e CONF88Ms -

Workshop on Model Based Accelerator Controls, BNL, 8/17-18/87.

BNL 40592
BNL--40592

DES8 (04863

THE REPRESENTATION OF KNOWLEDGE WITHIN MODEL-BASED CONTROL SYSTEMS#*

D.P. Weygand and R. Koul
Brookhaven National Laboratory
Upton, New York 11973

Introduction

The ability to represent knowledge is often considered essential
to build systems with reasoning capabilities. In computer science, a
good solution often depends on a good representation.l The first step
in developmeni. of most computer applicaticns is selection of a repre-
sentation for the input, output, and intermediate results that the
program will operate upon. For applications in artificial intelli-
gence, this initial choice of representation is especially important.
This is because the possible representational paradigms are diverse and
the forcing criteria for the choice are usually not clear in the begin-
ning. Yet, the consequences of an inadequate choice can be devastating
in the later state of a project if it is discovered that critical
information cannot be encoded within the chosen representational para-
digm. Problems arise when designing representational systems to sup-
port any kind of KNOWLEDGE-BASED SYSTEM, that is a computer system that
uses knowledge to perform some task. The general case of knowledge-
based systems can be thought of as reasoning agents applying knowledge

to achieve goals.

Artificial Intelligence (AI) research involves building computer

systems to perform tasks of perception and reasoning, as well as
storage and retrieval of data. The problem of automatically perceiving
large patterns in data is a perceptual task that begins tc be important

for many expert systems applications.

Most of Al research assumes that what needs to be represented is
known a priori; an AI researcher’'s job is just figuring out how to
encode the information in the system's data structure and procedures.

Knowledge

Often the questions are asked: “What kind of knowledge is needed
to behave knowledgeably?"? "What things do we know about?” To ap-
proach these questions, following is a list of types of knowledge that

might need to be represented in AI systems. MASIER

*Work performed under the auspices of U.S. Department of Energy.
DISTRIBUTIAN NPT THI® ROCUMENT 12 " .




A. Objects. Typically, we think of knowledge in terms of facts
about objects in the world around us; e.g., birds have wings.

B. Events. WUe also know about actions and events in the world;
e.g., Mary married John in 1985.

C. Performance. A behavior like riding a bicycle involves
knowledge beyond that of "object”™ and "event”--knowledge about
how to do things, the performance of skill.

D. Meta Knowledge. Knowledge about what human beings know is
called meta-knowledge. For example, we often know the extent
and origin of our knowledge of a particular subject, about the
reliability of certain information or about the relative
importance of specific facts about the world. Meta-knowledge
also includes what we know about our own performance as cog-
nitivie processors; our strengths, weaknesses, confusability,
and levels of expertise in different domains.

Using Knowledge

The most important consideration in examining and composing
knowledge representation schemes is the eventual use of the knowledge.3
The goals of Al systems can be described in terms of cognitive tasks
like recognizing objects, answering questions, and manipulating robotic
devices. But, actual use of the knowledge in these programs involves

three stages:

1. acquiring more knowledge,

2. retrieving facts from the knowledge base relevant to the
problems at hand, and

3. reasoning about these facts in search of a solution.

We usually think of learning as an accumulation of knowledge, but
it involves more than the addition of new facts in our brains.
Knowledge acquisition involves relating something new to what we

already know.



We retrieve knowledge by determining what knowledge is relevant to
a given problem which becomes crucial when the system "knows” many
different things. Humans are incredibly proficient at this task and
many representation schemes that have been directly concerned with this

issue have been based on ideas about human memory.

When the system is required to do something that it has not been
explicitly told how to do, it must reason. It must figure out what it
needs to know from what it already knows. For instance, suppose an
information retrieval program “knows” only that robins are birds and
that all birds have wings. Keep in mind only that it contains data
structure and procedures that would allow it to answer the questions.
If we then ask it, "do robins have wings?", the program must reason to
answer the query. In problems of any complexity, the ability to do
this becomes increasingly important. The system must be able to deduce
and verify a multitude of new facts beyond those it has been told

explicitly.

Following are ihe different kinds of reasonings or representations

one might imagine:
1. Formal Reasoning or Logical Representation.
2. Procedural Representations.
3. Production Systems.
4. Direct (Analogical) Representations.
5. Frames.
6. Meta-knowledge.

Logical Representation (Formal Reasoning)",5

Formal reasoning involves the systematic manipulation of data
structures and deduction of new ones following the pre-specified rules
of inference. Mathematical logic is the archetypical format represen-

tation.



The classical approach to representing knowledge about the world,
e.g., "all birds have wings"”, is formal logic.

¥ x birds (x) * has wings (x)

The advantage of formal logic as a representation scheme is that
there is a well-defined set of rules (Rules of Inference) by which
facts known to be true can be used to derive new facts also known to be

true.

There exists two forms of logic, propositional logic and predicate

logic.

First order logic allows quantification over individuals, but not
over predicates. First order predicate logic has been popular in Al
research but theorem proving, i.e., deriving new facts from old using
the Rules of Inference, can be mechanized. 1In addition, first order
predicate logic is sound (impossible to prove a false theorem) and

complete (any true theorem can be proved).

Logic has strengths and weaknesses. Firstly, it is a natural way
to express certaln types of knowledge. Consider "all birds have wings™
and "robins are birds” combine to infer "robins have wings”. Logical
syntax 1s clear and precise, lending itself to automated manipulation.
Logic lends itself to expansion, as new facts are learned or derived,
since assertions are independent of each other.

But, there are significant problems. Firstly, the representation
of knowledge is separate from the heuristic part. First order logic
does not allow direct representation of theorems about theorems. Thus,
heuristic knowledge is not easily represented in a formal logic system.
The standard way of proving theorems (refutation) becomes badly bogged
down when the amount of knowledge grows via the so-called combinatorial

explosion.



STRIPS®

STRIPS is a problem-solving program which plans a series of goals
for a robot to achieve in order to accomplish some task. The world

model consists only of rooms, doors, and boxes.

STRIPS works by searching a space of world models to find a model
in which the desired goal is achieved. 1Its state space representation
consists of a world model and a list of goals to achieve.

Goals are represented as formulus in predicate calculus, for

example:

NEXT_TO (ROBOT,BOX1)

interpreted to mean that the robot should be in a room adjacent to a

room containing BOX1l).

World models are expressed as clauses:

IN ROOM (RGBOT,ROOM1)
CONNECTS (DOOR1, ROOM1, ROOM2)

Given a new goal, the programs use a resolution-based theorem
prover to see if the goal is satisfied in the current world model. In
general, the proof fails, and the program switches to a means-—end
analysis to determine differences between desired goal state and cur-
rent world model, and chooses operators which will minimize this dif-

ference.



Production Systems

Production system describes several different systems based on the
idea of condition—action pairs (productions).

In general, a production system consists of three parts; the
rule-base, the current context or state, and a controllcr. Production
systems are good tools for domain-specific expert systems. They pro-
vide a good "database" for representing an expert's heuristic informa-
tion, and they are relatively efficient and accurate. Rules may be
added, deleted, and changed independently. Uniformity of the rule
representation (together with rule independence) allows the system to
analyze its performance with respect to the validity of rules. Uni-

formity may allow the system to rewrite rules.

Production systems are best suited for domains where knowledge is
diffuse, i.e., consisting of many independent facts or actions, and
domains where knowledge is separate from where it will be used.

EMYCIN’
EMYCIN (domain-independent MYCIN) provides an example skeleton of
an expert system. It is particularly well suited to deductive

problems, e.g., fault diagnosis.

Knowledge Representation

Domain-specific knowledge is represented by production rules. The

rule language is as follows:

RULE: = IF <antecedent> THEN <action> ELSE <action>

{antecedent>: = AND's and OR's of some conditions
or predicates of <context>

{context>: = [<attr1bute> <object> <va1ue>]
<actiond>: = <{consequent> OR <{procedure>

{consequent>: = [<associative triplet> <{certainty factor)]



A context tree provides some of the inheritance features of

frames.

Certainty factors associated with the countext provides a means of
handling uncertainty. Predicates may evaluate to TRUE (with a cut on
certainty) or may provide fuzzy-set functions that indicate degree of
truth. (AND returns minimum certainty values, OR returns the maxi-

mum. )

The action part of a rule consists of updating certainty factors,

or executing attached procedures.

The EMYCIN Inference Engime

Basic control strategy 1is backward chaining, its initial goal to
evaluate the value of a top-level context. To achleve this, it
retrieves a precomputed list of rules whose consequents are known to
bear on a particular goal; it systematically applies the rules until
the certainty 1s established or the rule list is exhausted.

DENDRAL 8

DENDRAL, an expert system which has its beginnings in 1965,
identifies candidate molecular structures from mass spectral and
nuclear magnetic resonance data. Its performance 1is characterized as
efficient and accurate on a very limited domain, and consequently 1is

moving into a commercial environment.

DENDRAL's knowledge came from hand-crafted expert knowledge.
Although it does not reason of basic chemical principles, an effort was
spent on META-DENDRAL, a pre-program which attempted to derive some of
DENDRAL's rules from basic principles.

Knowledge is represented in two forms. Candidate molecular
structures were gemnerated procedurally from special code, the spectrum
evaluator was a production system with coded rules. Thus, knowledge
acquisition was achieved via re-programming or rule editing.



Procedural Knowledge3

Procedural reasoning uses simulations to answer questions, and
solves problems. For example, when we use a program to answer “what is
the sum of 3 and 4?", it uses or "runs™ a procedural model of arithme-

tic.

Humans generally go about their common tasks through pre-formed
plans or procedures. Actually searching the space of possible actions
(the basis of most AI programs) is rare. For example, consider the
task of driving to work; in each of us the plan for solution has been
previously determined, not derived each morning again. lowever, we may
often be asked to modify our plans, generally in a piecemeal fashion
(detour in the road, car won't start, etc.).

Procedualism argues that knowledge about a domain is intrinsically
tied to the knowledge about how the knowledge is to be used. In addi-
tion, much of what we know is purely procedural. For example, if dur-
ing the solution of some problem you need to know the sine of 37°, your
knowledge consists of knowing how to use your calculator to compute the
sine of 37°, but the calculator, via a procedure, actually knows how to

compute the sine of 37°.

Procedural representations have advantages, primarily related to
efficiency. Domain-specific heuristic knowledge is easily represented.
Also, side—effects of actions, a problem in all systems, 1s most easily
handled in a procedural representation, since the procedure which takes
the action may update the database caused by side effects. This 1is of
particular importance in a large system which spans various domains.

On the negative side, knowledge in procedures 1is difficult to
access and change. It is extremely difficult for a system to analyze

and change 1its behavior.

Frames9

Frames provide a structure {framework) for representing knowledge.
Frames support various features which makes the organization of

knowledge more simple.



Frames consist of information about objects. For a given frame
there are various slots, for each slot there are various facets, for

each facet various datum.

Data may be inherited (say through the A-KIND-OF slot).

Requests for data can activate procedures (demons) (say through
the IF-NEEDED facet).

Addition of new data, or changing old data, may activate demons
(say through the IF~ADDED facet).

Thus, underlying the declarative nature of frames is a procedural
structure, through demons. When demons are activated, the attached
procedures provide a means of choosing appropriate methods (to the
current context). General problem-solving methods may be aided by
domain-specific heuristics included procedurally at the slot level.

Direct Analogical Representations

Reasoning by analogy seems to be a natural mode of thought for

humans, but so far difficult to accomplish in AI programs.

Direct representations is a class of representation which
represents knowledge in a particularly natural way. An example is a
street map——-distance between points in the real world correspond to

distances between analagous points of the representation.

Compare this to propositional forms of representation, where
proximity in the database has no connection to actual location of

points.

A good example of direct representation is Gelernter's Geometry
Proving Machine, an early automated theorem prover.l0 This program
proved simple theorems in Euclidean Geometry, and relied heavily on a
diagram to guide the proof, much as a high school student first draws
an appropriate dlagram to solve a geometry problem.



- 10 -

In Gelernter's case, the diagram was used as a powerful
heuristic-—-any hypothesis is false if it is not true in the diagram.

The diagram was also used to establish obvious facts; for example,
ordering of points. The diagram was also used to construct new items,
like line segments, triangles, etc., if necessary.

A strong advantage of analogical representations lies in the
difference between observation and deduction. Observation of facts, in
many cases, can be achieved quickly and easily. This is typified in
Gelernter's program——before a proof would be attempted, quick observa-
tion was used as a pruning heuristic.

In model-based control systems (particularly where models are at
best approximations), this may be where the model best fits in--as a

primarily pruning heuristic.

Also, an accelerator or beam line also serves as a analogical
representation itself, of itself, for regions where the models break

dowm.

Summary

Control of any complicated device is both complex and compound. A
truly expert system designed to emulate human control, with the current
Al technology, will almcst certainly require various subsystems, each
optimized with its own tallored representation. In addition, there
will need to be a master system which is capable of comprehending the
results of each subsystem, with the charge of correlating conclusions.



10.

- 11 -

REFERENCES

Wood, W.A., "Important issues in knowledge representations”,
Proceedings of the IEEE, Vol. 74, No. 10, 1986.

McCarthy, T., Hayes, P.J., "Some Philosophical Problems from the
Standpoint of Artificial Intelligence"”, Edinburgh University Press,
Pp. 363-502. D. Michie and B. Metzler editors.

Barr, A. and Feigenbaum, E.A.,"” The Handbook of Artificial
Intelligence”, William Kaufman, Inc., Vol. II, pp. 143-216.

Winograd, T., "Understanding Natural Languages, New York Academic
Press, 1972.

Hayes, P.J., In defense of logic, IJCAI, Vol. 5, pp. 559-565.

Fikes, R.E., Hart, P. and Nilson, N.J., Learning and executing
generalized Robot Plans, Artifical Intelligence Vol. 3, pp.
251-288, 1972. B

Shortliffe, E.H., Computer-based Medical Consultation: MYCIN,
American Elsevier, New York, 1976.

Lindsay, R.K., Buchanan, B.G., Feigenbaum, E.A., Lederberg, T.,
Application of Artjiical Intelligence for Organic Chemistry, The
DENDRAL Project, Mc':i:w-Hill, New York, 1980.

Minsky, M., A framework for rep:esenting knowledge, Psychology of
Computer Vision, P.H. Winston, editor, McGraw-Hill, New York,

1975.

Feigenbaum, A.E. and Fledwman, T., Computer and Thought, New York,
McGraw-Hill, 1963, pp. 134-152.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor ary of their
employees, makes any warranty, express or implied, or assumes any legal liabilitv or responsi-
bility for the accuracy, completeness, or uscfi ‘ness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state ot reflect those of the

United States Government or any agency thereof.




