limited to the presence of the poorly defined, larger-scale cyclicity
of reworked grainflow strata, whose origin remains undocumented.
Figure 1IV-26 attempts to establish a correlation between the
presence/absence of basal apron deposits and the degree of angular
divergence between stratification and bounding surface dip directions.
Unfortunately, the relative lack of transverse dune deposits that
comprise the local sequence limits interpretation by restricting the
data base. What the histogram does show is that for units of the
study area, the strata of oblique bedforms (those with wind-rippled
apron deposits) may show any directional relationship with the
corresponding bounding surface, while sand-sheet and transverse dune

deposits tend to roughly parallel bounding surface orientation.

Migration Rates - Packages of grainflow strata bounded by thin but
distinct wind-ripple laminae are the most common expression of
small-scale cyclicity present within the sequence studied. This
cyclicity is attributed to seasonal fluctuations in wind direction
and/or strength, and can therefore be used to estimate the mean rate
of dune advance. Rates based on measurements of package thickness
made on a unit-by-unit basis vary from 10 to 40 cm per year (Table

IV-6).

Summary and Conclusions - The tools for bedform reconstruction and

interpretation draw mostly from the details of stratification noted on
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a unit-by-unit basis. The bounding surfaces that delineate wunits
within an ancient eolian sequence potentially reveal much, although
their erosional character 1limits their usefulness. Indeed, their
presence attests to the very small fraction of the original bedforms
actually preserved. To this, add the complexity of eolian
depositional environments as observed in modern sand seas, and it
becomes clear that bedform reconstruction at present is limited to
first-order generalizations. Nonetheless, an overall picture of the
distribution of eolian subenvironments, of dune size and shape, and of
the dynamics of eolian bedforms éan be at least theoretically derived.

The degree to which present knowledge of eolian depositional
systems can reconstruct and interpret ancient eolian sequences is
revealed in the final interpretation of the sequence of the Page
Sandstone described in detail above (Figure IV-24):

1. As deposition of the Page Sandstone commenced, coarse sands
transported under relatively variable winds accumulated in 1local
depressions in the J2 unconformable surface. These discontinuous
sand-sheets are represented locally by the A-complex. Isolated
barchanoid dunes 10 to 15 meters high (exemplified by the deposits of
A8) migrated southwards across the Page sand-sheet. Improved
directionality in the surface wind pattern and possibly an increased
sand supply, accompanied a gradual infilling of J2 topography.
Variably directed wind-ripple strata are succeeded in the A-complex by
deposits of moderately dipping, slipfaceless =zibars migrating
eastward.

2. The compound dune or draa represented by the B-complex

subsequently truncated the basal sand-sheet deposits and 1locally
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marked the end of the hiatus in sand-sea development represented by
J2. The draa was a slightly curved form standing roughly 100 m high,
whose main slipface dipped to the south, parallel to the primary wind
direction. Barcharoid-shaped superimposed bedforms, 15 to 20 m high,
migrated alongslope and obliquely downslope, possibly controlled by
secondary airflow blowing consistently eastward along the lee face of
the draa.

3. The bedforms that deposited the succeeding C-complex were
comparatively linear, simple (?) dunes roughly 40 m high, commonly
exhibiting well-developed wind-rippled aprons. Dunes of the C-complex
trended obliquely to the long-term resultant sand-transport direction,
although stratification dipping consistently to the south and
southeast indicate a wunimodal pattern of sand-transporting winds.
Interdune areas were either deflationary or the site of wind-ripple
deposition under dry condtions.

Transgression of the Carmel seaway from the northwest interrupted
local eolian conditions represented by the C-complex, and deposited
the clayey sediments of the Judd Hollow tongue. Cll, which overlies
the tongue of the Carmel and is identified by its slightly coarser
texture, can be traced miles beyond the study area, suggesting that
the receding tongue of the Carmel seaway exposed large amounts of sand
that was subsequently reworked into dunes of the Page erg.

Polygonally fractured regional bounding surfaces at the top of
the C-complex likewise mark periods when marginal marine conditioms
encroached upon the area, briefly interrupting sand sea depositionm.
Associated with  these regional bounding surfaces, abundant

reactivation surfaces and an isolated trough-shaped unit indicatate
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variable, occasionally strong winds; marginal marine conditions during
Page deposition remained close enough to the study site to overprint
the prevailing wind regime with a complex coastal wind pattern.

4. The poorly exposed units of the D-complex were probably
deposited by a compound bedform that stood at least 30 m high. The
main slipface of the draa, like the draa of the B-complex, dipped to
the south and was roughly transverse to sand-transport direction.
Variable winds and the continued influence of nearby marginal marine
conditions are indicated by the relative abundance of reactivation
surfaces in D2/D8. Polygonally fractured horizons in the E-complex
represent truncation of the Page erg by evaporite-encrusted plainms,
and confirm that marginal marine conditions remained close enough to
the erg at the study site to influence deposition. The dunes
represented by the units of the uppermost E-complex were
three-dimensional bedforms at least 20 m tall, oriented obliquely to
the south/southeast sand transport direction. The crescentic bedforms
of the E-complex were generally smaller than those of the C-complex,
supporting the contention that at the study site, the Page erg shifted

to a more marginal position, relatively close to coastal conditions.
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Appendix. The results of trend surface analysis.
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UNIT/SURFACE Sample Order X (N-S) Y (E-W) XY XX YY Constant Coefficient of Standard

Size E -02 E -02 E-03 £ -03 £-03 Determination Deviation
Cci12 7 | 3.496 5.200 7.370 0.748 0.32
2 -6.130 6.533 5.816 0.316 6.376 4.282 0.994 0.05
cl13 31 | 2.448 0.221 8.733 0.984 0.06
(Polygons) 2 3.859 0.336 -0.003 0.135 -0.017 9.034 0.990 0.05
olygonal surf, 30 | 2.094 0.307 9.149 0.981 0.05
r above Ci13 2 2.548 1.367 0.009 0.042 -0.119 9.082 0.988 0.04
813 4 1 10.480 -15.80 19.47 0.932 0.07
D10 S | 6.334 38.704 1,726 0.998 0.03
Dit 4 | 6.128 -12.879 15.777 0.996 0.0t
D12 8 1 4.089 14.027 * 7.658 0.894 0.24
2 -30.177 -25.884 -3.213 -S5.412 -6.791 5.293 0.997 0.08
[X] 7 1 6.159 0.301 13.130 0.561 0.13
2 -38.350 53.840 7.904 -16.930 0.874 0.10
ES 10 | -1.571 -6.106 11.714 0.506 0.37
2 13.306 -91.44 -1.212 0.811 8.005 36.111 0.970 0.09
E6 i | 6.702 6.863 10.665 0.876 0.16
2 113.36 -103.48 -11.370 $.962 3.882 63,100 0.982 0.06
Polygonal surf. 9 | 2.050 0.632 10.889 0.891 0.06
below £7 2 7.117 1.839 0.182 0.535 t1.918 0.966 0 03
Polygonal surf. 6 1 1.915 11.166 0.909 0.02
below E9 2 2.159 0.187 11.184 1.000 0.00

These two polygonal surfaces are approx. parallel and are therefore assumed to be the same time line

Appendix (continued).

e



UNIT/SURFACE Sample Order X (N-S) Y (E-W) XY XX YY Constant Coefficlent of Standard
Size £ -02 E -02 £ -03 £ -03 E-03 Determination Deviation
Polygonal surf. 11 | 0.598  -0.165 10.886 0.124 0.18
above E7 2 -34.90 -21.04 4.424 -1.111 4.377 6.474 0.875 0.06
E10 6 | 0.343 -0.787 11.450 0.432 0.05
2 -28.02 24.60 5.992 -0.526 0.405 1.000 0.00
El12 18 i 2.480 2.148 11.219 0.959 0.03
2 3.984 0.092 -0.258 0.019 0.094 12.061 0.971 0.03
Ei3 9 1 -0.193 -0.764 11.516 0.102 0.1
2 29.51 23.19 6.810 S.756 1.359 13.697 0.504 0.08
El4 16 t -1.229 -2.528 11.930 0.296 0.13
2 4.991 22.544 5.145 3,104 7.613 0.563 0 i0

Appendix (continued).
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PART V. PROCEDURE VALIDATION

Fasily the most nebulous step of reservoir characterization is a
method for wvalidating the procedure. The approach to wvalidation
adopted here is to model fluid flow in a specific heterogeneous medium
both stochastically and deterministically and make technical
comparisons of the results. Before doing this, we must procure a good
deterministic description of the medium to be simulated. Such a
description was the subject of Part IV of this report.

The stochastic simulation will require a statistical description
of the subject reservoir and an efficient procedure for generating
partially correlated random fields. The statistical description was
reported previously (Goggin et al., 1986; Chandler, 1986). In this
part we report on efforts to generate stochastic permeability fields
based on one-dimensional line processes and give results on pore-level
modeling. The actual results of the simulation will be reported on in

the next annual report.
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INCLUDING A STOCHASTIC OVERPRINT

Imagine that the statistical character of a reservoir is
available through its distribution type, variance, and correlation
function. Such information can be used to generate a stochastic line
process. As discussed in Part III, the methods to generate these
processes have inherent limitations for large correlation lengths and
for non~-stationary processes. Nevertheless, several line process can
be merged through the turning bands method (TBM) to generate a
two-dimensional stochastic field. The purpose of this section is to
present some preliminary results on such fields. See Montoglou and
Wilson (1976) for details on TBM,

For illustration we generate a two-dimensional field with mean of
100, coefficient of variation of 1, and a sample span/correlation
length of 20. The correlation model is exponential and the data are
distributed according to the non-normal distribution of Part III with
p = 0.5. We generate the field on a 50x50 grid each with length 2;
thus, the actual correlation length must be 5.

For a specific set of random numbers, the standard deviation
input to the line process generator must be 62 for the output standard
deviation to be 100. This difference 1s because of the p-normal
transformation of the data: had p been unity the input standard
deviation would have to be about 96. Similarly, the input correlation
length must be 4.5 to obtain the output value of 5. See Part III.

Figure V-1 shows the variograms in the x and y directions,

respectively, calculated from the generated field. Both variograms
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are nearly the same (the field is isotropic in correlation) and both
agree quite well with the input variogram (the smooth curve in Fig.
V-1). The agreement is particularly good in the correlated portion of
the variogram. Figure V-2 shows the agreement between the input and
calculated spectral density functions.

Figure V-3 shows the cumulative probability density plot
expressed on a probabilistic x-axis. The v-axis plots the
permeability values raised to the 0.5 power and then transformed to
have unit variance and zero mean. The linearity of the plot and the
agreement with the theoretical input (smooth curve) shows that the
two-dimensional field generator 1is working properly. The small
deviation on the left of the plot is caused by omitting negative
permeability values after they are generated. For the case considered
these do not affect the function very much; however, they would be a
cause for concern if the desired mean value were lower.

Figure V-4 shows a contour plot of the generated field.
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PORE LEVEL MODELLING

The basic objective of this section 1is to investigate
heterogeneity from a pore level approach, specifically, to investigate
how pore-level heterogeneity is related to heterogeneity of bulk-scale
petrophysical properties. Since all petrophysical flow properties
depend upon pore network characteristics, this approach should lead to
a better understanding of how stochastic distributions of various
petrophysical properties are related.

The initial conceptual pore model we have chosen consists of a
three-dimensional  array of relatively large "pore bodies"
inter-connected by smaller size "pore throats". Justification of this
approach can be seen in pore casts and scanning-electron microscope
photographs of pore structure (Swanson, 1979; Wunderlich, 1985). When
we compare model parameters with actual reservoir permeable media,
pore body sizes are controlled primarily by the grain-size
distribution of the matrix. Pore throat sizes would be more a
function of grain angularity and diagenetic effects.

Because of their relatively large size, pore bodies are assumed
not to contribute to either flow transmissibility (permeability) or
capillary pressures, and are modelled as equivalent spheres. Volumes
occupied by pore bodies are based on stochastically distributed values

for an equivalent pore body diameter, d The volume of a pore body

b
is then given by

(V-1)

oW

bi
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For the initial part of the study we assume a structure whereby
each pore body has six connecting pore -throats in a three-dimensional
cubic arrangement. Other structures and different levels of
connectedness are possible and will evertually be considered. Pore
throats are treated as capillary tubes, characterized by both a
stochastically~-distributed equivalent diameter, dt’ and an equivalent

length, lt. Pore-throat volumes are thus calculated as:

Veg =

cgﬁ

2
t1t (v-2)

Capillary pressure across a given pore-throat is then:

- 4Ocos

c d
t

P (v-3)

where ¢ is the dinterfacial tension and € is the contact angle.

Viscous pressure drops across throats are determined assuming a flow

conductance, (C = AP/q), based on a Poiseuilles Law functional
relationship:
-
¢ = T, (V=4

Prior to initiating this study, a model had already been
developed at the University of Texas for investigating capillary
pressure-saturation curves in pore networks. Using
stochastically-distributed pore —body radii, pore throat radii, and
pore - throat lengths, the model calculated two-phase fluid
distributions in pore networks by determining a non-wetting phase
invasion sequence based on movement of fluid interfaces with minimum

capillary pressures (largest pore —throat sizes). This model was



successful in replicating actual capillary pressure measurements, but
as expected, the results were not non-unique.

By only looking at capillary pressure phenomena, it was not
necessary for the existing model to consider the relationship between
pore network dimensions and bulk media dimensions. This is because
capillary pressures only depend on the radii of pores, and saturations
are a fraction of pore volume., Also, by considering further bulk
petrophysical properties and constraining pore networks to
geologically realistic ones, the uniqueness problem should diminish.

We are currently in the next phase of model development, which is
to modify the existing model to generate values for porosity and
permeability in addition to capillary pressure-saturation. Unlike
capillary pressure curves, determination of both porosity and
permeability depend upon relating pore-~level dimensions to bulk
dimensions. As a first simplified approach to this problem, we have
chosen to define a parameter, B8, which is the ratio of average
effective pore or throat dimension to an orthogonal bulk dimension. §#
is thus wused to account for geometrical orientation effects as well
as the relationship between effective and actual lengths. It can be
thought of in the same manner as tortuosity, T, where B=1/T2 (Dullien,
1979). A pore body in a given direction can then be assigned an

associated bulk length given by:

T -
.= 3 { 70 t 1) (v-5)
where the 1 and 2 refer to pore conmecting in the desired direction.

A mean equivalent 1length for all pore bodies in all directions is

then:
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- 1 { = - )
T =111 +3 -
Bk t b) (V 7)

(o4

We can then calculate the porosity of the network as:

( 3
o= —— Za?1 o+ 43
' | 4°t't T 6°b
L tb Ty )

(v-8)

Permeability, k, can also be found by solving for flow rates and
pressure drops in the pore system as a pipe network, utilizing the
pore —throat conductances. If a differential pressure is applied in
the x-direction, permeability is found by solving for qu/AP for the

svstem and then calculating permeability by:

(V-9)

where LX, Ly’ and LZ are the bulk media lengths in the %, y, and

z-directions, respectively. Or, with Eq. (V-6) for bulk lengths:

o (q/nynz)u

It + E; (AP/nx)
L )bulk

where, n_, ny, and n, denote the number of pore bodies in the 1y, and
z-directions, and LX = icnx’ etc. Note that the quantity in the
brackets is invariant with network size (neglecting statistical
effects), since q/nynz is the average flow rate per cross~sectional
pore and AP/nX is the average pressure drop per pore.

With this model, then, we have the following parameter
dependencies:

Permeability do» 1., 4., 8

Porosity d B (major)

b’
dt,lt(minor)
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Capillary pressure dt

Saturation (major)

db
dt’ lt(minor)

In addition, permeability anrd capillary pressure versus
saturation are deperdent on the topological arrangement of the pore
network. Porosity, however, is not. Pore-throat parameters primarily
affect permeability and capillary pressure, while pore-body parameters
are more related to porosity and saturations. With this approach, we
have four parameters, three of which are stochastically-distributed.
If we assume each of these can be adequately characterized by a
three-parameter distribution, a total of nine parameters is required
to model the system. Initially, we plan to wutilize beta-type
probability distributions for the various parameters, although other
distributions will be explored. We will also initially assume no
spatial correlation. This too can easily be investigated at a later
date through the methods of Part III.

Once methods for determination of porosity and permeability are
added to the model, the next step will: be to perform a large number
of numerical experiments to explore the general characteristics and
range of response of the model to different parameter values. The
purpose of this phase of the study will be to primarily determine
general relations between network parameters and the various bulk
petrophysical properties. We will also wish to explore the empirical
relationships betweer capillary pressure vs saturation curves,

porosity, and permeability reported in the literature. For example,

Leverett (1941) suggested that capillary pressure vs saturation data



from similar depositional euvironments could be correlated by plotting

a dimensionless j~iunction:

Pc / k
3% T ou0 3 (v-10)

Also, Purcell (1949), Thomeer (1960, 1983) and Swanson (1981) have
suggested correlations for predicting permeability from capillary
pressure and porosity data.

There are several extensions of this work that can easily be made
in ruture studies. Some or the most important petrophysical
properties that the pore network model can be used to study are: a)
two-phuse relative permeabilities, b) electrical resistivities (either

single or multi-phase), and ¢) macroscopic dispersion coefficients.

Concluding Remarks - Nearly all of the work in the part V is in a

transitional stage. We mnevertheless conclude that the stochastic
ceneration scheme can model wuch of the complexity exhibited by the
eolian outcrop. Our task, therefore, is to generate such fields,
extract statistics from them and compare to the statistics derived
from the field data. This is perhaps the only direct way to evaluate

the efficacy orf the geueration scheme in generating realistic fields.
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NOMENCLATURE for PART V

C flow conductance
db pore-body diameter, L
dt equivalent pore—throat diameter, L
j j-function
k permeability, L2
lC associated bulk length of a pore-body, L
lt equivalent pore-throat length, L
XY sz bulk medium dimensions in x, y and z directions, L
nx,y,z number of pore-bodies in x, y, and z directions
P non-normal transformation parameter
PC capillary pressure, F/L2
Vbi volume at pore-body, L3
Vti volume at pore-throat, L3
B local aspect ratio
o interfacial tensiomn, F/L
T tortuosity
0 contact angle

M viscosity, F-—t/L2
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