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SUMMARY

Inversion of head wave arrival times for three-dimensional (3D) planar structure is formulated as a
constrained parameter optimization problem, and solved via linear programming techniques. The earth
model is characterized by a set of homogeneous and isotropic layers bounded by plane, dipping
interfaces. Each interface may possess arbitrary strike and dip. Predicted data consists oftraveltimes of
critically refracted waves formed on the plane interfaces of the model. The nonlinear inversion procedure
is iterative; an initial estimate of the earth model is refined until an acceptable match is obtained between
observed and predicted data. Inclusion of @ priori constraint information, in the form of inequality
relations satisfied by the model parameters, assists the algorithm in converging toward a realistic solution.
Although the 3D earth model adopted for the inversion procedure is simple, the algorithm is quite useful
in two particular contexts: (i) it can provide an initial model estimate suitable for subsequent
improvement by more general techniques (i.e., traveltime tomography), and (ii) it is an effective analysis
tool for investigating the power of areal recording geometrieé for detecting and resolving 3D dipping

planar structure.
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INTRODUCTION

Head wave traveltimes are commonly analyzed and interpreted within the framework of one- or two-
dimensional (1D or 2D) l}ayered' earth models. Extension of these techniques to three-dimensional (3D)
layered media should provide more general tools for determining subsurface seismic properties.
Critically or near-critically refracted arrivals are particularly valuable for inferring the seismic velocities
of layered geologic media. Also, head waves often constitute first arrivals in many field expeﬁments, and
thus can be picked with greater accuracy thah later arrivals.

Although numerous investigators have studied inversion of reflection traveltimes for 3D layered
structure (e.g., Hubral 1976, Gjeystdal & Ursin 1981, Chiu ef al. 1986, Chiu & Stewart 1987, Lin 1989,
Phadke & Kanasewich 1990), the analogous situation for refraction traveltime data has not been
thoroughly examined. Kanasewich and Chiu (1985) present a method for jointly inverting reflection and
-refraction traveltimes to determine 3D structure. Forward calculation of traveltimes is achieved with the
iterative ray bendiﬁg method of Chander (1977). Aldridge (1989) describes a method for recovering the
attitude, velocity, and depth of a plane subsurface refractor from head wave arrivals recorded along two

"line profiles. However, the approach cannot be generalized to non-profile recdrding geometries. The
present work allows an arbitrary distribution of sources and receivers on the surface.

This study describes an algorithm for inversion of head wave arrival times for 3D planar structure.
The earth model is characterized by a stack of homogeneous and isotropic layers bounded by plane
interfaces. Each interface may have arbitrary strike and dip. The inversion method is iterative; an initial
estimate of the model parameters is refined until an acceptable match is obtained between observed and
predicted data. Rapid forward modeling of head wave traveltimes and their partial derivatives is achieved
V;/ith a combination of analytical and numerical techniques. The forward computation method does not
entail iterative ray shooting or ray bending, which can be time consuming processes in 3D. A novel
feature of the inversion procedure is the inclusion of constraint information in the form of inequality
relations satisfied by the model parameters. Often, a priori geological or geophysical information. is
available to guide and constrain a non-linear traveltime inversion. This is particularly helpful for the
inversion of head wave traveltimes, because the problem can be very ill-posed and admit numerous
solutions.

The 3D layered earth model adopted for the inversion procedure is, admittedly, quite simple.
Nevertheless, it can be an adequate representation of geophysical reality at various depth and lateral
scales. This inversion approach is especially useful in two particular contexts: (i) it can provide an initial
earth model -estimate suitable for subsequent refinement by techniques that allow more general 3D

variability in the parameters [e.g., reflection and/or refraction traveltime tomography (Hole 1992; Zelt et -




al. 1996)], and (ii) it can be used as an analysis tool for investigating the capabilities of various recording
geometries for detecting and resolving 3D dipping structure. These issues are facilitated by the extremely
rapid execution speed of the algorithm. ,
After a discussion of the mathematical basis of the inversion technique, the algorithm is tested on both
synthetic and field-acquired traveltime data. Inversion of refraction data from the Peace River Arch
region of northwest Alberta and northeast British Columbia, Canada indicates that the algorithm can be a

useful tool for analysis of head wave traveltimes recorded in a broadside configuration.
INVERSION MATHEMATICS
General theory

Let the observed arrival times for the experiment be organized into an /-dimensional column vector
t.s. The earth model is characterized by a finite set of scalar parameters m;, j = 1,2,...,J. These are
organized into an J-dimensional column vector m. Predicted head wave traveltimes generated by this
model are designated by the /-dimensional vector t,,(m). Then, a first order Taylor series expansion of

the observed data about the particular model m" yields the expression
A(m")Am"™' = At(m"), | (1)

where A(m") = t,p, — t,,(m") is the data discrepancy vector, Am™' = m""' — m" is the parameter update

vector, and the elements of the I x J sensitivity matrix A(m") are given by

at Frd
i
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In these and subsequent expressions, the superscript # is the iteration index.

In many crustal seismic reflection and refraction experiments, the system (1) is overdetermined,
underconstrained, and inconsistent. A popular solution technique for Am™" is the damped least squares
method. The updated parameter vector is then obtained viam™' = m” + Am™'. Iterations continue until
an acceptable fit to the observed traveltime data is achieved. This strategy is termed “creeping” (Scales

et al. 1990) because the final solution is obtained by the addition of (possibly many) small perturbations

to an initial guess.




An alternative approach is used in this study to obtain the improved model parameter vector.

Substituting the definition of the parameter update vector into (1) and rearranging terms gives
A(m")m™ = At(m")+ A(m")m". 3)

The right side of this expression consists of known quantities. Hence, equation (3) can be solved directly

for the new model parameter vector m™".

Scales et al. (1990) refer to this technique as “jumping”
because, in the absence of additional constraints, the size of the model change between successive
iterations |jm""' —m"| is not restricted to be small. Moreover, since the inversion is formulated in terms
of the model itself, rather than a model perturbation, the jumping strategy facilitates the incorporation of
constraint information into the algorithm. In this work, constraints are mathematically expressed in the

form of inequality relations satisfied by the model parameter vector:
m <m™ <m", (4a)

where vectors m~ and m" are lower and upper bounds on the model, respectively. These bounds arise
from a priori géological or geophysical knowledge (or assumptions) about the earth model. For example,
the model parameters in this study are strictly non-negative. Thus, if the lower bound is set equalto 0,
negative values are excluded on each iteration of the inversion procedure. This is required for meaningful
forward modeling of traveltimes. The inequality bounds in (4a) can also be used to severely restrict (or
even eliminate) the variation of a certain parameter on successive iterations of the inversion. In this
situation, upper and lower bounds are narrowly established about an accurately known (or preferred)
value for the particular parameter.

The inversion algorithm can also be stabilized by limiting the size of the model change between
iterations. Hence, if dm is a vector of upper bounds on the parameter increments, the updated parameter

vector must satisfy the additional inequality constraints

m -dm<m™ <m”" +dm. (4b)

These constraints fulfill the same regularizing role as the damping parameter in a damped leastsquares
solution of the original equation (1). If a reasonably good initial estimatem® for the model is available,
and if ||5m]| is sufficiently small, then the constraints (4b) assure that the algorithm iterates toward a

solution in the neighborhood of m®, rather than jumping to a remote region of model space.




The linearized data equations (3) are usually inconsistent, i.e., an exact solution does not exist. Two
reasons for this are (i) the observed traveltimes are contaminated with random picking errors, and (ii) the
calculated traveltimes may have inadequate accuracy due to sparse and/or gross model parameterization.
A robust solution to this inconsistent system can be obtained by minimizing the/; norm of the misfit.
Linear programming provides a convenient solution method because the model parameters are
mtrinsically non-negative and are constrained by inequalities (4a,b). In order to pose theproblem in the
context of linear programming, an /-dimensional residual vector r is introduced into equation (3) as

follows:
Am")m™ +r=At(m")+A(m")m". (4c)

The elements of r constitute additional unknown variables that must be solved for. The problem now

consists of determining the model parameter vector m""'

and the residual vector r that simultaneously
satisfy the inequality constraints (4a,b), the equality constraints (4c), and that minimize the /; norm of the

residual

Irl, = ler,-!- | " (4d)

A standard linear programming routine is used here to solve the constrained optimization problem

! is obtained, the I,

specified by equations (4a,b,c,d). After an improved model parameter vector m™
norm of the misfit between observed and predicted traveltimes || t,ps — t,/(m™") ||; is computed. Iterations
cease when this misfit reaches some acceptable level, or exhibits negligiblé change on successive
iterations. The elements of the residual vector r play no further role after equations (4a,b,c,d) are solved,
and are discarded. However, the /; norm of the residual (4d) is monitored on each iteration in order to
assess how closely the linearized data equations have been fit.

Finally, the flexibility of the inversion algorithm is enhanced by including variable weighting of both

the traveltime data and the model parameters. Equation (3) is modified to

[W, am")W |[W,m"" |= W,Atm") + [W,A(m")W;'|[W m"], ®)




where W, and W, are data and parameter weighting matrices, respectively. Currently, these are restricted
to be diagonal matrices. Thus, premultiplication of the sensitivity matrix by W, corresponds to row
weighting and postmultiplication by W', corresponds to column weighting.

The data weighting matrix can be used to emphasize those particular traveltimes judged to be more
significant for the inversion. The parameter weighting matrix serves to nondimensionalize and normalize
elements of the model parameter vector m"™"'. This is a practical concern in inversion algorithms where
the model is characterized by parameters with different physi'cal dimensions and/or widelly varying
numerical magnitudes. The conditioning of the sensitivity matrix A(m") is improved by column scaling
by W',. Thus, numerical roundoff error associated with the lihear programming solution is reduced.
Suitable units of measure are chosen for the various model parameters; the reciprocals of these scalars
form the diagonal elements of W,. The inequality constraints (4a,b) on the model must also be
nondimensionalized in the same manner. If the weighted parameter vector calculated by the inversion

n+l

algorithm is designated m" ', then the physical parameters required for forward modeling of traveltimes

are obtained viam™"' = W', m™".
Calculation of Traveltimes and Sensitivities

A simple 3D earth model consisting of a single layer overlying a halfspace is characterized by the five-
element parameter vector m = [v;, v3, &, 6, h]T, where v; and v, are P-wave velocities of the two media, ¢
and @ are interface orientation angles, and / is the vertical depth to the refractor below the coordinate
origin. Aldridge (1989) derives a closed form expression for head wave traveltime in terms of these

parameters. Hence, formulae for the elements of the sensitivity matrix can be obtained by straightforward
A partial differentiation. However, a substantial simplification arises by redefining the set of model
parameters as m = [sy, i., ¢, 8, h]” where s; = 1/v; is the layer slowness and i, = sin™(v,/v,) is the critical

refraction angle. In terms of these new parameters, head wave traveltime is
T =s,sin(i, —6)X + 2s, cosi, [h cosg — (x5 cos@ + yg sind)sin ¢] , 6)

where & = sin”'[sing cos( ¥-6)]. Symbols x5 and ys are the horizontal coordinates of the source, and X and

Y are the offset and azimuth to the receiver, respectively. Note that equation (6) is alinear function of

the layer slowness s;. Differentiating (6) yields the traveltime sensitivities




—g—]: =sin(i, - )X +2cosi, [h cosg —(xg cosé + y, sinf)sin ¢] , (72)
S, '

—? = s, cos(i, — )X —2s,sini, [h cos¢@ —(xg cosd + yg sinf)sin ¢], (Tb)
i
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The i row of the I x 5 sensitivity matrix A(m") is obtained by evaluating theée relations with the current
model vector m" and with the geometric parameters [xs, ys, X;, ¥ appropriate for the i™ recorded
traveltime. The number of traveltimes usually exceeds 5, and thus the matrix is overdetermined.
However, in some situations, the matrix is also rank deficient. If the refracting horizon is horizontal (i.e.,
@ = 0) then the derivative JI7J8 vanishes, and the fourth column of the sensitivity matrix is identically
zero. This will occur, for example, if a 1D earth model is used for the initial parameter vector estimate.
Calculation of head wave traveltime sensitivities for a multilayered earth model is more complicated
because a closed form mathematical expression for the arrival time does not exist. However, Aldridge
(1992, 1999) gives a head wave traveltime formula for this situation that can be evaluated with minimal
numerical effort. A combination of analytical and numerical techniques can then be used to calculate the
sensitivities. In this study, sources and receivers are restricted to the horizontal surface. Thus, if there are
K interfaces in the earth model, then there are total of J = 4K-3 mode! parameters (K layer slownessess,
2K-2 interface orientation angles, and K-1 layer thicknesses). These parameters are organized into the J-

dimensional column vector

m=[s,..50,0,.. 050, 0 b b |,




where s; is a layer slowness, ¢ is an interface dip angle, 6, is an interface azimuth angle, and %; is a
vertical layer thickness measured at the coordinate origin. Interfaces are numbered sequentially from the
surface (interface 1) in the downward direction. Interface j overlies layer j.

A “slope and intercept” expression for the traveltime of a head wave critically refracted on interface &

(2 <k <K) of a multilayered earth model is derived by Aldridge (1992, 1999):
T (x5, y5, X,¥)=m, (¥)X +b,(x5,ys,¥F), (8)

where, as above, x5 and y;s are the horizontal coordinates of the source (on the surface), X is the source-

receiver offset distance, and ¥ is the source-to-receiver azimuth angle. The slope m(#) and intercept

by(xsys, P) are
m, (V) =s, [cos‘P G, +sin¥ g, , ], (%a)
and
k-1
b (55,35, V)= 2,81y (P =40 =5 s Pree = T + 75 (Pr, =) (9)

Expressions (9a,b) contain the components of two sets of unit vectors py and q; that describe the

propagation directions within layer j of a wave critically refracted on subsurface interface &:
Py = pjk,xi + pjk,yj +pu.K, q; = »qjk,xi +q,,dt q:.K,

with ||pill: = llqull. = 1. Vectors py and qi (7=1,2,...,k-1) refer to the downward and upward propagating
portioné of the total raypath, respectively. The propagation direction along the critically refracting
horizon is px = qu. Equations (8) and (9a,b) are not “closed form” expressions for head wave traveltime
because these unit propagation vectors depend implicitly on both the modelm and the source-to-receiver
recording azimuth ¥ Nevertheless, if m and Tare specified, then all of the propagation vectors can be
accurately computed, and the traveltime formula (8) can be numerically evaluated. The computation
procedure does not involve any iterative 3D ray tracing (shooting or bending), and thus is extremely

rapid.




Many of the elements of the sensitivity matrix A(m) can be determined by analysis. The traveltime of
a head wave formed on interface £ does not depend on parameters s;, ¢, and 6, for j > k, or on A; for j > k.
Hence, these traveltime derivatives are identically zero. Moreover, the sensitivity to layer thickness 4; for
J <k is derived directly from the above expression for intercept time: JIW/dh; = s; (Djxz — quz)- The
remaining sensitivities must be evaluated by a ﬁnite-difference technique. Let dm; be a model
perturbation vector with zeros in all element positions except thej”. Then, the partial derivative of head

wave traveltime with respect to parameter m; is approximated by the forward finite-difference

oT, T,(m+dm;) -7, (m)

~

o, Jdm |,

(10)

Unit propagation vectors are generated for both the perturbed model m + dm; and the unperturbed model
m. These are then used in formulae (8) above to calculate traveltimes for each model. Finally,
substituting these traveltimes into (10) yields an approximation' for the required derivative. The size of
the model perturbation ||[dmyj|, is typically about 1% of the value of the associated model parameter.
Although a centered ﬁnite;difference scheme would yield greater accuracy, the one-sided approximation
adopted here requires less computational effort. Only two traveltime computations are needed for each

model parameter, instead of three.
SYNTHETIC DATA EXAMPLES

The two examples discussed in this section are representative of a large number of computational
experiments conducted with the inversion algorithm. Both the siﬁgle—layer and multiple-layer variants of
the algorithm are examined. The first example demonstrates that the single-layer version is capable of
returning the correct solution under a variety of operating conditions. However, as indicated in the
second example, the multilayer version appears to require fairly restrictive constraints in order to iterate

toward the correct model.
Single Layer

The earth model used for the first example consists of a single layer overlying a halfspace and is

defined by the parameters




v, =1500 m/s, v, =2500m/s, $=5°, 6 =45°, h=100m.

Crtically refracted arrival times for two areal recording geometries are generated from equation (6).
Inversions are performed with both accurate and error-contaminated traveltimes.

Figure la is a plan view of a triangular data acquisition geometry. Thirty receivers are deployed
around the perimeter of an equilateral triangle with sides 500 m long. Each side contains 11 receivers
separated by 50 m. All receivers record energy from sources that are activated sequentially at the three
vertices of the triangle. However, some source-receiver offsets are less that the critical offset distance,
and thus these receivers do not detect a head wave arrival. These fictitious times are excluded from the
inversions. A total of / = 73 uniformly weighted traveltimes are used to recover the J = 5 earth model
parameters.

Numerical results from a féw typical inversion runs are described here. The iterative inversion -

procedure is initiated with a 1D model given by
v, =1000 m/s, v, =2000m/s, ¢ =0°, 8=0°, h=85m.

After eight iterations, the exact (i.e., within one significant digit) earth model parameters are returned.
The initial traveltime misfit of 79.6 ms is reduced to 0.1 ms; iterations terminate when the relative change
in misfit is less than 1%. A wide variety of starting models yields essentially the same final solution,
although the number of iterations required for convergence varies. Also, the inversion is stable when the
traveltimes are contaminated with small random errors. Random numbers drawn from a uniform
probability distribution on +4 ms are added to the accurate times, and the algorithm is initiated with the

same starting model. After five iterations, the following solution is obtained:

v, =1497 m/s, v, =2549m/s, =5, - 6=52°, h=100m.

[terations cease when the misfit decreases below 2.3 ms, equal to one standard deviation of the noise.
Note that the overburden velocity v, has been correctly estimated from the refraction data alone! This
interesting (and unusual) result is consistent with a theoretical analysis by Aldridge (1992).

These results suggest that the triangular recording array is a useful configuration for determining 3D
planar structure. Thié particular geometry combines an adequate distribution of offset and azimuth
together with three reciprocal time pairs. These are favorable attributes for a successful inversion of

refraction arrival times via the time term, delay time, and reciprocal time inversion methods. The triangle




was first investigated by Gardner (1939) who demonstrated that it yields an exact solution for the delay
times at the three vertices. More recently, the triangular array has been used for deep crustal seismic
exploration in Saskatchewan (Kanasewich & Chiu 1985) and British Columbia (Zelt et al. 1996).

Other recording geometries are considerably less robust in detecting and resolving 3D dipping
structure. Figure 1b depicts two parallel line arrays, separated by 200 m, oriented along the strike
direction of the subsurface refractor (NW-SE). Each spread contains 11 geophones (receiver interval =
50 m) that record head wavé arrivals from a source located at the center of the opposing array. This
broadside recording pattern simulates aspects of the “swath geometry” commonly used for 3D seismic
reflection surveys. Using the same starting model, inversion of the 22 equi-weighted broadside

traveltimes yields
v, =1286 m/s, v, =2500m/s, ¢=5°, 0 = 45°, h=80m.

The initial traveltime misfit of 66.4 ms is reduced to near zero in eight iterations. Although this model
generates an exact fit to the data, the overburden velocity v; and the vertical depth % are incorrect. A
similar effect is observed when the inversion is initiated from numerous different starting models. This
situation illustrates the classical tradeoff between overburden velocity and refractor depth in seismic
refraction interpretation. If additional @ priori data are introduced into the inverse problem, then a correct
solution is possible. For example, the interface depth may be known from a borehole drilled at the

coordinate origin. Constraining the depth to satisfy 99 m < # < 101 m yields the model
v, =1490 m/s, v, =2500m/s, ¢ =5°, g =45°, h=99m,

which is substantially correct. - Alternately, constraining the overburden velocity with the inequalities

1450 m/s < v; < 1550 m/s yields the erroneous 1D model
v, =1450 m/s, v, =2494m/s, ¢ =0°, f=0°, h=94m.

Evidently, the broadside geometry illustrated in Figure 1b allows many solutions to this nonlinear inverse
problem. However, if the both the inline and broadside head wave arrivals recorded on each spread are
included in the inversion (so now / = 32), the correct model is recovered in seven iterations. Head waves
recorded along strike provide excellent control on the velocity of the refracting medium. Aldridge (1989)

demonstrates that the measured apparent velocity equals the true velocity in this situation. As expected,




the inversion degrades when the exact traveltimes are contaminated with uniformly distributed random

errors on ¥4 ms. The model

12 _=1559m/s,- v, =2664m/s, ¢=5°, 0 =143°, h=107m,
is obtained in seven iterations with a traveltime misfit of 2.4 ms.
Multiple Layers

The earth model used for the second example consists of two layers overlying a halfspace and is

defined by the parameters

v, =1500 m/s, ¢, =0°, 6, =0°, z, =0m,

v, =2000m/s, 4,=3°,  0,=180°, z,=40m,
v, =2500m/s, 4 =5°, 9,=45°,  z,=100m.

Model parameters ¢, 6, and z; are not allowed to vary in the inversion. Hence, there are only J = 9
parameters to estimate. Head wave traveltimes for each critically refracting horizon are generated by
evaluating equation (8). The recording geometry used is the triangular array displayed in Figure la.
Also, precritical offset arrivals are included in the traveltime dataset (in an actual field experiment, these
times could be obtained by extrapolation or phantoming). Hence, there are a total of 7 = 174 uniformly
weighted arrival times input to the inversion procedure.

If restrictive constraints are imposed on the model parameters, then it is possible to recover the correct
solution with the multilayer algorithm. For example, constraining the velocityv, and the depth z; equal to
the true values allows the algorithm to iterate to the known solution from a 1D starting model. Also, if
narrow bounds are established on the velocities and depths (£50 m/s and £5 m about the true values,
respectively) then the correct solution is obtained from a nearby initial model. However, a relatively
unconstrained inversion invariably yields an erroneous result for this simulated experiment. It is probable
that the objective function (4d), which only measures the misfit of thelinearized data equations, has many

local minima that preclude convergence to the desired global minimum.
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FIELD DATA EXAMPLE

Deep seismic refraction data were acquired in the Peace River Arch (PRA) region of northwest Alberta
and northeast British Columbia, Canada in 1985. - In addition to four irﬂine profiles, two broadside
profiles were recorded. Figure 2 illustrates the source-receiver geometry for these two profiles. Shot A4
in the west is recorded by the north-south tren‘ding line A, and shot B4 in the north is recorded by the
east-west trending line B. Offset distances range from 249-313 km on line A, and from 262-344 km on
line B. Each receiver array subtends an azimuthal angle of ~64° relative to its source. The first arrivals at
the recording sites are interpreted to be waves that are critically or 'near—critically refracted at theMoho.
Hence, inversion of the first bfeak traveltimes can provide an estimate of the regional depth and dip of the
Moho beneath the Peace River Arch.

In this example, the broadside arrival times are inverted within the framework of a simple “layer over
a halfspace” earth model. No attempt is made to infer a detailed structural picture ofthe crust and
Moho in the PRA region. Rather, the intent is to recover a large scale 3D model that can be subsequently
refined by other traveltime interpretation/inversion methods. Initial estimates of the model parameters are
obtained from crustal sections along lines A and B given by Zelt & Ellis (1989). These sections were
derived by interpreting the inline refraction data of the PRA experiment via a trial-and-error forward
modeling approach.

There are 83 first break picks from line A and 52 first break picks from line B. Thus,] = 135 equally
weighted traveltimes are input to the iterative inversion procedure. The first amrivals recorded at these
long offset distances are emergent, and the estimated picking error is 50 ms.

The effect of variable near surface structure on the head wave arrival times can be reduced by applying
static corrections to the picked first breaks. Static corrections are commonly applied to seismic reflection
data for this same purpose. However, there is an important distinction between the corrections for the two
types of data. In the refraction case, the static is designed to remove the refraction delay time influence of
the near surface structure, and then replace it with the delay time contribution of a constant velocity
medium. In the reflection case, the correction pertains to the vertical traveltime through the actual and
replacement media. Statics application is an important preprocessing step for the PRA broadside data
because the subsequent inversion assumes a very simple earth model. In effect, an attempt is made to
“make the data fit the model” more closely. The refraction statics development in Appendix A assumes
that near surface velocity information is available. For the PRA experiment, this is obtained from well

log data along the two profile lines.




Inversion Results

The initial estimates of the earth model parameters are:
v, =6.5km/s, v, =8.25km/s, $=2°, 6=270°, h=40km.
Lower and upper parameter bounds are also inferred from the crustal sections in Zelt & Ellis (1989):

v, =6.0km’s, v; =7.5km/s, $” =0°, 6 =0°, h™ =38km,
vi =7.5km/s, v} =8.5km/s, ¢t =15°, 0" =360°, h*=42km.

The bounds on the velocities must be transformed to equivalent bounds on the parameters s; (slowness)
and i, (critical angle) that are used by the inversion algorithm. After five iterations, the following model

1s returned:
v, =6.21km/s, v, =8.50km/s, ¢=2.38°, 0 =300.0°, h=42km.

The initial traveltime misfit of 65 8 ms is reduced to 172 ms; iterations cease when the relative change in
the misfit is less than 1%. Velocities v, and v, of this solution differ from the replacement and critical
velocities (v, and v,, respectively) used for calculating refraction static corrections. Hence, the statics are’
recomputed with v, = 6.2 km/s and v, = 8.5 km/s (see Appendix A) and applied again to the picked arrival

times. Then, initiating the inversion algorithm with the same starting model yields
v, = 6.17km/s, v, =8.50km/s, $=27°, 6 =3009°, h=42km,

in five iterations with a misfit of 171 ms. Although this model is not significantly different from the
previous one, it is consistent with the assumptions used fdr calculating the statics.

A comparison between the observed arrival times (after application of static corrections) and the
traveltimes predicted by the model produced by the inversion is displayed in Figure 3. Evidently, the
simple five-parameter earth model provides an adequate explanation for the gross character of the
broadside arrival time curves. Small scale variations in the predicted times (solid curves) are due strictly
to recording geometry urregularities, rather than any subsurface structural complications. However, a

large component of the total traveltime misfit must be attributed to structure or velocity variations that are




not modeled in the inversion procedure. This misfit is too large to be accounted for by random picking
errors alone. For example, the predicted times are systematically greater than the observed times
throughout the central portion of line B. This suggests that the Moho north of line B is not adequately
represented by a plane interface bounded by uniform velocities. |

Vertical depths to the Moho calculated from the inversion results are posted on a plan view of the PRA
recording geometry in Figure 4. A depth trend is readily apparent, although the depth at the southern end
of line A is probably too large. Southeastward dip of the Moho is suggested by interpretations of the
inline refraction data on lines A and B, but not on the other lines of the PRA experiment (Zelt & Ellis
1989). Also, the velocities recovered by the 3D inversion are broadly consistent with those obtained
previously. Of course, precise agreement cannot be expected. The mean crustal velocity is lower (6.17
km/s vs. ~6.6 km/s) and the sub-Moho velocity is higher (8.5 km/s vs. ~8.2 km/s). However, Zelt & Ellis
(1989) infer a P, velocity of 8.4 km/s along the northern half of line A and eastern quarter of line B.

Two-Dimensional Analysis

An independent check on the validity of the 3D inversion is provided by a simple 2D analysis
technique. Assuming a 2D “layer over a halfspace” earth model, each arrival time recorded along a
broadside profile can be individually inverted for an estimate of Moho depth beneath the associated
receiver site. A depth profile for the Moho is constructed by plotting these depth estimates side-by-side.

In the 2D case, head wave traveltime is

sin(i_ + @) P 2h(xg)cos@cosi,

T(xs,X)= , ] (11)

Vi Y
where i, = sin”(v/v,) is the critical angle and h(xs) is the vertical thickness of the layer at the source

location. The interface dip angle ¢ may be positive, zero, or negative. This relation is rewritten as a

quadratic form in cosg:
Acos’ p+Bcosp+C=0. , (12)

The three coefficients depend on earth model parameters [v;, v, #(xs)] and measured data [X, 7] as

follows:




[

A=1 +M[5im’ + hlxs ) Cosic:|, (13a)
X X

B= 42[£:| [sin i, + Z—h(—xilcosic] .. (13b)
X 1L X _
C= {—vﬁ] —cos?i,. | (13c)
X

If values for v;, v;, and A(xs) are known (or assumed), then these coefficients can be evaluated

numerically. Solution of equation (12) for cos¢is via the quadratic formula:

_ —B++B’-44C

cosQ = , 14
@ 24 _ (14)

where the positive root is chosen by analyzing the form of the right side as X — +o. There is still a two-
fold ambiguity in determining the dip angle ¢ from its cosine. This is easily resolved by ensuring that the
traveltime predicted by formula (11) agrees with the picked traveltime. Finally, once the dip angle is
determined, the vertical depth to the refractor at any inline position x can be calculated via A(x) = h(xs) +
(x-x5) tang.

Figure 5 compares Moho depths calculated via the above method with those inferred from the
parameters\recovered by the 3D inversion. Vertical depths beneath the recording stations along each line
are plotted. The coefficients ip the quadratic (12) are evaluated with the parameters obtained from the 3D
inversion procedure (v; = 6.17 km/s, v, = 8.50 km/s, h(xs) = 37.6 km for shot A4, and k(xs) = 34.8 km for
shot B4). Short wavelength variations in the computed curves are artifacts of traveltime picking erTors
and/or small scale structural heterogeneity, and should be ignored. There is close agreement in the Moho
depth trend calculated by these two completely different techniques, especially along line A. The larger
departure of the two depth curves along line B suggests structural complexity north of this line in the
Peace River Arch region.

Although the 2D inversion method is simple and appears to yield reasonable depth estimates, it
requires assumptions of numerical values for three unknown model parameters [v;, v,, h(xs)]. In contrast,

the 3D inversion technique yields simultaneous estimates of all relevant earth model parameters.
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Moreover, since it accomplishes a joint inversion of all of the error-contaminated traveltime data, it is

more robust than the 2D method.

CONCLUSION

Inversion of head wave arrival times for 3D planar structure is formulated as a constrained parameter
optimization problem, and solved via linear programming. The iterative inversion algorithm described
here has the ability to converge to a realistic solution provided that (i) the data acquisition geometry is
adequate, and (ii) sufficient a priori constraints are available. However, precise definitions of “adequate”
and “sufficient” in this context are not known. Nevertheless, the inversion procedure provides a useful
tool for examining these phenomena. In particular, the single layer variant of the algorithm can be used
as an aid in designing areal recording geometries for detecting and resolving 3D dipping structure. Also,
investigation of both synthetic and field recorded datasets indicates that it can be successfully applied to
the inversion of broadside refraction data. There are relatively-few techniques for effective interpretation
of such data. Although the multiple layer version of the algorithm exhibits a greater tendency to converge
to an erroneous result, several successful inversions have been achieved with the inclusion of sufficient
constraints. A priori constraint information may arise from a variety of geological, geophysical, and/or
engineering sources. Generalization of these algorithms to true 3D recording geometries (i.e., subsurface,
as well as surface, sources and receivers) would be a useful extension. Moreover, in this situation, well
log information regarding interface depths and layer velocities would supply the necessary constraint

information.
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LIST OF FIGURE CAPTIONS

Figure 1. Plan views of two areal recording arrays. Sources are indicated by asterisks and receivers by
small crosses. (a) Triangular geometry. (b) Swath geometry. The strike and dip symbol in the upper
right corner of each panel refers to a subsurface interface located 100 m below the coordinate origin
(large cross). '

Figure 2. Broadside recording geometry for the Peace River Arch seismic experiment. Sources are
indicated by asterisks and receivers by small crosses.

Figure 3. Comparison between predicted traveltimes (solid lines) and observed traveltimes (triangles) on
broadside lines A and B of the PRA experiment. Inline distance increases from north to south along line
A, and from west to east along line B.

Figure 4. Vertical depths (in kilometers) to the Moho in the Peace River Arch region of northern Alberta
inferred from 3D inversion results.

Figure 5. Comparison of vertical depths to the Moho beneath the receivers of lines A and B calculated
by two different methods. Smooth curves in each panel are depths inferred from the 3D inversion results.
Jagged curves are obtained from a simple 2D inversion method. »

Figure Al. Receiver static functions for lines A and B of the PRA experiment. Squares refer to well
locations where near surface velocity logs are available. Inline distance increases from north to south
along line A, and from west to east along line B. (a) Statics calculated with v, = 8.25 kmi/s and v, = 6.6
km/s. (b) Statics calculated with v, = 8.5 km/s and v, = 6.2 km/s. v, and v, are critical refractor and
replacement velocities, respectively.
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APPENDIX A: REFRACTION STATIC CORRECTIONS

An expression for the static correction at each receiver site is derived by approximating the local near-
surface velocity structure by a 1D stack of layers. The i" layer is bounded from above and below by
plane, horizontal interfaces at depths z; and z;.,, respectively. The P-wave velocity of the layer depends
linearly on depth z and is given by v{z) = v{0) + g;z. In this situation, thé raypath associated with a

particular ray parameter p is a circular arc. The upward propagation time across the layer is

At.(p) = —L[cosh" (—-l——] —cosh™ [L')jl , (AD
a; pPv; pv;

where v; = v(z;) and v;" = v{zi,). Symbols v; and v;’ denote the velocities at the top and bottom of the i

layer, respectively. The horizontal distance accumulated by the wave as it traverses layer 7 is

Axi(P)=;%[\/l_(Pvi)2 "\/1_(pvxf)2 ] | (A2)

If the wave is critically refracted on a horizontal interface at greater depth, then the ray parameter p
equals 1/v,, where v, is the critical refraction velocity. The angle 7(z) that the raypath makes with the
vertical at any depth is then determined by a velocity ratio: 7(z) = sin” [pvi(z)] = sin” [v{z)/v.]. Using this
result, equations (A1) and (A2) reduce to

AL, = Lln (I+cosn;) s%n n; ’ (A3)
a;, | (l+cosny)sing,

and

Ax; = Ye [cos 1, —cos7; ], (A4)

i

where 7, = sin™(v/v.)) and 7" = sin” (v;’/v.). 7; and 7;” are the incident angles of the circular raypath
segment at the top and bottom of layer i, respectively.

The refraction delay time contribution of the i* layer is defined as




Ax,
Az, = At ——% . (AS5)

vC

Substituting from equations (A3) and (A4) yields
Az, = ~1—ln{g‘—] (A6)

where quantities Q;and Q;’ are given by

1+cosn, 1+ cos7;

12

= , . . (A7a,b)
sin 7, exp(cos ;) sin7; exp(cos ;)

As a check on the correctness of this result, examine the case where the vertical velocity gradient of
the layer vanishes (a; — 0). In this situation, the raypath becomes a straight line segment, and the angles
77; and 77;” both approach the same angle 7, = sin”'[v{0)/v.]. Application of L’Hopital’s rule to equation
(A6) then yields

limAz, = (2iy —2,)C087), _ h; cos7],
a;—0 vi (O) Vi (O)

This is the proper expfession for the one-way delay time contribution of a layer with thickness 4; and
uniform velocity v(0).
The one-way refraction delay time associated with a stack of n horizontal layers is obtained by

summing expression (A6):

n

ar=Y A, =Ziln{—g—’;—}. (A3)
i=1 i=1 4; i

This formula naturally accommodates any velocity discontinuities at the interfaces (i.e., v’y # v).
However, if the velocity function is continuous between all layers (as in the PRA example) thenQ;” = Qi

- and expression (A8) simplifies to
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Ar= j_‘-ln[_Qf_}. | | (49)

The static correction applied to the picked arrival times is designed to remove the one-way refraction
delay time influence of the layered near surface structure, and add the delay time associated with a
uniform replacement medium of equal thickness. If the replacement velocity is designatedv,, then the

static shift is

cos7, &,
b = AT N » A10
static ) ; il ( )

r

where 7, = sin”(v/v,). Although this formula has been derived within the context of upward wave
propagation through a set of horizontal layers, it also applies to the downward propagation portion of the
total raypath. Hence, it may be used for the computation of either a source site static or a receiver site
static.

Near surface velocity information along lines A and B of the PRA experiment are obtained from
models developed by Zelt (1989, p. 40) from well logs. There are eight wells along line A and seven wells
along line B. At each wellsite, the velocity model is approximated by a 1D stack of layers with linear
velocities, and a static correction is calculated via formula (A10). The critical and replacement velocities
are assumed to be v, = 8.25 km/s and v, = 6.6 km/s, respectively. These wellsite static corrections are

then interpolated/extrapolated to the receiver locations along each line using the following procedure.

First, a straight line is fitted to the coordinates ofall recording stations and wellsites along a profile using
the York algorithm (York 1966). This algorithm minimizes the sum of the squared deviations of the
points measured perpendicular to the fitted straight line. The coordinates of these projected points are
automatically returned by the algorithm. Finally, thewellsite statics are linearly interpolated/extrapolated
in these projected coordinates to the receiver sites. Figure Ala displays the computed receiver static
corrections for both lines; squares denote the wellsite statics calculated from expression (A10). The
magnitudes of the statics are approximately the same on both lines (~300 ms), although there is a
noticeable increase toward the southern end of line A.

The static corrections calculated with the above procedure apply only to receiver sites. However, since

shot A4 is located at the end of profile B, a source static is readily estimated for this shot from the nearest
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computed receiver correction (-290 ms). A source static for the isolated shot B4 must be assumed; the
value adopted here is -300 ms.

Figure Alb depicts receiver static corrections recalculated with replacement and critical velocities
equal to 6.2 km/s and 8.5 km/s, respectively. These velocity values are consistent with layer and
halfspace velocities obtained from the 3D inversion procedure. Trends and magnitudes are similar.

Source statics associated with these new receiver statics are assumed to be 210 ms for shot A4 and 250
ms for shot B4. .
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