

1/17/82
15 I-1469 ①
④0

1A. 275

DP-1603

MASTER

CU(II) - CATALYZED HYDRAZINE REDUCTION OF FERRIC NITRATE

D. G. KARRAKER

E. I. du Pont de Nemours & Co.
Savannah River Laboratory
Aiken, SC 29808

PREPARED FOR THE U. S. DEPARTMENT OF ENERGY UNDER CONTRACT DE-AC09-76SR00001

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared by E. I. du Pont de Nemours and Company (Du Pont) for the United States Department of Energy under Contract DE-AC09-76SR00001 and is an account of work performed under that Contract. Neither the United States, the United States Department of Energy nor Du Pont, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed herein, or represents that its use will not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, mark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring of same by Du Pont or by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Printed in the United States of America

Available from

National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22161

Price: Printed Copy A02; Microfiche A01

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DP-1603
Distribution Category: UC-4

CU(II) - CATALYZED HYDRAZINE REDUCTION OF FERRIC NITRATE

D. G. KARRAKER

DP--1603

DE82 010815

Approved by

**H. D. Harmon, Research Manager
Actinide Technology Division**

Publication Date: November 1981

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

**E. I. du Pont de Nemours & Co.
Savannah River Laboratory
Aiken, SC 29808**

PREPARED FOR THE U. S. DEPARTMENT OF ENERGY UNDER CONTRACT DE-AC09-76SR00001

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

frey

ABSTRACT

A method is described for producing ferrous nitrate solutions by the cupric ion-catalyzed reduction of ferric nitrate with hydrazine. The reaction is complete in about 1.5 hours at 40°C. Hydrazoic acid is also produced in substantial quantities as a reaction byproduct.

CONTENTS

Introduction 5

Hydrazine Reactions 6

Experimental 7

Results 8

Discussion 14

Recommended Conditions for Large-Scale Preparation 15

References 16

CU(II) - CATALYZED HYDRAZINE REDUCTION OF FERRIC NITRATE

INTRODUCTION

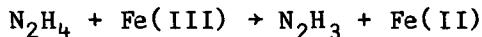
Hydrazine, as hydrazine nitrate solution, is used in actinide Separations processes as a holding reductant to prevent the oxidation of reduced ions, such as Fe^{+2} , Np^{+4} , and Pu^{+3} during processing. As a holding reductant, hydrazine destroys the radiolytically produced or chemically produced nitrous acid kinetically necessary for oxidation by nitric acid. At room temperature, hydrazine destroys nitrous acid more than twice as fast as the sulfamate ion, the common holding reductant in process use.¹

Ferrous sulfamate solution is a combination reducing agent and holding reductant that is in general use in solvent extraction and ion exchange Separations processes. The penalty for its use is the eventual decomposition of the sulfamate ion to sulfate. Sulfate is considered responsible for increased waste evaporator corrosion, and in some processes, sulfate complexing of +4 ions (Np, Pu) affects process operation. Sulfate must be also removed from high level waste sludge because of its potential deleterious effect on the quality of glass produced in the proposed Defense Waste Processing Facility.

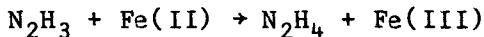
Ferrous nitrate-hydrazine (FeNH) solution is an effective reducing agent-holding reductant and could be substituted for ferrous sulfamate. Laboratory tests have shown satisfactory Purex 1B-bank partitioning of plutonium and uranium with ferrous nitrate-hydrazine as a reductant.² U(IV) nitrate-hydrazine is under development as a replacement for ferrous sulfamate, but U(IV) interferes with anion exchange processes, and its use in enriched uranium processing may be complicated by requiring the same uranium isotopic composition as the enriched uranium in process. FeNH has neither disadvantage. The use of FeNH avoids the sulfate problem in waste, although there are objections to hydrazine because of its listing by Occupational Safety and Health Administration (OSHA) as a carcinogen and because of the formation of hydrazoic acid in some reactions. The hazards of HN_3 have been dealt with in previous laboratory studies.³

Three methods for producing FeNH have been explored: electrolysis of ferric nitrate-hydrazine solution, dissolving iron metal in nitric acid-hydrazine solution, and Cu(II)-catalyzed reduction of

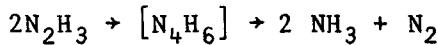
ferric nitrate by hydrazine. Electrolysis requires expensive electrolytic equipment not currently available; iron metal must be dissolved under carefully controlled conditions to avoid oxidation. The reduction of ferric nitrate by hydrazine aided by heating and Cu(II) catalysis was seen as a less expensive alternative.

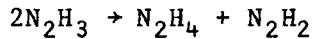

This study was conducted to develop this method for large-scale production of FeNH solution.

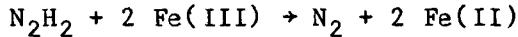
HYDRAZINE REACTIONS

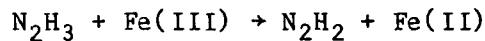

Hydrazine is a strong reducing agent, although its reactions are often slow at room temperature. The oxidation of hydrazine involves free radical reactions and depends upon the oxidizing agent. In general, one-electron oxidizing agents produce NH₃ on reaction with hydrazine, and two-electron oxidizing agents produce both NH₃ and HN₃ (hydrazoic acid).⁴ The kinetics of hydrazine oxidation can be explained^{5,6} by the following mechanisms (acid hydrogen ions omitted in the following formulae):

A. For one-electrons oxidants, e.g., Fe(III)

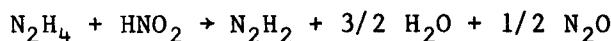

(1) Hydrazyl radical formation


(2) Back reaction

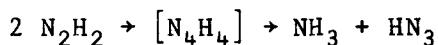

(3) N₂H₃ dimerization


(4) N₂H₃ disproportionation

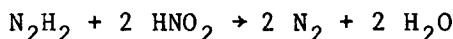
(5) Diazene radical (N₂H₂) oxidation

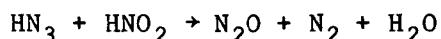


(6) N₂H₃ oxidation



B. For two electron oxidants, e.g., HNO₂


(7) Diazene radical formation


(8) N_2H_2 dimerization

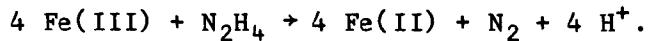
(9) N_2H_2 oxidation

(10) With excess HNO_2

Previous workers have found that the rate of hydrazine oxidation is increased at 40 to 80°C; and that under some conditions, hydrazine reactions are catalyzed by metal ions, principally Cu(II) and Fe(III). This work reported here applies these findings to systems that are useful in radiochemical Separations processes.

EXPERIMENTAL

Ferric nitrate stock solutions were prepared by dissolving $\text{Fe}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$ (40 g, 0.1 mole) in 1M HNO_3 (25 mL). The final volume of the solution is about 50 mL, so its concentration is about 2M $\text{Fe}(\text{NO}_3)_3$ - 0.5M HNO_3 . Solubility tests found that at room temperature, the solutions of the same ferric concentration could be prepared with HNO_3 concentrations only up to 3M HNO_3 ; in higher acid, the solubility of $\text{Fe}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$ was decreased.


Hydrazine nitrate stock solutions of about 6M concentration were prepared by adding 85% $\text{N}_2\text{H}_4 \cdot \text{H}_2\text{O}$ dropwise, with stirring, to concentrated HNO_3 cooled in an ice bath. Hydrazine concentrations were determined by the iodate method.

Cupric nitrate solution was prepared by dissolving a weighed amount of $\text{Cu}(\text{NO}_3)_2 \cdot 3\text{H}_2\text{O}$ in distilled water.

Solutions were made up by pipette in vented vials and immersed in a thermostated water bath for tests. Samples were withdrawn from the samples at appropriate times and immediately analyzed for ferrous ion by titration with Ce^{+4} in a 2.4M HCl-0.01M $\text{Fe}_2(\text{SO}_4)_3$ solution with ferroin indicator. Tests showed that neither hydrazine nor hydrazoic acid reacted significantly with Ce^{+4} during the period required for the titration. Azide ion was determined spectrophotometrically by measurement of the absorbance of the ferric azide complex.¹

RESULTS

Preliminary experiments at room temperature explored the effect of Cu(II) catalysis on solutions 1.2M Fe(III), 0.90M HNO₃, and 0.33M N₂H₄•HNO₃, approximately a stoichiometric ratio of Fe(III) to N₂H₄, assuming the net reaction

The results (Figure 1) showed that Cu(II) had a catalytic effect up to about 0.06M Cu(II). Adding 0.09M Cu(II) increased the yield of Fe(II) only 3 to 5% over 0.06M Cu(II) after 72 hours. No further increase in Fe(II) yield was observed up to 144 hours.

A more rapid reduction of Fe(III) was observed when the temperature was increased to 40°-50°C, and the hydrazine concentration was increased to 0.79M, a Fe(III)/N₂H₄ ratio of 1.9. The reaction at 40° showed the catalytic effect of Cu(II) (Figure 2) and a greatly increased reaction rate, compared to 25°C experiments. The reaction was sensibly complete in 1.5 hours, with a 66% conversion of Fe(III) to Fe(II) with 0.069M Cu(II) as a catalyst. At 50°C, and with the same concentrations (Figure 2), the reaction was complete in less than one hour (no data taken before one hour), with an 80% conversion of Fe(III) to Fe(II).

The dependence of the reaction on Fe(III)/N₂H₄ ratio was investigated at 40°C. The results (Figure 3) showed 91% conversion for an Fe(III)/N₂H₄ ratio of 0.9 in 1.5 hours. 100% conversion of Fe(III) to Fe(II) was observed after 4 hours. Increasing the temperature to 50°C resulted in 100% reduction of Fe(III) to Fe(II) in 45 minutes.

The effect of acid concentration on the reduction of ferric ion was explored with solutions 1.6M Fe(III)-0.05M Cu(II)-1.1M N₂H₄-0.4 to 2.4M HNO₃ at 50°. The results (Figure 4) showed that the highest concentration of Fe(II) was reached in about 45 minutes in 0.4M HNO₃ solution. Heating more than 45 minutes destroyed Fe(II), most markedly in the 2.4M HNO₃ solution. Only 60% of the Fe(III) was reduced in the 0.4M HNO₃ because these tests were run at an initial Fe(III)/N₂H₄ ratio of 1.5, less than necessary for complete reduction. However, solutions containing the minimum acid to prevent Fe(III) hydrolysis (0.3-0.5M) were used in the remainder of this study.

The reduction of Fe(III) by hydrazine was investigated at lower temperatures and at Fe(III)/N₂H₄ ratios of 0.94 and 0.73, with the aim of developing a convenient procedure for large-scale production. The results are shown in Table 1. In general, Fe(II) solutions of 1.1 to 1.2M were produced in 1.25 hours at 40°C, about 6 hours at 30°C, and ~30 hours at 23.5°C (room temperature).

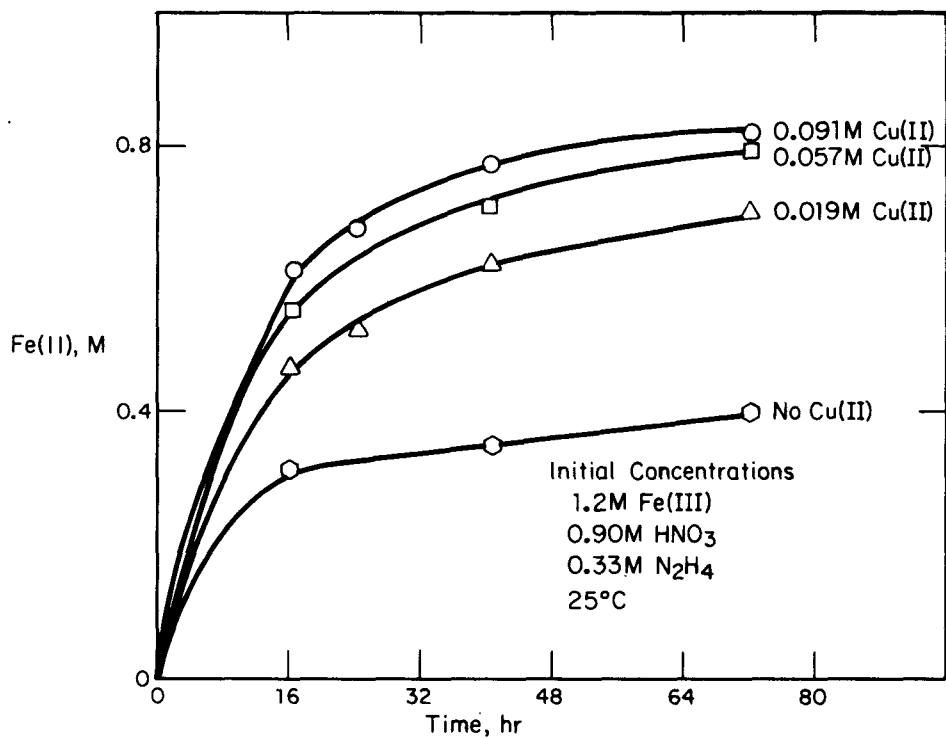


FIGURE 1. Cu(II) - Catalyzed Hydrazine Reduction of Fe(III) at 25°C

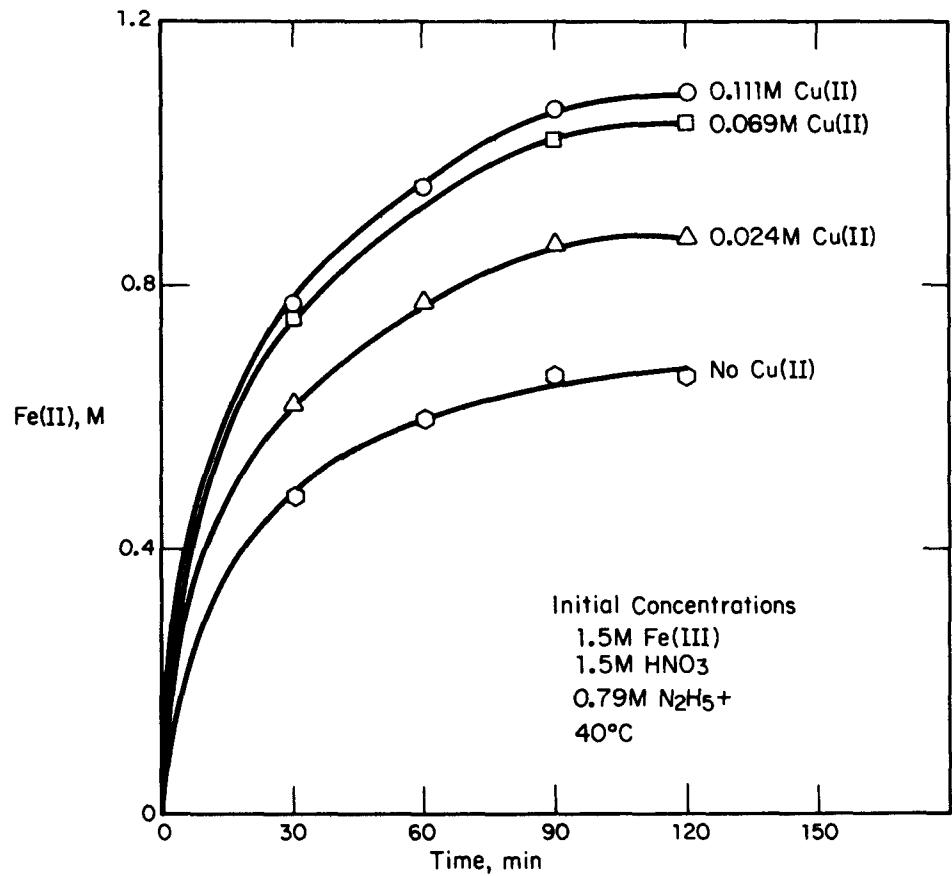


FIGURE 2. Cu(II) - Catalyzed Hydrazine Reduction of Fe(III) at 40 °C

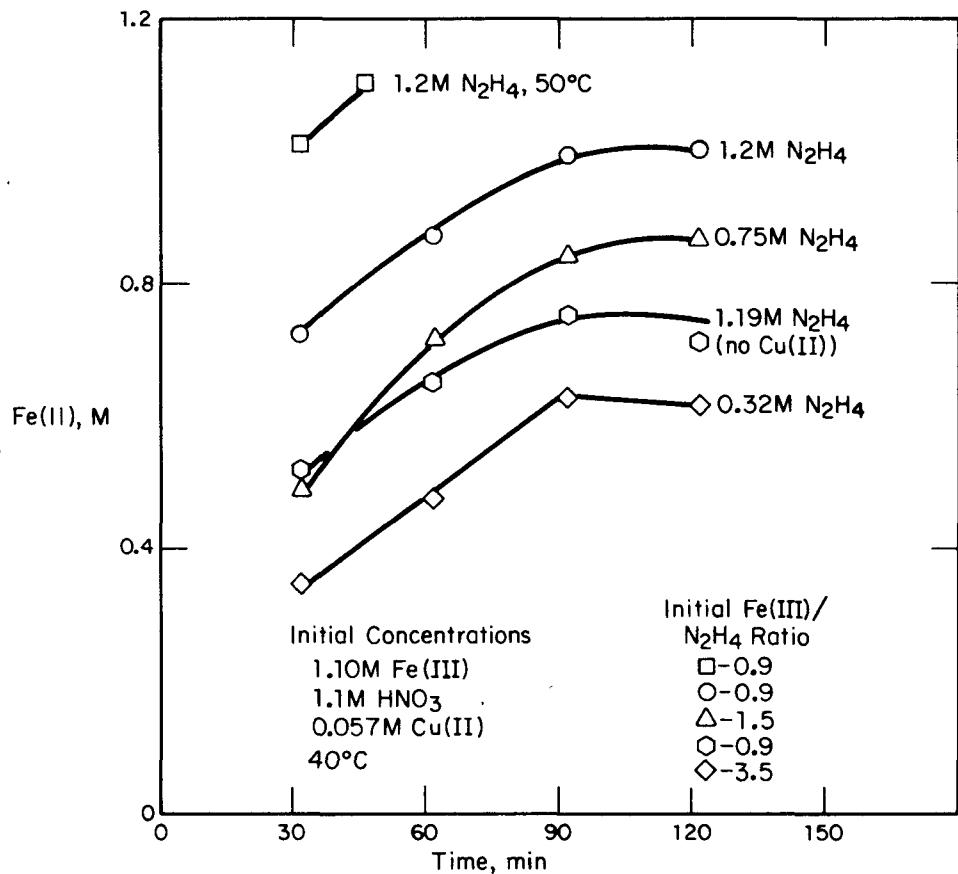


FIGURE 3. Effect of Fe(III)/N₂H₄ Ratio on Reduction

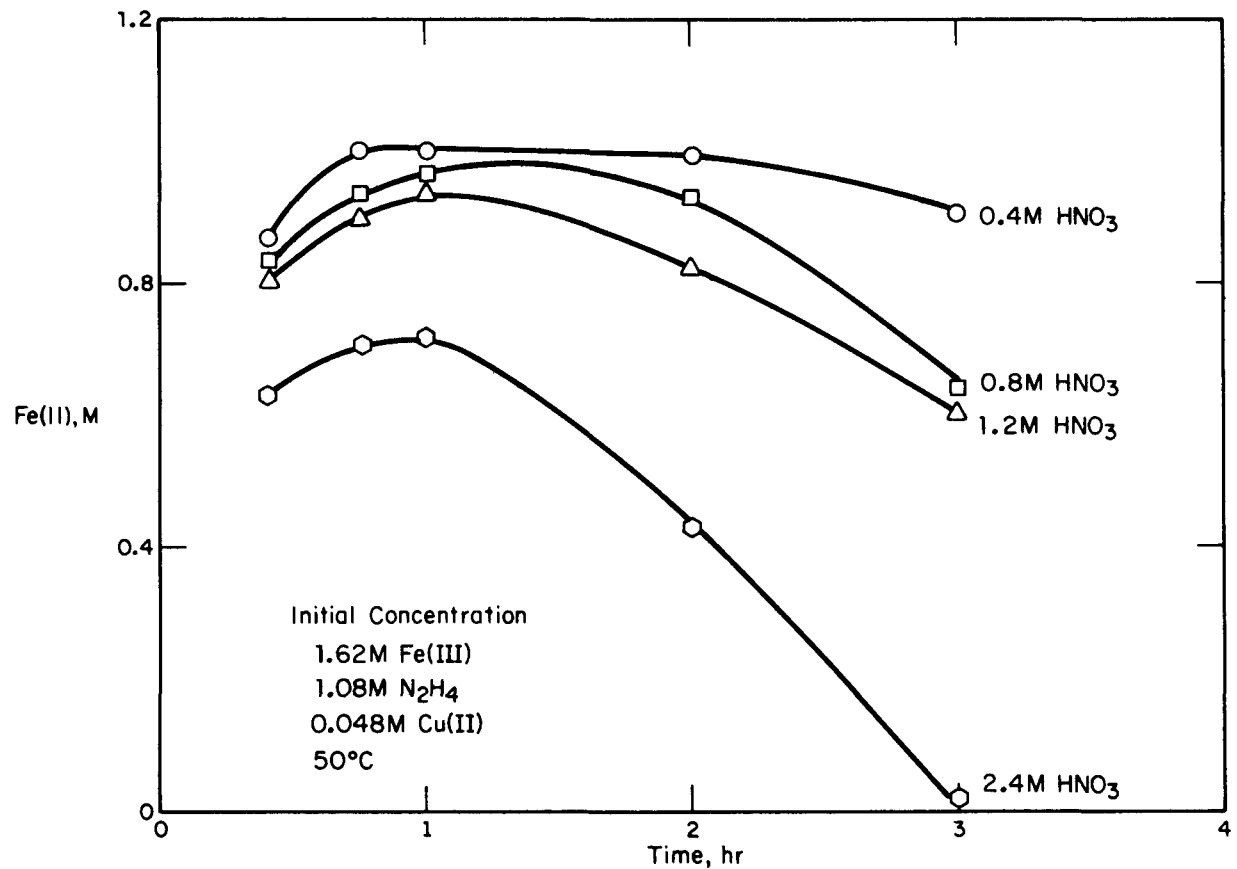


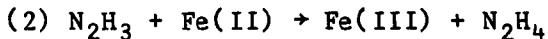
FIGURE 4. Effect of HNO₃ on Fe(II) Preparation

TABLE 1

Preparation of Ferrous Nitrate

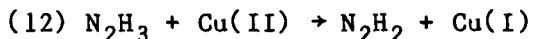
Initial Concentration*	Temp., °C	Final Fe(II) Concentration M	Time, hrs
1.3M Fe(III)	40	1.07	1.25
1.4M N ₂ H ₄			
0.05M Cu(II)	30	1.04	6**
0.35M HNO ₃	23.5	1.04	30
1.3M Fe(III)	40	1.14	1.25
1.4M N ₂ H ₄			
0.08M Cu(II)	30	1.10	6**
0.35M HNO ₃	23.5	1.26	30
1.3M Fe(III)	40	1.11	1.25
1.7M N ₂ H ₄			
0.05M Cu(II)	30	1.10	6**
0.35M HNO ₃	23.5	1.18	30
1.2M Fe(III)	40	1.20	1.25
1.7M N ₂ H ₄			
0.08M Cu(II)	30	1.20	6**
0.35M HNO ₃	23.5	1.30	30

* Fe(III) concentrations estimated from makeup.

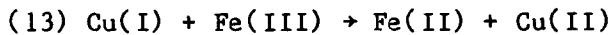

** Extrapolated.

Further standing of these solutions at room temperature led to a further small increase in Fe(II) concentration for 1 to 2 days; the solutions were stable for 4 to 5 days. A slow decrease in Fe(II) concentration begins after a week - of the order of 5% per day. The solutions with the highest N_2H_4 concentrations were more stable, suggesting that a reaction between nitric acid and hydrazine is occurring, and as the hydrazine concentration decreases, Fe(II) is more susceptible to oxidation by nitric acid.

The solutions prepared by this reaction are red-brown in color from the ferric azide complex ion. Hydrazoic acid concentrations as high as 0.25M were found by analyses, but did not show any correlation with temperature, hydrazine concentration, cupric ion concentration, or time elapsed from preparation. As the reaction tubes were vented to allow escape of nitrogen, it is presumed that some HN_3 escaped with the nitrogen. (The vapor pressure of HN_3 is 509 mm at 24.7°C.⁸) In several tests, a 10-to 15-minute nitrogen sparging of the Fe(II) solutions removed all the HN_3 , as evidenced by the change in solution color from red-brown to green. A slow color change indicated the slow growth of HN_3 in the solution over the next 24 hours. Large-scale preparation of ferrous nitrate-hydrazine solutions (by this or any other method) should consider nitrogen-sparging of the storage tank, and aqueous sodium nitrite scrubbing of the tank off-gas to destroy HN_3 .


DISCUSSION

The effect of Cu(II) on the reduction of Fe(III) by hydrazine is believed⁵ to be the result of decreasing the back reaction (Equation 2), which in an uncatalyzed system acts to prevent complete reduction of Fe(III). As the Fe(II) concentration increases,



the concentration of the N_2H_3 radical is decreased by reaction (2); as the Fe(III) concentration is also decreased, the reaction is stopped before complete reduction occurs.

With Cu(II) present, the concentration of N_2H_3 is reduced by

followed by

and reaction (5), diazene radical oxidation. To achieve complete reduction, a lower ratio of Fe(III)/ N_2H_4 is desirable to maintain

the production of hydrazyl (N_2H_3) radicals, so far as possible, as Fe(III) is depleted. Elevated temperatures presumably also increase the rate of free radical production.

Previous workers 4,5,6 report that little, if any, HN_3 is formed by the Fe(III)-hydrazine reaction, but all carried out their experiments in sulfuric acid solutions. From the present work, it is apparent that there is a substantial reaction between hydrazine and nitrate ion (or nitric acid) to produce HN_3 during both the reduction of Fe(III) and during storage at room temperature. Color changes indicative of HN_3 production have also been observed in Fe(II)-hydrazine solutions produced by dissolving iron metal in $HNO_3-N_2H_4$ solutions. The storage of any Fe(II)-hydrazine-nitric acid solution would be accompanied by accumulation of HN_3 .

RECOMMENDED CONDITIONS FOR LARGE-SCALE PREPARATION

The recommended conditions for preparation of ferrous nitrate - hydrazine nitrate solution are heating a 1.3M Fe(III) - 1.7M $N_2H_4 \cdot HNO_3$ - 0.35M HNO_3 - 0.08M Cu(II) solution for 1.5 hours at 40°C in a tank equipped with an off-gas scrubber. The tank off-gas should be scrubbed with $NaNO_2$ solution, and after cooling to room temperature, a nitrogen sparge should be continued to remove HN_3 as formed. Despite the complication of the storage conditions, the product solution is an effective reducing agent that can be substituted for ferrous sulfamate solution in any radio-chemical Separations processes.

REFERENCES

1. A. D. Kelmers and D. Y. Valentine. Search for Alternate Holding Reductants to Stabilize Pu(III) Solutions. U. S. DOE Report ORNL/TM-6521, Oak Ridge National Laboratory, Oak Ridge, TN, (1978).
2. E. G. Orebaugh. E. I. du Pont de Nemours & Co., Aiken, SC, private communication (1981).
3. E. K. Dukes and R. M. Wallace. Formation of Hydrazoic Acid from Hydrazine in Nitric Acid Solutions. USAEC Report DP-728, E. I. du Pont de Nemours & Co., Savannah River Laboratory, Aiken, SC (1962).
4. W. C. E. Higginson. "The Oxidation of Hydrazine in Aqueous Solution." Recent Aspects of the Inorganic Chemistry of Nitrogen, Special Publication 10, pp. 95-112, The Chemical Society, Burlington House, London (1957).
5. W. C. E. Higginson and P. Wright. J. Chem. Soc., Part 2, London (1955).
6. J. W. Cahn and R. E. Powell. J. Am. Chem. Soc. 76, 2568 (1954).
7. E. K. Dukes and R. M. Wallace. Anal. Chem. 33, 242 (1961).
8. D. M. Yost and H. Russell, Jr. Systematic Inorganic Chemistry, p. 126, Prentice-Hall, New York, NY, (1946).