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ABSTRACT 

This report, a year's progress on "A Systemtatic Procedure for 

Reservoir Characterization", deals with a variety of topics all 

centered around the main goal of making numerical reservoir simulation 

results conform more closely vvith geologic descriptions. 

The first part of the report discusses results on conditional 

simulations of miscible displacements in randomly heterogeneous 

permeable media. The focus here is on local or macroscopic 

dispersion, the dispersion experienced at a fixed point in the medium. 

Macroscopic dispersivity has many of the same dependencies on 

reservoir properties as does megascopic dispersivity, but it seems to 

be less time dependent ana is always smaller. We have not discovered 

a mathematical model to describe its behavior. 

A major portion of the report deals with statistical 

descriptions. Ve investigate the bias and precision of standard 

measures of heterogeneity, the Lorenz and Dykstra-Parsons coefficient. 

After this, the work explores the benefits ol using a distribution 

type characterization parameter in exploring heterogeneity. We find 

that distribution type is as sensitive as mobility ratio in 

determining sweep efficiency. Other statistical topics dealt with 

include addressing the sampling issue in correlating log-derived and 

core permeabilities and in generating a two-dimensional stochastic 

field that mimics an actual eolian reservoir. 

The final major portion of the report describes our mapping 

efforts on the Page sandstone outcrop in northern Arizona. The 

mapping is to be used in generating both deterministic descriptions 

and in calibrating the stochastic descriptions discussed above. 

x 



A SYSTEMATIC PROCEDURE FOR RESERVOIR CHARACTERIZATION 

Annual Report October 1, 1985 - September 30, 1986 

PART I. INTRODUCTION 

We define reservoir characterization as the process of assigning 

spatially varying input to a numerical simulator. This input should 

reflect the geologic classifications existing at the point to be 

estimated and contain the correct deterministic trends if such exist. 

The other components will be captured from statistical descriptions 

(most likely values, variations, and spatial correlations) for 

each geologically distinct unit. Finally, the input should be 

adjusted for the scale of the minimum granularity (grid size) of the 

simulation. 

A possible procedure for reservoir characterization is: 

1. Identify and map geologic units present in the reservoir. Unit 

boundaries may be observed from well-to-well correlations, assigned 

from a geologic model, or taken as stochastic variables themselves. 

2. For each geologic unit gather and process data to isolate trends 

and to determine the statistical descriptions. Hydrologically homo­

geneous units may then be identified. These may or may not coincide 

with the geologic units. Clearly, this step will place considerable 

reliance on outcrop and wellbore (core/log) characterizations. 

3. Cover the region of interest in the reservoir with an appro­

priate grid. Each grid falling within a given hydrologic unit is 

assigned properties based on the deterministic trends and statistics. 

Grids falling on top of unit boundaries require special attention, 
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inasmuch as the nature of the boundary itself (for example, shale or 

erosional surface) will determine parameter assignments. 

4. Values assigned in item 3 must be adjusted for the size of the 

grid blocks, since blocks are invariably much larger than the scale of 

variability. For deterministic trends, this involves assigning 

"pseudo" properties; for the other variations we will adjust 

dispersivities, capillary pressures, and/or fingering factors. 

5. Each ensemble of parameters must be conditioned to agree with 

aggregate measures, such as well tests, or with actual measurement if 

a grid block happens to contain a well. 

The work discussed here can not fully develop this entire plan 

in detail. A thorough methodology requires a degree of validation 

(comparison between actual and predicted results) which is beyond the 

scope of the original work (Lake et al., 1985). In the following 

report we propose several steps which are intended to investigate the 

validity of the proposed procedure and to expose the strengths and 

weaknesses. 

This work falls into four parts. Under the heading of 

"Conditional Simulations" we discuss results of simulations applied to 

stochastic fields. In the area of "Improved Data Handling" we give 

results of reconciling core and log data using non-normal 

transformations for improved regression, bias of heterogeneity 

measures, and methods to generate stochastic fields. Under 

"Heterogeneity Classification" we discuss the distribution of eolian 

geologic features and relate these to statistical measures. 

"Procedure Validation" concludes by giving results of generating 
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two-dimensional stochastic fields and the results of pore level 

modeling. 

PART I. REFERENCES 

Lake, L. W. , M. A. Miller, and G. A. Kocurek, Department of Energy 

Proposal, 1985. 
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PART II. CONDITIONAL SIMULATION 

Conditional simulation is a stochastic approach to an 

indeterminate problem. Oil reservoirs are invariably heterogeneous. 

Normally the only inform.ation available is the measurements at certain 

points through the wells. As to the properties between these points, 

assuming the measurements at these points are reliable, the best we 

can do is to interpolate using statistical information: spatial 

correlation and variation according to the geological environment. 

Both topics are covered in later parts of this report. 

When a field is to be simulated, at best the following 

information is available: 

1. Deterministic properties at certain given points, 

2. Spatial distribution or correlation of the properties. 

A conventional simulation can use only the deterministic part of 

the information; therefore, there is a lot of uncertainty in the 

scaling and averaging of permeability values. In a conditional 

simulation a stochastic field is generated using the given correlation 

function, which may be obtained from geological characterization, and 

then "conditioned" to be consistent with the deterministic 

information. A simulation run using this conditioned stochastic field 

generates a possible outcome. A large number of such simulation runs 

with independent stochastic fields will then give a statistical view 

of the problem. 

This approach not only gives a more realistic result by including 

heterogeneity with both deterministic properties, physics and 
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indetermlnistic information, but it also can give an estimate of the 

possible error due to the uncertainty of the given information. 

Another application of the method is to solve the problem of 

scaling. Because of the limit on the number of grid blocks in a 

computer simulation, details inside the blocks will be averaged out. 

Conditional simulations run at different scales can give an effective 

scheme for averaging the properties. 
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MISCIBLE FLOODING SIMULATION 

The conditional simulation discussed in this section consists of 

first-contact miscible, equal viscosity, equal density displacements 

in randomly heterogeneous permeable media. The media are random in 

permeability which are distributed according to Heller's method with 

preconditioned amount of variability (as measured through a 

correlation length). See Part III for theoretical treatments of both 

statistical measures of variability and correlation. See also Arya 

(1986) for details on the Heller procedure and its properties. 

Earlier work (Arya et al., 1986) has established the behavior of 

cross- sectionally averaged (megascopic) dispersivities in randomly 

heterogeneous media. To summarize briefly, a generally varies with 
ME 

dimensionless time as shown in Fig. II-l. For small t , a grows 

linearly with t indicating channelling; for large tr, a is constant 

indicating purely dispersive behavior. The transition between 

channelling and dispersive behavior is smooth and occurs over a finite 

time interval. During the channeling mixing zones grow in proportion 

to t„; during dispersive mixing the zones grow with the square root of 

t but they do not lose the features of the initial channeling 

behavior. 

Based on the seminal work of Taylor (Arya, 1986) the megascopic 

dispersivity varies according to 

"ME CC .. r ,2n "VV. 
— = t̂  [ XDV XD ( 1 " e )] 

for randomly heterogeneous media with exponential correlation. C is 

the coefficient of variation and A is the dimensionless correlation 
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NON-FICKIAN TRANSITION FICKIAN 

DIMENSIONLESS TIME 

Figure I I - l . Schematic diagram - v a r i a t i o n of d i s p e r s i t y 

wi th t ime. 
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length of the permeability field. The behavior of the above equation 

reproduces that in Fig. II-l. Two special cases are of interest. If 

the correlation length is much smaller than the medium length (A << 

1) ct becomes 
ME 

J^ = c2 X 
L v D 

where the mixing is dispersive. If the correlation length is large we 

we have 

a c*" 
ME = _v 

L 2 CD 

where the mixing is through channeling and the medium is effectively 

layered. If A is infinite, the medium is strictly layered. Both 

cases pertain during certain types of permeable media flow. 

In the current section we continue this work through simulations 

from which we will derive the macroscopic dispersivity a
M A. 

Macroscopic Dispersion in Permeable Medium - Macroscopic dispersivity 

is the point value of dispersivity obtained at any (x,y) location in 

the permeable medium. The macroscopic dispersivity, ot controls the 

rate of mixing and thus the formation of a miscible front in solvent 

flooding. The variables which affect megascopic dispersivity, such as 

the magnitude of heterogeneity (Dykstra-Parsons coefficientV ) , the 

spatial correlation for permeability), the aspect ratio of the 

two-dimensional model, and the magnitude of molecular diffusion also 

influence the macroscopic dispersivity though by a different magnitude 

and also in some cases in a different manner than for ot . 
ME 
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Procedure for Calculating Macroscopic Dispersivity - In this section 

the method used to calculate macroscopic dispersivity at any point in 

the two-dimensional, finite-difference computer simulations is 

outlined. Macroscopic dispersivity is a measure of the local mixing in 

the permeable medium. It can be measured at any point in the 

two-dimensional domain. In a numerical model the dispersivity measured 

at a grid-block is considered to be macroscopic. Macroscopic 

dispersivity ct is primarily a function of the local heterogeneity 

but is influenced by the variations in transport properties of the 

entire system under consideration. 

In order to determine the macroscopic dispersivity at any 

location in the numerical model, the concentration history at that 

location is required. By "concentration history" we mean the variation 

in concentration at any location as a function of dimensionless time 

(t^) or injected pore volumes. The arrival of a specific concentration 

contour at any location depends on a variety of factors such as the 

degree of heterogeneity and the distribution of permeabilities. Thus, 

in a heterogeneous permeable medium, at any fixed x-location, the 

fluid arrives at different times across the cross-section. This is 

because of variations in permeabilities being transformed into 

variations in fluxes, and therefore, the fluid travels at different 

velocities in different regions. This variation in travel velocities 

is seen in Fig. II-2, which shows concentration histories at x^ = 0.5 

for a simulation case. In this case, the V is 0.6 and the aspect 

ratio of (L/W) the system is one. There are 40 grid blocks in the y 

direction and therefore we have forty different concentration 

histories. When the permeable medium is homogeneous, the velocity 
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gradients are also uniform. In such a case, the fluid travels 

uniformly across every cross-section and at any fixed x-location 

(i.e., location in the flow direction), the concentration is the same 

across the cross-section. Therefore, all history curves are identical. 

Thus, the width of the band over which the concentration histories are 

distributed gives some idea about the. magnitude of heterogeneity. A 

large distribution of concentrations at any cross-section also means a 

displacement with channeling. Large transverse mixing will result in a 

narrow band of concentration histories. 

This concentration history at any grid block can be matched with 

an analytical solution of the one-dimensional convective-diffusion 

(C-D) equation to determine the macroscopic dispersivity in that grid 

block. An example of such an analytical solution would be the solution 

for the infinite boundary conditions which can be rewritten as 

D 
1 - erf 

2 / VV 
Rearranging this equation, 

2 / V * P 7 
= erf U-2CD) 

The above expression can be written in the form of the equation of a 

straight line 

x —t 
- 2 — ^ = ? S ~ erf~1(l-2CT.) 
/ — Pe D 

r-l 

(II-D 

A plot with erf (1-2C ) on the x-axis and (x-t )//t, on the y-axis 

is a straight line for a fixed value of x^. This plot is also known as 

the log-probability plot because plotting concentration (instead of 
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the inverse error function) on a log-probability paper gives the same 

figure. The macroscopic dispersivity can be calculated from the slope 

which is equal to 2/N . This procedure can be repeated for every 

point in the two-dimensional flow domain. The macroscopic dispersivity 

calculated using the above procedure is only an approximate value 

since the solution of the C-D equation with boundaries at infinite 

distance is used. There is an additional approximation because a 1-D 

solution is used in a 2-D field. 

Figure II-3 shows such a log-probability plot at a fixed x 

location (at x^ = 0.5) for every point in the cross section. Each 

point has a unique value of slope which depends on the concentration 

history at that point. In this specific case, Vnp is 0.6 and Fig. II-3 

is derived from Fig. II-2 which shows the corresponding concentration 

histories. This matching procedure is different from the one used to 

determine megascopic dispersivities. In the case of megascopic 

dispersivities concentration profiles (C vs. x ) averaged across a 

cross-section are used to determine dispersivities. But to calculate 

macroscopic dispersivities concentration histories (C vs. t ) at 

every grid-block are used. Thus, the megascopic dispersivity ot̂ , is 

determined as a function of time and the macroscopic dispersivity ot̂ . 

is determined as a function of spatial location (x_, y ). 

In a heterogeneous system, the arrival time for concentration at 

each block will depend on the path taken by the particle to traverse 

from the inlet to its present location. The shortest path is a 

straight line, but due to the tortuous nature of the permeable medium, 

the path taken by each particle is different. Figure II-4 shows the 
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Figure II-4. Schematic travel paths of particles at a 

cross-section. 
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schematic diagram for a hypothetical situation, when two paricles take 

completely different paths to arrive at the fixed x location. The 

equivalent area travelled by each particle depends on its path and the 

velocity of each is inversely proportional to the area covered. The 

breakthrough time for any particle is given as 

BT . 
t = x/u 

And that for particle "1" i 

BT . 
tx = x/Ul 

From the above equations, u. can be expressed as 

BT 
Ul = U7BT 

1 

Therefore from Eq. (II-2), 

BT t B T 

t tBT t S ^ , , ut 
U l L = U l T L BT CD = W h e r e CD = L " 

tl tD 1 

RT 
However, in an ideal displacement, t = x , and therefore 

(H-2) 

u, — = xv 

CD 

Or in general, 

1 L D BT 

• . • " i f " 1 , - i i (II"3) 

1 
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The above definition for t can be used in place of t in Eq. (II-l) 

(or Eq. II-2) to correct for different arrival times for 

concentrations at each point across the cross-section at a fixed x 

location. This correction results in the arrival of C = 0.5 for all 

points across the cross-section at any location x such that tn = x_. 

Figure II-5 shows such a corrected plot for the results in Fig. II-3. 

The slope of each corrected line is then determined and the 

macroscopic dispersivity is calculated using Eq. (II-l). All the lines 

in Fig. II-5 are not perfectly straight because of the error 

associated with the analytical solution which is not exact (Brigham, 

1974). The slope of each curve should be taken in the portion which is 

nearly straight and has the best fit (i.e., the highest linear 

regression coefficient). It was observed that taking the slope at 

(0,0) (where x^ =t and C =0.5), was a very good approximation in 

most of the cases. However, if the point of observation is located in 

a very high permeability block, the concentration may reach the 

maximum very rapidly and in such a case, the slope of the straight 

line at (0,0) is very high. Figure II-6 shows such a situation. In 

this case, the true macroscopic dispersivity is given by the straight 

line portion of the curve and not by slope at (0,0). Thus, care must 

be exercised to account for these variations when macroscopic 

dispersivities are calculated at each point. The dispersivities 

calculated at any fixed x„ location (there are N values) are then 

D y 

averaged to determine the mean macroscopic dispersivity at that x 

location. 

It may not be possible to determine dispersivities for every 

point in the cross-section due to one of several reasons. It is 
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possible that all the concentrations at a grid-block are either below 

or above the (0,0) point in the log-probability plot for 

concentration. In such a case that point cannot be used for measuring 

dispersivity because the (0,0) point is needed to correct for the 

different arrival times. This situation typically arises at points 

very near or very far from the iniection face where concentration 

changes occur either very rapidly or very slowly. It can also happen 

in regions with very high or very low permeabilities. This results in 

a different number of total points (across a cross-section) along the 

x locations where macroscopic dispersivities are averaged. The average 

aw. values are influenced bv the total number of macroscopic 

MA 

dispersivities used to determine the average. This effect is corrected 

by calculating the standard error for the mean a. at each location. 

This standard error calculation takes into account the number of 

points used to determine the average a . In addition to the average 

a values, the curves indicating the high (average+standard error) 

and low (average-standard error) values for dispersivities are also 

shown. The high and low values indicate the degree of variation in 

aw,'s at that location. The standard error is calculated at the 95 

MA 
percent confidence level and is aw +1.96a//n where cr is the standard r MA 
deviation of oi and n is the number of points in the set. 

MA 

Macroscopic Dispersivity in a Homogeneous Medium - There are two 

reasons for calculating macroscopic dispersivities in a homogeneous 

system. First, to determine the accuracy of the procedure described in 

the previous section for determining a M A. Second, to determine if the 

correction procedure used for correcting megascopic dispersivities for 



20 

numerical dispersion is also applicable for macroscopic 

dispersivities. 

In a homogeneous medium there is no physical dispersion and the 

displacement is stable. The concentration front moves uniformly with 

the same velocity at every point across a cross-section and the 

macroscopic dispersivity is the same at every point across any 

cross-section. This dispersion is solely due to the numerical 

truncation error. The magnitude of this dispersion depends on the size 

of the grid block and that of the time-step used in the numerical 

model. In a homogeneous medium, we find that the average macroscopic 

dispersivity changes little with distance. This observation can be 

seen in Fig. II-7, which shows variation in a ... with distance for two 
MA 

homogeneous cases. The only difference between the two cases is that 

one has 40 blocks in each direction and the other has 20 blocks in 

each direction. The magnitude of this dispersion is approximately 

Ax/2, which is also the value expected from the theoretical results 

(Lantz, 1971). In Fig. II-7 dispersivities near the entrance are 

higher than the average in the homogeneous system. This behavior is 

due to boundary effects. In these analytical calculations to determine 
a.,., a solution which assumes that the boundaries are at infinite 
MA 

distance is used. However, the numerical simulator models a system 

with a finite length. Therefore, the dispersivities calculated near 

the entrance show this abnormal variation. 

These results for a homogeneous medium show that by making proper 

correction for numerical dispersion, the physical macroscopic 

dispersion present in the permeable medium can be determined. In all 



21 

0.04 

oo 
W 0.03 
Cu 

oo 
I—I 

Q 
U 
O u 
co 0.02 
O 

u 
< 

0.01 

-o- 40*40 GRID 
-D- 20*20 GRID 

0.0 0.2 0.4 0.6 0.8 

DIMENSIONLESS DISTANCE 

1.0 

Figure II-7. Effect of grid-block on macroscopic dispersivity, 

(homogeneous systems). 



22 

subsequent results, this numerical dispersion components is subtracted 

from the total macroscopic dispersion to get the true value of ct, . 
MA 

Effect of Dykstra-Parsons Coefficient - In Fig. II-8, the average 01 
i o <=> ^ A 

vs. distance for four values of Dykstra-Parsons coefficient is 

plotted. This figure is analogous to Fig. II-l which shows variation 

of a with dimensionless time. In all the cases here the correlation 
ME 

length X is 0.025. These runs have the same distribution of Heller 

points, but have different degrees of heterogeneity (which is obtained 

by changing the Heller's parameter a ). In Fig. II-8, the average a 

n MA 

values near the entrance are not shown because these averages are 

taken over a very few points (sometimes 3 to 5), and these results 

have very little meaning. From Fig. II-8, we can conclude that the 

macroscopic dispersivity is a function of x , specially for cases with 

high V values. In addition, the magnitude of the macroscopic 

dispersivity increases with V , i.e., a more heterogeneous medium has 

more local dispersion. The rate of variation of a is also higher for 

cases with higher heterogeneity. This variation in macroscopic 

dispersivity with distance is due to the random heterogeneous nature 

of the permeable medium. The fluid travels faster through the more 

permeable portions of the reservoir. The net result of this behavior 

is the development of channels which start initially due to the local 

variation in velocity and are enhanced into instabilities at a larger 

scale. Some of this variation may also be due to the statistical error 

associated with calculating a„. as described above. 
MA 

In order to understand the nature of macroscopic dispersion, a 
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deeper look is taken into the displacement mechanism at the local 

scale. In Fig. II-9, three displacement profiles at different 

locations in the system are shown. These profiles represent the 

locally calculated macroscopic dispersivities across the 

cross-section. In this case the Dykstra-Parsons coefficient is 0.6, 

the aspect ratio is one, and the correlation length is 0.025. There is 

no molecular diffusion. If the permeable medium were homogeneous, this 

profile would be a straight line. However, because of the large degree 

of heterogeneity, there is a considerable amount of variation in a.,. 

values. In each case, the average value is represented by the solid 

vertical line. The average value increases as the fluid travels 

further into the medium. This increase in a.,, with distance is similar 
MA 

to the increase in a with time. As discussed above, increasing 
ME 

dispersivities indicate a non-Fickian displacement. Another important 

feature of these a profiles is that they give some idea about the 

location of high permeability regions where channeling initially 

develops. In these regions, the local (macroscopic) dispersivities 

are high and the fluid travels very quickly through them. The degree 

of variation in a at any x^ location also increases with distance. 

In addition the number of aw. values with large deviations from the 
MA 

mean also increase. As the total number of fluctuations as well as the 

magnitude of these fluctuations increases, the instabilities in the 

permeable medium also increase. 

A comparison of local displacement characteristics between two 

heterogeneous permeable systems can also be made by studying local 

dispersivities. The macroscopc dispersivities a,, 's for two V__ 
r MA DP 

values of 0.8 and 0.4 at xn =0.5 are shown in Fig. 11-10. In both the 
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cases, other variables such as aspect ratio and the correlation length 

are the same. The local a 's are nearly the same when V„„ =0.4, but 
MA DP 

at the higher V__ value of 0.8 there is a lot of variation in ex 
DP MA 

values. One local value for a is much higher than the others, 

indicating much larger local mixing than the average. This figure 

explains why displacement is uniform (Fickian) at low V values and 

channeling develops at high V values (as local instabilities grow 

to become megascopic instabilities). The average o. is also higher 

for the case with the larger V . 

The megascopic and macroscopic dispersivities for these cases 

can also be compared. In Fig. 11-11, a and ot for two cases with 
MA ME 

V =0.6 and V =0.4 are shown. At any V the local (macroscopic) 

dispersivities are smaller than the corresponding megascopic values. 

However, when the degree of heterogeneity (Vnp) decreases, the 

difference between the two dispersivities (<*„, and ot ) also 
MA ME 

decreases. At high magnitudes of heterogeneity, there is a large 

difference between the megascopic and macroscopic dispersivities. This 

is a consequence of the scale effect. In a random permeable medium 

with heterogeneities approaching those in actual reservoirs (Vnp = 

0.6), the megascopic and macroscopic dispersivities would be 

significantly different. Thus, these results show that in general the 

dispersivities determined from displacement experiments on cores 

cannot be used to approximate field-scale a values. The core samples 

used in laboratory experiments are fairly homogeneous (V =0.4) and 

have small correlation lengths. The typical oil reservoirs are fairly 

heterogeneous (V 20.6) and the correlation lengths can vary over a 

wide range. This observation has a direct consequence on miscible 
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displacements in oil fields where field type displacements (like pilot 

floods) are designed on the basis of displacement studies in cores. 

Effect of Correlation Length - Autocorrelation, a spatial property, is 

measured for a set of data distributed in the flow domain. On the 

contrary, macroscopic dispersivity is a local property measured at a 

point. Therefore, no specific relationship may exist between spatial 

correlation for flux/permeability and the macroscopic dispersivity. As 

described in the previous chapter, the megascopic dispersivity (which 

is measured at the same scale as correlation) follows specific trends 

depending on the degree of correlation in the spatial data. Somewhat 

different trends are observed in the macroscopic dispersion data. 

Figure 11-12 displays both megascopic and macroscopic dispersivities 

for two sets of data with integral scales of 0.05 and 0.10. Both sets 

have a V^_ value of 0.6, an aspect ratio of one and zero molecular 

diffusion. When the correlation length is long (A =0.10) megascopic 

dispersivity increases with time. The macroscopic dispersivity for 

this case with A =0.10 also increases but the rate of increase is 

considerably smaller. In addition, the difference between ct and ct 
MA ME 

is large. In the second case, where A =0.05, both ct and a again 
° D MA ME ° 

increase but very slowly, and are nearly constant at late 

times/distances. Here, the difference between the two values (ct and 
MA 

ct ) is also smaller. This is due to the smaller correlation length 

and the near stable nature of the displacement. 

These results again demonstrate the importance of the scale 

effect. In permeability distributions with large V (SO.6), there is 

not only a significant difference between megascopic and macroscopic 
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dispersivities, but, in addition, the dispersivities measured at a 

local scale cannot completely account for regional (or spatial) 

phenomena such as correlation. The net result of large correlation in 

permeability (or flux) is time-dependent dispersivities. These 

time-dependent megascopic dispersivities are due to channeling of 

fluid through the more permeable regions of the reservoir. Thus, the 

locally measured macroscopic dispersivities cannot be used to model 

channeling since it is assumed that all mixing at the local scale is 

dispersive nixing. This observation also implies that macroscopic 

dispersivities would be independent of time and spatial position for 

purely dispersive flow. 

The results for these cases with different Dykstra-Parsons 

coefficients and different correlation lengths give some insight into 

miscible displacement phenomena at macroscopic and megascopic scales. 

It can be concluded that: 

1. In general the megascopic dispersivity is larger than 

macroscopic dispersivity. The difference between the two increases 

when V and A increase (Figs. 11-11 and 11-12) and vanishes when 

V p is small. 

2. Megascopic dispersivity ct is a strong function of 

Mt 

correlation length but macroscopic dispersivity ct is a weak 

function, i.e., the rate of variation of dispersivity with A is much 

larger at the megascopic scale than at the macroscopic scale. 

3. The instabilities at the macroscopic scale grow with the 

distance travelled (or dimensionless time) in a manner similar to the 

growth of instabilities at the megascopic scale. 
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Effect of Aspect Ratio - In the previous work (Arya, 1986), it was 

shown that the aspect ratio is related to the spatial correlation, and 

the correlation changes depending on the manner in which the aspect 

ratio is changed. Specifically, we concluded that the rate of change 

of OL,A with distance increases as the spatial correlation increases. 

This observation is also true here, because the aspect ratio of the 

system influences dispersivities only indirectly (through the spatial 

correlation). 

Macroscopic dispersivities for four cases with aspect ratios of 

1, 4, 5, and 10 are presented here. The same cases were analyzed in 

the previous chapter. In Fig. T.I-13, we observe that the variation of 

ct becomes very chaotic (random) at high aspect ratios. In all these 

cases V = 0.6 and no molecular diffusion is added. The spatial 

correlation of transport properties for non-unit aspect ratio cases 

depends on the arrangement of grid blocks in the simulation, as 

described in the previous chapter. When the aspect ratio is 5 and 10, 

there are large spatial correlations because the arrangement of blocks 

in these two cases is the same as in the unit aspect ratio case. 

However, when the aspect ratio is 4, the correlation length is the 

same as for L/W=l because this case has proportionately more blocks 

(80 vs. 20) in the direction with the larger dimension. For aspect 

ratios of 5 and 10, the variations in ct are very large and do not 

follow any pattern. In addition, as in the previous section, the 

magnitude of average ct.,. is higher when the correlation length is 

large. One reason for these variations is the unequal number of points 

used to determine the average, at every x location. In addition, 

displacement in these two cases is very unstable and the injected 
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fluid channels very rapidly through the most permeable regions of the 

medium. This phenomenon has a significant influence on the macroscopic 

dispersivity and results in extreme (very low or high) macroscopic 

dispersivities. This local effect is not observed in the calculation 

of megascopic dispersivity because those values are obtained by 

averaging the concentrations across each cross-section and the extreme 

concentrations are averaged out. 

The channeling and unstable nature of the displacements in two 

cases with large aspect ratios (5 and 10) can be determined by 

analyzing the behavior of local a,,, values at different 
MA 

cross-sections. In Fig. 11-14, three ct profiles for the aspect ratio 

of 5 are shown. These megascopic dispersivity profiles are at xn 

values of 0.25, 0.50 and 0.75. The random nature of ct . is evident; 
MA 

even the average values at each xn do not follow any pattern. From the 

previous work we recall that permeable media with large aspect ratios 

behave like layered systems. This behavior controls the macroscopic 

dispersivities significantly. Each location at a cross-section behaves 

like a non-communicating layer and the ct values fluctuate by large 

amounts. The same behavior is observed in Fig. 11-15, which shows 

local dispersivities for the aspect ratio of 10. In this case, at 

x=0.75 ct values at only some, locations of the cross-section are 

shown. The macroscopic dispersivities at the remaining locations 

cannot be determined due to the reasons discussed earlier. In both 

these cases V =0.6. These profiles confirm the observation that a 

randomly heterogeneous medium behaves like a layered medium with large 

aspect ratio. These pseudo layers do not communicate and the 

displacement is controlled by large convective fluxes in the primary 
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direction of flow (parallel to the x-axis). 

One possible wav to evaluate these variations in local ct,,. values 
MA 

is by calculating the standard error for the a values at each x^ 

location. The standard error at 95 percent confidence level is defined 

as a±1.96o/v'n where a is the standard deviation for that set and n is 

the number of points in the set. Thus, the standard error takes into 

account the nonuniform number of points for calculating averages. 

Figure 11-16 shows that the standard error increases with the aspect 

ratio. This figure shows the average ct„. and the a„, ± standard error 

MA MA 
values for aspect ratios of 1 and 10. The standard errors for L/W=10 

are much larger indicating the large variations in the local average 

values of ct„. 's. 
MA 

From these results we conclude that if a,,, is very high and if 
MA 

there are large variations in the cross-sectionally averaged values, 

there is a good possibility that the displacement is unstable with 

little or no vertical communication. In these cases, it is a good idea 

to examine the local distribution of ct, ,.'s. The variation in ct,,. at 

MA MA 

any fixed cross-section can help in locating unstable displacements 

through high permeability regions. 

Effect of Diffusion - The effect of adding molecular diffusion to 

macroscopic dispersion is similar to that for megascopic dispersivity. 

With the addition of a diffusion component the total flux increases by 

the same amount in both the directions. However, the relative 

magnitudes of the convective and dispersive fluxes change and the 

ratios of the x and y flux depend on the amount of diffusion added to 

the system. One consequence of this additional component is that there 
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is enhanced mixing in the direction normal to flow. Because of this 

enhanced mixing the fluid travels more uniformly through the permeable 

medium and the variation in macroscopic dispersivity at any 

cross-section is much lower. 

In this section first the effect of adding diffusion on fluid 

transport in homogeneous medium is analyzed. We give results in terms 

of the dimensionless diffusion coefficient 

D = Doi 
uL 

where Do is the molecular diffusion coefficient. Figure 11-17 shows 

the change in ct with distance in a homogeneous system at several 

levels of diffusion. In all the cases the aspect ratio is one. The 

total macroscopic dispersion is due to molecular diffusion and 

numerical truncation error. The ct . values are independent of x^ at 

MA D 

lower values of diffusion. At higher values of diffusion, the 

macroscopic dispersivity increases with distance for a short distance 

before becoming constant. This behavior is due to the very high 

diffusion, the total dispersivity is very high and the Peclet number 

is very low. And at low values of Peclet number, the solution to the 

C-D equation with boundaries set at infinite distance (which is used 

here) has a large error component. At low Peclet numbers the size of 

the mixing zone is as large or larger than the size of the finite 

system modeled in the finite-difference analog. Therefore, additional 

terms are required in the analytical solution to account for the 

boundary effects. As discussed earlier this problem was corrected in 

the calculation of ct by using an analytical solution derived with 

proper boundary conditions. 
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Similar conclusions can be drawn from Fig. 11-18, which shows the 

effect of diffusion on aw. for a heterogeneous system with V„_ = 0.6. 
MA DP 

In this case there is an additional physical dispersion component 

present due to the permeability heterogeneity. Thus, the total 

calculated macroscopic dispersivity is higher than that for 

homogeneous systems. In all these cases the same permeability 

distribution was used and the aspect ratio was one. 

Due to the large a values, the boundary effects discussed in 

the previous paragraph become important and the dispersivities are not 

constant. In fact the channeling tendency is significantly reduced, as 

confirmed by the dispersivity profiles. These profiles in Fig. 11-19, 

are for three cases with different levels of diffusion and are 

calculated at x = 0.5. In the absence of diffusion (D=0.0), there is 

evidence of channeling, as indicated bv fluctuations in a.,, values. 

* MA 

One major channel can be seen developing near the upper edge of the 

system. With the addition of some diffusion (D=0.01), the degree of 

transverse mixing increase considerably and the a profile indicates 

nearly uniform displacement. With more diffusion (D=0.05), the profile 

is more uniform and no instabilities are present. The growth of the 

unstable channel has been controlled by better transverse mixing. 

The same conclusions can also be drawn by observing the 

concentration histories at any cross-section. In Fig. II-2, 

concentration histories at x^ = 0.5 are shown, for a case with V 

=0.6 and no molecular diffusion. In Figs. 11-20 and 11-21, the 

concentration histories for the same case with D=0.01 and D=0.05 are 

displayed. With the addition of diffusion, the width of the band over 

which the curves are spread out becomes smaller. This indicates that 
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all concentrations are travelling close to each other and more 

transverse flow is taking place. 

Thus, just as in the case of megascopic dispersion, diffusion 

stabilizes the displacement with enhanced transverse mixing at the 

macroscopic scale also. These results also point out the importance of 

using proper boundary conditions in the solutions for the C-D 

equation. The results can be completely misinterpreted (for example 

non-Fickian flow instead of Fickian flow), by using an incorrect 

analytical solution. 

Effect of Anisotrony - One measure of the degree of lateral 

communication in a permeable medium is the magnitude of the cross-flow 

index, TL . The megascopic dispersivities for all systems with same 

cross-flow index behave alike because of the inherent averaging 

present at the megascopic scale. However, at the macroscopic scale, 

the dispersivities are calculated at individual points and the 

dispersivity values can vary W3\dely between adjacent points depending 

on the degree of communication present. The macroscopic dispersivity 

as presented here is the average value for all locations across a 

cross-section at any x position. If there is very little or no 

vertical communication present, these values can differ substantially 

from one point to the next across the cross-section. On the other 

hand, if the vertical communication is extremely good (as in the case 

of vertical equilibrium), all the values across the cross-section 

should fall within a narrow range (i.e., very small standard 

deviation). In such a case the cross-flow index, IL. , is also high. 
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Results for two cases, one with a low F- =0.1 and the other with 

a high IL =5 confirm the observations made in the preceeding 

paragraph. In Fig. 11-22, the megascopic dispersivities for two cases 

with P =0.1 are presented. One case has unit aspect ratio with some 

vertical communication (k /k = 0.01) and the other case has an aspect 

ratio of 4 and almost no vertical communication (k /k = 0.000625). In 
y 

both cases V__ is 0.6. The a... values are nearly constant when the 
DP MA 

aspect ratio is large (L/W=4), but increase with distance when the 

aspect ratio is small (L/W=l). The degree of cross-flow is small in 

both the cases. However, when the aspect ratio is 4 there are 

proportionately fewer blocks in the y-direction. This results in a 

lower value of A and the channeling tendency is retarded. Some 

explanation for this difference in the « , variation for these two 
MA 

cases with the same R̂  can be offered by analyzing the local 

variations in a„. in Fig. 11-23. This figure shows more variations 

from the mean when L/W=l than for the case with L/W=4, even though it 

(L/W=4 case) has a lower vertical permeability. This apparent 

contradiction is due to the strong influence of lateral boundaries on 

the displacement. When the boundaries are very close (L/W=4), the 

channeling tendency is retarded and the displacement is more stable 

than in the case where both the lateral and longitudinal dimensions 

are equal. 

When the vertical communication is high (R = 5.0), similar 
trends in aw. values are observed. As seen in Fig. 11-24, there is no MA 
trend in the variation of a,„. with distance and both the cases follow 

MA 
each other more closely. One of these runs has an aspect ratio of 1 

and k /k =25, and the other case has L/W=5 and k /k = 1. The a,,, 
y y MA 
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values for both these cases vary with distance. These variations are 

a consequence of unstable flow. The local variations in ex . can be 
MA 

observed in Fig. 11-25, which shows the point values of a at x_̂  

=0.5. 

These local aw. values are nearly identical across the entire MA 

cross-section for these two cases. These profiles indicate unstable 

flow in a small section. The effect of lateral boundaries is once 

again evident here. Even though there is very high degree of 

crossflow, the two dimensions are equal and the instabilities travel 

faster than the enhanced mixing due to crossflow. 

These results indicate that the dimensions of the system together 

with the degree of crossflow present have a considerable influence on 

local displacement. In general, large vertical communication does not 

guarantee a stable displacement. Similarly, displacement can be stable 

if the lateral dimensions are much smaller than the longitudinal 

dimensions, even when very little vertical communication is present. 

Concluding Remarks - The results presented in this and the preceding 

work show that both megascopic and macroscopic dispersivities have an 

initial non-Fickian component where dispersivities are time-dependent. 

The duration of this non-Fickian flow depends on a number of factors 

including the correlation length, the magnitude of heterogeneity and 

the aspect ratios. Therefore, under certain conditions it is possible 

to have an initial channeling or fingering displacement even in 

laboratory cores. This initial non-Fickian period is followed by a 

transition period and then finally a Fickian displacement with 

constant dispersivities. As discussed here, some factors such as the 



52 

UJ 
U z < 
[ - 1 

oo 

3 
oo 
oo 
UJ 
_ I 
Z 
O 
oo 
Z 
UJ 

s 
5 

1.00 

0.80 

0.60" 

0.40-

0.20 

0.00 

0.00 

L/W=5KY/KX=1 
-»- LAV=1 KY/KX=25 
— AVG 
— AVG 

0.02 0.04 

MACROSCOPIC DISPERSrVITY 

0.06 

Figure 11-25. Macroscopic dispersivities at a cross-section, 

VDp=0.6, xD=0.5, ^=5.0. 



53 

presence of molecular diffusion can retard the growth of channels. 

However, if transport in permeable medium is modeled as a purely 

dispersive phenomenon, this early time behavior cannot be reproduced. 

It is possible to arrive at the same dispersivity (as measured at the 

outlet of a core) from a dispersive model and from a model with 

Fickian and non-Fickian components. However, the concentration 

distribution and the fluid recoveries will not be the same. The 

initial period of flux-controlled displacement, depending on its 

magnitude and duration, can have a significant influence on the 

recovery and the economics of the displacement process. 

The results of this work demonstrate the drawbacks of using a 

purely dispersive model to describe transport through permeable 

medium. Such a model not only fails to give an accurate estimate of 

the magnitude of dispersivities but also does not give any information 

about the temporal and spatial variation of dispersivities. 
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NOMENCLATURE FOR PART II 

C concentration 

D dimensionless diffusion coefficient 

D molecular diffusion coefficient, L /t o 

erf error function 

k /k anisotropv ratio 
y 
L medium length, L 

N_ Peclet number Pe 

N number of grid points in transverse direction 

t time, t 

u superficial velocity, L/t 

V Dykstra-Parsons coefficient 

W medium width, L 

x,y coordinate directions parallel and transverse to flow, L 

Subscripts 

D denotes a dimensionless quantity 

Greek 

<xw. macroscopic dispersivity, L 
MA 

ME megascopic dispersivity, L 

correlation length, L 
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III. DATA HANDLING 

Any characterization procedure based on stochastic variables must 

be aware of the inherent limitations of statistics. There are several 

excellent and even traditional references of statistics, but few with 

the particular orientation of reservoir characterization. The work 

described in this section is intended to at least partially provide 

this direction. Once again, each subsection corresponds to projects 

outlined in the original proposal. 

The first section deals with reconciling core and log-derived 

porosities through stochastic assignments. Next we discuss the 

effects of normality transformations on regression and the statistical 

properties of heterogeneity measures. The latter leads to a new 

measure of heterogeneity. After this we discuss the analysis and 

application of the turning bands method for generating stochastic line 

processes. Part V returns to this briefly where it is applied to 

two-dimensional fields. 
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RECONCILING CORE AND LOG-DERIVED PROPERTIES 

Introduction - Lack of adequate specification of reservoir properties 

remains a fundamental problem limiting the application of numerical 

simulators. Some of the necessary properties are obtained from both 

geophysical logs and core. In many cases values from these two 

sources are rot in agreement. Within the overall goal of improving 

data handling, the objective of this section is to evaluate the causes 

of differences in porosity values obtained from cores and logs. 

While many differences are because of problems in the measurement 

technique itself, we focus only on differences which may be attributed 

to the measurements on different scales. Core porosities can be 

considered "point" values and log-derived porosities volumetric 

averaged (smoothed) values. The degree to which core (assumed actual) 

porosity correlates with and are well represented by log-derived 

(averaged) porosity should be a function of the smoothing bias 

introduced by the logging technique, the heterogeneity of the system 

(rock sequence), and the sampling density. 

Premises - Our starting premise is that the variability observed in a 

set of measurements (through a rock sequence) can be a direct function 

of the scale (volume) of the measurement itself. For a given 

heterogeneity, we expect less variance in a data set as the volume 

sampled by the measurement technique increases. Thus, for any given 

heterogeneous rock sequence, core porosity should show more variance 

about the mean porosity value, than log-derived porosity. As the 

volume measured by a geophysical logging device decreases and 
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approaches that measured by cores, variance in the recorded data sets 

will approach one another, and correlation between the recorded 

porosity values for the two measurement techniques will improve. For 

any specific heterogeneity Fig. III-l illustrates expected correlation 

and variance relationships. 

In addition, we expect the degree of correlation between porosity 

values for the two measurement techniques to be some function of the 

actual heterogeneity existing in the rock sequence. In the limiting 

and hypothetical case of a homogeneous rock sequence, actual (core) 

porosity at any depth, constant by definition, will obviously 

correlate perfectly with averaged (log-derived) porosity values for 

the same depth. As heterogeneity increases, the degree of correlation 

for any one averaging measurement technique should decrease. Further, 

there should be a family of curves representing correlation obtainable 

for a specific averaging measurement technique. The expected 

relationship between heterogeneity and correlation is illustrated in 

Fig. III-2. 

For any given heterogeneity, the degree to which core and 

log-derived porosity values will correlate should be some function of 

the frequency of core measurements. The higher the density of core 

measurements, the more representative the recorded data should be of 

the true variability, and the higher the expected correlation with an 

averaged measurement obtained by a geophysical logging technique. We 

also expect that greater sampling density is required to obtain the 

same degree of correlation or precision in determination of porosity 

distribution as heterogeneity increases. These expected relationships 

are illustrated in Fig. III-3. 
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Approach - The initial approach taken in investigating and quantifying 

these hypotheses has been to develop a synthetic porosity profile 

(porosity distribution vs depth) of a specific heterogeneity (in this 

case variance about the mean). The synthetic profile represents 

"truth", and the "goodness of measurement" of this "truth" is tested 

statistically for different scale-averaging (log-type smoothing) 

functions and sampling frequencies. The profile is modified to 

simulate various heterogeneities, and the effect evaluated. Families 

of curves for different heterogeneities, scale-averaging schemes, and 

sample density measurements are being generated. 

The resultant family of curves should be useful in defining 

heterogeneity from knowledge of the measurement technique and 

correlation obtained from recorded core and log data. It may be 

possible to obtain a better measure of the "true" heterogeneity based 

on observed geophysical log-derived porosity data. For a given 

heterogeneity and averaging scheme, it may be possible to normalize 

the log-derived porosities to "actual" porosities, the greatest 

benefit being the ability to produce a porosity distribution which 

more closely represents the actual distribution. In addition, this 

work may suggest an optimal sampling frequency and smoothing function 

relative to the expected heterogeneity or degree of characterization 

desired. 

Following these synthetic model studies, core and log data from a 

location, such as the El Dorado Field, will be used to investigate the 

application of the derived techniques. 



63 

OPTIMIZATION OF REGRESSION-BASED POROSITY-PERMEABILITY PREDICTIONS 

Introduction - Porosity-permeability relationships, developed by 

regressing on data from cored wells, are used to predict reservoir 

permeability from well logs for uncored wells. Several field studies 

(Tootle, 1979; Wendt et al., 1985; Wilson and Hensel, 1978; Brown and 

Husseini, 1977; Boyer, 1984; Matiisen and Atwater, 1984) that discuss 

the development of the predictive relations indicate widely variable 

success with standard regression procedures. 

Undoubtedly part of the problem in successfully predicting 

permeability from porosity is due to the inexact nature of the 

porosity-permeability relationship. For example, Levorsen (1969) and 

Pottier et al. (1964) indicate that permeability is not a function of 

porosity alone. Any procedure using exclusively porosity to determine 

permeability is limited in success by the variability of grain size 

and other quantities not accounted for by porosity. Furthermore, the 

porosity-permeability relationship for a formation is not known prior 

to taking core data; we have only empirical observations to guide us. 

Nonetheless, several studies (e.g. Wendt et al., 1985) show that 

porosity may be a good indicator of permeability for particular 

fields. The issue is how to exploit this association to the fullest 

to obtain the best estimate possible for permeability. A review of 

the literature detailing field studies with permeability prediction 

shows features common to many of these reports: 

1) Regression is used to relate core permeability k to core porosity 
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2) A linear model of the form log (k) = a <j> + b is assumed, where a 

and b are the regression parameters; 

3) The permeability estimate (k) is obtained using 

k = (10) a* + b 

for a measured value of porosity <J>; and 

4) It is not indicated how the predictions are to be used. That is, 

whether they will be combined (to give an average permeability 

for example) or if they will be treated separately. 

In general, the above features may lead to inferior results. The 

porosity-permeability relation may not be used to its fullest in 

points (1) and (2) because the linear model does not capture any 

nonlinearity in the <j>-log(k) association. Step (3) creates a 

permeability estimate which typically is pessimistic because 

exponentiation is a nonlinear transformation. Finally, item (4) is of 

concern since regression is a minimization procedure; it is important 

to know if the quantities being minimized are compatible with the 

ultimate objective. 

Many of these issues can be addressed by appropriately 

transforming the core data prior to regression. By means of examples, 

we show that errors in permeability estimation can be reduced 

substantially by carefully using transformations. A judicious choice 

of transformation may also eliminate the need for weighted least 

squares and other, more complicated, regression techniques. 
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Theory of Correlation and Regression - The theory of correlation and 

regression is well documented in such books as Kendall and Stuart 

(1969), Weisberg (1980), and Hald (1952). We address the problem in 

the context of permeability prediction using porosity, although what 

is discussed has applications in other relationships. Assume that 

some function of porosity, g(<j>) , and a function of permeability, f(k), 

are to be used in determining the <$>—k relationship. For example, 

when one sees <J> versus log(k) plots of data g is the identity function 

and f is the logarithmic function. The precise forms of these 

functions is discussed below. Furthermore, we assume that the 

permeability predictions are to be used individually — to predict an 

injection profile, for example — or are to be used in linear 

combinations, such as in an arithmetic average to predict arithmetic 

average permeability. The reason for this assumption is also 

discussed below. We seek a curve which relates f(k) and g(<J>). The 

curve will be then used to give estimates of f (k) when IJ> is known. 

We begin by noting several features about this situation: 

1) Both porosity and permeability are random variables, and hence 

g(<J>) and f (k) are random variables. 

2) The form (i. e. equation) of the <(>-k relation is not known prior 

to taking data, and 

3) The <f>-k relation may change character as the rock fabric changes. 

Item (1) implies that the joint probability density function 

(j.p.d.f.) of the variables g(<f>) and f(k) should be considered when 

establishing the <(>-k association. The j.p.d.f. captures all there is 

to know about the statistical behavior of <J>, k, and the <}>-k 
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relationship. It shows, among other things, the variability of f(k) 

when g(<f>) is fixed and vice versa. 

Feature (2) indicates that a problem may arise if regression is 

used to best fit an arbitrary curve to the data. The form of the 

curve is unknown and previous experience, item (3), does not 

necessarily help. Hence, fitting a polynomial or some other curve to 

the data may not optimally capture the relationship of <{> and k. 

Significance tests for the regression coefficients may be useful 

in determining whether the regression has captured the 

porosity-permeability association well. However, such tests are 

helpful only when the permeability data f(k) are nearly normally 

distributed. Another advantage when f(k) is approximately normal is 

that the regression curve obtained by least squares may become the 

best curve possible under the circumstances. That is, the curve may 

give the closest estimate to the correct value of f(k) when f(k) is 

approximately normally distributed. 

Even if f(k) is normally distributed, the form of the <|>-k 

relation is still in question. For example, suppose the g(<j>)-f(k) 

relationship is quadratic but we have chosen a linear model. Then, 

even if we obtain the best linear fit possible, errors arise because 

the model is not appropriate for the relationship. However, if the 

j.p.d.f. for the g(<f>)—f(k) relationship is a bivariate normal 

distribution, the curve relating g(<j>) and f(k) is a straight line 

(Hald, 1952). 

For g(<j>) and f(k) to be bivariate normally distributed (b.n.d.), 

it is a necessary condition that both f(k) and g(<|>) are approximately 
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normally distributed. Once we know that the j.p.d.f. of g(4>) and f(k) 

is approximately bivariate normal, a simple regression of the form 

f(k) = a«g(<f>)+b 

captures optimally the <f>-k relation. A similar situation occurs when 

more than one variable is used to predict permeability; a linear 

regression model optimally captures the relationship for variables 

that are multivariate normally distributed. 

Another advantage of g(<}>) and f (k) being b.n.d. is that estimator 

bias may be accounted for. Consider, for example, the case where 

g(<f>) = <f>» f(k) = ln(k), and the regression parameters a and b in 

f(k) = ag(<f>)+b have been determined. In the regression procedure, the 

line y = a<j>+b is established so that the spread of points above the 

line is roughly the same as the spread of points below the line, Fig. 

III-4 (Fig. III-5 referred to on page 76). For any given value of <J>, 

call the spread of points above the line 6 y and the spread of points 

below the line 6 y. What happens to the spread when the line a<t>+b is 

used to predict a permeability? The line y = a<f>+b gives the estimate 

of ln(k) with possible error of 6 y too high or <$ y too low. Exponen­

tiating the prediction gives k = exp{y} which may be too high by 

6 k = exp(y + J y} - exp(y) (III-l) 

or too low by 

6 k = exp{y) - exp(y - 6 y} . (III-2) 
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Figure III-4. Hypothetical porosity-permeability plot. 
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Figure III-5. Porosity and permeability data for Fontainebleau Sandstone, 
(after Jacquin, 1964). 
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From the d e f i n i t i o n of k, Eqs. ( I I I - l ) and ( I I I - 2 ) become 

6Jc = k.{exPr6+y] - 1} 

and 

6_k = k « { l - e x p [ - 6_y]} . 

Because the exponential function is nonlinear, the equal quantities 

6 y and 6_y give unequal amounts 6 k and 6_k. Suppose 6 v = 

6_y = 1.2 (about 1/3 of a decade). 6 k = 2.3k while 6_k = 0.7k. So 

the regression line gives an estimate k that is, on average, biased. 

Below we show how to address this problem of bias when g(<(>) and f(k) 

are b.n.d. 

In summary, if f(k) is approximately normally distributed 

(a.n.d.), several advantages are obtained in the regression. If both 

g(<{>) and f(k) are b.n.d., then a simple linear regression captures the 

tj)—k relationship and bias may be compensated for. How to choose f 

and g is the next consideration. 

Power Transformations - A data transform h(«) applied to a set of data 

{x.} produces a data set {y.}, where 

y± = h(x1) 

Data transformations are common in the statistical literature (see, 

for example, Hoyle, 1973, or Kruskal, 1968). Data are usually 

transformed to achieve one of three objectives: 
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1) Additivity - the primary effects influencing the data combine 

linearly; 

2) Homogeneity - the variability of the data is constant as 

parameters are changed; and 

3) Normality - the transformed data become a.n.d. 

Often, transformation to satisfy one of the objectives leads to 

satisfaction of the other objectives. We seek transformations f and g 

to give an approximately bivariate normal distributed data set. 

A useful transformation is the power transformation. It has the 

form h(x.) = (x.) for some exponent q. Tukey (1957) recognized that 

power transformations have many common features. He treated power 

transformations as a family: 

h(x±) = 

(x.. + c ) 4 , q ^ 0 

ln(x± + c) , q = 0 

where c is a constant. The choice of function for the case q = 0 may 

be surprising until a slightly different family is considered 

h ' ( X i ) = " 

(x± + c ) 4 -

q 

l n (x + c) 

- 1 
. . n 4 n 

, q T v 

, q - 0 

Both h and h' have the same p.d.f. since only a linear 

rescaling is involved. Furthermore, lim[(z) - l]/q = ln(z). 

q+0 

Despite its utility, the approach of treating power 

transformations as a family appears to be new to the petrophysical 

literature. Previous statistical work has concentrated primarily on 
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the members q=0 (logarithmic transform) and q=l (identity transform). 

However, Langeland and Flotre (1984) discuss the use of power 

transformations for porosity-cation exchange capacity relationships 

and Jensen et al. (1985) have shown that (k) is a.n.d. for some p, -1 

S p i +1. Furthermore, our experience is that usually a value of q 

may be found such that ((}>) ' is a.n.d. 

By transforming porosity and permeability, the j.p.d.f. we are 

concerned with changes. The porosity-permeability relationship does 

not change; instead we create "new" random variables, (<}>) and (k) , 

such that the j.p.d.f. of these variables is close to bivariate 

normal. A simple linear regression of the form (k) = a* (<j>) + b then 

expresses the <f>-k relation optimally. 

Several methods exist to estimate the exponents p and q. 

Gnanadesikan (1977) reviews several of these methods. We have had 

good results using the method of Emerson and Stoto (1982), which 

estimates an exponent based on symmetrizing the p.d.f. While 

symmetrical and normal p.d.f.'s are not necessarily the same, the 

method has worked well thus far. Another method is to try several 

values of exponent on a data set and determine which exponent value 

gives the straightest line on a normal probability plot. This 

approach may be the easiest to implement with existing computer 

analysis routines. 

While values p and q may be found such that both (k)p and ((f)) 

are a.n.d., this is not a sufficient condition for (k) and (<j>) to be 

b.n.d. Further tests exist to determine if variables are b.n.d. Hald 

(1952) describes one test and Gnanadesikan (1977) devotes a section to 

discussing various tests and examples for hypothetical data sets. Our 
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experience indicates that transformation to symmetry is usually 

helpful regardless of the resulting joint distribution. The results 

we show based on the assumption of bivariate normality appear to be 

relatively insensitive to this assumption provided that symmetry is 

obtained. 

Correction for Estimator Bias - Here we address the problem of how to 

predict permeability k given that we have an estimate y = (k) . We 

show that (y) does not necessarily give the best possible estimate 

for k. However, a correction term can be calculated to resolve the 

problem. 

Suppose that (k) and (<{>) are b.n.d. for some values of p and q. 

Define 

x = (k) -1 . (IH-3) 
P 

2 
The variable x is normally distributed with mean u and variance o . 

x x 

At a specified porosity <f>, the variable x is normally distributed with 
r\ f\ r\ 

mean u = a* (41) + b and variance o = a (1-p ), where a and b 

are the regression parameters of the x versus (<f>) data and p is 

the coefficient of correlation (Hald, 1952). 

For a given value of <|>, we seek a permeability estimate, k, based 

on the estimate x = u = a* ((f)) + b and Eq. (III-3). The estimate k is 

given by 

k = E{k|(f>} (III-4) 
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where E is the expectation operator. Using Eq. (III-3), Eq. (III-4) 

becomes 

k = E{(px + l)1/p|<J>}. (III-5) 

The exact solution of Eq. (III-5) is shown in Jensen (1985) to be 

1/P 
[$(v)] " exp(- 7 v")r(^ +1)U(- + ^ , -v) (III-6) 

/2i 4 p p 2 
£ = (PO)"'y P-/..M-1 / 1 2%„,1 ,1V„,1 . 1 

where 

1 + py 
v = t^- , 

pa 

and $, T, and U are functions which are defined in Abramowitz and 

Stegun (1972). When p = 0 (the case of log-normal permeability), 

Eq. (III-6) gives 

k = exp{u + | a2} . (III-7) 

Note that if | p | = 1.0 (perfect correlation), o = 0 and no bias 

occurs. Otherwise, if |p| < 1.0 and a is large, a substantial 

correction arises. For the log-normal case, the correction is to 

multiply expta*(<f)) + b] by exp(0.5a ). 

Equation (III-6) has an intimidating look, so we present by 

example an alternative method of computing k for the case where m = 

1/p is an integer and a /\i S 0.43. Suppose m = 2. Equation (III-5) 

may be expressed as 

k = E{(| x + 1)2|(|>} 

or 
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1 " 2 1 2 
k = (-| x + l)z + ± a , (III-8) 

0 0 0 

where we have used the fact that E(x |cj>) = u + G. Using Eq. (III-3) 

for p = — and letting y = (k) , Eq. (8) becomes 

k = (y)2 + \ o2 . (III-9) 

l a 

Note that y is the estimate of (k) from the regression line 0.5a(<£) 

+ 0.5b + 1. The correction term in Eq. (III-9), arising from the 

nonlinearity of the square function, depends both on the degree of 

correlation p and the variability of the data o~. If we denote the 
1 2 

variance of (k) as a', Eq. (III-9) becomes 
y 

k = (y)2 + a2(l - p 2). (111-10) 

The Influence of Prediction Usage - The method of least squares 

originates from the Gauss-Markov theorem (Liebelt, 1967). This 

theorem states how an optimal estimate may be calculated for a 

specific problem once certain assumptions are satisfied. One 

requirement imposed by the Gauss-Markov theorem is that the estimates 

are combined in a linear manner. This requirement affects how the 

permeability estimates may be used. 

For example, suppose we wish to estimate average reservoir 

permeability k using n estimates (k ,i=l...n} from the <j>-k relation. 

There are several ways to calculate average permeability. The 

arithmetic average, the geometric average, and the harmonic average 

are three possibilities. The arithmetic average combines each 

prediction linearly: 
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1 
k = - E k . 

n . 
1 l 

But the geometric and harmonic averages combine the estimates in a 

non-linear ranner: 

k = (ii k.) 1 / n 

i X 

and (k)"1 = E (k.)"1, 
i 

respectively. Just as in the preceding discussion, nonlinearity 

causes a bias in the estimates of the harmonic and geometric averages. 

Consequently, there is no basis for presuming that linear regression 

gives us the optimal estimate of average permeability if we combine 

the predictions in a nonlinear manner. 

Generally speaking, the problem of obtaining optimal estimates of 

quantities which are nonlinear functions of other estimates is a 

difficult one. When such estimates come from a regression based on 

b.n.d. variables, a correction can be made, just as in the case for 

estimator bias previously discussed. The calculations are quite 

involved, however. We present an example below to demonstrate how 

nonlinear averaging may influence estimates for average reservoir 

permeability. 

Examples - We begin by analyzing a small data set using the power 

transformation scheme just discussed. A good fit to the transformed 

data is obtained using a simple regression model. Two larger data 

sets are then studied. The first demonstrates how data may behave 

with different transformations and how these transformations can 



76 

influence the prediction of permeability. The last data set analysis 

shows that ignoring estimator bias can lead to predictions that are 23 

percent too low. 

Case 1 - Figure III-5 is a porosity-log permeability plot for sixty 

core plug data as reported by Jacquin (1964). We have chosen this 

data set because of the strong <j>-k association. Clearly, the 

relationship is nonlinear and Jacquin proposes the equation k = 

4.5 
c* (<f>) ' as being a good representation of the relationship, although 

he does not specify a value for the constant c. The coefficient of 

correlation — a measure of the linear relationship between the x- and 

y-axis quantities ((f) and log(k) in this case) — is 0.90 for Fig. 

III-5. 

Our approach is to determine the values of exponents p and q such 

that (k) and (<J>) are each approximately normally distributed. A 

glance at the histograms of porosity and log permeability, Figs. III-6 

and III-7 respectively, indicate that no exponents p and q exist which 

will transform either (k) or (<f>) to approximate normality; both 

distributions are distinctly bimodal. It appears that there may be 

two populations represented by these data. Only eight or ten points 

appear to belong to the population represented by the cluster of 

points near <J> = 24 percent and log(k) = 3.5, however. To separate the 

data and obtain two <f>-k relationships would probably not be useful 

with so few points in the higher porosity and permeability population. 

Consequently, we computed values of p and q, based on the method of 

Emerson and Stoto (1982), to symmetrize (as much as possible) the 

distributions of permeability and porosity. The values p = 0.05 and q 
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= -0.6 were obtained. We chose to use the transformations log(k) and 

(<()) " . Figure III-8 is a plot of the data using these 

transformations and the coefficient of correlation is -0.98. A simple 

linear model, log(k) = a» (<f>) " + b, where a = -13.5 and b = 5.51, 

fits the transformed data set. 

Figure III-9 shows the data and two lines: Jacquin's proposed 

curve (A) and the curve based on a least-squares fit of Fig. III-8 

(B). The value of the constant c chosen for Jacquin's curve, 0.00319, 

was made based on the position of the curve in his Fig. 10. Line B 

fits the data better at the low- and high-porosity regions. Without a 

statistical motivation for selecting q = -0.6, relating log(k) and 

(<j>) " is not an obvious choice. 

Case 2 - We turn now to the analysis of a larger (285 points from 16 

wells) data set from the Admire sand in the El Dorado field in Kansas. 

The data set consists of core plug porosities and permeabilities from 

this shallow delta sand. Jordan and Tillman (1982) have reported an 

in-depth geologic and petrophysical analysis of the Chesney lease from 

which many of the data were extracted. See Jensen (1985) for more 

details concerning this data set. 

An analysis of these data indicates that estimates for p and q 

are 0.50 and 5.5, respectively. The effects of transforming porosity 

and permeability are shown in Figs. 111-10 through 111-12, a series of 

porosity-permeability plots. 

Figure 111-10, the <|> versus log(k) plot, is much like the plots 

in other field studies (e.g. Wendt et al., 1985) showing the 

porosity-permeability relationship. The variability of permeability 
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is much greater at low porosities than at high porosities. The points 

at the extremes of the porosity range have the largest influence on 

the least squares line (Hoaglin et al. , 1983). One might be tempted 

to use weighted least squares for the regression procedure because of 

the large change in variability. Note that the datum at <j> = 13.7 

might be branded as an outlier or inconsistent datum from this plot. 

The <p versus log(k) plot has a coefficient of correlation of 0.791. 

Figure III-11 shows some improvement in terms of homogeneity; the 

variation in permeability at fixed porosity is more even than for Fig. 

111-10. The cloud of data has a concave upward appearance, suggesting 

that a linear regression model may not be adequate. The coefficient 

of correlation is 0.774, indicating a diminishment of the linear 

nature of the relationship from Fig. 111-10. 

Figure 111-12 shows a fairly constant variability in permeability 

with porosity. A weighted least squares regression is not necessary 

for this case. The "outlier" (or "rogue" as they are sometimes 

called) at <j> = 13.7 no longer looks out of place. The coefficient of 

correlation is estimated to be p = 0.826. 

From Figs. 111-10 and 111-12 and their associated coefficients of 

correlation, a wide variation in behavior Is reflected in very small 

changes in p. The value of p has a statistical interpretation only 

when (<f>) and (k) are b.n.d. A high value of |p| indicates that the 

(f)-k relationship has a linear component. Whether the simple least 

squares regression captures this linearity depends on more than |p| 

being large; the relative positions of the points have an influence on 

the regression lines. 
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Using the approach previously outlined, we used the regression 

curve in Fig. 111-12 to predict permeability based on porosity. The 

results are shown in Fig. 111-13 as curve A. The correction for bias 

using Eq. (13), o2(l-p2) = (7.32)2[l-(0.826)2] = +17 md, is small for 

this data set. Curve B is computed from the line of regression in 

Fig. 111-10; it underestimates (relative to curve A) the permeability 

by 5 to 80 percent. As in case 1, the improvement in fit is primarily 

in the low and high permeability regions of the plot. If these 

regions of the reservoir are not important, then either curve A or B 

suffices to predict permeability. On the other hand, if the low and 

high permeability regions are of particular interest (e.g. profile 

control or establishing a net pay cutoff), then the error in 

prediction would be reduced and the extra computational effort is 

justified. 

To determine the impact of selecting curve A over curve B to 

predict permeability, Monte Carlo simulations were performed to 

compare the average reservoir permeability predicted using each curve. 

The simulations were performed in the following manner. 

1) Randomly select N core plugs from the data set (with 

replacement) , each having a porosity (J> and a permeability k., i 

= 1,2,...,N. 

2) Predict the core plug permeabilities using curves A and B: 

k.A = (5.56 + 1.80 x 10"7 <f>.,5'5)2 + 17.0 
lA i 

k, = (ior°-534 + 0 - 1 1 4 * i 
115 
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3) Arithmetically average the various estimates: 

k = - Z k. , 
n 1 

1 
A n lA 

^B = n" Z \*> 

where the summations are over n terms. 

4) Compute the relative error in the estimates: 

eA1 = (kA-k)/k 

eB1 = (i^-iO/k 

5) Perform steps (1) - (4) another m-1 times and compute the average 

relative error, 

1 v eA = — i e.. A m Ai 

1 r P = — h e . 

B m Bi 

and the variability of the error, 

SA * m^T Z (eAi - eA} 

SB = m^T Z <eBi " V 2 

where the summations are over m values. 

Table III-l shows the Monte Carlo results for m = 1000 and all 

285 core plug values. The error diminishes for increasing numbers of 
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TABLE III-l. Monte Carlo simulation results for 285 core plug values. 

3 
5 
10 
20 

0.060 
0.033 
0.017 
0.0083 

0.27 
0.20 
0.13 
0.090 

- 0.042 
- 0.066 
- 0.083 
- 0.091 

0.25 
0.18 
0.12 
0.082 

TABLE III-2. Monte Carlo simulation results for core with (f> S 28.85 

N 

3 
5 
10 

"B B 

0.013 
0.00035 
0.0073 

0. 
0. 
0. 

,19 
,15 
,10 

0.11 
0.125 
0.132 

0.17 
0.13 
0.090 

TABLE III-3. Monte Carlo simulation results for 285 core plug values 

N 

3 
5 
10 
20 

0.17 
0.15 
0.14 
0.13 

0.36 
0.26 
0.18 
0.13 

0.048 
0.030 
0.022 
0.010 

0.33 
0.24 
0.17 
0.12 
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predictions (N) when curve A is used. Curve B underestimates the 

permeability by an increasing proportion as n increases. Since both 

curves approximate well the porosity-permeability relationship in the 

central portion (24 S (j> £ 29) of the data, the better predictive power 

of curve A shows when there is a good chance that a high (or low) 

porosity core plug is chosen (i.e N large). Comparing S and S 
A B 

values, both curves have about the same efficiency in prediction. 

Since delineation of high permeability zones is important for 

some purposes, another t'onte Carlo simulation was made to compare the 

performance of curves A and B for the top twenty percent of the data. 

Only core plugs with porosities in excess of 28.85 were included, 

giving 58 values for use in the simulations. Table III-2 shows the 

results for m = 200. The average error is diminished by at least one 

order of magnitude using curve A. 

The performance exhibited in Tables III-l and III-2 for each 

curve reflects, in part, the properties of the data set. The 

improvement for other fields may be greater or less than demonstrated 

for this data set. However, until a plot such as Fig. 111-13 is made, 

it is not clear how great the benefit may be. The results also depend 

on combining the predictions in a linear manner, such as the 

arithmetic average. 

As previously discussed, nonlinear combinations of predictions 

like the geometric average may influence substantially the error 

behavior. To demonstrate this, Monte Carlo simulations were performed 

using the following formulae for step (3): 
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f. - Oik/'" , 

kA - ( .y"" , 
and 

kB = (nk.B)
1/N , 

where the products are over n terms. That is, the geometric averages 

of the permeability estimates were used in the computations. The 

results for m = 1000 and 285 core plug values are shown in Table 

III-3. The performance is quite different from that shown in Table 

III-l. The estimates from curve A are biased considerably. 

Case 3 -This data set also comes from a deltaic sand. A geologic 

study by Boyer (1984) indicates that well 400 — the source of these 

core plug data — is located at the eastern edge of the Sims Sandstone 

Unit in the proximal region. Figure III-4 is a plot of the porosity 

and permeability data. 

An analysis of the porosity and permeability distributions shows 

the porosity to be approximately normal while the permeability is 

approximately log-normal. Consequently, a simple linear regression of 

the form ln(k) = a«<j> + b appears to be appropriate. The method of 

least squares gives a = 0.271 and b = -0.864 and this line is shown in 

Fig. 111-14. The coefficient of correlation, p, is estimated to be 

2 
0.706 and the variance a is about 0.822 for this data set. 

x 
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We have all the data we need for Eq. (111-10) to be used in the 

? ? 
prediction of permeability from porosity. We begin with a" = 0" (1 -

? 
P^) 

or a2 = (0.822)[1 - (0.706)2] 

2 
to give a = 0.412. This result in Eq. (111-10) gives 

k = exp{0.271 • <f> - 0.864 + 0.5 • 0.412} 

or k 1.23 exp{0.271 • <j> - 0.864}. 

Thus, to correct for the nonlinear exponential transformation, the 

permeability predicted by the regression line is increased by 23 

percent. Figure 111-15 shows the two lines on a porosity-permeability 

plot. Line A has no correction for bias while line B includes the 

correction. 

Concluding Remarks - This section has reviewed some of the salient 

features of prediction from regression-based porosity-permeability 

models. The issues of which model to choose, estimator bias, and use 

of the estimates have been shown to be influential in the optimal 

prediction of permeability. 

Power transformations of data are a useful method for obtaining 

optimal permeability estimates. Transforming data may give new random 

variables having desirable properties such as simplifying the model, 

allowing standard statistical tests to be used, and correcting for 
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transformation of the data. Data transformations have also been seen 

to equalize the variability of the data across the range of porosity 

values, thereby reducing the need for a weighted least squares 

regression. Discordant data points (outliers) may not, in fact, 

appear discordant when the appropriate data transformation is applied. 
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THE INFLUENCE OF SAMPLE SIZE AND PERMEABILITY DISTRIBUTION 

UPON HETEROGENEITY MEASURES 

Introduction - Reservoir heterogeneity has long been recognized as 

being an influential factor in determining reservoir performance. 

Variations in any reservoir property can degrade the efficiency of a 

recovery process. The variability of permeability, however, appears 

to be particularly influential. We restrict our attention this 

section to permeability heterogeneity. 

The two traditional methods of quantifying heterogeneity are the 

Dykstra-Parsons (1950) coefficient, V , and the Lorenz (Schmalz and 

Rahme, 1950) coefficient, L . Both measures have values between zero 

and one, with higher heterogeneity being represented by the larger 

numbers and zero signifying a homogeneous reservoir. Both scales are 

such that cases of low heterogeneity occupy the range zero to about 

one-half, while the moderate and high heterogeneity cases occupy the 

remining half of the scales. Modelling studies (Dykstra and Parsons, 

1950; Schmalz and Rahme, 1950; Warren and Cosgrove, 1964; Koval, 1963; 

Craig, 1971; Khan, 1971; Arya et al., 1985) using these measures show 

that performance is insensitive to the precise value of V or L for 

low heterogeneity cases. High heterogeneity however, exhibit a strong 

relationship between performance and V or L . For example, the 

Dykstra and Parsons waterflood model shows that, for a producing 

water-oil ratio of 100 and a unit mobility ratio, an increase of V 

from 0.2 to 0.3 decreases the fractional oil recovery from 0.57 to 

0.54, a change of five percent. A similar increase of V from 0.8 to 

0.9, however, decreases the oil recovery from 0.35 to 0.25, a change 
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of 33 percent. This feature leads to a problem with these 

coefficients: the performance of a model may become very sensitive to 

the precise value used for the coefficient. 

A question then arises in the use of V or L for moderate to 

high heterogeneity cases. A coefficient is evaluated on the basis of 

a limited number of permeability samples from the reservoir 

population. Since permeability is a random variable, the calculated 

coefficient is only an estimate of the true reservoir coefficient. 

Usually this estimate will not have the same value as the true 

coefficient. For a small number of data, the prror may be quite 

large. Intuitively, we would expect that, as the number of data 

increases, the computed value approaches the true value. But, if 

these coefficients are to be useful as indicators of performance, we 

should know how many data are needed to obtain a "sufficiently 

accurate" estimate. 

Another issue is that both V and L are one-parameter measures 

of permeability variability. Either coefficient can be estimated from 

permeability data independently of how the data are distributed. 

(Although the Dykstra-Parsons procedure uses a log-normal probability 

plot, a best-fit line is used to determine the coefficient.) Several 

studies (Lambert, 1981; Goggin et al., 1986; Jensen et al. 1985), 

however, have shown that permeability exhibits various distributions. 

How good are V and L at predicting the behavior of displacements in 

reservoirs having different permeability distributions? 

The general issues of estimate reliability versus sample size and 

estimate sensitivity to the underlying probability density function 

(p.d.f.) have been recognized for many years in the statistics 
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literature. However, very little appears to have been done to assess 

the Pykstra-Parsons and the Lorenz coefficients in these respects. 

Lambert (1981) studied the effects of sample size on coefficient 

estimates by computing both coefficients for each of several wells. 

She found that, as the number of samples decreased, the variability of 

the estimate consistently increased. 

This study presents analyses of V and L for their behavior as 

functions of sample size and permeability distribution. On average, 

the estimates underestimate the true population coefficient. The 

variability of the estimates increases as the sample size decreases. 

The coefficients may also be insensitive to changes in the probability 

density function. Some example cases are considered to illustrate the 

impact of these insensitivities to predicting reservoir performance. 

In view of these findings, we propose a new heterogeneity measure 

which is less sensitive to the numbers of samples and which accounts 

for the permeability p.d.f. The relationships between this new 

measure and the Dykstra-Parsons and Lorenz coefficients are given. 

Sample Size Effects on Heterogeneity Measures - We begin by defining 

the terms bias, standard error, and efficiency. The V and L 

estimators are studied to determine how the bias and standard error of 

each varies with the sample size. Several cases are then cited to 

show the impact estimate error may have on reservoir performance. 

The two criteria used here to judge the performance of estimators 

are bias and standard error (Kendall and Stuart, 1977). Consider the 

case where we have a large number (r) of data sets, all coming from 

the same population, and which have the same number of data (n) in 
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each set. We estimate the population parameter (z) by computing r and 

estimates z , i = 1, 2, ..., r. If, over all r data sets, the 

estimates z. are found to systematically over or underestimate the 
l 

true value of z, the estimator is said to be biased. An unbiased 

estimator is desirable, but is not necessarily the most important 

feature since we may be able to apply a correction factor for the 

bias. 
A 

The estimates z., i = 1, 2, ..., r, will differ from z by varying 
2 amounts. Usually, one assumes that Az. = z. - z is N(m , s ). That 

1 1 z z 

is, the errors Az. are normally distributed with mean m and variance 

s . When m = 0 , the estimator is unbiased. s is the standard error 
z z z 
of the estimator. The normal p.d.f. implies that estimator |z. - m | 

< s for about 67 percent of the samples and that Iz. - m < 2s for 
z r r i z z 

95 percent of the samples (Kendall and Stuart, 1977). s is usually a 

function of n, with s decreasing as n increases. Given two methods 

to estimate z from a data set, the method having the lower standard 

error is more efficient. 

Sample Size Effects on the Dykstra-Parsons Coefficient - In Appendix 

A, expressions are developed for the bias, m , and standard error, s , 

of the Dykstra-Parsons coefficient estimate V . For the case where 

the permeability p.d.f. is log-normal, they are 

my = - 0.749 tln(l - V D p)]
2 (1 - VDp)/N (III-ll) 

and 

sv = - 1.49 [ln(l - V )] (1 - V )//N (111-12) 
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where N is the number of data in the sample ?nd V is the 

Dykstra-Parsons coefficient of the permeability distribution. These 

equations assume that N is large, but they give good approximations 

when N S 20 (Jensen, 1986). 

Equation (III-ll) indicates that the estimate V is biased; the 

estimator underestimates the true coefficient (m < 0) . The bias m 

v v 
is proportional to N and reaches a maximum (in absolute value) when 

V^„ = 0.87. The bias is small. For example, m =0.02 for N = 20 and DP v 

V = 0.87. Hence, for any reasonably sized log-normal data set, the 

bias m is insignificant, 
v 

Equation (111-12) on the other hand, shows that s is 

-1/2 proportional to N and attains a maximum for V = 0.63. Figure 

III-16 shows the number of samples n required to obtain a given 

standard error as V varies between 0.3 and 0.9. For example, to 

maintain s = 0.05, a data set of 50 or more samples is always 
v 

required and 120 samples are needed when V = 0.6. 

The curves in Fig. Ill-16 are concave downward because of two 

competing effects on the V estimator. As formation heterogeneity 

increases, more samples are needed to adequately define the 

variability. This effect is shown in the positive-slope (Vnp < 0.6) 

portion of the curves. For V > 0.6, the increasing insensitivity of 

V to changes in heterogeneity level dominates. This is the same 

behavior described in the introduction; when V is large, the 

heterogeneity must change substantially for V to be perturbed. 

Hence, fewer samples are required to define the variability for high 

heterogeneity cases. 
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To use Fig. 111-16 for a real situation, V would have to be 

used instead of V . Knowing the number of data at hand, an estimate 

of s may be made. This s estimate indicates the error associated 

v v 

with V and allows a decision regarding the data set sufficiency to 

be made. 

Sample Size Effects on the Lorenz Coefficient - An analytical solution 

to the sampling error of the L estimator is a much more difficult 

task than for V because it involves integration of the area between 

two curves. In the statisitcal and economics literature, the Lorenz 

coefficient appears to be evaluated using Gini's coefficient of 

concentration (Kendall and Sturat, 1977) rather than evaluate the area 

between two lines (Gail and Gastwirth, 1978; Gastwirth, 1972). Since 

the practice of the petroleum industry is to estimate L using 

integration and no theory is available, we have used Monte Carlo 

simulation to address the problem. 

Appendix B describes the procedure and associated equations used 

to simulate the Lorenz sampling problem. We assume a log-normal 

permeability p.d.f. describes the population to provide results for a 

typical situation. Figure 111-17 shows the bias results for the 

trapezoidal method of numerical integration. The vertical axis is 

scaled as m. /L to show the bias as a fraction of the true Lorenz 

coefficient. Just as m is a function of V^„, the bias rn of the 

v DP L 

Lorenz estimator depends on the true value of L for the population. 

The bias is always negative and is significant (DL/L < - 0.06) for 

small data sets (N < 40) and heterogeneous distributions (L > 0.6). 
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Figure 111-17. Bias performance for the Lorenz estimator. 
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A similar computation using Simpson's rule showed that the bias is 

insensitive to the method of integration. 

Figure 111-18 shows the number of points required to maintain the 

standard error s of the estimator at given values for 0.3 S L ^ 0.9. 

For large s , the estimator is quite efficient (requires few points); 
Lt 

for small s , the estimator requires a large amount of data. The 

problem of significant bias of the Lorenz estimator makes the use of 

Fig. 111-18 slightly complicated. Because L (and not L ) is 

available, if L is used for the abcissa of Figure Til-18, the number 

of points and the standard error may be underestimated. A 

"compensated" value, e.g. 1.05*L , would probably be more appropriate 

as an estimate for L . 

Comparison of the Dykstra-Parsons and Lorenz Estimators - In terms of 

the bias, both the V and L estimators underestimate the true value 

of the underlying population. The Lorenz estimator, however, gives 

and estimate that is considerably more biased than the Dykstra-Parsons 

estimator. This problem is aggravated because there is no analytic 

expression for the Lorenz estimator bias. Otherwise, a correction 

factor could be introduced. 

For an assessment of which estimator is more efficient, caution 

should be used when comparing Figs. 111-16 and 111-18. This is 

because Lp and V have different scales, although the endpoint values 

(0 and 1) are the same. When the permeability is log-normally 

distributed, 

L - erf[- 0.5'lti(l - V )] (111-13) 
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Figure 111-18. Sample size behavior for the Lorenz estimator. 
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where erf is the error function (Jensen, 1986). Using Eq. 111-13 we 

see that L < V for 0 < V < 0.9. Since L and V have different 

scales, s and s also have different scales. 
LJ V 

Small errors in s and s can be "reconciled" in the following 

manner. To convert s to an equivalent error in V divide s by the 
Li Ijr L 

derivative of Eq. III-3: 

dLC 2 /-
-±- = exp(-[-0.5 ln(l-V )]Z)/[A(1-V )] (111-14) 

Using this approach, the Lorenz estimator is usually more efficient 

than the Dykstra-Parsons estimator, with the former requiring only 

one-fourth the number of points needed by the latter for low (V < 

0.5) heterogeneity cases. As the heterogeneity increases, however, 

the Lorenz estimator efficiency decreases until, at V = 0.9, its 

efficiency is about equal to that of the Dykstra-Parsons estimator. 

The Influence of Estimator Errors on Performance - A number of studies 

have related the performance of a particular reservoir model to the 

level of heterogeneity (Dykstra and Parsons, 1950; Schmalz and Rahme, 

1950; Warren and Cosgrove, 1964; Koval, 1963; Craig, 1971; Khan, 1971; 

Arya et al., 1985). By consideration of some examples, the impact 

that estimator errors may have on reservoir performance can be 

demonstrated. 

Koval (1963) discusses the influence of heterogeneity upon 

unstable miscible displacements. His figure 20 relates V to H, 

a heterogeneity factor, which enters into a miscible fractional flow 

equation. For a data set of 50 samples from a reservoir having V = 

0.50 (H = 2.9), s = 0.073 by Eq. (111-12). Hence, one could expect 
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that 0.43 S V S 0.57 for 67 percent of all possible data sets, or 

0.35 5 V & 0.65 for 95 percent of such data sets. For the 67 

percent confidence limits, 2.6 £ H S 3.4, a 27 percent spread in H. 

For the 95 percent confidence limits, 2.3 £ H S 3.8, a 50 percent 

spread in H. A unit mobility displacement requires 1/H pore volumes 

injection for solvent breakthrough. Hence the 67 percent limits give 

a 0.09 pore volume uncertainty in the injected volume while the 95 

percent limits give a 0.17 pore volume uncertainty. 

Craig's monograph (1971) discusses the influence of heterogeneity 

upon simulated waterflood performance. A data set of 40 samples from 

a reservoir with L = 0.60 gives s = 0.07 or, ignoring the issue of 

bias, 0.53 S L S 0.67 for the 67 percent confidence limits. This 

implies that using the Stiles model, the amount of recovered oil may 

vary between 25 and 40 percent of the oil recoverable at a 50 percent 

water cut. There is a one-in-three chance that the predicted recovery 

will fall outside of these limits when only 40 samples are used. 

Including the bias, 0.50 S L S 0.64, which gives a recovery between 
L* 

28 and 44 percent at the 50 percent water cut. 

Finally, the uncertainty in V may be important when comparing 

estimates from different methods for a reservoir. Differences between 

V using core data and V based on transient tests have been 

reported (Warren, 1961). These differences are usually attributed to 

the scale of measurement. However, transient test data are usually 

few in number so that the variability associated with the estimate may 

be quite large. Hence, caution is required when comparing such 

estimates and drawing conclusions. 
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Permeability Distribution Effects on Heterogeneity Measures - Several 

studies (Lambert, 1981; Goggin et al., 1986; Jensen et al., 1985) have 

shown that permeability may not necessarily be log-normally 

distributed. In particular, the previous section has shown that 

permeability may be p-normally distributed. That is, (k) is normally 

distributed for some value of p, -1 = p = + 1, where k is the 

permeability random variable. It is convenient mathematically to 

consider that the quantity x, defined as in Eq. (III-3), is N(m , 

2 
s ) . Recall that the cases p = 0 and p = 1 indicate that the 
x r 

permeability is log-normally distributed or normally distributed, 

respectively. 

We consider the behavior of V and Lr when the permeability 

p.d.f. is p-normal. In doing so, we include two important cases, p = 

0 and p = 1, but we also allow for a behavior that does not correspond 

to these two cases. 

We present briefly some observations concerning p-normal 

distributions. See (Jensen, 1986) for a more extensive discussion. 

The first moment (i.e. the arithmetic mean) of a p-normal distribution 

only exists when p S 0. The geometric mean of a p-normal distribution 

always exists, as do the median and other percentiles. 

The ratio c = s /m and the exponent p constitute a useful 
X A X 

measure of the variability of a distribution; they allow two different 

distributions to be compared. The variable c is a measure of how 

variable the permeability is, but gives no indication of how 

frequently high permeability values occur relative to the low 

permeability values. The exponent p is a measure of how asymmetric 

the distribution is; the lower the value of p the longer will be the 
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right tail of the p.d.f. (Jensen, 1986). That is, as p decreases, 

there is an increasing probability that high (relative to the average 

permeability regions appear in the reservoir. 

Permeability Distributions and the Lorenz Coefficient - To create a 

Lorenz plot from data, no knowledge of the permeability p.d.f. is 

required. However, we are seeking an L which is representative of 

the population and not just a value for the data at hand L„ is a 

one-parameter assessment of the variability, or heterogeneity, present 

in the reservoir. As such, it has several limitations and a knowledge 

of the permeability p.d.f. can help us to interpret the estimate 

obtained. 

The Lorenz plot assumes that an arithmetic mean value exists for 

the reservoir population (Gail and Gastwirth, 1978). For the cases -1 

g p < 0, the arithmetic mean does not exist and, hence, the Lorenz 

coefficient does not exist. Consequently, for reservoirs where p < 0, 

estimating a Lorenz coefficient is not useful. When p > 0, a unique 

value of L may be associated with each value of c and p (Jensen, 
L* X 

1986). Figure 111-19 shows this relationship for the case of a 1000 

md median permeability (A fixed median was chosen to keep all the 

distributions comparable.) However, for a given value of L , the 

values of c and p are not uniquely determined. For a fixed value of 

c , L increases as p decreases. This behavior implies that 
X \J 

permeability distributions with small p values are potentially more 

heterogeneous than are distributions with large p values. That is, a 
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Figure 111-19. Lorenz coefficients for populations having 1,000-md 

median permeability. 
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p.d.f. with a small p value may represent greater heterogeneity, 

depending upon the value of c . 

Permeability Distributions and the Dykstra-Parsons Coefficient - The 

procedure for estimation of V calls for a log-normal probability 

plot to be made from the data (Dykstra and Parsons, 1950). The 

estimate V is based upon a "best-fit" line to the plot and, 

therefore, does not strictly require that the data come from a 

log-normal population. The line is used to estimate the median 

permeability, k n, and the permeability at the 16 percentile, k,, to 

give 

VDP = l ~ (k16/k50> (III"15> 

The use of a best-fit line makes this procedure difficult to quantify 

when p 4 0, however a few qualitative remarks may be made. 

If we ignore sampling error, a p-normally distributed variable 

will cause the log-normal probability plot to be concave upward or 

downward, depending upon whether p < 0 or p > 0, respectively. Since 

the best-fit line procedure calls for weighting the central portion of 

the plot more than the ends, the estimated median permeability, k , 

will be close in value to the true median, k (Fig. 111-20). The 

estimate k,,, however, will be influenced more: if p > 0, then k,, > 
16 16 

A 

k., (Fig. 111-20); if p < 0, then k., < k,,.. Hence, from Eq. 
lb ID ID 

(111-15), if p > 0, then VDp < VDp if p < 0, then VDp > VDp. 



107 

15 
CO 
03 k M £ 50 

Q. 

A 

^ 6 
k ~ N16 

/ / 

1 6% 

i i 

5 

Best-fit" 

0% 

line>- / 

Normal Quantiles 

Figure 111-20. Hypotheical Dykstra-Parsons plot for p > 0. 
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When the best-fit line portion of the procedure is discarded and 

the 16 and 50 percentiles are used to estimate V directly from 

the data, some further results may be obtained. For the p-normal 

distribution (Jensen, 1986), 

k5Q = (1 + P-mx)
1/p (111-16) 

and 

k16 = [1 + p(mx - sx)]
1 P (111-17) 

Combining Eqs. (111-15) - (111-17) gives 

T1/P VDp = 1 - [1 - p.sx/(l + p.mx)]
x/lJ (111-18) 

Thus, as is the case for the Lorenz coefficient, V does not uniquely 

define p and c . 
x 

Permeability Distributions and Reservoir Performance - To demonstrate 

the influence that the permeability p.d.f. may have on reservoir 

performance, we created nine sets of permeability values which were 

divided into three groups. Table III-4 shows the features of the 

sets. Each group has three data sets which all have the same V but 

different exponent (p) values. The permeability sets were then used 

in a Dykstra-Parsons layered mode (Dykstra and Parsons, 1950) to 

examine the variation in the water-oil ratio behavior from set to set. 

All data sets were constructed such that the median permeability 

value, k n was 500 md. Equation (111-16) then yielded m , since the 

V and p values were already chosen, and Eq. (111-18) was solved for 
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TABLE III-4. Properties of data s 

Set No. Group No. Vnp 

1 1 0.25 

2 1 0.25 

3 1 0.25 

4 2 0.50 

5 2 0.50 

6 2 0.50 

7 3 0.75 

8 3 0.75 

9 3 0.75 

ts for reservoir simulations. 

p m s x x 

0.0 6.21 0.29 

0.2 12.3 0.97 

0.4 27.5 3.26 

0.0 6.21 0.69 

0.2 12.3 2.24 

0.4 27.5 7.27 

0.0 6.21 1.39 

0.2 12.3 4.20 

0.4 27.5 12.8 
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s . These values are shown on Table III-4. For each data set of n 
x 
points, the i datum, k,.., was computed as follows. 

x. = m + /2 . s .erf 1[(?i - l)/n-l] (111-19) 
I X x 

f(l + p. x . ) 1 / p , p^O 

k(i) = J (111-20) 
^exp(x.) , p=0 

where erf is the inverse error function and i = 1, 2, ...n. 

Equation (111-20) assumes that the i point has the associated 

-1/2 
probability (k )/n. 

Figures 111-21 through 111-24 show log-normal probability plots 

for the data sets for which V = 0.5 or V = 0.75 and p = 0.2 or p = 

0.4. Each abcissa is scaled in units of standard deviations for the 

normal distribution. Each ordinate (y) is normalized by the mean and 

standard deviation of the data set: 

y. = [ln(k±) - m]/(/2.s), 

where 

m = N-lZin(k.), 

s2 = (N-l) 1Z[ln(ki) - m]
2, 

and the summations are taken from i = 1 to i = N. The values of m and 

s are noted on each figure. See Jensen (1986) for more details of how 

these plots are generated. As expected, all plots are curved 

downward. The straight line on each plot gives the position that the 
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plot would have if the data were log-normally distributed with the 

stated V . In terms of the best-fit line procedure called for by 

Dykstra and Parsons (1950), with weighting the center more than the 

outside points, the data calculated do have the desired coefficients. 

The data sets were used in a non-communicating layered reservoir model 

as described in Dykstra and Parsons (1950). Gravity and capillary 

effects are negligible, and the displacement is locally piston-like. 

Two mobility ratios, 0.5 and 2.0, were considered. Figures 111-25 

through 111-28 show the model behavior in terms of oil produced (in 

pore volumes) versus the water-oil ratio for the cases V = 0.50 and 

VDP " °'75-

For the sets with V = 0.25, there was only a small difference 

in the model behavior as p changed. At higher levels of 

heterogeneity, however, the influence of p was evident. For example, 

when V = 0.75, a log-normal distribution and a favorable mobility 

ratio (M = 0.5) behaves similarly to a 0.4-normal distribution with an 

unfavorable mobility ratio (M = 2.0). For a unit water-oil ratio and 

Vnp = 0.75, a change of exponent from p = 0 t o p = 0.2 implies an 

increase of 0.15 pore volumes of oil recovered. These results 

indicate that p may be as influential as M in determining oil 

recovery. 

The above analysis, while specific to V , also indicates the 

results that would be observed with the Lorenz coefficient. Figure 

111-19 shows that an infinite number of (c ,p) pairs may be chosen to 

give the same L value. Those pairs with low p values, however, would 

represent reservoirs with higher water cuts. 

We conclude from these results that reservoirs with different 
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0.00 0 . 2 0 0 .40 0 .60 0 . 8 0 
OIL PRODUCED. PORE VOLS. 

1.00 

Figure 111-26. Layered model behavior for M=2.0 and VDp- 0.50. 
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0.00 0 .20 0 .40 0 . 6 0 
OIL PRODUCED. PORE 

0.80 

VOLS. 
1.00 

Figure 111-27. Layered model behavior for M=0.5 and V =0.75 
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0.00 0 . 2 0 0 .40 0 .60 0 . 8 0 
OIL PRODUCED, PORE VOLS. 

1.00 

Figure 111-2* Layered model behavior for M=2.0 and V =0.75. 
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permeability distributions but equal heterogeneity measures may occur. 

Information exists within data sets which is not normally used by the 

existing measures. The performance of reservoirs may vary 

considerably according to the permeability p.d.f. 

A New Heterogeneity Measure - From an analysis of the preceding 

results, we propose a new heterogeneity measure. It has a 

mathematical form similar to the V estimator, but it does not 

require a plot. An example of the relative performances of the new 

measure, V , and L is given. 

Desirable properties of a heterogeneity measure - The nature of a 

heterogeneity measure, however defined, is to distill in a meaningful 

way, the level of permeability variability in a reservoir. The 

computation of such a measure inevitably depends on data from a 

limited number of reservoir samples. Therefore, it should extract as 

much information as possible from those data. 

On the basis of the preceding analysis of the traditional 

heterogeneity measures, several criteria for estimators are suggested. 

1. The estimator should be unbiased. 

2. The estimator should be efficient. 

3. A measure of the permeability p.d.f. asymmetry (e.g. the exponent 

p) should be made. 

4. The estimator should have a range of values which allows the 

higher heterogeneity cases to be readily distinguished. 

5. The estimation technique should be easy to use and should avoid 

graphical methods. 
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Neither the V nor the L estimator satisfies these 

requirements. The issue of scale is particularly important because of 

the sampling problem: The zero-to-one scale of these estimators 

compresses the high heterogeneity cases together and the sampling 

variability blurs the distinction further. 

To suggest a new measure, however, requires some caution. A 

substantial amount of work relating V or ~L„ to the performance of 

reservoir models is available. Any new estimator should give results 

that can be interpreted in terms of V or L . 
JJJr L» 

A new heterogeneity measure - We propose that the pair of values, V 

and p, where 

V = k84/k16 " l (HI-21) 

be used to assess permeability heterogeneity. The form of Eq. 

(111-22) is similar to the V estimator. The coefficient V varies 

between zero and infinity with, as for the traditional measures, zero 

representing a homogeneous reservoir. 

The estimation of the required quantities is straightforward. 

The exponent p is readily estimated from a data set by one of the 

methods discussed above. The quantities k1fi and kR, may be estimated 

from a set of n data by the following formulas (Hoaglin et al., 1983) 

k16 " ki + (ki+l
} - \ ' ^ - i ) 

and 

k84- kJ + (kj+l" V'
( t" J ) 
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where 

r = 0.1587 (n + l/3) + l/3, 

t = 0.8413 (n + 1/3) + 1/3, 

i = tr], j = [t], 

[z] denotes the largest integer = z, and k denotes the m datum in 
m 

the ordered set of permeability data, k1 = k_ = k_ = ... = k̂ . These 

formulas determine the locations of the 16 and 84 percentiles for 

an arbitrary number of data. The estimation of k1f. and k„, requires 

no fitting of lines to data, although plotting may be desirable for 

other reasons. 

For the case of a log-normal distribution (p = 0), several 

results may be derived. The coefficients V, V , and L are related 

by 

vDp = 1 - (V+ i ) 1 / 2 

and 

Lr = erf[1/4 . ln(V + 1)]. 
L/ 

For example, when V = 0.5, V = 3.0 and when L = 0.7, V = 16. 

Using the approach given in Appendix A, the bias, m , and the standard 

error s , of the estimator for V are given by 

m = [(1 + V)]2 [0.463 - 0.570 (1 + V) 1/2 

+ -0.570 (1 + V ) 1 / 2 - 0.108V]/N (111-22) 
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m = 0.962 . (1 + V).ln(l + V)//^ (111-23) 

An analysis of Eq. (111-23) shows that the bias is positive for V 

S 35 (i.e. V 5 0.83) and is negative otherwise. This means that 

the V estimator tends to be slightly pessimistic (V too high) for most 

reservoirs. Cases of very high heterogeneity (V > 33 or V > 0.83) 

give a negative bias. If N S 40, then |m | £ 0.05V for V < 225 (i.e 

V 5= 0.93). Only in cases of exceptionally high heterogeneity (V > 

400 or V > 0.95) would N S 50 be required to keep the bias within 

five percent of V. A study of the standard error performance of the V 

estimator, using the same approach as described for the comparison of 

s and s , shows that V is more efficient than V (Jensen, 1986). 
J-j V UL 

If, for a given situation, n points are required to estimate V with 

standard error s , then 0.43N points are required to estimate V to an 

equivalent standard error. These results are based on large-sample 

theory and, therefore, should be used with caution when n < 40. 

The Relative Performance of the Three Measures - We compared the 

overall performance of the V, V_p and L., estimators by determining the 

error of the fractional oil recovered (E ) in a Dykstra-Parsons Model 

(Dykstra, Parsons, 1950). For the base case, we took V = 0.80 (L = 

0.745 and V = 24), M = 1 and an irreducible water saturation of 0.30. 

Assuming a data set of a given size, six values of E at a water-oil 

ratio of 100 were calculated based on the standard error range of each 

estimator: V ± s , L + TIL. ± s , and V ± s . (The bias was included 
Di V Kj Li LI V 

in the Lorenz estimate because of its appreciable value.) This was 
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done for a range of data set sizes. A log-normal permeability 

distribution was assumed. 

The results are shown in Fig. 111-29. The base case gives E = 
K 

0.35 (zero error). For any estimator, the spread of points above (E 
R 

> 0.35) and below (E < 0.35) the base case line is governed by 

segveral factors: 

1. The standard error of the estimator, 

2. the bias of the estimator (signigicant only for L and 

3. the relationship between the heterogeneity measure and reservoir 

behavior. 

The three estimators perform similarly regarding recovery 
overestimates (E > 0.35), with V performing slightly better than 

K 

either V or L . The recovery underestimate behavior (E < 0.35), 
DP C R 

however, is distinctly different for each estimator. The influence of 

bias on L is sufficient to give a constant standard error behavior. 

Both L and V are much less pessimistic than V . The high efficiency 

of the L estimator, particularly at small sample sizes, makes it 

attractive for this particular case. The relatively symmetrical error 

behavior of the V estimator is a result of its zero-to-infinity scale. 

This is in contrast to the asymmetrical behavior of V and L - even 

at 100 samples where HL. is small - cased by the zero-to-one scale. 

Observations and Conclusions - The Dykstra-Parsons and Lorenz 

heterogeneity measures have been examined assuming a log-normal p.d.f. 

and found to have the following properties: 

1. Both measures compress the high heterogeneity cases, which makes 

performance predictions sensitive to the precise value used. 
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Figure 111-29. Relative performance of heterogeneity measures 

for a layered model. 
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2. Both estimators underestimate, on average, the true reservoir 

values. The Lorenz estimate is significantly biased for data 

sets having fewer than 40 samples. 

3. The Lorenz estimator is much more efficient than the 

Dykstra-Parsons estimator in low heterogeneity cases. Both 

estimators are equally efficient for very high (Vnp S 0.9) 

heterogeneity cases. 

4. Different reservoirs with the same V or L may behave quite 

differently because of the asymmetry of the permeability 

distribution. 

5. A Lorenz coefficient cannot be defined for some non-log-normal 

permeability distributions, V , however, always exists. 

A heterogeneity measure has been proposed which accounts for the 

permeability distribution. The measure does not require that a plot 

be made, but it does require that two parameters be estimated. For a 

log-normal p.d.f., the new measure is always more efficient than the 

Dykstra-Parsons estimator and it is more efficient than the Lorenz 

estimator in high heterogeneity (V_._ S 0.9) cases. 

In comparison to the V and L estimators, more computation is 

required to estimate V and p. Information which may be important to 

performance prediction, however, is being ignored when only V and L 

is computed. In view of the cost of data, it should be worthwhile to 

make the added computational effort. 
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GENERATING A PERMEABILITY DISTRIBUTION 

We will use the turning bands method (TBM) in Part V to generate 

a stochastic field. The method employs a weighted sum of a number of 

one-dimensional line processes to generate a 2-dimensional field. The 

generation of a line process is considered here. 

Let z be the property (permeability here) to be generated 

L 

z(x) = p- z z.(x'u.) + U (111-24) 

i = i 

- > • - > • 

where x is the position vector, u., is the unit vector along line i, 

z. is the corresponding value at line i evaluated at x*u. and L is the 

number of lines uniformly extending from the origin (Montoglou and 

Wilson, 1982). 

The square root on L is in accordence with the law of addition of 

random functions. The theoretical mean of this process is zero if the 

line processes are generated with zero mean, therefore, the required 

mean value u is added after generation. 

The major assumptions in this method are that z. are secondary 

stationary (stationarity of order two), isotropic and normally 

distributed. 

Line Process - The line process is generated using the modified 

spectral method (Shinozuka and Jan, 1972), 

m 

z (x) = 2 £ A(<"> )cos("' *x + 4>v) (111-25) 

k=l 
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where 

oi. = (k - ~)Ltn 

w' =io, + 6u 
k k 

A(to ) = /S(io, ) Ao) 

<J>, are M independent random phase angles uniformly distributed between 

0 and 2ir. 6w is a fine-tuning small angle to allow fewer terms in the 

sum of Eq. (111-25) (smaller m). S is the one-dimensional spectral 

density function calculated from the given isotropic autocovariance 

function. m should be large enough to achieve accuracy, and mAco 

should be large enough so that A(mAco) approaches zero (Montoglou and 

Wilson, 1982). Normally m = 100 is sufficient. 

Correlogram and Estimate - An isotropic secondary stationary process 

is completely determined by the mean 

V = E[z(x)] 

and the autocovar iance funct ion 

C(h) = E[{z(x) - u H z ( x + h) - y}] 

where h is the separation distance. If the autocovariance is 

normalized by the variance, the zero-lag value of the autocovariance 

function, it becomes the autocorrelation function 

/UN C(h) 
P(h) = C(0T 
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In other words, if the standard deviation a = / C(0) is unity, 

autocovariance equals autocorrelation. The autocorrelation function 

is a one-parameter special case of a correlation function. In the 

following discussion the standard deviation is assumed unit3/- unless 

otherwise noted, and the term correlation function is thus used for 

both the autocorrelation and autocovariance functions. 

When processing data to describe a set of observations, the 

correlogram, which is the correlation as a function of separation 

distance, can be plotted. If the true mean or the population mean y 

is known, an estimate of the correlation function can be calculated 

N 

Vh) =I E (zi - P)(zi+k - y) (111-26) 
i=l 

where h is the separation distance between the correlated points at x. 

and x. ,, 
l+k 

h = k'Ax 

assuming a uniform grid of size Ax and 

z. = z(x.) 

However, the population mean y is rarely available in 

characterizing a process, and we must use the sample mean 

N 
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as an estimate of the population mean y. The correlogram becomes 

N 

cA(h) = | z (Z± - y)(z1+k - y) (ni-27) 
v ' 1-1 

C„ is an estimate of C . 

Using the sample mean introduces error in the correlation 

function since the sample mean can be different from the population 

mean. We would like to know when and under what conditions this error 

is important. 

Deviation of correlogram because of the sample mean - Let the 

difference between the sample mean and the population mean be du 

du = y - y 

then 

(z± - y)(z±+k - y) = (z± - y - dy)(z±+k - y - dy) 

= (z± - y)(z
1+k - y) + dy" - dy(zt - y+zi+k - y) 

and the correlation function using the sample mean becomes 

N 

c.(h) - i i (z± - y)(zi+k - y) 
y i-i 

N 

1=1 

2 
+ (y - y) 
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1 
- (]1 - \l) jj Z {z± - y + z i + k - y) 

1=1 

= C (h) + (y - M){CM - y) - ( y . - y) - ( y . + k - y ) } 

where y . i s z . a v e r a g e d from 1=1 t o N and y . . . from i = l + k t o N+k. For 
1 1 b l+k 

a s t a t i o n a r y p r o c e s s , E [ y . ] = E [ y . , , ] . T h e r e f o r e , t a k e t h e 
1 I T K 

expectation: 

E[Cfl(h)] = C^(h) - op
2 (111-28) 

2 
Since the variance of the sample mean a. is always positive, 

C(h) is a biased (systematically smaller) estimate of C (h). We need 
y y 

2 
to evaluate the variance of the sample mean a." in order to predict 

the bias. 

Variance of the sample mean - The sample mean y is an unbiased 

estimate of the population mean y as its expectation. The variance is 

the second moment about the expectation, 

a2 = E[(y - y)2] 

N 

= E[(| I z. - y)2] 

i=l 

N 

= E[(i Z {z. - y})2] 

i=l 
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N 

= E[(i- Z (z - y)2] 
N 1-1 

N-1 N-j 

+ E[(^=- x z (z - y)(z,,. - y)] ] 
N • i • i i=i 1=1 

Q 2
 N"1 (N - i)C(h) 

<>-- r + N * *-*— ( T I I - 2 9 > 
y i=l 

where a is the population standard deviation and h = i*Ax is the lag 

distance. The first term is the same as for independent z.. The 
l 

second term is caused by the correlation between the data points and 

cannot be reduced by simply increasing N. 

Let us assume an exponential correlation function: 

C (h) = a2 exp( -h/X) = a2 exp( - a*i) (111-30) 

where X is the correlation length and a = Ax/X is the grid 

2 
size/correlation length. The variance of the mean o. can then be 

calculated for a different number of points N and different length a. 

The result is 

2 N-l 

°\ = f" (1 + 2 Z (N- l)exp( - a - l ) ) ( m _ 3 1 ) 

The standard deviation of the mean a. (with a=l) calculated using Eq. 

(111-31)) is plotted in Fig. 111-30 versus N»a (the total sample span 

divided by correlation length, NAx/X). Figure 111-30 shows that when 

the total sample span is less than about 20 times the correlation 
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Figure 111-30. Standard deviation of the mean. 



134 

length, the standard deviation of the mean increases rapidly and 

2 ° 
approaches the unit population variance, i.e. a •> a^. An increase 

in the number of sample points N above a certain limit contributes 

little to a reduction in the standard deviation of the mean. This can 

be derived from Eq. (111-31) by taking the limit a = Ax/X to zero 

lim a 2= # ( l + 2 \ (N ~ ^P( Q-i>) 
y N N 

a+0 i=l 

2 N-l 

1-1 

2 N-l 

g- (1 + 2N - 2 - 2 Z i ) 
1-1 

2 
— (1 + 2N - 2 - N) 
N 

- "2u -1) 

When the sample span is greater than 20 times the correlation length, 

the standard deviation of the mean is small and decreases with an 

increase in the number of sample points N. When the correlation is 

zero, the process is completely independent, and the equation for the 

variance of the mean reduces to 

°y • r 
which is the formula for independent samples. 
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Verification of the bias of the correlogram - Figures 111-31 and 

111-32 show the correlogram calculated from a simulated line process 

(with an exponential correlation of unit correlation length) using 

both the sample mean and population mean. The total sample span N*Ax 

over correlation length is 5.00 in Fig. 111-31 and 1.00 in Fig. 

111-32. Each line process is divided into N=100 grid points. The 

plotted curves have been averaged over 100 independent line processes 

(100 realizations) to approximate the expected value. These figures 

show the systematic error caused by the substitution of the population 

mean y by the sample mean y. 

The bias can be predicted from Eqs. (111-28) and (111-30). 

Equation (111-30) predicts that the bias is constant for different lag 

distance h, which is verified by the figures. From Eq. (111-31) we 

2 
can calculate cr = 0.35 for Fig. 111-31 (total sample 

2 
span/correlation length N*a = 5.00 or a = .05) and o ^ = 0.75 for Fig. 

111-32 (a = .01). The correlograms agree with the prediction quite 

well. The exponential autocorrelation tends to zero at large lag 

distances, while the correlogram using the sample mean tends to a 

2 
negative value which approximates <?. . 

The bias is from the true correlogram's estimate using the 

population mean C (h), while C (h) itself can deviate from the given 

correlogram. See the tails at large lag distance in Figs. 111-31 and 

111-32. As we will show later, the uncertainty in estimating the 

correlogram is higher with a relatively small total sample span and at 

large lag distances. 
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Figure 111-31. Constructed autocorrelation for sample span/ 
correlation length = 5. 
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Figure 111-32. Constructed autocorrelation for sample span/ 
correlation length = 1, 
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A similar argument holds for the variance or confidence interval 

of the autocorrelation calculated from sample data. Figures 111-33 

and 111-34 show the simulated results of line processes generated in 

the same manner as Figs. 111-31 and 111-32. In Fig. 111-34, the 

standard deviation a = vC(0) of line process i, divided into 100 
y ' 

points, uses population mean y. The four curves, plotted as a 

function of correlation length, have been calculated from 100 

independent lines (100 realizations) for each correlation length. 

They are, 

(1) the averaged standard deviation, 

N 
- _ 1 v a = T: Z a. N l 

1-1 

(2) the estimated standard deviation of a = /C (0), 
y 

N 
2 1 — 2 

(a of a.) = ^ Z (a. - a) 
1-1 

(3) the maximum a> 

%ax = m a x { a l a N } 

and 

(4) the minimum a, 

ff„. = min {a1».-.»aia} m m I N 
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Figure 111-33. The variability of line processes. 
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As the sample span becomes less than about 20 times the 

correlation length, the standard deviation of the sample variance 

increases rapidly and the possible outcomes of the sample standard 

deviation becomes erratic, even though the average standard deviation 

using population mean is not biased. 

Figure 111-34 is the standard deviation of the correlogram of 

simulated data from 0% to 60% lag distance of the total sample span 

N 

(SD of cyh)}2 = i i { V h ) i " V ^ " } 2 

i=l 

Each curve is from 100 line processes of the same correlation length 

and each line process divided into N=100 data points. These curves 

show that the uncertainty in estimating the correlogram is again 

controlled by the ratio of the total sample span to the correlation 

length, with a critical number 20 for the exponential correlation 

used. The uncertainty increases quickly as the ratio becomes lower 

than 20, and is relatively constant for different lag distances for a 

fixed total sample span/correlation length. But there is a slight 

increase at larger lag distances because of the decrease in the number 

of data points in calculating C (h). For larger sample spans (total 

sample span/correlation length greater than) the effect of the 

correlation on the uncertainty is negligible, as can be seen from the 

two curves with a ratio of 20 and 200. When the grid size is equal to 

or greater than the correlation length, the deviation appears less 

smooth, as in the curve with a ratio of 100. 
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Variogram and Its Estimate- To avoid the systematic error caused by 

the variance of the sample mean, a variogram, which is defined 

independently of the mean, 

2y(h) = E[{z(x) - z(x+h)}2] (111-32) 

can be used to regress the standard deviation and the correlation 

length with a given model. The variogram (sometimes called 

semi-variogram, due to the presence of the 2) can be related to the 

correlogram: 

Y(h) = l E [ ( Z x - Z x + h ) ]
2 

= | E [ ( { Z x _ p } _ {zx+h-u})
2] 

= \ E[(zx - y)
2
 + (zx+h - U)

2 - 2(zx - u)(zx+h - y)] 

= \ E[(zx - y}
2 + (zx+h - y)

2 - E[(*x - y)(zx+h - y)] 

= a2 - C(h) 

Where stationarity is used to assume that the expected value at x is 

equivalent to that at x + h. 

In practice, let V(h) represent the estimate of the variogram 

Y(h) 

N 

V(h) =I N X [(z. - z.+k)
2] 

i=l 

N 

• I N Z [ a Z i - p } - { Z i + k - u »
2 l 

i=l 
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N 

"k z [ ( Z i - y ) 2
 + ( Z i + k - y ) 2 - 2 ( z . - y ) ( z i + k - y ) ] 

i=l 

N N 

• I N Z [(zi-^2+(zi+k-^!-
 z [(^-M)(z 1 + k-y)] 

i=l i=l 

= a2 - C (h) 
y 

a is an estimate of the population standard deviation using the 

population mean y which does not appear explicitly in the equation for 

the variogram. On the other hand, if the sample mean y is assumed 

implicitly, the result will be 

N 

v(h) = Lj z [2. - z.+k)
2] 

i-1 

N 

• I N E r « Z l - y } - { z i + k - ; } )
2 ] 

i-l 

N 

^ I [(z. -;) 2
+(z. + k-i)

2-2(z.-y)(z i + k-y)] 

i-l 

N N 

• I N E U*±-»Z + <zi*-»2l-li E U^M^k1^ 
i-l i-l 

= a2 - C0(h) 

where cr Is an estimate of the standard deviation using the sample 

mean. This shows that the bias caused by the deviation of the sample 

mean from the population mean is the same in o" = C.(0) and in CQ(h) 



144 

and, therefore will cancel out. 

From this relationship, a correlation function model can also be 

used for the variogram without the bias caused by the deviation in the 

sample mean. However, the uncertainty of the variogram is still large 

if the total sample span is not at least ten times larger than the 

correlation length. 

Figure 111-35 shows the standard deviation of the variogram of 

the same simulated data as for Fig. 111-34 from 0% to 60% lag distance 

of the total sample span. The effect of the total sample 

span/correlation length also shows a critical number of 20 as for the 

correlogram. Below this ratio the uncertainty of the variogram 

increaes. The curve with ratio 200 does not follow a consistent 

trend, except for the zero-lag point, since the grid size is smaller 

than the correlation length and the data can be considered virtually 

uncorrelated. 

The observation is that for a total sample span/correlation 

length greater than 20, the uncertainty is about the same for both the 

variogram and the correlogram. 

What is different from the correlogram case is that the 

uncertainty increases with lag distance, particularly for curves with 

smaller total sample span relative to the correlation length. One 

reason is that the variogram has a smaller value when the lag distance 

is less than the correlation length. Also the correlation makes this 

portion of the variogram more regular. By definition the variogram 

has a zero value (and therefore zero standard deviation) with lag 

distance equals zero, which is not the case for th correlogram (the 

correlogram can be normalized by C(0) to force the zero-lag point 
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equal to unity but the uncertainty in the estimate of C(0) remains). 

The conclusion is that the correlated portion of the variogram always 

shows a smaller uncertainty than the correlogram, i.e. 

a < o when •*- < 1 
var corr A 

Figure 111-36 compares the two smaller sample span curves from 

Figs. 111-34 and 111-35. For the curves with total sample 

span/correlation length 2, a lag distances less than 50% of the total 

span will have h < A and the standard deviation is smaller for the 

vriogram. For the other pai with ratio 10, 10% lag of the total span 

will have h < A and also the uncertainty for the variogram is smaller. 

The spherical model is commonly used for variograms. 

Curve-fitting an exponential model with the spherical model turns out 

an equivalent correlation length about twice that for the exponential 

model. Subsequently the equivalent correlation length was used to 

generate and plot curves using the spherical model similarly to those 

in Figs. 111-33 and 111-34, and the results were about the same. This 

shows that the conclusions drawn with the exponential model can be 

similarly applied to other correlation models if an equivalent 

correlation length can be established. 

Standard for Correlation - Recommendations for estimating spatial 

correlation are, 

1) Very small correlation - When the correlation length is smaller 

than the grid size 

A < Ax 
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the data will appear independent and there is no way to estimate the 

actual correlation from the generated data. Only the standard 

deviation will be significant in this case. 

2) Small correlation - When the total sample span is larger than 20 

times the correlation length (10 times for the spherical model), 

N'Ax > A«20 

the uncertainty is small in estimating either the variogram or the 

correlogram, and the bias in estimating the correlogram using sample 

mean is also small. As far as accuracy is concerned, there is little 

difference in using either. 

3) Large correlation - When the total sample span is less than 20 

times the correlation length (10 times for the spherical model), 

N'A;; < A'20 

the estimate of correlogram using the sample mean is substantially 

biased and should not be used. The uncertainty is large in estimating 

either the variogram or the correlogram, but it is smaller within the 

correlated range for the variogram. Also the correlogram cannot be 

unbiasedly estimated without knowing the population mean. Therefore, 

the variogram should be used. 

Input/output parameters - The parameters curve-fitted to the variogram 

calculated from a simulated process (output parameters) are more or 

less different from those given to the generator (input parameters). 
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Which should be used as the standard? In order to use the data in a 

reservoir simulation study, we would expect the data to have the same 

correlation structure as specified. Therefore the output parameters 

should be used as the standard. 

Fixing the set of random numbers used in the simulation, the 

input standard deviation and correlation length can be changed to 

achieve the specified output parameters. The generator can 

automatically least-square-fit a variogram to the variogram calculated 

from generated data to get estimates of the output standard deviation 

and correlation length. For example, when a standard deviation of 100 

is required but the first run of a simulation generates a varogram 

best fitted with a standard deviation equal to 94, we can input a 

standard deviation of 105 for the next run that would probably produce 

100 in the output standard deviation. 

Non-Normal Distribution - As to the distribution of the points, 

probability plots show that line process generated by the TBM is 

approximately normally distributed. Figure 111-37, a probability plot 

of normalized data value (permeability) versus the inverse error 

function (Jensen et al. 1986), shows different line processes covering 

different total sample spans over correlation length. For large 

sample spans over correlation length, the data are very close to the 

theoretical normal. The deviation from the normal distribution is 

largely caused by the correlation between sample points. This 

indicates that for small sample span or highly correlated data it is 

not easy to test the normality of the distribution. 
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If a non-normal distribution is to be simulated, a transformation 

can be done after the normally distributed process has been generated, 

in a reverse direction to the transformation to normal. For example, 

an exponential of the process which is normally distributed would 

result in a log-normal distribution, since the logarithm of this will 

bring it back to a normal distribution. The relation between normal 

data z from the TBM and log-normal data can be derived: 

zi„„ „„™,i = exp(z) log-normal 

while for p-normal where p ̂  0 

Z . = [max(0, z'p + l)]1/p 

p-normal 

In this tranformation any negative number will be set to zero, since 

we cannot raise a negative number to real power. 

After the transformation to p-normal, the coefficient of 

variation (the ratio of the standard deviation to the mean) will be 

changed. Because the transformation involves raising the variable to 

the power p, addition or subtraction would change the index p. 

Therefore only multiplication can be used after the transformation 

because this will not change the coefficient of variation. 

To achieve the required coefficient of variation after the 

transformation, a different coefficient of variation should be used to 

generate the data. Because the standard deviation is a parameter to 

be adjusted in the generating program , it is more convenient to 

change the input standard deviation also to fit the required 

coefficient of variation after the transformation to p-normal, i.e. 

the output parameters will be estimated after both the transformation 
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to p-normal and the adjustment for the mean. The adjustment on the 

mean will be achieved by multiplication 

Z.* M 
k. = X 

i N 

i Z Z 
N A± 
i=l 

so that 

, N i N Z-" W 

I I k = I I 1 = y 
N i N N 
i-l i-l I z 

N j 
j = l 

Alternatively the p-normal average can be used instead of the 

arithmetic average, but it is too complicated and usually not readily 

available. 

After the transformation to p-normal, the variogram may be 

changed a little, but the shape is about the same, and the correlation 

length is little affected. Figure 11-38 shows the effect of this 

transformation on the variogram with a unit coefficient of variation 

before transformation and normalized to the same variance after the 

transformation. p=l means normally distributed, and the option of 

omitting the negative values is included since that is required in 

transforming to p-normal. 

With a coefficient of variation as large as 1, a substantial part 

of the data would be negative for a true normal distribution. In a 

permeability field, or any p-normal distribution where p^l, there can 

not exist negative values. Setting the negative values to zero solves 

this problem but at the same time distorts the probability 
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distribution. Figure 11-39 shows how the transformation affects the 

probability density function. 

Why does the transformation change the probability density much 

more than the variogram? It is because the probability density is 

grouped by the value of the data which is what the transformation 

changes directly, but the variogram shows the variation over a 

separation distance and is averaged over the whole area; therefore, 

the change in data value at one point would not be much different from 

that at the other and the variation between these two points would 

remain much the same. For the portion of negative values set to zero, 

it will appear collectively in the probability density function at one 

end, but in the variogram it is scattered among the averaged 

variations and therefore will not affect the shape (the standard 

deviation will be different). 

For transformation to approximately normal, see Jensen's paper 

(1985). 

Spectrum - The spectra density function w can be calculated from the 

generated data by 

1 2 2 
w(a) = — = — {(Ez.cosax ) + (Ez.sinax ) } 

SD N 1 1 

Theoretically the spectral density contains as much information as the 

autocorrelation, and a relation between the two is unique. It also 

contains the standard deviation explicitly and therefore is subject to 

the same error as the correlogram. Furthermore, the spectrum for a 
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single realization is quite irregular and cannot be used quantita­

tively to estimate the spectral density. 

Qualitatively, the spectrum can be used to check the 

correspondence of the simulated data with the model used by plotting 

the theoretical together with the spectrum calculated from the 

generated data. 
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APPENDIX A - BIAS AND ERROR OF QUANTILE ESTIMATORS 

We wish to eatablish the bias and standard error associated with 

quantities of the form 

V = (Yr - Yt)/Yg (A-l) 

where Y is an estimate of the quantile of the log-normal distribution 

for the decimal fraction u and O S t S s S r S l . The theory for this 

problem is set out in Chapter 10 of Kendall and Stuart (1977). We 

consider the general problem initially and then take the specific case 

of the Dykstra-Parsons coefficient, V_̂ p, for which r = s = 0.50 and t 

= 0.1587. 

For a sample of size N of the random variable y with p.d.f. P , 

Yu is N[Yu, y(l-u)/(NPy
2(Yu))] (A-2) 

2 
when N is large. Suppose that ln(y) is N(m , s ). It follows from 

the properties of the log-normal distribution (Johnson and Kotz, 1970) 

and Eq. (A-2) that 

E(Y ) = exp(m + s .w ) (A-3) 
u x x u 

and 

2 
Var(Y ) = A u ( l - u ) exp(2m + 2s .w + w ) (A-4) 

u r x x u u 

2-1 -1 where A = 2irs N , w = <)> (u), E(*) denotes the expectation, Var(*) 

denotes the variance, and (j) is the probability integral (Johnson and 
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Kotz, 1970). Kendall and Stuart (1977) also show that, for two 

quantile estimates Y and Y , 
u v 

Cov(Y ,Y ) = Au(l-v)exp[2m + s (w +w ) + l /2(w 2 + w 2 ) ] (A-5) u v x x u v U V 

where Cov(*,*) denotes the covariance. 

Equation (A-1) is a nonlinear combination of the quantile 

estimates. Some work is involved in establishing E(V) and Var(V) in 

terms of the quantile estimate properties. Consider a function g of 

the form 

g(Xj, x2, x3) = (x3 - Xj)/x2 (A-6) 

By taking a Taylor series expansion of g about the expected 

values of random variables x. , x„, and x_, and truncating we obtain 

for the expectation and variance of g(x): 

E[g(x)] = g(a) + l/2[EgilVar(xi) + 

Z I g i j C o v ( x i , X j ) ] (A-7) 

and 

Var[g(x)] = I ( g i )
2 V a r ( x i ) + 

ZZg±g. Cov( X i , X j ) (A-8) 
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where x = (x^ x2» x ), a = (E(x1), E(x2), E(x )), gi = (3g/8xi) 

2 
evaluated at x = a, g.. = (̂ g/ 9x. 9x.) at x = a, and the summations 

are i, j = 1 to 3. For the case under consideration, Eqs. (A-7) and 

(A-8) are correct to order N 

Application of Eqs. A-3 through A-5 in A-7 yields 

E(V) = V + Aexp(-s w ) (Vs(l-s)f(w ) + 
X s s 

t(l-s)exp[s w + l/2(w 2 + w 2)] -
X t t s 

s(l-r)exp[s w + l/2(w 2 + w 2)]} (A-9) 
x r s r 

2 
where f(w ) = exp(2s w + w ). The bias m is obtained from m = 

u x u u v v 

E(V) - V. Hence, the bias is given by the second and subsequent terms 

on the right side of Eq. (A-9). Equations (A-3) through (A-5) in 

(A-8) yield 

Var(V) = Aexp(-2s w ) (t(l-t)f(w ) + 
X S t 

r(l-r)f(wr) - 2t(l-r)h(wt, wr)] + 

V2s(l-s)f(w ) + 2Vt(l-s )h(w . w ) -s t s 

2Vs(l-r)h(w , w )} (A-10) 

where 

2 2 
h(w ,w ) = exp[s (w + w ) + l / 2 ( w + w )]. 

u v x u v u v 

For the special case of the V estimator, r = s = 0.50 and t = 

0.1587. Hence w = -1 and w = w = 0.0. Equations (A-9) and (A-10) 
t s r 

become 
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Hence, the bais m and standard error s are 
v v 
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E(VDp) = VDp - 0.7488 sv
2exp(-sx)N

 l (A-ll) 

VarfV ) = 2.207 s '"exp(-s )N (A-12) 

m = - 0.7488s 2exp(-s )n l (A-13) 
V X X 

and 

s = 1.486s *exp(-s )N~1/2 (A-14) 
V X X 

For the Dykstra-Parsons coefficient, V = 1 - exp(-s ). Hence, Eqs. 

(A-13) and (A-14) may be expressed in terms of V . 
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APPENDIX B - BIAS AND ERROR OF THE LORENZ ESTIMATOR 

This section describes the Monte Carlo simulations which were 

made to establish the bias and standard error behavior of the Lorenz 

estimator. A log-normal p.d.f. is assumed for the permeability data. 

The algorithm steps are as follows: 

1. Obtain N normally distributed data, x. , x„, x , ..., x where x 

is N(0,1). The commercial IMSL routine, called GGNQF, was used. 

2. Transform the data to a log-normal distributed set. 

y = exp(a.xi) , 

for i = 1, 2, ..., N, and where a = 2erf (Lr) and L defines the 

Lorenz coefficient of the data. We started at L = 0.3 and 

incremented in steps of 0.1 to L = 0.9. 

3. Reorder the data so that Y. S Y„ S Y_ . . v . 
1 z j s .. . <; Yn 

4. Estimate L by the trapezoidal rule 

Lc, = 2/N . (l±.y± I ZyJ - 1/N - 1. 

where the summations are over i from 1 to N, or by Simpson's rule 

N-l i 

Lc„ = 1.0 - |^ (1 + 2 1 2 q ( i ) Zy. / Zy.) 

i=l j=l 1=1 

where q(i) is the modulo two function (i.e. q(i) = 0 for i even 

and q(i) = 1 for i odd). 

Repeat steps 1 through 4 another m-1 times to obtain m estimates 

L , or L „, i = 1, 2, ..., m. 
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6. Estimate the bias, IIL , and sampling error, s : 

\ = 1/m E LCi " V 
^ 2 = l/(m-l) E (Lc± - Lc - m ^ 

where primed or double primed quantities (i.e. trapezoidal or 

Simpson's rule integration) are used as appropriate. 

Figure 111-17 is a plot of N versus HL. ' /L„ for m = 2000. Figure 

111-18 is a plot of L versus N for four different values of s ': 

0.10, 0.05, 0.02 and 0.01. Because of the computational effort 

required to order several thousand points for small s ', m was 
Li 

not held constant for all simulation runs. For s T £ 0.05, m = 
Li 

2000; for sT' = 0.02, m = 1000; and for s ' = 0.01, m = 400. 
Li LI 



NOMENCLATURE for Part III 

a - sample span/correlation length 

A - amplitude 

a,b - regression coefficients 

c - constant 

C - coefficient of variation of an estimator z z 

e - relative error 

E - fractional oil recovery 

erf - error function 

f,g,h,h' - functions of one variable 

h - lag spacing 

k - permeability 

L_ - Lorenz coefficient 

M - mobility ratio 

m,n - number of data or iterations, integers 

m - bias of an estimator z 
z 

N - number of datum in set 

N(x,y) - normal distribution with mean x and variance 

p,q - exponents 

r - number of data sets 

S - error variance 

S - standard error of an estimator z 
z 

Vnp - Dykstra-Parsons coefficient 

v,x,y,z - dummy variables 

w - spectral density function 
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Greek 

6 ,6 - spread of data above (+) or below (-) regression line 

u - mean value 

<J) - porosity 

p - correlation coefficient 

a - standard deviation 

2 
a - variance 

co,<f> - angles 

Superscripts 

estimated quantity 

- - average 

Subscripts 

A,B - pertaining to curve A or B 

i - ith datum, an integer 
x,y - pertaining to variable x or y 
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PART IV. HETEROGENEITY CLASSIFICATION 

Part III gave the groundwork for a statistical classification of 

reservoir heterogeneity. A second way to classify heterogeneity is 

through the categories of geologic observation. Such observation ties 

nicely with statistics for it can provide a model upon which to begin 

the analysis. 

This part presents the results of a geologic study on an eolian 

outcrop. The study is intermediate to two other goals: it will 

provide a basis for the heterogeneity classifications discussed in 

Lake et al. (1985), and it will be the basis for some rigorously 

realistic fluid simulations which will be performed in the third 

contract year. 
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DISTRIBUTION OF GEOLOGIC FEATURES IN EOLIAN SANDS 

With the passage of eolian facies modelling from infancy, 

criteria for bedform reconstruction and interpretation are beginning 

to be recognized and applied. Armed with such tools, ancient eolian 

sequences can now be identified with a high degree of confidence, and 

specifics of their morphology more sharply delineated. Details of 

eolian deposition are derived from observations of modern and 

ancient dune, interdune, and sand-sheet environments, but studies 

have relied heavily on theory; the internal structure of dry, sandy 

bedforms does not lend itself readily to observation, and the 

typically small fraction of the dunes actually preserved (Rubin and 

Hunter, 1982; Kocurek and Nielson, 1986) restricts interpretation. 

The resultant models of eolian bedform reconstruction draw upon the 

two fundamental aspects of bedform morphology: the hierarchy of 

erosional surfaces that separate the successive units in a sequence 

(bounding surfaces of Brookfield, 1977), and the deposits themselves. 

By noting, on a unit-by-unit basis, the geometry and internal 

characteristics of both the bounding surfaces and the stratification 

it is theoretically possible to characterize the succession of 

bedforms represented by a particular eolian sequence. 

As noted by Hunter and Rubin (1985), the tools exist whereby: 

(1) processes responsible for the development of bounding surfaces 

within a given sequence can be identified, (2) low-angle stratified 

deposits of dune aprons, interdunes, and sand sheets can be 

distinguished, (3) specifics of dune morphology can be outlined (i.e. 

the relative degree of curvature of the crestline determined, dune 
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height and width roughly estimated, and where compound bedforms are 

implied, the trend of the superimposed dune relative to the primary 

bedform can be derived) , (4) the role of secondary flow can be 

considered, from which generalizations concerning bedform dynamics 

might be made, and (5) where cyclic cross-bedding inferred to result 

from seasonal wind patterns is present, bedform migration rates can be 

estimated. 

Components of the model of eolian bedform reconstruction have 

each been documented and tested, but there lacks an updated 

application of all the available tools to an ancient eolian sequence. 

Hence, the objective of this work: to test the degree to which current 

theory can reconstruct and interpret preserved eolian deposits. 

Tools For Bedform Reconstruction and Interpretation - Within ancient 

eolian sequences cross-stratified sets are invariably separated from 

each other by subhorizontal bounding surfaces (Fig. IV-1). Present 

theory holds that first-order bounding surfaces (terminology of 

Brookfield, 1977) form primarily by dune migration and climb 

(Kocurek, 1981a, 1984; Rubin and Hunter, 1982, 1984; autocyclic 

hypothesis of Simpson and Loope, 1985). In contrast, regional 

bounding surfaces represent relatively isochronous deflated horizons 

that formed in response to "extra-erg events" such as climatic 

change, sea-level fluctuation, or erg migration (Loope, 1981, 1984; 

Kocurek, 1984; Talbot, 1985; super surfaces of Kocurek and Oakes, 

1985). The water table or any overlying resistant horizon or crust 

may have served as base level of deflation. Bedforms probably 
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Figure IV-1. Subhorizontal first-order bounding surfaces 

separating cross-bedded Units of the study site. 
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migrated across these surfaces at zero or slightly negative angles of 

climb (Rubin and Hunter, 1984). A complex sequence of amalgamated 

interdune deposits and lenses of cross-bedded dune sands has been 

interpreted by Simpson and Loope (1985) to represent a specific case 

where the angle of dune climb varied with a fluctuating sand supply. 

Overlying extradune deposits would, of course, indicate a change 

in the conditions of deposition and concurrent development of a 

regional bounding surface (e.g., Blakey and Middleton, 1983; Driese 

and Dott, 1984). Evidence of long-term exposure may also be used to 

help identify regional bounding surfaces. A brief hiatus in sand-sea 

deposition and the concurrent development of a regional bounding 

surface are suggested by enriched zones of fines, deflation lag, 

evaporites (or indications of their former presence) immediately below 

the truncation surface, and paleosol development (Loope, 1984; Rubin 

and Hunter, 1984, Talbot, 1985). Unfortunately, these structures are 

not always preserved, nor does their presence absolutely disqualify a 

first-order bounding surface interpretation (Rubin and Hunter, 1984). 

Because they develop in response to processes other than bedform 

migration, regional bounding surfaces do not show any directional 

relationship with the overlying strata. Relative to 

'paleo-horizontal', regional surfaces should generally lie flat or dip 

slightly basinward. Within a particular eolian sequence, they should 

consequently all be oriented in roughly the same direction, barring 

major changes in basin configuration. 

First-order bounding surfaces are suggested by a uniform 

cross-bed set thickness, and by the presence of thinly bedded 

interdune deposits (Kocurek, 1981a; Rubin and Hunter, 1982; Blakey 
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and Middleton, 1983; Talbot, 1985). Trough-shaped first-order surfaces 

are generated by migrating three-dimensional bedforms (McKee, 1979c) 

or by scour pits that, as they migrate laterally along the base of a 

lee slope, produce a scalloped geometry (Rubin and Hunter, 1983). 

The relationship of overlying foreset dip direction to 

first-order bounding surface orientation is very complex and remains 

poorly understood. For example, field measurements may show surfaces 

dipping upwind, downwind, or lying flat, because dunes climb at very 

low angles with respect to the depositional surface, which does not 

necessarily correspond to horizontal. Further complications arise 

from the lack of studies relating dune dynamics to bounding surface 

orientation. Bedform-climb has been documented (e.g. Kocurek, 1981a, 

b) , but present theory strictly applies only to transverse bedforms. 

If a directional relationship could be established, yet another 

criterion for distinguishing types of bounding surfaces, and possibly 

for interpreting bedform morphodynamics, might be found to exist. 

Second- and Third-order Bounding Surfaces - Second- and third-order 

bounding surfaces are comparatively steep, less extensive, truncating 

surfaces that may or may not be present within any particular set of 

eolian cross-strata. As superimposed dunes migrate down or across 

the lee-face of a large compound bedform or draa, second-order 

bounding surfaces are generated and compound cross-bedding is 

deposited (Brookfield, 1977; Kocurek, 1981a; Rubin and Hunter, 1983). 

In contrast, third-order or reactivation surfaces are found in 

both simple and compound cross-bedding, and develop in response to 

changes in wind velocity or direction or both (Brookfield, 1977; 
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Hunter and Rubin, 1983). If fluctuating flow conditions occur with 

any sort of regularity (for example, seasonal wind variability) cyclic 

cross-stratification will result. The observed cyclicity may consist 

of a conformable alternation of wind-ripple, grainflow, and possibly 

grainfall deposits (Hunter, 1977; Kocurek, 1981a; concordant cyclic 

cross-bedding of Hunter and Rubin, 1983). Alternatively, localized 

scour may generate reactivation surfaces and 'compound' cyclic 

cross-bedding that resembles compound cross-strata deposited by 

migrating superimposed bedforms. 

Hunter and Rubin (1983) present the most complete summary to date 

of the criteria by which second- and cyclic third-order bounding 

surfaces may be distinguished. Unless the bedform is highly sinuous, 

reactivation surfaces will develop along the entire width of the 

slipface, whereas the widths of second-order surfaces are limited by 

the dimensions of the superimposed bedforms, the subsets consequently 

appearing lenticular in transverse cross-section. In longitudinal 

cross-section, second-order surfaces are extensive relative to 

subset thickness because their length is a function of the migration 

distance of the superimposed bedforms. On the other hand, the length 

of reactivation surfaces is practically limited by the length of the 

reworked lee-face, and will appear much shorter relative to subset 

thickness. Evidence of periodically reversed winds likewise 

supports a fluctuating flow model and the presence of reactivation 

surfaces. Caution must be exercised, however, as features indicating 

reversed flow may also be produced by secondary currents generated on 

the lee-side of a compound bedform. 
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Interpreting Low-angle Stratification - Low-angle (̂ 215° eolian 

stratification (215 deg) may be deposited as sand-sheets, interdunes, 

or as dune aprons or plinths (Kocurek, 1985). Because sand-sheets 

form a distinct subenvironment typically at the erg margin, 

distinguishing these deposits carries important implications regarding 

ancient erg dynamics and morphology (e.g. Kocurek, 1981b; Ross, 1983; 

Porter, 1986). Guidelines for determining the depositional 

subenvironment of any low-angle-stratified sequence have been outlined 

by Kocurek (1985) and include the following key points: 

(1) Sand-sheet deposits commonly occur at the base, at the top, or 

laterally along the edge of an eolian sequence. Interdune deposits 

overlie first-order bounding surfaces and alternate with dune 

deposits. 

(2) The geometry of dune and interdune deposits vary predictably as a 

function of dune shape and migration patterns, whereas sand-sheets may 

occur as extensive deposits up to several meters thick. 

(3) Factors that promote sand-sheet development, such as a high water 

table, surface cementation or binding, vegetation, and coarse grain 

size (Kocurek and Nielson, 1986, a), likewise inhibit dune 

development. 

(4) Dune apron and plinth wind-ripple laminae dip up to 20-25°, show 

a marked parallelism within each package, and may include conformable 

grainflow and grainfall stratification. Conversely, sand-sheet and 

interdune deposits are gently-dipping (except where coarse-grained 

zibar deposits occur), typically irregularly laminated wind-ripple 

strata, that may show sedimentary structures reflecting moist or wet 

depositonal conditions. Finally, (5) interdune sands are bimodal 
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and are typically more poorly-sorted than dune deposits (McKee and 

Tibbitts, 1964; Folk, 1968; Wilson, 1973; Ahlbrandt, 1979). 

Also, a trend from dunes to zibars to granule ripples 

accompanies increasingly coarser grain size for eolian sediments. 

Zibars are slipfaceless, low-relief, coarse-grained bedforms common to 

sand-sheet and interdune corridor environments (Folm, 1960; Nielson 

and Kocurek, 1985). 

Bedform Reconstruction Sensu Stricto - Dune Morphology - The character 

of the deposits left by different dune types is a complex, 

interrelated function of both bedform morphology and dynamics - the 

response of a dune to primary and secondary airflow patterns. 

Separate discussions of these two factors is therefore somewhat 

artificial, but at this early stage of understanding, is nonetheless 

warranted. As it stands, the model of bedform reconstruction sensu 

stricto supplies the tools with which crestline curvature, dune 

dimensions, and draa geometry can be approximated. 

Crestline Curvature - Simple cross-bedded sets in an eolian sandstone 

may represent the basal portions of barchan, crescentic ridge, linear, 

star, blowout, or parabolic dunes (descriptive classification of Breed 

and Grow, 1979, differentiating isolated barchans from crescentic 

ridges; McKee, 1979b, c). Recognizing a particular morphology is 

basically an issue of determining the degree of crestline sinuosity 

and the number and relative orientation of slipfaces (McKee, 1979a; 

Ahlbrandt and Fryberger, 1982). 
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The degree of curvature of the original bedform is reflected in 

bounding surface and interdune geometries, in the degree of foreset 

dispersion, and in the distribution of stratification types. Tabular 

or sheetlike interdune deposits imply migrating linear (i.e. 

straight-crested) bedforms, while lensoidal, broadly lenticular, and 

irregular, interdune deposits suggest barchan, crescentic ridge, and 

star dune shapes respectively (Kocurek, 1985). The degree of foreset 

dispersion across a single cross-set has long served as the classic 

criterion (Reiche, 1938; McKee and Tibbitts, 1964; Fryberger, 1979; 

McKee, 1979c). The spread of cross-strata dip directions is a very 

useful tool for determining crestline sinuosity, but determining the 

number of slipfaces using the same criterion may prove misleading, 

owing to the potentially complex nature of bedform dynamics (Rubin and 

Hunter, 1985). The final tool, the distribution of stratification 

types, is the single most useful criterion for estimating not only 

dune shape but also bedform dynamics. 

The stratification styles present within a preserved set provide 

a map of the surface processes acting across the base of the original 

bedform (Hunter, 1977, 1981; Kocurek, 1981b; Kocurek and Dott, 1981). 

See Figs. IV-2 through IV-4. Grainflow cross-strata are deposited by 

avalanching down the active slipface of the dune. Wind-ripple strata 

occur in areas exposed to moderate wind stress on the stoss slope, on 

the flanks of crescentic dunes, and at the base of the lee-face as an 

apron. Thin wind-ripple laminae may also be found separating 

grainflow sets, marking brief periods of reworking between avalanche 

events (Kocurek and Dott, 1981). Finally, grainfall deposits 

represent fallout from suspension onto portions of the dune adjacent 
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Figure IV-2. Grainflow and wind-ripple deposits on a small (approx. 

6 m) slipface, Algodones Dune Field, California. The 

distribution of stratification types across an eolian 

bedform provides a map of local surface processes. 



179 

Figure IV-3. Grainflow stratification in the Page Sandstone at the 

study site. Packages of strata 20 to 40 cm thick are 

separated by thin, resistant wind-ripple laminae Table 

IV-2). Staff is marked in one-foot increments. 
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Figure IV-4. Wind-ripple stratification in the Page Sandstone at the 

study site. Note the inverse grading of thin wind-

ripple laminae. 
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to the active slipface where wind stress was too weak for ripple 

growth. They are, however, generally limited to preserved deposits of 

smaller dunes and are rarely observed in the eolian record (Hunter, 

1977, 1981). 

Unless a lateral transition across a set from e.g. grainflow to 

wind-ripple deposits marks fluctuating flow conditions with time 

(concordant cyclic cross-bedding of Hunter and Rubin, 1983), a 

nonlinear dune shape may be invoked as an explanation. Curved 

bedforms exhibit complicated secondary flow patterns across their 

lee-face (Havholm, 1986; Hunter, 1981), producing an equally complex 

distribution of surface processes. For example, relatively protected 

areas along a slipface (such as the saddle of a crescentic bedform) 

may escape reworking, while adjacent peaks (or alternatively, flanks) 

might show a highly wind-rippled surface as grainflow and grainfall 

deposits are reworked. As these peaks and saddles (convex and concave 

portions of the lee-face respectively) migrate along the crestline in 

the course of bedform evolution (Bagnold, 1941; Tsoar, 1983), an 

alternating series of grainflow and 'reworked' grainflow sets should 

be deposited and possibly preserved. 

Dune Dimensions - If the quality and the extent of an exposure are 

adequate, original dune width and wavelength may be directly measured; 

Kocurek (1981b) measured lenticular interdune deposits perpendicular 

to the inferred migration direction. He determined that crescentic 

bedforms of the Entrada Sandstone were approximately 80 meters wide. 

In the same study, the wavelength (1.6 km) was assumed equal to the 

distance, measured parallel to migration direction, between two 
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successive first-order bounding surfaces observed to climb and 

intersect a horizontal "time line". 

Unfortunately, such measurements cannot always be made. 

Assessing original dune dimensions therefore relies heavily on 

empirical relationships and qualitative observations. Work by Breed 

and Grow (1979) forms the framework with which dune width, length, and 

wavelength may be estimated. They show that modern dunes exhibit a 

predictable scale of proportions regardless of geographic location. 

If one of these dimensions can be determined independently, the 

others can be approximated by applying the empirical formulas that 

express these relationships (see Breed and Grow, 1979). Similarly, 

Wilson's (1972, 1973) observations of modern crescentic draas revealed 

a 1:15 ratio of height to wavelength. Applied to cross-bedded sets of 

the Entrada, Kocurek (1981b) estimated an original draa height of 110 

meters. Modern draas range from 20 to 450 meters high (Wilson, 1973; 

Brookfield, 1984). 

The direct relationship of dune height to individual grainflow 

lamina thickness provides a highly practical, independent means of 

estimating original dune height (Hunter, 1977, 1981; Kocurek and Dott, 

1981). Grainflow lamina thickness remains fairly consistent across a 

cross-bedded set and is often easily measured. Although the exact 

function remains unknown, an empirical formula derived by Kocurek and 

Nielson (1986b) gives reasonable estimates of original dune height. 

In cases where quantitative estimates cannot be made, the 

distribution of stratification types across a set can serve as a 

qualitative guide to ancient bedform size; larger dunes are indicated 

by a lack of grainfall deposits, wide grainflow sets as observed in 
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transverse cross-section, and a relatively large scale distribution 

of stratification types (Hunter, 1977, 1981; Kocurek and Dott, 1981). 

In general, draas (compound or complex bedforms of Breed and Grow, 

1979; McKee, 1979) are larger than simple dunes (Wilson, 1972; 

Kocurek, 1981b) . Compound cross-bedding therefore also suggests 

greater primary bedform size. 

Draa Geometry - The orientation of second-order bounding surfaces is 

controlled by the draa slipface and by the angle of climb of the 

migrating superimposed dunes. Because the angle of climb is typically 

small, second-order surfaces dip almost parallel to (and therefore 

approximate) the dip direction of the primary slipface. Cross-bedding 

orientation reflects the combined influence of the migration direction 

of the superimposed dune and gravitational forces working on the steep 

draa slipface. Foresets consequently dip at an oblique angle relative 

to both the primary and superimposed lee-face dip directions (Rubin 

and Hunter, 1983; Havholm, 1986). The orientation of the superimposed 

bedforms on the draa must therefore be determined indirectly. This 

trend is approximated by the line of intersection between the planes 

defining second-order bounding surface orientation and foreset dip 

direction (Rubin and Hunter, 1983). Correcting for this divergence 

gives a more accurate estimate of superimposed dune orientation. 

As documented by Havholm (1986), draas usually exhibit marked 

morphological variation laterally across their lee-face. Figure IV-5 

shows the lee-face of a transverse draa. Within one kilometer, 

areas lacking superimposed dunes occur adjacent to portions of the 
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Figure IV-5. The lee-face of a transverse draa and a vegetated 

interdune corridor, Algodones Dune Field, California. 

Height of slipface is roughly 30 m. and is scarred by 

dune-buggy tracks. Areas dominated by avalanche 

deposition down the main slipface (left and right sides 

of the photo) commmonly occur adjacent to areas of the 

lee-face where superimposed dunes migrate alongslope 

and obliquely downslope (center of photo). 
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slipface where smaller dunes are migrating both alongslope and 

obliquely downslope (Havholm, 1986). Interpretations of ancient draa 

sequences have not yet considered this lateral variation. Indeed, the 

distribution of stratification types that would result from such a 

complex configuration might easily be misinterpreted as a series of 

simple dunes and draas of varying orientations. More studies of the 

internal structure and dynamics of draas are required before 

reconstructions can be made with any degree of confidence. 

Nonetheless, careful observations of bounding surface orientation and 

the details of stratification may render at least a gross 

interpretation. 

Bedform Dynamics and the Relative Importance of Secondary Airflow -

The interdependence of dune shape and relative orientation to primary 

and secondary airflow patterns, constitutes the framework from which 

dynamic and depositonal models for the various dune types are derived. 

The morphodynamic classification proposed by Hunter (1983) and others 

is based on the angular difference between average dune trend and 

long-term resultant sand-transport direction. Initial boundary 

conditions established by the authors define transverse and 

longitudinal dunes as those oriented within 15 degrees perpendicular 

and parallel to the transport direction, respectively, with those in 

intermediate postions termed oblique. Complex flow across the 

lee-face of draas justifies separate consideration of compound 

bedforms. Details of stratification are the key tools by which these 

four dune types might be recognized in ancient sequences. Bounding 

surface orientation relative to foreset dip direction for different 
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dune types has not been studied, but theoretically, a useful 

relationship should exist. 

Transverse Dunes - Transverse dunes develop and migrate in response to 

unimodal wind regimes (Fryberger, 1979; Wasson and Hyde, 1983). 

Because their crests are perpendicular to a primary wind direction 

that exhibits low directional variability, secondary airflow across 

the lee face consists primarily of weak, variable back-eddy currents 

(Hunter, 1981). As a result, transverse dunes do not have significant 

wind-rippled aprons at the base of the active slipface. For reasons 

as yet unknown, straight-crested transverse bedforms are not a stable 

configuration. To some degree, all transverse dunes are crescentic or 

barchanoid (Breed and Grow, 1979; Hunter, 1981; Rubin and Hunter, 

1985). Curve width remains fairly constant along a transverse 

crescentic ridge, but varies between dunes of different ergs. Local 

areas of weak, variably directed, secondary airflow will consequently 

develop on the lee face of these curved bedforms (Hunter, 1981). 

As a result of the primary and secondary airflow patterns briefly 

described above, transverse dunes should deposit units: (1) that 

reflect a unimodal wind regime, including a relative absence of both 

reactivation surfaces and oppositely dipping slipface deposits, (2) 

that consist primarily of grainflow deposits extending to the base 

with minimal apron development, although wind-rippled flank deposits 

may be present, (3) that show evidence of crestline curvature, 

including a relatively broad spread of strata dip directions (Hunter, 

1981; Rubin and Hunter, 1985), and (4) whose first-order bounding 

surface can be shown to dip upwind relative to the depositional 
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surface (Kocurek, 1981a). Because it is relative to the depositional 

surface and not to 'paleo-horizontal', the observed dip direction of 

the first-order surface may parallel or may oppose the migration 

direction (which equals the foreset dip direction on transverse 

dunes), or it may rest flat. 

Oblique Dunes - A dune crestline oriented obliquely to the resultant 

sand-transport direction may reflect any one of a number of 

conditions. The bedforms may be out of equilibrium with the local 

wind patterns, or alternately, may represent a stable configuration 

that is maintained by secondary flow. Lateral variations in dune 

height may rotate a dune to an oblique position by producing local 

changes in wind speed and direction (Rubin and Hunter, 1985; Havholm, 

1986). Variable wind patterns may also effect an oblique orientation. 

Hunter and others (1983) observed that oblique dunes in Oregon are 

oriented exclusively by the stronger component of a bimodal wind 

regime. Winds blowing from the other prominent direction are too weak 

to control dune trend, but are persistent enough to influence the 

resultant sand-transport direction. 

By virtue of their non-transverse orientation, the lee faces of 

oblique dunes are characterized by alongslope-directed secondary flow, 

which strengthens as primary winds intersect the crest at angles 

approaching parallel (Tsoar, 1983; Rubin and Hunter, 1985; Fig. IV-6). 

The strong component of alongslope flow locally diverts the 

sand-transport direction and reworks slipface deposits to produce a 

thick wind-rippled apron. Any morphological features present on the 
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Figure IV-6. Primary and secondary airflow across an obliquely-

oriented dune, Oregon coast, July 1978. Hunter (1981) 

measured wind directions both directly and indirectly, 

by noting wind-ripple orientations. Note the dominant 

alongslope component of secondary airflow across the 

dune's lee face. 
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lee face of an oblique dune (e.g. scour pits, superimposed bedforms) 

should migrate preferentially alongslope (Rubin and Hunter, 1985). 

Finally, obliaue dunes tend to show straighter crests than transverse 

forms because secondary flow reworks the slipface (Hunter et al, 

1983). 

Alongslope-directed secondary flow figures prominently in 

dictating the character of the deposits left by migrating oblique 

dunes. Reactivation surfaces and other indicators of a variable wind 

regime may be comparatively common, although strata should exhibit a 

unimodal dip pattern. Wind-ripple-stratified apron deposits comprise 

most (if not all) of the preserved remnants, and indications of 

crestline sinuosity should generally be absent. For example, the 

straight-crested morphology of oblique dunes relative to transverse 

forms results in a comparatively tight distribution of cross-bed dip 

directions (Hunter et al, 1983). Finally, the relationship of 

first-order bounding surface orientation to foreset dip direction for 

oblique dunes has not been documented, but it is not an unreasonable 

conjecture that an angular divergence exists. 

Longitudinal Dunes - Longitudinal dunes parallel the long-term 

sand-transport direction and are generally associated with variable 

wind regimes (Hunter et al, 1983; Fryberger, 1979; Tsoar, 1983). 

Morphologies range from straight-crested forms typified by the "seifs" 

of Australia (Folk, 1971) to more sinuous shapes {e.g. longitudinal 

dunes of Algodones dune field; Nielson, 1986). 

Considering their common occurrence in modern ergs, anomalously 

few eolian sandstones are interpreted as having been deposited as 



190 

longitudinal dunes. Although some are non-depositional features (for 

example, helical flow has cut into fluvial sediments to form the siefs 

of Australia; Folk, 1971), it is likely that their deposits are not 

being recognized because the original criteria for identification are 

inaccurate (Rubin and Hunter, 1985). Recent studies have, however, 

shaped a refined model of stratification that should help to identify 

preserved remnants of longitudinal bedforms. Rubin and Hunter (1985) 

argue that longitudinal dunes must migrate laterally, unless seasonal 

sand-transport directions perfectly balance against a long-term 

transport direction that is exactly parallel to the dune crest. 

Observations by others show that alongslope-directed flow commonly 

reworks the slipfaces of longitudinal dunes to produce a thick, 

well-developed, wind-rippled apron (Hunter, 1981). Finally, complex 

airflow patterns across many longitudinal bedforms result in an 

equally complex distribution of surface processes (Nielson, (1986). 

From these contentions, it follows that typical longitudinal dune 

deposits are composed primarily of moderately to gently dipping 

wind-ripple strata that exhibit a unimodal pattern of cross-bed dip 

directions (Rubin and Hunter, 1985). Trenches of longitudinal dunes 

in the Algodones dune field confirm, at least locally, a unimodal 

distribution (Nielson, 1986). Nonetheless, where sinuous crests 

and/or highly variable wind patterns are implied, a complex 

distribution of stratification types and orientations occur, and 

reactivation surfaces might be common (Nielson, 1986) . As with 

oblique dunes, the directional relationship between first-order 

bounding surface and cross-stratification is not known, but theory 
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suggests a slight angular divergence. 

Draas - Because of their larger size and greater complexity, draas 

behave differently than their simple counterparts. A study by Havholm 

(1986) of the morphodynamics of a transverse draa reveals two details 

that should be kept in mind when reconstructing and interpreting 

ancient eolian deposits. Transverse draas (i.e. compound or complex 

bedforms that trend normal to the resultant sand-transport direction; 

Hunter and others, 1983) associated with variable wind regimes may 

exhibit a well-developed component of lee-side flow that parallels 

the main crest. Aerodynamically then, these draas more closely 

resemble simple oblique dunes than they do transverse forms (Havholm, 

1986). In a compound cross-bedded sandstone, evidence that 

superimposed dunes systematically migrated alongslope does not, 

therefore, automatically eliminate a transverse draa interpretation. 

Secondly, Havholm notes a possible relationship between dune height 

and the presence or absence of a basal apron. The great height of 

some draas may effectively limit the amount of sand supplied to the 

lee face, thereby restricting apron development. Moreover, wind 

velocities in the lee of large draas are considerably weaker, which 

would likewise prevent reworking of slipface deposits into 

wind-rippled aprons. Such observations in modern environments 

emphasize both the complexity of eolian depositional environments and 

the limited interpretive resolution of ancient sequences. 

Estimating Bedform Migration Rates - When cyclicity observed in a 

cross-bedded sandstone can be attributed to seasonal fluctuations, a 
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quantitative estimate of the annual migration rate of the ancient 

bedforms may be made (Hunter and Rubin, 1983). Care should be taken 

to assure the reasonableness of an estimate; measurements taken in 

modern eolian environments indicate that large dunes migrate slowly -

typically a few tenths of a meter per year (Wilson, 1973; Hunter and 

Rubin, 1983; Havholm, 1986). Factors that control the rate of dune 

advance include prevailing wind velocities and variability, as well as 

dune size, shape, and relative orientation. 

The Study Site Location - The study site is located in the Glen Canyon 

National Recreation Area near the town of Page, Arizona (Fig. IV-7). 

A knob of weathered sandstone approximately 36 meters high, 

2 
extending over a 0.1 km area, was specifically chosen for its 

unobstructed, three-dimensional exposure (Fig. IV-8). Deposits of the 

Page Sandstone compose the knob and nearby buttes and mesas. The type 

section for the Page is found immediately adjacent to the study area 

on Manson Mesa. Comparing the height of the knob with the total 

thickness of the type section, the uppermost 18 meters of Page 

Sandstone appears to have been eroded from the study site. 

Stratigraphic Setting of the Page Sandstone - The Page Sandstone was 

first described by Peterson and Pipiringos (1979) as a cliff-forming, 

cross-bedded, quartzose sandstone exposed in southern Utah and 

northern Arizona. Tabular- and wedge-planar cross-stratified sets 1 

to 6 meters thick are the predominant features of the formation, 
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A-complex (Table IV-1). 
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although trough-cross-bedding, horizontal lamination, and interbedded 

siltstones also occur (Blakey et al., 1983). 

The J-2 unconformity (also known as the chert-pebble 

unconformity) separates the Early Jurassic Navajo Sandstone from the 

overlying Middle Jurassic Page and the Middle to Upper Jurassic 

Carmel Formations. Extending across the Western Interior of the 

United States, J-2 is marked by abundant chert pebbles and by 

dessication features that exhibit a polygonal plan-view geometry 

(Pipiringos and O'Sullivan, 1979; Kocurek and Hunter, in press; Fig. 

IV-9) . Up to 11 meters of relief on the surface has been observed 

north of the study area. Smaller-scale irregularities of a meter or 

less also occur, suggesting that the eroded top of the Navajo was 

fairly well lithified when the sands of the Page were deposited 

(Peterson and Pipiringos, 1979). 

To the northwest, sandstones, siltstones, and evaporites of the 

Carmel Formation interfinger with the Page Sandstone. The Judd Hollow 

tongue of the Carmel extends into the Page as far southeast as the 

town of Page in the vicinity of the study area (Caputo, 1980; Blakey 

et al., 1983). 

Paleogeographic Setting of the Page Sandstone - Middle Jurassic 

paleogeography of the Colorado Plateau consists of shallow marine 

conditions to the north and west, and sabkha and erg environments 

inland to the southeast (Blakey et al, 1983; Fig. IV-10). The area 

was located in the trade-wind belt (between 10 and 20 deg. north 

latitude), and so was probably characterized by hot, dry conditions 
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Figure IV-9. The J2 surface adjacent to the northwest wall of the 

study site. The distinctive polygonal pattern produced 

by dessication structures averages 2 meters wide 

(Kocurek and Hunter, 1986). 
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PALEOGEOGRAPHY 
MIDDLE PAGE SANDSTONE 

(Blakey et. al., 1983) 

Figure IV-10. Paleogeographic setting during the Middle Jurassic, 

during Page deposition. Study site is located near the 

town of Page. From Blakey et al. (1983). 
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and prevailing winds from the north and northeast (Poole, 1962; 

Kocurek and Dott, 1983). 

A minor transgression earlier in the Jurassic reduced the amount 

of sand supplied to the regionally extensive Navajo erg, forcing it to 

retreat southward. The Page Sandstone represents a northward 

progradation of this sand-starved Navajo erg (Kocurek and Dott, 1983). 

Sands of the Page were deposited atop a deflated tidal flat as 

sand-sheets, dunes, and interdur.es. In the course of Page deposition, 

the study site continued to be located only a short distance from 

restricted marine or sabkha conditions. Polygonal fractures, formed by 

thermal contraction of exposed evaporite surfaces, occur along the J-2 

surface and locally along four other horizors within the Page 

Sandstone, Fig. IV-11. Moreover, extra-erg deposits occur in the 

general study area as thin beds of brown sandstone, mudstone, and 

limestone, recording minor sea-level fluctuations and brief periods 

of Page erg retreat (Blakey et al, 1983). 

Method of Study - The study knob was mapped using a Lietz SDM3E 

electronic tacheometer, a surveying instrument that measures travel 

times of an oriented laser beam to calculate absolute and relative 

distances. Five-hundred eighty-eight points along first- and 

second-order bounding surfaces were marked for surveying. Each point 

was then assigned three coordinates defining its relative position 

north-south, east-west, and vertically x, y, and z coordinates, 

respectively, Fig. IV-12. Coordinates calculated and displayed by the 

http://interdur.es
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Figure IV-11. Cross-sectional view of a polygonal fracture, Page 

Sandstone. The fracture is found at the study site 

along the bounding surface underlying deposits of unit 

C13 (Table IV-3). Staff is marked in one-foot 

increments. 
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tacheometer are relative to the instrument's location. Because the 

tacheometer had to be set up at numerous sites around and on top of 

the knob, the measured Values had to be adjusted to a single, 

arbitrary reference point. This was achieved by 'shooting' some of 

the points iroi more than one cacheometer site. An estimated 

ii.easuremenL error 01 10-20 centimeters was determined by noting, the 

discrepancies that arose while normalizm6 the data set. 

A pianimetric base map showing bounding surfaces was constructed 

by plotting the xy coordinates at a reasonably large scale and 

connecting the appropriate points (Fig. IV-13). For cross-sectional 

views, xy coordinates were projected from their pianimetric position 

onto one of five linear trends that together approximate the shape of 

the knob. Their positions along the lines onto which they fall define 

a single xy coordinate, which was then plotted against the original z 

(height) coordinate. Accurate cross-sectional base maps of first- and 

second-order bounding surfaces result by again connecting the 

appropriate points. 

During subsequent field visits, these base maps were used to 

locate each of 718 strike and dip measurement sites, and to sketch in 

the distribution of the stratification types and reactivation 

surfaces. Before the stratification could be added to the final maps, 

the apparent dips in the plane of the appropriate cross-section had to 

be calculated for each mapped measurement. The resultant 

cross-sections, shown in Fig. IV-14 through IV-17, are very accurate 

quantitative reconstructions. In some areas where bounding surface 

geometry appears distorted, data points were taken farther up or down 



Lietz SDM3E Electronic Tacheometer 

Figure IV-12. Set-up of the Leitz tacheomter, and its relationship to the coordinates 

which it calculates. 

r-o 
o 
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Data points 
First- and second-order bounding 

surfaces 

Polygonafly fractured surfaces 

J2 unconformity 

SOUTH WALL 
100m. 

Figure IV-13. Pianimetric view of the study area, showing first- and 

second-order bounding surfaces. Walls correspond to 

cross-section orientations. 



NORTHWEST WALL (N48E) 

EXPLANATION 

Data points 
First- and second-order bounding surfaces 
Reactivation surfaces 
Grainflow stratification 
Wind-ripple stratification 
Polygonally fractured ho 

Figure IV-14. A reconstruction of the northwest side of the study knob. The key for this figure also 

applies to the other cross-sections, Fig. IV-15 through IV-17. 
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SOUTHWEST WALL (N24W) 

EXPLANATION 

Data points 
First- and second-order bounding surfaces 
Reactivation surfaces 
Grainflow stratification 
Wind-ripple stratification 
Polygonally fractured horizons 

SOUTH WALL (N90E) 

Figures IV-15a, b. Reconstructions of the southwest and south sides of the study knob, 
O 



SOUTHEAST WALL (N41E) 

EXPLANATION 

Data points 
First- and second-order bounding surfaces 
Reactivation surfaces 
Grainflou stratification 
Wind-ripple stratification 
Polygonally fractured horizons 

N3 

O 

Figure IV-16. Reconstruction of the southeast side of the study knob. 



NORTHEAST WALL (N32W) 

EXPLANATION 

Data points 
First- and second-order bounding surfaces 
Reactivation surfaces 
Grainflow stratification 
Wind-ripple stratification 
Polygonally fractured horizons 

Figure IV-17. Reconstruction of the northeast side of the study knob. 

54 tests (Tables IV-1 through IV-5). 

O 
ON 
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the dipping bounding surface around topographic spurs or in coves, or 

near the top of the knob where there is a prominent flat-lying ledge 

(Fig. IV-14). 

To determine bounding surface orientations, trend surface 

analysis was applied to the normalized data set. First-order trend 

surface analysis fits a planar surface to a given set of measurements 

and reports the residual, or deviation of the calculated from the 

measured values (Chorley and Haggett, 1965). For each case, the level 

of significance was determined to assess whether the planar surface 

accurately described the bounding surface; at least 95% of the 

variation was explained in 39 out of 54 tests (Tables IV-1 through 

IV-5). From the equations defining each plane, the strike and dip of 

the bounding surfaces were calculated (See Appendix). To correct for 

the post-depositional dip component, each surface was rotated about a 

plane dipping 1.3 degrees N9W. This plane equals the average 

orientation of 3 of the 4 horizons within the Page Sandstone that 

locally exhibit polygonal fractures (Fig. IV-11); data for the 

uppermost, polygonally-fractured horizon do not significantly define a 

planar surface. These 3 reference horizons are very nearly parallel 

and are interpreted to represent flat-lying 'Stokes-type' bounding 

surfaces, formed by water table-controlled deflation (Stokes, 1968). 

Rotating the reference surfaces about the calculated mean yields a 

total variation in the dip angle of 0.16 degrees. Any surface 

calculated to dip at an angle less than or equal to this value is 

therefore statistically lie flat. 

Where the size of the data set for a bounding surface is 

sufficiently large, data points were also fit to a second-order 
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(quadratic) surface. The calculated levels of significance were 

compared to the first-order results; 21 of the 32 bounding surfaces 

were significantly better described by quadratic surfaces than by 

planar surfaces, indicating a locally ronplanar geometry (see Davis, 

1973 for a description of the procedure). However, the accuracy of 

the strike and dip calculations is inferred from the significance of 

the first-order results. 

In most cases, the average stratification dip direction 

reported in Tables IV-1 through IV-5 is the calculated mean for each 

unit. The degree of foreset dispersion is indicated by the level of 

significance, which is based on the standard deviation. Stereonet 

plots on a unit-by-unit basis also convey a sense of the degree 

of directional spread (Figs. IV-18a, b). Where a bimodal distribution 

of cross-bed data suggests a nonlinear dune shape, the average dip 

direction of each mode is calculated separately. The reported 

orientation is the mean of these two averages. In cases where the 

stratification dip direction rotates along the length of a unit, from 

gently dipping wind-ripple laminae to gradually steepening grainflow 

deposits, the orientation of the most steeply dipping foresets better 

approximates flow conditions, and so is reported instead of the mean 

(Reiche, 1938; Tables IV-1 through IV-5). 

In conjunction with eolian reservoir and fluid-flow modelling 

studies, the study knob was drilled, logged, and cored (Goggin et al, 

1986; Chandler and Kocurek, 1986). Many of the bounding surfaces and 

stratified sets seen in the core can be correlated with the mapped 

units (Fig. IV-19), although a certain degree of heterogeneity and 

measurement error is apparent. Lacking the resolution of the main 
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Table IV-1. Bounding surface and stratification data for units of the A-complex. In last column, these 

values in parentheses are calculated using insufficient data. Where a bi- or trimodal 
o 

distribution of stratification dip directions is indicated (A4), the mean dip direction of 

each mode was calculated separately. 



UNIT 

61 

B2 

B3 

B4 

B5 

B6 

B7 

B8 

8 9 

BIO 

B l 1 

B I 2 

6 1 3 

B14 

B I S 

816 

B I 7 

B I S 

B I 9 

(MO 

B 2 I 

B22 

B23 

8 2 1 4a 

B 1 a 

62 a 

B3e 

BOUNDING SURFACES ( B S ) - TREND SURFACE ANALYSIS 

Sample s i t e 

0 

6 

6 

4 

4 

10 

L e v e l of S ign i f icance 

1st o r d e r 2nd o r d e r 

9 9 . 5 » 

95X 

<75X 

7 5 J 

S S I 

9 9 . S I 

<75X 

9 9 . S I 

99 51 

< 7 5 I 

9 9 . 5 1 

9 9 . 5 1 

Dip d l r e c t o n , dip 

b e f o r e r o t . a f t e r r o t . 

5 8 , 5 . 2 5 8 , 4 . 7 

J 4 2 , 0 . 8 1 6 2 , 0 . 5 

7 9 , 2 3 . 5 7 9 , 2 3 . 5 

7 8 , 3 5 . 3 7 8 , 3 5 . 2 

2 2 4 , 1 9 . 9 2 2 4 , 19 . 1 

2 1 7 , 2 7 . 2 2 1 7 , 26 J 

3 8 , 7 . 2 3 8 , 6 . 4 

4 6 , 1 9 . 0 4 8 , 1 8 . 3 

1 0 5 , 5 . 9 105, 5 . 4 

1 1 2 , 1 6 . 2 112 , 1 5 . 7 

119 , 1 2 . 4 1 19 , I I 9 

2 1 6 , 1 5 . 4 2 1 6 , 14 5 

S a m p l e s l i e 

3 

8 

1 1 

14 

1 

5 

CROSSSTRATIF ICAT IOM ( X B ) 

L e v e l of S ign i f icance 

99 5J 

99 51 

, 9 9 1 

9 9 . 5 1 

9 9 . 5 1 

9 9 . 5 1 

99 51 

9 9 . 5X 

9 9 1 

9 9 . 5 1 

m a x i m u m v a l u e used 

9 7 . 5 » 

| 99 5» 

9 9 . 5X 

^ m a x i m u m v a l u e used 

m a x i m u m v i l u e used 

99 51 

, 99 51 

9 5 1 

99 SX 

99 5X 

99 5 1 

99 5« 

90 X 

97 51 

99 51 

99 5J 

99 51 

Mean dip d i r e c t i o n 

157 

1 I I 

135 

117 

125 

123 

145 

105 

127 

107 

( 1 2 2 ) - c u r v e d 

183 

183 

191 

( I 8 B ) 

( 180 ) - c u r v e d 

142 c u r v e d 

98 

141 c u r v e d 

126 c u r v e d 

1 13 

et> 
68 

100 c u r v e d 

1 72 

108 

21 1 

Dip range 

25 

11 -24 

25 

12 -24 

1 1 - 1 8 

1 2 1 4 

6 - 1 6 

3 - 8 

1 7 - 2 6 

6 IS 

4 1 5 

8 16 

6 - 2 6 

1 1 - 2 7 

5 24 

4 27 

7 25 

1 17 

12 14 

9 13 

6 27 

9 2< 

24 28 

1 28 

18 26 

8 

9 2 1 

C a l c u l a t e d t r e n d A n q i t h i j l l l Let 

of supei Impose ' ! 

bedfoi ms 

( , ' 6 ) 

( 6 1 ) 

( 1 6 4 ) 

( 1 5 0 ) 

166 

p r i m a r y s l lpface 

( ( 2 1 6 ) ) 

( ( 2 3 2 ) ) 

( 105) 

( 162) 

( 122) 

p r i m a r y 1llf, | l t « 

I 1 / 1 ) 

BS an 1 Mil fi 

Inij i>i.e.1 ilnnes 

( l o t ) ) 

( 15) 

( 5 ) 

( 18) 

H 6 

< ( « < ) ) 
( ( «f ) ) 

(H6 ) 

( . "> 

( 8 / ) 

( 491 

Table IV-2. Bounding surface and stratification data for units of the B-complex. The calculated trends of 

superimposed bedforms (second column from the right) were determined using methods suggested 

by Rubin and Hunter (1983). Those values in a double set of pnrenthi'ses used n bounding 

surface dip direction that deviates 180 degrees from the bounding surface dip direction 

calculated by trend surface analysis. 
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Table IV-3. Bounding surface and stratification data for units of the C-complex. In the last column, these £ 

values in parentheses are calculated using insufficient data. 
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Table IV-4. Bounding surface and stratification data for units of the D-complex. In last the column, 
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UNIT BOUNDING SURFACES (BS) - TREND SURFACE ANALYSIS ( ISA) 
Sample size Level of Significance Dip direction, dip 
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Table IV-5. Bounding surface and stratification data for units of the E-complex. In the last column, 

these values in parentheses are values calculated using insufficient data. 
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Figures IV-18a. Stereonet plots of stratification and bounding 

surface dip directions for units of the study area. 
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Figures IV-18b. Stereonet plots of stratification and bounding 

surface dip directions for units of the study area. 
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Figure IV-19. Description of the core retrieved from the study site, 

Jaruary 1986. For comparison with the results of trend 

surface analysis, the depth reading on the core and of 

the regional bounding surface associated with the 

extra-erg deposits of the Carmel Formation (13) was set 

equal to the depth as predicted by trend surface 

analysis. 
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data set, depth measurements from the core could not be used directly 

in trend surface analysis. Core data did, however, support the 

findings of the study. 

The Study Knob Reconstructed - A total of 92 depositional units were 

identified at the stud}' site. Details of their stratification, and of 

the bounding surfaces separating them are summarized in Figs. IV-14 

through IV-17 and in Tables IV-1 through IV-5. The entire sequence 

can be divided into five subfacies or complexes. Differences in 

depositional style distinguish the subfacies, which form the 

framework for the final interpretation. Units are prefixed 

with the letter corresponding to the complex to which they belong. 

Where stratigraphic relationships cannot be resolved, a subset of one 

or more units identified with lower case letters is established (for 

example, Unit Ala forms a part of the A-complex, but it cannot be 

correlated with other units of the same complex; Figs. IV-14, IV-17). 

A-Complex - The A-complex consists predominantly of reddish-brown 

wind-ripple strata deposited directly on the J2 unconformity (Figs. 

IV-14, IV-20). Twelve of the 13 units of the complex are confined to a 

local depression in the J2 surface, where polygonal fractures are 

notably conspicuous (Fig. IV-21). They are distinguished from 

overlying units by their darker color, greater degree of cementation, 

and their coarser, bimodal texture; maximum grain size approaches 1 mm. 

A8 holds distinction as the single occurrence of grainflow deposits in 

this basal sequence (Figs. IV-14, IV-20), where roughly 30 cm. thick 
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Figure IV-20. The wind-ripple-stratified deposits of the A-complex, 

northwest wall of the study site. The gray, lens-

shaped unit is the single local occurrence of grainflow 

stratification within the A-complex (A8; Table IV-1). 

Unit All, which caps the A-complex, is the set of 

relatively steeply-dipping, striped strata in the 

middle of the photo, and are interpreted to have been 

deposited by migrating zibars. 
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Figure IV-21. Structure contour map of the J2 surface at the study 

site. The thickness of the overlying A-complex is 

represented by the shaded bands. Deposits of the 

A-complex appear to be restricted to a local depression 

in the J2 surface. 



220 

couplets of coarser- and finer-grained strata bounded by thin wind-

ripple laminae define its cyclic depositional character. 

Proceeding upwards through the complex, wind-ripple deposits very 

generally exhibit an improved sense of directionality and increasingly 

steeper dip angles. Accompanying this trend, the mean stratification 

dip direction of successive units sweeps from the southwest to the 

southeast (Fig. IV-18a, Table IV-1). Within each unit, wind-ripple 

laminae show a marked parallelism, and dip in the same direction or 

slightly oblique to the corresponding bounding surfaces. 

P-Complex - The B-complex is a compound cross-bedded set that locally 

truncates the A-complex and rests on the elevated portion of the J2 

surface (Figs. IV-16, IV-17). Within the sequence, three 'episodes' 

occur, where units dominated by steeply dipping grainflow give way to 

units composed exclusively of gently dipping wind-ripple 

stratification (Bl through B8, B9 through B12, and B16 through B20; 

Table IV-2). Individual grainflow strata are particularly thick- up 

to 11 cm — in units B13 and Bla. Basal apron deposits for both units 

are relatively thin, although Bla grades laterally into wind-rippled 

flank deposits. Two scales of cyclicity are apparent in Bla: packages 

of grainflow strata from 20 to 40 cm. thick are bounded by thin but 

distinct wind-ripple laminae (Fig. IV-3). Additionally, grainflow 

deposits showing a greater degree of reworking ('wind-rippled 

grainflow') define a poorly-developed cyclicity on the order of ten 

(?) meters. 

Deposits of the B-complex dip consistently towards the southeast 

quadrant (Fig. IV-18a). The distribution of dip directions across 
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some of the units suggest curved crestlines, although the evidence is 

generally very subtle. Lateral truncation of these compound 

cross-bedded units contributes to the restricted range of foreset 

dispersion, which is as little as 25 degrees. Both planar and 

trough-shaped second-order bounding surfaces occur within the 

B-complex. Of the bounding surfaces significantly described by trend 

surface analysis, most dip 15 degrees or less (Table IV-2). The 

second-order surface associated with unit B13 dips most steeply - 26 

degrees to the southwest. 

C-Complex - The C-complex includes both laterally extensive simple 

cross-bedded sets and thin, horizontally laminated to massive 

deposits. Most of the cross-stratified units feature wind-rippled 

apron deposits at their base, in some cases to the exclusion of any 

preserved grainflow deposits (for example, CIO; Fig. IV-15b). The 

notable exception is unit C4, where packages or bundles of grainflow 

laminae roughly 13 cm. thick extend to the base of the unit. 

Individual grainflow stratum thickness for units of the C-complex 

ranges from 3 to 6 centimeters. Larger-scale cyclicity defined by 

intervals of reworked grainflow occurs in some of the units as 

discontinuous patches. As in units of the subjacent B-complex, strata 

of the C-complex dip to the south and southeast, although any sense of 

depositional episodicity is lacking. 

Units II and 12 (Fig. IV-15b, IV-16) are composed of indistinct, 

horizontal wind-ripple laminations that are texturally less mature 

than the cross-bedded sets (See Chandler and Kocurek (1986), for 

textural details of the deposits of the study site) . These deposits 



222 

overlie first-order bounding surfaces and are thin and broadly 

lenticular. Unit 13 stands out as a deep red, texturally immature bed 

approximately 1 meter thick, which can be traced northwestwards to the 

Judd Follow tongue of the Carmel Formation. 

After correcting for post-depositional subsidence, 13 appears to 

have been deposited upon a flat bounding surface. Two other horizons 

within the complex, as well as the polygonally-fractured reference 

surfaces bounding unit C13, also lie flat (Table IV-3). With the 

exception of units C4 and C12, all bounding surfaces to which trend 

surface analysis was applied are very accurately described by a planar 

surface. C4 is the one unit of the C-complex that lacks apron 

deposits, and C12 is a trough-shaped unit near the top of the complex 

(Figs. IV-14, iv-15a). Going upwards through the C-complex, bounding 

surface dip directions show no predictable pattern, much less a 

consistent orientation, and their relationship to corresponding 

stratification dip directions varies from highly oblique orientations 

to nearly parallel (Figs. IV-18a, IV-18b). 

D-Complex - Units of the D-complex are highly weathered deposits atop 

the southwestern portion of the study knob. Their exposure on a 

prominent ledge makes these deposits appear distorted in cross-section 

(Fig. IV-14). The planimetric view detailed in Fig. IV-22 is a more 

realistic representation. Within the sequence, grainflow-stratified 

units dipping west north-west show a complex stratigraphic 

relationship with the southward-dipping deposits of D2/D8. Deposition 

of the D2 component preceded deposition of units D3 through D7. The 

character and the orientation of the deposits of the D8 component are 
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identical to those of the D2 component, yet they overlie the 

southward-dipping sliver D7. It is not an unreasonable contention 

that D2/D8 represents a time-transgressive unit whose downdip 

migration ard deposition was interrupted by local deposition of sands 

dipping westward. Units D9 through D14 cap the sequence and likewise 

dip west north-west. D2/D8 consists mostly of individual grainflow 

strata up to 6 cm thick, crossed by numerous reactivation surfaces. 

Low-angle apron deposits occur discontinuously across its length and 

otherwise constitute a minor proportion of the total set. 

D2/D8 strata rest primarily upon the same flat reference surface 

that truncates the wind-rippled deposits of C13 (Fig. IV-19). Where 

trend surface analysis yields significant results for the other units 

of the D-complex, bounding surfaces dip steeply to the northwest, 

parallel to the stratification dip direction (Table IV-4; Fig. 

IV-18b). 

E-Complex - The E-complex includes the uppermost 18 units of the Page 

Sandstone at the study site (Figs. IV-14 through IV-17). Like the 

C-complex most of the units of the E-complex consist of 

grainflow-stratified sets 3-5 cm. thick over relatively thick 

wind-rippled apron deposits. Units El and E14, the lowest and highest 

members of the complex respectively, lack apron deposits and exhibit a 

poorly developed, larger-scale cyclicity defined by reworked grainflow 

deposits. 

The distribution of foreset dip directions across many of the 

lower units suggest curved crestlines (Fig. IV-22). Strata dip 

generally to the southwest or to the southeast and show more inter-
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and intra-unit variability than the comparatively unidirectional 

deposits of the C-complex (Table IV-5, Fig. 18b). El is a particularly 

complicated unit where compound cross-bedding dipping to the east and 

northeast is separated from southward-dipping, simple cross-sets by 

numerous reactivation surfaces (Figs. IV-22, IV-23). Together, these 

components define a strongly curved sequence whose mean dip direction 

to the southeast compares with other units of the E-complex. 

Two polygonally fractured surfaces occur within the E-complex, 

the uppermost not accurately described by trend surface analysis. 

Like other units resting atop such horizons, E7 contains numerous 

reactivation surfaces. There is also a correlation between 

polygonally fractured surfaces and trough-shaped units at the study 

site; C12 and E4, the two distinctly trough-shaped units found locally 

within the Page, are both truncated by a polygonally fractured horizon 

(Figs. IV-15a, IV-b). 

Eolian Bedform Reconstruction - (An Application of the Tools to the 

Deposits of the Study Site) - Armed with observations and data that 

characterize the deposits of the study knob, the ability of the tools 

described above to reconstruct and interpret eolian bedforms can be 

tested. The resolution and the limitations of each tool, as applied 

to the deposits of the Page Sandstone, reflect in part the present 

level of understanding of eolian depositional systems and processes. 

The origin of bounding surfaces - Regional bounding surfaces within 

the sequence studied are identified by the overlying extradune 

deposits of 13 and by polygonal fractures, both of which mark a hiatus 
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Figure IV-23. The compound cross-bedded deposits of unit El. Specific 

location of photo is indicated by a "*" in Fig. IV-22. 

Reactivation surfaces (left) separate the simple 

cross-bedded deposits of El (not shown in photo) from 

steeply dipping compound cross-sets (right). 
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in sand sea development (Fig. IV-24). Within the resolution of the 

data, the lowermost 3 of the 4 polygonally fractured horizons within 

the Page, and the bounding surface associated with 13 parallel each 

other, and are assumed to define 'paleo-horizontal'. Local J2 relief 

overprints the regional trend of the J2 unconformity (Fig. IV-21), and 

so does not appear to parallel the orientation of the other regional 

bounding surfaces in the sequence. Other surfaces found locally 

within the Page exhibit a parallel orientation (those surfaces listed 

in Tables IV-1 through IV-5 as lying flat after rotating their 

first-order planes about the orientation defining 'paleo-horizontal'), 

but otherwise lack any indications of prolonged exposure and changing 

depositional conditions. The subhorizontal bounding surfaces of the 

C- and E-complexes are interpreted to represent first-order bounding 

surfaces on the basis of uniform spacing within the sequence and the 

presence of thin interdune deposits. 

Compound cross-bedding of the B- and D-complexes were deposited 

by superimposed bedforms migrating across the lee face of a draa (Fig. 

IV-24). In both cases, the transverse extent of the surfaces appears 

small, and evidence of variable winds and flow reversal are lacking. 

Reactivation surfaces within the B-complex, truncated by the 

second-order surfaces, are relatively sparse. Moreover, compound 

cross-strata in both complexes grade laterally into simple 

cross-bedded draa slipface deposits (Bla and B13 for the B-complex, 

and D2/D8 for the D-complex). Reactivation surfaces are particularly 

common in those units associated with regional bounding surfaces (Cll, 

C13, D2/D8, E7) and lack the cyclicity of compound cross-bedding 

deposited by superimposed bedforms. 
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Interpreting Low-angle Stratification - Coarse grain size, evidence of 

the former presence of evaporites on the polygonally-fractured J2 

surface (see Kocurek and Hunter, 1986), and their position at the base 

of the Page Sandstone in a local depression, favor a sand-sheet 

interpretation for the wind-ripple-stratified deposits of the 

A-complex (Fig. IV-24). Sands of the A-complex are too coarse to 

represent dune apron deposits, and the presence of evaporites would 

have likewise inhibited dune formation. 

The internal parallelism of gently dipping laminae is not 

characteristic of sand-sheet deposits, but may reflect the control of 

J2 relief on deposition, which under relatively sand-starved 

conditions was restricted to depressions in the otherwise 

deflationary J2 surface. Complex primary and secondary airflow and 

the deposition of variably oriented wind-ripple strata were succeeded 

by a more unimodal sand transport pattern as J2 relief was subdued by 

infilling. As airflow became less variable and/or net sand supply 

increased, migrating zibars deposited the unidirectional, 

moderately-dipping wind-ripple strata of All. 

Other low-angle wind-ripple sets in the sequence represent either 

interdune or dune apron deposits. Interdune deposits in the study 

area (II and 12) tend to be thinner, more poorly sorted (Chandler and 

Kocurek, 1986), and component laminae more gently dipping than dune 

apron deposits. Unit C12 is an example of a locally-occurring dune 

apron deposit characterized by moderately dipping wind-ripple strata, 

whose thickness and lateral extent are comparable to other deposits in 

the sequence left by migrating dunes (Fig. IV-19). 
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The degree of crestline curvature - A gradual swing in foreset dip 

direction along the lengths of many of the units of the B-complex and 

the E-complex suggest that the bedforms represented were nonlinear. A 

three-dimensional bedform interpretation is supported by trend surface 

analysis, which indicates that bounding surfaces within the E-complex 

are relatively nonplanar. The original bedforms that deposited the 

C-complex were comparatively linear, although broadly lenticular 

interdune deposits and larger-scale cyclicity of reworked grainflow 

deposits suggest some degree of crestline curvature. In fact, most of 

the units in the study area include at least one nonlinear dune shape 

indicator. That intervals of reworked grainflow deposits present 

within a unit result from the shifting morphology of a curved bedform 

is conjecture at this point; further studies are recommended before 

their presence is cited as conclusive evidence of crestline curvature. 

Dune dimensions - Estimates of the dimensions of the original bedforms 

are summarized in Table IV-6. Following Wilson's (1972) observations, 

bedform wavelength is assumed to be roughly 15 times dune height, 

which was calculated using the empirical relationship between bedform 

height and grainflow stratum thickness (after Kocurek and Nielson, 

1986). Dune width and length were then estimated using the empirical 

relationships established by Breed and Grow (1979, p. 274) for 

crescentic bedforms. Reported values should be treated as first-order 

approximations; a 1-cm difference in the reported grainflow stratum 

thickness translates into a difference in the other calculated 

dimensions of hundreds of meters. For C2 and B24-4a, estimates of 

original dune length and wavelength are based on direct measurements 



UNIT A8 Bl B I6 .B I8 B24-4a Bla C 2 ( l l ) C-C0I1PLEX D2/D8 El 

WIDTH ( m . , +IOm. ) 150 MO 
(Oli ect measurement) 
WIDTH ( m. , +50m. ) 1800 ?-350 100 40 

(Br eed and Grow, 1979) 

LENGTH ( m . , + 50m) 100-200 1100 50-200 0-50 <50 ? 
(Breed and Grow, 1979) 

WAVELENGTH ( m . , +50m) 500 500 
(Breed and Grow, 1979) 

WAVELENGTH ( m . , +50m) 1500 250-600 450 300 
(Wi lson , 1972) 

GRAINFLOW THICKNESS ( c m . ) 3 3-4 3-1 3-1 I I max 4-5 3-6 5 4 
Direct meas. , +0. 5 cm. 

HEIGHT ( m . , +5rn. ) 15 15-20 15-20 15-20 100 20-30 15-40 30 20 
(Kocurer and Nielson, In press) 

HEIGHf.WAVELENGTH RA1 10 1:25 (1:15) 1:17 (1:15) (1:15) (1:15) 

SEASONAL PACKAGE THICKNESS 25-30 20 20-40 10-15 10-20 15-20 

ILHrect measurement, +5cm) 

t-o 
u> 

Table IV-6. Dimensions of some of the bedforms represented by units of the study knob. 
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of dune width (Table IV-6). The lens-shaped interdune deposit II, 

measured perpendicular to the mean dip direction of overlying C2 

strata, approximates the minimum possible width of the bedform 

represented by C2. Calculated ratios of B24-4a and C2 dune height to 

wavelength compare favorably with Wilson's 1:15 ratio (Table IV-6). 

Draa Geometry - The relative orientation of the components of the 

compound bedform represented by the B-complex were determined using 

Rubin and Hunter's (1983) suggested methods (Table IV-2, Fig. IV-25). 

Superimposed dunes migrated along as well as down the lee face of the 

draa; whether dunes actually migrated obliquely upwards, as is shown 

for Bl and Bll, is debatable. By not rotating their respective 

bounding surfaces 180 degrees to dip in the opposite direction, 

superimposed dunes of B14 and B15 (those marked with a double set of 

parentheses in Table IV-2; compare with Figure IV-18a) would have been 

calculated to have migrated almost directly upslope. Such a rotation 

is deemed justified by noting that bedforms migrating parallel to the 

local airflow direction should theoretically scour a bounding surface 

whose strike parallels the normal to the migration direction but may 

dip either way. That such assumptions need be made, emphasizes that 

interpretation of the deposits of the B-complex should be made 

conservatively. Moreover, most of the second-order bounding surfaces 

of the B-complex dip at 15 degrees or less (Table IV-2), rendering the 

assumption that bounding surface orientation approximates draa 

orientation less reliable (Rubin and Hunter, 1983). 

A reconstruction of the deposits of the B-complex nonetheless 
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reveals detail heretofore undocumented in ancient eolian sequences: 

the importance of secondary airflow in depositing compound 

cross-bedding is documented by the oblique orientation of both 

superimposed dunes and stratification relative to the primary (main) 

slipface. Additionally, the primary slipface deposits of Bla and B13 

are distinguished from the other units of the complex by their 

relatively thick grainflow strata deposited almost directly down the 

draa slipface (Fig. IV-3, IV-25). While primary slipface deposits dip 

to the south, possibly identifying the dominant dip direction of the 

draa, a shifting draa slipface orientation is indicated by the 

variably directed second-order surfaces. The continuation of bounding 

surface trends through three or more successive units of the B-complex 

suggests that shifts in the draa slipface did in fact occur, probably 

the result of a curved draa slipface. The larger-scale cyclicity of 

reworked grainflow deposits observed in Bla supports this contention. 

Bedform Morphodynamics - Most of the units that comprise the study 

area exhibit well-developed apron deposits and are therefore 

interpreted to represent dunes oriented oblique to the long-term 

sand-transport direction. Notable exceptions include the grainflow 

deposits of A8, Bla, C4, D2/D8, El, and E14 (Fig. IV-14 through 

IV-17), which are inferred to have been deposited by at least locally 

transverse forms. The relationship between crestine curvature and 

morphodynamic dune type is not clearly expressed in the studied 

deposits; not all transverse bedform deposits are conclusively 

three-dimensional. For example, C4 shows the tightest distribution of 

stratification dip directions of all the units (Figure IV-18a), yet 



235 

the associated bounding surface is the only ronplanar bounding surface 

of the C-complex. Many oblique dune deposits likewise show some 

evidence of a curved bedform shape. However, indications are commonly 

limited to the presence of the poorly defined, larger-scale cyclicity 

of reworked grainflow strata, whose origin remains undocumented. 

Figure IV-26 attempts to establish a correlation between the 

presence/absence of basal apron deposits and the degree of angular 

divergence between stratification and bounding surface dip directions. 

Unfortunately, the relative lack of transverse dune deposits that 

comprise the local sequence limits interpretation by restricting the 

data base. What the histogram does show is that for units of the 

study area, the strata of oblique bedforms (those with wind-rippled 

apron deposits) may show any directional relationship with the 

corresponding bounding surface, while sand-sheet and transverse dune 

deposits tend to roughly parallel bounding surface orientation. 

Migration Rates - Packages of grainflow strata bounded by thin but 

distinct wind-ripple laminae are the most common expression of 

small-scale cyclicity present within the sequence studied. This 

cyclicity is attributed to seasonal fluctuations in wind direction 

and/or strength, and can therefore be used to estimate the mean rate 

of dune advance. Rates based on measurements of package thickness 

made on a unit-by-unit basis vary from 10 to 40 cm per year (Table 

IV-6). 

Summary and Conclusions - The tools for bedform reconstruction and 

interpretation draw mostly from the details of stratification noted on 
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APRONLESS DUNE DEPOSITS 
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resting on flat bounding surfaces 
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and strat i f icat ion dip direction (degrees) 

Figure IV-26. Histogram expressing the angular difference between 

bounding surface and stratification dip directions for 

units with and without apron deposits, and for sand 

sheets. Actual values for specific units are recorded 

in the last column of Tables IV-1 through IV-5. 
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a unit-by-unit basis. The bounding surfaces that delineate units 

within an ancient eolian sequence potentially reveal much, although 

their erosional character limits their usefulness. Indeed, their 

presence attests to the very small fraction of the original bedforms 

actually preserved. To this, add the complexity of eolian 

depositional environments as observed in modern sand seas, and it 

becomes clear that bedform reconstruction at present is limited to 

first-order generalizations. Nonetheless, an overall picture of the 

distribution of eolian subenvironments, of dune size and shape, and of 

the dynamics of eolian bedforms 6an be at least theoretically derived. 

The degree to which present knowledge of eolian depositional 

systems can reconstruct and interpret ancient eolian sequences is 

revealed in the final interpretation of the sequence of the Page 

Sandstone described in detail above (Figure IV-24): 

1. As deposition of the Page Sandstone commenced, coarse sands 

transported under relatively variable winds accumulated in local 

depressions in the J2 unconformable surface. These discontinuous 

sand-sheets are represented locally by the A-complex. Isolated 

barchanoid dunes 10 to 15 meters high (exemplified by the deposits of 

A8) migrated southwards across the Page sand-sheet. Improved 

directionality in the surface wind pattern and possibly an increased 

sand supply, accompanied a gradual infilling of J2 topography. 

Variably directed wind-ripple strata are succeeded in the A-complex by 

deposits of moderately dipping, slipfaceless zibars migrating 

eastward. 

2. The compound dune or draa represented by the B-complex 

subsequently truncated the basal sand-sheet deposits and locally 
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marked the end of the hiatus in sand-sea development represented by 

J2. The draa was a slightly curved form standing roughly 100 m high, 

whose main slipface dipped to the south, parallel to the primary wind 

direction. Barchanoid-shaped superimposed bedforms, 15 to 20 m high, 

migrated alongslope and obliquely downslope, possibly controlled by 

secondary airflow blowing consistently eastward along the lee face of 

the draa. 

3. The bedforms that deposited the succeeding C-complex were 

comparatively linear, simple (?) dunes roughly 40 m high, commonly 

exhibiting well-developed wind-rippled aprons. Dunes of the C-complex 

trended obliquely to the long-term resultant sand-transport direction, 

although stratification dipping consistently to the south and 

southeast indicate a unimodal pattern of sand-transporting winds. 

Interdune areas were either deflationary or the site of wind-ripple 

deposition under dry condtions. 

Transgression of the Carmel seaway from the northwest interrupted 

local eolian conditions represented by the C-complex, and deposited 

the clayey sediments of the Judd Hollow tongue. Cll, which overlies 

the tongue of the Carmel and is identified by its slightly coarser 

texture, can be traced miles beyond the study area, suggesting that 

the receding tongue of the Carmel seaway exposed large amounts of sand 

that was subsequently reworked into dunes of the Page erg. 

Polygonally fractured regional bounding surfaces at the top of 

the C-complex likewise mark periods when marginal marine conditions 

encroached upon the area, briefly interrupting sand sea deposition. 

Associated with these regional bounding surfaces, abundant 

reactivation surfaces and an isolated trough-shaped unit Indicatate 
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variable, occasionally strong winds; marginal marine conditions during 

Page deposition remained close enough to the study site to overprint 

the prevailing wind regime with a complex coastal wind pattern. 

4. The poorly exposed units of the D-complex were probably 

deposited by a compound bedform that stood at least 30 n high. The 

main slipface of the draa, like the draa of the B-complex, dipped to 

the south and was roughly transverse to sand-transport direction. 

Variable winds and the continued influence of nearby marginal marine 

conditions are indicated by the relative abundance of reactivation 

surfaces in D2/D8. Polygonally fractured horizons in the E-complex 

represent truncation of the Page erg by evaporite-encrusted plains, 

and confirm that marginal marine conditions remained close enough to 

the erg at the study site to influence deposition. The dunes 

represented by the units of the uppermost E-complex were 

three-dimensional bedforms at least 20 m tall, oriented obliquely to 

the south/southeast sand transport direction. The crescentic bedforms 

of the E-complex were generally smaller than those of the C-complex, 

supporting the contention that at the study site, the Page erg shifted 

to a more marginal position, relatively close to coastal conditions. 
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0.677 
1.000 
0.622 
0.955 
0.970 
0.993 
0.966 
0.988 
0.994 
0.999 
0.970 
0.682 
0.945 
0.999 
0.956 
0.999 
0.824 

Standard 
Deviation 

0.17 
O.l l 
0.06 
0.04 
0.11 
0.03 
0. 19 
0.06 
0.04 
0.02 
0.12 
0.00 
0.21 
0.07 
0.07 
0.03 
0.11 
0.06 
0.05 
0.00 
0.01 
0.40 
0.07 
0.01 
0.09 
0.01 
0.01 

Appendix. The results of trend surface analysis. The bounding surface described lies below the unit by 

o 
which it is identified. The origin is in the northwest corner. Data entered were in feet from 

the origin, divided by ten. Polygonally fractured surfaces are identified as such. 



UNIT/SURFACE 

BIS 
B I 6 

B20 

B22 
B3a 

11 

C2 

C3 

12 
C4 

C7-2b 

C3b 

C8 

C9 

CIO 

C I I 

Sample 

Size 

6 

6 

4 

4 

10 

13 

44 

10 

9 

12 

14 

6 

14 

9 

6 

31 

Order 

1 

1 

1 

1 

1 

2 
1 

2 
1 

2 

1 

2 

1 

1 

2 

1 

2 
1 

2 

1 

2 

1 

2 
1 

2 

1 

2 

X (N -S ) 
E - 0 2 

23 .110 

- 2 . 6 3 2 

- 1 1 . 0 1 0 

- 1 0 . 7 8 6 

- 2 2 . 2 2 1 

11.810 

- 0 . 0 5 8 
8 .997 

0 .315 

4 .216 
1.700 

1.790 

0 . 5 3 0 

0 .948 

1.657 

2 .842 

1.975 
1.442 

1.699 

- 7 . 5 4 4 

2 .421 

9 .363 

- 4 . 4 9 3 
- 0 . 2 8 0 

3 .789 

6 .910 

Y ( E - W ) 

E - 0 2 

- 2 5 . 5 1 9 

- 1 0 . 0 7 2 

- 2 6 . 8 6 0 

- 1 9 . 2 3 7 
16 .209 

27 .594 

- 2 . 1 8 1 

- 2 . 4 6 6 

- 1 . 4 1 2 

- 1 . 0 3 9 

25 .190 
2 .728 

2 .073 

0 .534 

- 1 . 2 4 3 
5 .731 

10.586 

0 .847 

3 .269 

0 .010 

- 8 . 9 8 7 

2 . 2 4 0 

- 0 . 6 0 8 

- 3 . 4 0 4 

- 5 . 1 2 9 

XY 
E - 0 3 

12.256 

- 1 . 2 9 4 

0 .021 

0 .762 

- 0 . 4 8 8 

0 .878 

- 0 . 6 8 7 

- 1 . 8 4 7 

- 1 . 1 1 5 

- 0 . 4 6 1 

XX 

E - 0 3 

5 .125 

- 6 . 6 1 

- 0 . 3 0 8 

0 .896 

- 0 . 0 7 

- 2 . 5 4 6 

- 0 . 2 1 1 

- 0 . 0 5 9 

YY 

E -03 

- 2 . 4 1 1 

0 021 

0 .002 

- 0 . 4 0 6 

0 .557 

- 0 . 0 0 2 

Constant 

36 .889 
9 .747 

2 1 . 4 9 

15.147 

3 .220 

4 .836 

5.228 
4 . 5 7 0 

8.234 

1.524 

5 .827 

5 .550 

5 .069 

6 .548 

7 .231 
6 .210 

5.901 

6 .458 

4 .821 

7 .688 

10.338 

5 .429 

6 .516 

10.189 

11.263 

Coefficient of 

Determination 
0 .971 

0 .996 
0 .691 

0 . 9 9 9 

0 .944 

0 . 9 9 3 

0 . 9 8 9 
0 .997 

0 . 7 0 3 
0 .849 
0 .964 

0 992 
1.000 

0 .258 
0 . 9 4 9 

0 . 9 5 3 

0 .995 

0 944 

1.000 

0 .775 

0 997 

0 .787 

0 .992 

0 .991 

0 .993 

0 .975 
0 .984 

Standard 
Deviation 

0 .05 
0 .02 

0 .12 

0 . 0 0 

0 . 10 
0 .04 

0 .03 
0 .02 

0 .22 
0 . 16 

0 . 10 

0 .05 
0 . 0 0 

0 .09 

0 .03 

0 07 

0.04 

0 01 

0 .00 

0 .08 

0 .01 

0 05 

0 02 

0 03 

0 04 

0 . 16 

0 . 13 

4^ 

Appendix (continued) . 



UNIT/SURFACE 

CI2 

C I3 

(Polygons) 

Polygonal surf . 

above CI3 

06 

010 

O i l 

DI2 

E4 

E5 

£6 

Polygonal surf . 

below E7 

Polygonal surf . 

below E9 

These two polyg 

Sample 

Size 

7 

31 

30 

4 

5 

4 

8 

7 

10 

I I 

9 

6 

onal sur 

Order 

1 

2 
1 

2 
1 

2 
1 

1 

1 

1 

2 
1 

2 

1 

2 

1 

2 
1 

2 
1 

2 

X ( N - S ) 

E -02 

3 .496 

- 6 . 1 3 0 

2 .448 

3 .859 

2 .094 

2 .548 
10.460 

6 .334 

6 .128 

4 . 0 8 9 
- 3 0 . 1 7 7 

6 .159 

- 3 8 . 3 5 0 

- 1 . 5 7 1 

13.306 

6 .702 

113.36 
2 . 0 5 0 

7 .117 

1.915 

2 . 1 5 9 
faces are approx 

Y ( E - W ) 

E - 0 2 

5 . 2 0 0 

6 . 5 3 3 

0 .221 

0 .336 
0 . 3 0 7 

1.367 

- 1 5 . 8 0 

3 8 . 7 0 4 

- 1 2 . 8 7 9 

14 .027 

- 2 5 . 8 8 4 

0 .301 

53 .840 

- 6 . 1 0 6 
- 9 1 . 4 4 

6 .863 

- 1 0 3 . 4 8 
0 .632 

1.839 

0 . 197 

XY 

E - 0 3 

5 .816 

- 0 . 0 0 3 

0 . 0 0 9 

V 

- 3 . 2 1 3 

7 .904 

- 1 . 2 1 2 

- 1 1 . 3 7 0 

0 .182 

p a r a l l e l and are th 

XX 

E - 0 3 

0 . 3 1 6 

0 . 1 3 5 

0 .042 

- 5 . 4 1 2 

0 .611 

5 .962 

0 .535 

e re fore 

YY 

E - 0 3 

6 .976 

- 0 . 0 1 7 

- 0 . 1 1 9 

- 6 . 7 9 1 

8 .005 

3 .882 

assumed t 

Constant 

7 . 3 7 0 

4 .282 

8 .733 

9 .034 

9 .149 

9 .082 
19.47 

1.726 
15.777 

7 . 6 5 8 

5 .293 

13.130 

- 1 6 . 9 3 0 

1 1.714 

36 . I l l 

10.665 

6 3 . 1 0 0 

10.889 

11.915 

11.166 
11.184 

Coefficient of 

Determination 

0 . 7 4 8 

0 .994 
0 .984 

0 .990 
0 .981 

0 .988 
0 .932 

0 .998 

0 .996 

0 .894 
0 .997 

0 .561 

0 .874 

0 .506 

0 .970 

0 .876 

0 .982 

0 .891 

0 .966 

0 .909 
1.000 

o be the same time line 

Standard 

Deviation 

0 .32 

0 . 05 

0 .06 

0 .05 

0 .05 
0 .04 

0 . 0 7 

0 .03 
0 .01 

0.24 

0 .08 

0 .13 

0 .10 

0 .37 

0 .09 

0 . 16 

0 . 0 6 

0 .06 

0 03 

0 .02 

0 .00 

N3 
•0-
l-O 

Appendix (continued). 



UNIT/SURFACE 

Polygonal surf. 
above E7 

EIO 

E12 

EI3 

EI4 

Sample 
Size 
11 

6 

18 

9 

16 

Order 

1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

X(N-S) 
E -02 

0.598 
-34.90 
0.343 

-28.02 
2.480 
3.984 

-0.193 
29.51 

-1.229 
4.991 

Y (E-W) 
E -02 

-0.165 
-21.04 
-0.787 

24.60 
2.148 
0.092 

-0.764 
23.19 

-2.528 
22.544 

XY 
E -03 

4.424 

5.992 

-0.258 

6.810 

5.145 

XX 
E -03 

—1.111 

,-0.526 

0.019 

5.756 

3. 104 

YY 
E -03 

4.377 

0.094 

1.359 

Constant 

10.886 
6.474 
11.450 
0.405 
11.219 
12.061 
11.516 
13.697 
1 1.930 
7.613 

Coefficient of 
Determination 

0. 124 
0.875 
0.432 
1.000 
0.959 
0.971 
0. 102 
0.504 
0.296 
0.563 

Standard 
Deviation 

0. 18 
0.06 
0.05 
0.00 
0.03 
0.03 
0. I I 
0.08 
0. 13 
0 10 

Appendix (continued) . 
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PART V. PROCEDURE VALIDATION 

Easily the most nebulous step of reservoir characterization is a 

method for validating the procedure. The approach to validation 

adopted here is to model fluid flow in a specific heterogeneous medium 

both stochastically and deterministically and make technical 

comparisons of the results. Before doing this, we must procure a good 

deterministic description of the medium to be simulated. Such a 

description was the subject of Part IV of this report. 

The stochastic simulation will require a statistical description 

of the subject reservoir and an efficient procedure for generating 

partially correlated random fields. The statistical description was 

reported previously (Goggin et al., 1986; Chandler, 1986). In this 

part we report on efforts to generate stochastic permeability fields 

based on one-dimensional line processes and give results on pore-level 

modeling. The actual results of the simulation will be reported on in 

the next annual report. 
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INCLUDING A STOCHASTIC OVERPRINT 

Imagine that the statistical character of a reservoir is 

available through its distribution type, variance, and correlation 

function. Such information can be used to generate a stochastic line 

process. As discussed in Part III, the methods to generate these 

processes have inherent limitations for large correlation lengths and 

for non-stationary processes. Nevertheless, several line process can 

be merged through the turning bands method (TBM) to generate a 

two-dimensional stochastic field. The purpose of this section is to 

present some preliminary results on such fields. See Montoglou and 

Wilson (1976) for details on TBM. 

For illustration we generate a two-dimensional field with mean of 

100, coefficient of variation of 1, and a sample span/correlation 

length of 20. The correlation model is exponential and the data are 

distributed according to the non-normal distribution of Part III with 

p = 0.5. We generate the field on a 50x50 grid each with length 2; 

thus, the actual correlation length must be 5. 

For a specific set of random numbers, the standard deviation 

input to the line process generator must be 62 for the output standard 

deviation to be 100. This difference is because of the p-normal 

transformation of the data: had p been unity the input standard 

deviation would have to be about 96. Similarly, the input correlation 

length must be 4.5 to obtain the output value of 5. See Part III. 

Figure V-l shows the variograms in the x and y directions, 

respectively, calculated from the generated field. Both variograms 
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Figure V-l. Comparison of Input and Generated Variograms. 

50X50, DX=DY=2, P=. 5. COV=1 
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are nearly the same (the field is isotropic in correlation) and both 

agree quite well with the input variogram (the smooth curve in Fig. 

V-l). The agreement is particularly good in the correlated portion of 

the variogram. Figure V-2 shows the agreement between the input and 

calculated spectral density functions. 

Figure V-3 shows the cumulative probability density plot 

expressed on a probabilistic x-axis. The y-axis plots the 

permeability values raised to the 0.5 power and then transformed to 

have unit variance and zero mean. The linearity of the plot and the 

agreement with the theoretical input (smooth curve) shows that the 

two-dimensional field generator is working properly. The small 

deviation on the left of the plot is caused by omitting negative 

permeability values after they are generated. For the case considered 

these do not affect the function very much; however, they would be a 

cause for concern if the desired mean value were lower. 

Figure V-4 shows a contour plot of the generated field. 
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density functions. 
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Figure V-4. Generated Contour Plots. 
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PORE LEVEL MODELLING 

The basic objective of this section is to investigate 

heterogeneity from a pore level approach, specifically, to investigate 

how pore-level heterogeneity is related to heterogeneity of bulk-scale 

petrophysical properties. Since all petrophysical flow properties 

depend upon pore network characteristics, this approach should lead to 

a better understanding of how stochastic distributions of various 

petrophysical properties are related. 

The initial conceptual pore model we have chosen consists of a 

three-dimensional array of relatively large "pore bodies" 

inter-connected by smaller size "pore throats". Justification of this 

approach can be seen in pore casts and scanning-electron microscope 

photographs of pore structure (Swanson, 1979; Wunderlich, 1985). When 

we compare model parameters with actual reservoir permeable media, 

pore body sizes are controlled primarily by the grain-size 

distribution of the matrix. Pore throat sizes would be more a 

function of grain angularity and diagenetic effects. 

Because of their relatively large size, pore bodies are assumed 

not to contribute to either flow transmissibility (permeability) or 

capillary pressures, and are modelled as equivalent spheres. Volumes 

occupied by pore bodies are based on stochastically distributed values 

for an equivalent pore body diameter, d, . The volume of a pore body 

is then given by 

V = -d3 (V-l) 
bi 6 b K } 
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For the initial part of the study we assume a structure whereby 

each pore body has six connecting pore -throats in a three-dimensional 

cubic arrangement. Other structures and different levels of 

connectedness are possible and will eventually be considered. Pore 

throats are treated as capillary tubes, characterized by both a 

stochastically-distributed equivalent diameter, d , and an equivalent 

length, 1 . Pore-throat volumes are thus calculated as: 

Vti " Klt ^-2) 

Capillary pressure across a given pore-throat is then: 

P = ^ 2 £ i (v_3) 
c d 

t 

where 0" is the interfacial tension and $ is the contact angle. 

Viscous pressure drops across throats are determined assuming a flow 

conductance, (C = AP/q), based on a Poiseuilles Law functional 

relationship: 

rdt 
c - -mi; (v-4) 

Prior to initiating this study, a model had already been 

developed at the University of Texas for investigating capillary 

pressure-saturation curves in pore networks. Using 

stochastically-distributed pore-body radii, pore throat radii, and 

pore - throat lengths, the model calculated two-phase fluid 

distributions in pore networks by determining a non-wetting phase 

invasion sequence based on movement of fluid interfaces with minimum 

capillary pressures (largest pore -throat sizes). This model was 
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successful in replicating actual capillary pressure measurements, but 

as expected, the results were not non-unique. 

By only looking at capillary pressure phenomena, it was not 

necessary for the existing model to consider the relationship between 

pore network dimensions and bulk media dimensions. This is because 

capillary pressures only depend on the radii of pores, and saturations 

are a fraction of pore volume. Also, by considering further bulk 

petrophysical properties and constraining pore networks to 

geologically realistic ones, the uniqueness problem should diminish. 

We are currently in the next phase of model development, which is 

to modify the existing model to generate values for porosity and 

permeability in addition to capillary pressure-saturation. Unlike 

capillary pressure curves, determination of both porosity and 

permeability depend upon relating pore-level dimensions to bulk 

dimensions. As a first simplified approach to this problem, we have 

chosen to define a parameter, /3, which is the ratio of average 

effective pore or throat dimension to an orthogonal bulk dimension. 0 

is thus used to account for geometrical orientation effects as well 

as the relationship between effective and actual lengths. It can be 

2 
thought of in the same manner as tortuosity, T, where £=1/T (Dullien, 

1979) . A pore body in a given direction can then be assigned an 

associated bulk length given by: 

lc = 3 ( Kl + 1t2) + db) (V~5) 

where the 1 and 2 refer to pore connecting in the desired direction. 

A mean equivalent length for all pore bodies in all directions is 

then: 
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T - i f i t + a. 1 
c B (_ t bj 

We can then calculate the porosity of the network as: 
3r 

(V-7) 

( 

l. +d. 
Td 1 + -̂ d, 4 t t 6 b (V-8) 

Permeability, k, can also be found by solving for flow rates and 

pressure drops in the pore system as a pipe network, utilizing the 

pore-throat conductances. If a differential pressure is applied in 

the x-direction, permeability is found by solving for qu/AP for the 

system and then calculating permeability by: 

v = 3H x 

fiPLL 
y z 

(V-9) 

where L , L , and L are the bulk media lengths in the x, y, and x y z 

z-directions, respectively. Or, with Eq. (V-6) for bulk lengths: 

k = 
(q/nynz)y 

I +d7
 ( A P / V 

t b bulk 

where, n , n , and n denote the number of pore bodies in the y, and x y z 

z-directions, and L = 1 n , etc. Note that the quantity in the 
X e x 

brackets is invariant with network size (neglecting statistical 

effects), since q/n n is the average flow rate per cross-sectional 
-x y z " r 

pore and AP/n is the average pressure drop per pore. 
X 

With this model, then, we have the following parameter 

dependencies: 

Permeability 

Porosity 

d t , i t , ab, g 

db, 6(major) 

d ,1 (minor) 
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Capi l l a ry p ressure d 

Satviration d (major) 

d t , 1 (minor) 

In addition, permeability and capillary pressure versus 

saturation are dependent on the topological arrangement of the pore 

network. Porosity, however, is not. Pore-throat parameters primarily 

affect permeability and capillary pressure, while pore-body parameters 

are more related to porosity and saturations. With this approach, we 

have four parameters, three of which are stochastically-distributed. 

If we assume each of these can be adequately characterized by a 

three-parameter distribution, a total of nine parameters is required 

to model the system. Initially, we plan to utilize beta-type 

probability distributions for the various parameters, although other 

distributions will be explored. We will also initially assume no 

spatial correlation. This too can easily be investigated at a later 

date through the methods of Part III. 

Once methods for determination of porosity and permeability are 

added to the model, the next step willi be to perform a large number 

of numerical experiments to explore the general characteristics and 

range of response of the model to different parameter values. The 

purpose of this phase of the study will be to primarily determine 

general relations between network parameters and the various bulk 

petrophysical properties. We will also wish to explore the empirical 

relationships between capillary pressure vs saturation curves, 

porosity, and permeability reported in the literature. For example, 

Leverett (1941) suggested that capillary pressure vs saturation data 
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from s i m i l a r t l epos i t ioua l environments could be c o r r e l a t e d by p l o t t i n g 

a dimensioniess j - T u n c t i o n : 

j - ^ho /~1 <v-10> 
Also, Purcell (1949), Thomeer (1960, 1983) and Swanson (1981) have 

suggested correlations for predicting permeability from capillary 

pressure and porosity data. 

There are several extensions of this work that can easily be made 

in future studies. Some or the most important petrophysical 

properties that the pore network model can be used to study are: a) 

two-phase relative permeabilities, b) electrical resistivities (either 

single or multi-phase), and c) macroscopic dispersion coefficients. 

Concluding Remarks - Nearly all of the work in the part V is in a 

transitional stage. We nevertheless conclude that the stochastic 

generation scheme can model much oi the complexity exhibited by the 

eolian outcrop. Our task, therefore, is to generate such fields, 

extract statistics from them and compare to the statistics derived 

from the field data. This is perhaps the only direct way to evaluate 

the efficacy of the generation scheme in generating realistic fields. 



NOMENCLATURE for PART V 

C flow conductance 

d, pore-body diameter, L 
b 

d equivalent pore-throat diameter, L 

j j-function 

2 
k permeability, L 

1 associated bulk length of a pore-body, L 

1 equivalent pore-throat length, L 

L bulk medium dimensions in x, y and z directions, L 
x,y,z 

n number of pore-bodies in x, y, and z directions x,y,z 

p non-normal transformation parameter 

2 
P capillary pressure, F/L 

3 
V, . volume at pore-body, L 
bi 

3 
V , volume at pore-throat, L 
ti ^ 

Greek 

/? local aspect ratio 

<S interfacial tension, F/L 

T tortuosity 

0 contact angle 

2 
M viscosity, F-t/L 
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