
>

INVERSION OF HEAD WAVE TRAVELTIMES FOR
THREE-DIMENSIONAL PLANAR STRUCTURE

David F. Aldridge’ and Douglas W. 01denburg2

] Geophysical Technology Department
Sandia National Laboratories

Albuquerque; New Mexico, USA, 87185-0750

Phone: 505-284-2823
Email: dfaldri@sandia.gov

2Department of Earth and Ocean Sciences
University of British Columbia

129-2219 Main Mall
Vancouver, British Columbia, Canada, V6T 1Z4

Phone: 604-822-2823
Email: doug(ljgeop.ubc.ca

Abbreviated Title: 3D Planar Structure

Submitted to Geophysical Journal International

March 1999



-..

DIXLAIMER

This rcpon was preparedas an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implicd, or
assumes any legal liability or responsibility for the accuracy, cmnpletcncss, or usc-
fulncas of any information, apparatus, product, or process disclosed, or represents
that its usc would not infringe privately owned rights. Reference herein to any spe-
cific commercial prcduct, process, or service by trade name, tradcmar~ manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflact those of the United States Government or any agency thereof.

.



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.



SUMMARY

Inversion of head wave arrival times for three-dimensional (3D) planar structure is formulated as a

constrained parameter optimization problem, and solved via linear programming techniques. The earth

model is characterized by a set of homogeneous and isotropic layers bounded by plane, dipping

interfaces. Each interface may possess arbitrary strike and dip. Predicted data consists of traveltimes of

critically refi-acted waves formed on the plane interfaces of the model. The nonlinear inversion procedure

is iterative; an initial estimate of the earth model is refined until an acceptable match is obtained between

observed and predicted data. Inclusion of a priori constraint information, in the form of inequality

relations satisfied by the model parameters, assists the algorithm in converging toward a realistic solution.

Although the 3D earth model adopted for the inversion procedure is simple, the algorithm is quite useful

in two particular contexts: (i) it can provide an initial model estimate suitable for subsequent

improvement by more general techniques (i.e., traveltime tomography), and (ii) it is an effective analysis

tool for investigating the power of areal recording geometries for detecting and resolving 3D dipping

planar structure.
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INTRODUCTION

Head wave traveltimes are commonly analyzed and interpreted within the framework of one- or two-

dimensional (1D or 2D) layered earth models. Extension of these techniques to three-dimensional (3D)

layered media should provide more general tools for determining subsurface seismic properties.

Critically or near-critically refracted arrivals are particularly valuable for inferring the seismic velocities

of layered geologic media. Also, head waves often constitute first arrivals in many field experiments, and

thus can be picked with greater accuracy than later arrivals.

Although numerous investigators have studied inversion of reflection traveltimes for 3D layered

structure (e.g., Hubral 1976, Gj~stdal & Ursin 1981, Chiu et al. 1986, Chiu & Stewart 1987, Lin 1989,

Phadke & Kanasewich 1990), the analogous situation for refraction traveltime data has not been

thoroughly examined. Kanasewich and Chiu (1985) present a method for jointly inverting reflection and

refi-action traveltimes to determine 3D structure. Forward calculation of traveltimes is achieved with the

iterative ray bending method of Chander (1977). Aldridge (1989) describes a method for recovering the

attitude, velocity, and depth of a plane subsurface refractor from head wave arrivals recorded along two

‘line profiles. However, the approach cannot be generalized to non-profile recording geometries. The

present work allows an arbitrary distribution of sources and receivers on the surface.

This study describes an algorithm for inversion of head wave arrival times for 3D planar structure.

The earth model is characterized by a stack of homogeneous and isotropic layers bounded by plane

interfaces. Each interface may have arbitrary strike and dip. The inversion method is iterative; an initial

estimate of the model parameters is refined until an acceptable match is obtained between observed and

predicted data. Rapid foiward modeling of head wave traveltimes and their partial derivatives k achieved

with a combination of analytical and numerical techniques. The forward computation method does not

entail iterative ray shooting or ray bending, which can be time consuming processes in 3D. A novel

feature of the inversion procedure is the inclusion of constraint information in the form of inequality

relations satisfied by the model parameters. Often, a priori geological or geophysical information is

available to guide and constrain a non-linear traveltime inversion. This is particularly helpful for the

inversion of head wave traveltimes, because the problem can be very ill-posed and admit numerous

solutions.

The 3D layered earth model adopted for the inversion procedure is, admittedly, quite simple.

Nevertheless, it can be an adequate representation of geophysical reality at various depth and lateral

scales. This inversion approach is especially useful in two particular contexts: (i) it can provide an initial

earth model estimate suitable for subsequent refinement by techniques that allow more general 3D

variability in the parameters [e.g., reflection and/or refraction traveltime tomography (Hole 1992; Zelt et
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al. 1996)], and (ii) it can be used as an analysis tool for investigating the capabilities of various recording

geometries for detecting and resolving 3D dipping structure. These issues are facilitated by the extremely

rapid execution speed of the algorithm.

After a discussion of the mathematical basis of the inversion technique, the algorithm is tested on both

synthetic and field-acquired traveltime data. Inversion of refraction data from the Peace River Arch

region of northwest Alberta and northeast British Columbia, Canada indicates that the algorithm can be a

useful tool for analysis of head wave traveltimes recorded in a broadside configuration.

INVERSION MATHEMATICS

General theory

Let the observed arrival times for the experiment be organized into an ~-dimensional column vector

tob,. The earth model is characterized by a finite set of scalar parameters mj,j = 1,2,... J. These are

organized into an J-dimensional column vector m. Predicted head wave traveltimes generated by this

model are designated by the l-dimensional vector tp,~m). Then, a first order Taylor series expansion of

the observed data about the particular model m“ yields the expression

A(m” )Am”+’ = At(m” ), (1)

where At(m”) = tOb,– tp,~mn) is the data discrepancy vector, Amn+] = m“+] – mn is the parameter update

vector, and the elements of the I x J sensitivip matrix A(mn) are given by

[A(mn)],.~ .

J ~=m.

(2)

In these and subsequent expressions, the superscript n is the iteration index.

In many crustal seismic reflection and refraction experiments, the system (1) is cwerdetermined,

underconstrained, and inconsistent. A popular solution technique for Am”+] is the damped least squares

method. The updated parameter vector is then obtained via m“+’ = m“ + Amn+l. Iterations continue until

an acceptable fit to the observed traveltime data is achieved. This strategy is termed “creeping” (Scales

et al. 1990) because the final solution is obtained by the addition of (possibly many) small perturbations

to an initial guess.
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An alternative approach is used in this study to obtain the improved model parameter vector.

Substituting the definition of the parameter update vector into(1) and rearranging terms gives

A(mn)m”+’ = At(m”)+ A(m”)m”. (3)

The right side of this expression consists of known quantities. Hence, equation (3) can be solved directly

for the new model parameter vector m“+’. Scales et al. (1990) refer to this technique as “jumping”

because, in the absence of additional constraints, the size of the model change between successive

iterations ]/m”+’– m“[l is not restricted to be small. Moreover, since the inversion is formulated in terms

of the model itself, rather than a model perturbation, the jumping strategy facilitates the incorporation of

constraint information into the algorithm. In this work, constraints

form of inequality relations satisfied by the model parameter vector:

m- < m“+] < m+ ,

are mathematically expressed in the

(4a)

where vectors m- and m+ are lower and upper bounds on the model, respectively. These bounds arise

from a priori geological or geophysical knowledge (or assumptions) about the earth model. For example,

the model parameters in this study are strictly non-negative. Thus, if the lower bound is set equal to O,

negative values are excluded on each iteration of the inversion procedure. This is required for meaningful

forward modeling of traveltimes. The inequality bounds in (4a) can also be used to severely restrict (or

even eliminate) the variation of a certain parameter on successive iterations of the inversion. In this

si~ation, upper and lower bounds are narrowly established about an accurately known (or preferred)

value for the particular parameter.

The inversion algorithm can also be stabilized by limiting the size of the model change between

iterations, Hence, if&m is a vector of upper bounds on the parameter increments, the updated parameter

vector must satisfi the additional inequality constraints

m“_~m<mn+]<m’’+~m. (4b)

These constraints fulfill the same regularizing role as the damping parameter in a damped least squares

solution of the original equation (1). If a reasonably good initial estimate m“ for the model is available,

and if IIbmll is sufficiently small, then the constraints (4b) assure that the algorithm iterates toward a

solution in the neighborhood of m“, rather than jumping to a remote region of model space.
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The linearized data equations (3) are usually inconsistent, i.e., an exact solution does not exist. Two

reasons for this are (i) the observed traveltimes are contaminated with random picking errors, and (ii) the

calculated traveltimes may have inadequate accuracy due to sparse and/or gross model parameterization.

A robust solution to this inconsistent system can be obtained by minimizing the 1, norm of the misfit.

Linear programming provides a convenient solution method because the model parameters are

intrinsically non-negative and are constrained by inequalities (4a,b). In order to pose the problem in the

context of linear programming, an l-dimensional residual vector r is introduced into equation (3) as

follows:

A(mn)mn+’ +r = At(m”)+A(m”)mn. (4C)

The elements of r constitute additional unknown variables that must be solved for. The problem now

consists of determining the model parameter vector m“+’ and the residual vector r that simultaneously

satisfy the inequality constraints (4a,b), the equality constraints (4c), and that minimize the 1,norm of the

residual

[

ZI Ir,= q.
iel

A standard linear programming routine is

specified by equations (4a,b,c,d). After an

(4d)

used here to solve the constrained optimization problem

improved model parameter vector m‘+’ is obtained, the 11

norm of the misfit between observed and predicted traveltimes IItob~– tp,~mn+’) II1 is computed. Iterations

cease when this misfit reaches some acceptable level, or exhibits negligible change on successive

iterations. The elements of the residual vector r play no further role after equations (4a,b,c,d) are solved,

and are discarded. However, the 11norm of the residual (4d) is monitored on each iteration in order to

assess how closely the linearized data equations have been fit.

Finally, the flexibility of the inversion algorithm is enhanced by including variable weighting of both

the traveltime data and the model parameters. Equation (3) is modified to

[WdA(mn)Wj’ ][Wpm’’+’]= WdAt(mn) + [WdA(m’’)Wjl ][Wpmn], (5)

.
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where Wd and Wp are data and parameter weighting matrices, respectively. Currently, these are restricted

to be diagonal matrices. Thus, premuhiplication of the sensitivity matrix by Wd corresponds to row

weighting and postmultiplication by W-lP corresponds to column weighting.

The data weighting matrix can be used to emphasize those particular traveltimes judged to be more

significant for the inversion. The parameter weighting matrix serves to nondimensionalize and normalize

elements of the model parameter vector m“+]. This is a practical concern in inversion algorithms where

the model is characterized by parameters with different physical dimensions and/or widely varying

numerical magnitudes. The conditioning of the sensitivity matrix A(m”) is improved by column scaling

by W-lP. Thus, numerical roundoff error associated with the linear programming solution is reduced.

Suitable units of measure are chosen for the various model parameters; the reciprocals of these scalars

form the diagonal elements of Wp. The inequality constraints (4a,b) on the model must also be

nondimensionalized in the same manner. If the weighted parameter vector calculated by the inversion

algorithni is designated m“+’, then the physical parameters required for forward modeling of traveltimes

are obtained via m“+] = W-lP m“+’.

Calculation of Traveltimes and Sensitivities

A simple 3D earth model consisting of a single layer overlying a halfspace is characterized by the five-

element parameter vector m = [VI,V2,+, 8, A]r, where VIand V2are P-wave velocities of the two media, +

and f?are interface orientation angles, and h is the vertical depth to the refractor below the coordinate

origin. Aldridge (1989) derives a closed form expression for head wave traveltime in terms of these

parameters. Hence, formulae for the elements of the sensitivity matrix can be obtained by straightforward

partial differentiation. However, a substantial simplification arises by redefining the set of model

parameters as m = [s,, iC,$, ~ h]Twhere S, = I/vl is the layer slowness and i. = sin-l(vl/v2) is the critical

refraction angle. In terms of these new parameters, head wave traveltime is

T = .s, sin(ic - 3)x + 2S1 Cosic [h cos~ - (x, COS8 + y. sin @ sin ~], (6)

where 5 = sin-l[sin+ COS(Y-@]. Symbols x~and y~ are the horizontal coordinates of the source, andX and

Yare the offset and azimuth to the receiver, respectively. Note that equation (6) is a linear function of

the layer slowness SI. Differentiating (6) yields the traveltime sensitivities
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~ = sin(ic – 6)X+2 cos iC[hcos @ – (XS cos8 + y~ sin0) sin+],
as,

aT
—= S1COS(ic - 3)X - 2s, siniC[h COS+- (XScos$ + y, sino)sin+],
i3iC

(7a)

(7b)

i3T –s, cos(ic - a) cos@cos(Y - e)
X - 2s1 cosic [hsin+ + (x. cosf3 + y. sin O)cos@], (7c)

a~ = Cos 8

i3T -s, cos(iC – @ sin @sin(Y - El)—= X + 2s1 cosic sin $(XS sin 8 – y~ cos69,
ae Cosi$

aT “
— = 2s1 cosiC cos~.
ah

(7d)

(7e)

The i’hrow of the 1 x 5 sensitivity matrix A(m”) is obtained by evaluating these relations with the current

model vector mn and with the geometmc parameters [xsi,ysi, Xi, ~ appropriate for the i’~recorded

traveltime. The number of traveltimes usually exceeds 5, and thus the matrix is overdetermined.

However, in some situations, the matrix is also rank deficient. If the refracting horizon is horizontal (i.e.,

@= O) then the derivative c9T/@vanishes, and the fourth column of the sensitivity matrix is identically

zero. This will occur, for example, if a 1D earth model is used for the initial parameter vector estimate.

Calculation of head wave traveltime sensitivities for a multilayered earth model is more complicated

because a closed form mathematical expression for the arrival time does not exist. However, Aldridge

(1992, 1999) gives a head wave traveltime formula for this situation that can be evaluated with minimal

numerical effort. A combination of analytical and numerical techniques can then be used to calculate the

sensitivities. In this study, sources and receivers are restricted to the horizontal surface. Thus, if there are

K interfaces in the earth model, then there are total of J = 4K-3 model parameters (K layer slownessess,

2K-2 interface orientation angles, and K-1 layer thicknesses). These parameters are organized into the J-

dimensional column vector

m = [sl...sK, @,.@K,QzQz... eK ,h, ...hK_.]T,
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where sj is a layer slowness, ~ is an interface dip angle, ~ is an interface azimuth angle, and hj is a

vertical layer thickness measured at the coordinate origin. Interfaces are numbered sequentially from the

surface (interface 1) in the downward direction. Interface overlies layerj.

A “slope and intercept” expression for the traveltime of a head wave critically refracted on interface k

(2< k< K) of a multilayered earth model is derived by Aldridge (1992, 1999):

where, as above, xs and y~ are the horizontal coordinates of the source (on the surface), X is the source-

receiver offset distance, and Y is the source-to-receiver azimuth angle. The slope m~(Y) and intercept

bk(xs,ys,~ are

[m~ (Y) = S1 COSY qlk,x + sin y 91k,y (9a)

and

k-1

bk(XS,Ys , y) = ~sjhj (Pjk,z [ 1– qjk,z ) – ‘I ‘S (Plk,.r – qlk,x ) + YS (~lk,y – qlk,y ) - (9b)
j=l

Expressions (9a,b) contain the components of two sets of unit vectors Pjk and qjk that describe the

propagation directions within layerj of a wave critically refracted on subsurface interface k:

Pjk = Pjk,xi + Pjk,yj + pjk,z~ ~ qjk = qjk,-ri + ~jk,yj + 9jk,zk 7

with l]pjk112= ]]qkl]2= 1. Vectors Pjk and qjk ~=l,z>..., k-1) refer to the downward and upward propagating

portions of the total raypath, respectively. The propagation direction along the critically refi-acting

horizon is pkk= qk~. Equations (8) and (9a,b) are not “closed form” expressions for head wave traveltime

because these unit propagation vectors depend implicitly on both the model m and the source-to-receiver

recording azimuth Y? Nevertheless, if m and Y are specified, then all of the propagation vectors can be

accurately computed, and the traveltime formula (8) can be numerically evaluated. The computation

procedure does not involve any iterative 3D ray tracing (shooting or bending), and thus is extremely

rapid.
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Many of the elements of the sensitivity matrix A(m) can be determined by analysis. The traveltime of

a head wave formed on interface k does not depend on parameters sj, A, and 6j forj > k, or on hj forj > k.

Hence, these traveltime derivatives are identically zero. Moreover, the sensitivity to layer thickness hj for

j < k is derived directly from the above expression for intercept time: 6T~6$ = sj @jkJ – qjkz). The

remaining sensitivities must be evaluated by a finite-difference technique. Let dmj be a model

perturbation vector with zeros in all element positions except thej’h. Then, the partial derivative of head

wave travekime with respect to parameter )njis approximated by the forward finite-difference

aT~ Tk(m + dmj) – T~(m)

~mj =
(lo)

dmj ~ “

Unit propagation vectors are generated for both the perturbed model m + dmj and the unperturbed model

m. These are then used in formulae (8) above to calculate traveltimes for each model. Finally,

substituting these traveltimes into (10) yields an approximation for the required derivative. The size of

the model perturbation Ildmjllzis typically about 1“A of the value of the associated model parameter.

Although a centered finite-difference scheme would yield greater accuracy, the one-sided approximation

adopted here requires less computational effort. Only two traveltime computations are needed for each

model parameter, instead of three.

SYNTHETIC DATA EXAMPLES

The two examples discussed in this section are representative of a large number of computational

experiments conducted with the inversion algorithm. Both the single-layer and multiple-layer variants of

the algorithm are examined. The first example demonstrates that the single-layer version is capable of

returning the correct solution under a variety of operating conditions. However, as, indicated in the

second example, the multilayer version appears to require fairly restrictive constraints in order to iterate

toward the correct model.

Single Layer

The earth model used for the first example consists of a single layer overlying a halfspace and is

defined by the parameters
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VI :1500 m/s, V2 = 2500 m/S, 4=5”, 6=45°, h=100m.

Critically refracted arrival times for two areal recording geometries are generated fi-om equation (6).

Inversions are performed with both accurate and error-contaminated traveltimes.

Figure la is a plan view of a triangular data acquisition geometry. Thirty receivers are deployed

around the perimeter of an equilateral triangle with sides 500 m long. Each side contains 11 receivers

separated by 50 m. All receivers record energy from sources that are activated sequentially at the three

vertices of the triangle. However, some source-receiver offsets are less that the critical offset distance,

and thus these receivers do not detect a head wave arrival. These fictitious times are excluded from the

inversions. A total of 1 = 73 uniformly weighted traveltirnes are used to recover the J = 5 earth model

parameters.

Numerical results from a few typical inversion runs are described here. The iterative inversion

procedure is initiated with a lD model given by

VI =looods, V2= 2000 m/s, +=()”, 0=0°, h=85m.

After eight iterations, the exact (i.e., within one significant digit) earth model parameters are returned.

The initial traveltime misfit of 79.6 ms is reduced to 0.1 ms; iterations terminate when the relative change

in misfit is less than 1Yo. A wide variety of starting models yields essentially the same final solution,

although the number of iterations required for convergence varies. Also, the inversion is stable when the

traveltimes are contaminated with small random errors. Random numbers drawn from a uniform

probability distribution on *4 ms are added to the accurate times, and the algorithm is initiated with the

same starting model. After five iterations, the following solution is obtained:

v, =1497 mfs, V2 = 2549 ill/S,

Iterations cease when the misfit decreases

9$=5”, 0=52°, h=100m.

below 2.3 ms, equal to one standard deviation of the noise.

Note that the overburden velocity VIhas been correctly estimated from the refraction data alone! This

interesting (and unusual) result is consistent with a theoretical analysis by Aldridge (1992).

These results suggest that the triangular recording array is a useful configuration for determining 3D

“ planar structure. This particular geometry combines an adequate distribution of offset and azimuth

together with three reciprocal time pairs. These are favorable attributes for a successful inversion of

refraction arrival times via the time term, delay time, and reciprocal time inversion methods. The triangle
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was first investigated by Gardner (1939) who demonsh-ated that it yields an exact solution for the delay

times at the three vertices. More recently, the triangular array has been used for deep crustal seismic

exploration in Saskatchewan (Kanasewich & Chiu 1985) and British Columbia (Zelt et al. 1996).

Other recording geometries are considerably less robust in detecting and resolving 3D dipping

structure. Figure lb depicts two parallel line amays, separated by 200 m, oriented along the strike

direction of the subsurface refi-actor ~“-SE). Each spread contains 11 geophones (receiver interval =

50 m) that record head wave arrivals from a source located at the center of the opposing array. This

broadside recording pattern simulates aspects of the “swath geometry” commonly used for 3D seismic

reflection surveys. Using the same starting model, inversion of the 22 equi-weighted

traveltimes yields

v, =1286 m/s, V2 = 2500 m/S, 4=5”, 0=45°, h=80m

The initial traveltime misfit of 66.4 ms is reduced to near zero in eight iterations. Although

broadside

this model

generates an exact fit to the data, the overburden velocity VIand the vertical depth h are incorrect. A

similar effect is observed when the inversion is initiated from numerous different starting models. This

situation illustrates the classical tradeoff between overburden velocity and refractor depth in seismic

refraction interpretation. If additional a priori data are introduced into the inverse problem, then a correct

solution is possible. For example, the interface depth may be known from a borehole drilled at the

coordinate origin. Constraining the depth to satisfy 99 m < k <101 m yields the model

v, =1490 m/s, V2 = 2500 IdS ,

which is substantially correct. Alternately,

4=5”, 0=45°, t’z=99m,

constraining the overburden velocity with the inequalities

1450 m’s <VI <1550 m/s yields the erroneous ID model

v, = 14501n/s, V, = 2494 dS , 4=()”, @= O”, lz=94m.

Evidently, the broadside geometry illustrated in Figure lb allows many solutions to this nonlinear inverse

problem. However, if the both the irdine and broadside head wave arrivals recorded on each spread are

included in the inversion (so now 1 = 32), the correct model is recovered in seven iterations. Head waves

recorded along strike provide excellent control on the velocity of the refi-acting medium. Aldridge (1989)

demonstrates that the measured apparent velocity equals the true velocity in this situation. As expected,

10



.

the inversion degrades when the exact traveltimes are contaminated with uniformly distributed random

errors on +4 ms. The model

I

VI =1559 m/s, V2 = 2664 111/S, 4=5”, @=43°, h=107m,

is obtained in seven iterations with a traveltime misfit of 2.4 ms.

Multiple Layers

The earth model used for the second example consists of two layers overlying a halfspace and is

defined by the parameters

v* =1500 m/s, #,=oO, 61=00, zl=Om,

V2 = 2ooon-ds , 42=30, $, =180°, -z, =40m,

V3 = 2500rn/s , +, =5°, 63 = 45°, zJ=l OOm.

Model parameters A, /31,and z, are not allowed to vary in the inversion. Hence, there are only J = 9

parameters to estimate. Head wave traveltimes for each critically refracting horizon are generated by

evaluating equation (8). The recording geometry used is the triangular array displayed in Figure 1a.

Also, precritical offset arrivals are included in the traveltime dataset (in an actual field experiment, these

times could be obtained by extrapolation or phantoming). Hence, there are a total of 1 = 174 uniformly

weighted arrival times input to the inversion procedure.

If restrictive constraints are imposed on the model parameters, then it is possible to recover the correct

solution with the multilayer algorithm. For example, constraining the velocityvl and the depth 22equal to

the true values allows the algorithm to iterate to the known solution from a lD starting model. Also, if

narrow bounds are established on the velocities and depths (~50 m/s and +5 m about the true values,

respectively) then the correct solution is obtained Ilom a nearby initial model. However, a relatively

unconstrained inversion invariably yields an erroneous result for this simulated experiment. It is probable

that the objective function (4d), which only measures the misfit of the linearized data equations, has many

local minima that preclude convergence to the desired global minimum.
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FIELD DATA EXAMPLE

Deep seismic refraction data were acquired in the Peace River Arch (PRA) region of northwest Alberta

and northeast British Columbia, Canada in 1985. In addition to four inline profiles, two broadside

profiles were recorded. Figure 2 illustrates the source-receiver geometry for these two profiles. Shot A4

in the west is recorded by the north-south trending line A, and shot B4 in the north is recorded by the

east-west trending line B. Offset distances range from 249-313 km on line A, and from 262-344 km on

line B. Each receiver array subtends an azimuthal angle of -64° relative to its source. The first arrivals at

the recording sites are interpreted to be waves that are critically or near-critically refracted at theMoho.

Hence, inversion of the first break traveltimes can provide an estimate of the regional depth and dip of the

Moho beneath the Peace River Arch.

In this example, the broadside arrival times are inverted within the framework of a simple “layer’over

a halfspace” earth model. No attempt is made to infer a detailed structural picture of the crust and

Moho in the PRA region. Rather, the intent is to recover a large scale 3D model that can be subsequently

refined by other traveltime interpretation/inversion methods. Initial estimates of the model parameters are

obtained from crustal sections along lines A and B given by Zelt & Ellis (1989). These sections were

derived by interpreting the inline refraction data of the PRA experiment via a trial-and-error forward

modeling approach.

There are 83 first break picks from line A and 52 first break picks from line B. Thus, 1 = 135 equally

weighted traveltimes are input to the iterative inversion procedure. The first arrivals recorded at these

long offset distances are emergent, and the estimated picking error is +50 ms.

The effect of variable near surface structure on the head wave arrival times can be reduced by applying

static corrections to the picked first breaks. Static corrections are commonly applied to seismic reflection

data for this same purpose. However, there is an important distinction between the corrections for the two

types of data. In the refraction case, the static is designed to remove the refraction delay time influence of

the near surface structure, and then replace it with the delay time contribution of a constant velocity

medium. In the reflection case, the correction pertains to the vertical traveltime through the actual and

replacement media. Statics application is an important preprocessing step for the PRA broadside data

because the subsequent inversion assumes a very simple earth model. In effect, an attempt is made to

“make the data fit the model” more closely. The refi-action statics development in Appendix A assumes

that near surface velocity information is available. For the PRA experiment, this is obtained from well

log data along the two profile lines.
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Inversion Results

The initial estimates of the earth model parameters are:

V, = 6.5 kill/S, V2 = 8.25 h/S, 4=2”, @ = 270°, 1’1=40 km.

Lower and upper parameter bounds are also inferred from the crustal sections in Zelt & Ellis (1989):

‘=6. Olcmk,VI v; = 7.5 lcrnls , +-=()”, $- =00 > h- =38km,

v; = 7.5 km/s, V; = 8.5 kmh, ++=150, 0+=3600, h+=42km.

fie bounds on the velocities must be transformed to equivalent bounds on the parameters SI (slowness)

and i=(critical angle) that are used by the inversion algorithm. After five iterations, the following model

is returned:

.

VI = 6.21 km/s, V2 = 8.50 km/s, @= 2.8°, e = 300.0°, h=42km.

The initial traveltime misfit of 658 ms is reduced to 172 ms; iterations cease when the relative change in

the misfit is less than 1‘XO. Velocities v] and V2of this solution differ from the replacement and critical

velocities (v, and VC,respective] y) used for calculating refi-action static corrections. Hence, the statics are

recomputed with v,= 6.2 km/s and v== 8.5 Ian/s (see Appendix A) and applied again to the picked arrival

times. Then, initiating the inversion algorithm with the same starting model yields

V, =6.17 km/s, V2 = 8.501cnA,

in five iterations with a misfit of 171 ms.

@= 2.7°, e = 300.9°, h=42km,

Although this model is not significantly different from the

previous one, it is consistent with the assumptions used for calculating the statics.

A comparison between the observed arrival times (after application of static corrections) and the

traveltimes predicted by the model produced by the inversion is displayed in Figure 3. Evidently, the

simple five-parameter earth model provides an adequate explanation for the gross character of the

broadside arrival time curves. Small scale variations in the predicted times (solid curves) are due strictly

to recording geometry irregularities, rather than any subsurface structural complications. However, a

large component of the total traveltime misfit must be attributed to structure or velocity variations that are
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not modeled in the inversion procedure. This misfit is too large to be accounted for by random picking

errors alone. For example, the predicted times are systematically greater than the observed times

throughout the central portion of line B. This suggests that the Moho north of line B is not adequately

represented by a plane interface bounded by uniform velocities.

Vertical depths to the Moho calculated from the inversion results are posted on a plan view of the PIU

recording geometrj in Figure 4. A depth trend is readily apparent, although the depth at the southern end

of line A is probably too large. Southeastward dip of the Moho is suggested by interpretations of the

inline refi-action data on lines A and B, but not on the other lines of the PRA experiment (Zelt & Ellis

1989). Also, the velocities recovered by the 3D inversion are broadly consistent with those obtained

previously. Of course, precise agreement cannot be expected. The mean crustal velocity is lower (6.17

km/s vs. -6.6 km/s) and the sub-Moho velocity is higher (8.5 lcds vs. -8.2 krnls). However, Zelt & Ellis

(1989) infer a P. velocity of 8.4 km/s along the northern half of line A and eastern quarter of line B.

Two-Dimensional Analysis

An independent check on the validity of the 3D inversion is provided by a simple 2D analysis

technique. Assuming a 2D “layer over a halfspace” earth model, each arrival time recorded along a

broadside profile can be individually inverted for an estimate of Moho depth beneath the associated

receiver site. A depth profile for the Moho is constructed by plotting these depth estimates side-by-side.

In the-2D case, head wave traveltime is

T(xS ,X)=
sin(ic + p) ~ + 2h(x~ ) cos q cos iC

Y
V1 VI

(11)

where iC= sin-](vl/vJ is the critical angle and I I(xS)is the vertical thickness of the layer at the source

location. The interface dip angle p may be positive, zero, or negative. This relation is rewritten as a

quadratic form in cosw

Acos2(D+Bcos(p +c=o. (12)

The three coefficients depend on earth model parameters [vl, V2,h(xs)] and measured data [X, ~ as

follows:
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4~(~~)c0siC ~in,i +~l(xs)~osi
A=l+

x
c 1xc’

[ 1[B=–2:
2h(x~ )

siniC + 1cosiC ,.
x

[1
~

c= ~ –cos2 iC.

(13a)

(13b)

(13C)

If values for Vl, V2, and h(xJ are known (or assumed), then these coefficients can be evaluated

numencall y. Solution of equation (12) for cosp is via the quadratic formula:

–B+d~
Cosp =

2A ‘
(14)

where the positive root is chosen by analyzing the form of the right side as X-+ +m. There is still a two-

fold ambiguity in determining the dip angle p from its cosine. This is easily resolved by ensuring that the

travehime predicted by formula (11) agrees with the picked traveltime. Finally, once the dip angle is

determined, the vertical depth to the refractor at any irdineposition x can be calculated via h(x)= h(xJ +

(x-x,) tanp.

Figure 5 compares Moho depths calculated via the above method with those inferred from the

parameters’recovered by the 3D inversion. Vertical depths beneath the recording stations along each line

are plotted. The coefficients in the quadratic (12) are evaluated with the parameters obtained fi-omthe 3D

inversion procedure (vl = 6.17 km/s, V2= 8.50 km/s, h(xs) = 37.6 km for shot A4, and h(x~)= 34.8 km for

shot B4). Short wavelength variations in the computed curves are artifacts of traveltime picking errors

and/or small scale structural heterogeneity, and should be ignored. There is close agreement in theMoho

depth trend calculated by these two completely different techniques, especially along line A. The larger

departure of the two depth curves along line B suggests structural complexity north of this line in the

Peace River Arch region.

Although the 2D inversion method is simple and appears to yield reasonable depth estimates, it

requiresassumptions of numerical values for three unlmown model parameters [vI, vz fi(xs)]. h contra%

the 3D inversion technique yields simultaneous estimates of all relevant earth model parameters.
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Moreover, since it accomplishes a joint inversion of all of the error-contaminated traveltime data, it is

more robust than the 2D method.

CONCLUSION

Inversion of head wave arrival times for 3D planar structure is formulated as a constrained parameter

optimization problem, and solved via linear programming. The iterative inversion algorithm described

here has the ability to converge to a realistic solution provided that (i) the data acquisition geometry is

adequate, and (ii) sufficient a priori constraints are available. However, precise definitions of “adequate”

and “sufficient” in this context are not known. Nevertheless, the inversion procedure provides a useful

tool for examining these phenomena. In particular, the single layer variant of the algorithm can be used

as an aid in designing areal recording geometries for detecting and resolving 3D dipping structure. Also,

investigation of both synthetic and field recorded datasets indicates that it can be successfully applied to

the inversion of broadside refi-action data. There are relatively few techniques for effective interpretation

of such data. Although the multiple layer version of the algorithm exhibits a greater tendency to converge

to an erroneous result, several successful inversions have been achieved with the inclusion of sufficient

constraints. A priori constraint information may arise from a variety of geological, geophysical, and/or

engineering sources. Generalization of these algorithms to true 3D recording geometries (ie., subsurface,

as well as surface, sources and receivers) would be a useful extension. Moreover, in this situation, well

log information regarding interface depths and layer velocities would supply the necessary constraint

information.
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LIST OF FIGURE CAPTIONS

Figure 1. Plan views of two areal recording arrays. Sources are indicated by asterisks and receivers by
small crosses. (a) Triangular geometry. (b) Swath geometry. The strike and dip symbol in the upper
right comer of each panel refers to a subsurface interface located 100 m below the coordinate origin
(large cross).

Figure 2. Broadside recording geometry for the Peace River Arch seismic experiment. Sources are
indicated by asterisks and receivers by small crosses.

Figure 3. Comparison between predicted traveltimes (solid lines) and observed traveltimes (triangles) on
broadside lines A and B of the PRA experiment. Inline distance increases fi-omnorth to south along line
A, and from west to east along line B.

Figure 4. Vertical depths (in kilometers) to the Moho in the Peace River Arch region of northern Alberta
inferred from 3D inversion results.

Figure 5. Comparison of vertical depths to the Moho beneath the receivers of lines A and B calculated
by two different methods. Smooth curves in each panel are depths inferred from the 3D inversion results.
Jagged curves are obtained from a simple”2D inversion method.

Figure Al. Receiver static functions for lines A and B of the PRA experiment. Squares refer to well
locations where near surface velocity logs are available. Inline distance increases from north to south
along line A, and from west to east along line B. (a) Statics calculated with VC= 8.25 km/s and v, = 6.6
km/s. (b) Statics calculated with VC= 8.5 km/s and v, = 6.2 km/s. v=and v, are critical refractor and
replacement velocities, respectively.
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APPENDIX A: REFRACTION STATIC CORRECTIONS

An expression for the static correction at each receiver site is derived by approximating the local near-

surface velocity structure by a 1D stack of layers. The ith layer is bounded from above and below by

plane, horizontal interfaces at depths zi and zi+l,respectively. The P-wave velocity of the layer depends

linearly on depth z and is given by vi(z) = vi(0) + ai z. In this situation, the raypath associated with a

particular ray parameter p is a circular arc. The upward propagation time across the layer is

[[) 1
Ati (p)= ~ cosh-] — – cosh ‘1

ai pvi

1-)1pv; ‘
(Al)

where vi = vl{zi)and vi’ = vi(zi+l). Symbols vi and vi’ denote the velocities at the top and bottom of the ifh

layer, respectively. The horizontal distance accumulated by the wave as it traverses layer i is

;ai[=--1Axi(p) = — (A2)

If the wave is critically refracted on a horizontal interface at greater depth, then the ray parameter p

equals l/vC, where VCis the critical refraction velocity. The angle q(z) that the raypath makes with the

vertical at any depth is then determined by a velocity ratio: q(z) = sin”’@vi(z)]= sin-l[v,{z)/vC].Using this

result, equations (Al ) and (A2) reduce to

Ati = ~ln

[

(1+ cosqfi)sinq:1ai(1+COS qj)sinVi ‘

and

Axi Jqcosqi –Cosq;],

(A3)

(A4)
ai

where qi = sin-’(vi/v,-)and ~i’ = sin-l(vi‘/vc). qi and ~i’ are the incident angles of the circular raypath

segment at the top and bottom of layer i, respectively.

The refraction delay time contribution of the i’h layer is defined as

20



ATi=A*i-~.
Vc

Substituting from equations (A3) and (A4) yields

where quantities Qiand Qi’ are given by

Qi =
1+ CosVi

sin Vi exp(cos Vi)‘

1+ Cosq;
Q;=

sinqjexp(cos qj) -

(A5)

(A6)

(A7a,b)

As a check on the correctness of this result, examine the case where the vertical velocity gradient of

the layer vanishes (ai -+ O). In this situation, the raypath becomes a straight line segment, and the angles

vi and qi’ both approach the same angle qo = sin-i[vi(0)/vC]. Application of L’Hopital’s rule to equation

(A6) then yields

Iim *7. = (Zi+] - zi)cOsVO = hi cos~o .
1ai+-0 vi (o) vi (o)

This is the proper expression for the one-way delay time contribution of a layer with thickness hi and

uniform velocity vi(0).

The one-way refraction delay time associated with a stack of n horizontal layers is obtained by

summing expression (A6):

(A8)

This formula naturally accommodates any velocity discontinuities at the interfaces (i.e., v ‘i.] # vi).

However, if the velocity function is continuous between all layers (as in the PRA example) thenQi’ = Qi+l

and expression (A8) simplifies to
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(A9)

. . .

The static correction applied to the picked arrival times is designed to remove the one-way refraction

delay time influence of the layered near surface structure, and add the delay time associated with a

uniform replacement medium of equal thickness. If the replacement velocity is designated,, then the

static shift is

(A1O)

where q, = sin-](v~v.). Although this formula has been derived within the context of upward wave

propagation through a set of horizontal layers, it also applies to the downward propagation portion of the

total raypath. Hence, it may be used for the computation of either a source site static or a receiver site

static.

Near surface velocity information along lines A and B of the PRA experiment are obtained from

models developed by Zelt (1989, p. 40) fi-omwell logs. There are eight wells along line A and seven wells

along line B. At each wellsite, the velocity model is approximated by a 1D stack of layers with linear

velocities, and a static correction is calculated via formula (Al O). The critical and replacement velocities

are assumed to be VC= 8.25 km/s and v, = 6.6 km/s, respectively. These wellsite static corrections are

then interpolated/extrapolated to the receiver locations along each line using the following procedure.

First, a straight line is fitted to the coordinates ofall recording stations and wellsites along a profile using

the York algorithm (York 1966). This algorithm minimizes the sum of the squared deviations of the

points measured perpendicular to the fitted straight line. The coordinates of these projected points are

automatically returned by the algorithm. Finally, the wellsite statics are linearly interpolated/extrapolated

in these projected coordinates to the receiver sites. Figure Ala displays the computed receiver static

corrections for both lines; squares denote the wellsite statics calculated from expression (Al O). The

magnitudes of the statics are approximately the same on both lines (-300 ins), although there is a

noticeable increase toward the southern end of line A.

The static corrections calculated with the above procedure apply only to receiver sites. However, since

shot A4 is located at the end of profile B, a source static is readily estimated for this shot fi-omthe nearest
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computed receiver correction (-290 ins). A source static for the isolated shot B4 must be assumed; the

value adopted here is -300 ms.

Figure Alb depicts receiver static corrections recalculated with replacement and critical velocities

equal to 6.2 kn-ds and 8.5 kn-ds, respectively. These velocity values are consistent with layer and

halfspace velocities obtained from the 3D inversion procedure. Trends and magnitudes are similar.

Source statics associated with these new receiver statics are assumed to be –210 ms for shot A4 and –250

ms for shot B4.
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