
.. .
1.

AI JIIIOI{(:;) .T[ltlll i). I(II}F, I’I-!+. (:’l’K-[)
Iklv[11l,.Hrllwll, (:-1

LA-uR--86-23O1

DE86 013857

‘;IIIIMIIIIIIIIII‘)}{()Alllllit~[lSIIIII, I-t.lllllllll. l iv I I v (:11111”(rttlll-t’

11;1I I [111111l’, ?11), !il’111 :’11..01”1 . ;, i t)~(l

1)1.S(’I,AIMllR

“1hl- rqrml wm prqtrml as WI umwurrlIII wrwhqmmmml hy m qrrrry IIr Ihc [ lnlkd Siaks
(iwmnwrrnl Ndhri !hr I Imlrrl Slak~ ( iuurrmrmrl ntri ■y uacncy Ihcm)f, nur my d dmr
rmplrryrm, muhrn nny WmInIIIy, rqwrw m wwlrlml,m nmwrm my k~el Iinhiluy tw rrqnwm.
lIIhIy hw Ihr nrCIIInry, r,mlplrlrncsw,m udulnrw III my Inbrrtdiwn, qprn[us, prrdrd, or

prcwrw dIdIrA, III [qwrwnlt ihd ill IIU wImlIl nnl mllin~r prwuldy nwnrd righln. Rckr

cm-r hrrrwr 10 nnv sprcIIIr rwwwnrrrd prdud, prtwrw. (II wlvicc try ilerlr Immc. Irakmmrh.
mmruklurm, m u41mwmr dIw* mrl Immanrdy rmrslllulr m imply iln cmltwwnrrnl, rmwrw.
mrmlalnm, III fnvr)lml IIV !hr [ lmlrd SIuIrq ( Lmrrwmrni m nny •~ncy rhrmll. I he vtrwn

●rd uphmwm III mlihms rspr~ml hrlrin dn Irrti wmwsnrilv nldr or Idlmt Ihmr nr ihc
I Inilrd Slnlrn ( hwrlnnwnl ur nny ■urnl v llwIrrIl

Il. , .,.,.,, ,. , 1, ,.1 ,. . . ,. ,. ,1 ..,, ,., .,., .,,, :,. . . ,1..,1 Il.,,1, . . I ,.!,,.,..11,,.,,1 .,.1.,..!. ,, ,!,.,. ., I,,.. . . . ..,, .,11 1,,.,. B , ,,.8.,, .1., IUII.1,..I. n,, ,It, tmmtal.,, m
II ,.,, ,1, .!.,,, , I .,,, I I!.,. . . ,, 1. ,1, . . . . .! , I...* .,11.,.... ,m.,1s ..s. Iron,,1 ., I ,!!,,.,,.-.,!!.1...............

.,.,.1 . . . . . . f, ,, . . , 1 ,1 . ,1, ., .,., , . . . . . . In .,, ,,.,. ,,,,1,, ..,.,,. ,1,,,.1,1.II,-. .11!n.1. l.. An.,k 1,1.,1.,1,,.1.,!.1,1,19,,Ill, ,1.,,.11.111% .1! Ill,, I I “m Il#t I,rrll#,l,

*

e

. .

Ire,,, m.1 ,,, , “,, ,,,

.,1 .,. , ... .,,. “,

,,1,.,1IilllulION01-TIIISDwUMIJNI IsLINLIMll~
4$

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov



TRANSIENT ~IEA7’TRANSPORT IN SUPERFLUID
HELIUM IN CYLINDRICAL GEON.ETRY

by

John D. Rogers and David L. Brown

ABSTRACT

Heat tranmport in cylindrical epace from a round
superconductor i~ermed In a finite bath of superfluid
has been analyzed both numerically and analytically.
The computer and clomed analytical reaultn are
eeaenttally the came. Analytical equations are given
for the temperature of the helium bath as a function
of radius, time, and heat flux from the conductor and
for the tl~ to reach the muperflufd to normnl. helium
tranniticm temperature at the conductor am a function
of heat flux.

INTRODUCTION



temperature at radius r. fixed at T-TA, the temperature of tranaitlon

to the normal fluid atate. For these conditlon6B the heat transport la

given by

q = K (2(TA-Tb)/ro)l’3,

where eub~cript b denotem the superfluid bath temperature at r-m, For

the steady etate eolution, the bath temperature profile la given by

2+TT = (TA-Tb) (rO/r) b“

.

This paper de!vclornequation~ for the time dependent temperature

profiles for a finite cylindrical reulon in which n apccifierlheat flux

la imposed at one boundary.

ANALYTIC SOLUTION

i“ -K(V@], (1)



c IISthe fluid heat capacity, J/(gK),

to obtain

The tilde notation deaignateai dimensioned

boundary conditions are chosen am follows:

(3)

variablee. Initial and

~ (~,0) = 1.8 K - initial bath temperature, (4a)

~3 aT - -
— (root) - A-3 - cube of the heat flux in the (4b)
a; fluid at the cnnductor surface, and

(4C)

r - IWm,x, (‘Ml)

“h/ I 211
I - t-/I - t“ (I.w,x () p,,/K)-l- t-/(O.WWi~m,x) , (\h)

,.I - (i:- (),,)/(1, (‘1,.)

1111{{

c1 - li’mwl-m,x)1/1 K) - 1~/(LH’L’/;~{;) ( ‘Id)



.

where e=O.24 K and E)O=l.8K. Thus, at T=l, T=2.04 K. The value 2.04

wa~ determined by Dre@nerk by ueing the conmtant property value8 K-12.7

W/(cm5/3K1/3) and PC”IO.681 J/(cm3K) to obtain an excellent curve

approximation to the experimental pointm of Van Sciver2 for a bath

temperature of 1.8 K and a conductor heat flux of 2.2 W/cm2. The value

F = 2.04 K is, in a sense, a pseudo transition temperature between the

muperfluld and normal fluid helium mtatea. Clearly, the problem can he

remtated with ? = ? = 2.17 K at T=l with somewhat different values for
)

K and Pc.

The dimennionlees forms of ●quations (3) and (4a,b,c) become

__) )-r#B:(r(aT 1/3

T (rBO) - 0,

~(ro,t) =-q3 ,

:(l,t) - 0 .

(6)

(7a)

(7h)

(7r)

form

T (I-,1) m III + u(r), (tt)



(lo)

Equation (10), after it is cubed and integrated, becomes

~3r4 3a2Ar2 3aA2 lnr A3 + ~

“(r) -T+ T+~-—
●

2r2
(11)

The term a and the integration conetant A are determined from the

boundary conditimm, equations (7b,c), together with the cube of

●quation (10), to bp

2 -1)A - qrol(ro (12a)

and

a = -2A = 2qro/(1-r~). (12b)

The solution 10 very cloee to that computed nu~rically, Fig. 1. An

approximate nolutfon reaulta by taking

T(r,O) -u(r)

with B of equation (11) choeen ouch that

u(1) - 0.

Thus,

(13)

(14)

nml the trannfent temperature profile tn tha superfluid bath, if no

convection (other thnn that from counter flow of the superfluid and

normnl flutd componantn) occur~r is



32+31nr+$2qrot
T(r,t) = — q3r: (: # - ~ ,+— +;)” (16)

l-r: (1-r~)3

Becauee equation (16) is a monotonically decreasing function of r,

the maximum fluid temperature alwaye occurs at ro. Thus, the time the

fluid reaches the transition temperature occurs when T(ro,t) = 1. For

this condition

(17)

to r

Dreanerg eug8eate that equation {6) can be integrated with respect

from r. to 1 to get

1
roqt = ~rorTdr (18)

for which there is no constant of integration because T(r,O) = O.

Substitution of equation (8) into (lfl), combined with equations

(12u,b), gives

Equation (19) can then he nolvcd dl.rectly for a more rlgoroufi

dcterminntlon of the lncegr~tion con~tnnt B consistent with the initial

condition of cquntion (7n). B is ther. g{vcII hy



The values of B calculated from equatlone (15) and (19) are in very

close agreement, better than 1%, when r. is large (the vessel wall is

cloee to the heat source) and the value of B contributes significantly

to u(r) of equation (11). An r. becomes s-her the values of B

calculated from equations (15) and (19) agree somewhat less well, but

the contribution of B to u(r) is substantially dfmlnkahed and the lack

of agreement becomes unimportant.

NIJMSRICALSOLUTION

If equation (6) is divided through by r and then differentiated

with respect to r, the following differential ●quation for the

nondimensional heat flux q(r,t) can be derived by using relation (l):

(21)

Saul’ev’a finite difference method for linear diffueion equationall was

m~-difiedto be appropriate for equation (21) and was used to solve that

equation numerically with initial and boundary condition

q(r,o) - 0, (22a)

q(l,t) - 0,

{

qot/trampD for t<tramp;
q(ro,t) -

qov for t>tramp.

(22b)

(22C)

The temperature T(r,t) was th~n computed from the bent flux by solving

(23)

at each time etep with the boundary condition



.

aT_m.
at

+: (rq), (24)

evaluated at r = ro.

DISCUSSION

Figure 1, in dimensionless coordinates, shows the results of one

such numerical calculation, plotted with temperature versus radius with

time as a parameter, superimposed on the analytical results for

equation (16). The caee shown la for ~. = 3.5 cm, ~~x = 13.5 cm,

~(;,O) - 1.8 K, and ~= 3W/cm2 for the analytical case with the value

of ~ ramped from O to 3 W/cm* in 6 ma and held conEtant thereafter at 3

W/cm* for the numerical solution. The initial heat source ramp IS used

to avoid the singularity in zhe numerical computation that would occur

at the surface if the heat flux is initiated at t = 0. The 6 ma ramp

period waa chosen ae a reasonable rise time for the onset of Joule

heating. The numerical results lie above those from the analytical

ziolution for this caae, but not for all geometries and conditions, and

generally differ by such a small amount that the use of equation (16)

is an adequate solution. The time to reach T = 1.0 or ?A is indicated

to be only slightly less for the numerical computation than that

calculated from equation (16).

The effect of the linear heat ramp for the solution is explored in

Figs. 2 and 3 and compared to the analytical results. Figure 2, also

in dimeneionleee coordinates, shows the very early time dependence of

the numerical and analytical calculations. For the times Up to T = 0.1

(T - 28 me) the analytical requlta lie above those of the numerical

computation, oppoeite the trend observed in Fig. 1 for later tfmes.

Becauae of the inital condition of the analytical solution with the

ct,oiceof equation (8) as the form of the solution, there is a non zero

contribution to the temperature at t = O. This non phyBical solution

at very small values of t can be misleading; however, convergence to

near agreement to the physically more realietic numerical solutton is

approached at t = ().1.



A plot of the time derivative of the temperature versus time in

Fig. 3 shows a spike in the numrfcal solution at the end of the heat

ramp at T = 0.02 (T - 5.6 ma). That feature is not exhibited in the

analytical solution. Also, from Figs. 1 and 2, the contribution of

the spike to the temperature and hence the heat transport is observed

to be markedly small aa evidenced by the good agreement between the two

methods of solution, especially for T > 0.1. The value of the

nutwrically computed temperature time derivative at T = 0.20 IS

0.50316, whereas the analytical value at T = 0.20 is 0.50315 in

remarkable agreement.

Table I examines the times at which the numerically computed

temperature reaches the critical temperature for two values of the ramp

time tramp and v9rlous valuee for r~x. The analytically predicted

values are also given for comparison. For these computations, the

applied flux at r = r. was 3 W/cm2. The agreement between the two

methods of solution is quite good and relatively Insensitive to the

ramp time.

Thus, despite the neglect of (7a) to obtain B as given in equation

(15), the form of the solution in equation (8) is found to be a good

repre~entation. Further, the choice of equations (13) and (14) to

determine the integration constant B preserved the nimillarity between

the numerical and analytical solutions except at very early times.

TABLE I

Nondimensional Times to Reach TA

for ~ = 3 W/cm2

!Q!!W” = t
?max, cm = J.8 5.5 13.5

2 0.132 0.675 1.8U9

b U.151 u.68/ 1.812

analytical 0.138 0.681 1.860



,.

.

u The rigorous approach to determine B from equation (20), based

upon an integration that takes into account the initial condition (7a),

givee reeulta that differ only minimally from those calculated from

equationa (16) and (17). For this reason, the simplicity of (16) and

(17) dictates their use for convenience in most caaes.

Table II, for a Bet of arbitrary configurations, represented by

several aizea of superfluid baths with a single conductor oize, gives

the times to reach the pseudo transition temperature at the conduct~r

eurfaca for several heat flux values. The dimensioned times and heat

flux valuea in eeconds and W/cm2, respectively, were calculated by

using the multipliers of equationa (5a,b,c). The linear time dependent

term of (8) and (16) dominatea, thus,

at >> u(r) (25)

for the dimensions and heat flux values considered. Simply stated, the

dominant term of (16) is merely the temperature rise from the surface

heat flux iuto the annular superfluid helium bath surrounding the

conductor. This condition is readily shown by neglecting the low order

correction term u(r), rearranging the equation, and reverting to the

dimensioned variables to obtain the energy balance as

(26)

Equationa (16) and (17), solved by using only the dominant term, at,

give valuas for T(ro,t) and t (ro,T=l), for most configurations,within

a few percent or better of the values from the full equations. Thus,

the complex analysia leads to a simple physical representation.

Not included in the analysis presented here Is the effect of the

boundary layer Kapitza resistance at the surface of the conductor.

Heat transport acroas this resistance for the heat flux valuea

considered here could create a large temperature difference between the

12 This difference could, in fact, besurface and the superfluid bath.

ao great that the heat transport mechanism would rapidly shift to one

of thermal conduction through a normal helium boundary layer with the



TABLE II

Time to Reach the Transition Temperature

Tb (t=O) = 1.8 K and r. = 3.5 cm

9) w/cn12

3.8 5.5 13.5 53.5

0.5

1.0

2.0

3.0

0.016 0.48 3.3 35

0.0C8 0.24 1.7 18

0.004 0.12 0.82 8.6

0.002(6) 0.08 0.52 5.4

conductor ~urface temperature above the superfluid to normal helium

transition temperature.
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APPENDIX

The solution to the euperflu.. helium heat transport problem in one

ilmensional linear cooi-dineteafor the condiclun of a heat source of T

from an iniinite exte,~tslab at %0 with an insulated bath wall at ~mx

yicld~ the following equivalent dimeneionleen equatione, respectively,

for equations (16,17,15,20)of the main ohe text:

3
T(x,t) =$+~ (x’/4 - X3 - 3x2/2 - X) + ~,

(l-xo) (l-’xo)s
(la)

2

t - (l-xo)/q -~ (x:/4 - x: + 3x:/2 - Xo) - B(l-xo)/q, (2a)
(I-xo)z

3
B- q ,

4(1-xo)~”

or

3 (1/5 +x~/20Bmq - x:/4 ‘tx:/2 - x:/2),
(l-xo)q

(3a)

(4n)

The dimenaionleeb variables are identical to equationa (5n,h,c,d) with

the variable r replaced by x.
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