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TRANSIENT MEAT TRANSPORT IN SUPERFLUID
HELIUM IN CYLINDRICAL GEOMETRY

by

John D. Rogers and David L. Brown

ABSTRACT

Heat transport in cylindrical space from a round
superconductor immersed in a finite bath of supeifluid
has been analyzed both numerically and analytically.
The computer and closed analytical results are
essentially the same. Anrlytical equations are gilven
for the temperatu:e of the helium hath as a function
of radius, time, and heazt flux from the conductor and
for the time to reach the superfluid to normal helium
transfition temperature at the conductor as a function
of heat flux,

INTRODUCTION

Interest 1in the use of Bguperfluid helium for superconductor
coolant exists bhecaune of the increased temperature margin of operation
at the lower temperature of the superflufd for a given current density
fn the superconductor, the attendant capabllity to use lews
superconductor {n a  glven magnet deai;n to attafn a given field, and
the unique high thermnl conductivity and heat capacity characteriatics
of the superflufd helium, The lant feature has been the Bub ject of
extennlve expervimental research and analytical nnulyuvu.l_“ Mrrenwner has
obtalned equations, by meann  of self pfimflavity nolutfonn, to three
conditfons — a hatf-apace with c¢lamped heat flux at  the surface," a

half=apace with clamped temperature at the nurface, and an tnftulte

superf{ lufd helfum bath with a pulurd plane heat pomree, all In one

' han  alro nolved the

dimensfonnl  rectangular  coordinaten. Drenner'
steady state heat treansport problem in cylindrienl coordinates for an

faftultely  extended wuper! lndd hellum bath with  the heat souwree



temperature at radius r, fixed at T=T,, the temperature of transition
to the normal fluid state. For these conditions, the heat transport is

given by

q = K (2AT)\-T,)/r )13,

where subscript b denotes the superfluid bath temperature at r==, For

the steady state solution, the bath temperature profile is given by

T = (T)-Ty,) (ry/r)2 + Ty,

This paper develops equations for the time dependent temperaturc
profiles for a finite cylindrical region in which a specified heat flux

is imposed at one boundary.

ANALYTIC SOLUTION

Heat traunsport In  nsuperfluld holfum {8 characterized by the

Gorter-Mellink relation’'?

q = k(v 1/, (1)

where q In the heat flux, W/ em?;
VI' tu the temperature gradient, K/em; and

K tn n thermal conductance pa.ameter, Hl(c-m"," K l/‘)

Equatfon (1) can be combined with the eunervgy counervat fon equat fon,

Vaq b ope(aT/a0) = 0, (D)

where p In the flatd dennfty, n/rln.', and



¢ 18 the fluid heat capacity, J/(gK),

to obtain
KNI VPPN (3)
-~ -~ K e d
or or ot

The tilde notation designates dizensioned variables. Initial and

boundary conditions are chosen as follows:

T (r,0) = 1.8 K = initial bath temperature, (4a)
K — (r,,t) = —q° = cube of the heat flux in the (4b)
or

fluid at the conductor surface, and

= (0 = temperature gradient at the {nsulated (4c)
or bath wall,

where F" fu the radius of  the heat source surface and anx fa the
miximum coylindrical bath radfun ., Dimenafonlens variablenr a.
{at roduced for convenfence with arbitrary valuea Introduced for Realing

na followa:

r- I"'/I".m’”(. (%)
- YA A -1 - -

t =1/ = ¢ ("mnx 0 pe/K) - |/(().ﬂ.’(nrw“) . (5h)

T = (T - 0,)/0, (%)

nnd
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where 6=0.24 K and 6,=1.8 K. Thus, at T=1, T=2,04 K. The value 2.04
was determined by Dreener” by using the constant property values K=12.7
H/(cm5/3K1/3) and pcv0.681 J/(cm3K) to obtain an excellent curve
approximation to the experimental points of Van Sciver? for a bath

temperature of 1.8 K and a conductor heat flux of 2.2 W/cm2. The value

T = 2,04 K 18, in a sense, a pseudo transition temperature between the
superfluid and normal fluid helium states. Clearly, the problem can be
reatated with T = f) = 2,17 K at T=] with somewhat different values for
K and pc.

The dimensionless forms of equations (3) and (4a,b,c) become

3 (9Ty1/3y o . 9T

3;('(3;) ) r T (6)
T (¢,0) = 0, (7a)
-:—: (rgst) = =q% , (7h)
;; (l,t) = 0, (7¢)

There {8 an analytical aolut{on to equation (6), which {8 of the

form

T (ryt) = at + u(r), (B)

that  foncerveanes  linearly with time. Becausne of the surface boundary
conditfon, the Integral of the solutfon {or conntant heat  treandport  q
must  he lHuoear with time.  FEquatfon (8) [a the almplest function with

thene properties.  Substitution of (B) fnto (6) yieldn

/) )

d
o= (r(-b

whivh, after one Integratfon, hecomen



1/3 2
r(.gl:.) -2+ (10)

Equation (10), after it is cubed and integrated, becomes

adr*  3a2Ar2 | 3aA2 Inr A3

The term a and the integration constant A are determined from the
boundary conditions, equations (7b,c), together with the cube of
equation (10), to be

A = qry/(r2 -1) (12a)
and
Q= =2A = 2qr°/(1-r§). (12b)

The solution is very close to that computed numerically, Fig. l. An

approximate nolution results by taking

T(r,0) = u(r) (13)

with B of equation (l11) chosen such that

u(l) = 0, (14)
Thus,
B -?’5‘7 a?, (1%)

and the transfent temperature profile in the superfluid hath, if no
convection (other than that from counter flow of the superfluid and

normal fluld components) occurs, is



2qr .t q3r3
T(r,t) = —— 2 + © (L% -2r2 43I+ +2). (16)
1-r2  (1-r2)3 4 2 2r2

Because equation (16) is a monotonically decreasing functiom of r,

the maximum fluid temperature always occurs at r_. Thus, the time the

o
fluid reaches the transition temperature occurs when T(ro.t) -1, For

this condition

2 2.2

l1-r qr
b e o © _(3ri- g2+ 3lnrg +—+3). (17
re 2(l-rg)2 ng

9

Dresner’ suggests that equation {6) can be integrated with respect

to r from r  to 1 to get

1
rqt = froerr (18)

for which there is no constant of integration because T(r,0) = O.
Substitution of equatfion (8) into (18), combined with equations
(124,b), gives

)
[, urde = 0 (19)
(A}

Equation (19) c¢an then be ~Rolved directly for a more rigorous
determination of the incegration conatant B consistent with the initial

condition of equation (7a). B is thern given hy

K]
B~ —2 _ (13/6 + r8/12 - 2

3 2 .
r —=1r. . +r2+1)1Inr) (20)
B(1-r2) do 2 ° ?

Yo




The values of B calculated from equations (15) and (19) are 1in very
close aagreement, better than 1%, when T, is large (the vessel wall is
close to the heat source) and the value of B contributes significantly
to u(r) of equation (ll). As r, becomes smaller the values of B
calculated from equations (15) and (19) agree somewhat less well, but
the contribution of B to u(r) is substantially dimin.shed and the lack

of agreement becomes unimportant.
NUMERICAL SOLUTION

If equation (6) is divided through by r and then differentiated
with respect to r, the following differential equation for the
nondimensional heat flux q{r,t) can be devived by using relation (1):

9 3

" (=g (r)). (21)

L1

Saul‘ev’s finite difference method for linear diffusion equationsu

was
mcdified to be appropriate for equation (21) and was used to solve that

equation numerically with initial and boundary conditions

e (22a)

e (22b)

q(ry,t) = qot/tramp' for tQramp‘ (22¢)
9o for t>tramp'

The temperature T(r,t) was then computed from the heat flux by solving

9T

3
T far ry <r <1 (23)

at each time step with the boundary condition



9
I (rq), (24)

|

evaluated at r = Toe

DISCUSSION

Figure 1, in dimensionless coordinates, shows the results of one
such numerical calculation, plotted with temperature versus radius with
time as a parameter, superimposed on the analytical results for
equation (16). The case shown 1is for ry = 3.5 cm, Tpay = 13.5 cm,
T(¥,0) = 1.8 K, and q = 3 w/cm2 for the analytical case with the value
of q ramped from 0 to 3 H/cm2 in 6 ms and held constant thereafter at 3
w/cm2 for the numerical solution. The initial heat source ramp 1s used
to avoid the singularity in *he numerical computation that would occur
at the surface if the heat flux is initiated at t = 0, The 6 ms ramp
period was chosen as a reasonable rise time for the onset of Joule
heating. The numerical results lie above those from the analytical
solution for this case, but not for all geometries and conditions, and
generally differ by such a small amount that the use of equation (16)
is an adequate solution. The time to reach T = 1,0 or TA 18 indicated
to be only slightly 1less for the numerical computation than that

calculated from equation (16).

The effect of the linear heat ramp for the solution is explored in
Figs. 2 and 3 and compared to the analytical results. Figure 2, also
in dimensionless coordinates, shows the very early time dependence of
the numerical and analytical calculations. For the times up to T = 0.1
(' = 28 ms) the analytical results lie above those of the numerical
computation, opposite the trend observed in Fig. 1 for later tlmes,
Because of the 1{inital condition of the analytical solution with the
ct.olce of equation (8) as the form of the solution, there is a non zero
contribution to the temperature at t = O. This non physical solution
at very small values of t can he misleading; however, convergence to
near agreement to the physically more realistic numerical solution is

approached at t = 0.1,



A plot of the time derivative of the temperature versus time in
Fig. 3 shows a spilke in the numerfcal solution at the end of the heat
ramp at T = 0,02 (T = 5.6 ms). That feature is not exhibited in the
analytical solution. Also, from Figs. 1 and 2, the contribution of
the spike to the temperature and hence the heat transport 1is observed
to be markedly small as evidenced by the good agreement between the two
methods of solution, especially for T » O0.l. The value of the
numerically computed temperature time derivative at T = 0.20 is
0.50316, whereas the analytical value at T = 0.20 is 0.50315 in

remarkable agreement,

Table 1 examines the times at which the numerically computed
temperature reaches the critical temperature for two values of the ramp
time tramp and variocus values for ry ... The analytically predicted
values are also given for comparison. For these computations, the
applied flux at r = r, was 3 H/cmz. The agreement between the two
methods of solution is quite good and relatively 1insensitive to the

ramp time.

Thus, deapite the neglect of {7a) to obtain B as given in equation
(15), the form of the solution in equation (8) is found to be a good
representation. Further, the choice of equations (13) and (14) to
determine the integration constant B preserved the simillarity between

the numerical and analytical solutions except at very early times.

TABLE I

Nondimensional Times to Reach TA
~ 2
for q = 3 W/em

Ramp Time, me t
‘max, cm = 3.8 5.5 13,5
2 0.132 0.675 1.809
6 U.151 0.68/ 1.812

analytical 0.138 0.681 1.860



The rigorous approach to determine B from equation (20), based
upon an integration that takes into account the initial condition (7a),
gives results that differ only minimally from those calculated from
equations (16) and (17). For this reason, the simplicity of (16) and
(17) dictates their use for convenience in most cases.

Table 1II, for a set of arbitrary configurations, represented by
several sizes of superfluid baths with a single conductor size, gives
the times to reach the pseudo transition temperature at the conductor
surface for several heat flux values. The dimensioned times and heat
flux values in eeconds and W/cm?, respectively, were calculated by
using the multipliers of equations (5a,b,c). The linear time dependent
term of (8) and (16) dominates, thus,

at > u(r) (25)

for the dimensions and heat flux values considered. Simply stated, the
dominant term of (16) is merely the temperature rise from the surface
heat flux 1iuto the annular superfluid helium bath surrounding the
conductor, This condition 18 readily shown by neglecting the low order
correction term u(r), rearranging the equation, and reverting to the

dimensioned variables to obtain the energy balance as

~

hdlind - - wz -wz
r, € 4 = (Y-8 ) (2., -F2) pc. (26)

Equations (16) and (17), solved by using only the dominant term, at,
glve valuaes for T(ro.t) and t (ro.T-l). for most configurations, within
a few percent or better of the values from the full equations. Thus,
the complex analysis leads to a simple physlcal representation.

Not 1included 1in the analysils presented here 1s the effect of the
boundary layer Kapitza resistance at the surface of the conductor.
Heat transport across this vresistance for the heat flux values
considered here could create a large temperature difference between the
surface and the superfluid bath.l2 This difference could, in fact, be
8o great that the heat transport mechanism would rapidly shift to one

of thermal conduction through a normal helium boundary layer with the



TABLE II

Time to Reach the Transition Temperature
Ty, (t=0) = 1.8 X and r, = 3.5 cm

q, W/cem? t, 8
¥ axs cm = _3.8 5.5 13.5 53,5
0.5 0.016 0.48 3.3 35
1.0 0.0C8 0.24 1.7 18
2.0 0.004 0.12 0.82 8.6
3.0 0.002(6) 0.08 0.52 .5.4

conductor surface temperature above the supertluid to normal helium

transition temperature.
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APPENDIX

The solution to the superflu.. helium heat transport problem in one
iimensional linear cooidinates for the conditiun of a heat source of ¢
from an infinite exteot slab at io with an insulated bath wall at ;max
yields the following equivalent dimensionless equations, respectively,

for equations (16,17,15,20) of the main she text:

- 3 4 3 2
T(x,t) = 3= 4+ __9 (x /4 = x = 3x /2 - x) + 8, (1la)
(l-xo) (lmxo)3

2
2
€= (oxgd/n = —S (xg/h = x3 + 3xg/2 = %;) = Bl=x,)/q, (2a)
(1=x,)
and
3
B3 (3a)
4(1-x,)°
or
q3 5 4 3 2
B = TR (1/5 + x,/20 = x_ /4 + x /2 = x_/2). (4a)
o

The dimensionless variables are identical to equations (5a,b,c,d) with

the variable r replaced by x.
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