
SS
CL

-3
97

SSCL-397
F

Superconducting Super Collider

Overview of Real-Time Kernels at the
Superconducting Super Collider Laboratory

K. Low, S. Acharya, M. Allen, E. Taught,
D. Haenni, and C. Kalbfleisch

May 1991

- i iw.N OF i HIS DOCUMEN (IS UNLIIVIITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

To be published as a Conference Record, IEEE, New York SSCL—397

DE91 013999

Overview of Real-Time Kernels at the
Superconducting Super Collider Laboratory*

K. Low, S. Acharya, M. Allen, E. Faught, D. Haenni, and C. Kalbfleisch

Superconducting Super Collider Laboratory^
2550 Beckleymeade Avenue

Dallas, TX 75237

May 1991

*

t
Presented at the 1991 IEEE Particle Accelerator Conference, San Francisco, CA, May 6-9, 1991.
Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract
No. DE-AC02-89ER40486. - - _

DISTF .r-s^ | IQ OF I DOC Lite ENT l£ UNLliv

OVERVIEW OF REAL-TIME KERNELS AT THE
SUPERCONDUCTING SUPER COLLIDER LABORATORY

K. Low, S. Acharya, M. Allen, E. Faught, D. Haenni, C. Kalbfleisch
SSC Laboratory *

2550 Beckleymeade Ave.
Dallas, Texas 75237

Abstract

The Superconducting Super Collider Laboratory (SSCL)
will have many subsystems that will require real-time mi­
croprocessor control. Examples of such sub-systems re­
quiring real-time controls are power supply ramp gener­
ators and quench protection monitors for the supercon­
ducting magnets. We plan on using a commercial mul­
titasking real-time kernel in these systems. These kernels
must perform in a consistent, reliable and efficient manner.
Actual performance measurements have been conducted
on four different kernels, all running on the same hard­
ware platform. The measurements fall into two categories.
Throughput measurements covering the “non-real-time”
aspects of the kernel include process creation/termination
times, interprocess communication facilities involving mes­
sages, semaphores and shared memory and memory allo­
cation/deallocation. Measurements concentrating on real­
time response are context switch times, interrupt latencies
and interrupt task response.

I. INTRODUCTION

The process of evaluating real-time kernels from different
vendors can be a confusing experience. One is faced with
a plethora of performance numbers from the individual
vendors’ information packages, each displaying superiority
and advantages over their competitors. Each vendor in­
variably measures performance numbers in different ways
and on different hardware platforms thus making compar­
isons almost meaningless.

To compare and evaluate the different offerings, we per­
formed our own tests in a controlled environment. Prod­
ucts from the four vendors that met our base requirements
were tested on the same hardware platform. The platform
on which all four vendors is supported is the MVME147S-1
[1]; a VME based, single board computer with a 25MHz
68030 from Motorola. The four kernels selected, listed in
no particular order, were pSOS-b from Software Compo­
nents Group [2], VRTX32 from Ready Systems [3], Vx-
Works (v4.02) from Wind River Systems [4] and LynxOS
(vl.21) from Lynx Real-Time Systems [5].

It should be stressed that these tests only provide quanti­
tative measurements of a particular system’s performance.
Qualitative aspects such as development environment, de­
bug capabilities, connectivity, compliance with industry

•Operated by the Universities Research Association, Inc., for the U.S.
Department of Energy under Contract No. DE-AC02-89ER40486.

standards, technical support and host/target availability
will be addressed at the end of this paper.

Each test was executed a number of times in order to
compute the average time to complete a test. The entire
measurement is then repeated several times to measure
the variance of this average value in the form of maximum
and minimum average values. Clock resolution, number of
iterations and cache conditions were identical for all four
kernels.

The Motorola MVME147S-1 includes an auxiliary timer
capable of generating interrupts. A driver was written for
all four kernels to measure the interrupt response and in­
terrupt task response times. We did not measure interrupt
latency, which is the time it takes the kernel to disable in­
terrupts, manipulate internal kernel data structures and
then reenable interrupts. Instead, we define interrupt re­
sponse as the time it takes to execute the first instruction
of an interrupt service routine(ISR) from the moment that
interrupt occurs. The interrupt task response time is the
time it takes for a pre-empted user task to resume execu­
tion from when the interrupt occurs.

II. THROUGHPUT MEASUREMENTS

Throughput measurements are tabulated in Table 1 and
what follows is a brief description of each test as it ap­
pears in the table. Idiosyncrasies of each kernel will also
be noted. An asterisk means that a particular test could
not be performed on that kernel.
1. Create/Delete Task This test measures the time it takes
to create and delete a task. A task deletes itself as soon as
it is created. The created task has a higher priority than
the creator, so the time quoted actually includes a create,
start, delete and two task context switches.
2. Ping Suspend/Resume Task A low priority task resumes
a suspended high priority task. The high priority task
immediately suspends itself. This measurement includes
two task context switches and the time it takes to suspend
and resume a task. There is no facility to suspend and
resume a task on LynxOS apart from using signals. So
this test was not performed under LynxOS.
3. Suspend/Resume Tas/t This is identical to previous test
except that a high priority task suspends and resumes a
suspended lower priority task so that there is no context
switching.
4- Ping Semaphore Two tasks of the same priority commu­
nicate with each other through semaphores. Task A creates
a semaphore, gets the semaphore and then creates Task B
which blocks when it attempts to get the semaphore. Task

1

Table 1: Throughput Measurements

Test Description pSOS-t-
min/max/avg /^sec

VRTX32
min/max/avg /zsec

LynxOS
min/max/avg //sec

VxWorks
min/max/avg //sec

Create/Delete Task 540/600/591 370/380/371 * 1378/1446/1423
Ping Suspend/Resume Task 120/130/128 140/150/142 * 174/182/177
Suspend/Resume Task 80/90/83 80/90/87 * 68/74/69
Ping Semaphore 210/220/219 230/250/239 390/400/397 228/234/232
Getting/Releasing Semaphore 63/64/63 55/56/55 73/76/74 33/34/33
Queue Fill 40/50/46 20/30/26 136/146/140 19/21/20
Queue Drain 40/50/43 20/40/29 126/136/132 21/25/22
Queue Fill Urgent 40/50/47 20/30/27 166/175/170 70/76/72
Single Queue Fill/Drain 90/93/91 50/70/59 270/290/278 43/48/44
Alternate Queues Fill/Drain 230/240/238 250/260/252 860/900/867 366/376/371
Allocate Memory 40/40/40 20/30/27 34/79/57 67/71/68
Deallocate Memory 30/40/38 30/40/33 20/21/20 82/86/83

A then releases the semaphore which immediately unblocks
Task B. Task A then attempts to get the semaphore which
causes it to block until Task B releases it. The two tasks
then alternate ownership of the semaphore thereby causing
context switches. In our version of VxWorks, two separate
semaphores are required because round-robin scheduling is
not supported.
5. Getting/Releasing Semaphore The time reported in­
cludes the time it takes to get and immediately release
a semaphore within the same task context.
6. Queue Fill,Drain,Fill Urgent We first time how long it
takes to fill a queue with messages and then we time how
long it takes to drain the queue. Finally we repeat the
two tests with priority messages i.e. messages are sent to
the head of the queue. VxWorks 4.02 does not support
message queues but ring buffers with semaphores gives the
functionality of a message queue. LynxOS uses SysV mes­
sage queues which actually copies the messages to buffers
with future releases supporting Posix-type queues.
7. Queue Fill/Drain A single task sends a message to a
queue which the task immediately receives on the same
queue. There is no task context switch nor is there any
pending queue operations. The next test consists of two
tasks with two queues. The two tasks alternate execution
by sending to the queue that the other is blocked waiting to
receive from. The total time now includes context switches,
queue pends and sending plus receiving a message.
8. Allocating/Deallocating Memory We measure the time
it takes to allocate a number of buffers from a memory
partition and the time it takes to return those buffers to
the partition.

III. REAL-TIME RESPONSE

We quantify the real-time response of the kernels by
measuring the interrupt service response and the interrupt
task response. The interrupt service response is the time

it takes to execute the first instruction of an interrupt ser­
vice routine (ISR) from when the interrupt occurs. The
task response is the time it takes for a user task to resume
execution from when the interrupt occurs. These mea­
surements were taken over a large number of times and
the maximum, minimum and average times are reported
over the span of the test. The LynxOS was the only kernel
with a SCSI disk attached to it and all kernels had net­
work attachments and a real-time clock as other sources
of interrupts. The source of interrupts for the actual mea­
surement was an auxiliary counter on the MVME147S-1
and the measurement task runs at the highest priority.

Typically, a user task is blocked waiting for a semaphore
to be released by the ISR. The counter is programmed
to start counting up from a preset value to a maximum
value when it will generate an interrupt, resets itself to the
preset value and begins counting up again. Each count
corresponds to 6.25 /is. The ISR then immediately reads
the counter, which gives the interrupt response time, and
then releases the semaphore. When the kernel reschedules
the user task after completion of the ISR, the user task
becomes unblocked, reads the counter which then gives
the task response time.

IV. OBSERVATIONS

pSOS-l- is a robust real-time kernel. Code can be devel­
oped on a number of different host platforms and down­
loaded to the target with the final application stand-alone
in ROM. Software Components Group (SCG) supports
pSOS+ on many target systems and provides source to
drivers making ports to specialized boards easier. The
XRAY+ debugger, based on the popular XRAY debug­
ger from Microtec [6] is capable of debugging target resi­
dent optimized C source code across ethernet or RS-232.
There is also an XI1 interface which offers increased ver­
satility. In addition to task-level breakpoints, system-level

2

Table 2: Real-Time Response

pSOS-|-
min/max/avg psec

VRTX32
min/max/avg //sec

LynxOS
min/max/avg //sec

VxWorks
min/max/avg //sec

Interrupt Service Response 6/6/6 6/6/6 13/88/13 6/56/6
Interrupt Task Response 100/169/163 169/343/169 163/262/175 119/319/125

breaks can also be set at the system-level; stopping all
tasks. This allows access to the onboard monitor and the
state of all pSOS+ objects. Optional components provide
UNIX-compatible network facilities and an ANSI standard
run-time library. Field support was excellent.

VRTX, from Ready Systems, provides a full comple­
ment of support software in addition to the VRTX/32
real-time kernel. These include packages for I/O file man­
agement, networking, multiprocessing and a run-time li­
brary. VRTX is supported on several commercially avail­
able target boards with supporting documentation for
porting VRTX to customized boards. Host support cur­
rently exists only for SUN3/SUN4 with Sun’s own pro­
prietary windowing environment. The source level debug-
ger(RTsource) and the symbolic debugger(RTscope) can
function across an ethernet/serial link between the host
and target. Like pSOS+, breakpoints can be set at task as
well as system level. Tasks may be stopped and informa­
tion about kernel data structures displayed. A run-time
shell with dynamic linking capability is available for quick
prototyping of applications. Although somewhat daunting
to the first-time user, VRTX is an extremely flexible and
versatile system to the initiated.

VxWorks includes a proven real-time kernel and a
UNIX cross-development package with extensive UNIX-
compatible networking facilities. Version 4.02 supports
only a preemptive priority scheduling kernel while V5.0
offers in addition round-robin scheduling. Version 5.0
also promises better performance with some compliance to
Posix 1003.4 Real-Time Extensions. VxWorks currently
is ported to a number of different target boards with the
host support fully implemented only on the SUN3/SUN4
systems. The source-level debugger is a remote debugger
based on the Free Software Foundation GDB. The debug­
ger can only debug single tasks and currently does not
have an Xll interface. A symbolic debugger with some
system status displays is also standard. Dynamic loading
of objects over the network or from a disk together with
an interactive C-interpreter interface can be useful during
the development cycle.

LynxOS provides a complete Unix development environ­
ment. It can also be used for a cross-development system
like the other three kernels. It offers good real-time per­
formance with memory protection. LynxOS 1.21 currently
offers compliance to Posix 1003.1 and BSD 4.3 with future
releases complying with 1003.4 Draft 9 Real-Time Exten­
sions. It has been ported to four different computer ar­
chitectures. It has a Unix System V.3 binary compatible

interface built into the LynxOS kernel so that binaries work
under LynxOS and the standard Unix for that architecture
without modification. The debug environment is lacking
as there is no good kernel debugger.

V. CONCLUSIONS

It has been our experience that a compile-download-
debug cycle common with all the embedded systems is not
a major problem for us, Ethernet and NFS links make this
a speedy process.

It has become apparent the importance of compliance
with standards. Standards adherence makes code more
portable. We had to effectively rewrite all the tests for all
the kernels because of the interface differences.

Another conclusion is the importance of having a ma­
ture debugging environment, a source-level remote debug­
ger with a Xll Windows interface that can debug opti­
mized code is extremely useful. A good kernel debugger is
also very important, allowing the user to halt all tasks and
examine states of any individual task with relationship to
other tasks.

Finally, the more hosts and targets that a given cross­
development kernel supports, the more attractive it will
be, especially in a vastly heterogeneous environment like
the SSC.

References

[1] Motorola, Inc., Technical Systems Division, P.O. Box
2953, Phoenix AZ 85062

[2] Software Component Group, Inc., 1731 Technology
Drive, San Jose, CA 95110, (408) 437-0700

[3] Ready Systems, Inc., 470 Potrero Ave., P.O. Box
60217, Sunnyvale, CA 94086

[4] Wind River Systems, Inc., 1010 Atlantic Ave.,
Alameda, CA 94501, (415) 748-4100

[5] Lynx Real-Time Systems, Inc., 16780 Lark Ave., Los
Gatos, CA 95030, (408) 354-7770

[6] Microtec Research, Inc., 2350 Mission College Blvd.,
Santa Clara, CA 95054, (408) 980-1300

3

Disclaimer Notice
This report was prepared as an account of woik sponsored by an agency of the United States
Government. Neither the United States Government or any agency thereof, nor any of their
employees, makes any warranty, express or irrplied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or any
agency thereof.

Superconducting Super Collider Laboratory is an equal opportunity employer.

