

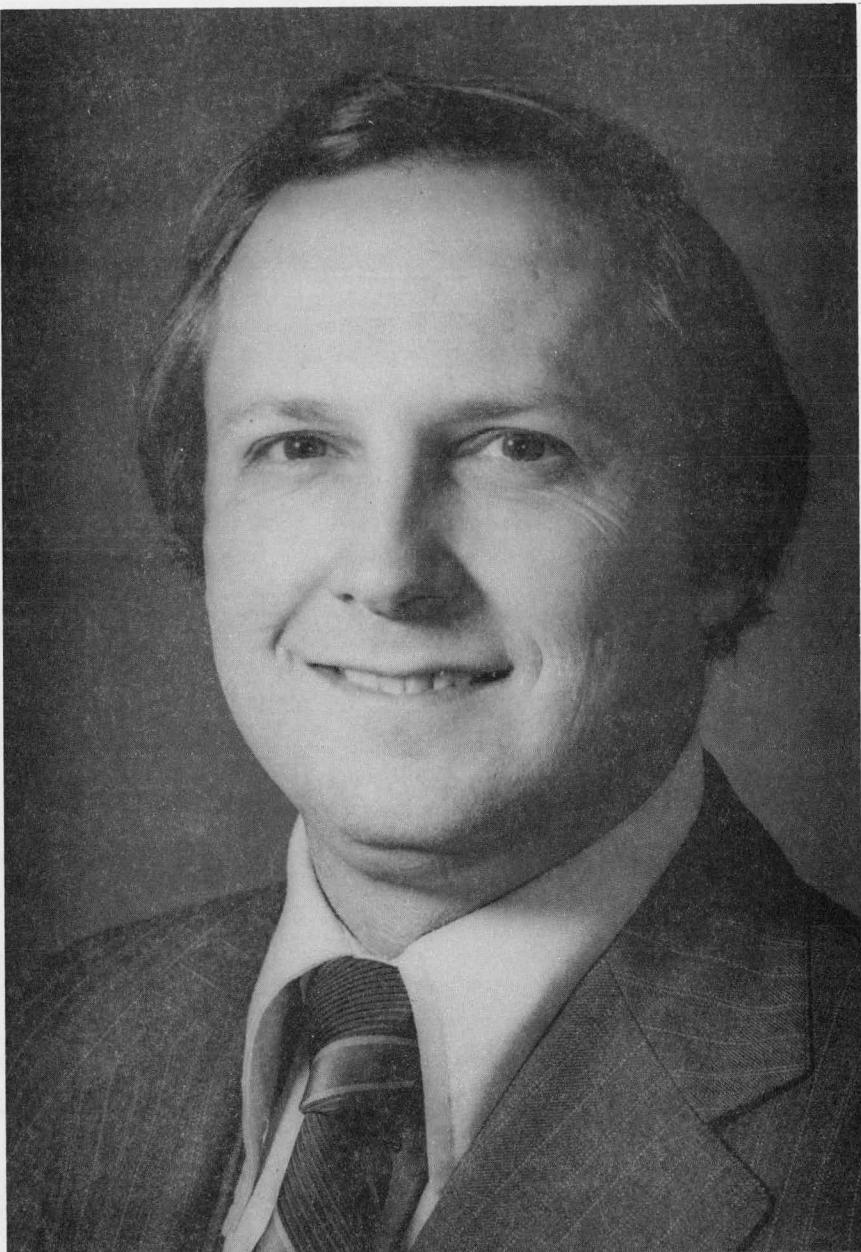
RESEARCH IN RADIobiology  
Annual Report of Work in Progress  
in the Internal Irradiation Program

Radiobiology Division  
Department of Pharmacology  
University of Utah College of Medicine  
Building 522  
Salt Lake City, Utah 84112

DISCLAIMER  
This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

31 March 1979

Contract EY-76-C-02-0119


*EB*  
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

## **DISCLAIMER**

**This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

## **DISCLAIMER**

**Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.**



PROFESSOR McDONALD E. WRENN, DIRECTOR

In 1979 Professor McDonald E. Wrenn, from New York University Medical Center, became Director of the Radiobiology Laboratory, following Professor Webster S. S. Jee, who had served as Acting Director since the untimely death of Professor Thomas F. Dougherty in 1974. The Radiobiology Laboratory is now a Division of the Department of Pharmacology (Professor Dixon M. Woodbury, Chairman).

TABLE OF CONTENTS

|                                                                                                                                                                                            | Page |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Professor McDonald E. Wrenn, Director                                                                                                                                                      | 1    |
| Group Leaders and Sections                                                                                                                                                                 | 5    |
| Availability of Previous Reports                                                                                                                                                           | 6    |
| Current Census of the Beagle Colony                                                                                                                                                        | 8    |
| <br><u>FEATURE ARTICLES</u>                                                                                                                                                                |      |
| - BONE SARCOMAS AT LOW DOSES OF $\alpha$ -RADIATION IN BEAGLES                                                                                                                             | 9    |
| CHARACTERIZATION OF BONE-SURFACE CELLS IN A FATTY-MARROW, LOW<br>TUMOR-INCIDENCE, TRABECULAR BONE SITE OF THE BEAGLE                                                                       | 15   |
| ON THE CALCULATION OF TRABECULAR BONE FORMATION RATES FROM<br>TETRACYCLINE LABELING                                                                                                        | 25   |
| MEASUREMENT OF SOME CHARACTERISTICS OF TRABECULAR BONE OF HUMERUS,<br>LUMBAR VERTEBRAE, AND CALVARIUM, AND OF CORTICAL BONE OF<br>HUMERUS OF ADULT RHESUS MONKEY ( <i>Macaca mulatta</i> ) | 33   |
| - A SIMULATION OF $^{239}\text{Pu}$ LOCATION IN TRABECULAR BONE: A COMPUTER-<br>IZED MODEL OF ADULT ENDOSTEAL BONE REMODELING AND ITS IN-<br>TERACTION WITH INJECTED $^{239}\text{Pu}$     | 55   |
| - THE EARLY DISTRIBUTION OF Pu IN JUVENILE BEAGLES                                                                                                                                         | 65   |
| - $^{233}\text{U}$ IN THE SKELETON OF THE BEAGLE                                                                                                                                           | 74   |
| ○ EARLY RETENTION AND DISTRIBUTION OF INJECTED $^{224}\text{Ra}$ IN BEAGLES                                                                                                                | 81   |
| - GAMMA-RAY SPECTROMETRY OF HUMANS                                                                                                                                                         | 82   |
| - TWO NEW ANIMAL MODELS FOR ACTINIDE TOXICITY STUDIES                                                                                                                                      | 127  |
| - SALICYLIC ACID FAILED TO INCREASE THE EFFICACY OF Ca-DTPA IN THE<br>DECORPORATION OF PLUTONIUM AND AMERICIUM                                                                             | 135  |
| ○ FAILURE TO DETECT SYNERGISM OF SALICYLIC ACID AND DTPA IN<br>DECORPORATION OF Pu OR Am                                                                                                   | 139  |

TABLE OF CONTENTS (Continued)

FEATURE ARTICLES (Continued)

|                                                                                                       | Page |
|-------------------------------------------------------------------------------------------------------|------|
| THE EFFECTIVENESS OF MIXED LIGAND CHELATION FOR THE REMOVAL OF PLUTONIUM AND AMERICIUM IN THE HAMSTER | 140  |
| THE EXAMINATION OF SOME CHELATING AGENTS TO DECORPORATE FIXED BODY-BURDENS OF CADMIUM                 | 145  |
| DECORPORATION OF Pu OR Am IN BEAGLES BY 3,4,3-LICAMS                                                  | 151  |
| <u>ADDITIONS TO BIBLIOGRAPHY</u>                                                                      | 161  |

Appendix: Tabular Data on the Experimental Dogs

|           |     |
|-----------|-----|
| Dosimetry | A-3 |
|-----------|-----|

Tabular Data

|                           |     |
|---------------------------|-----|
| Table I. Toxicity Animals | A-6 |
|---------------------------|-----|

|                             |      |
|-----------------------------|------|
| A. Radium-226               | A-6  |
| B. Plutonium-239            | A-20 |
| C. Radium-228 (Mesothorium) | A-40 |
| D. Thorium-228              | A-46 |
| E. Strontium-90             | A-52 |
| F. Radium-224 (Quickradium) | A-58 |
| G. Americium-241            | A-64 |
| H. Californium-252          | A-72 |
| I. Californium-249          | A-76 |
| J. Einsteinium-253          | A-80 |

|                        |      |
|------------------------|------|
| Table II. Test Animals | A-82 |
|------------------------|------|

|                               |       |
|-------------------------------|-------|
| A. Radium-226                 | A-82  |
| B. Plutonium-239              | A-90  |
| C. Radium-228 (Mesothorium)   | A-104 |
| D. Thorium-228 (Radiothorium) | A-106 |
| E. Strontium-90               | A-108 |
| F. Radium-224 (Quickradium)   | A-110 |

TABLE OF CONTENTS (Continued)

| Tabular Data (Continued) | Page  |
|--------------------------|-------|
| G. Americium-241         | A-112 |
| H. Lead-210              | A-116 |
| I. Californium-252       | A-118 |
| J. Californium-249       | A-120 |
| K. Curium-243/244        | A-122 |
| L. Einsteinium-253       | A-124 |
| M. Plutonium-237         | A-126 |
| N. Uranium-233           | A-128 |
| O. Uranium-238           | A-130 |
| P. Ancillary             | A-132 |

GROUP LEADERS AND SECTIONS.

Radiobiology Division  
Department of Pharmacology  
University of Utah College of Medicine

SECTION

---

|                          |                   |
|--------------------------|-------------------|
| Director                 | McDonald E. Wrenn |
| Project Administrator    | Rodney L. Jones   |
| Administrative Assistant | Mary G. Rieben    |
| <br>                     |                   |
| Bone                     | Webster S. S. Jee |
| <br>                     |                   |
| Chemistry                | Walter Stevens    |
| <br>                     |                   |
| Clinic and Pathology     | Glenn N. Taylor   |
| <br>                     |                   |
| Environmental            | McDonald E. Wrenn |
| <br>                     |                   |
| Physics                  | Charles W. Mays   |

---

#### AVAILABILITY OF PREVIOUS REPORTS

Copies of our reports may be obtained from the National Technical Information Service, Springfield, Virginia 22161. Paper copies are available at the indicated prices (add \$5.00 for each order and \$2.50 for overseas mailing). Microfiche copies are \$3.00 each. (For information, telephone: 703-557-4600 or 202-724-3509.)

| <u>Report</u> | <u>Date</u> | <u>Title</u>                       | <u>Cost</u> |
|---------------|-------------|------------------------------------|-------------|
| TID-7639      | Jun 1954    | Consultants Meeting                | \$12.00     |
| AECU-3418     | Mar 1955    | Annual Report                      | 5.25        |
| AECU-3109     | Sep 1955    | Semi-Annual Report                 | 6.00        |
| TID-16458     | Mar 1956    | Annual Report                      | 7.25        |
| TID-16459     | Sep 1956    | Semi-Annual Report                 | 5.25        |
| AECU-3522     | Mar 1957    | Annual Report                      | 8.00        |
| AECU-3583     | Sep 1957    | Semi-Annual Report                 | 7.25        |
| COO-215       | Mar 1958    | Annual Report                      | 9.00        |
| COO-216*      | Mar 1958    | Escape of Radon and Thoron         | 5.25        |
| COO-217       | Sep 1958    | Semi-Annual Report                 | 9.00        |
| AECU-4112     | Feb 1959    | Radioactive Fallout                | 4.00        |
| COO-218*      | Mar 1959    | Annual Report                      | 9.25        |
| COO-219*      | Sep 1959    | Semi-Annual Report                 | 5.25        |
| COO-220       | Mar 1960    | Research in Radiobiology           | 9.25        |
| COO-221       | Aug 1960    | Interim Report of <sup>90</sup> Sr | 4.00        |
| COO-222       | Sep 1960    | Research in Radiobiology           | 7.25        |
| COO-223*      | Mar 1961    | Research in Radiobiology           | 4.50        |
| COO-224*      | Sep 1961    | Research in Radiobiology           | 6.50        |
| COO-225       | Mar 1962    | Research in Radiobiology           | 7.25        |
| COO-226       | Sep 1962    | Research in Radiobiology           | 7.25        |
| COO-227*      | Mar 1963    | Research in Radiobiology           | 9.50        |
| COO-228*      | Sep 1963    | Research in Radiobiology           | 9.00        |
| COO-119-229   | Mar 1964    | Research in Radiobiology           | 9.25        |
| COO-119-230*  | Jul 1964    | (Superseded by COO-119-245)        | 4.50        |
| COO-119-231*  | Sep 1964    | Research in Radiobiology           | 8.00        |
| COO-119-232*  | Mar 1965    | Research in Radiobiology           | 9.25        |
| COO-119-233*  | Sep 1965    | Research in Radiobiology           | 6.50        |

\*Also available on request from this laboratory.

AVAILABILITY OF PREVIOUS REPORTS (Con't.)

| <u>Report</u> | <u>Date</u> | <u>Title</u>                 | <u>Cost</u> |
|---------------|-------------|------------------------------|-------------|
| C00-119-234*  | Mar 1966    | Research in Radiobiology     | 12.00       |
| C00-119-235   | Sep 1966    | Research in Radiobiology     | 7.25        |
| C00-119-236*  | Mar 1967    | Research in Radiobiology     | 10.75       |
| C00-119-237*  | Mar 1968    | Research in Radiobiology     | 8.00        |
| C00-119-238*  | Aug 1968    | Rb in RBC, Plasma, and Urine | 5.25        |
| C00-119-239   | Dec 1968    | Cs, Rb, and K Metabolism     | 5.25        |
| C00-119-240*  | Mar 1969    | Research in Radiobiology     | 11.00       |
| C00-119-241*  | Mar 1970    | Retention and Dosimetry      | 8.00        |
| C00-119-242*  | Mar 1970    | Research in Radiobiology     | 13.25       |
| C00-119-243*  | Jan 1971    | Osteosarcoma Growth Dynamics | 7.25        |
| C00-119-244*  | Mar 1971    | Research in Radiobiology     | 13.25       |
| C00-119-245*  | May 1971    | Radiobiology Safety Manual   | 4.50        |
| C00-119-246*  | Mar 1972    | Research in Radiobiology     | 13.00       |
| C00-119-247*  | Oct 1972    | Rb and Cs Metabolism         | 5.25        |
| C00-119-248*  | Mar 1973    | Research in Radiobiology     | 13.00       |
| C00-119-249*  | Mar 1975    | Research in Radiobiology     | 12.00       |
| C00-119-250*  | Mar 1975    | Research in Radiobiology     | 9.50        |
| C00-119-251*  | Mar 1976    | Research in Radiobiology     | 12.50       |
| C00-119-252*  | Mar 1977    | Research in Radiobiology     | 11.75       |
| C00-119-253*  | Mar 1978    | Research in Radiobiology     | 12.00       |
| C00-119-254*  | Mar 1979    | Research in Radiobiology     | 11.75       |

\*Also available on request from this laboratory.

STATUS OF THE BEAGLE COLONY\*

as of 31 March 1979

| NUCLIDE              | NUMBER OF LIVING DOGS |
|----------------------|-----------------------|
| 253Es (Einsteinium)  | 6                     |
| 252 Cf (Californium) | 30                    |
| 249 Cf (Californium) | 24                    |
| 243/244Cm (Curium)   | 0                     |
| 241Am (Americium)    | 83                    |
| 239Pu (Plutonium)    | 253                   |
| 233U (Uranium)       | 1                     |
| 228Th (Radiothorium) | 0                     |
| 228Ra (Mesothorium)  | 0                     |
| 226Ra (Radium)       | 115                   |
| 224Ra (Quickradium)  | 106                   |
| 90Sr (Strontium)     | 0                     |
| Aging Controls       | 28                    |
| Unassigned           | <u>118</u>            |
| TOTAL                | 764                   |

\*For detailed data, see the Appendix at the end of this report.

## BONE SARCOMAS AT LOW DOSES OF $\alpha$ -RADIATION IN BEAGLES

Charles W. Mays, Glenn N. Taylor, Walter Stevens,  
Webster S. S. Jee, and McDonald E. Wrenn

**ABSTRACT:** At low doses of  $\alpha$ -particle radiation, the possibility of a linear dose response cannot be rejected by our present data on bone sarcoma induction by  $^{239}\text{Pu}$  and  $^{226}\text{Ra}$  in beagles.

The shape of the dose-response curve is very important in the correct assessment of risk from low doses of radiation. Three possibilities exist: linear (straight line), concave upwards (increasing slope with increasing dose), and concave downwards (decreasing slope with increasing dose). For bone sarcoma induction by low doses of densely ionizing  $\alpha$ -particles, the dose response appears to be concave upwards for  $^{226}\text{Ra} + ^{228}\text{Ra}$  in the U.S. radium dial painters<sup>(1)</sup> and for  $^{228}\text{Ra}$  in beagles,<sup>(2)</sup> concave downwards for  $^{224}\text{Ra}$  in mice,<sup>(3)</sup> and linear for  $^{226}\text{Ra}$  in mice.<sup>(4,5)</sup> The following appear to be "approximately" linear (the linear possibility cannot be rejected statistically):  $^{224}\text{Ra}$  in German patients,<sup>(2,6-9)</sup>  $^{228}\text{Th}$  in beagles,<sup>(2)</sup>  $^{239}\text{Pu}$  in rats,<sup>(10,2,5)</sup>  $^{239}\text{Pu}$  in mice,<sup>(2,11)</sup> and  $^{227}\text{Th}$  in mice.<sup>(3,2)</sup>

We are currently evaluating the induction of bone sarcomas in 176 young adult beagles injected with "low doses" of  $^{239}\text{Pu}$  (Table 1 and Figure 1), and in 58 injected with "low doses" of  $^{226}\text{Ra}$  (Table 2 and Figure 2). By low doses, we mean injections that are expected to produce a relatively low incidence of bone sarcomas, specifically 0.0007 to 0.016  $\mu\text{Ci}/\text{kg}$  of bone-surface-seeking  $^{239}\text{Pu}$ , and 0.0074 to 0.062  $\mu\text{Ci}/\text{kg}$  of bone-volume-seeking  $^{226}\text{Ra}$ . Animals sacrificed for special studies have been omitted from the analysis.

For each dose level, the ratio of bone sarcoma dogs/dead dogs is shown as a crude approximation of what the final incidence may become. When all of the dogs have died, the fraction with bone sarcomas will lie within the indicated limits. The lower limit would be reached if none of the living dogs develop bone sarcomas, whereas if all of the living dogs die with bone sarcomas, the upper limit would be attained. As the dogs continue to die, these limits will converge together at the final incidence. Since most of the dogs at the low levels are expected to die without bone sarcomas, the final incidence should usually be closer to the lower limit than to the upper.

Table 1. Bone sarcomas in low dose  $^{239}\text{Pu}$  beagles (31 March 1979)

| Injected<br>( $\mu\text{Ci } ^{239}\text{Pu/kg}$ ) | Injected<br>Dogs | Living<br>Dogs | Dead<br>Dogs | Sarcoma<br>Dogs | [Sar. Dogs]<br>[Dead Dogs]<br>(%) | Av. skel. dose<br>10 yr post inj.<br>(rad) |
|----------------------------------------------------|------------------|----------------|--------------|-----------------|-----------------------------------|--------------------------------------------|
| 0.016                                              | 26               | 10             | 16           | 5               | 31                                | 57                                         |
| 0.010                                              | 38               | 35             | 3            | 1               | 33                                | 37                                         |
| 0.0055                                             | 38               | 27             | 11           | 3               | 27                                | 20                                         |
| 0.0018                                             | 46               | 21             | 25           | 0               | 0                                 | 7                                          |
| 0.00070                                            | 28               | 15             | 13           | 1               | 8                                 | 3                                          |
| Control*                                           | 133              | 35             | 98           | 1               | 1                                 | 0                                          |

\*Young adult controls for  $^{239}\text{Pu}$ ,  $^{226}\text{Ra}$ ,  $^{228}\text{Ra}$ ,  $^{228}\text{Th}$ , and  $^{90}\text{Sr}$ .

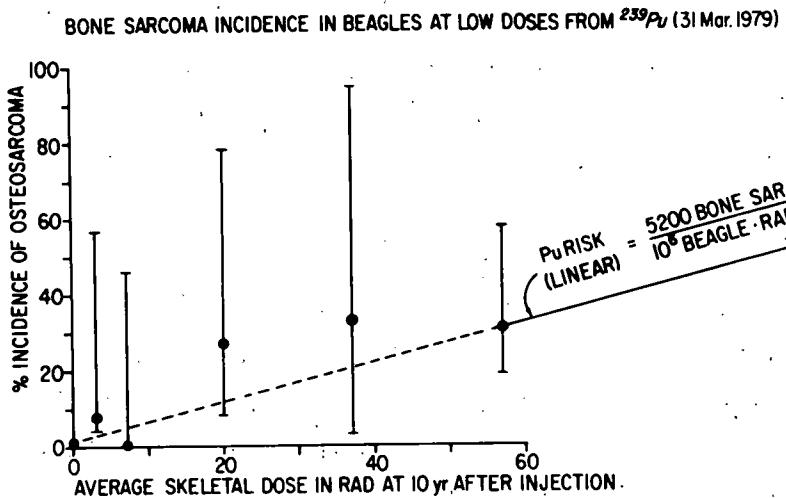



Figure 1. Bone sarcoma incidence in young adult beagles at low doses from  $^{239}\text{Pu}$ . The ratio of bone sarcoma dogs/dead dogs, as of 31 March 1979, is plotted as a solid circle for each dose level. The final incidences, when all of the dogs have died, will be between the indicated upper and lower limits. Shown for comparison is the linear slope from our previously completed study in 28 beagles with plutonium doses from 55 to 135 rad, in which 14 developed bone sarcomas. (11) In the on-going low dose plutonium study, the possibility of a linear dose-response cannot be rejected by present data, although the final incidence might give a better fit to a concave downwards, or conversely, a concave upwards relationship.

Table 2. Bone sarcomas in low dose  $^{226}\text{Ra}$  beagles (31 March 1979)

| Injected<br>( $\mu\text{Ci } ^{226}\text{Ra/kg}$ ) | Injected<br>Dogs | Living<br>Dogs | Dead<br>Dogs | Sarcoma<br>Dogs | [Sar. Dogs]<br>[Dead Dogs<br>(%) | Av. skel. dose<br>10 yr post inj.<br>(rad) |
|----------------------------------------------------|------------------|----------------|--------------|-----------------|----------------------------------|--------------------------------------------|
| 0.062                                              | 23               | 3              | 20           | 2               | 9                                | 210                                        |
| 0.022                                              | 25               | 7              | 18           | 1               | 4                                | 74                                         |
| 0.0074                                             | 10               | 2              | 8            | 0               | 0                                | 25                                         |
| Control*                                           | 133              | 35             | 98           | 1               | 1                                | 0                                          |

\*Young adult controls for  $^{239}\text{Pu}$ ,  $^{226}\text{Ra}$ ,  $^{228}\text{Ra}$ ,  $^{228}\text{Th}$ , and  $^{90}\text{Sr}$ .

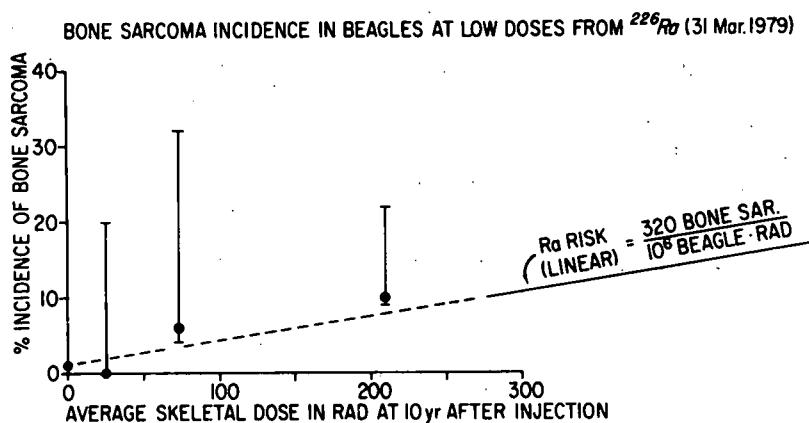



Figure 2. Bone sarcoma incidence in young adult beagles at low doses from  $^{226}\text{Ra}$ . The ratio of bone sarcoma dogs/dead dogs, as of 31 March 1979, is plotted as a solid circle for each dose level. The final incidences, when all of the dogs have died, will be between the indicated upper and lower limits. Shown for comparison is the linear slope from our previously completed study in 51 beagles with radium doses from 183 to 2500 rad, in which 17 developed bone sarcomas.<sup>(11)</sup> In the on-going low dose radium study, the possibility of a linear dose response cannot be rejected by present data, although the final incidences might give a better fit to an alternative relationship.

Table 3. Bone sarcomas in low-level beagles (31 March 1979)

| Nuclide           | Dog      | Injected<br>μCi/kg | Years, inj.<br>to death | Rads to skel.<br>at death | Bone sarcomas                 |
|-------------------|----------|--------------------|-------------------------|---------------------------|-------------------------------|
| <sup>239</sup> Pu | M1P1     | 0.0150             | 12.5                    | 66                        | Osteosarcoma                  |
|                   | M3P1     | 0.0165             | 11.8                    | 68                        | Osteosarcoma                  |
|                   | M8P1     | 0.0172             | 9.2                     | 50                        | Osteosarcoma                  |
|                   | F9P1     | 0.0168             | 6.2                     | 43                        | Osteosarcoma                  |
|                   | *F24P1   | 0.0163             | 9.1                     | 55                        | Osteosarcoma                  |
|                   | *M15P0.7 | 0.00941            | 9.5                     | 33                        | Chondrosarcoma (nasal cavity) |
|                   | F14P0.5  | 0.00493            | 12.4                    | 21                        | Chondrosarcoma (nasal cavity) |
|                   | M19P0.5  | 0.00645            | 10.5                    | 24                        | Osteosarcoma                  |
|                   | M36P0.5B | 0.00527            | 10.6                    | 20                        | Osteosarcoma                  |
|                   | F14P0.1  | 0.00055            | 12.3                    | 2                         | Chondrosarcoma (humerus)      |
| <sup>226</sup> Ra | F19R1    | 0.0682             | 9.9                     | 275                       | Osteosarcoma                  |
|                   | *M20R1   | 0.0610             | 11.7                    | 324                       | Chondrosarcoma (nasal cavity) |
|                   | *F14R0.5 | 0.0220             | 13.9                    | 102                       | Fibrosarcoma (mandible)       |
| Control           | *F13P0   | 0.000              | 14.7                    | 0                         | Osteosarcoma                  |

\*Dogs dying with bone sarcomas during the past year.

These studies are still in progress and it will be some years before the final incidences are obtained. The present data are consistent with a linear dose-response, but do not exclude the possibility of a concave downward response, or for  $^{239}\text{Pu}$ , a response that is slightly concave upward.

Much of the existing work on dose-response has been challenged because it was done with inbred rodents. Therefore, the studies in "outbred" beagles should have special relevance to the "outbred" human population.

Detailed information on the low dose animals with "bone" sarcomas (osteosarcomas, chondrosarcomas, and fibrosarcomas) is given in Table 3. Since our report of last year,<sup>(12)</sup> the first of our control beagles (F13P0) has died with a bone sarcoma 14.7 years after citrate injection (16.1 years of age at death).

#### REFERENCES

1. R.E. Rowland, A. F. Stehney, and H.F. Lucas, Jr., Dose-response relationships for female radium dial workers, *Radiation Research* 76, 368-383 (1978).
2. C.W. Mays, Discussion of plutonium toxicity, in National Energy Issues - How Do We Decide? Plutonium As A Test Case, Proceeding of a symposium held 29-30 September 1978, at the Argonne National Laboratory by the American Academy of Arts and Sciences, Ed. by Robert G. Sachs, pp. 115-143 (published by the Argonne National Laboratory in April 1979).
3. A. Luz, W.A. Müller, W. Gössner, and O. Hug, Estimation of tumor risk at low dose from experimental results after incorporation of short-lived bone-seeking alpha-emitters  $^{224}\text{Ra}$  and  $^{227}\text{Th}$  in mice, in Biological and Environmental Effects of Low-Level Radiation, Vol. II, M. Lewis, Ed., International Atomic Energy Agency, Vienna, Austria, pp. 171-181 (1975).
4. M.P. Finkel, B.O. Biskis, and P.B. Jinkins, Toxicity of radium-226 in mice: in Radiation-Induced Cancer, A. Ericson, Ed., International Atomic Energy Agency, Vienna, pp. 369-391 (1969), plus additional data from Miriam Finkel to C.W. Mays (1971).
5. C.W. Mays and R.D. Lloyd, Bone sarcoma incidence vs. alpha particle dose, in Radiobiology of Plutonium, B.J. Stover and W.S.S. Jee, Ed's., The J.W. Press, University of Utah, Salt Lake City, pp. 409-430 (1972).

6. H. Spiess and C.W. Mays, Bone cancers induced by  $^{224}\text{Ra}$  (ThX) in children and adults, *Health Phys.* 19, 713-729 (1970) plus Addendum in *Health Phys.* 20, 543-545 (1971).
7. C.W. Mays, H. Spiess, and A. Gerspach, Skeletal effects following  $^{224}\text{Ra}$  injections into humans, *Health Phys.* 35, 83-90 (1978).
8. C.W. Mays, Addendum to the previous paper (of Schales): Risk to bone from present  $^{224}\text{Ra}$  therapy, in Biological Effects of  $^{224}\text{Ra}$ , W.A. Müller and H.G. Ebert, Eds., Published by Martinus Nijhoff Medical Division, The Hague/Boston, pp. 37-43 (1978).
9. R. Wick, personal communication to C.W. Mays (8 June 1978).
10. L.A. Buldakov and E.R. Lyubchanskiy, Experimental basis for maximum allowable load (MAL) of plutonium-239 in the human organism, and the maximum allowable concentration (MAC) of plutonium-239 in air at work locations, Argonne National Laboratory Translation ANL-TRANS-864 (1970).
11. C.W. Mays, H. Spiess, G.N. Taylor, R.D. Lloyd, W.S.S. Jee, S.S. McFarland, D.H. Taysum, T.W. Brammer, D. Brammer, and T.A. Pollard, Estimated risk to human bone from  $^{239}\text{Pu}$ , in Health Effects of Plutonium and Radium, W.S.S. Jee, Ed., The J.W. Press, University of Utah, Salt Lake City, pp. 343-362 (1976).
12. C.W. Mays, W.S.S. Jee, G.N. Taylor, and W. Stevens, Bone sarcoma induction in beagles by low doses from  $^{239}\text{Pu}$  and  $^{226}\text{Ra}$ , in Research in Radiobiology, University of Utah Report C00-119-253, pp. 158-160 (1978).

CHARACTERIZATION OF BONE-SURFACE CELLS IN A FATTY-MARROW, LOW

TUMOR-INCIDENCE, TRABECULAR BONE SITE OF THE BEAGLE

S. C. Miller, M. M. Bowman, J. M. Smith and W. S. S. Jee

**ABSTRACT:** The purpose of this study was to characterize the surface density, morphology and ultrastructure of bone-surface "cells at risk" to radionuclides in a site of low radiation-induced osteosarcoma incidence. Particular attention was paid to the bone-lining cells which cover the majority of the trabecular surface. The numbers of osteoblasts, osteoclasts, and bone-lining cells were quantified on trabecular bone surfaces of 1 $\mu\text{m}$ -thick plastic sections of distal radii from control beagles of different ages. The average composite surface density of bone-lining cells was found to be about 450 cells/mm<sup>2</sup>. Most of the lining cells had very flat, apparently disk-shaped, nuclei of about 10-15  $\mu\text{m}$  in diameter and often less than 1 $\mu\text{m}$  in thickness. Cells with more oval or round nuclei were also encountered. The bone-lining cell nuclei were often found in areas containing capillaries bordered by fat cells. The cytoplasm of the lining-cells was often less than 0.1 $\mu\text{m}$  in thickness as it extended over the bone surface. Junctions which were morphologically similar to Gap junctions (Macula Communicans) were frequently observed between adjacent bone-lining cell processes.

There appear to be many factors involved in the induction and location of occurrence of radionuclide-induced osteosarcomas. Most of the <sup>239</sup>Pu-induced osteosarcomas appear to originate in trabecular bone (Jee et al., '62). There is also a strong positive correlation between tumor frequency and trabecular bone area in the long bones of radium-induced and naturally occurring osteosarcomas in humans (Spiers et al., '77) and with <sup>239</sup>Pu- and <sup>226</sup>Ra-induced osteosarcomas in beagles (Jee, '78).

Another factor which appears to be important in osteosarcoma induction is the rate of local bone turnover. Recently, Wronski and Jee ('79) have demonstrated in the beagle that trabecular bone turnover is greater in skeletal sites with a high incidence of osteosarcoma than in sites with a low incidence of osteosarcoma. They also demonstrated that these high osteosarcoma-incidence sites have a greater initial concentration of <sup>239</sup>Pu on bone surfaces as well as faster <sup>239</sup>Pu turnover than in low tumor incidence sites. It is also interesting to note that the high osteosarcoma incidence and high bone turnover sites are occupied with red bone marrow whereas the low tumor incidence and bone turnover sites contain fatty marrow (Wronski et

al., in preparation). Thus differences in the hematogenous milieu may have a direct influence on radionuclide deposition and local bone turnover rates and subsequent osteosarcoma induction.

In our attempts to further understand and predict the effects of radionuclides on osteosarcoma induction, it is necessary to characterize the "cells at risk" on bone surfaces. It is believed that proliferating bone-surface cells, irradiated by radionuclides deposited in the adjacent bone, are responsible for the development of osteosarcomas (Marshall and Groer, '77). The so-called bone-lining cells are capable of cell division (Kimmel and Jee, '78) and may have osteogenic potential and thus could represent a significant cell population "at risk" to radionuclides. Although the morphology and functional capacity of mature bone cells (osteoblasts, osteoclasts, and osteocytes) is quite well established, the surface density, morphology, and function of the bone-lining cell is not, even though these cells cover the majority of trabecular bone surfaces in the adult skeleton.

The purpose of this study is to describe the bone-surface cells with particular emphasis on the bone-lining cells found on trabecular bone surfaces from a fatty marrow, low radiation-induced tumor incidence site in the beagle.

#### MATERIALS AND METHODS

Distal radii from control beagles were obtained at routine autopsy. The distal radius contains fatty bone marrow and has a low incidence of radionuclide-induced osteosarcomas. The bones from these dogs were fixed in formalin, decalcified in EDTA, post-fixed in osmium tetroxide, stained *en bloc* in aqueous uranyl acetate and embedded in Epon 812 or Spurr's low viscosity plastic. One micron-thick sections with a block face of about 2mm x 3mm were cut on an ultramicrotome for light microscope cell counts and morphological evaluation. Thin sections (60nm - 90nm) were cut using glass or diamond knives and stained with uranyl acetate and lead citrate prior to examination in the transmission electron microscope.

For cell counts in the light microscope, the 1 $\mu$ m-thick plastic sections were stained with methylene blue - azure II - basic fuchsin (Humphrey and Pittman, '74). This complex stain was found to be very good in differentiating the very thin and flattened bone-lining cell nuclei from the adjacent bone surface. The numbers of osteoblasts, osteoclasts, and bone-

lining cells were counted and the total length of bone surface perimeter was measured at 400 X magnification using an eyepiece ocular Merz reticule. Two types of bone-lining cells were distinguished on the basis of their nuclear morphology; those having a more rounded or oval nucleus and those having a very flat nucleus. Any possible functional difference between these bone-lining cells is not established at this time.

#### RESULTS

##### Density of Bone Cells

The numbers of osteoblasts, osteoclasts, and bone-lining cells with rounded and flat nuclei per bone surface perimeter in the distal radii of control beagles are summarized in Table 1. Bone-lining cells with very flat nuclei are more frequently encountered than those with oval or rounded nuclei. At this time there appears to be no significant difference in the numbers of lining cells between young adults and aging beagles. If both the flat and rounded bone-lining cell types are summed and averaged over the entire surface area, the surface density of these cells on trabecular bone of the distal radius is about 450 cells/mm<sup>2</sup>. The numbers of mature osteoblasts and osteoclasts are considerably less than this.

TABLE 1. DENSITY OF BONE CELLS ON BONE SURFACES OF THE DISTAL RADIUS

| Lining Cells        |    |                                  |                                   |                                  |                                  |
|---------------------|----|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|
| Age Range<br>(days) | n* | Flat Nuclei<br>no./mm $\pm$ S.D. | Round nuclei<br>no./mm $\pm$ S.D. | Osteoblasts<br>no./mm $\pm$ S.D. | Osteoclasts<br>no./mm $\pm$ S.D. |
| 362-585             | 3  | 15.9 $\pm$ 1.9                   | 6.0 $\pm$ 0.9                     | 2.9 $\pm$ 2.0                    | 0.9 $\pm$ 0.2                    |
| 2591-5878           | 7  | 15.3 $\pm$ 5.1                   | 5.3 $\pm$ 2.4                     | 0.5 $\pm$ 1.4                    | 0.6 $\pm$ 0.4                    |

\*n = number of dogs used in each determination.

### Light Microscope Observations

In the light microscope, bone-lining cells can only be recognized by their nuclei (Figs. 1 and 2), as the cytoplasm of these cells is usually too attenuated to be resolved. Cells with the very thin, flat nuclei are often in such close proximity to the bone surface that it is sometimes difficult to distinguish them from the densely stained lamina limitans found on many bone surfaces. Lining-cells containing rounded nuclei are easier to distinguish because of their shape. The bone-lining cells, particularly those with the more rounded nuclei, are frequently found in triangular-shaped areas bordered by adjacent fat cells and the bone. Capillaries are frequently seen in these areas (Fig. 1).

### Electron Microscope Observations

In the transmission electron microscope a more accurate determination of nuclear size, proximity to bone surfaces, and nuclear and cellular morphology can be made. In the example illustrated in Figure 3, this flat nucleus of a bone-lining cell is about  $13\mu\text{m}$  in length and from 0.5 -  $1.0\mu\text{m}$  in width. The nucleus is about  $1\mu\text{m}$  away from the lamina limitans which may represent the true mineralization front (Miller, unpublished observations). These dimensions are generally typical for the bone-lining cells with flattened nuclei.

Examination of bone-lining cells by electron microscopy confirms that nuclei are often found in triangular-shaped regions formed by adjacent fat cell membranes and the bone surface (Fig. 4). The lining-cell nuclei are often found in areas of vascular capillaries (Fig. 4). Most of the lining-cells have extensive, yet very thin, layers of cytoplasm extending over the bone surface (Figs. 5, 6, and 7). The cell cytoplasm is often only from 50 - 100nm in thickness and cell processes can be seen extending into canaliculi in the bone matrix (Fig. 6). Cell junctions are frequently found between adjacent cell processes or cell layers (Fig. 7). At greater magnifications the cell junctions appear similar to gap junctions (also called nexus or macula communicans).

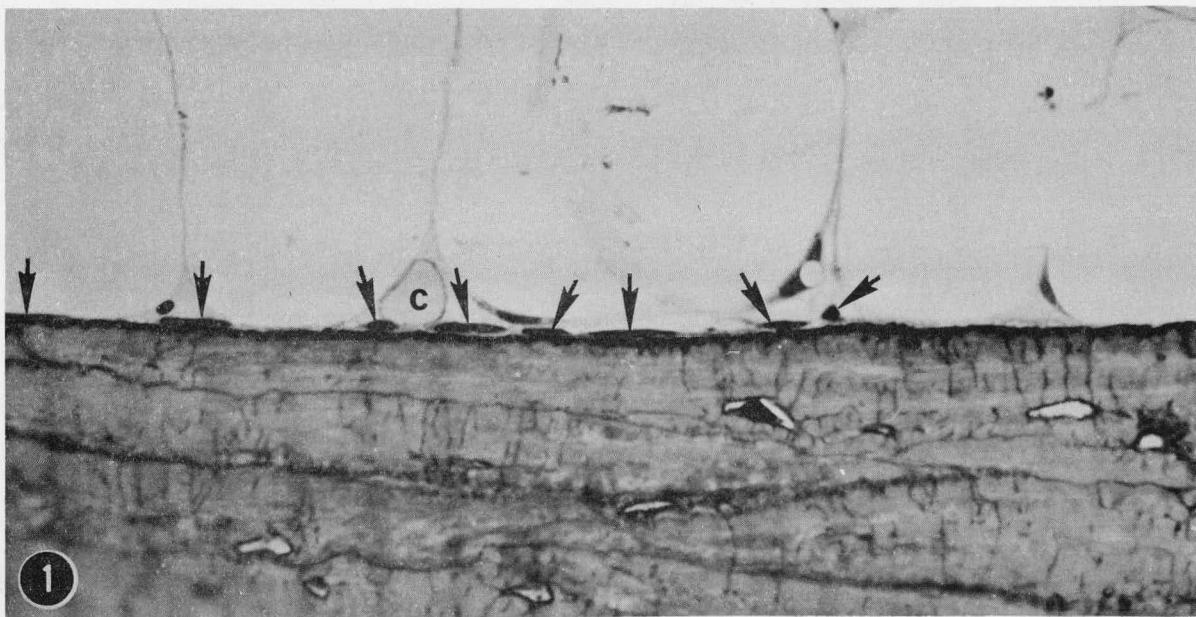



FIGURE 1. Light micrograph of a  $1\mu\text{m}$ -thick plastic section of a bone spicule from the distal radius of a beagle. The nuclei of bone lining cells can be seen extending along the bone surface (arrows). A small capillary adjacent to the bone can also be seen (c). 1,500 X.

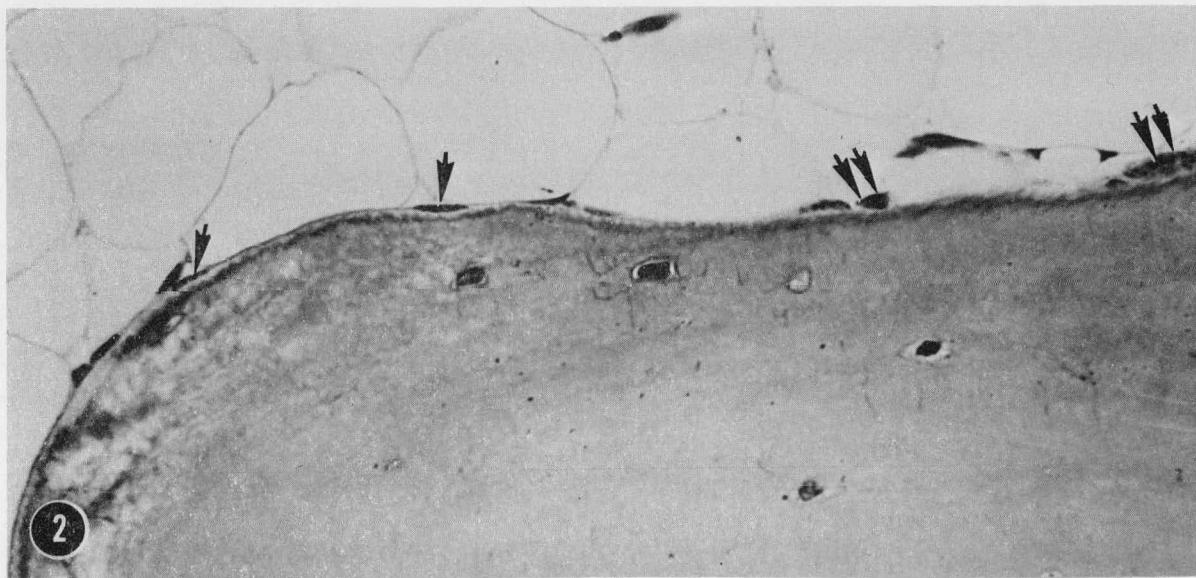



FIGURE 2. This light micrograph illustrates the two types of bone-lining cells that were quantified in this report. Some lining cells have very flat nuclei (single arrows) and others have more rounded or oval shaped nuclei (double arrows). 1,500 X.



FIGURE 3. Transmission electron micrograph of a flat nucleus (N) of a bone-lining cell. 9,100 X.

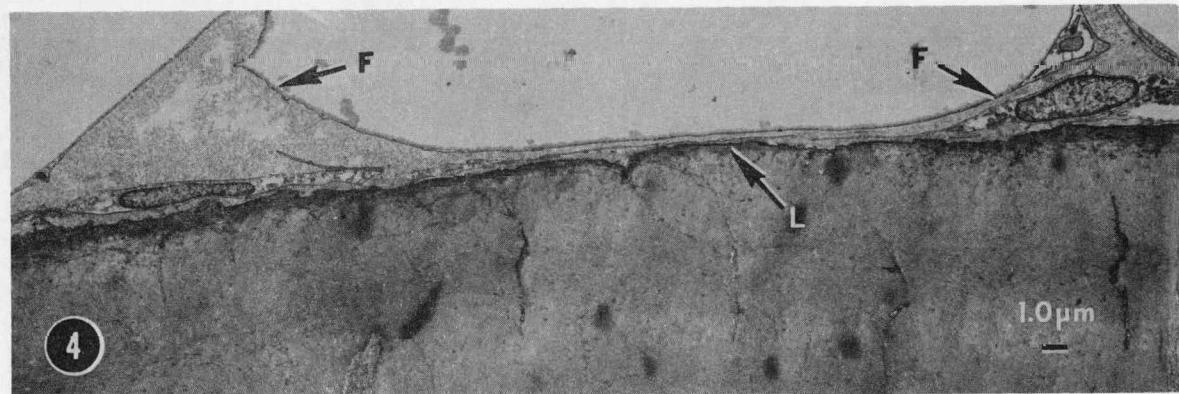



FIGURE 4. Low power electron micrograph of bone-lining cells extending along a bone surface. The nuclei of the lining cells are found in triangular-shaped regions bordered by the fat cell membranes (F) and the bone. Lamina limitans (L). 3,400 X.

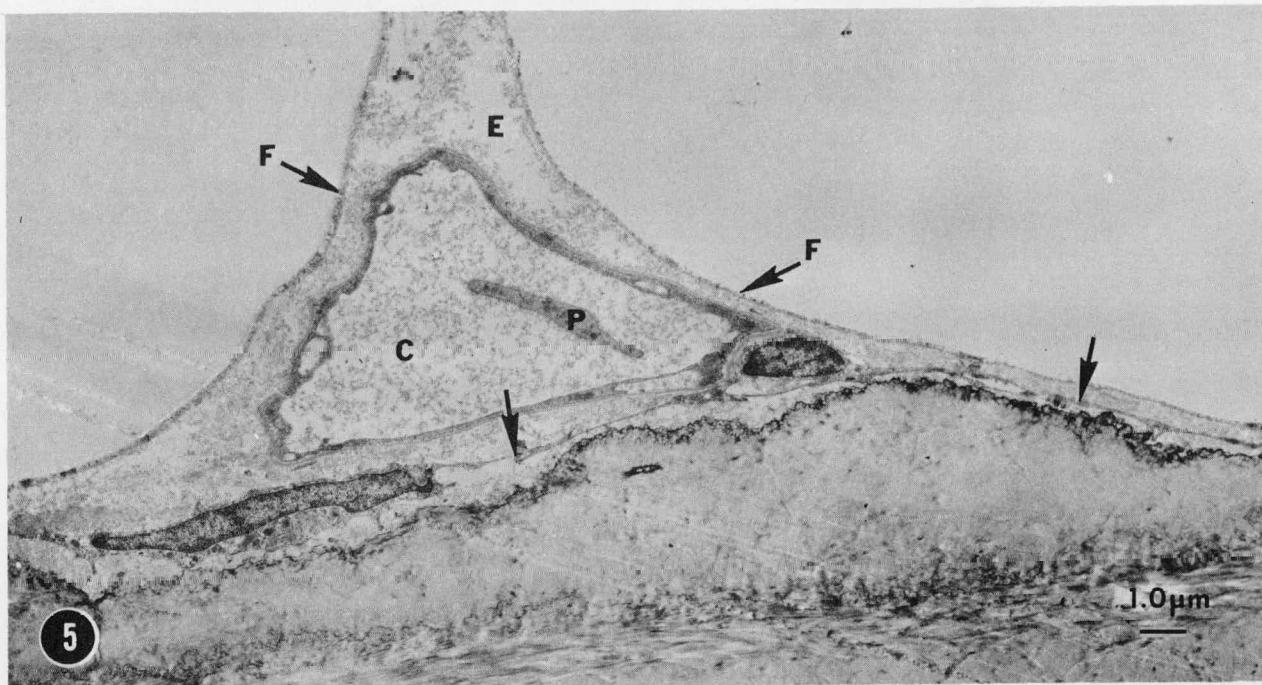



FIGURE 5. Electron micrograph of several bone-lining cells with their nuclei in close proximity to a capillary (C). The cytoplasm of the lining cells (arrows) can be seen extending along the bone surface. E, endothelium. P, blood platelet. F, fat cell membrane. 5,500 X.

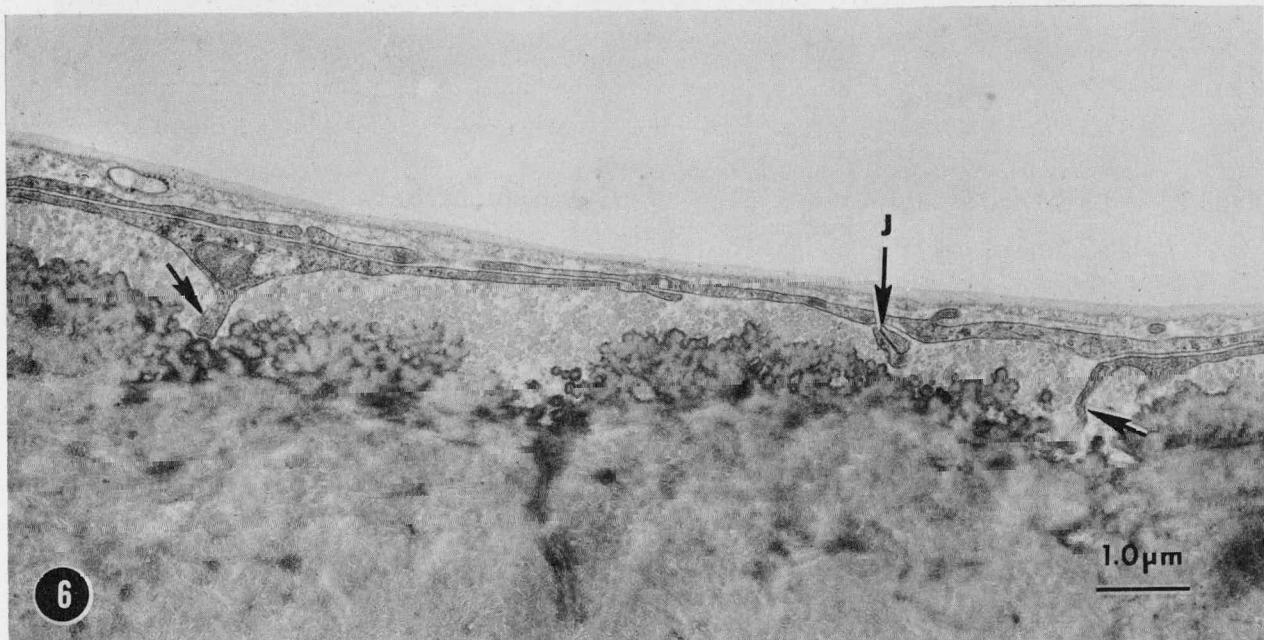



FIGURE 6. Greater detail of the thin lining cell cytoplasm covering bone surfaces. An occasional cell process appears to extend into the bone matrix (arrows) and small junctions (J) can be seen between cell processes. 11,800 X.

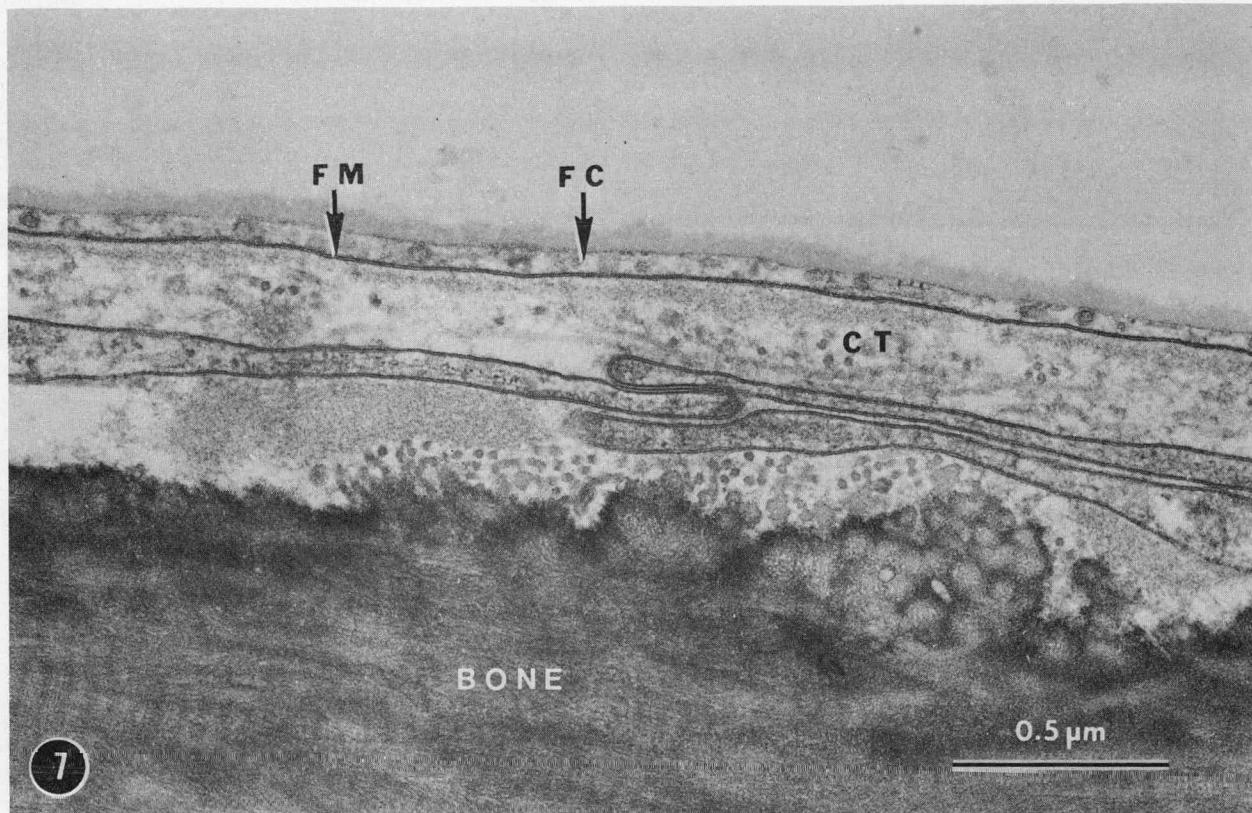



FIGURE 7. Greater detail of a typical junction found between bone-lining cells. These junctions are morphologically similar to Gap junctions. The fat cell membrane (FM) and a thin rim of the cytoplasm of this cell (FC) is well seen in this micrograph. Between the bone-lining cell and the fat cell there is some loose connective tissue (CT) containing prominent collagen fibers. 54,400 X.

#### DISCUSSION

This report presents preliminary findings on the density, morphology and ultrastructure of bone-lining cells in a low radiation tumor incidence, fatty marrow trabecular bone site. This study demonstrates that bone-lining cells have an overall surface density of about 450 cells/mm<sup>2</sup>. The nuclei of the bone-lining cells can be either oval, occasionally round, or more frequently, very flat. The flat nuclei of lining cells appear to be flat disks having a diameter from 10 - 15 $\mu$ m and often less than 1 $\mu$ m in thickness. It appears that the nuclei are generally about 1.0 $\mu$ m from the lamina limitans. Further work is in progress to define more precisely the proximity of the lining cell nuclei to the actual mineralization surface. This information is necessary for more precise calculations of dose rates to bone cells for radionuclides deposited in and on bone.

The nuclei of bone-lining cells are not, however, uniformly distributed on bone surfaces. The nuclei are often found adjacent to capillaries between fat cells and the very thin cytoplasm of the bone-lining cells extends over the bone surface. Further work is in progress to define more precisely the relationships of bone-lining cells and the blood vascular system. This information is important not only for our understanding of bone biology, but may provide some insights into the observed differences in <sup>239</sup>Pu incorporation and turnover at these sites compared to red bone marrow-bone sites (Wronski et al., in preparation).

One unexpected finding in this study is the common frequency of cell junctions between lining cells. These junctions appear morphologically similar to Gap junctions (McNutt and Weinstein, '73). However, to confirm that these are, in fact, true Gap junctions will require additional ultrastructural tracer and freeze-fracture studies. Occluding junctions, like tight junctions or Zonula Occludens, were rarely, if ever, found between adjacent lining cells.

#### REFERENCES

Humphrey, C. D. and F. E. Pittman (1974) A simple methylene blue - azure II - basic fuchsin stain for epoxy-embedded tissue sections. *Stain Technol.* 49: 9-12.

Jee, W. S. S., B. J. Stover, G. N. Taylor and W. R. Christensen (1962) The skeletal toxicity of  $^{239}\text{Pu}$  in adult beagles. *Health Phys.* 8: 599-607.

Jee, W. S. S. (1978) The relationship of trabecular bone surface areas, bone turnover rates, and initial uptake of Pu and Ra to sites of occurrence of osteosarcoma in beagles. In: *Research in Radiobiology*, University of Utah, C00-119-253, pp. 220-223.

Kimmel, D. B. and W. S. S. Jee (1978) Study of skeletal kinetics of young adult beagles. In: *Research in Radiobiology*, University of Utah, C00-119-253, pp. 234-236.

Marshall, J. H. and P. G. Groer (1977) A theory of induction of osteosarcoma by skeletally-deposited alpha-emitting radionuclides. *Rad. Res.* 71: 143-191.

McNutt, N. S. and R. S. Weinstein (1973) Membrane ultrastructure at mammalian intercellular junctions. *Prog. Biophys. Mol. Biol.* 26: 45-101.

Spiers, F. W., S. D. King and A. H. Beddoe (1977) Measurements of endosteal surface areas in human long bones: Relationships to sites of occurrence of osteosarcoma. *Brit. J. Radiol.* 50: 769-776.

Wronski, T. J. and W. S. S. Jee (1979) Variations in the rate of trabecular bone turnover withing the beagle skeleton. *Anat. Rec.* 193: 726 (abstr).

## ON THE CALCULATION OF TRABECULAR BONE FORMATION RATES FROM TETRACYCLINE LABELING DATA

J. M. Smith

**ABSTRACT:** In calculating trabecular bone formation rates from the data provided by tetracycline labeling, the question arises as to what to use for the fraction of surface actively forming ( $S_{act}$ ) during the labeling period. It is shown that if one can assume that all osteoid is active, then  $S_{act}$  is given by the sum of the fraction of surface with a double-label of tetracycline and 1/2 of the fraction of surface with a single-label.

### Introduction

Conventionally, one uses the tetracycline-based histological analysis of Frost (1969) for determining skeletal turnover in a mature (remodeling) skeleton. The purpose of this paper is to derive a formula for the calculation of trabecular bone formation rates ( $V_f$ ) from the data provided by the tetracycline labeling procedure. For the purposes of the present work, we assume that all osteoid is active; a good approximation in the case of the young adult beagles within the Radiobiology Laboratory's beagle colony.

### Methods

Conventionally,  $V_f$  for trabecular bone is calculated by the following equation:

$$V_f = M S_{act} (S/V)_{trab} \quad (1)$$

where  $M$  is the appositional rate,  $S_{act}$  is the fraction of trabecular surface actively forming and  $(S/V)_{trab}$  is the specific bone surface to volume ratio for trabecular bone. The question arises as to the determination of  $S_{act}$  from the tetracycline data. The latter is typically provided as fraction of surface with a single label ( $S_{act}^{SL}$ ) and fraction with double label ( $S_{act}^{DL}$ ). Both the sum of these values and the fraction of surface with double label only have been used widely in the literature for  $S_{act}$ .

Let us consider the concept of the "bone metabolic unit" (BMU) proposed by Frost (1969). Let,

$$vV_f = n_{BMU} \frac{dB}{dt} \quad (2)$$

where  $n_{BMU}$  is the number of BMU's per unit volume of existing bone (number per  $\text{mm}^3$ ) and  $\frac{dB}{dt}$  is the rate at which a BMU forms bone ( $\frac{\text{mm}^3}{\text{day}}$ ).  $vV_f$  is then in the proper units of  $\text{mm}^3$  of new bone formed per  $\text{mm}^3$  of old bone per day.

The fraction of new bone formed during the marker interval (time between labels of tetracycline, measured from the middle of the first labeling period to the middle of the second) would, therefore, be given by

$$\beta \equiv vV_f (\text{MI}) = n_{BMU} \left( \frac{dB}{dt} \right) (\text{MI}), \quad (3)$$

if all BMU's were actively forming during the marking interval (MI = marker interval).

However, not all of the BMU's engaged in laying down new bone (at rate  $\frac{dB}{dt}$ ) do so continually. Those which yield a double-label do; those which have escaped double-labeling, giving only a single-label, have escaped because they are not working continually throughout the marker interval.

The parameter  $\beta$  can be divided into 2 parts:  $DL_\beta$  (the amount of new bone formed per unit volume due to BMU's which give rise to double labels) and  $SL_\beta$  (the counterpart for single-labeling) where,

$$\beta = DL_\beta + SL_\beta. \quad (4)$$

Expressions for  $DL_\beta$  and  $SL_\beta$  can be readily obtained by reference to the "Frost ladder" (Fig. 1).

The purpose of the Frost ladder is to conceptualize the temporal relationship among the BMU's within a volume of bone. Each "rung" of the ladder represents an individual BMU, and the length of the rung is equal to its duration ( $\sigma_f$ ). Note that conventionally the BMU's are arranged in order of increasing initiation times.

In Fig. 1 the total volume of new bone laid down per unit volume of old bone is represented in region II where, by analogy with equation (3),

### THE FROST LADDER

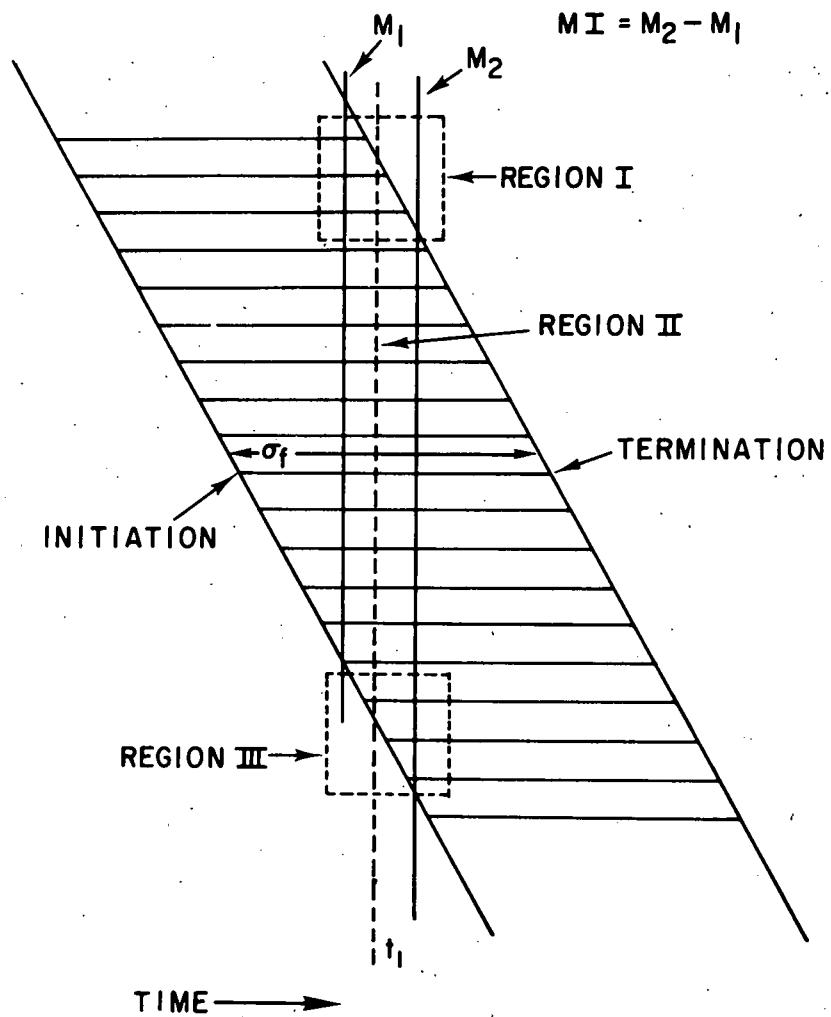



FIGURE 1.

$$DL_{\beta} = DL_{n_{BMU}} \left( \frac{dB}{dt} \right) (MI) \quad (5)$$

and, in this case,  $DL_{n_{BMU}} = 11$ . This equation states that the amount of bone laid down per unit volume during the marking interval is due to each BMU in region II laying down bone at the constant rate  $\frac{dB}{dt}$  for the duration of the marking interval (MI).

Let us now derive an expression for  $SL_{\beta}$ . Note that  $SL_{n_{BMU}}$  is given by the sum of those BMU's in region I and those in region III. We will designate the former by  $T_{n_{BMU}}$  and it is equal to the number of BMU's per unit volume which have "terminated" during the marking interval (region I). The latter will be designated  $I_{n_{BMU}}$  and is equal to the number of BMU's per unit volume which have been "initiated" during the marking interval (region III; they terminate after the marking interval). Note that,

$$SL_{n_{BMU}} = T_{n_{BMU}} + I_{n_{BMU}}, \quad (8)$$

In a state of dynamic equilibrium,

$$T_{n_{BMU}} = I_{n_{BMU}}, \quad (9)$$

i.e., for every BMU terminating during the marking interval, there is one which is initiated. (In the diagram,  $T_{n_{BMU}} = I_{n_{BMU}} = 3$ .)

It is readily seen from the ladder diagram that the average time in which either a terminating or initiating BMU works forming bone during the marker interval is  $1/2$  MI. (The BMU's which give rise to double labeling, on the other hand, work continually throughout the marker interval, and their "average working time" is exactly MI.)

Therefore, the volume of the new bone laid down per unit volume of old bone during the marking interval by terminating BMU's (region I) is given by

$$T_{n_{BMU}} \left( \frac{dB}{dt} \right) \left( \frac{1}{2} MI \right) \quad (10)$$

and, likewise, from region III,

$$I_{n_{BMU}} \left( \frac{dB}{dt} \right) \left( \frac{1}{2} MI \right). \quad (11)$$

The sum of the terms (10) and (11), therefore, represents bone formation due to "escape" or single-label BMU's:

$$\begin{aligned} SL_{\beta} &= T_{n_{BMU}} \left( \frac{dB}{dt} \right) \left( \frac{1}{2} MI \right) + I_{n_{BMU}} \left( \frac{dB}{dt} \right) \left( \frac{1}{2} MI \right) \\ &= (T_{n_{BMU}} + I_{n_{BMU}}) \frac{dB}{dt} \left( \frac{1}{2} MI \right) \end{aligned} \quad (12)$$

Note that since,  $SL_{n_{BMU}} = T_{n_{BMU}} + I_{n_{BMU}}$ ,

$$SL_{\beta} = \frac{dB}{dt} (MI) \left( \frac{1}{2} SL_{n_{BMU}} \right) \quad (13)$$

Another way to arrive at the same conclusion is to note that for every BMU which terminates at a given time ( $t_1$ , say) during the marker interval, there is one which is initiated. Therefore, in a conceptual way we can think of the single-labeling BMU's working continually throughout the marker interval, provided that we use 1/2 of the total number of initiating and terminating BMU's.

All of the above still holds true as one mixes vertically the rungs of the Frost ladder and simultaneously allow their lengths to vary. This would represent a more accurate view of the situation as it occurs in nature.

Combining equations (4), (5), and (13) we have:

$$\begin{aligned} \beta &= DL_{\beta} + SL_{\beta} \\ &= DL_{n_{BMU}} \left( \frac{dB}{dt} \right) (MI) + \left( \frac{dB}{dt} \right) (MI) \left( \frac{1}{2} DL_{n_{BMU}} \right) \end{aligned}$$

and, therefore,

$$\beta = \left( \frac{dB}{dt} \right) (MI) \left[ DL_{n_{BMU}} + \frac{1}{2} SL_{n_{BMU}} \right]. \quad (14)$$

However, from our definition of  $\beta$  in equation (3) ( $\beta \equiv vV_f \cdot MI$ ) we can change equation (14) to:

$$vV_f = \left( \frac{dB}{dt} \right) \left[ DL_{n_{BMU}} + \frac{1}{2} SL_{n_{BMU}} \right] \quad (15)$$

by dividing both sides by MI. This equation then shows us how to divide the total bone formation rate,  $vV_f$ , into 2 separate components: one for those

BMU's responsible for double-labeling, and the other for those responsible for single labeling. Note the weighting factor of 1/2 for "single-labeling BMU's."

At this point, let us return to the general equation (2):

$$v_V_f = n_{\text{BMU}} \frac{dB}{dt} \quad (2)$$

The rate at which a BMU lays down new bone is a constant,  $\frac{dB}{dt}$  (proportional to  $M$ , the appositional rate). Let's consider the BMU's which give rise to a double-label during the marking interval. Their number per unit volume is  $DL_n_{\text{BMU}}$ , and (2) follows immediately. The equivalent way of expressing this rate is

$$DL_n_{\text{BMU}} \frac{dB}{dt} = M \frac{DL_S_{\text{act}} (S/V)}{\text{trab}} \quad (16)$$

The right hand side of this equation is the product of the appositional rate ( $M$ ), the surface-to-volume ratio of trabecular bone  $(S/V)_{\text{trab}}$ , and the fraction of trabecular surface area which takes a double label. ( $DL_S_{\text{act}}$  is, using Frost's symbols,  $S_{\text{fract}}(\text{lab})$ , with the constraint of double-labels only.)

The bone formation rate for those surfaces which take only a single label is, in general, different and would be expressed as follows:

$$SL_n_{\text{BMU}} \frac{dB}{dt} = M \frac{SL_S_{\text{act}} (S/V)}{\text{trab}} \quad (17)$$

where  $SL_S_{\text{act}}$  is that fraction of the trabecular surface which takes only a single label. Note that although an individual BMU always "works" at the rate  $\frac{dB}{dt}$ , the amount of bone formed during the marker interval is different for those BMU's which work continually throughout the marker interval (giving double-labels) as opposed to those which terminate or are initiated during the marker interval (giving rise to single-labels). The ratio in the number density of these respective BMU's is found by dividing equation (16) by (17):

$$\frac{DL_n_{\text{BMU}}}{SL_n_{\text{BMU}}} = \frac{DL_S_{\text{act}}}{SL_S_{\text{act}}} \quad (18)$$

As we would expect, this ratio is merely the ratio of double-labeled surface fraction to single-labeled surface fraction.

We are now ready to use equation (15); let us substitute equations (16) and (17) into that equation. The result is:

$$vV_f = M \frac{DLs_{act}}{trab} (s/v) + \frac{1}{2} M \frac{SLs_{act}}{trab} (s/v) \quad (19)$$

or,

$$vV_f = M s_{act} (s/v)_{trab} \quad (20)$$

where,

$$s_{act} = \frac{DLs_{act}}{trab} + \frac{1}{2} \frac{SLs_{act}}{trab} \quad (21)$$

#### Conclusion

In calculating trabecular bone formation rates, using tetracycline labeling, the investigator should ascertain the fraction of trabecular surface with a single label ( $SLs_{act}$ ) of tetracycline, and the surface fraction with a double-label ( $DLs_{act}$ ). If it can be assumed that all osteoid is actively forming (a good assumption for young adult beagles), then one can calculate the rate of bone formation ( $vV_f$ ) by equation (1) in the text:

$$vV_f = M s_{act} (s/v)_{trab} \quad (1)$$

where  $M$  is the corrected appositional rate,  $(s/v)_{trab}$  is the trabecular surface to volume ratio, and  $s_{act}$  is given by

$$s_{act} = \frac{DLs_{act}}{trab} + \frac{1}{2} \frac{SLs_{act}}{trab} \quad .$$

#### Acknowledgments

The author gratefully acknowledges valuable discussions with Drs. H. M. Frost, W. S. S. Jee, and T. J. Wronski.

References

1. Frost, H.M.: Tetracycline-based histological analysis of bone remodeling. *Calcif. Tiss. Res.* 3, 211-237 (1969).
2. Frost, H.M.: Bone remodeling and its relationship to metabolic bone disease. Springfield: C. Thomas, 1973.

MEASUREMENT OF SOME CHARACTERISTICS OF TRABECULAR BONE OF HUMERUS,  
LUMBAR VERTEBRAE, AND CALVARIUM, AND OF CORTICAL BONE OF HUMERUS  
OF ADULT RHESUS MONKEY (*Macaca mulatta*)

J. M. Smith, P. W. Durbin,<sup>1</sup> N. Jeung,<sup>1</sup> G. Van Wagenen,<sup>2</sup>  
and W. S. S. Jee

ABSTRACT: We report here a cooperative quantitative study of trabecular bone structure of the proximal humerus, lumbar vertebra, and parietal bone of the skull, and cortical bone of the humeral diaphysis of six male and six female rhesus monkeys in young adulthood (6.5 to 15 yr), and of eight female monkeys which were middle-aged to senile (18 to 31.5 yr). Microradiographs of ground bone sections were analyzed by a Quantimet 720 Image Analyzer. Parameters of importance to radiation dosimetry - bone surface to volume, fractional bone volume or porosity, and trabecular size - were measured.

The fractional bone volume for the trabecular region of the calvarium was about a factor of two higher than that for the proximal humerus or vertebra. The surface/volume ratio was greater in the metaphysis than in the epiphysis, due to thicker trabeculae within the latter region. Only two statistically significant differences were found between the parameters of the males and females of comparable age. The mean trabecular chord in the lumbar vertebrae of the males was larger (and the surface/volume, smaller) than of the females. In the bones of both sexes the percent bone volumes were the same, suggesting a larger number of trabeculae in the vertebrae of the females.

Trends in the data are discussed along with comparative studies in the dog and man by other authors.

Introduction

The late biological effects (chiefly tumors of skeletal tissue) elicited by several important bone-seeking radionuclides are the focus of research at this Laboratory. Recently, methods have been devised here and elsewhere that permit the quantitative estimation of local radiation doses to the critical

<sup>1</sup>Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720.

<sup>2</sup>Emeritus, Department of Obstetrics and Gynecology, Yale University Medical School, New Haven, Conn.

cells of the skeleton of man (1,2,3) and of the best studied experimental animal, the Beagle dog (8). Because of the close phylogenetic relationship between man and the higher order non-human primates (apes and Old World monkeys), it was appropriate to extend such measurements to the skeleton of the rhesus monkey (*Macaca mulatta*). These measurements serve two important purposes: first, to define the similarities and differences in the morphometry (sizes, shapes, amounts) of the bony structures of adult man and skeletally mature, long-lived laboratory animals, and second, to examine the trends of skeletal morphometry both between the sexes and as functions of advancing age. Beddoe (4) reported measurements of several trabecular structures of one rhesus monkey of unspecified sex, age or body size (from the illustrations it would appear that the monkey may not have been skeletally mature).

We report here a cooperative quantitative study of trabecular bone structure of proximal humerus, lumbar vertebra, and the parietal bone of the skull, and the cortical bone of the humeral diaphysis of six male and six female rhesus monkeys in the prime of young adulthood (6.5 to 15 yr), and of eight female monkeys that were middle-aged to senile (18 to 31.5 yr).

#### Materials and Methods

The control bone material was obtained from the caged colony at the Dept. of Obstetrics and Gynecology, Medical School, Yale University. The animals, all *Macaca mulatta*, were of known age. They were either born in captivity or were received from the wild before skeletal maturity, and birth dates  $\pm$  3 mo could be determined from two sets of skeletal roentgenograms taken 6 mo apart. When animals in that colony died, they were autopsied and the eviscerated carcasses were packed in ice and shipped by air to the Lawrence Berkeley Laboratory. The entire control collection consists of 38 animals as follows: 31 female, six 6 to 10 yr old, seventeen 11 to 20 yr old, eight 21 to 32 yr old; seven male, five 6 to 10 yr old, two 11 to 15 yr old. The present series of bone specimens includes material from the seven males, seven of the eight females more than 20 yr old, and for each of the two groups of younger female monkeys the three whose total skeletal ash weights were closest to the means of their respective groups. The identification numbers and ages of the individual animals are given in Tables of data (1 to 5).

Soft tissues were scraped from the bones with sharp blades, and the fresh and ashed weights of all skeletal parts were recorded. Several bone specimens were preserved for histological study in 80% alcohol (right humerus, one-half of the calvarium, and the first lumbar vertebra). Slabs, 3 to 4 mm thick, were cut from those bones with a jeweler's saw as follows: humerus -- central a-p longitudinal section of proximal epiphysis and metaphysis (Fig. 2) and a cross-section of the central diaphysis; L1 vertebral body -- central a-p longitudinal section (see Beddoe, 1978, Fig. 2d); calvarium -- a-p section cut 5 mm to the right of center from behind the orbit to the occipital bone articulation, thus the sample measured included frontal and parietal bone (Fig. 5). The bone slabs were dehydrated in alcohol and embedded in Bioplastic (Ward's Scientific Establishment, Monterey, Calif.). Sections, 300 to 400  $\mu\text{m}$  thick, were cut from the blocks with a rotary diamond saw, and these were hand ground to 100  $\mu\text{m}$  between glass plates using size 30  $\mu\text{m}$   $\text{Al}_2\text{O}_3$  grit in water. The thin sections were labeled and shipped to the Radiobiology Laboratory.

The ground sections were x-rayed (Machlett C-529A type A-2 diffraction tube) for one minute and 15 seconds at 12 kV and 25mA on 25 x 75 mm Kodak spectroscopic plates (type 649-0, Eastman Kodak Co., Rochester, NY). The microradiographs were standardized by a step wedge made from layers of 100  $\mu\text{m}$  thick aluminum foil. The standard was three layers of aluminum foil giving a microradiograph with an optical density of  $0.80 \pm 0.1$  (5). The microradiographs were then analysed by a Quantimet 720 Image Analyzer (QTM) (Cambridge-Imanco, Monsey, NY) as described in the next section.

The QTM derives numerical data from images produced by a television scanner (Plumbicon<sup>R</sup>) interfaced to a Reichert Zetopan microscope with transmitted illumination. The automatic stage of the microscope provides X, Y, and Z (focussing) movements of the microradiographs. Feature detection is performed manually using gray level contrast. The System has an image editor module which allows the operator to specify particular regions or reject unwanted regions of the image for measurement, using a light pen to trace the region on the display screen.

The measurements in the present work were made with the QTM System interfaced to a programmable HP9810A calculator and standard teletype. A block diagram of the system is shown in Fig. 1.

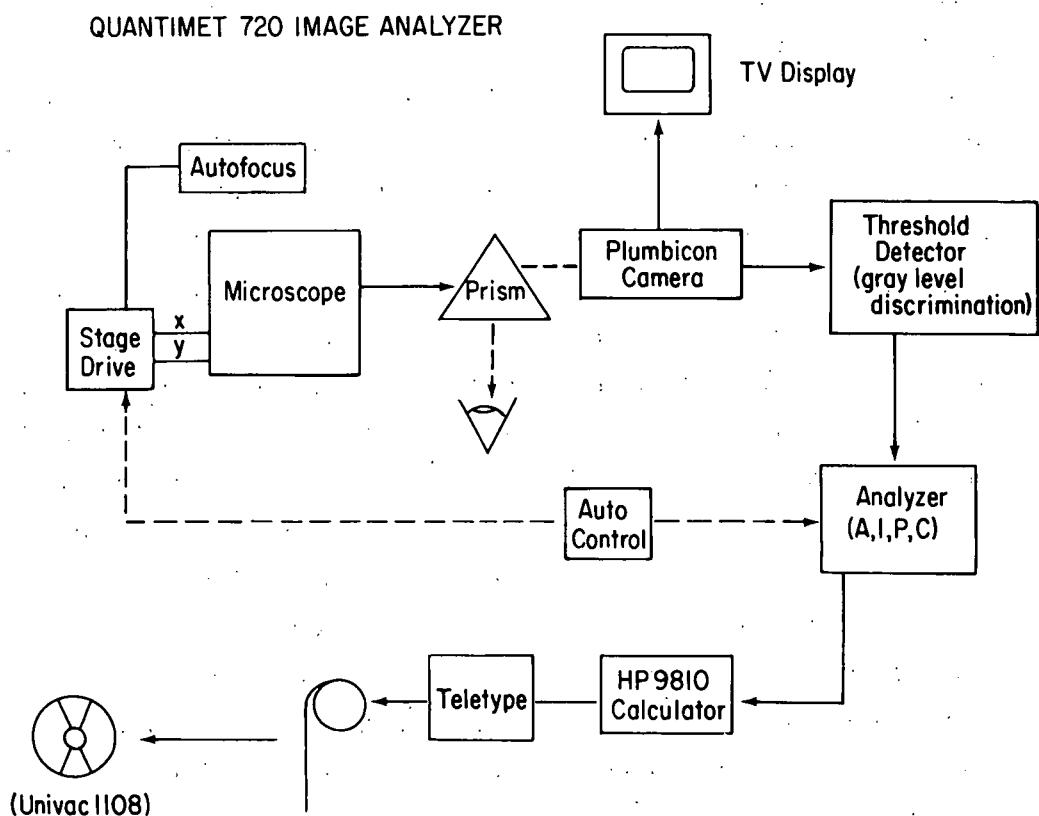



FIGURE 1. Quantimet 720 Image Analysis System.

### Measurements

#### 1. Proximal Humerus (Trabeculae)

Microradiographs of longitudinal sections from the proximal humerus of the monkey were prepared as described above. Two and sometimes three pieces make up a complete section of the proximal portion of the humerus and they were evaluated together. This is illustrated in Fig. 2.

In performing measurements on these microradiographs with the Quantimet 720 (QTM), the cortex was eliminated from analysis using the image editor module of the QTM, and only the trabecular bone was included in the data. A program (BONE/MARROW PARAMETERS, Nov. 1, 1977) yielded the data (units of mm or  $\text{mm}^2$ ) shown in the sample readout below:

BONE (units of mm)

| Area (A) | Intercept (I) | Perimeter (P) | P/A     | A/I    | Percent Bone |
|----------|---------------|---------------|---------|--------|--------------|
| 5.2244   | 30.7207       | 89.2252       | 17.0785 | 0.1701 | 23.5979      |

P/A [MARROW] is 5.2750 A/I [MARROW] is 0.5335

A 1X objective was used with a total optical magnification of 10X.

Surface to volume ratio (S/V), fractional bone volume (percent bone), and mean trabecular chord were calculated from the data. The values for these three parameters appear in Table 1 (male) and Table 2 (female) in the columns marked "whole" and were calculated using the following equations:

$$S/V \left( \frac{\text{cm}^2}{\text{cm}^3} \right) = \frac{\sum P_i \text{ (mm)}}{\sum A_i \text{ (mm}^2\text{)}} \cdot 10 \frac{\text{mm}}{\text{cm}} \cdot \frac{4}{\pi} \quad (1)$$

$$\text{Fractional Bone Volume (\%)} = \frac{100 \cdot \sum A_i \text{ (mm}^2\text{)}}{7.92 \times 10^{-5} \frac{\text{mm}^2}{\text{pp}} \cdot \sum F_i \text{ (pp)}} \quad (2)$$

$$MTC \left( \frac{\mu\text{m}}{\text{mm}} \right) = \frac{\sum A_i \text{ (mm}^2\text{)}}{\sum I_i \text{ (mm)}} \cdot 10^3 \frac{\mu\text{m}}{\text{mm}} \quad (3)$$

where  $P_i$ ,  $A_i$ ,  $F_i$ , and  $I_i$  are respectively the bone perimeter, bone area, test frame area, and bone horizontal intercept of the  $i$ th frame. The value of  $4/\pi$  assumes an isotropic orientation of the trabeculae (1,6).

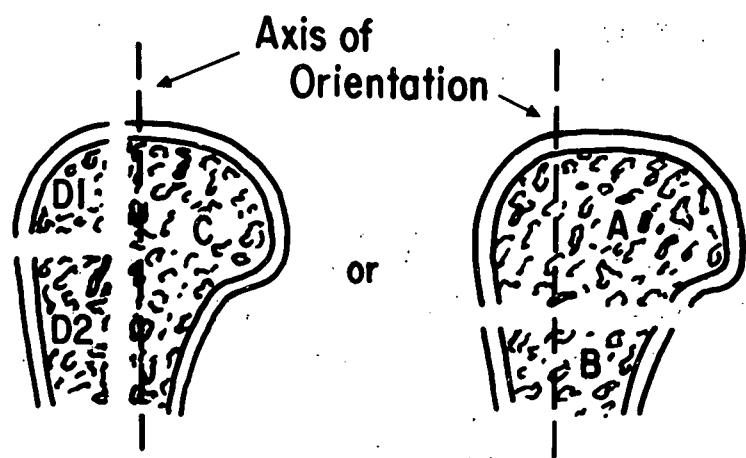



FIGURE 2. Longitudinal section of the proximal humerus.

TABLE 1. MONKEY PROXIMAL HUMERUS (TRABECULAE): MALE

| Animal | Age<br>(Years) | $\frac{S}{V}$ ( $\frac{\text{cm}^2}{\text{cm}^3}$ ) |        |         | Fractional Bone Volume<br>(Percent) |        |         | Mean Trabecular Chord<br>( $\mu\text{m}$ ) |        |         |
|--------|----------------|-----------------------------------------------------|--------|---------|-------------------------------------|--------|---------|--------------------------------------------|--------|---------|
|        |                | Whole                                               | Epiph. | Metaph. | Whole                               | Epiph. | Metaph. | Whole                                      | Epiph. | Metaph. |
| 3282   | 8.6            | 216                                                 | 188    | 275     | 18.3                                | 34.0   | 10.9    | 175                                        | 243    | 118     |
| 3292   | 9.2            | 213                                                 | 196    | 250     | 20.1                                | 30.1   | 14.6    | 180                                        | 219    | 138     |
| 2926   | 10.0           | 158                                                 | 149    | 162     | 26.5                                | 36.9   | 20.4    | 254                                        | 265    | 259     |
| 3293   | 10.0           | 212                                                 | 208    | 266     | 20.6                                | 21.5   | 12.3    | 177                                        | 194    | 128     |
| 2126   | 11.8           | 180                                                 | 150    | 213     | 24.0                                | 44.3   | 18.5    | 206                                        | 315    | 164     |
| 3279   | 15.8           | 202                                                 | 174    | 254     | 16.9                                | 34.6   | 11.1    | 196                                        | 303    | 138     |
| Mean   | 10.9           | 197                                                 | 178    | 237     | 21.1                                | 33.6   | 14.6    | 198                                        | 256    | 157     |
| S.D.   | 2.6            | 23                                                  | 24     | 42      | 3.6                                 | 7.6    | 4.0     | 30                                         | 47     | 52      |
| S.E.   | 1.1            | 9.4                                                 | 10     | 17      | 1.5                                 | 3.1    | 1.6     | 12                                         | 19     | 21      |

TABLE 2. MONKEY PROXIMAL HUMERUS (TRABECULAE): FEMALE

| Animal | Age<br>(Years) | S<br>V (cm <sup>2</sup><br>cm <sup>3</sup> ) |        |         | Fractional Bone Volume<br>(Percent Bone) |        |         | Mean Trabecular Chord<br>(μm) |        |         |
|--------|----------------|----------------------------------------------|--------|---------|------------------------------------------|--------|---------|-------------------------------|--------|---------|
|        |                | Whole                                        | Epiph. | Metaph. | Whole                                    | Epiph. | Metaph. | Whole                         | Epiph. | Metaph. |
| 2925   | 6.7            | 239                                          | 223    | 245     | 21.10                                    | 27.1   | 19.6    | 164                           | 200    | 145     |
| 2683   | 8.6            | 225                                          | 222    | 259     | 17.20                                    | 21.7   | 13.2    | 168                           | 181    | 135     |
| 2492   | 9.5            | 152                                          | 141    | 206     | 27.9                                     | 39.1   | 13.5    | 277                           | 337    | 163     |
| 3288   | 11.5           | 222                                          | 170    | 282     | 23.4                                     | 38.9   | 13.4    | 174                           | 226    | 128     |
| 3133   | 15             | 228                                          | 215    | 216     | 14.6                                     | 27.3   | 13.8    | 172                           | 194    | 176     |
| 3278   | 15             | 192                                          | 186    | 234     | 22.4                                     | 32.4   | 14.5    | 207                           | 200    | 149     |
| 2374   | 18             | 263                                          | 193    | 299     | 14.9                                     | 34.1   | 9.87    | 141                           | 210    | 111     |
| 2649   | 21.5           | 214                                          | 206    | 247     | 18.1                                     | 28.8   | 11.4    | 176                           | 211    | 123     |
| 3287   | 24.3           | 160                                          | 130    | 188     | 23.6                                     | 37.4   | 18.7    | 236                           | 282    | 175     |
| 3280   | 25             | 192                                          | 150    | 218     | 21.4                                     | 45.3   | 10.9    | 199                           | 267    | 156     |
| 3291   | 26             | 155                                          | 150    | 159     | 25.6                                     | 32.4   | 17.0    | 249                           | 244    | 194     |
| 3063   | 29             | 209                                          |        | 270     | 25.2                                     |        | 8.87    | 182                           |        | 143     |
| 2992   | 30             | 178                                          |        |         | 28.9                                     |        |         | 213                           |        |         |
| 3294   | 31.7           | 222                                          | 172    | 310     | 17.9                                     | 37.3   | 9.34    | 173                           | 242    | 129     |
| Mean   | 19.4           | 204                                          | 180    | 241     | 21.6                                     | 33.5   | 13.4    | 195                           | 233    | 148     |
| S.D.   | 8.5            | 33                                           | 33     | 44      | 4.5                                      | 6.6    | 3.4     | 38                            | 45     | 24      |
| S.E.   | 2.3            | 9                                            | 9      | 12      | 1.2                                      | 1.9    | 0.9     | 10                            | 13     | 7       |

The microradiographs were then edited by painting (Kodak Opaque Paint) on the side opposite the emulsion to exclude all of the section except the trabecular region of the epiphysis. An automated scanning program (CORTICAL BONE SCAN, July 25, 1978) was used to determine the trabecular surface-to-volume ratio from the microradiographs of the epiphysis and the metaphysis. (The paint was removed with water and the paint-editing and scanning processes were repeated for the metaphysis. Scanning was performed with a 1X objective and a total optical magnification of 10X.)

The S/V ratio was calculated from the measurements of bone perimeter (P) and bone area (A) using equation (1).

Fractional Bone Volume and Mean Trabecular Chord for the epiphysis and the metaphysis (Tables 1 and 2) were determined by scanning the respective regions with QTM using the program BONE/MARROW PARAMETERS (Nov. 1, 1977) and equations (2) and (3). The orientation was kept constant for measurement of the trabecular chord. The largest practical rectangular measurement frame area was used (in some cases, two or three per section), as shown in Fig. 3.

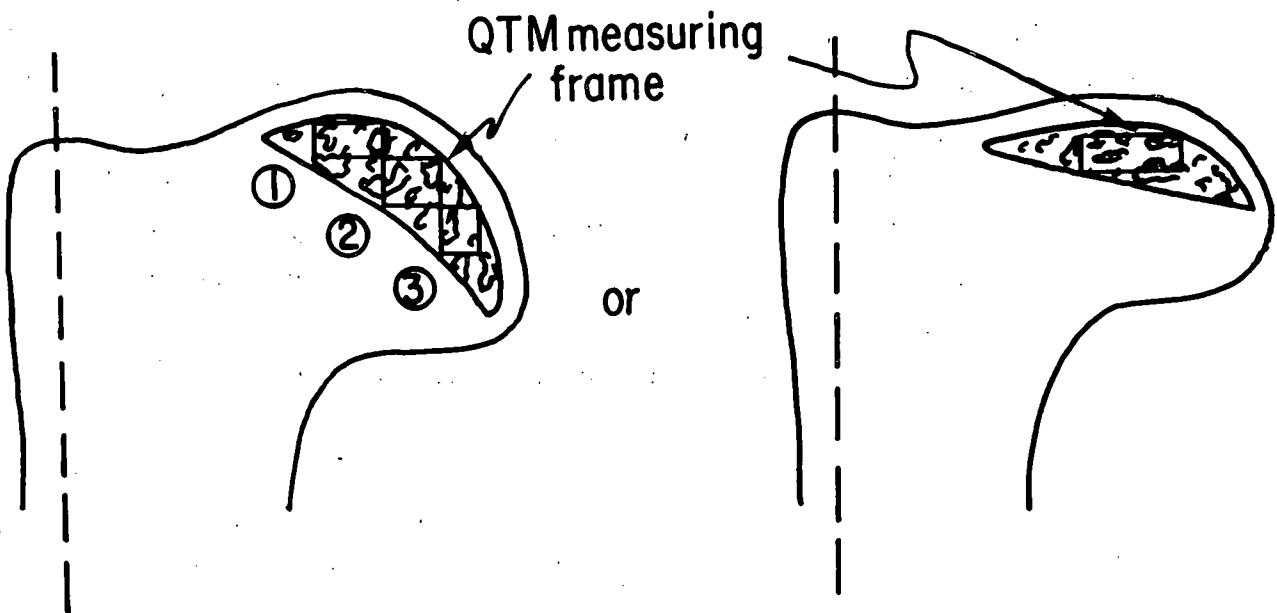
## 2. Humeral Cross Section (Cortical Bone)

Microradiographs of cross sections of the mid-humeral cortex were prepared and measurements performed on them using the QTM 720 and the automated program, CORTICAL BONE SCAN, (July 25, 1978). No trabecular bone was involved in these measurements. A 4X objective was used and the total optical magnification was 40X. The parameters measured are shown in a sample read-out from the program:

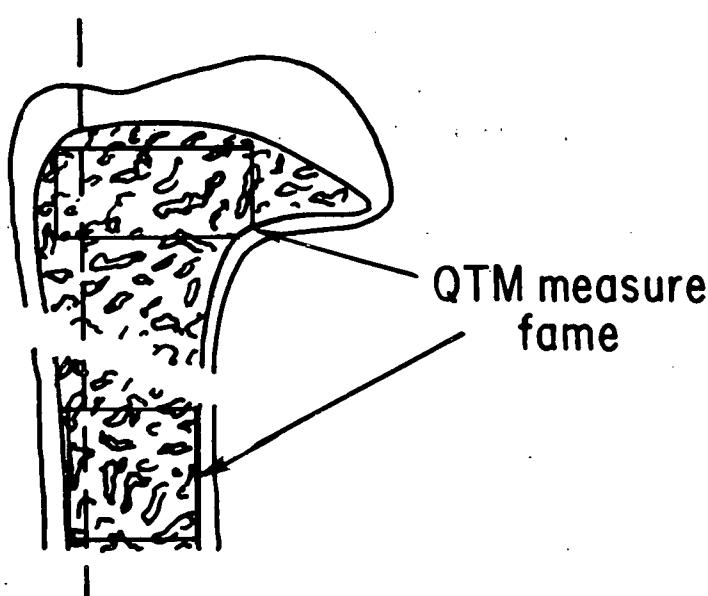
MONKEY 2492 HUMERUS

(CORTEX)

UNITS IN mm


BONE AREA 48.4563

BONE PERIMETER 146.3047


S/V 3.9193

NO. HOLES/AREA[BONE] 18.8004

EST. POROSITY[PC] 3.8587



Measurement areas sampled for epiphysis



Measurement areas sampled for metaphysis

FIGURE 3. Illustration of the epiphyseal and metaphyseal regions of scanning for the proximal humerus.

In this case, the surface-to-volume ratio is given by the ratio of perimeter to area. The number of "holes" per unit area of bone is a parameter related to bone porosity (a "hole" would be an Haversian or Volkmann canal or a resorption cavity). It can be shown that if the porosity of the bone is low (i.e., area of bone is much greater than the area of "holes"), porosity can be estimated by :

$$\text{porosity} \approx \frac{P^2}{4\pi NA}, \quad (5)$$

where  $P$  is the bone section perimeter,  $N$  is the number of "holes," and  $A$  is the bone area. For low porosity bone equation (5) is probably good to a precision of  $\pm 25\%$  with the present technique.

Table 3 lists the results for the scanning of each cortical cross-section of the humerus.

### 3. Vertebra (Trabeculae)

Microradiographs of the vertebrae were edited by painting the side opposite the emulsion to eliminate the cortex from the field of view during scanning with the QTM 720. The trabecular surface to volume ratio was obtained using the automated scanning program (CORTICAL BONE SCAN, July 25, 1978) on the Quantimet. A 1X objective was used and the total magnification was 10X.

The surface to volume ratio was obtained by the formula:

$$S/V \left( \frac{\text{cm}^2}{\text{cm}^3} \right) = \left( \frac{\text{mm}}{\text{mm}^2} \right) \cdot \frac{4}{\pi} \cdot 10 \quad (\text{Note: } \frac{P}{A} \text{ is } \frac{S}{V} \text{ in the program}).$$

The readings for No. Holes/Area [Bone] and Est. Porosity [PC] derived from this program are invalid parameters when applied to trabecular bone.

The Fractional Bone Volume (percent Bone) and the Mean Trabecular chord were calculated by using the program BONE/MARROW PARAMETERS (Nov. 1, 1977). As a large a rectangular measurement frame area as possible was used, and the axis of orientation was kept constant (Fig. 4). Results are shown in Table 4.

TABLE 3. MONKEY HUMERUS (CORTICAL CROSS SECTIONS)

| <u>Animal</u>   | <u>Age<br/>(Years)</u> | <u>S<br/>V<br/>(cm<sup>2</sup>)<br/>cm<sup>3</sup></u> | <u>Porosity<br/>(Percent)</u> |
|-----------------|------------------------|--------------------------------------------------------|-------------------------------|
| <b>Females:</b> |                        |                                                        |                               |
| 2925            | 6.7                    | 28.9                                                   | 3.98                          |
| 2683            | 8.6                    | 28.9                                                   | 4.12                          |
| 2492            | 9.5                    | 30.2                                                   | 3.86                          |
| 3288            | 11.5                   | 35.9                                                   | 4.86                          |
| 3133            | 15                     | 41.3                                                   | 8.19                          |
| 3278            | 15                     | 23.7                                                   | 2.67                          |
| 2374            | 18                     | 36.0                                                   | 5.25                          |
| 2649            | 21.5                   | 37.4                                                   | 5.73                          |
| 3287            | 24.3                   | 36.4                                                   | 6.00                          |
| 3280            | 25                     | 33.4                                                   | 4.81                          |
| 3291            | 26                     | 37.3                                                   | 5.39                          |
| 2992            | 30                     | 34.4                                                   | 4.86                          |
| 3294            | 31.7                   | 44.0                                                   | 8.13                          |
| Mean            | 18.7                   | 34.4                                                   | 5.22                          |
| S.D.            | 8.4                    | 5.5                                                    | 1.57                          |
| S.E.            | 2.3                    | 1.5                                                    | 0.44                          |
| <b>Males:</b>   |                        |                                                        |                               |
| 3282            | 8.6                    | 40.8                                                   | 6.75                          |
| 3292            | 9.2                    | 32.0                                                   | 3.32                          |
| 2926            | 10                     | 33.9                                                   | 4.19                          |
| 3293            | 10                     | 25.5                                                   | 2.91                          |
| 2126            | 11.8                   | 27.3                                                   | 2.75                          |
| 3279            | 15.8                   | 32.3                                                   | 3.72                          |
| Mean            | 10.9                   | 32.0                                                   | 3.94                          |
| S.D.            | 2.6                    | 5.4                                                    | 1.47                          |
| S.E.            | 1.1                    | 2.2                                                    | 0.60                          |

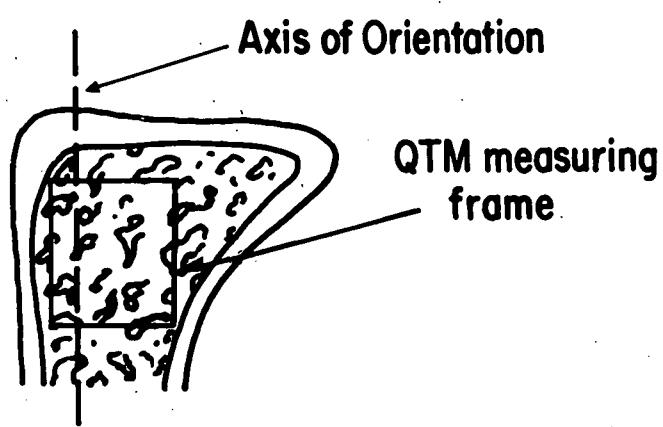



FIGURE 4. Longitudinal section of the vertebra.

TABLE 4. MONKEY VERTEBRA (TRABECULAE)

| <u>Animal</u>   | <u>Age<br/>(Years)</u> | <u><math>\frac{S}{V}</math> (cm<sup>2</sup>)</u> | <u>Fractional<br/>Bone Volume<br/>(% Bone)</u> | <u>Mean<br/>Trabecular<br/>Chord (μm)</u> |
|-----------------|------------------------|--------------------------------------------------|------------------------------------------------|-------------------------------------------|
| <b>Females:</b> |                        |                                                  |                                                |                                           |
| 2925            | 6.7                    | 261                                              | 22.4                                           | 134                                       |
| 2492            | 9.5                    | 287                                              | 14.2                                           | 108                                       |
| 3133            | 15                     | 299                                              | 16.8                                           | 117                                       |
| 3278            | 15                     | 273                                              | 25.0                                           | 124                                       |
| 2649            | 21.5                   | 282                                              | 11.6                                           | 111                                       |
| 3287            | 24.3                   | 145                                              | 26.9                                           | 179                                       |
| 3063            | 29                     | 207                                              | 28.5                                           | 149                                       |
| 3294            | 31.7                   |                                                  |                                                |                                           |
| Mean            | 17.6                   | 251                                              | 20.8                                           | 132                                       |
| S.D.            | 10.6                   | 55                                               | 6.6                                            | 25                                        |
| S.E.            | 3.8                    | 21                                               | 2.5                                            | 9                                         |
| <b>Males:</b>   |                        |                                                  |                                                |                                           |
| 3282            | 8.6                    | 251                                              | 17.6                                           | 126                                       |
| 3292            | 9.2                    | 263                                              | 19.2                                           | 137                                       |
| 2976            | 10                     | 202                                              | 27.1                                           | 151                                       |
| 3293            | 10                     | 241                                              | 22.6                                           | 136                                       |
| 3279            | 15.8                   | 258                                              | 15.6                                           | 125                                       |
| Mean            | 10.7                   | 243                                              | 20.4                                           | 135                                       |
| S.D.            | 2.9                    | 24                                               | 4.5                                            | 10                                        |
| S.E.            | 1.3                    | 11                                               | 2.0                                            | 5                                         |

#### 4. Calvarium (Trabeculae)

Microradiographs of sections from the calvarium were scanned on the Quantimet 720 with a 1X objective and a total optical magnification of 10X. Only the trabecular portion of the bone was included. This was done using the Image Editor module to circumscribe the trabecular area and exclude the cortex and any blank region of the test frame area. The frame area (in units of picture points) to be measured was recorded, and the manual program (BONE/MARROW PARAMETERS, Nov. 1, 1977) recorded other data to be used in the calculations. Several adjacent frames were needed to measure an entire sample and the orientation was kept constant (Fig. 5).

The following parameters were calculated from the recorded data: Surface to volume ratio, fractional bone volume (percent bone), and mean trabecular chord. These results are shown in Table 5.

#### Discussion

General observations, which are noted in Tables 1-5 are the following:

1. The fractional bone volume for the trabecular bone of the calvarium is approximately a factor of 2 higher than that of the trabecular bone of the proximal humerus or the vertebra.
2. As we would expect, the Surface/volume ratio of the cortical bone within the humeral shaft is much lower than that of the trabecular bone within the other skeletal sites.
3. In the trabecular region of the proximal humerus the Surface/volume ratio is greater in the metaphysis than in the epiphysis. This is due to the thicker trabeculae within the epiphysis, as can be seen from the mean trabecular chord measurements. The fractional bone volume is also significantly greater in the epiphysis.

The means  $\pm$  SD of three parameters (surface/volume, percent bone volume or porosity, trabecular chord) in five bone sites in young adult male and female rhesus monkeys are shown in Table 6, and in older females, in Table 7. Only two statistically significant differences were found between the parameters of the males and females of comparable age. The mean trabecular chord

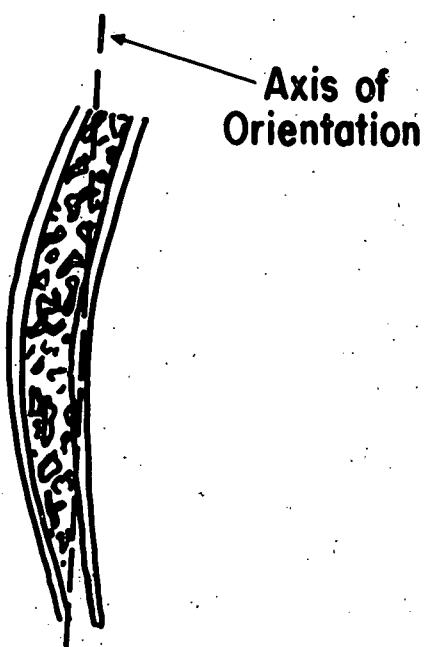



FIGURE 5. Longitudinal section of calvarium.

TABLE 5. MONKEY CALVARIUM (TRABECULAE)

| <u>Animal</u>   | <u>Age<br/>(Years)</u> | <u><math>\frac{S}{V}</math> (cm<sup>2</sup>)</u> | <u>Fractional<br/>Bone Volume<br/>(% Bone)</u> | <u>Mean<br/>Trabecular<br/>Chord (μm)</u> |
|-----------------|------------------------|--------------------------------------------------|------------------------------------------------|-------------------------------------------|
| <b>Females:</b> |                        |                                                  |                                                |                                           |
| 2925            | 6.7                    | 168                                              | 55.6                                           | 205                                       |
| 2683            | 8.6                    | 195                                              | 44.8                                           | 174                                       |
| 3133            | 15                     | 182                                              | 41.5                                           | 198                                       |
| 2374            | 18                     | 143                                              | 72.7                                           | 264                                       |
| 2649            | 21.5                   | 137                                              | 53.8                                           | 247                                       |
| 3287            | 24.3                   | 143                                              | 44.0                                           | 254                                       |
| 3291            | 26                     | 113                                              | 71.1                                           | 302                                       |
| 3063            | 29                     | 134                                              | 70.6                                           | 265                                       |
| Mean            | 18.6                   | 152                                              | 56.8                                           | 239                                       |
| S.D.            | 8.1                    | 27                                               | 13.1                                           | 42                                        |
| S.E.            | 2.9                    | 10                                               | 4.6                                            | 15                                        |
| <b>Males:</b>   |                        |                                                  |                                                |                                           |
| 3292            | 9.2                    | 187                                              | 51.4                                           | 189                                       |
| 2926            | 10                     | 165                                              | 63.9                                           | 212                                       |
| 3293            | 10                     | 168                                              | 54.8                                           | 209                                       |
| 2126            | 11.8                   | 140                                              | 48.2                                           | 256                                       |
| Mean            | 10.2                   | 165                                              | 54.6                                           | 216                                       |
| S.D.            | 1.1                    | 19                                               | 6.8                                            | 28                                        |
| S.E.            | 0.6                    | 10                                               | 3.4                                            | 14                                        |

TABLE 6. PARAMETERS OF TRABECULAR BONE OF ADULT MALE AND FEMALE  
RHESUS MONKEYS 6.7 TO 15.8 YEARS OF AGE

|                                               | Female |                  |      | Male |                  |      |
|-----------------------------------------------|--------|------------------|------|------|------------------|------|
|                                               | No.    | Mean             | SD   | No.  | Mean             | SD   |
| <b>Humerus</b>                                |        |                  |      |      |                  |      |
| Proximal end (trabeculae)                     |        |                  |      |      |                  |      |
| S/V( $\text{cm}^2/\text{cm}^3$ ), epiphysis   | 6      | 193              | 33   | 6    | 178              | 24   |
| metaphysis                                    | 6      | 240              | 28   | 6    | 237              | 42   |
| entire prox. end                              | 6      | 210              | 32   | 6    | 197              | 23   |
| Percent bone, epiphysis                       | 6      | 31.1             | 7.0  | 6    | 33.6             | 7.6  |
| metaphysis                                    | 6      | 14.7             | 2.4  | 6    | 14.6             | 4.0  |
| entire prox. end                              | 6      | 21.1             | 4.7  | 6    | 21.1             | 3.6  |
| Trabecular chord ( $\mu\text{m}$ ), epiphysis | 6      | 223              | 58   | 6    | 256              | 47   |
| metaphysis                                    | 6      | 149              | 18   | 6    | 158              | 52   |
| entire prox. end                              | 6      | 194              | 44   | 6    | 198              | 30   |
| Cross-section of diaphysis                    |        |                  |      |      |                  |      |
| S/V( $\text{cm}^2/\text{cm}^3$ )              | 6      | 31.5             | 6.2  | 6    | 32.0             | 5.5  |
| porosity (%)                                  | 6      | 4.61             | 1.89 | 6    | 3.94             | 1.47 |
| <b>Lumbar Vertebral Body (trabeculae)</b>     |        |                  |      |      |                  |      |
| S/V ( $\text{cm}^2/\text{cm}^3$ )             | 6      | 292 <sup>a</sup> | 28   | 5    | 243 <sup>a</sup> | 24   |
| Percent bone                                  | 6      | 19.4             | 4.   | 5    | 20.4             | 4.5  |
| Trabecular chord ( $\mu\text{m}$ )            | 6      | 119 <sup>b</sup> | 10   | 5    | 135 <sup>b</sup> | 10.  |
| <b>Calvarium (trabeculae)</b>                 |        |                  |      |      |                  |      |
| S/V ( $\text{cm}^2/\text{cm}^3$ )             | 3      | 182              | 13   | 4    | 165              | 19   |
| Percent bone                                  | 3      | 47.3             | 7.4  | 4    | 54.6             | 6.6  |
| Trabecular chord ( $\mu\text{m}$ )            | 3      | 192              | 16   | 4    | 216              | 28   |

<sup>a</sup> $P \sim 0.01$

<sup>b</sup> $P < 0.01$

TABLE 7. PARAMETERS OF TRABECULAR BONE OF AGING (18 TO 31.7 YEARS OLD)  
FEMALE RHESUS MONKEYS

|                                                    | No. | Mean | S.D. | P <sup>b</sup> | Age<br>Trend <sup>a</sup> |
|----------------------------------------------------|-----|------|------|----------------|---------------------------|
| <u>Humerus</u>                                     |     |      |      |                |                           |
| Proximal end (trabeculae)                          |     |      |      |                |                           |
| S/V (cm <sup>2</sup> /cm <sup>3</sup> ), epiphysis | 6   | 167  | 29   |                |                           |
| metaphysis                                         | 7   | 242  | 56   |                |                           |
| entire prox. end                                   | 8   | 199  | 36   |                |                           |
| Percent bone, epiphysis                            | 6   | 35.9 | 5.6  |                | +                         |
| metaphysis                                         | 7   | 12.3 | 3.9  |                | -                         |
| entire prox. end                                   | 8   | 22   | 4.7  |                |                           |
| Trabecular chord (μm), epiphysis                   | 6   | 243  | 29   |                |                           |
| metaphysis                                         | 7   | 147  | 30   |                |                           |
| entire prox. end                                   | 8   | 196  | 36   |                |                           |
| <u>Cross-section of Diaphysis</u>                  |     |      |      |                |                           |
| S/V (cm <sup>2</sup> /cm <sup>3</sup> )            | 7   | 37.0 | 3.4  | ~0.1           | +                         |
| Porosity (%)                                       | 7   | 5.74 | 1.14 | ~0.05          | +                         |
| <u>Lumbar Vertebral Body (trabeculae)</u>          |     |      |      |                |                           |
| S/V (cm <sup>2</sup> /cm <sup>3</sup> )            | 7   | 244  | 70   |                | -                         |
| Percent bone                                       | 7   | 22.7 | 6.8  |                | +                         |
| Trabecular chord (μm)                              | 7   | 146  | 34   | 0.1            | +                         |
| <u>Calvarium (trabeculae)</u>                      |     |      |      |                |                           |
| S/V (cm <sup>2</sup> /cm <sup>3</sup> )            | 5   | 134  | 12   | <0.01          | -                         |
| Percent bone                                       | 5   | 62.4 | 13   | 0.1            | +                         |
| Trabecular chord (μm)                              | 5   | 266  | 21   | <0.01          | +                         |

<sup>a</sup>Age trend (+) to greater values; (-) to lower values; ( ) no age trend.

<sup>b</sup>P Statistic based on t-test of Fisher; where no value is shown P > 0.10 and differences are not considered significant.

in the lumbar vertebrae of the males was larger (and the surface/volume, smaller) than of the females. In the bones of both sexes the fractional bone volumes were the same, suggesting a larger number of trabeculae in the vertebrae of the females.

In the aging females, although there was a tendency towards more trabecular bone (percent bone) in the humeral epiphysis with age, the trend is not significant. There was also a suggestion of less trabecular bone with age in the metaphysis. There were no age-related changes in trabecular dimensions in the humerus. In the humeral diaphysis the trend with advancing age was towards greater porosity.

In the lumbar vertebrae, and even more markedly in the calvarium, there was an age-related trend towards coarser trabeculae, smaller values of surface/volume, and larger fractional bone volumes. The trend in the calvarium was highly significant, and filling of marrow spaces by bone was apparent from visual inspection of the sections.

Arnold and Wei (2) measured the dimensions and amounts of trabecular bone in thick sections of lumbar vertebrae of 35 aging human males and females (presumably all Caucasians). The age trends in both sexes were towards fewer numbers of smaller trabeculae and less bone per volume of skeletal tissue.

Thus, the changes with age in vertebral trabeculae of caged female rhesus monkeys appear to be in the opposite direction to those found in Arnold and Wei's sample of human skeletons. There is evidence suggesting that not all aging human skeletons undergo osteoporotic changes of the same magnitude or on the same time schedule. Gross dry and ash weights of skeletons and individual bones reported by Broman, et al. (7), for a series of 80 male and female skeletons of American Whites and Blacks, indicate that osteoporosis in the lumbar vertebrae is either uncommon or absent in Black males. The observation of an aging pattern in non-human primates that does not mimic a particular human sub-population and should not preclude by itself the use of non-human primates in research on bone and bone-seeking radionuclides.

The data in the present study may be compared with results of other studies. The following are means  $\pm$  SD for from six to 20 values, each obtained from measurements of trabecular bone in several sections of different bones from the same individual (4), or of single sections from several bones or of the same bone taken from several individuals (10; this report):

|                     |                                 | <u>Man</u>     | <u>Dog</u>      | <u>Monkey</u>  |
|---------------------|---------------------------------|----------------|-----------------|----------------|
| Beddoe:             | S/V (cm <sup>-1</sup> )         | 187 $\pm$ 24   | 200 $\pm$ 55    | 204 $\pm$ 51   |
|                     | Percent Bone                    | 16.0 $\pm$ 3.5 | 34.2 $\pm$ 11.5 | 26.1 $\pm$ 8.2 |
|                     | Mean Trabecular Pathlength (μm) | 253 $\pm$ 18   | 216 $\pm$ 40    | 227 $\pm$ 64   |
| Srisukonth, et al.: | S/V (cm <sup>-1</sup> )         | ---            | 204 $\pm$ 36    | ---            |
|                     | Percent Bone                    | ---            | 40.6 $\pm$ 8.9  | ---            |
|                     | Mean Trabecular Width (μm)      | ---            | 133 $\pm$ 26    | ---            |
| Present Study:      | S/V (cm <sup>-1</sup> )         | ---            | ---             | 216 $\pm$ 44   |
|                     | Percent Bone                    | ---            | ---             | 32.6 $\pm$ 6.3 |
|                     | Mean Trabecular Chord (μm)      | ---            | ---             | 181 $\pm$ 48   |

The differences in mean trabecular size reflect different definitions and measurement techniques for that parameter. The means and the ranges of the parameters for the two laboratory animals were not different from each other or from the values reported for the adult male human skeleton, with the exception that fractional bone volume may be lower in man. For those radiation dosimetric quantities that are dependent on structural dimensions -- trabecular sizes, bone surface/volume, % fractional bone volume -- both the beagle dog and the rhesus monkey are good models for man.

From Beddoe's data it is clear that the assumption for dosimetric purposes of a trabecular thickness of 100 μm (9) is in error. Because of the fundamental relationship between trabecular chord and bone surface/volume, the assumption of such a small value for trabecular thickness leads to unduly high calculated value of trabecular surface/volume.

#### Acknowledgments

We are grateful for the expert technical assistance provided by Mr. Floyd Johnson and Mrs. Rebecca Dell.

References

1. E. Lloyd and D. Hodges, "Quantitative characterization of bone: A computer analysis of microradiographs," *Clin. Orthop. and Rel. Res.* 78: 230-250 (1970).
2. J.S. Arnold and C.T. Wei, "Quantitative morphology of vertebral trabecular bone." In: *RADIOBIOLOGY OF PLUTONIUM* (B.J. Stover and W.S.S. Jee, editors), pp. 333-354. The J.W. Press, Dept. of Anatomy, University of Utah, Salt Lake City (1972).
3. A.H. Beddoe, P.J. Darley, and F.W. Spiers, "Measurements of trabecular bone structure in man." *Phys. Med. Biol.* 21: 589-607 (1976).
4. A.H. Beddoe, "A quantitative study of the structure of trabecular bone in man, rhesus monkey, beagle and miniature pig." *Calcified Tiss. Res.* 25: 273-281 (1978).
5. W. Srisukonth, J.M. Smith, R. Dell, L.A. Woodbury, and W.S.S. Jee, "Measurements of lumbar vertebral and proximal femoral trabecular bone structures in adult beagles." *RESEARCH IN RADIOBIOLOGY*, University of Utah Annual Progress Report COO-119-253, pp. 198-210 (1978).
6. W.J. Whitehouse, "A stereological method for calculating internal surface areas in structures which have become anisotropic as a result of linear expansions or contractions," *J. Microscopy* 101: 169 (1974).
7. G.E. Broman, M. Trotter, and R.R. Peterson, "The density of selected bones of the human skeleton." *Am. J. Phys. Anthropol.* 16: 197-211 (1958).
8. W.S.S. Jee, D.B. Kimmel, E.G. Hashimoto, R.B. Dell, and L.A. Woodbury, "Quantitative studies of beagle lumbar vertebrae." *RESEARCH IN RADIOBIOLOGY*, University of Utah Annual Progress Report COO-119-248, pp. 255-273 (1973).
9. F.W. Spiers, *RADIOISOTOPES IN THE HUMAN BODY: BIOLOGICAL AND PHYSICAL ASPECTS*, pp. 148, Academic Press, New York (1968).
10. W. Srisukonth, J.M. Smith, R. Dell, L.A. Woodbury, and W.S.S. Jee, "Measurements of lumbar vertebral and proximal femoral trabecular bone structures in adult beagles." *RESEARCH IN RADIOBIOLOGY*, University of Utah Annual Progress Report COO-119-253, pp. 198-210 (1978).

## A SIMULATION OF $^{239}\text{Pu}$ LOCATION IN TRABECULAR BONE: A COMPUTERIZED MODEL OF ADULT ENDOSTEAL BONE REMODELING AND ITS INTERACTION WITH INJECTED $^{239}\text{Pu}$

D. B. Kimmel and W. S. S. Jee

**ABSTRACT:** A computer simulation of the relationship of bone microanatomic metabolic activity to the microscopic location of  $^{239}\text{Pu}$  in bone has been attempted. The model incorporates the rate of bone turnover, cell location and density, bone resorptive activity (as it removes  $^{239}\text{Pu}$  from bone), bone formation activity (as it buries  $^{239}\text{Pu}$  in bone), recycling of  $^{239}\text{Pu}$ , and liver translocation of  $^{239}\text{Pu}$  to bone, such that the skeletal retention curve for  $^{239}\text{Pu}$  injected in monomeric form into the young adult beagle is matched. The eventual aim of this work is to calculate the radiation dose to bone cells, knowing the relative location of  $^{239}\text{Pu}$  deposited in bone and the cells that reside at bone surfaces as it changes throughout the lifespan of an animal. Early results indicate that osteosarcoma incidence may be proportional to the number of alpha hits which occur to osteoprogenitor cells and osteoblasts, the dividing cell population found near surfaces where bone turnover is in progress.

### INTRODUCTION

It is well established that alpha-emitting, skeletally-deposited radionuclides cause bone cancer. The mechanism by which they act is not well understood. One aspect of the mechanism is knowing the radiation dose to bone cells which is associated with the induction of osteosarcoma. If this is known, basic principles of cellular radiation biology learned from studies of simple systems, concerning cell killing, repair, and transformation, may be applied. Calculating this cellular radiation dose is a complex problem since the relation of the deposited radionuclide to the cells must be known. Most evidence indicates that: 1) this relationship is changing constantly due to metabolic activity which is continually changing the structure of the hard tissue bone in which the nuclide is sequestered ("modeling" during growth and "remodeling" during adulthood), 2) the relationship is

different in different areas of bone, and 3) the localized concentrations of bone-seeking radionuclides are highly variable.

Pu-239 is straightforward because it is a "surface seeker" and gives rise mainly to tumors of the endosteal bone surface, so studies can be confined to that type of surface. It is further desirable to limit studies to the young adult beagle; 1) so studies of adult bone, similar to that of humans, are possible, and 2) data on osteosarcoma induction as a function of injected dose of  $^{239}\text{Pu}$  now available may be utilized.

One way to study the microanatomic relationship of  $^{239}\text{Pu}$  to bone cells and bone mineral is by autoradiography of bone taken from several beagles injected with  $^{239}\text{Pu}$  and sacrificed serially after  $^{239}\text{Pu}$  injection. These studies have shown that: 1)  $^{239}\text{Pu}$  is initially deposited non-uniformly on endosteal bone surfaces, when injected as a citrate solution; 2) it is removed in areas of bone resorption activity; 3) it is buried in areas of bone formation activity; and 4) it is recirculated to existing surfaces.

These studies have provided an excellent qualitative start to describing the microanatomic location of  $^{239}\text{Pu}$  relative to cells. Even when adequate quantitative autoradiographic methods are available, there is great difficulty in expressing the data in a meaningful manner, because any collected data is almost inevitably averaged in concentrations over regions of surface quite a bit larger than both the size of bone cell nuclei and the range of the  $^{239}\text{Pu}$  alpha particle. This results in loss of potential meaning from the data. In addition, problems such as site-specific depth-of-burial, localized variation in surface concentration, the relative location of bone cells, radiation toxicity to the bone remodeling process, the multiplicity of sites which must be studied, and interanimal variation, present grave obstacles.

Another totally different approach to the problem is to construct a model which 1) incorporates what is known about the systematic nature of the organization of bone remodeling activity, 2) adheres judiciously to the qualitative rules concerning  $^{239}\text{Pu}$  in bone, and 3) matches various bits of quantitative data on  $^{239}\text{Pu}$  retention in the skeleton.

#### BACKGROUND DATA

##### A. The Organization and Metabolic Activity of Adult Endosteal Bone

The evidence for this organization is discussed in full elsewhere (3). Briefly, adult endosteal bone is organized into discrete packages; each is called a remodeling unit and has as its sole purpose, being renewed periodically with new bone, to maintain skeletal structural integrity. From time to time, in a process under some form of hormonal and mechanical control, the contents of each unit are fully removed, then fully replaced. It is generally assumed that older units have a greater chance of being acted upon. Osteoclasts resorb the bone; osteoblasts form the new bone; and only resting endosteal lining cells are present at the surface of each filled unit.

#### B. Assumptions for $^{239}\text{Pu}$ Metabolism in Bone

These are as follows: a)  $^{239}\text{Pu}$  introduced in monomeric form to the bloodstream is deposited randomly at bone surfaces, b)  $^{239}\text{Pu}$  found at resorbing surfaces and in resorbed volumes of bone is removed and given to the blood, c)  $^{239}\text{Pu}$  found at forming surfaces is buried beneath the bone surface, and d) no physicochemical translocation of  $^{239}\text{Pu}$  from or within bone takes place.

#### C. Quantitative Data Available

1) The fraction of injected  $^{239}\text{Pu}$  retained in the skeleton at levels considered to have minimal effect on bone remodeling in the young adult beagle is described by the equation:

$$0.286e^{-0.0011t} + 0.21$$

where  $t$  is the time in days after injection.

2) The initial endosteal surface concentration for  $^{239}\text{Pu}$  varies from 8 pCi/cm<sup>2</sup> in endosteal sites of higher bone turnover (proximal humerus, ilium, lumbar vertebral body) to 1 pCi/cm<sup>2</sup> in sites of lower bone turnover (distal humerus, proximal ulna), after injection of 16 nCi/kg into young adult beagles.

3) Of  $^{239}\text{Pu}$  in the blood, 78% is recirculated for redeposition in organs and 22% is excreted in feces and urine.

4) The remodeling rate of endosteal bone varies from 30%/yr (distal humerus and proximal ulna) to 200%/yr (proximal humerus, ilium, and lumbar vertebral body).

5) The cell density (lining cells) at resting surfaces is 80 cells/mm<sup>2</sup>, while that at forming surfaces (osteoblasts and osteoprogenitor cells) is 5600 cells/mm<sup>2</sup>. Surfaces identified as resting always have lining cells associated with them; surfaces identified as forming always have osteoblasts and osteoprogenitor cells associated with them.

6) The fraction of injected <sup>239</sup>Pu retained in the liver of the young adult beagle is described by a single exponential equation:

$$0.347e^{-0.000184t}$$

where  $t$  is the time post-injection. This rate reflects only a net loss not a two-way flux.

7) The chance of a <sup>239</sup>Pu alpha escaping bone is directly proportional to the fraction of a sphere of radius  $r$  (the <sup>239</sup>Pu alpha range) with center at some depth  $d$  in bone, which is located outside the bone volume. Measurements have shown that lining cell nuclei are directly adjacent to the surface and that their nuclear material covers about 1% of the surface at any given resting site. It is assumed that 1% of all alpha particles which escape from the bone volume at resting sites strike lining cell nuclei. Measurements have also shown that osteoprogenitor cell nuclei are about five microns from the bone surface and that the fraction of surface covered by their nuclear cytoplasm at this distance is 1. It is assumed that all alpha particles which escape to a distance of five microns from the bone volume at forming sites strike osteoprogenitor or osteoblast nuclei.

8) The lifespan of lining cells or osteoblasts and osteoprogenitor cells is not well known. For this preliminary work, it is assumed that their lifespan is equal to that of the young adult beagle, or 12.5 years.

#### PROCEDURE IN PROGRAMMING

A) The Bone - The age of each remodeling unit is recorded in a one-dimensional array (A). This age changes individually as units experience cycles of remodeling activity and resting phases.

The <sup>239</sup>Pu content of each remodeling unit is recorded in a two dimensional array (B) as a function of distance from the endosteal surface and

concentration for each individual unit. The second dimension, distance from the surface, is divided to represent about one micron per unit step in the array (See Figure 1).

B) The Remodeling of Bone and the Mobilization of  $^{239}\text{Pu}$  - The resorption operator (R) is directed by a random process to find a relatively old unit of bone and to resorb all bone (and  $^{239}\text{Pu}$ ) found in it. The  $^{239}\text{Pu}$  is liberated to the blood where 78% is redeposited randomly to endosteal surfaces and the remaining 22% is excreted. The formation operator (F) is directed to follow immediately the R operator at each site and deposit a small amount of bone in the unit, burying whatever  $^{239}\text{Pu}$  might have been at the surface. The F operator continues to work in each area until the bone mass is back to the original. New units are activated in staggered sequence and continue out of phase. The rate of remodeling is adjustable, so that a given fraction of the bone is renewed yearly; for instance, if 100% turnover/yr was desired, a number of units equal to the total number in the bone would be remodeled each year.

C) The Calculation of Dose - Whenever the location of  $^{239}\text{Pu}$  has been completely systematically reevaluated as it would be changed by the bone remodeling system (once per 2-3 days), the average number of hits to osteoblasts and osteoprogenitor cells (at forming surfaces) and bone lining cells (at resorbing surfaces) is calculated by knowing  $^{239}\text{Pu}$  quantity and location relative to the surface of each individual unit. As it is currently done, the dose to cells is pursued in a very unsophisticated manner as: 1) no attempt to calculate path length through nuclei is made, 2) no attempt to calculate energy deposition is made, 3) no attempt to differentiate alphas stopping in the nucleus from alphas passing through the nucleus is made, and 4) no attempt to calculate cytoplasmic dosage of any sort is made. The more important contribution of this model is in giving a systematic way to locate  $^{239}\text{Pu}$  in bone.

#### DOSE RESULTS IN ONE SITUATION

The total number of disintegrations striking members of each cell population is described in Table 1 in a young adult beagle injected with 0.7 nCi/kg, the least amount of injected  $^{239}\text{Pu}$  to ever cause osteosarcoma in this

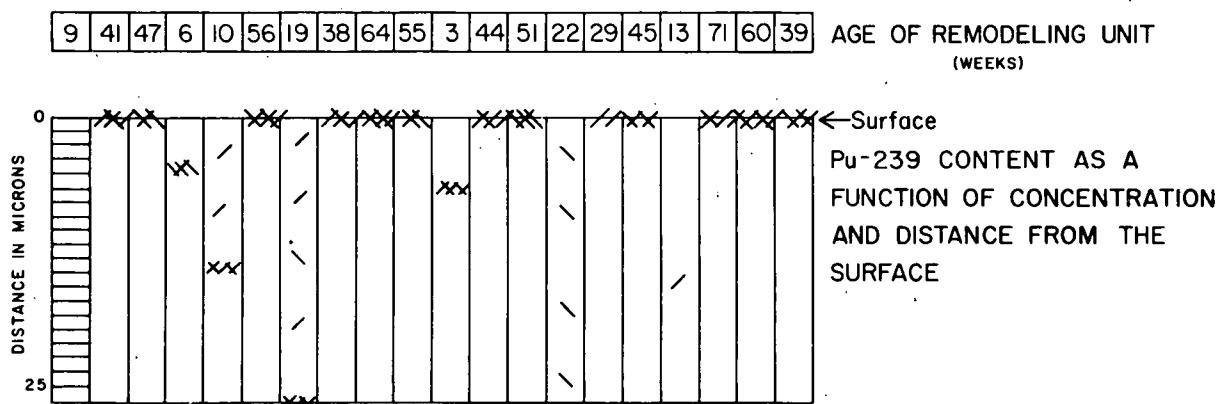



FIGURE 1 BONE AGE AND  $^{239}\text{Pu}$  CONTENT REPRESENTATION IN COMPUTER

The age of individual remodeling units is used to direct the location of new remodeling activity. If the unit of age "64", one of the older ones, were selected for remodeling, the corresponding unit in the  $^{239}\text{Pu}$  content array would be evacuated of bone and  $^{239}\text{Pu}$  and the age reduced to "0"; at the same time all other units would age "1" unit. The remodeling unit would then age as it refills and passes to a resting phase, aging further as it awaits a new remodeling cycle.

colony. The lifespan of beagles at this level is 12.5 years.

For endosteal sites of high turnover, the number of hits to the nuclei of the resting population in an area of  $150 \text{ cm}^2$  is  $4.5 \times 10^5$ , but that to the forming cell population is  $2.6 \times 10^5$  during the first 18 days after injection and  $3.5 \times 10^6$  for the remaining lifespan. For endosteal sites of low turnover, the number of hits to the resting population in a  $150 \text{ cm}^2$  area is  $1.9 \times 10^5$ , but that to the forming population is only  $8.4 \times 10^4$  during the first 18 days after injection and  $3.0 \times 10^4$  for the remaining lifespan.

Consider a simple situation, that tumor incidence is directly proportional to total lifetime radiation dose to some cell population whose lifespan is equal to that of the organism. If irradiation of the lining cell population produced osteosarcoma, then one would predict that osteosarcoma incidence in the high turnover sites in the beagles would be only about twice that in the low turnover sites. If irradiation of the forming cell population produced osteosarcoma, then one would predict that osteosarcoma incidence would be 30X, if only the first 18 days were important, or 118X, if the lifespan dose were critical, that found in the low turnover sites. In fact, as the data on actual osteosarcoma appearance are listed in Table 2, the ratio of osteosarcoma incidence in high and low turnover sites could easily be thirty or more.

#### DISCUSSION

The main purpose for constructing computer models of dynamic biological systems is to find whether the understanding of the way in which the systems function is correct. They are constructed from available data and used to make some predictions. Experiments are then conducted to produce actual results under the conditions imposed by the model.

This method of finding the location of  $^{239}\text{Pu}$  in bone and calculating dose, predicts that the forming cell population of an endosteal site may be the most critical one at risk in induction of an osteosarcoma. For comparison, the model of Marshall and Groer (2) suggests that two hits to resting bone surface cells plus the promotion caused by the activation of a remodeling site are the critical events in osteosarcoma onset. Both models are based upon some sort of cumulative lifespan dose to bone or cells.

TABLE 1  
HITS ACCUMULATED IN HIGH AND LOW TURNOVER SITES IN BEAGLES  
LIVING 12.5 YEARS AFTER INJECTION OF 0.7 nCi/kg  $^{239}\text{Pu}$

| Cell Population *                                            | High Turnover Site (210%/y) | Low Turnover Site (28%/y) | Ratio of High to Low |
|--------------------------------------------------------------|-----------------------------|---------------------------|----------------------|
| Endosteal Lining Cells (during 12.5 Years)                   | $4.5 \times 10^5$           | $1.9 \times 10^5$         | 2.4                  |
| Osteoblasts and Osteoprogenitor Cells (first 18 days only)   | $2.55 \times 10^5$          | $8.4 \times 10^3$         | 30                   |
| Osteoblast and Osteoprogenitor Cells (remainder of lifespan) | $3.5 \times 10^6$           | $3.0 \times 10^4$         | 118                  |

\* Cell population per 150  $\text{cm}^2$  and time period

TABLE 2  
RELATIONSHIP OF OSTEOSARCOMA INCIDENCE, BONE TURNOVER, AND INITIAL  $^{239}\text{Pu}$  UPTAKE AT VARIOUS SITES OF ENDOSTEAL SURFACE

| Site                  | Fraction of Osteosarcomas* | Turnover Rate (%/y) | Initial $^{239}\text{Pu}$ Concentration** |
|-----------------------|----------------------------|---------------------|-------------------------------------------|
| Lumbar Vertebral Body | 0.13                       | 230                 | 8                                         |
| Pelvis                | 0.12                       | 200                 | 8                                         |
| Proximal Humerus      | 0.12                       | 210                 | 8                                         |
| Proximal Ulna         | 0.01                       | 25                  | 1                                         |
| Distal Humerus        | 0                          | 30                  | 1                                         |

\* Fraction of all osteosarcomas in  $^{239}\text{Pu}$ -injected beagles which occurred at this site

\*\* Initial  $^{239}\text{Pu}$  concentration ( $\text{pCi/cm}^2$ ) after injection of 16 nCi/kg.

The Marshall-Groer model engenders long periods of time between induction, the accumulation of damage in a nucleus of two hits, and promotion, the activation of damaged cells to divide. But repair of DNA damage in non-dividing cells is of the excision repair type, which is relatively accurate, if variable in rate. Repair of damage to DNA in dividing cells tends to be error-prone in bacteria (1). If this is also true in mammalian cells, cells like osteoprogenitor cells have a high probability of retaining damage to their DNA which could lead to the induction of a tumor. More recent evidence suggests that acute damage to enzymes involved in replication of DNA may be a critical factor in carcinogenesis (1). The chance of a  $^{239}\text{Pu}$  alpha particle striking osteoprogenitor cells or osteoblasts, which are more numerous in high turnover sites, which are about to divide, coupled with the invoking of error-prone mechanisms of repair and faulty enzymes of replication, may be a critical event which initiates osteosarcoma. The process is clearly very complicated, though, because it is well-known that one acute incident of irradiation may cause osteosarcoma with a latent period of several years.

The validity of the current model remains to be shown. It has produced no data with which to compare the actual location of  $^{239}\text{Pu}$  as seen on autoradiographs of endosteal bone from beagles injected and then serially sacrificed. It assumes that the lifespan of the various populations is equal to that of the whole animal. It assumes that the osteoprogenitor-osteoblast group of cells is unrelated to the resting cell population, when nothing is known in this area. Furthermore, its dosimetric assumptions are very crude. Future work is planned to overcome these difficulties.

Prediction of effects is one of many potential uses for this type of model. It is planned in the future to try different administration patterns of  $^{239}\text{Pu}$ . One obvious one is the deposition of  $^{239}\text{Pu}$  in bone from an inhaled burden residing in the lung but dissolving slowly. Studies of bone histomorphometry of human and beagle bone are gradually yielding more accurate information on turnover rates, which will be incorporated into the model at a future date. It is also planned to study other surface-seeking nuclides, such as  $^{241}\text{Am}$  and  $^{228}\text{Th}$ , whose decay properties are different from that of

$^{239}\text{Pu}$ . It is also planned to complete work with  $^{226}\text{Ra}$  and  $^{224}\text{Ra}$ , so that the best available human data on osteosarcoma induction by alpha emitters can also be studied with this approach. Above all, it is planned to pursue more elegant studies of cell density, location, and proliferative capacity, in attempts to calculate the chance of a particle striking a cell about to divide.

#### REFERENCES

1. Loeb, L.A. 1979. Infidelity of DNA synthesis as related to mutagenesis and carcinogenesis, Abstract X4, 13th International Leucocyte Culture Conference (Ottawa, Ontario, 22-25 May, 1979).
2. Marshall, J. H. and Groer, P. G. 1977. A theory of induction of osteosarcoma by skeletally-deposited alpha-emitting radionuclides. *Radiat. Res.* 71, 143-191.
3. Parfitt, A. M. 1976. The actions of parathyroid hormone of bone: Relation to bone remodeling and turnover, calcium homeostasis, and metabolic bone disease. Part 1: Mechanisms of calcium transfer between blood and bone and their cellular basis: Morphological and kinetic approaches to bone turnover. *Metabolism* 25, 809-844.

## THE EARLY DISTRIBUTION OF Pu IN JUVENILE BEAGLES

F. W. Bruenger, D. R. Atherton, J. M. Smith, R. R. Greenlee,  
D. S. Buster and W. Stevens

**ABSTRACT:** Four juvenile beagles, 90 days of age, were given an intravenous injection of 2.5  $\mu$ Ci  $^{239}\text{Pu}/\text{kg}$  and sacrificed in pairs 7 days and 14 days post-injection (P.I.). At autopsy, the liver contained 15.9% of the injected dose at 7 days and 10% at 14 days P.I. The Pu distribution in the liver was diffuse. About 40% of the deposit was bound to ferritin or associated with microsomes and approximately 50% was found in fractions of high acidhydrolase- and/or cytochrome-c-oxidase activity. Other soft tissue organs retained only very small fractions of the injected dose.

The skeletal retention of 64.3% was not statistically different from the retention of 69.9% calculated for juvenile beagles injected with 0.1  $\mu$ Ci Pu/kg. This confirms that the initial deposition is dependent on the age at injection but is independent of the dose level. The relative concentration of Pu among the various skeletal parts and within individual bones was more uniform in juvenile beagles than in those injected as young adults. The highest concentrations were found in primary spongiosa where the surface/volume ratio was large and where the rate of bone formation was very high. Retention and distribution were related to overall- and localized skeletal growth patterns.

### INTRODUCTION

The biological effects of  $^{239}\text{Pu}$  in 90 day old beagles (juveniles) have been described earlier (1). In that experiment, 12 juvenile beagles received an intravenous injection of 2.8  $\mu$ Ci  $^{239}\text{Pu}/\text{kg}$  in citrate buffer. Animals were allowed to live until they succumbed to osteosarcoma by  $1306 \pm 163$  days post injection (P.I.). At time of autopsy, the distribution and retention of Pu in the skeleton and soft tissue organs was studied. No data were available to extrapolate the initial deposition from terminal retentions. Therefore the calculation of radiation dose had to be based solely on the measured retention of Pu in juveniles injected with the much lower dose of 0.1  $\mu$ Ci Pu/kg and sacrificed serially making the assumption that the initial deposition was independent of dose level. In order to verify this assumption and also to compare the initial microdistribution of the nuclide with that observed at approximately 1300 days P.I., the following short-term experiment was conducted.

## METHODS

Four 90 day old beagles were injected with an average of 2.5  $\mu$ Ci  $^{239}\text{Pu}/\text{kg}$  and sacrificed in pairs 7 and 14 days P.I., respectively. Liver, kidney, spleen, some other selected soft tissue organs and the skeleton were collected at autopsy, freed from the surrounding tissue and subjected to routine radiochemical analysis. A subcellular separation of a liver homogenate was done by zonal centrifugation (2). Selected specimens of special interest were prepared for neutron-induced auto-radiography (NIAR).

## RESULTS AND DISCUSSION

Of all soft tissue organs, only the liver contained a substantial concentration of Pu. At 7 days P.I., the average retention in the liver was 15.9% and at 14 days it was 10.0% of the injected dose. This does not imply that Pu is lost rapidly from the liver of juvenile beagles since an average respective retention of  $[12.7 \pm 2.0]\%$  was observed in the corresponding long-term study (1). The nuclide was distributed diffusely throughout the liver as shown by the neutron-induced autoradiograph in Fig. 1. Zonal centrifugation showed that of the total Pu in the homogenate at 7 and 14 days approximately 40% was present as Pu-ferritin or associated with a fraction which was high in glucose-6-phosphatase activity (microsomes) and approximately 50% was present in organelle fractions which exhibited acidhydrolase- and cytochrome-c-oxidase activity.

The average ash wt/wet wt ratio of the skeleton was 0.2399. In 7 young adults it was 0.3767. The measured skeletal retention was 57.4% at 7 days and 64.3% at 14 days P.I. This increase is consistent with earlier observations in neonatal beagles (3). It appears that during the early time after injection some translocation of Pu from an initially ubiquitous, low level distribution throughout the soft tissues to a skeletal deposition occurs, although this has not been quantitated in detail. The skeletal retention of 64.3% at 14 days P.I. was slightly lower but not statistically different from a value obtained by extrapolating the measured skeletal retention of a series of beagles injected with only 0.1  $\mu$ Ci Pu/kg to 14 days P.I. Thus it appears that the assumption that initial skeletal deposition of Pu is not influenced by dose level, is confirmed.

TABLE 1  
EARLY RELATIVE CONCENTRATION OF Pu IN THE SKELETON  
OF JUVENILE AND YOUNG ADULT BEAGLES

| Skeletal Part          | 4 Juveniles<br>(7 - 14 Days) |              | 5 Young Adults<br>(2 - 40 Days) |              |
|------------------------|------------------------------|--------------|---------------------------------|--------------|
|                        | R.C.                         | $\pm \sigma$ | R.C.                            | $\pm \sigma$ |
| Skull                  | 0.520                        | .050         | 0.348                           | .078         |
| Mandible               | 0.539                        | .057         | 0.250                           | .049         |
| Cerv. V.               | 0.989                        | .072         | 0.864                           | .197         |
| Thor. V.               | 1.094                        | .070         | 2.319                           | .244         |
| Lumb. V.               | 1.142                        | .062         | 2.047                           | .209         |
| Sacrum                 | 1.448                        | .316         | 2.133                           | .665         |
| Caudal V.              | 1.276                        | .056         | 0.412                           | .274         |
| Paws                   | 1.197                        | .071         | 0.210                           | .049         |
| Radii                  | 1.258                        | .074         | 0.264                           | .102         |
| Ulnae                  | 1.076                        | .058         | 0.233                           | .092         |
| Humeri                 | 1.327                        | .138         | 1.509                           | .194         |
| Scapulae               | 1.174                        | .038         | 1.431                           | .166         |
| Tib.-Fib.              | 1.246                        | .105         | 0.504                           | .234         |
| Femora                 | 1.224                        | .061         | 1.232                           | .191         |
| Pelvis                 | 1.136                        | .024         | 1.690                           | .162         |
| Ribs                   | 1.098                        | .158         | 1.267                           | .239         |
| Sternum                | 0.516                        | .049         | 1.700                           | .449         |
| High R.C./<br>Low R.C. | $1.45/0.52 = 2.8$            |              | $2.32/0.21 = 11$                |              |

\* R.C. = Relative Concentration

The distribution of the nuclide among the parts of the skeleton was more uniform than observed in beagles injected as young adults (18 months of age). This is reflected in the values of the relative concentration (R.C.) (fractional skeletal retention/fractional wet skeletal mass) of individual skeletal parts. In Table 1, the R.C. measured in various skeletal parts of beagles injected as juveniles is compared to that found in 5 animals injected as young adults. The relatively small spread of this value in juveniles (1.45/0.52) is the result of the active overall skeletal growth whereas the larger range of R.C. values in beagles injected as young adults (2.32/0.21) is produced by the differential modeling of bone after the animal has reached skeletal maturity. The difference is particularly striking in the radii, ulnae, tibiae and fibulae which in the juvenile are growing rapidly and demonstrate an "above average" R.C. where in the young adult, these bones characteristicly have low turnover rates and a "below average" R.C. A more uniform concentration of Pu (% dose/g) also was observed within individual bones. This is demonstrated in Fig. 2. in which the average concentration of Pu in different sections of the four juvenile humeri is compared to the concentration of corresponding sections obtained from three animals injected as young adults. For individual sectioned humeri, the Pu concentration was highly correlated with the respective ash wt/wet wt ratio (correlation coefficients 0.93 - 0.96).

Neutron induced autoradiography demonstrated that in the juvenile, the deposition of Pu strongly depends on the growth characteristics within a particular segment of bone. In Fig. 3, macrophotographs of NIAR sections of the proximal- (a) and distal- (b) epiphysis and metaphysis together with a section from the shaft (c) of a humerus show that by 7 days P.I., all trabecular surfaces were heavily labelled with Pu. The highest concentrations of Pu were seen in primary spongiosa, a structure associated only with growing bone and characterized by a high surface/volume ratio. Thus, considerable differences in the concentration of Pu existed in localized areas although the average concentrations in larger samples or among individual bones did not vary greatly.

A higher magnification of the encircled areas of Fig. 3b (distal humerus) is shown in Fig. 4. The upper picture (A) depicts a surface distribution in the epiphysis with a somewhat heavier deposit adjacent to the cartilage of the growth plate. In Fig. 4B the heavy deposit in the primary spongiosa is seen.

It also appears that the adjacent growth plate cartilage at this time (7 days P.I.) has acquired a low diffuse label of Pu. Because of continuing growth and simultaneous erosion of the initial Pu label at the border between primary and secondary spongiosa, surfaces in that area are not as densely and uniformly labelled as are those in secondary, underlying trabeculae as seen in Fig. 4C.

#### REFERENCES

1. W. Stevens, D. R. Atherton, F. W. Bruenger and B. J. Stover, 1978. Retention, distribution and toxicity of  $^{239}\text{Pu}$  in beagles injected at 3 months of age. *Radiat. Res.* 74:562.
2. F. W. Bruenger, W. Stevens, D. R. Atherton, D. S. Bates and B. J. Grube, 1976. The subcellular distribution of  $^{239}\text{Pu}$ IV in beagle livers as determined by zonal centrifugation and isoelectric focusing. In: The Health Effects of Plutonium and Radium (W. S. S. Jee, Ed.), pp. 199-210, The J. W. Press, Salt Lake City.
3. F. W. Bruenger, W. Stevens, D. R. Atherton, J. M. Smith, G. Howerton and D. S. Buster, 1977. Distribution of  $^{239}\text{Pu}$  in neonatal beagles. In: Developmental Toxicology of Energy-Related Pollutants (D. D. Mahlum, M. R. Sikov, P. L. Hackett and F. D. Andrew, Eds.), pp. 344-360, DOE Symposium Series 47, Technical Information Center, U. S. Department of Energy, Washington, D. C.

DISTRIBUTION OF PU IN THE  
LIVER OF A JUVENILE BEAGLE  
AT 14 DAYS P.I.



Figure 1. Neutron-induced autoradiograph of plastic-embedded liver section from a juvenile beagle injected with 2.5  $\mu$ Ci Pu/kg and sacrificed 14 days P.I. The early distribution of Pu was uniform and diffuse.

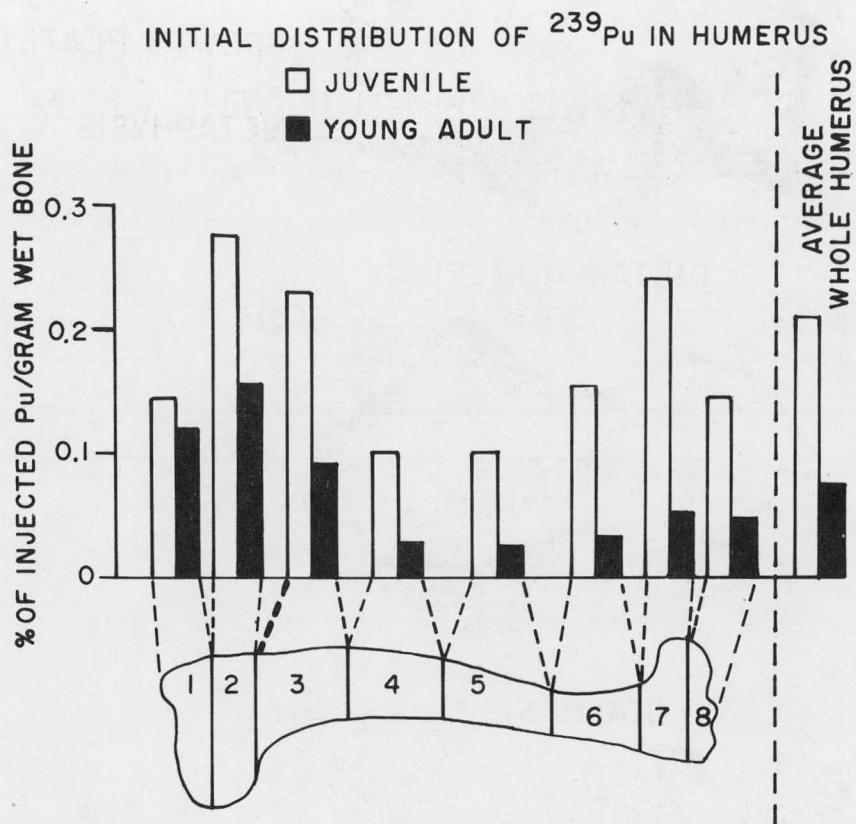
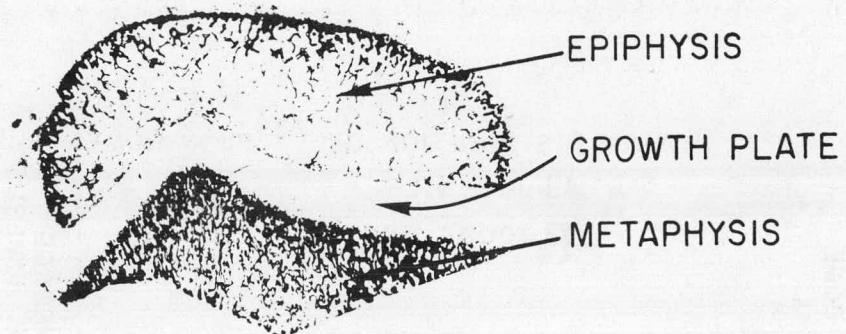
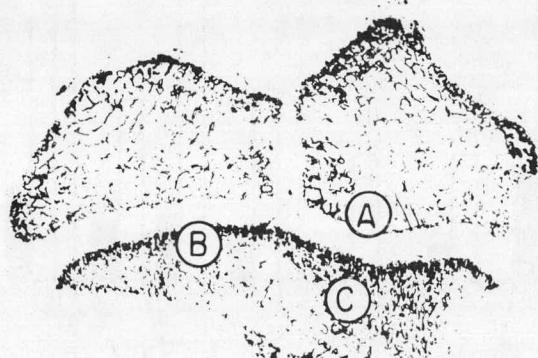




Figure 2. Initial concentration of Pu (% dose/g) in sectioned humeri of 4 juvenile and 3 young adult beagles. The figure shows the overall higher concentration and greater uniformity in the distribution of Pu in the growing bone. Concentrations in individual sections vary by a factor of less than three in the juvenile and by a factor of 6.7 in the young adult.


NEUTRON INDUCED AUTORADIOGRAPHS  
PROXIMAL HUMERUS

PROXIMAL HUMERUS (a)



DISTAL HUMERUS

(b)



DIAPHYSIS

(c)

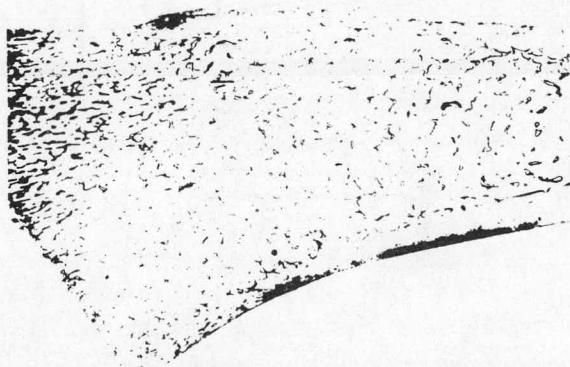



Figure 3. Macrophotograph of NIAR showing the deposition of Pu in the proximal (a), and distal (b) humerus and in the shaft (diaphysis) (c). Encircled areas of the distal humerus were enlarged and are shown in Fig. 4.

MICRODISTRIBUTION OF PU IN DISTAL HUMERUS

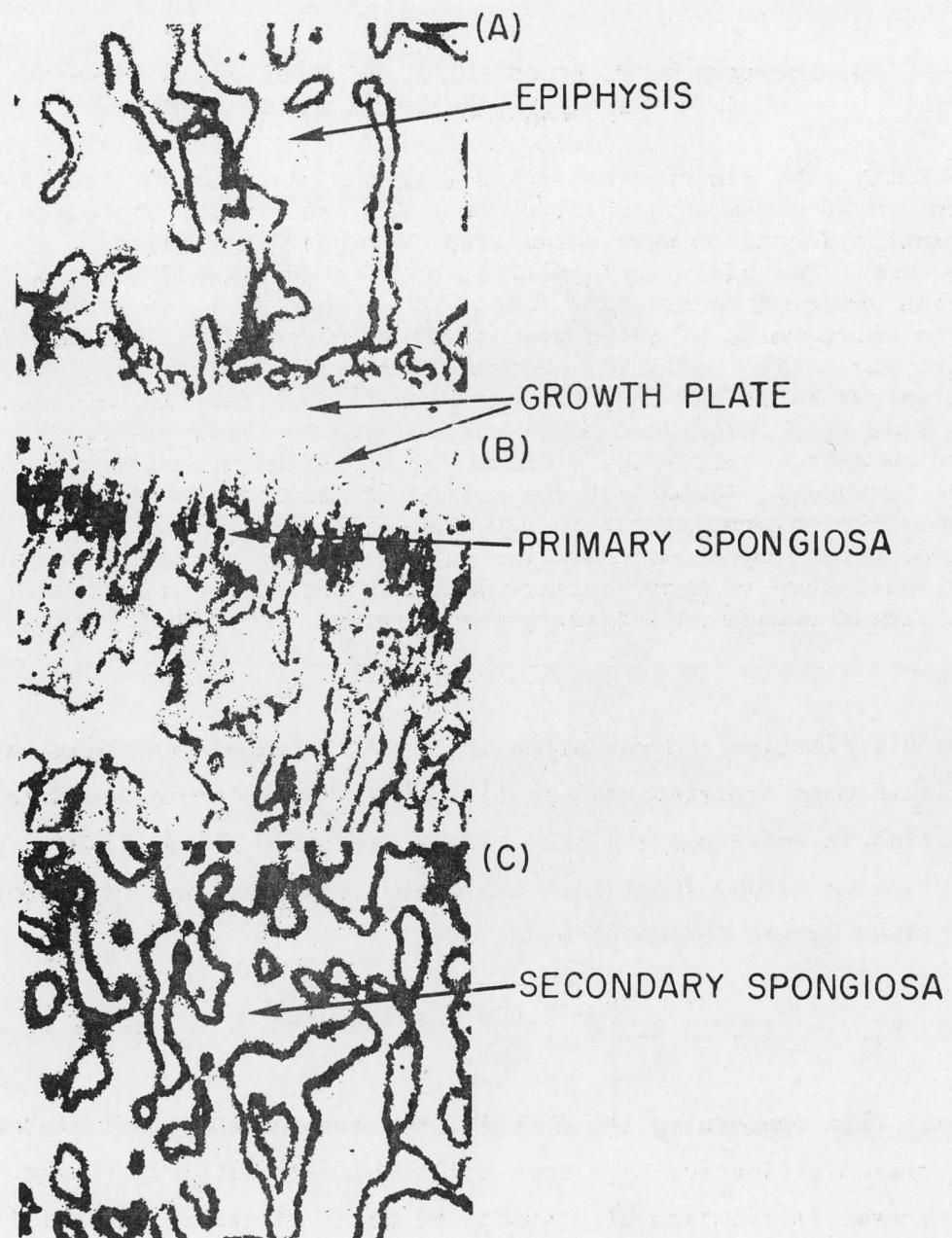



Figure 4. Microphotograph of encircled areas of Fig. 3B. Trabeculae in the epiphysis carry a heavy label of Pu. Only the bone surface adjacent to the underlying cartilage appears to have a higher concentration of Pu. The highest concentration is found in the primary spongiosa (B) while Pu at the borderlines between primary and secondary spongiosa appears to be eroded because of growth. The secondary spongiosa (C) again is heavily and quite uniformly labelled.

## $^{233}\text{U}$ IN THE SKELETON OF THE BEAGLE

W. Stevens, F. W. Bruenger, D. R. Atherton, G. Howerton,  
G. N. Taylor, J. M. Smith and D. S. Buster

**ABSTRACT:** The distribution of  $^{233}\text{U}$  in the skeleton has been determined as a function of time after its intravenous injection. Retention functions were calculated for individual parts of the skeleton. The biological halflife of U in individual members of the skeleton varied by a factor of as much as  $\sim 185$ . Skeletal parts whose ratio of ashed weight/wet weight was low, exhibited short biological halflives whereas those with a high ashed weight/wet weight ratio had long biological halflives for the nuclide. The loss from individual parts was related to their trabecular bone content. Initially, uranium was deposited nonuniformly on bone surfaces. Throughout the period of observation the surface deposition changed partly to a volume distribution but the strongly heterogeneous character of the initial surface deposit was maintained as heavy surface deposits became fewer in number but little change in intensity was observed.

The distribution and retention of  $^{233}\text{U}$  VI injected into beagles as the citrate have been reported earlier (1). That report contained data on the distribution in soft- and skeletal tissue, and some clinical data, especially observations on kidney function. Skeletal retention, in % of injected uranium, was described by the following equation:

$$R_{Sk} = (7.7 \pm 0.3)e^{-(0.00078 \pm 0.00012)t} \quad (t \text{ is in minutes})$$

Additional data concerning the distribution among the various skeletal parts and the microdistribution have been collected during the last year.

The gross distribution of U among the parts of the skeleton followed the general pattern observed with other actinide elements although quantitative differences exist. In general, those skeletal parts which exhibit a high bone turnover rate and which have a high content of trabecular bone (i.e. in which the ratio of ashed wt/wet wt was low (vertebrae, pelvis, humerus) had a higher relative concentration of U, whereas the relative concentration of U was lower in members with a lower turnover rate and/or a high content of cortical bone (i.e. in which the ratio of ashed wt/wet wt was large). Because

of high trabecular bone content with a correspondingly large surface area and because of high turnover rates, the loss of U from these skeletal parts was more rapid than in those with a higher cortical bone content and/or lower turnover rates.

Retention equations were calculated for each individual skeletal part. All bones lost U as a function of time P.I., but in only 8 of the 17 equations was the negative slope statistically different from zero ( $p \leq 0.05$ ). The parameters for each of these equations and the corresponding biological half-lives in increasing order together with the respective p values are shown in Table 1. The biological halflives varied by a factor of two orders of magnitude from the highest to the lowest. The differences probably are directly related to vascularity, relative surface area available for exchange and the rate of bone turnover in the individual skeletal parts. Table 1 also demonstrates that bones with a shorter residence time for the nuclide have a considerably lower ashed weight/wet weight ratio, i.e. a higher content of spongiosa than bones whose U content decreased insignificantly with time.

Neutron induced autoradiographs prepared at 1 day, 3 weeks and 364 days P.I. from a bone with a high turnover rate (proximal humerus), one with a very low turnover rate (ulna) and cortical bone from the shaft of a humerus are shown in Figures 1, 2, and 3, respectively.

Initially U is deposited unevenly on endosteal and some periosteal surfaces, the deposit being very heterogeneous and ranging from very intense hot areas to diffuse areas. With increasing time P.I., U is lost unevenly from the surfaces and is either excreted or is found distributed in the volume of the bone. The number of hot spots decrease but the intensity of those remaining appears unchanged. The surface deposits become increasingly heterogeneous, with some very heavy deposits of U still present but the intermediate deposits are lost at times  $\geq 1$  year P.I.. In an NIAR of the proximal humerus (Fig. 1) the initially heavy surface deposits are seen at low magnification. Higher magnification shows that the initial surface deposits are strongly heterogeneous. The diffuse component present at one day is probably caused by residual blood. At 3 weeks and 1 year P.I. the number of intense surface deposits is decreased but those remaining have the same intensity as those observed at earlier times P.I.. Increasing concentrations of U are found in the bone volume

TABLE 1  
RETENTION OF URANIUM IN SKELETAL PARTS

|             | a*      | -b        | $t_{1/2}^{**}$ | p         | $\frac{\text{ashed wt}}{\text{wet wt}}$ |
|-------------|---------|-----------|----------------|-----------|-----------------------------------------|
| Sternum     | 0.2627  | 0.00269   | 257            | < 0.01    | 0.1293                                  |
| Sacrum      | 0.1506  | 0.00158   | 438            | < 0.01    | 0.2637                                  |
| Thoracic V. | 0.7641  | 0.00148   | 467            | 0.02-0.01 | 0.2993                                  |
| Lumbar V.   | 0.6940  | 0.00123   | 563            | 0.05-0.02 | 0.3305                                  |
| Caudal V.   | 0.1089  | 0.00116   | 600            | 0.1 -0.05 | -----                                   |
| Humeri      | 0.5116  | 0.000999  | 694            | < 0.01    | 0.3723                                  |
| Ribs        | 1.002   | 0.000929  | 746            | 0.02-0.01 | 0.3426                                  |
| Scapulae    | 0.4129  | 0.000875  | 792            | 0.02-0.01 | 0.3782                                  |
| Pelvis      | 0.6148  | 0.000794  | 873            | 0.05-0.02 | 0.3779                                  |
| Paws        | 0.229   | 0.000702  | 900            | NS        | -----                                   |
| Skull       | 0.9738  | 0.000574  | 1200           | 0.1 -0.05 | 0.4026                                  |
| Femora      | 0.5028  | 0.000557  | 1245           | NS        | 0.3977                                  |
| Mandible    | 0.4063  | 0.000156  | 4428           | NS        | 0.5145                                  |
| Radii       | 0.08362 | 0.000109  | 6330           | NS        | 0.4392                                  |
| Tib.-Fibulæ | 0.2928  | 0.0000978 | 7080           | NS        | 0.4159                                  |
| Ulnæ        | 0.08285 | 0.0000195 | 35550          | NS        | 0.4412                                  |
| Cervical V. | 0.4042  | 0.0000145 | 48000          | NS        | 0.4246                                  |

\* a = % of injected U/part

\*\* t =  $t_{1/2}$  in days

NS = Not Significant

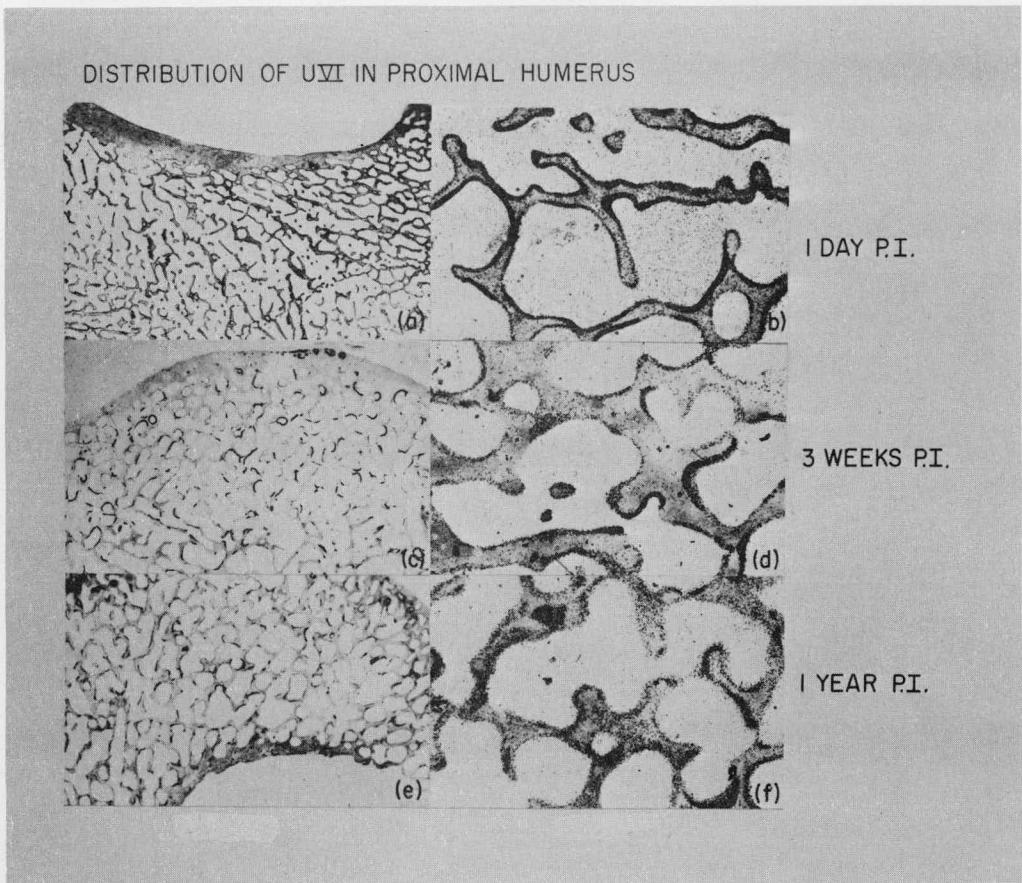



Figure 1. NIAR of 300  $\mu\text{m}$  thick sections of methylmethacrylate embedded bone sections obtained from the proximal humerus. Low magnification ( $\sim 3.5 \times$ ) images a, c, e show the transition of an initially heterogeneous surface deposit to a "hot spot" surface deposition in which dense deposits are diminished as a function of time in number but not in intensity. Higher magnification ( $\sim 50 \times$ ) (b, d, f) emphasizes the heterogeneous character of the deposits and a gradual redistribution from surfaces to trabecular bone volume.

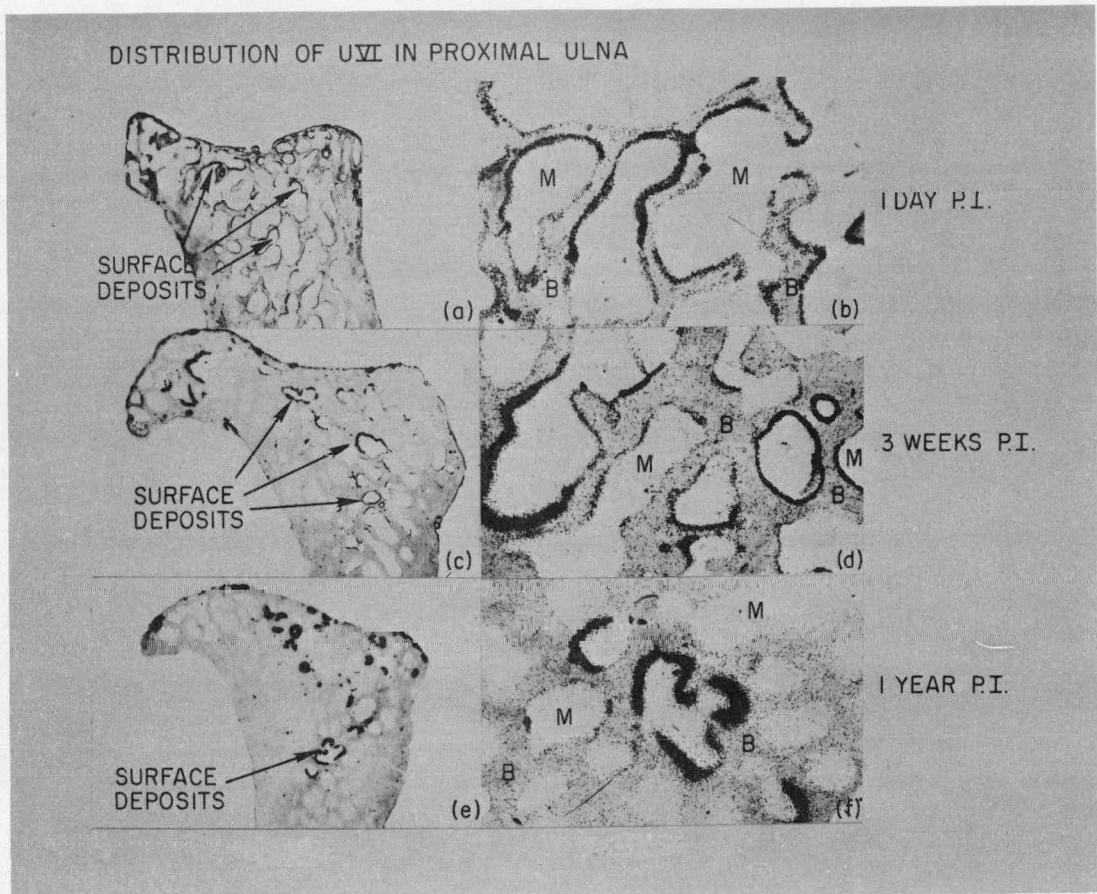



Figure 2. NIAR of sections obtained from the proximal ulna. Times P.I. and magnification are those of Fig. 1. Images reflect the lower concentration of U in the ulna as compared to the humerus. Surface deposits are strongly heterogeneous with dense deposits appearing at 1 year P.I.. A shift of U from surfaces to the trabecular volume is visible. M = Marrow; D = Bone.

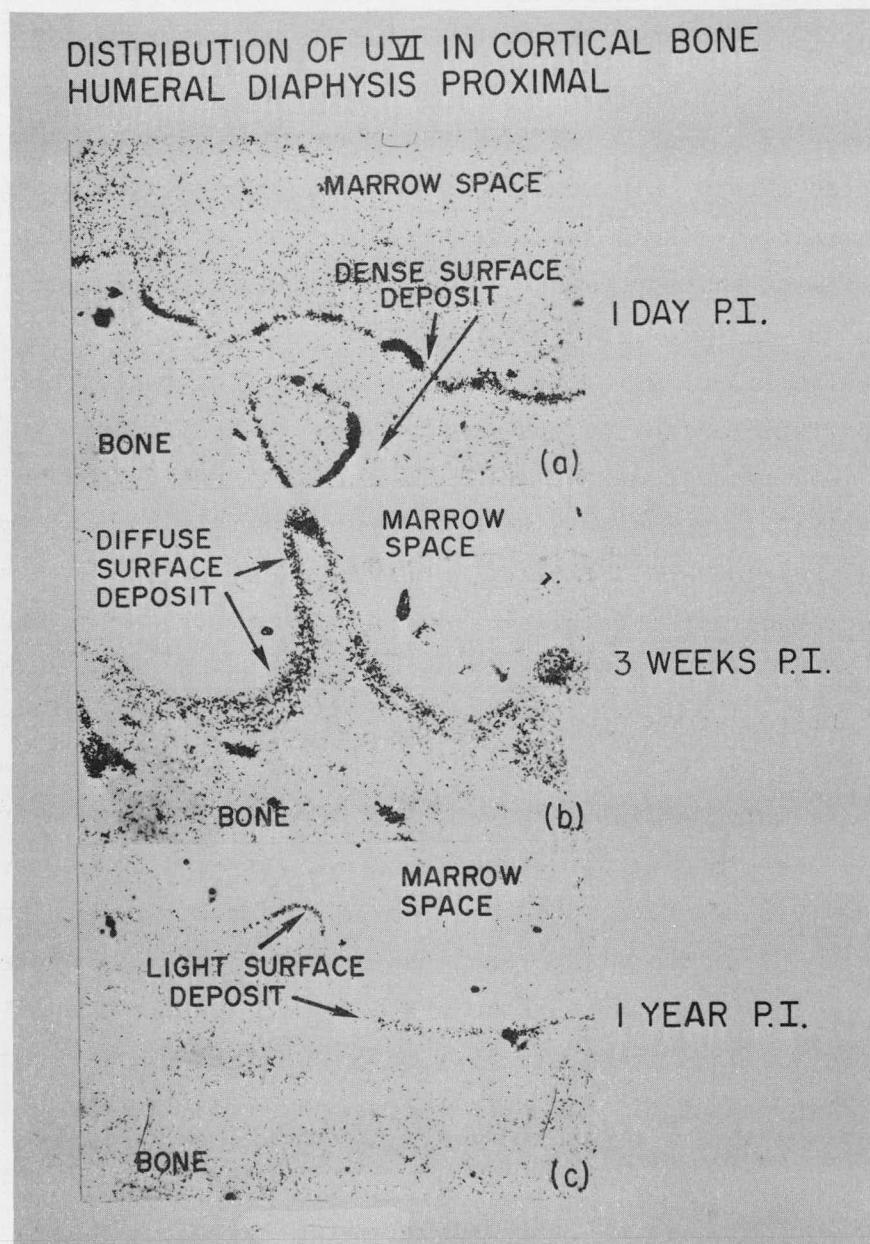



Figure 3. NIAR obtained from cortical bone of the humeral, proximal diaphysis. Initially U is seen on endosteal and periosteal surfaces and lining the Haversian canals. As a function of time P.I., surface labels become first diffuse and then light. During the first year P.I., the cortical bone acquires a light but quite uniform volume deposit.

at longer times P.I.. A similar distribution is observed in the ulna (Fig. 2) except that the average track density (which is proportional to the average concentration) is lower than in the humerus. There was relatively little redistribution from the surface to the bone volume as a function of time post injection. By 1 year P.I., isolated trabecular surfaces are still heavily labelled with U. In cortical bone (Fig. 3) endosteal, periosteal, and Haversian canal surfaces are intensely labelled initially and this deposit also is quite heterogeneous. As surface deposits decrease in number the bone volume acquires a low, diffuse concentration of uranium.

The distribution of U in the skeleton seen at increasing times post injection is consistent with the observation made by Neuman nearly thirty years ago that  $UO_2^{++}$  was capable of replacing  $Ca^{++}$  on the surface of the hydroxyapatite crystal (2). Since this reaction is reversible, deposition and/or loss of U from the skeleton would reflect normal equilibrium exchange reactions, the fate and turnover of the crystal(s) as well as the vascularity and bone turnover in localized areas of the skeleton. The size of the  $UO_2^{++}$  ion prohibits its entering the internal domain of the crystal lattice and thus it remains on crystal surfaces where it is subjected to ion exchange reactions with the extra mineral-extra cellular milieu of bone. The initial very dense surface deposits may mark areas where active  $Ca^{++}$  deposition was occurring as U was introduced, whereas the diffuse deposits, which become more predominant at long times post injection, result from competing reactions between the bicarbonate ion in the extracellular compartment and the phosphate ion on the surface of apatite crystals for  $UO_2^{++}$ . Thus, the distribution of U in the skeleton at any time post injection is the result of three factors, vascularity, bone turnover and localized ion exchange reactions.

#### REFERENCES

1. F. W. Bruenger, D. R. Atherton, W. Stevens, D. S. Buster and G. N. Taylor, 1978. The early distribution and excretion of  $^{233}U$  in the beagle. In: *Research in Radiobiology*, University of Utah Report COO-119-253, pp. 287-290.
2. W. F. Neuman, 1973. Deposition of uranium in bone. In: *Pharmacology and Toxicology of Uranium Compounds* (Voegtlein and Hodge, Eds.), McGraw Hill, New York.

EARLY RETENTION AND DISTRIBUTION OF INJECTED  $^{224}\text{Ra}$  IN BEAGLES\*

R. D. Lloyd, C. W. Mays, G. N. Taylor, D. R. Atherton,  
F. W. Bruenger, and C. W. Jones

Five adult beagles, averaging 21 months of age, were each given an intravenous injection of 10  $\mu\text{Ci}$   $^{224}\text{Ra}$  chloride/kg. Injected daughter activities were about 0.98 ( $^{212}\text{Pb}$ ) and 0.95 ( $^{212}\text{Bi}$ ) of the Pb/Ra and Bi/Ra ratios at transient equilibrium. The animals were sacrificed by exsanguination at 0.04, 0.14, 0.34, 1.0 and 3.0 days after injection, and serial gamma-ray counting of selected bones and soft tissues was begun a few minutes after death and continued for several days. Biological retention of  $^{224}\text{Ra}$  averaged 49% in the skeleton (37 to 60%), and soft tissue retention decreased from 61% at 0.04 d. to 7% at 3 d. At death there was an excess of Pb over Ra in red cells (~200 times), a small excess of Pb/Ra in liver, an excess of Bi over Ra was found in kidneys (4 to 9 times) and there was a deficiency of both daughters in eyes and bone. Relative to the values established at transient equilibrium, the Pb/Ra and Bi/Ra at death in the eyes remained at about 0.2 and 0.1, respectively. In bone, however, the Pb/Ra and Bi/Ra ratios increased regularly with time between injection and death (0.04 to 3 days) from about 0.3 to 0.9 and from 0.2 to 0.7, respectively. Biological effects have been observed in the skeleton, kidneys, eyes, and livers of persons injected with  $^{224}\text{Ra}$ .

## GAMMA-RAY SPECTROMETRY OF HUMANS

Ray D. Lloyd, Charles W. Mays, and David H. Taysum

SUMMARY: A human total-body counter was designed and built with two 20 x 10 cm NaI(Tl) crystals suspended over an "isoresponse surface" upon which the subject reclines. This surface is curved from head to knee and from left to right, so that a gamma-ray emitting object is detected with equal efficiency when placed anywhere upon it. The positioner and detectors are housed in a low background enclosure constructed of steel 31 cm thick with a graded inner lining of lead + cadmium + copper. Calibration of the system was accomplished by administering trace amounts of various radionuclides to 48 human subjects of various sizes, ranging in age from 4 to 80 years. Counting rates per retained  $\mu$ Ci at 0.53, 0.66, 1.53, and 2.75 MeV ( $^{83}\text{Rb}$ ,  $^{137}\text{Cs}$ ,  $^{42}\text{K}$ , and  $^{24}\text{Na}$ ) were determined as a function of body size and were compared with counting rates per  $\mu$ Ci of corresponding emitters centered in a polyethylene cylinder of radius 10.3 cm. Limits of detection, corresponding to 3 times the standard deviation of a 50 minute background, were 170 nCi  $^{90}\text{Sr}$  (via Bremsstrahlung x-rays), 0.78 nCi  $^{131}\text{I}$ , 0.48 nCi  $^{83}\text{Rb}$ , 0.52 nCi  $^{137}\text{Cs}$ , 4.9 nCi  $^{40}\text{K}$  (or 5.8 g of natural potassium), and 1.7 nCi  $^{222}\text{Rn}$ .

## INTRODUCTION

A human total-body counter which employed a single 20 cm x 10 cm NaI(Tl) crystal and an Argonne-type chair positioner was put into operation at the Radiobiology Laboratory, University of Utah, in 1962. Extensive use of this facility (Lloyd, et al., 1968 a & b, 1969, 1970, 1973 a & b, Maletskos, et al., 1967, Pendleton, et al., 1963 a & b, 1965, Zundel, et al., 1969) for biomedical research, monitoring of fallout levels, and for health physics purposes indicated that despite the obvious utility of the system, there were certain intrinsic limitations which could be eliminated by a thorough redesign.

Construction of a new laboratory building for our group provided the opportunity to make the proposed improvements.

#### ENVIRONMENT AND SHIELDING

The low-background enclosure for the new total-body counter is located on the ground floor of a one story concrete building at an elevation of about 1500 meters above mean sea level. Shielding provided by the building consists of reinforced concrete (Lloyd 1976) with a roof 20 cm thick and walls 30 to 60 cm thick. The low-background enclosure was constructed of solid, rectangular steel plate from the battleship U.S.S. Indiana, launched in 1941, four years before the first nuclear explosion. Walls, floor, and ceiling of the steel room are 31 cm thick. Choice of the unusually thick steel plate was dictated in part by the close proximity to an intermittently operated accelerator (maximum energy = 10 MeV) which is used in radiation therapy. Access to the steel room is by way of two adjacent doors, each 80 cm wide, 200 cm high, and 31 cm thick, which swing on hinges and are easily opened without power assistance.

Welding was done in an atmosphere of inert argon gas to eliminate the use of radioactive welding flux, and the welds were all on the outside of the room. Following erection of the shielded enclosure, the steel was cleaned by sandblasting and by washing with a chelating agent (EDTA). It was then enclosed with polyethylene sheeting, and the laboratory building was constructed around it.

Interior dimensions of the steel room are 370 cm long, 260 cm wide, and 240 cm high. The inside surface of the steel is lined with 3 mm Pb, plus 0.8 mm Cd, plus 0.8 mm Cu to reduce the amount of background and scattered

radiation which is detected (see discussion on page 264 of Whole Body Counting, Vienna: IAEA, 1962), and the inside copper finish is waxed to maintain a pleasing appearance.

Our specifications regarding the handling of the steel plate forbade the use of magnets, and it was our understanding that warships in service were demagnetized periodically. However, the steel was in storage for nearly 3 years before the shielded enclosure was constructed, and the ship had been out of service for several years prior to the time at which the plate was made available. Therefore, residual magnetism would not have been unexpected. Measurements made within and outside the completed steel room indicated that the total magnetic effect within the  $1.5 \times 10^5$  kg steel room was about equal in magnitude to the earth's magnetic field, roughly 0.5 gauss. Compared to the performance of a  $20 \times 10$  cm NaI(Tl) crystal placed exactly at the volumetric center of the room, a serious perturbation of relative counting rate and output pulse height of a  $0.2 \mu\text{Ci}$   $^{137}\text{Cs}$  source taped to the crystal face was discovered with the crystal in only one corner location (about a 4% shift). Consequently, it was decided to keep the detectors for the human total-body counter always at least 1 meter away from each interior surface since no significant effects from the magnetic field were detected at this distance.

Clean air, which has been pre-filtered mechanically and electrostatically, is drawn from the laboratory into the steel room through a 15 cm thick Argonne-type (HEPA) absolute filter to trap the gamma-emitting daughters of  $^{222}\text{Rn}$  (radon). Initially, the air turnover rate within the steel room was equivalent to about 20 changes per hour. Later, this was decreased to about 7 changes per hour as a consequence of a noise reduction program. Background counting

rates, especially with reference to the gamma-emitting daughters of  $^{222}\text{Rn}$ , were virtually unchanged by this modification. The ventilation system keeps the laboratory building under positive air pressure so that radon generated in the concrete walls, floor, and ceiling tends to be forced outside the building.

Subjects can be viewed on closed circuit television during the counting period. An intercommunication system allows two way voice access, as well as FM radio or stereo tape entertainment. Of particular value have been the tapes of fairy tales and adventure stories that encourage children to remain in the positioner for counting times up to an hour when necessary. The interior is illuminated by three 60 watt incandescent bulbs which, with the bright copper surface, results in an attractive, cheerful enclosure. In addition, subjects know that the door can be opened from the inside without assistance. As a consequence of all these factors and the relatively large size of the steel room, claustrophobia has not been a significant problem.

#### POSITIONER DESIGN

Our concept for a human positioner with an isoresponse geometry was developed from an early isoresponse positioner for beagle total-body counting (Lloyd et al., 1962, 1976b). Similar designs for human counting have been reported by Chhabra (1964) and by Joyet and Baudraz (1967, 1968). With a single detector, however, an isoresponse surface approximates the inside surface of a hollow sphere (Belcher and Robinson, 1965). In order to put the subject close enough to the detector to achieve reasonable counting rates, the resulting curvature of the positioner becomes too severe for the comfort of many adults. Chhabra (1964) used a 50 cm radius of curvature, which seemed to conform adequately to the typical 55 kg 167 cm tall Indian adult, while

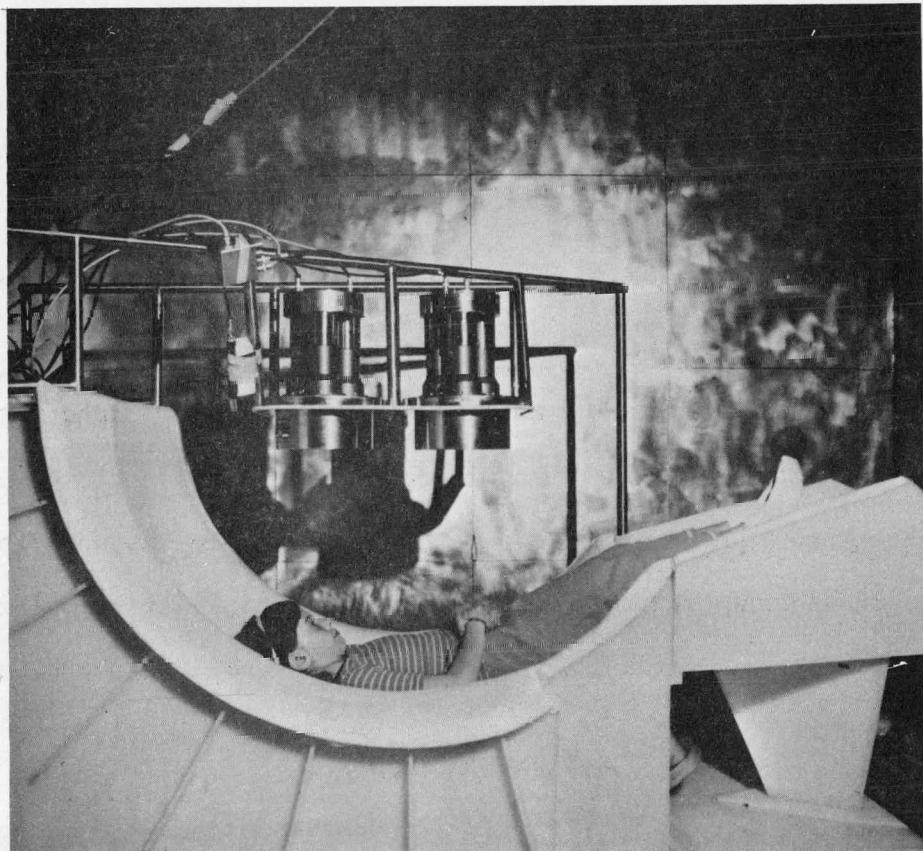



Figure 1. Photograph of the positioner showing the two 20 x 10 cm NaI(Tl) crystals suspended above an isoresponse surface upon which the subject is positioned. The child (SM) shown here was an 8-year old girl, 133 cm tall, weighing 26 kg.

Joyet and Baudraz (1967, 1968) used a radius of 57 cm. In both cases, however, the positioner was curved in just one plane, so that the surface approximated the inside of a transverse cylinder rather than a sphere. The isoresponse curve was located only along the center line, and the detection efficiency decreased if the subject moved to the side. With a radius of curvature much less than about 100 cm, the legs below the knee cannot conform comfortably to the curve. Both Chhabra and Joyet and Baudraz elected to exclude the lower leg from their curves.

With our two detectors, the isoresponse surface approximates the section of a torus. The resulting curvature is not as pronounced as that of a spherical section at a corresponding distance from a single detector. A larger volume of scintillator provides an increased counting rate when compared to a single crystal at the same distance, making it possible for equal counting efficiency to utilize a positioner of larger effective radius, which is more comfortable for the subject.

Our actual positioner is shown in Figure 1, with a scale drawing of its most essential features in Figure 2. The bottom of the positioner is 59 cm below the plane in which lie the faces of two 20 cm x 10 cm NaI(Tl) crystal detectors, whose cylindrical axes are 30 cm apart. The isoresponse surface was established experimentally so that a  $^{137}\text{Cs}$  source 10 cm above the surface gave the same counting rate from head to knee and from side to side. This corresponded to the center line of a person averaging 20 cm in thickness. The resulting surface, with a mean radius of curvature from head to knee of about 60 cm, was comfortable for children (2 years and older), adults up to 200 cm tall, pregnant women, and patients of non-standard body configuration.

The positioner was constructed (Figs. 1 and 2) of 6 mm thick polyethylene

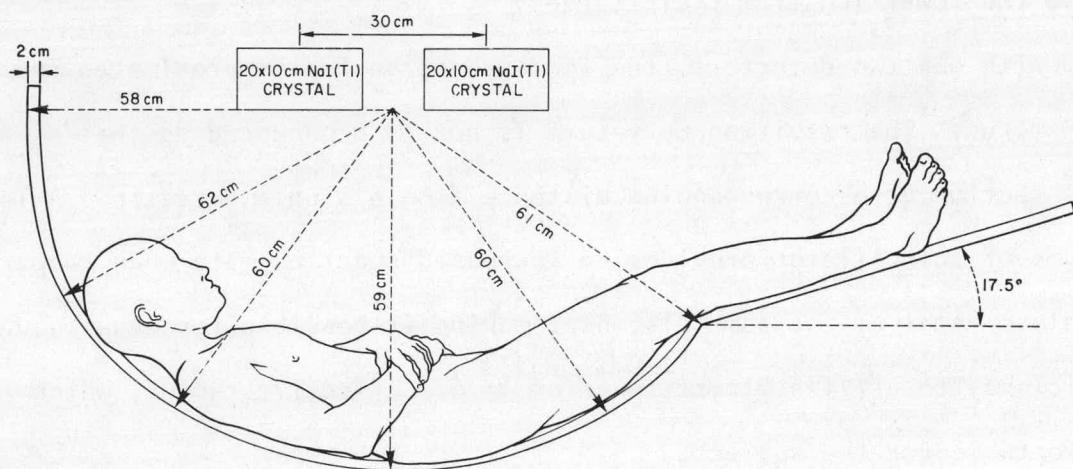



Figure 2. Cross-sectional sketch of the Utah total-body counter. Note that the 2 cm thick foam padding is compressed by the subject at a number of weight-bearing locations.

sheeting using full size templates cut from masonite as the pattern for the doubly-curved surface on which the subject reclines. A singly-curved surface extending distally from the positioner at an angle of about 17.5° above the horizontal was designed for a lower leg support. Polyethylene was selected as a non-radioactive construction material of low atomic number. However, to avoid the gamma-rays from neutron capture by hydrogen in the polyethylene, thin, stainless steel sheets would be used if another positioner were to be built at this altitude. The framework was constructed of stainless steel tubing of 2.54 cm outside diameter, with silver soldered joints, to eliminate the use of welding rods that frequently contain variable amounts of Th, Ra, and K (Marinelli et al., 1962). The framework also supports a 3 mm thick steel plate, 64 cm x 45 cm, having two 22 cm wide slots into which the NaI (Tl) crystals can be inserted to place them reproducibly above the positioner. All materials of which the positioner was constructed had been subjected to gamma-ray spectroscopy prior to use. No gamma-ray emitters could be detected in the polyethylene sheeting, polyethylene rod used for joint fabrication, stainless steel tubing, silver solder, steel plate crystal support, 2 cm thick foam padding, or the white (first cover) or bronze (second cover) naugahide, although the green naugahide initially tested, but not used, exhibited significant levels of radioactivity.

When the positioner had been completed, but before the padding and cover were installed, a grid, which had a 10 cm rectangular spacing, was drawn on the doubly curved surface. A point source of  $^{137}\text{Cs}$  was counted 10 cm above each grid intersection, and it was found that the actual positioner, indeed, approximated closely an isoresponse surface, with respect to the two crystals. For the 102 separate grid intersection positions, the standard deviation among the counting rates was  $\pm 4.8\%$ .



Figure 3. Background spectra recorded for 500 minutes by a single  $20 \times 10$  cm NaI(Tl) crystal inside (lower curve) and outside (upper curve) the 31 cm thick steel room.

## BACKGROUND

The background counting rate inside the steel room is between one and two orders of magnitude less than that measured within the laboratory building just outside the shielded enclosure (Fig. 3), the exact value depending upon the energy region of the spectrum which is considered. Photopeaks corresponding to gamma-rays from the radioactive decay of  $^{40}\text{K}$  and nuclides in the  $^{226}\text{Ra}$  series appear in the background spectra taken inside and outside the steel room. It has been reported (Joyet and Baudraz 1968, May and Marinelli 1962, Schmier 1969) that whereas the background recorded by a shielded NaI(Tl) crystal above about 3 MeV is mainly due to the cosmic radiation, the lines in the spectrum representing  $^{40}\text{K}$ ,  $^{214}\text{Pb}$ , and  $^{214}\text{Bi}$  largely result from radioactivity in the crystal assembly, principally the photomultiplier tubes. Data displayed in Fig. 4 indicate that no radioactivity was brought into the steel room as a result of the installation of the Pb + Cd + Cu lining. As also was observed by Marinelli et al. (1961), and by May and Marinelli (1962), the low energy background was diminished significantly by the addition of a thin Pb layer inside the steel. In this case (Fig. 4), there was nearly a factor of 2 reduction below about 0.2 MeV. For the two  $20 \times 10$  cm NaI(Tl) crystals, the integral counting rate of background between 0 and 2 MeV is about 1800 counts per minute. Corresponding background data for individual areas of the spectrum are exhibited in Table 1. In general, background counting rates in various regions of the spectrum within the 31 cm thick steel room average about 66% per crystal of that measured in our old steel room, with 13 cm thick walls covered on the outside with 1 cm of Pb. Individual ratios of background were 59% at 0.3 MeV, 65% at 0.66 MeV, 68% at 1.76 MeV, 68% at 1.0 MeV, and 73% at 1.46 MeV.

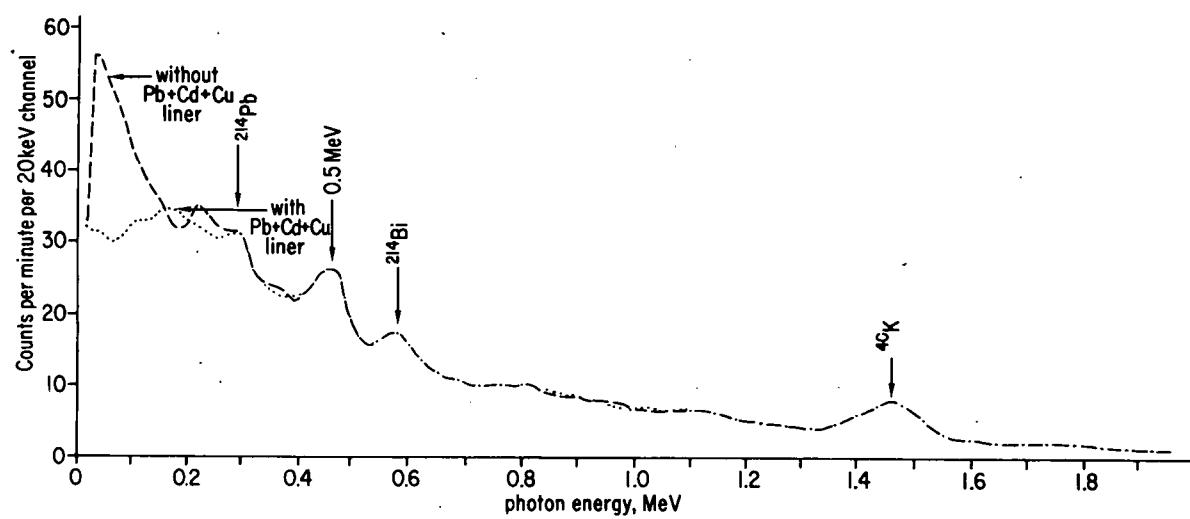



Figure 4. Background spectrum recorded for 400 minutes by a single 20 x 10 cm NaI(Tl) crystal placed at the volumetric center of the 31 cm thick steel room before and after the installation of the Pb + Cd + Cu lining.

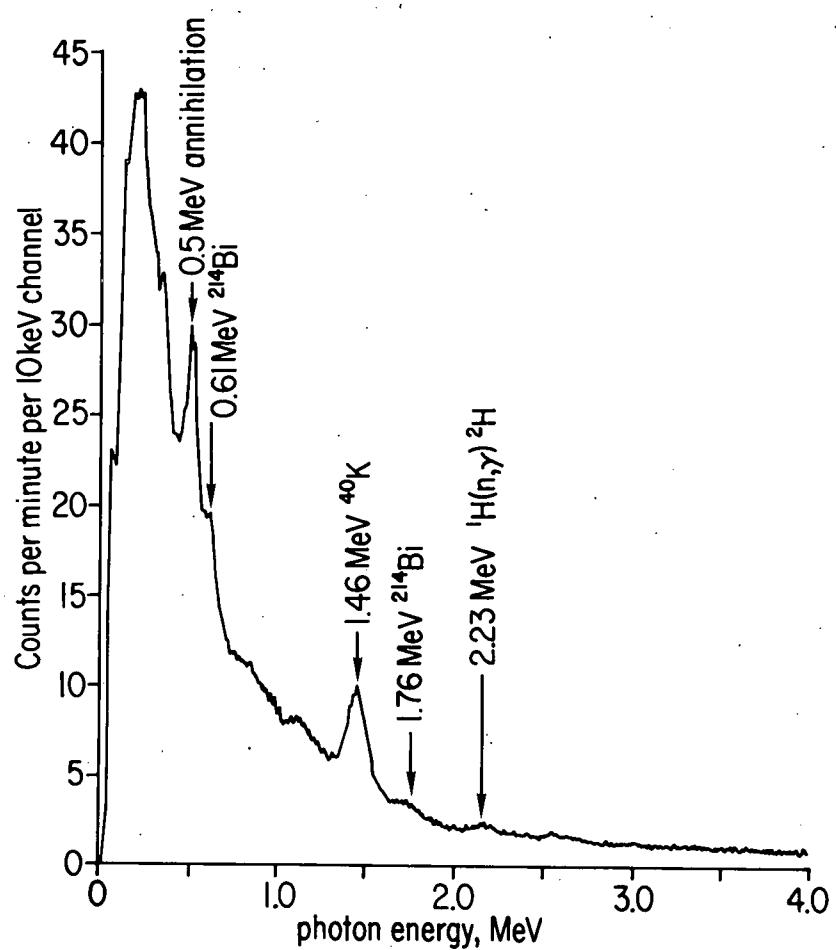



Figure 5. Background spectrum recorded for 400 minutes inside the 31 cm thick steel room by two  $20 \times 10$  cm NaI(Tl) crystals above the isoresponse positioner (see Fig. 1).

Table 1. Background and standard source counting rates in selected regions of the energy spectrum for the two 20 x 10 cm NaI(Tl) crystals utilized in gamma-ray spectrometry of humans at The University of Utah.

| Emitter                                    | Photon Energy, MeV | Counting Band, MeV | Background Count/min (cpm) | Source (cpm/nCi) | Detection Limit = $3\Sigma$ , (nCi)** |
|--------------------------------------------|--------------------|--------------------|----------------------------|------------------|---------------------------------------|
| $^{90}\text{Sr} + ^{90}\text{Y}^*$         | *                  | 0.06-0.15          | 332                        | 0.046            | 170                                   |
| $^{131}\text{I}$ (thyroid)†                | 0.36               | 0.33-0.40          | 140                        | 6.404            | 0.78                                  |
| $^{83}\text{Rb}$                           | 0.53               | 0.49-0.57          | 202                        | 12.620           | 0.48                                  |
| $^{137}\text{Cs}$                          | 0.66               | 0.62-0.71          | 187                        | 11.060           | 0.52                                  |
| $^{40}\text{K}$                            | 1.46               | 1.39-1.52          | 117                        | 0.943            | 4.9                                   |
| $^{222}\text{Rn}$ (via $^{214}\text{Bi}$ ) | 1.76               | 1.67-1.85          | 63                         | 1.953            | 1.7                                   |

\* Bremsstrahlung x-rays, continuous spectrum of 0 to 2.27 MeV in energy.

\*\* Corresponding to 3 standard deviations of a 50 minute background count.

† Inside an ORNL neck phantom (designed at the Oak Ridge National Laboratory): The other sources were centered inside our polyethelene phantom No. 3 (see Table 2).

A distinct photopeak was observed at 2.23 MeV in the background spectrum (Fig. 5) and especially in the spectra recorded for humans. It was determined that this was a result of the gamma-ray produced in the capture of a neutron by hydrogen =  $^1\text{H}$  (n,γ)  $^2\text{H}$ . There was sufficient hydrogen-containing material inside the steel room to moderate and capture enough environmental neutrons to produce a "hydrogen peak" at 2.23 MeV. Removal of the polyethylene part of the human positioner reduced the hydrogen photopeak to virtually undetectable levels.

The effect of this hydrogen capture gamma-ray on the total spectrum for a 70 kg subject was investigated. Nineteen steel cans, 16 cm in diameter and 19 cm high, were each filled with about 3.32 liters of distilled water (aged at least one month to ensure that the radon content was negligible) so that the total mass of water was 63 kg and the total mass of water and steel was 70 kg. A calculated total of 7 kg hydrogen was equal to that in the reference 70 kg human that is 10% hydrogen. The cans were arranged in the human positioner in such a way as to approximate the distribution (Andrasi and Kotel 1975) of body mass in a 70 kg man.<sup>(1)</sup> This anthropomorphic phantom or man-made-of-cans was christened "Can Man" and resembled in appearance the notorious Tin Woodman of Oz (Baum 1899). A Can Man spectrum was accumulated for a 400 minute counting period, and the pulse-height analyser subtracted from it, channel by channel, a background spectrum which was run for an equal length of time with nothing in the positioner. An example of this net spectrum is shown in Fig. 6, which exhibits several very interesting features. The photopeak at 2.23 MeV is prominent, but the Can Man seems to have had no effect on

---

<sup>(1)</sup> Ten percent head and neck, 60% trunk and arms, 20% thighs, and 10% lower legs and feet.

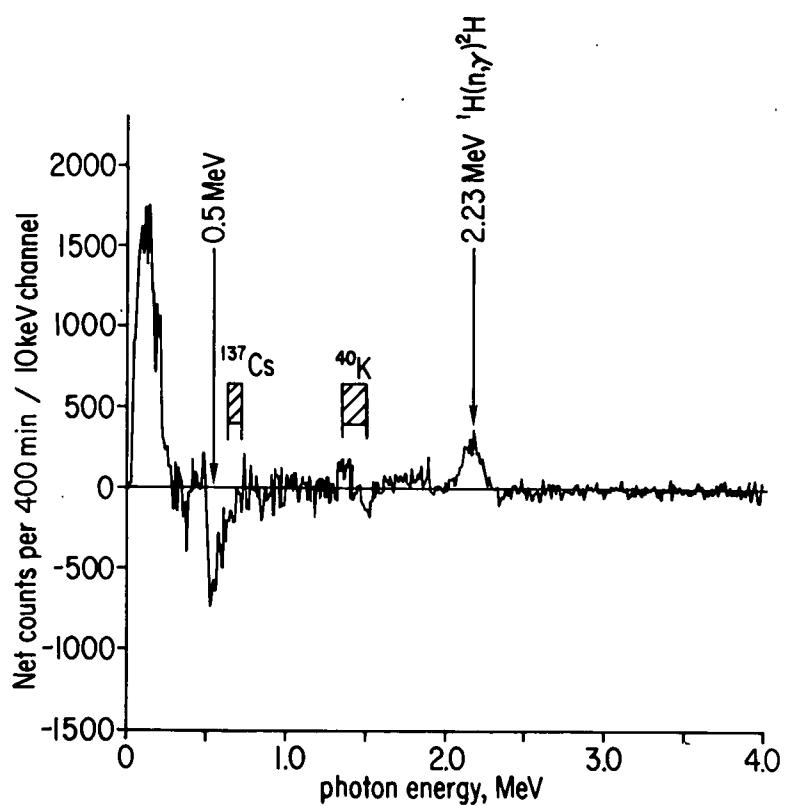
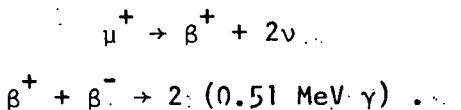



Figure 6. Spectrum of "Can Man," 63 kg of distilled water in 19 steel cans, in the positioner (see Fig. 1), recorded for 400 minutes, from which a background spectrum has been subtracted channel by channel. The background spectrum was recorded for an equal length of time under identical conditions, except without Can Man.

the spectrum above the peak. Below about 0.3 MeV, the net counting rate was increased dramatically, mainly due to the Compton scattering of the 2.23 MeV photons. Between about 0.6 and 2.0 MeV, the net counts per channel seem to be about evenly balanced in magnitude and sign (+ and -). In the two regions of the spectrum of particular interest, which are integrated for  $^{137}\text{Cs}$  and  $^{40}\text{K}$  (indicated by shading), the total net counting rates approach zero (this effect is more striking in a number of separate runs considered together rather than in just a single example, but the trend can be recognized in Fig. 6). There is a distinctive "negative peak" in the net spectrum at about 0.5 MeV. Can Man seems to exert two opposing effects upon the background spectrum: (1) Increasing the counting rate at 2.23 MeV and below as a result of additional neutron capture in hydrogen, and (2) decreasing the counting rate by shielding of the detectors. Effect #1 is dominant at 2.23 MeV and below 250 keV; effect #2 is dominant at about 0.5 MeV, and the two effects are roughly equal in other regions of the spectrum. Additional runs made in a similar fashion, but with 70 kg sulfur or 70 kg graphite in place of the Can Man, confirmed that the 2.23 MeV photopeak in Can Man resulted from the presence of additional hydrogen and verified the above assumptions concerning the shielding of the crystals.


Net counting rates in the 2.23 MeV photopeak were examined as a function of body mass for 26 people with various body configuration and size. Counting rates increased with increasing body mass, ( $P < 0.001$ , with a correlation coefficient of  $r = 0.79$ ), because of increasing hydrogen content with increasing body mass. However, overall net counting rates were so low that statistical accuracy (S.D.) of an individual measurement was poor, between about  $\pm 11\%$  and  $\pm 54\%$  in typical best and worst cases (11.5 and 28 net cpm).

Therefore, counting rates in the 2.23 MeV photopeak are not high enough to yield accurate estimates of total-body hydrogen in a reasonable counting time, yet the effects on the spectrum of the neutron-capture gamma-ray of hydrogen are not low enough to be ignored completely. A solution which has been utilized is to employ a Can Man net spectrum as an additional standard for correcting the counting rates in human spectra at each energy for the contributions of the various emitters observed.

When Can Man was measured in our old total-body counter, it was discovered that the counting rate at 2.23 MeV was nearly 3 times lower than in the newer configuration. Even when a correction was made for the different counting efficiencies which corrected for the volume of scintillator, the resulting difference between the two steel rooms was still considerable. As a result, measurements of environmental neutron levels were made within and outside the 31 cm thick steel room, using a Texas Nuclear Co. model #9140 Nemo spherical neutron dosimeter system, which employs as a detector a 4 mm x 8 mm  $^{6}\text{Li}$  (Eu) crystal surrounded by a 25.4 cm diameter solid polyethylene spherical moderator. It was found that the counting rate of neutron background between about 0.2 MeV and 14 MeV inside the shielded enclosure was from 20% to 34% higher than that measured outside the room in repeated measurements.

The additional neutrons inside the steel room are believed to result from the interaction of cosmic ray muons within the massive iron shield (Gold 1973, ICRU 1972, Rundo and Bunce 1966, Tanaka et al., 1965). Similarly, Peterson et al. (1965) discovered a neutron background inside their shielded enclosure and reported a greater neutron production by cosmic ray muon interactions with a high atomic number (Z) material such as Pb than a low Z material such as  $\text{H}_2\text{O}$ . Evaporation neutrons arise from the interaction of cosmic ray nucleons

and muons with nuclei (ICRU 1972, Marinelli et al., 1962, May and Marinelli 1962, 1964, Tongiorgi 1949). Being of cosmic-ray origin, this effect increases greatly with altitude. It is much larger at our laboratory (1500 meters) than at sea level. Thick shields of iron, lead or other high Z materials produce more than thinner shields or those of lower Z materials. The resulting neutrons are not absorbed strongly by iron or lead (Sychev 1967). It seems likely that the muon component of the cosmic radiation (Roos 1961) is at least partially responsible for the production of 0.5 MeV photons (ICRU 1972, Marinelli et al., 1962, May and Marinelli 1962) that are partially shielded from the crystals by the bulk of Can Man (as illustrated in Fig. 6) through the reactions:



#### PERFORMANCE

Whereas in our old human positioner we were able to count satisfactorily infants up to about 3 months of age (Pendleton et al., 1965), children over 4 years of age, and adults, the isoresponse positioner enables the measurement of children as young as 2 years. This is because the counting rate of the child is relatively independent of position as long as his body is in contact with the doubly curved surface and, except for movement off the surface and toward the detectors, it is not critical that the child remain motionless during the counting period. For positioners not designed with an isoresponse surface, including those with an isoresponse curve only along the center line, movement toward the outer edges of the positioner may seriously decrease the counting rate. In addition, persons of non-standard body configuration with scoliosis or contractures from the effects of diseases such as

muscular dystrophy, cannot always be positioned comfortably along the center line of a human positioner. Counting rates are not affected significantly when the non-standard body reclines in contact with the isoresponse positioner, however, regardless of the way in which the subject must be arranged on its doubly curved surface. It is difficult for women in the final stages of pregnancy to remain in a conventional chair positioner for a lengthy counting time, but the much more gentle overall curvature of the new positioner is comparatively comfortable.

The total-body spectrum of a man containing about 8 kg hydrogen, 0.128  $\mu\text{Ci}$   $^{40}\text{K}$  (151 g of total potassium), and 0.124  $\mu\text{Ci}$   $^{137}\text{Cs}$  is shown in Fig. 7.

#### CALIBRATION

Counting rates per  $\mu\text{Ci}$  of activity in a human subject were estimated in two ways. Primary calibration (Rundo 1962) was accomplished by administering trace amounts of  $^{83}\text{Rb}$ ,  $^{137}\text{Cs}$ ,  $^{42}\text{K}$ , or  $^{24}\text{Na}$  to people of various sizes and recording their spectra. Retained activity in each case was determined from excreta counting. Secondary calibration was done by means of a series of phantoms in which sources containing  $^{210}\text{Pb}$ ,  $^{241}\text{Am}$ ,  $^{51}\text{Cr}$ ,  $^{85}\text{Sr}$ ,  $^{137}\text{Cs}$ ,  $^{54}\text{Mn}$ ,  $^{65}\text{Zn}$ ,  $^{40}\text{K}$ ,  $^{42}\text{K}$ ,  $^{226}\text{Ra}$ ,  $^{228}\text{Th}$ , or  $^{24}\text{Na}$  were counted. These phantoms were constructed of laminated polyethylene, which has a density of about  $0.94 \text{ g/cm}^3$ . The six cylindrical phantoms were of slightly elliptical cross sections with a uniform height of 40 cm, but differed in their radial dimensions (see Table 2). Each phantom contains an axial tunnel about 4.5 cm in radius within which can be centered either (A) a 4.1 cm radius  $\times$  11.3 cm long Lucite cylinder containing an axial well, 1 cm in radius, extending into the cylinder 7.1 cm, within which a 10 ml glass ampoule can be positioned (Lucite has a density of about  $1.2 \text{ g/cm}^3$ ), or (B) a cylinder, 4.1 cm in radius and 17.6 cm long, made of 3 mm

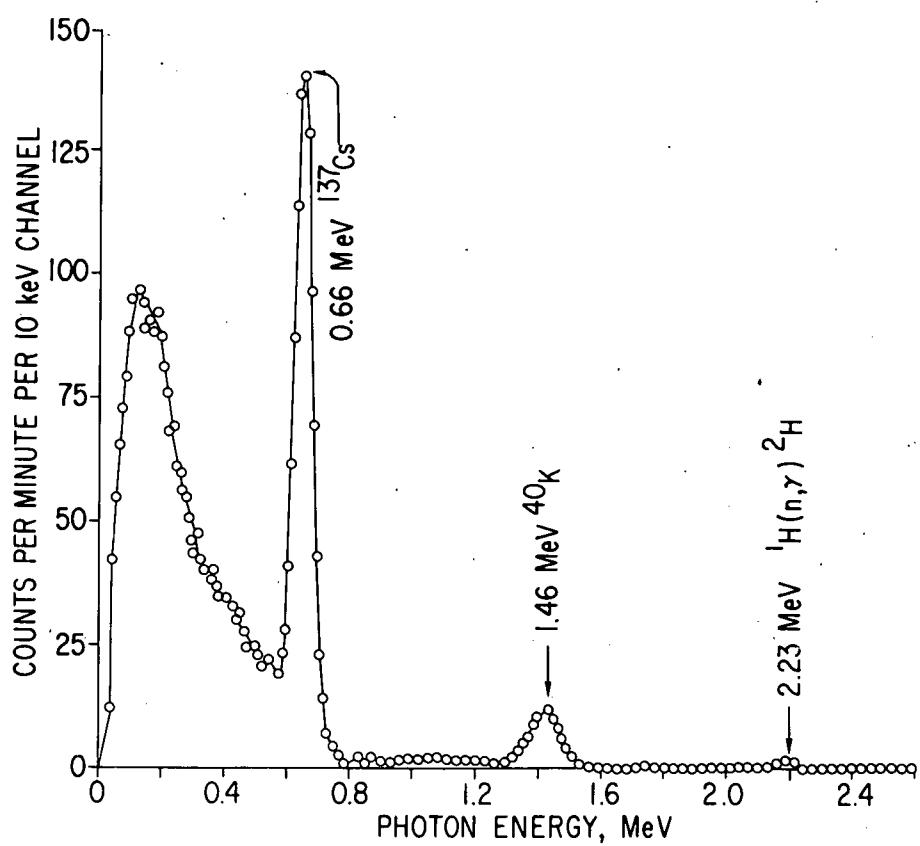



Figure 7. Total-body gamma-ray spectrum of a man containing about 8 kg hydrogen, 0.128  $\mu\text{Ci}$   $^{40}\text{K}$  (151 g of natural potassium) and 0.124  $\mu\text{Ci}$   $^{137}\text{Cs}$ . Background has been subtracted.

thick Lucite and containing a measured amount of reagent grade potassium chloride (about 430 g K or 0.365  $\mu$ ci  $^{40}\text{K}$ ). For counting, phantoms were placed in the human positioner, laterally centered, and along the position of a subject's thighs (Figs. 1 and 2).

In vivo studies. An opportunity for the primary calibration of our system occurred when, in connection with another study (Lloyd et al., 1973a), 38 persons of various ages, heights, weights, and body configurations were given orally, in a few ml of sterile solution, a double tracer containing about 6  $\mu$ ci  $^{83}\text{Rb}$  and 1  $\mu$ ci  $^{137}\text{Cs}$ . Control subjects less than 18 years of age received only half as much of each radionuclide. The individual ingestion solutions were assayed by gamma-ray spectroscopy for  $^{83}\text{Rb}$  and  $^{137}\text{Cs}$  content before administration. Each empty vial was also counted after administration, and the ingested activity was assumed equal to the difference.

Total collections of urine were made during the first 2 days of the study, and the  $^{83}\text{Rb}$  and  $^{137}\text{Cs}$  in each day's sample was determined. When a subject had defecated during a 1-day collection period, the day's urine was assumed to account for 80% of the excreted  $^{83}\text{Rb}$  and 85% of the excreted  $^{137}\text{Cs}$  (Lloyd et al., 1968a). Counting rates of each subject were determined immediately at about 10 minutes after ingestion and at the end of each of the two excreta collection periods. Standard sources containing known activities of  $^{83}\text{Rb}$  or  $^{137}\text{Cs}$  or  $^{40}\text{K}$  were also counted daily inside phantom #3 (Table 2) to enable the correction of subject counting rates in each energy band for the contribution from the other emitters. Retained activities of  $^{83}\text{Rb}$  and  $^{137}\text{Cs}$  were determined from excreta counting and were compared with corrected net counting rates of  $^{83}\text{Rb}$  and  $^{137}\text{Cs}$  in each subject relative to the respective net counting rate per  $\mu\text{Ci}$  in the phantom.

Table 2. Characteristics of the polyethylene phantoms used in the calibration study.

| Phantom Number | Minor Radius,<br>cm | Height,<br>cm | Mass,<br>kg | Total Absorber Thickness, † cm |                                  | Radially Weighted<br>Absorber Density<br>(= $\rho$ in g/cm <sup>3</sup> ) |
|----------------|---------------------|---------------|-------------|--------------------------------|----------------------------------|---------------------------------------------------------------------------|
|                |                     |               |             | Lucite<br>( $\rho$ = 1.2)      | Polyethylene<br>( $\rho$ = 0.94) |                                                                           |
| 1              | 6.20                | 40            | 3.4         | 3                              | 2                                | 1.096                                                                     |
| 2              | 8.25                | 40            | 6.8         | 3                              | 4                                | 1.051                                                                     |
| 3              | 10.30               | 40            | 11.3        | 3                              | 6                                | 1.027                                                                     |
| 4              | 12.25               | 40            | 16.6        | 3                              | 8                                | 1.011                                                                     |
| 5              | 14.25               | 40            | 22.8        | 3                              | 10                               | 1.000                                                                     |
| 6              | 16.25               | 40            | 29.8        | 3                              | 12                               | 0.992                                                                     |

\* Phantoms placed in the positioner with the minor radius perpendicular to its surface.

\*\* Including the 4.1 cm radius  $\times$  11.3 cm Lucite cylinder and a hollow cylindrical Lucite spacer, 4.1 cm in radius, 14 cm high, and 3 mm thick.

† Radially weighted absorber density =  $(3/9)(1.2) + (6/9)(0.94)$  = 1.027.

†† For example, in phantom #3, the radially weighted density =  $(3/9)(1.2) + (6/9)(0.94) = (0.400) + (0.627) = 1.027$ .

As has been done by other investigators (Ben Haim and Dudley 1966, Marinelli 1966, Naversten 1966), the effective half-thickness (X) of each person was calculated from the weight in grams (W) and the height in cm (H):

$$2X = \sqrt{W/H} \quad (1)$$

or

$$X = (1/2) \sqrt{W/H} \quad (2)$$

If a person can be represented by a unit density cylinder of slightly elliptical cross sectional area W/H, its effective minor radius corresponds to half-thickness "X" in Equations 1 and 2.

The counting rate (R) in the primary photopeak, relative to that in phantom #3 per retained  $\mu\text{Ci}$  in these subjects, decreased as an exponential function of half-thickness (X) such that

$$R = ae^{-kX} \quad (3)$$

Statistical analysis indicated that the exponential constant "k" was significantly greater than zero for both  $^{83}\text{Rb}$  ( $P<0.001$ ) and  $^{137}\text{Cs}$  ( $P<0.001$ ). There was no significant difference between either the coefficients (a) or exponential constants (k) if the data for the 16 persons with muscle disease were considered separately from the data for the 22 persons without muscle disease ( $^{83}\text{Rb}$ :  $P>0.2$ ;  $^{137}\text{Cs}$  :  $P>0.1$ ).

When the relative counting rate per  $\mu\text{Ci}$  in phantom #3 (Table 2) was taken as unity, the regression equation which described the relationship of relative counting rate (R) in the subject as a function of half-thickness (X) was for  $^{83}\text{Rb}$  at 0.53 MeV:

$$R_{0.53} = 1.586 e^{-(0.0436 \pm 0.0075)X} \quad (4)$$

and was for  $^{137}\text{Cs}$  at 0.66 MeV:

$$R_{0.66} = 1.534 e^{-(0.0374 \pm 0.0071)X} \quad (5)$$

Statistical analysis showed no significant difference ( $P > 0.2$ ) between either the coefficient or exponential constant for the  $^{137}\text{Cs}$  equation derived for humans (Eq. 5) and the  $^{137}\text{Cs}$  equation derived for phantoms of  $R = 1.307 e^{-0.026X}$ , where (x) is the minor radius of the phantom. Also, there were no significant differences between the  $^{83}\text{Rb}$  equation derived for humans (Eq. 4) and the equation for  $^{85}\text{Sr}$  derived for phantoms of  $R = 1.391 e^{-0.032X}$ . These 2 emitters were compared because their gamma-ray energies are quite similar ( $^{85}\text{Sr} = 0.514$  MeV and  $^{83}\text{Rb} = 0.53$  MeV). Data exhibited in Figures 8 and 10 illustrate the resemblance of counting rates per  $\mu\text{Ci}$  in persons and phantoms for  $^{137}\text{Cs}$ , and for  $^{83}\text{Rb}$  using data in phantoms for  $^{85}\text{Sr}$ .

An additional calibration study was performed using  $^{42}\text{K}$ <sup>(2)</sup> as listed in Table 3. Several authors have shown (Delwaide et al., 1962, Lloyd 1964, Marinelli et al., 1962) that for chair-type positioners, a 10 to 24 hour period is required for an administered  $^{42}\text{K}$  activity to become equilibrated with body potassium for purposes of in vivo counting. Following an overnight fast, about 4  $\mu\text{Ci}$   $^{42}\text{K}$  in a few ml of sterile solution were given orally to each of the adult subjects. Two hours later, and before any excretion had taken place, the total-body spectra were recorded. Another total-body count was made at 24 hours after ingestion. The reference source originally containing 13.2  $\mu\text{Ci}$   $^{42}\text{K}$  was also counted in phantom #3 (Table 2) several times on both days of the

---

(2) All counting rates and activities for  $^{42}\text{K}$  were corrected for radioactive decay to a common time.

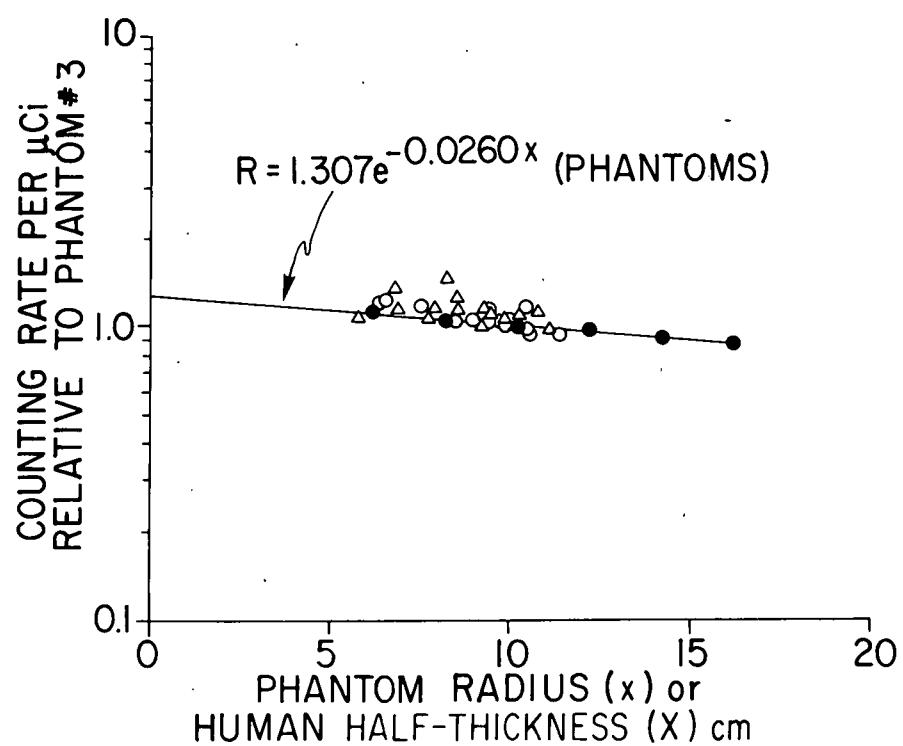



Figure 8. Relative counting rates per retained  $137\text{Cs}$  in healthy persons (open circles), persons with muscle disease (triangles), and in the series of polyethylene phantoms (solid circles) shown as a function of effective body minor radius or phantom radius.

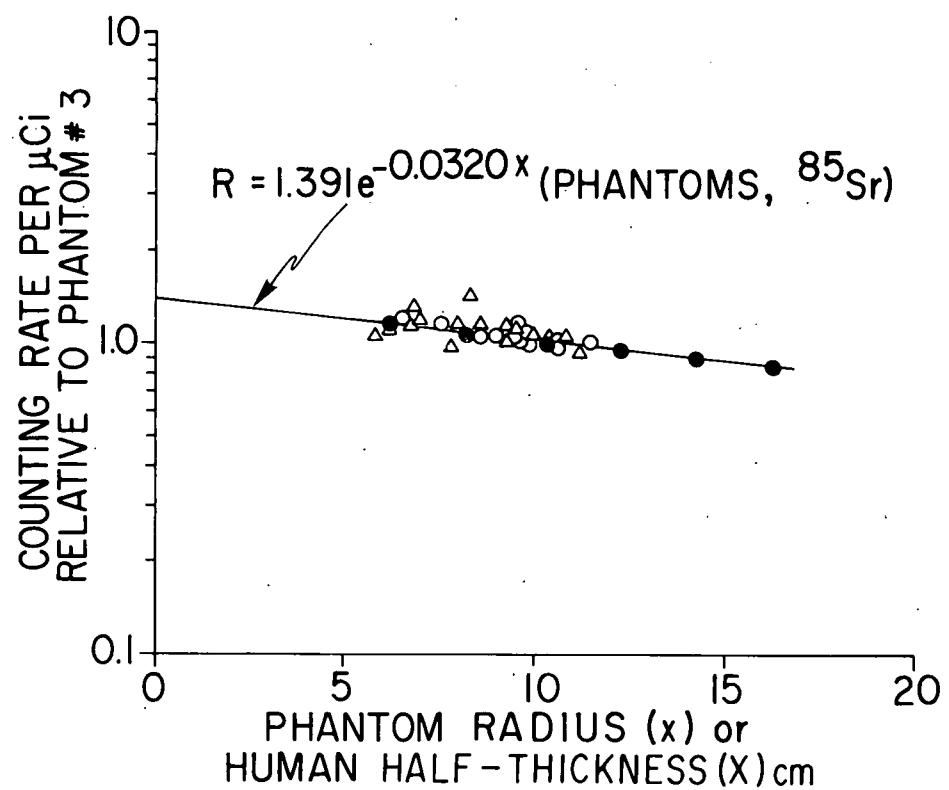



Figure 9. Relative counting rates per retained  $\mu\text{Ci}$   $^{83}\text{Rb}$  (photon energy = 0.53 MeV) in healthy persons (open circles) and in persons with muscle disease (triangles) as a function of effective body minor radius. Also shown are similar data for  $^{85}\text{Sr}$  (photon energy = 0.514 MeV) in the series of polyethylene phantoms as a function of phantom radius.

Table 3. Adults in  $^{42}\text{K}$  calibration study.

| <u>Subject</u> | <u>Sex</u> | <u>Weight,<br/>kg</u> | <u>Height,<br/>cm</u> | <u>Half-thickness<br/>cm</u> | <u><math>\frac{\text{cpm}/\mu\text{Ci \text{in person}}}{\text{cpm}/\mu\text{Ci \text{in phantom}}}</math></u> |
|----------------|------------|-----------------------|-----------------------|------------------------------|----------------------------------------------------------------------------------------------------------------|
| SM             | F          | 51.6                  | 169.5                 | 8.7                          | 1.079                                                                                                          |
| FB             | M          | 56.6                  | 175.0                 | 9.0                          | 1.048                                                                                                          |
| NW             | M          | 71.5                  | 178.5                 | 10.0                         | 1.003                                                                                                          |
| RL             | M          | 73.7                  | 171.0                 | 10.4                         | 0.949                                                                                                          |
| DB             | F          | 76.5                  | 157.5                 | 11.0                         | 0.958                                                                                                          |
| DA             | M          | 89.5                  | 175.0                 | 11.3                         | 0.933                                                                                                          |
| RJ             | M          | 90.5                  | 176.5                 | 11.3                         | 0.928                                                                                                          |
| TB             | M          | 104.0                 | 180.5                 | 12.0                         | 0.933                                                                                                          |
| DB             | M          | 114.2                 | 181.0                 | 12.6                         | 0.919                                                                                                          |

study. Each of the 9 vials containing  $^{42}\text{K}$  was counted before and after its contents were administered to a subject, and the ingested activity was assumed to equal the difference. In an earlier study (Lloyd 1964), it was found that for normal adults, an average of  $4.55 \pm 0.05\%$  of ingested  $^{42}\text{K}$  was excreted in the first 24 hours. Therefore, it was assumed that 4.55% of the administered  $^{42}\text{K}$  was excreted also by the 9 adults in this study between the total-body counts made at 2 hours and 24 hours after ingestion.

A comparison of the relative counting rates at 2 hours and at 24 hours showed that for an individual the counting rate per retained  $\mu\text{Ci}$   $^{42}\text{K}$  was rather constant, with about 1/3 of the values declining and about 2/3 increasing in the interval. The ratio of relative counting rate per  $\mu\text{Ci}$  at 2 hours to that at 24 hours averaged 0.964 with a standard deviation of  $\pm 0.046$ . Since the two sets of values were so similar, their average is shown in Table 3. The 2 hour value may have contained some error, since the 10 to 24 hour equilibration time of  $^{42}\text{K}$  with body K had not elapsed, but no correction for  $^{42}\text{K}$  excretion was necessary. However, the 24 hour value may have contained some error because of variability in actual excretion, but the equilibration of  $^{42}\text{K}$  with body potassium was almost certainly complete.

Comparison of various relative counting rates (R) at 1.53 MeV as a function of half-thickness (X), yielded the following regression equation (Figure 10) for the 9 individuals in this study:

$$R_{1.53} = 1.525 e^{-(0.0422 \pm 0.0066)X} \quad (6)$$

There was no significant difference ( $P > 0.2$ ) between the corresponding equation for the 2 hour values and that for the 24 hour values, so that they were all combined in the derivation of equation (6). In contrast to the situation found

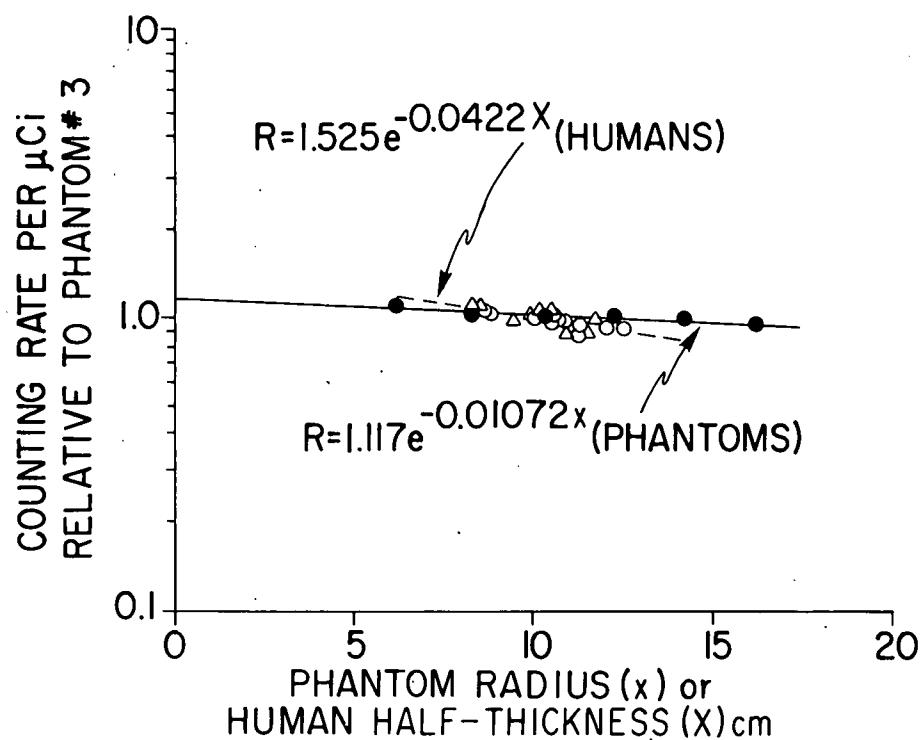



Figure 10. Relative counting rates per retained  $\mu\text{Ci}$   $^{42}\text{K}$  in the 9 persons shown in Table 3 (open circles) as a function of effective body minor radius. Also exhibited as triangles are corresponding data for persons given  $^{42}\text{K}$  in an earlier study (Lloyd 1964, Table 4). Solid circles show results of  $^{42}\text{K}$  counting in the series of polyethylene phantoms (Table 2).

for  $^{83}\text{Rb}$  and  $^{137}\text{Cs}$  in which there was no significant difference between the regression equations for humans and phantoms, there was a significant difference ( $P<0.001$ ) between exponential constants of the  $^{42}\text{K}$  equations for humans (Eq. 6) and that derived for phantoms of  $R = 1.117 e^{-0.0107X}$ .

Interestingly enough, the predicted values (Eq. 6) for the relative counting rates in this study were similar to those determined in our earlier work on  $^{42}\text{K}$  in humans using a chair-type positioner (Lloyd 1964, Table 4). The regression equation derived for these data was:

$$R_{1.53} = 1.401 e^{-(0.0354 \pm 0.0090)X} \quad (7)$$

(for chair positioner)

and was not significantly different ( $P>0.2$ ) from Equation 6. Both sets of human data are shown in Figure 10, the earlier values plotted as triangles and the more recent data plotted as open circles. Although the regression equation for humans which is shown in the figure (Eq. 6) is significantly different ( $P<0.001$ ) from the equation for the relative counting rate of  $^{42}\text{K}$  in the phantoms, there is little difference between the predicted values within the range of observed effective half-thicknesses of actual human adults and children which we have studied ( $\sim 6$  to 13 cm, see Figures 8, 9, and 10).

One additional calibration measurement in vivo at 2.75 MeV was obtained when a subject, 170 cm tall, weighing 78 kg (half-thickness = 10.7 cm) was given 1  $\mu\text{Ci}$   $^{24}\text{Na}$  orally in connection with another study. His total-body spectrum was recorded each hour for 7 hours following intake. All excreta were collected and were assayed for their  $^{24}\text{Na}$  content. Counting rates per retained  $\mu\text{Ci}$  (corrected for radioactive decay) relative to that in polyethylene phantom #3 (Table 2) increased from about 0.928 to 0.978 over the course of the day.

Table 4. Adults in earlier  $^{42}\text{K}$  calibration study (chair positioner).

| <u>Subject</u> | <u>Sex</u> | <u>Weight,<br/>kg</u> | <u>Height, Half-thickness</u> | <u>[<math>\frac{\text{cpm}/\mu\text{Ci}}{\text{cpm}/\mu\text{Ci}}</math> in person<br/>in phantom]</u> |
|----------------|------------|-----------------------|-------------------------------|--------------------------------------------------------------------------------------------------------|
|                |            |                       | <u>cm</u>                     | <u>cm</u>                                                                                              |
| TE             | F          | 45.4                  | 163                           | 8.3                                                                                                    |
| DT             | M          | 53.6                  | 184                           | 8.5                                                                                                    |
| RM             | F          | 59.1                  | 168                           | 9.4                                                                                                    |
| RL             | M          | 65.9                  | 170                           | 9.8                                                                                                    |
| AR             | F          | 65.9                  | 160                           | 10.2                                                                                                   |
| CM             | M          | 77.3                  | 178                           | 10.4                                                                                                   |
| PW             | M          | 82.3                  | 184                           | 10.6                                                                                                   |
| DB             | F          | 78.2                  | 161                           | 11.0                                                                                                   |
| DA             | M          | 92.7                  | 174                           | 11.5                                                                                                   |
| BC             | M          | 102.3                 | 187                           | 11.7                                                                                                   |

Counting rates of  $^{214}\text{Bi}$  at 1.76 MeV and bremsstrahlung radiation from  $^{90}\text{Sr} + ^{90}\text{Y}$  in a 55 kg female who acquired a body burden of  $^{226}\text{Ra}$  and  $^{90}\text{Sr}$  as a dial painter were compared to  $^{226}\text{Ra}$  and  $^{90}\text{Sr}$  standards in polyethylene phantom #3 (Table 2). Her calculated body content was similar to corresponding values measured in 8 other laboratories in the U.S. and Europe (Lloyd et al., 1976a).

Sources in polyethylene phantoms. The counting rate of an individual radioactive source within each of the series of phantoms (Table 2) is affected by two opposing factors: with increasing radius, the amount of overlying absorbing material increases, thus decreasing the relative counting rate, but at the same time, the center of radioactivity within the phantom is lifted closer to the detectors, thus increasing the relative counting rate. The magnitude of the first of these two effects depends upon the photon energy, but the second (geometry) should be energy-independent and, therefore, uniform for all emitters. The theoretical relationship between geometry and self absorption for single and multiple crystal human counters has been treated by Andras and Kotel (1975), Genna (1966), Joyet (1968), Joyet and Baudraz (1968), Marinelli (1966), and Naversten (1966).

Counting rates in various energy bands were determined for each radioactive source in each of the phantoms. For the various emitters, the counting rate in the primary photopeak of interest decreased as an exponential function of phantom radius. Counting rates in energy bands below the primary photopeak (mainly Compton scatter) remained fairly constant for a given emitter in all phantoms. Typical extreme values were in the order of  $\pm 5\%$ . Because phantom #3 is the one that is used to contain the standards for comparative counting of humans and has a half-thickness similar to the mean for humans  $\approx 10.3$  cm,

counting rates for sources within each phantom were divided by the counting rate in phantom #3. All sources used in this part of the study were in 10 ml or 5 ml glass ampoules, except the  $^{40}\text{K}$  standard and one of the  $^{42}\text{K}$  standards, which were both in identical Lucite cylinders, such as the one described previously for the  $^{430}\text{gK}$ . In the case of the  $^{42}\text{K}$  source, the cylinder was filled with aged distilled water in which the  $^{42}\text{K}$  was dissolved.

For a given emitter centered in the phantoms, the relative counting rate in the primary photopeak was fitted by the method of least squares to the equation:

$$R = a e^{-kx} \quad (8)$$

where:  $R$  = counting rate relative to that for phantom #3

$a$  and  $k$  = coefficient and exponential constant unique to each emitter

$e$  = base of natural logarithms

$x$  = minor radius of phantom, in cm

It was found that the calculated value of both parameters "a" and "k" depended upon photon energy in a regular way, that is, tended to decrease with increasing photon energy (Table 5 and Fig. 11). The exponential constants ( $k$ ) for  $^{208}\text{Tl}$  and  $^{24}\text{Na}$  were not significantly different from zero ( $P > 0.2$ ). This suggests that the opposing effects of geometry and self-absorption were about equal for the 2.62 and 2.75 MeV gamma-rays, but that for gamma-rays of lower energy, the effects of self-absorption were greater than geometry effects. Corresponding values of the parameters "a" and "k" can be determined for emitters other than those given in Table 3 from the relationships proposed in Fig. 11. It appears that a satisfactory calibration for humans can be approximated by

Table 5. Parameters determined for the dependence of relative counting rate upon phantom radius for various emitters in the primary photopeak.

| Nuclide           | Gamma-ray<br>Energy,<br>MeV | Coefficient |        | Exponential Constant |           | P,<br>Significance<br>Level of<br>k, |
|-------------------|-----------------------------|-------------|--------|----------------------|-----------|--------------------------------------|
|                   |                             | a           | ± S.D. | k                    | ± S.D.    |                                      |
| $^{210}\text{Pb}$ | 0.047                       | 1.942       | ±0.027 | 0.0644               | ± 0.00118 | <0.001                               |
| $^{241}\text{Am}$ | 0.060                       | 1.844       | ±0.063 | 0.0594               | ± 0.00272 | <0.001                               |
| $^{51}\text{Cr}$  | 0.32                        | 1.510       | ±0.051 | 0.0400               | ± 0.00072 | <0.001                               |
| $^{85}\text{Sr}$  | 0.514                       | 1.391       | ±0.010 | 0.0320               | ± 0.00056 | <0.001                               |
| $^{137}\text{Cs}$ | 0.662                       | 1.307       | ±0.026 | 0.0260               | ± 0.00140 | <0.001                               |
| $^{54}\text{Mn}$  | 0.835                       | 1.275       | ±0.017 | 0.0236               | ± 0.00132 | <0.001                               |
| $^{65}\text{Zn}$  | 1.12                        | 1.210       | ±0.011 | 0.01866              | ± 0.00074 | <0.001                               |
| $^{40}\text{K}$   | 1.46                        | 1.091       | ±0.011 | 0.00840              | ± 0.00112 | <0.01                                |
| $^{42}\text{K}^*$ | 1.53                        | 1.117       | ±0.008 | 0.01072              | ± 0.00058 | <0.001                               |
| $^{214}\text{Bi}$ | 1.76                        | 1.039       | ±0.007 | 0.00370              | ± 0.00058 | <0.001                               |
| $^{208}\text{Tl}$ | 2.62                        | 1.000       | ±0.010 | -0.00029             | ± 0.00058 | >0.2                                 |
| $^{24}\text{Na}$  | 2.75                        | 1.006       | ±0.013 | -0.00027             | ± 0.00102 | >0.2                                 |

\* 10 ml ampoule source. The  $^{42}\text{K}$  cylinder source counted about 1.04 times higher.

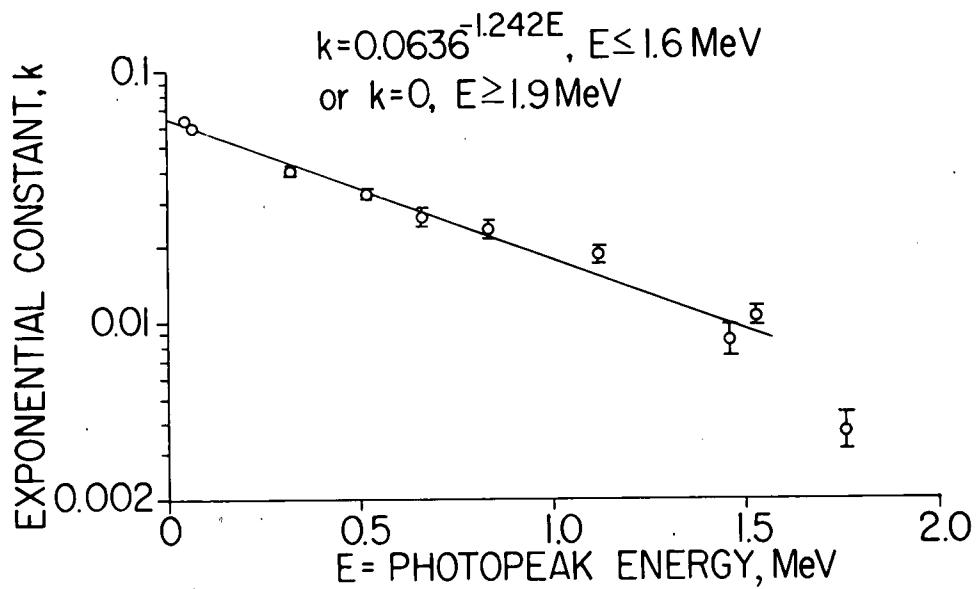
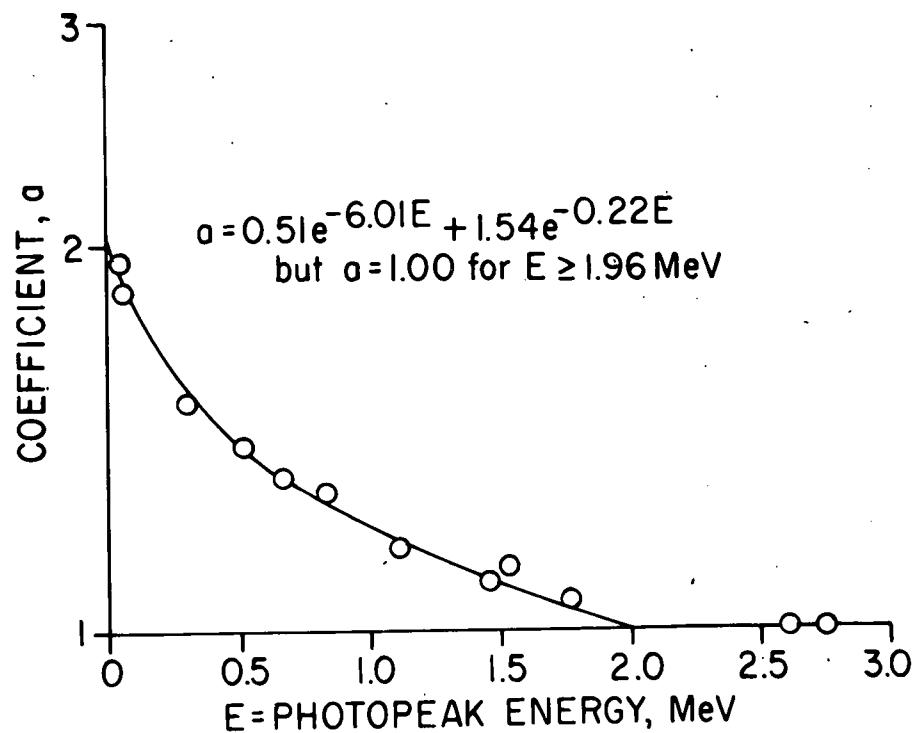




Figure 11A,B. Empirically-determined values of the coefficient, "a" (top), and exponential constant "k" (bottom), as a function of photon energy (see Table 5).

data obtained from studies in the phantoms for emitters other than  $^{83}\text{Rb}$ ,  $^{137}\text{Cs}$ ,  $^{42}\text{K}$ , and  $^{24}\text{Na}$ , for which a primary calibration was done.

In an attempt to separate the effects of geometry and self-absorption which are combined in the measurements made of various gamma-ray emitters within the polyethylene phantoms (Table 5), a second series of 6 phantoms was constructed entirely of styrofoam (density  $\approx 0.027 \text{ g/cm}^3$ ), identical in size to those shown in Table 2, but corresponding masses were in the order of 35 times less than their respective counterparts. Six gamma-ray emitters of various energies from 0.047 MeV to 2.62 MeV ( $^{210}\text{Pb}$ ,  $^{241}\text{Am}$ ,  $^{137}\text{Cs}$ ,  $^{65}\text{Zn}$ ,  $^{214}\text{Bi}$ ,  $^{208}\text{Tl}$ ) were run in all of these comparatively massless phantoms, and the dependence of relative counting rate upon phantom thickness was determined (Table 6). Within the range of phantom radii used, the effect of geometry alone could be expressed either as (A) an inverse square relationship with respect to the distance from the source to a representative point in the detector system, or (B) an exponential function of phantom thickness of the form  $R' = f e^{gx}$ . The exponential equation was chosen for convenience, and the constants (f) and (g) were found to be similar for all tested emitters (Table 6). There were no statistically significant differences among the resulting equations, and no dependence of either the individual parameters (f) and (g) upon photon energy could be shown ( $P > 0.2$ ). These data indicate that the differential effects of photon self-absorption within the phantoms were minor. Therefore, results from all 6 emitters were combined, and this yielded the following equation which describes the counting rate ( $R'$ ) relative to styrofoam phantom #3 as a function of phantom radius (x):

$$R' = 0.658e^{(0.0408 \pm 0.0008)x} \quad (9)$$

Table 6. Effects of geometry upon relative counting rate for various emitters counted in the series of styrofoam phantoms. In all cases, the dependence of relative counting rate ( $R$ ) upon phantom radius ( $x$ ) was fitted to a single exponential function of the form  $R = f e^{+gx}$ .

| Emitter           | Gamma-ray Energy, MeV | $f \pm S.D.$        | $g \pm S.D.$          |
|-------------------|-----------------------|---------------------|-----------------------|
| $^{210}\text{Pb}$ | 0.047                 | $0.6837 \pm 0.0151$ | $0.03872 \pm 0.00370$ |
| $^{241}\text{Am}$ | 0.060                 | $0.6523 \pm 0.0182$ | $0.04194 \pm 0.00468$ |
| $^{137}\text{Cs}$ | 0.662                 | $0.6586 \pm 0.0192$ | $0.04010 \pm 0.00490$ |
| $^{65}\text{Zn}$  | 1.12                  | $0.6431 \pm 0.0136$ | $0.04210 \pm 0.00356$ |
| $^{214}\text{Bi}$ | 1.76                  | $0.6383 \pm 0.0149$ | $0.04230 \pm 0.00394$ |
| $^{208}\text{Tl}$ | 2.62                  | $0.6738 \pm 0.0104$ | $0.03946 \pm 0.00262$ |
| All               | 0.047 to 2.62         | $0.658 \pm 0.007$   | $0.0408 \pm 0.0008$   |

Dividing equation 8 (Table 5 data) by equation 9 gives equation 10 for the counting rate (relative to that in phantom #3) of a source fixed in position at 10 cm above the positioner, and surrounded by a phantom of radius ( $x$ ) with linear attenuation coefficient ( $\mu \approx k - g$ )

$$\frac{R}{R'} = \frac{a}{f} \frac{e^{-kx}}{e^{+gx}} = \left(\frac{a}{f}\right) e^{-(k-g)x} = \left(\frac{a}{f}\right) e^{-\mu x} \quad (10)$$

where  $\mu$  = overall linear attenuation coefficient for the lucite + polyethylene combination.

As a rough check, values for  $\mu$  given on page 714 of Evans (1955) for water at corresponding energies were compared with our calculated values, and it was found that, except for the lowest energy emitters, there was approximate agreement (Table 7) in support of the reasonability of our calibration. It was not surprising that our values devived for  $\mu$  for  $^{210}\text{Pb}$ ,  $^{241}\text{Am}$ , and  $^{51}\text{Cr}$  were lower (by about 50%) than those given by Evans (1955), since the photoelectric absorption for polyethylene ( $\text{CH}_2$ ) is lower than that for water ( $\text{H}_2\text{O}$ ), and scattered photons from primary beams of low energy can still appear in the photopeak for NaI(Tl) spectroscopy. For example, in a Compton event, the 0.32 MeV gamma-ray of  $^{51}\text{Cr}$  scattered through  $30^\circ$  is degraded to only 0.30 MeV (equation 1.6, page 675 of Evans, 1955), and would be included in the photopeak integrated between 0.28 and 0.36 MeV. In contrast, an identical  $30^\circ$  Compton process degrades the 0.66 MeV photon of  $^{137}\text{Cs}$  to 0.56 MeV, which is not included in the photopeak summed between 0.62 and 0.70 MeV.

At very low energies, such as for  $^{210}\text{Pb}$ ,  $^{241}\text{Am}$ , etc., most of the detected gamma-rays are those which originate from the shallow layers of the subject's front surface, since radiation coming from deeper layers is strongly attenuated. Therefore, the counting rate per  $\mu\text{Ci}$  in the person should be considerably greater

Table 7. Linear attenuation coefficients in polyethylene phantoms (empirical) and water (theoretical).

| Nuclide           | Photon Energy, MeV | Empirical Values for Phantoms |                            | Attenuation Constant for Water ( $\mu$ in $\text{cm}^{-1}$ ) |
|-------------------|--------------------|-------------------------------|----------------------------|--------------------------------------------------------------|
|                   |                    | Coefficient (a/f)             | Attenuation Constant (k-g) |                                                              |
| $^{210}\text{Pb}$ | 0.047              | 2.951                         | 0.1052                     | 0.22                                                         |
| $^{241}\text{Am}$ | 0.060              | 2.802                         | 0.1002                     | 0.20                                                         |
| $^{51}\text{Cr}$  | 0.320              | 2.295                         | 0.0808                     | 0.12                                                         |
| $^{85}\text{Sr}$  | 0.514              | 2.114                         | 0.0728                     | 0.10                                                         |
| $^{137}\text{Cs}$ | 0.662              | 1.986                         | 0.0668                     | 0.085                                                        |
| $^{54}\text{Mn}$  | 0.835              | 1.938                         | 0.0644                     | 0.080                                                        |
| $^{65}\text{Zn}$  | 1.12               | 1.839                         | 0.0595                     | 0.070                                                        |
| $^{40}\text{K}$   | 1.46               | 1.658                         | 0.0492                     | 0.060                                                        |
| $^{42}\text{K}$   | 1.53               | 1.698                         | 0.0515                     | 0.060                                                        |
| $^{214}\text{Bi}$ | 1.76               | 1.597                         | 0.0445                     | 0.050                                                        |
| $^{208}\text{Tl}$ | 2.62               | 1.520                         | 0.0408 <sup>†</sup>        | 0.042                                                        |
| $^{24}\text{Na}$  | 2.75               | 1.529                         | 0.0408 <sup>†</sup>        | 0.040                                                        |

\*Taken from Fig. 1.3, page 714, in Evans (1955).

<sup>†</sup>Using a slope of zero rather than the values in Table 5.

than the counting rate per  $\mu\text{Ci}$  of an ampoule source centered in polyethylene phantom #3. Calibration by methods similar to the in vivo techniques described earlier for  $^{83}\text{Rb}$ ,  $^{137}\text{Cs}$ ,  $^{42}\text{K}$ , and  $^{24}\text{Na}$  or calibration with subjects of known body contents would be necessary for precision work at low energies.

#### ACKNOWLEDGMENTS

Garth D. Westenskow, Lee R. Jackson, Richard L. Stair, and Keith D. McCleery provided support and maintainance for electronic and mechanical equipment and instrumentation. Radioactive solutions used in the calibration studies were prepared by David R. Atherton. Assistance with various phases of the study was provided by Susan McFarland, J. Jerald Boseman, Bruce W. Johnson, T. Richard Downard, David O. Clark, Susan Mays, and Alan Lloyd. We appreciate the co-operation of the many people who served as subjects in the calibration studies.

REFERENCES

Andrasi, A. and Kotel, G.: NaI(Tl) detector efficiency calculations for distributed sources in a human phantom. International Journal of Applied Radiation and Isotopes 26, 451-454 (1975).

Baum, L. F.: The Wonderful Wizard of Oz, 267 pages, Chicago: Geo. M. Hill Co., 1899.

Belcher, E. H. and Robinson, C. J.: Whole-body counting techniques in clinical diagnostic studies with Ca<sup>47</sup>, Co<sup>58</sup>-vitamin B<sub>12</sub> and Fe<sup>59</sup>. In: Radioactivity in Man Vol. II, pages 343-359 (Meneely, G. R. and Motter-Linde, S., Editors). Springfield, Illinois: Charles C. Thomas, 1965.

BenHaim, A. and Dudley, R. A.: Calibration problems in whole-body counting with NaI(Tl) detectors. In: Clinical Uses of Whole-Body Counting, pages 92-106, Vienna: International Atomic Energy Agency, 1966.

Chhabra, A. S.: An improved whole-body counting geometry with a single NaI(Tl) detector (8 x 4 inches). Radiology 82, 816-826 (1964).

Delwaide, P. A., Verly, G., Colard, J. F., and Boulenger, R. R.: Determination du potassium total dans l'organisme. In: Whole Body Counting, pages 341-349, Vienna: International Atomic Energy Agency, 1962.

Evans, R. D.: The Atomic Nucleus. New York: McGraw-Hill Book Co., 1955.

Genna, S.: Analytical methods in whole-body counting. In: Clinical Uses of Whole-Body Counting, pages 37-63, Vienna: International Atomic Energy Agency, 1966.

Gold, R.: Meson dosimetry for the natural environment. Radiation Research 56, 3, 413-427 (1973).

ICRU: International Commission on Radiation Units and Measurements Report 22, Measurement of low-level radioactivity, pages 13-14, 1972.

Joyet, G.: Auto-atténuation  $\gamma$  et géométrie de la mesure avec cristal unique en spectrométrie de l'homme total. *Review Médicale de Liège* 23 Suppl. 1: 177-190 (1968).

Joyet, G. and Baudraz, A.: Response of a quasi-elliptical geometry crystal-subject in spectrometry of whole-body activity. *Journal of Applied Mathematics and Physics (ZAMP)* 18, 614-617 (1967).

Joyet, G. and Baudraz, A.: Self-attenuation and geometry in single-crystal whole-body spectrometry; application to total potassium measurement in man. *Experientia* 24, 865-880 (1968).

Lloyd, R. D., Mays, C. W., Fisher, W., and Hintze, R.: Total body  $\gamma$ -ray counting of  $\text{Pu}^{239}$  in beagles. *Health Physics* 8, 777-780 (1962).

Lloyd, R. D.: Human total-body counter calibration. *Research in Radiobiology, University of Utah Report COO-119-229*, 186-198 (1964).

Lloyd, R. D., Mays, C. W., Zundel, W. S., Taysum, D. H., Pendleton, R. C., Hupf, H. B., and Tyler, F. H.: Retention of ingested  $^{83}\text{Rb}$  and  $^{137}\text{Cs}$  by four patients with Duchenne muscular dystrophy. In: Cesium, Rubidium, and Potassium Metabolism: Studies of Muscle Seeking Radionuclides, COO-119-239, pages 2-29. Salt Lake City: University of Utah Press, 1968a.

Lloyd, R. D., Zundel, W. S., Mays, C. W., Wagner, W. W., Pendleton, R. C., Aamodt, R. L., and Tyler, F. H.: Short cesium half-times in patients with muscular dystrophy. *Nature, London*, 220, 1029-1031 (1968b).

Lloyd, R. D., Mays, C. W., Pendleton, R. C., and Clark, D. O.: A comparison of the cesium-137 content of milk and people from 19 dairy farms in Utah. *Radiological Health Data and Reports*, 10, 427-433 (1969).

Lloyd, R. D., Mays, C. W., Church, B. W., Pendleton, R. C., and Mays, S. F.: Does the elimination rate of cesium in humans change with the seasons? *Health Physics* 18, 623-629 (1970).

Lloyd, R. D., Mays, C. W., McFarland, S. S., Zundel, W. S., and Tyler, F. H.: Metabolism of  $^{83}\text{Rb}$  and  $^{137}\text{Cs}$  in persons with muscle disease. *Radiation Research* 54, 463-478 (1973a).

Lloyd, R. D., Pendleton, R. C., Mays, C. W., Clark, D. O., and Goates, G. B.: Cs-137 in humans: a relationship to milk Cs-137 content. *Health Physics* 24, 23-36 (1973b).

Lloyd, R. D.: Gamma-ray emitters in concrete. *Health Physics* 31, 71-73 (1976).

Lloyd, R. D., Mays, C. W., Atherton, D. R., and Taylor, G. N.:  $^{90}\text{Sr} + ^{90}\text{Y}$  Bremsstrahlung efficiency predicted for humans. *Radiation and Environmental Biophysics* 13, 229-237 (1976a).

Lloyd, R. D., Taysum, D. H., and Mays, C. W.: Design and calibration of a total-body counting system for measuring radioactivity in beagles. *Int. J. Applied Radiat. Isotopes* 27, 108-111 (1976b).

Maletskos, C. J., Dean, P. N., Lough, S. A., and Miller, C. E.: Intercomparison of the reliability of body Cs-137 measurements on human beings. *Health Physics* 13, 1307-1319 (1967) (we were laboratory #15).

Marinelli, L. D., Miller, C. E., May, H. A., and Rose, J. E.: The use of low level gamma scintillation spectrometry in the measurements of activity in human beings. In: Radioactivity in Man, p. 16-30 (Meneely, G. R., Ed.), Springfield, Illinois: Charles C. Thomas, 1961.

Marinelli, L. D., Miller, C. E., May, H. A., and Rose, J. E.: Low level gamma-ray scintillation spectrometry: experimental requirements and biomedical applications. In: Advances in Biological and Medical Physics vol. VIII, pages 81-160 (Tobias, C. A., Lawrence, J. H., and Hayes, T. L., Editors), New York: Academic Press, Inc., 1962.

Marinelli, L. D.: Geometrical and physical parameters in whole-body gamma-ray spectroscopy measurements. In: Radiological Physics Division Annual Report ANL-7220, pages 31-39, Argonne, Illinois: Argonne National Laboratory, 1966.

May, H. A. and Marinelli, L. D.: Sodium iodide systems: optimum crystal dimensions and origin of background. In: Whole Body Counting, pages 15-40 (Dudley, R. A., Editor), Vienna: International Atomic Energy Agency, 1962.

May, H. and Marinelli, L. D.: Cosmic-ray contribution to the background of low-level scintillation spectrometers. In: The Natural Radiation Environment, pages 463-480 (Adams, J. A. S. and Lowder, W. M., Editors), Chicago: The University of Chicago Press, 1964.

Naversten, Y.: Some aspects of whole-body counting geometries. In: Clinical Uses of Whole-Body Counting, pages 64-91, Vienna: International Atomic Energy Agency, 1966.

Pendleton, R. C., Mays, C. W., Lloyd, R. D., and Brooks, A. L.: Differential accumulation of  $I^{131}$  from local fallout in people and milk. Health Physics 9, 1253-1262 (1963a).

Pendleton, R. C., Lloyd, R. D., and Mays, C. W.: Iodine-131 in Utah during July and August 1962. Science 141, 640-642 (1963b).

Pendleton, R. C., Mays, C. W., Lloyd, R. D., and Church, B. W.: A trophic level effect on  $^{137}Cs$  concentration. Health Physics 11, 1503-1510 (1965).

Peterson, R. E., Weiner, E. V., and Cook, W. S., Jr.: Evaluation of a water shield whole body counter. In: Radioactivity in Man, pages 71-86 (Meneely, G. R. and Motter Linde, S., Editors). Springfield, Illinois: Charles C. Thomas, 1965.

Roos, C. E.: Cosmic rays, radioactivity of materials, and shielding. In: Radioactivity in Man, pages 51-60 (Meneely, G. R., Editor), Springfield, Illinois: Charles C. Thomas, 1961.

Rundo, J.: Some calibration problems of whole-body gamma-ray spectrometers. In: Whole Body Counting, pages 121-144 (Dudley, R. A., Editor), Vienna: International Atomic Energy Agency, 1962.

Rundo, J. and Bunce, L. J.: Estimation of the total hydrogen content of the human body, Nature, London, 210, 1023-1024 (1966).

Schmier, H.: Shielding of whole body counters. Kerntechnik, Isotopentechnik und Chemie 11, 227-229 (1969).

Sychev, B. S., Mal'kov, V. V., Komochkov, M. M., and Zaitsev, L. N.: Penetration of high-energy neutrons in iron-water mixtures. J. Nuclear Energy 21, 205-209 (1967).

Tanaka, E., Ioth, S., Hiramoto, T., and Iinuma, T. A.: Cosmic ray contribution to the background of NaI scintillation spectrometers. Japanese J. Appl. Phys. 4, 785-792 (1965).

Tongiorgi, V. C.: On the mechanism of production of the neutron component of the cosmic radiation. Physical Review 76, 4, 517-526 (1949).

Zundel, W. S., Mays, C. W., Lloyd, R. D., Wagner, W. W., Pendleton, R. C., and Tyler, F. H.: Short half-times of Cs-137 in pregnant women. Nature, London, 221, 89-91 (1969).

## TWO NEW ANIMAL MODELS FOR ACTINIDE TOXICITY STUDIES

G. N. Taylor, P. A. Gardner, C. W. Jones,  
R. D. Lloyd, and C. W. Mays

ABSTRACT: Two small rodent species, the grasshopper mouse (*Onychomys leucogaster*) and the deer mouse (*Peromyscus maniculatus*) have tenacious retention in the liver and skeleton of plutonium and americium. The retention following intraperitoneal injection of Pu and Am in citrate solution ranged from 20 to 47% (liver) and 19 to 42% (skeleton), relatively independent of post-injection times, varying from 30 to 125 days. Based on observations extended to 125 days post-injection, the biological half-times appeared to be long.

Both of these rodents are relatively long-lived (median lifespans of approximately 1400 days), breed well in captivity, and adapt suitably to laboratory conditions. It is suggested that these two species of mice, in which plutonium is partitioned between the skeleton and liver in a manner similar to that of man, may be useful animal models for actinide toxicity studies.

### INTRODUCTION

Plutonium undergoing translocation via the vascular system is retained about equally in the liver and the skeleton of man (1-5), with effective half-times of approximately 40 years and 100 years, respectively (5). The ICRP currently lists the initial partitioning as 45% skeleton and 45% liver (5), which indicates that the average concentration in the 1.8-kg liver is greater than in the 10-kg skeleton of a reference man. Obviously, the most representative animal models for plutonium toxicity studies must likewise have relatively high and prolonged retention in the liver as well as the skeleton. Nevertheless, much of the data related to metabolic and toxicity patterns of actinide elements have been derived from common laboratory mice and rats, which have significant differences in comparison to man, especially with regard to the liver. For example, the retention half-time of plutonium in the hepatic tissue of these species is approximately 9 to 60 days (6-8). Retention of actinides is also brief in the chinchilla liver (9) and the rabbit liver (9-19). This rapid excretion of plutonium and other actinides from the liver restricts the scope of toxicity

investigations in these animals to the skeleton and precludes assessment of liver risk.

Although the effective half-time of plutonium in the hepatic tissue of most laboratory rats and mice is short, this is not true for all rodent species. For example, the effective half-time of americium in the livers of the Syrian and Chinese hamsters is approximately 1000 days (12). These species also retained 80% or more of the  $^{252}\text{Cf}$  burden present at 8 days post-injection through a 128 day period, as compared to an approximate half-time of 5 days in the rat (13). This prolonged retention in the hamster liver more nearly parallels the retention pattern of plutonium in the human liver and provides a much more representative animal model with which to study actinide toxicity.

In spite of the advantages of relatively high and prolonged retention of plutonium and some of the other actinides in the liver, several factors have arisen that complicate the use of hamsters in long-term toxicity studies:

- (A) Significant life shortening related to kidney disease (14) plus a high incidence of liver cirrhosis (15) have been observed in the Syrian hamster.
- (B) In the Chinese hamster liver a 70% frequency of nodular hyperplasia (16) has been reported. This is a complicating factor since nodular hyperplasia has been a prominent radiation-induced end-point in actinide studies, at least in dogs (17), and a high incidence would significantly reduce the sensitivity of experiments designed to evaluate the toxicity of liver-seeking radionuclides. Because of these disease factors in the hamster, we have searched for other small rodent species which have high and prolonged retention of plutonium and other actinides in the liver, and are not afflicted with a high frequency of spontaneous diseases. It is the purpose of this report to indicate 2 animal models that may be useful for internal emitter studies.

#### METHODS

The mice were from outbred colonies and were adults at the time of injection. They were housed in a constant temperature room ( $70 \pm 4^\circ\text{F}$ ) on ground corn cob bedding in 7" x 11" x 5" plastic cages. Wayne Lab Blox and water were fed ad lib.

The radionuclides were administered in a citrate buffered solution via a single intraperitoneal injection. In the two animals injected with the

$^{237}+^{239}\text{Pu}$  plus  $^{241}\text{Am}$  mixture (mice OL-6-24 and PM-11-18), the photon emitter,  $^{237}\text{Pu}$ , was added to the  $^{239}\text{Pu}$  solution prior to the preparation of the citrate solution, to ensure that the  $^{237}\text{Pu}$  would act as an isotopic tracer for the  $^{239}\text{Pu}$ .

The radionuclide analysis was based on gamma-ray spectroscopy, using a pair of eight-inch diameter by four-inch thick NaI(Tl) crystals and monitoring of the 100 keV gamma-rays ( $^{237}\text{Pu}$ ) and the 60 keV gamma-rays ( $^{241}\text{Am}$ ).

#### RESULTS

Based on our preliminary investigations, two species that warrant further investigation are the grasshopper mouse (*Onychomys leucogaster*) (Fig. 1) and the deer mouse (*Peromyscus maniculatus*) (Fig. 2).

Americium and plutonium retention was high and based on post-injection times extending out to 69 days (*O. leucogaster*) or 125 days (*P. maniculatus*), the excretion rate appears to be low (Table 1). The partitioning between the liver and the skeleton was approximately equal in the deer mouse, but the liver retention exceeded the skeletal retention in the grasshopper mouse.

The median lifespan of *O. leucogaster* is reported to be approximately 1400 days and the maximum as approximately 2000 days (18). Lifespan data for *P. maniculatus* were not found. However, the median and maximum lifespans for a very close relative, *P. leucopus*, is given as 1476 days and 3040 days, respectively (19). The longevity of these species exceeds that of common laboratory mice (*Mus musculus*) significantly (19,20). These longer lifespans would have distinct advantages in some radionuclide toxicity studies.

Tentatively, the incidence of liver disease, although not zero, appears to be significantly lower than has been reported in hamsters (15,19). For example, in 282 autopsies involving *Peromyscus maniculatus* of unspecified ages, Cosgrove observed 4 tumors, only 1 of which was a liver tumor (21). In the closely related species, *Peromyscus leucopus*, a frequency of 12 and 4% hepatic tumors was observed in males and females, respectively (22). The mice were reared under laboratory conditions, and 65% of the animals were beyond 900 days age. The reported frequency was higher in *O. leucogaster* and in a series of autopsies involving old adults (over 900 days age), liver lesions were observed in 22% of the mice (18). These included both hyperplastic

Table 1. PERCENT OF INJECTED DOSE RETAINED FOLLOWING INTRAPERITONEAL INJECTION OF  $^{241}\text{Am}$  OR  $^{237+239}\text{Pu}$  IN GRASSHOPPER MICE (*Onychomys leucogaster*) AND DEER MICE (*Peromyscus maniculatus*).

| MOUSE NO.               | DAYS PI TO DEATH | INJECTED $\mu\text{Ci}$ | PERCENT OF INJECTED ACTIVITY RETAINED |       |       |
|-------------------------|------------------|-------------------------|---------------------------------------|-------|-------|
|                         |                  |                         | LIVER                                 | OTHER | TOTAL |
| <b>GRASSHOPPER MICE</b> |                  |                         |                                       |       |       |
| 213W1                   | 31               | 0.0075 (Am-241)         | 45.3                                  | 22.7  | 68.0  |
| 213W2                   | 69               | 0.0075 (Am-241)         | 46.9                                  | 22.8  | 69.7  |
| OL6-24                  | 46               | 0.0101 (Am-241)         | 35.9                                  | 25.2  | 61.1  |
| OL6-24                  | 46               | 0.0015 (Pu-237)*        | 42.8                                  | 35.0  | 77.8  |
| <b>DEER MICE</b>        |                  |                         |                                       |       |       |
| 214W4                   | 30               | 0.0227 (Am-241)         | 24.4                                  | 24.9  | 49.3  |
| 213W3                   | 47               | 0.0075 (Am-241)         | 20.0                                  | 20.3  | 40.3  |
| 214W5                   | 61               | 0.0227 (Am-241)         | 30.9                                  | 22.8  | 53.7  |
| 214W2                   | 92               | 0.0227 (Am-241)         | 26.6                                  | 32.0  | 58.6  |
| 214W3                   | 125              | 0.0227 (Am-241)         | 37.9                                  | 21.0  | 58.9  |
| PM11-18                 | 46               | 0.0101 (Am-241)*        | 38.4                                  | 18.7  | 57.1  |
| PM11-18                 | 46               | 0.0015 (Pu-237)*        | 35.3                                  | 41.6  | 76.9  |

\*Mice received 0.0041  $\mu\text{Ci}$   $^{239}\text{Pu}$  + 0.0015  $\mu\text{Ci}$   $^{237}\text{Pu}$  + 0.0101  $\mu\text{Ci}$   $^{241}\text{Am}$ .

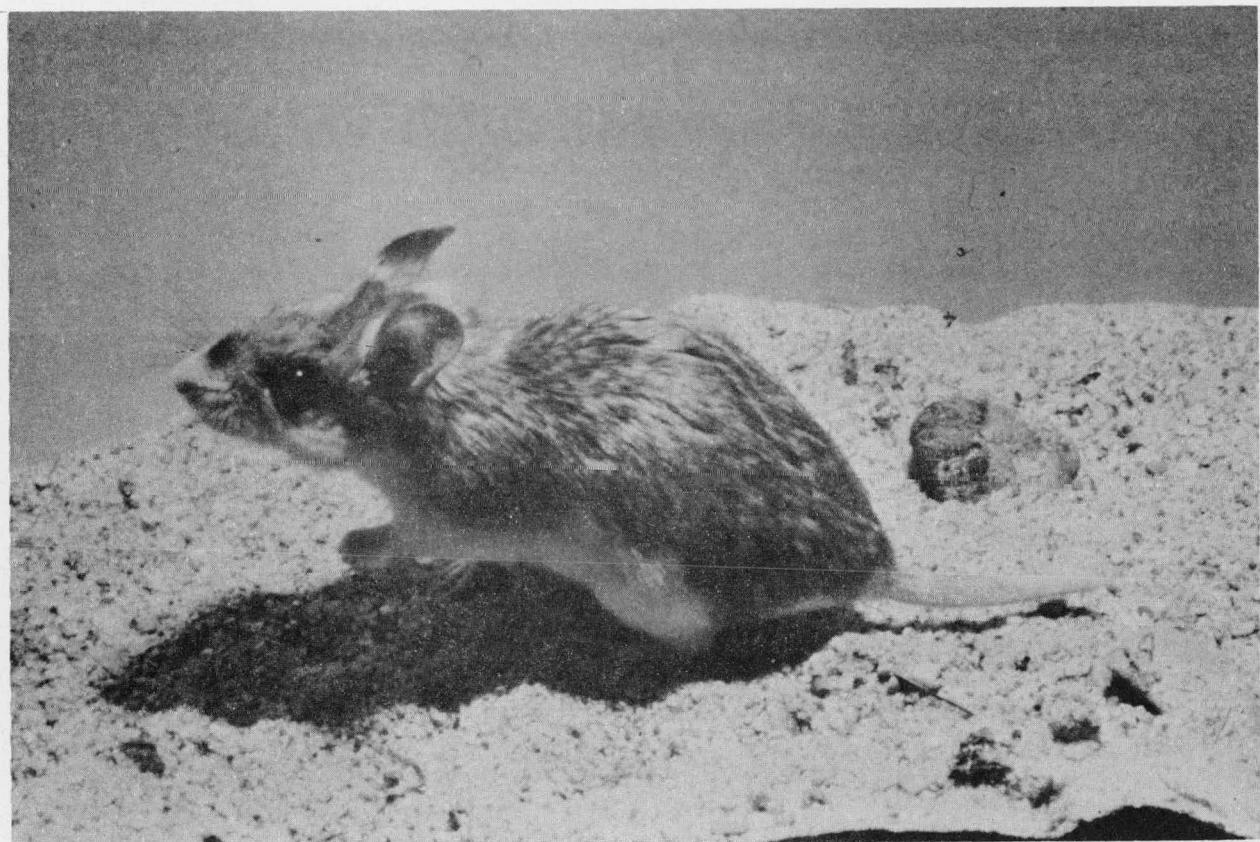



FIGURE 1. Adult grasshopper mouse (*Onychomys leucogaster*). X 1.

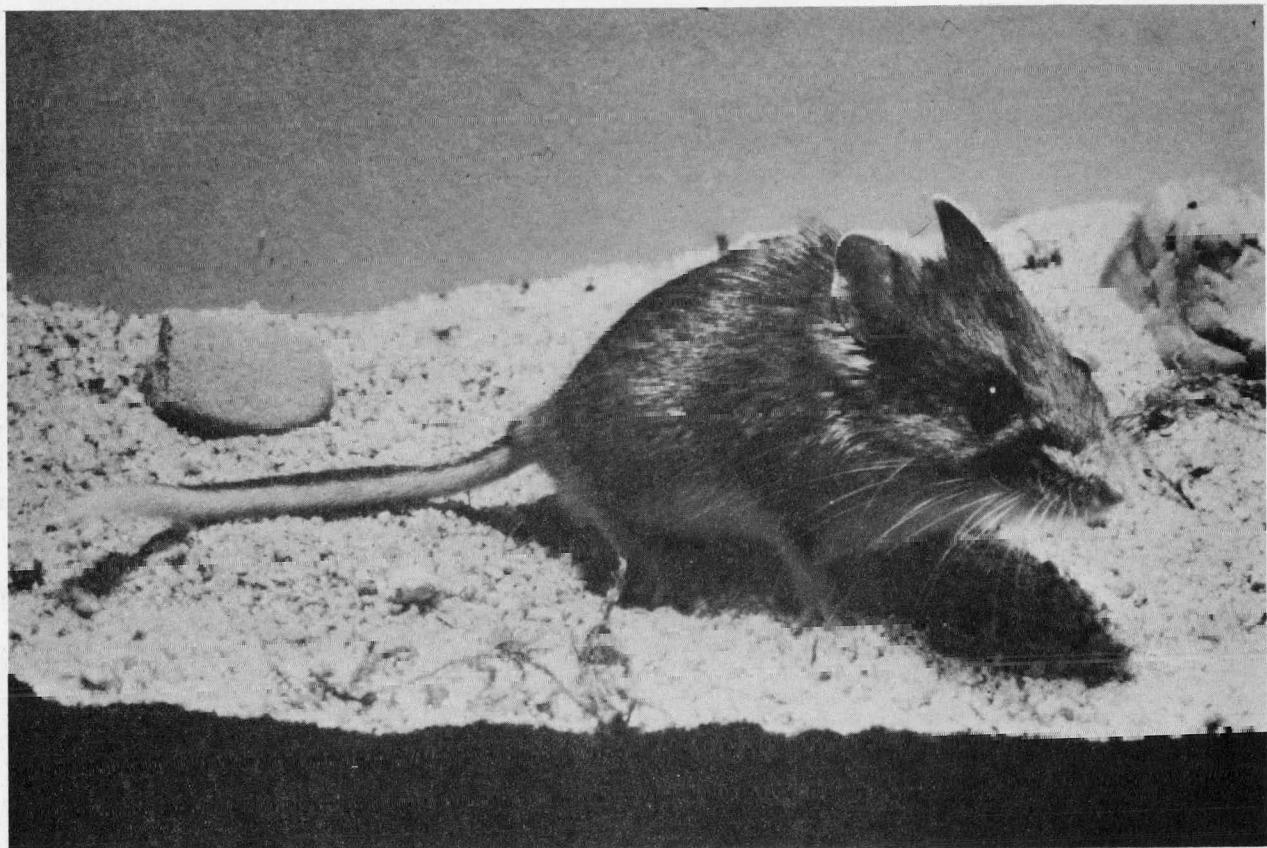



FIGURE 2. Adult deer mouse (*Peromyscus maniculatus*). X 1.

and neoplastic changes, including 3 malignancies. Although these data do not provide precise incidence values, they are suggestive that the frequency of spontaneous hepatic changes is appreciably smaller than that reported in the hamster.

The grasshopper mouse (*O. leucogaster*) and the deer mouse (*Peromyscus maniculatus*) adapt well to laboratory conditions and breed well in captivity (18,19). They are also relatively odorless. Our preliminary investigations indicate that both species may be useful animal models in toxicity studies involving actinides.

#### REFERENCES

1. W.J. Bair, C.R. Richmond, and B.W. Wachholz: A radiobiological assessment of the spatial distribution of radiation dose from inhaled plutonium. WASH-1320, USAEC Report, U.S. Government Printing Office, pages 1-47 (1974).
2. E.E. Campbell, M.F. Milligan, W.D. Moss, H.F. Schulte, and J.F. McInroy: Plutonium in autopsy tissue. Los Alamos Scientific Laboratory Report LA-4875 (January 1973).
3. H. Foreman, W. Moss, and W. Langham: Plutonium accumulation from long-term occupational exposure. *Health Phys.* 2: 326-333 (1960).
4. R.E. Rowland and P.W. Durbin: Survival, causes of death, and estimated tissue doses in a group of human beings injected with plutonium. In: *THE HEALTH EFFECTS OF PLUTONIUM AND RADIUM* (W.S.S. Jee, Ed.), J.W. Press, Salt Lake City, pages 329-342 (1976).
5. ICRP, 1972: International Commission on Radiological Protection, Report of a Task Group of Committee 2, The metabolism of compounds of plutonium and other actinides. ICRP Publication 19, Pergamon Press, Oxford, 59 pages (1972).
6. N. Cohen and M.E. Wrenn: Metabolic characteristics of  $^{241}\text{Am}$  in the adult baboon. *Radiation Res.* 55: 129-143 (1973).
7. A. Lindenbaum and M.W. Rosenthal: Deposition patterns and toxicity of plutonium and americium in liver. *Health Phys.* 22: 596-605 (1972).
8. D.M. Taylor, F.D. Sowby, and N.F. Kember: The metabolism of americium and plutonium in the rat. *Phys. Med. Biol.* 6: 73-86 (1961).

9. R.D. Lloyd, C.W. Mays, G.N. Taylor, and D.R. Atherton: Retention of injected  $^{239}\text{Pu}$  by chinchillas. International J. Applied Rad. and Isotopes 27: 123-128 (1976).
10. D.M. Taylor: The metabolism of plutonium in adult rabbits. Br. J. Radiol. 42: 44-50 (1969).
11. C.W. Mays, G.N. Taylor, W.S.S. Jee, and T.F. Dougherty: Speculated risk to bone and liver from  $^{239}\text{Pu}$ . Health Physics 19: 601-610 (1970).
12. L.R. McKay, A.L. Brooks, and R.O. McClellan: Metabolism and toxicity of  $^{241}\text{Am}$  in the Chinese hamster. Fission Product Inhalation Program Annual Report, LF-41, pp. 203-208 (1969).
13. J.A. Mewhinney and M.D. Harris, III: A multispecies study of the metabolism of  $^{252}\text{Cf}$ : Fission Product Inhalation Program Annual Report, Lovelace Foundation, LF-45 (1971-1972).
14. D.O. Slauson and C.H. Hobbs: Spontaneously occurring renal disease in the Syrian hamster. Inhalation Toxicology Research Institute Annual Report, Lovelace Foundation, LF-49, pp. 261-264 (1973-1974).
15. F.C. Chesterman and A. Pomerance: Cirrhosis and liver tumors in a closed colony of golden hamsters. British J. Cancer 19: 802-811 (1967).
16. S.A. Benjamin and A.L. Brooks: Spontaneous lesions in Chinese hamsters. Vet Pathol. 14: 449-462 (1977).
17. G.N. Taylor, W.S.S. Jee, J.L. Williams, and L. Shabestari: Hepatic changes induced by  $^{239}\text{Pu}$ . In: *RADIOBIOLOGY OF PLUTONIUM* (B.J. Stover and W.S.S. Jee, Eds.), J.W. Press, Salt Lake City, pp. 105-127 (1972).
18. T.P. O'Farrell and G.E. Cosgrove: Longevity and age-related lesions in a laboratory colony of grasshopper mice, *Onychomys leucogaster*. Amer. Midland Naturalist 94: 241-246 (1975).
19. G.A. Sacher and R.W. Hart: Longevity, aging and comparative cellular and molecular biology of the house mouse, *Mus musculus*, and the white-footed mouse, *Peromyscus leucopus*. Birth Defects 14: 71-96 (1978).
20. J.B. Storer: Longevity and gross pathology at death in 22 inbred mouse strains. J. Gerontol. 21: 404-409 (1966).
21. G.E. Cosgrove: Personal communication (1979).
22. L. Lombard, G.A. Sacher, and E. Staffeld: Personal communication (1979).

SALICYLIC ACID FAILED TO INCREASE THE EFFICACY OF Ca-DTPA IN  
THE DECORPORATION OF PLUTONIUM AND AMERICIUM

C. W. Jones, R. D. Lloyd, and C. W. Mays

**ABSTRACT:** Male and female C57BL/Do mice were each given a single i.p. injection of  $^{237+239}\text{Pu}$  +  $^{241}\text{Am}$  as the citrate complex at 45 days of age. Twice weekly i.p. injections of either 500  $\mu\text{mol}/\text{kg}$  Ca-DTPA or 500  $\mu\text{mol}/\text{kg}$  Ca-DTPA, mixed just before injection with 2000  $\mu\text{mol}/\text{kg}$  salicylic acid (SA), were begun 3 days after nuclide administration and continued for 5 weeks. Control mice were injected each time with isotonic saline. Nuclide retention was determined by *in vivo* counting using NaI(Tl) spectrometry. At the end of treatment, total-body retention of Pu or Am in the mice given Ca-DTPA was significantly lower ( $P<0.001$ ) than in the control animals. Mice treated with Ca-DTPA + SA were statistically indistinguishable from mice treated with Ca-DTPA ( $P>0.70$  for  $^{237}\text{Pu}$  and  $P>0.20$  for  $^{241}\text{Am}$ ).

#### INTRODUCTION

It has been claimed that essentially 100% of the Pu in the body, including that bound by bone, could be removed by a combination of Ca-DTPA and salicylic acid (SA).<sup>(1)</sup>

The experiment described herein was designed to duplicate the mixed ligand chelate therapy recently described by Schubert and Derr (1978), and to test the treatment efficacy for  $^{241}\text{Am}$  removal.

#### METHODS

Male and female C57BL/Do mice, 45 days old and weighing an average 16.5 g, were injected intraperitoneally (i.p.) with a citrate solution containing  $^{237}\text{Pu}$  (IV),  $^{239}\text{Pu}$  (IV), and  $^{241}\text{Am}$  (III). The photon-emitter  $^{237}\text{Pu}$  was added to the  $^{239}\text{Pu}$  before preparation of the citrate solution to ensure that the  $^{237}\text{Pu}$  would act as an isotopic tracer for  $^{239}\text{Pu}$ .

Three days after nuclide administration, three groups of male and female mice were injected i.p. twice weekly with either 500  $\mu\text{mol}/\text{kg}$  Ca-DTPA, or 500  $\mu\text{mol}/\text{kg}$  Ca-DTPA, mixed just before injection with 2000  $\mu\text{mol}/\text{kg}$  SA, or a 0.9% solution of sodium chloride (control animals). The treatment regimen was followed for five weeks. Nuclide retention was periodically determined by *in vivo* counting using NaI(Tl) spectrometry.<sup>(2)</sup> On day 34, after nuclide injection, the mice were sacrificed by methoxyflurane inhalation.

### RESULTS AND DISCUSSION

The average  $^{237}\text{Pu}$  and  $^{241}\text{Am}$  biological retention for each group of mice during the treatment period is shown in Figures 1 and 2. Group comparison "t" tests<sup>(3)</sup> showed that by day 34, after nuclide injection, the mice treated with Ca-DTPA plus SA had total-body retentions of  $^{237}\text{Pu}$  and  $^{241}\text{Am}$  which were not statistically different ( $P>0.70$  for  $^{237}\text{Pu}$  and  $P>0.20$  for  $^{241}\text{Am}$ ) when compared to mice injected with Ca-DTPA. Total-body retention of  $^{237}\text{Pu}$  and  $^{241}\text{Am}$  in the Ca-DTPA treatment group on day 34 was significantly less ( $P<0.001$  for  $^{237}\text{Pu}$  and  $P<0.001$  for  $^{241}\text{Am}$ ) than the control animals.

Contrary to a report by Schubert and Derr,<sup>(1)</sup> which claimed that virtually 100% of injected  $^{239}\text{Pu}$  citrate was decorporated, this study shows that the plutonium decorporation efficacy of Ca-DTPA is not enhanced by the addition of salicylic acid. The decorporation efficacy for americium is also not enhanced by Ca-DTPA plus salicylic acid therapy. It is noted that Schubert has recently retracted the published results of Schubert and Derr.<sup>(4)</sup>

### REFERENCES

1. Schubert, J., and Derr, S.K., Mixed ligand chelate therapy for plutonium and cadmium poisoning. *Nature* 275: 311-313, 1978.
2. Lloyd, R.D., Aamodt, R.L., Wagner, W.W., and Pendleton, R.C., Calibration of a gamma-ray spectrometer for soils counting. *Int. J. Appl. Radiat. Isotopes* 19: 773-775, 1968.
3. Woolf, C.M. *PRINCIPLES OF BIOMETRY*, D. Van Nostrand Co., Inc., pp. 62-69 and 329. Princeton, N.J., 1968.
4. Schubert, J., Answer to questions following the paper by J. Schubert and S.K. Derr, Mixed ligand therapy of toxic metals - Complete decorporation of plutonium and cadmium. Sixth International Congress of Radiation Research, Tokyo, Japan (May 18th, 1979).

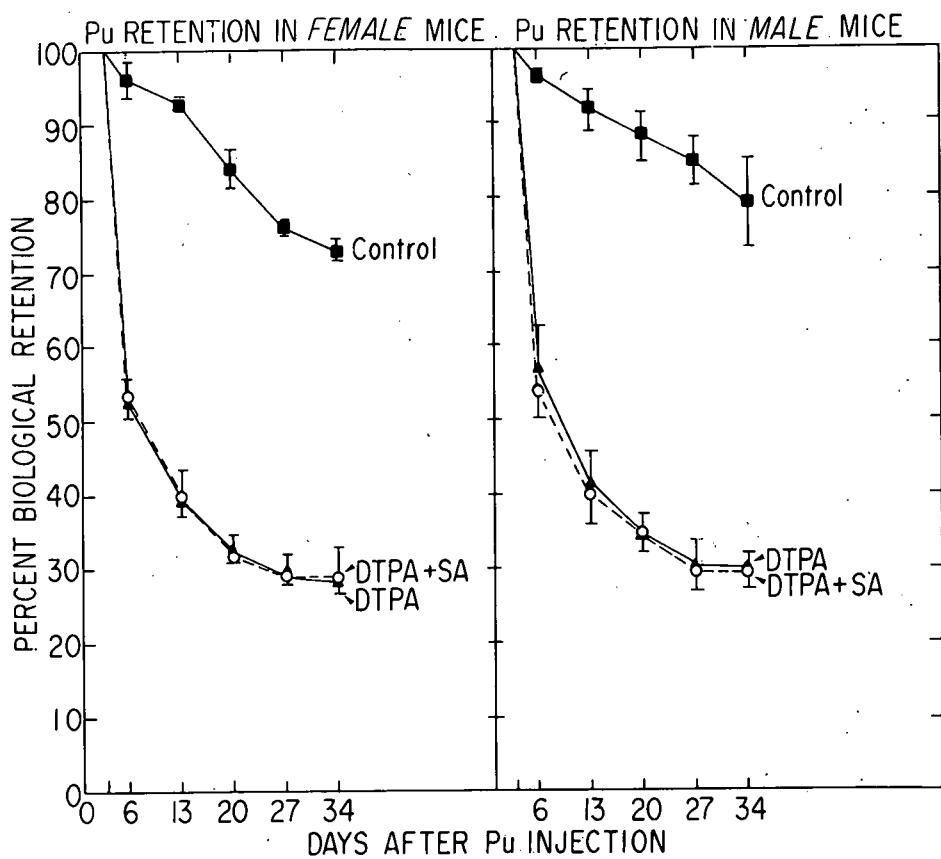



FIGURE 1. Biological retention of plutonium in female and male C57BL/Do mice as measured by total-body counting during treatment. The plotted points represent mean values ( $n = 4$  for each group of females and  $n = 3$  for each group of male mice), and the error bars represent standard errors of the mean. Biological retention equals effective retention corrected for radioactive decay.

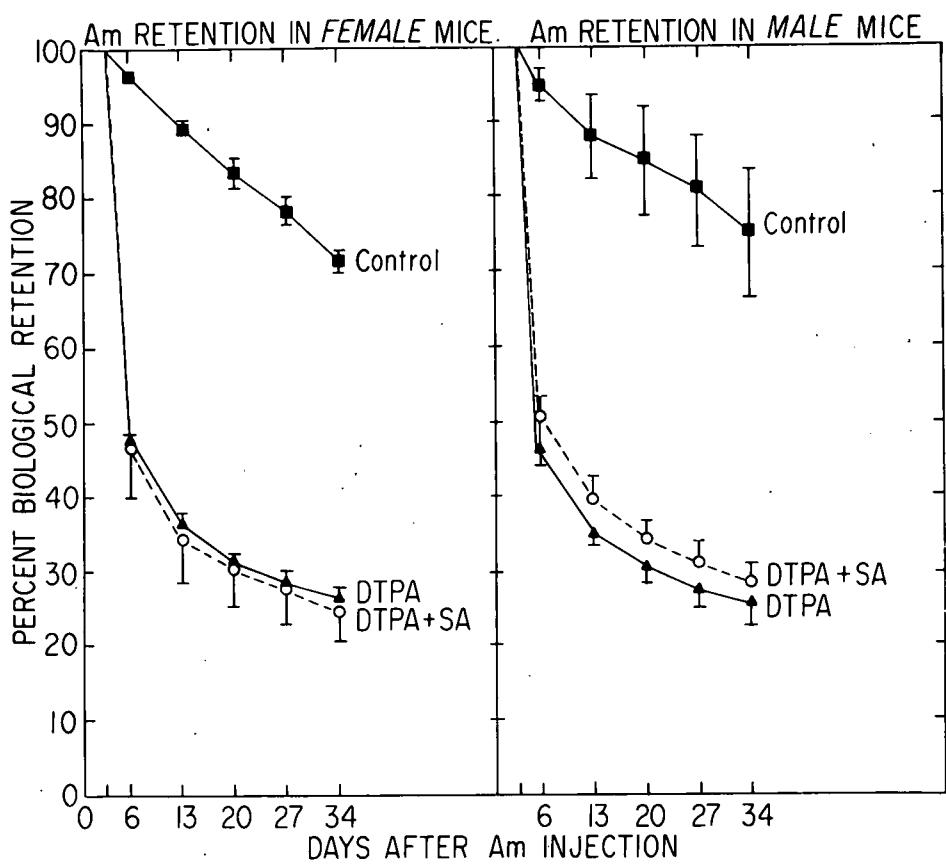



FIGURE 2. Biological retention of americium in female and male C57BL/Do mice as measured by total-body counting during treatment. The plotted points represent mean values ( $n = 4$  for each group of females and  $n = 3$  for each group of male mice), and the error bars represent standard errors of the mean. Biological retention equals effective retention corrected for radioactive decay.

FAILURE TO DETECT SYNERGISM OF SALICYLIC ACID AND DTPA  
IN DECORPORATION OF Pu OR Am\*

R. D. Lloyd, C. W. Jones, C. W. Mays, D. R. Atherton,  
F. W. Bruenger, and G. N. Taylor

It has been suggested (Nature 275: 311; 1978) that nearly 100% of body Pu might be removed by repeated injections of a mixture of DTPA and salicylic acid (SA). To test this possibility, 3 adult male beagles were each given a single i.v. injection of  $^{237+239}\text{Pu} + ^{241}\text{Am}$  as the citrate complex. Daily i.v. injections of 30  $\mu\text{mol}$  Zn-DTPA + 120 mol SA per kg, mixed together just before injection, were begun 3, 7 or 14 days later and continued for an additional 4 weeks. Pu + Am in dogs, excreta, and tissues was determined by NaI(Tl) spectrometry. At the end of treatment, total-body retention in the animals given the first SA + DTPA injection at 3, 7 or 14 days was, for Pu 53%, 47%, and 57%, respectively, and, for Am, was 45%, 41%, and 53%, respectively. Excretion of both Pu and Am was no greater than that of comparable beagles given DTPA alone. Female C57BL/Do mice, about 50 days old, were injected i.p. with the same Pu + Am mixture given the dogs. Three days later, treatments of two groups were begun with i.p. injections of 500  $\mu\text{mol}$  Ca-DTPA/kg or 500  $\mu\text{mol}$  Ca-DTPA + 2000  $\mu\text{mol}$  SA/kg, and were continued twice weekly for about 1 month. Untreated control mice retained substantially more Pu and Am than the other 2 groups, but the retention in those animals given SA + DTPA was indistinguishable from that of mice given DTPA alone.

\*Abstract of a paper presented at the 24th annual meeting of the Health Physics Society, Philadelphia, PA, 12 July 1979.

THE EFFECTIVENESS OF MIXED LIGAND CHELATION FOR THE REMOVAL OF PLUTONIUM  
AND AMERICIUM IN THE HAMSTER

F. W. Bruenger, W. Stevens, D. R. Atherton, R. R. Greenlee,  
C. W. Mays, C. W. Jones and R. D. Lloyd

*ABSTRACT: DTPA and the combination of DTPA plus salicylic acid or other benzene derivatives which are ortho-di-substituted with functional groups containing one or more oxygen and/or nitrogen atoms as electron donors, were tested for their ability to remove  $^{239}\text{Pu}$  and/or  $^{241}\text{Am}$  from hamsters. Mixed ligand chelation of these actinides by combination of DTPA and any one of these compounds did not result in an increased efficacy for the removal of actinides, as has been reported elsewhere.*

A recent report described new concepts in the decomplexation of Pu and Cd (1). After injecting mice with Pu, a twice weekly treatment was initiated three days later with a mixture of DTPA or EDTA together with a bidentate agent such as salicylic acid (SA). It was reported that the liver was cleared with four treatments and the skeletal Pu was reduced to undetectable levels with ten treatments in this experiment. In as much as the complete removal of Pu had been reported after a few treatments, the application of mixed ligand chelation offered an exciting improvement over earlier decomplexation therapy. However, since mice lose Pu relatively easily these experiments were repeated in this laboratory using Syrian hamsters which are known to bind Pu and Am tenaciously and to retain these nuclides with halftimes which are closer to those expected in humans.

METHODS

Twenty Syrian hamsters weighing 100-115 g were injected intraperitoneally with 0.45  $\mu\text{Ci}$   $^{241}\text{Am}/\text{kg}$ . Americium was chosen instead of Pu because of the ease of detection of its 60 keV  $\gamma$ -emission and because its retention and removal characteristics in hamsters are known and similar to those of Pu. Three days later, animals were separated into five groups of 4 hamsters each and their whole body content of  $^{241}\text{Am}$  was determined by  $\gamma$ -ray spectroscopy. The retentions at this time were taken as 100%. After this initial count,

treatment was initiated by intraperitoneal injections of the chelants according to the following schedule:

|        |    |              |                                                                  |
|--------|----|--------------|------------------------------------------------------------------|
| Group: | a. | No treatment | (control)                                                        |
|        | b. | Ca-DTPA      | 500 $\mu\text{mol}/\text{kg}$                                    |
|        | c. | Ca-DTPA + SA | 500 $\mu\text{mol}/\text{kg}$ and 2000 $\mu\text{mol}/\text{kg}$ |
|        | d. | Zn-DTPA      | 500 $\mu\text{mol}/\text{kg}$                                    |
|        | e. | Zn-DTPA + SA | 500 $\mu\text{mol}/\text{kg}$ and 2000 $\mu\text{mol}/\text{kg}$ |

The addition of 4 times the concentration of SA to the primary chelant increased the osmolarity of the injection solution to values which were considerably higher than physiological.

This treatment was given twice weekly for 4 weeks and animals were counted after each week of treatment just before a new injection was made. After 4 weeks, a final count was made and the animals were sacrificed. At autopsy, the liver was removed and the residual body and liver were counted separately. Since soft tissue organs other than the liver retain very little of the nuclide, the counting rate of the residual body was taken as a measure of the skeletal retention. Final retention was expressed as:

- retention in treated animal/retention in untreated control
- retention in animals treated by mixed ligand therapy/retention in animals given Ca-DTPA only.

In a further experiment, a variety of other potential bidentate chelons were tested in combination with DTPA using the same regimen as above but with Chinese hamsters. The following agents were tested for their ability to remove Pu and Am:

- anthranilic acid
- o*-hydroxyphenylacetic acid
- tiron
- catechol
- p*-aminosalicylic acid
- salicyl-hydroxamic acid
- phthalic acid
- rhodotorulic acid

In addition to the hamster experiments, partition coefficients in an  $H_2O$  (0.1 N NaCl)/hexane system for Pu-DTPA and Pu-[DTPA + SA] were determined. A variety of other ortho-disubstituted bidentate ring compounds which, in combination with DTPA, could possibly form mixed ligand chelates, were also tested. The partition of Pu-DTPA was evaluated at three different pH's: at 4.82 (1:1 complex), at 7.43 (2:3 complex) and at 9.01 (1:2 complex). All others were determined at pH 7.5. The bidentate chelate was added to preformed Pu-DTPA and then mixed into the aqueous phase. Partitions were expressed as:

$$\frac{\text{Pu in aqueous phase}}{\text{Pu in organic phase}}$$

### RESULTS

Sequential whole body counting of the hamsters during the treatment period gave no indication of an enhanced decorporation brought about by mixed ligand treatment (SA) when compared to DTPA. Results of the various treatments obtained at time of autopsy are expressed in Table 1a and b. Figures in Table 1a represent average retentions. These are normalized so that the average retention before treatment was 100%. For convenience, those in Table 1b have been normalized to terminal whole body, skeleton or liver retention in the controls being equal to one.

The combination of none of the compounds listed above under a to h with Ca-DTPA increased the removal of Pu or Am from bone. DTPA in combination with tiron, rhodotorulic acid or phthalic acid enhanced the loss of both nuclides from the liver without any obvious toxic effects. Salicylhydroxamic acid resulted in accelerated loss of the two nuclides from the liver but the administration of this agent or catechol caused prolonged coma or convulsions, respectively, and this precludes their usefulness.

The partition of Pu between the aqueous and organic phase did not change drastically with either the pH of the aqueous phase or with the bidentate compound that was used to form a mixed ligand chelate. In all cases Pu was present as a strongly hydrophilic entity, regardless of the structure of the chelate (or mixed ligand chelate) that was formed.

The ratio  $\text{Pu}_{(\text{aq})}/\text{Pu}_{(\text{org})}$  for three different hydronium ion concentrations

and the combination of DTPA and salicylic acid is shown in Table 2. Partition coefficients for Pu-DTPA and for the combination of DTPA with any of the oligodentates tested were very similar. None of the chelates exhibited any significant organophilicity.

#### SUMMARY

The drastic increase in the decorporation of Pu from mice as reported in Nature could not be repeated using Syrian hamsters as the test animal and Pu or Am as the nuclide to be removed. A statement regarding the lipophilicity of the Pu-DTPA complex also could not be verified. No reason for the large difference in the results obtained can be given at this time, but our data cast serious doubts on the validity of those published in Nature. Therefore, caution rather than extreme optimism is in order until the differences can be resolved.

#### REFERENCES

1. J. Schubert and S. K. Derr, 1978. Nature 275:311-313.

#### ACKNOWLEDGEMENT

We thank Dr. Curtis L. Atkin for suggesting the use of rhodotorulic acid in our chelation studies and for furnishing our supply of this material.

TABLE 1  
TERMINAL RETENTION OF Am IN SYRIAN HAMSTERS AFTER TREATMENT  
WITH DTPA OR [DTPA + SA\*]

|                                                                                          | Whole Body   | Skeleton<br>(Non-Liver) | Liver        |
|------------------------------------------------------------------------------------------|--------------|-------------------------|--------------|
| a. Retention of Am in Treated Hamsters/Retention in Untreated Control                    |              |                         |              |
| Control                                                                                  | 1.           | 1.                      | 1.           |
| Ca-DTPA                                                                                  | 0.256 ± .016 | 0.492 ± .038            | 0.032 ± .031 |
| Ca-DTPA + SA*                                                                            | 0.246 ± .032 | 0.413 ± .015            | 0.073 ± .069 |
| Zn-DTPA                                                                                  | 0.282 ± .035 | 0.484 ± .031            | 0.071 ± .077 |
| Zn-DTPA + SA*                                                                            | 0.307 ± .038 | 0.452 ± .028            | 0.157 ± .062 |
| b. Retention of Am in Treated Hamsters/Retention in Animals Treated with<br>Ca-DTPA only |              |                         |              |
| Ca-DTPA                                                                                  | 1.           | 1.                      | 1.           |
| Ca-DTPA + SA*                                                                            | 0.925 ± .120 | 0.840 ± .030            | 2.26 ± 2.14  |
| Zn-DTPA                                                                                  | 1.057 ± .022 | 0.984 ± .062            | 2.21 ± 0.80  |
| Zn-DTPA + SA*                                                                            | 1.155 ± .144 | 0.918 ± .056            | 4.83 ± 2.52  |

TABLE 2

|               |           | $\frac{\text{Pu}(\text{aq})}{\text{Pu}(\text{org})}$ |
|---------------|-----------|------------------------------------------------------|
| Pu-DTPA : 1:1 | (pH 4.82) | 34,000                                               |
| Pu-DTPA : 2:3 | (pH 7.43) | 27,000                                               |
| Pu-DTPA : 1:2 | (pH 9.01) | 26,000                                               |
| Pu-DTPA + SA* | (pH 7.4)  | 40,000                                               |

\* Salicylic Acid

THE EXAMINATION OF SOME CHELATING AGENTS TO DECORPORATE  
FIXED BODY-BURDENS OF CADMIUM

C. W. Jones, R. D. Lloyd, and C. W. Mays

ABSTRACT: Male and female C57BL/Do mice, five to six months old, were injected intraperitoneally with 2.0 mg/kg cadmium citrate labeled with about 2.0  $\mu$ Ci  $^{109}\text{Cd}$  per mouse. Three days after cadmium injection, male mice were injected subcutaneously with 2,3 dimercaptopropanesulfonate (DMPS), and female mice were injected subcutaneously with calcium disodium ethylenediaminetetraacetate (CaEDTA), salicylic acid (SA), or 2,3 dimercaptopropanesulfonate, alone, or in combination. A total of four treatment injections were administered to each group of mice. Cadmium total-body retention was measured by in vivo counting using NaI(Tl) spectrometry. Male mice given DMPS, and groups of females given EDTA, SA, EDTA + DMPS, EDTA + SA, or EDTA + DMPS + SA had total-body retentions of cadmium no different from saline controls ( $P>0.05$ ). Measurement of cadmium content in kidneys, livers, gonads, and femora excised from test animals also showed no difference from corresponding organs in control animals ( $P>0.10$ ).

#### INTRODUCTION

Cadmium was recognized many years ago as a highly toxic element. The uses for cadmium have increased so that it is now widely encountered industrially and environmentally. At present, there is no truly effective treatment for poisoning by this metal.

An excellent and detailed review of the uptake, distribution, and toxicity of cadmium has been published.<sup>(1)</sup> Unlike many elements which reach constant concentrations in tissue, the concentration of cadmium continues to increase with age. This indicates firm binding in tissue with a long biological half-life estimated at 10 to 30 years in humans.<sup>(1)</sup> Therefore, it appears that a chelating agent capable of removing a fixed body-burden of cadmium would be most desirable.

In this study, mice were injected with cadmium labeled with  $^{109}\text{Cd}$  and treated with several chelating agents, alone, or in various combinations, to

determine if an effective method of cadmium removal could be achieved in this manner. An attempt was also made to extend the achievements claimed by Schubert and Derr, 1978.<sup>(2)</sup>

#### METHODS

Male and female C57BL/Do mice, five to six months old, and 25 g average body weight, were injected intraperitoneally (i.p.) with 2.0 mg/kg cadmium citrate labeled with approximately 2.0  $\mu$ Ci  $^{109}\text{Cd}$  per mouse. Three days after cadmium injection, male mice were injected subcutaneously (s.c.) with one of three dosages (Table 1) of 2,3 dimercaptopropanesulfonate (DMPS), and female mice were injected s.c. with calcium disodium ethylenediaminetetraacetate (CaEDTA), salicylic acid (SA), or 2, 3 dimercaptopropanesulfonate (DMPS), alone, or in combination (Table 1). Control animals were injected s.c. with a 0.9% solution of sodium chloride. The treatment injections were given daily for four days. Cadmium total-body retention was measured shortly before and during treatment by counting the 88 keV gamma-ray emitted from  $^{109}\text{Cd}$ , using dual 20 x 10 cm NaI(Tl) detectors.<sup>(3)</sup> Four days after the start of chelation treatment, the mice were sacrificed by methoxyflurane inhalation. The liver, kidneys, gonads, and femora were excised and put in separate 3-dram glass vials with 95% ethanol as preservative. The  $^{109}\text{Cd}$  activity in each sample was determined by gamma-ray spectroscopy in a well-type scintillation crystal.<sup>(4)</sup>

#### RESULTS AND DISCUSSION

##### Retention of Cadmium in Male Mice Treated with DMPS.

Table 2 exhibits results of this part of the study. Group comparison (t) tests<sup>(5)</sup> showed that four treatment injections of DMPS, started 3 days after cadmium injection, at 1 or 4 mmole/kg/day, did not reduce significantly ( $0.05 < P < 0.80$ ) the total-body cadmium burden in test animals from controls. All the mice receiving 16 mmole/kg/day of DMPS died within 24 hours after the initial injection of DMPS. Cadmium content of the liver, kidneys, gonads, and femora, excised from treated animals, was not significantly different ( $0.10 < P < 0.80$ ) from corresponding organs in control animals.

Table 1. CHELATING AGENTS USED IN MALE OR FEMALE C57BL/Do MICE.

| <u>Chelating Agent</u> | <u>Dosage (mmole/kg/day)</u> |
|------------------------|------------------------------|
| <b>MALES*</b>          |                              |
| Saline Control         | 1.2                          |
| DMPS                   | 1.0                          |
| DMPS                   | 4.0                          |
| DMPS                   | 16.1                         |
| <b>FEMALES*</b>        |                              |
| Saline Control         | 1.2                          |
| CaEDTA                 | 0.1                          |
| SA                     | 1.0                          |
| CaEDTA + DMPS          | 0.1 + 1.0                    |
| CaEDTA + SA            | 0.1 + 1.0                    |
| CaEDTA + DMPS + SA     | 0.1 + 1.0 + 1.0              |

\*Four mice per group.

In general, this study showed that a fixed body-burden of cadmium will not be decorporated by DMPS. However, Jones, et al., reported<sup>(6)</sup> that DMPS given orally is at least as effective as Na<sub>2</sub>CaEDTA, and will assure the survival of mice suffering from acute cadmium poisoning when administered within 3.5 hrs after cadmium injection.

Retention of Cadmium in Female Mice.

Table 3 exhibits the total-body cadmium content of female mice injected with CaEDTA, SA, or DMPS, alone, or in combination. In all cases, the chelating agents failed to decorate cadmium significantly ( $0.05 < P < 0.80$ ) when compared to the control animals. Cadmium content of the liver, kidneys, gonads, and femora excised from test animals showed no significant difference ( $0.10 < P < 0.975$ ) from comparable organs in the controls.

Our results indicate that neither DMPS nor any of the other tested agents, when used alone or in combination, is effective at decorporating fixed burdens of cadmium. It is noted that Schubert<sup>(7)</sup> has retracted the results of Schubert and Derr.<sup>(2)</sup>

REFERENCES

1. Friberg L., Piscator M., Nordberg G., and Kjellstrom T., *CADMIUM IN THE ENVIRONMENT*, CRC Press, Cleveland, Ohio, 1974.
2. Schubert J., and Derr S.K., Mixed ligand chelate therapy for plutonium and cadmium poisoning. *Nature* 275: 311-313, 1978.
3. Lloyd, R.D., Aamodt R.L., Wagner W.W., and Pendleton R.D., Calibration of a gamma-ray spectrometer for soils counting. *Int. J. Appl. Radiat. Isotopes* 19: 773-775, 1968.
4. Lloyd R.D., Mays C.W., and Atherton D.R., Knothole, a new sidewall gamma-ray detector. *Nucl. Instr. Methods* 49: 109-113, 1967.
5. Woolf C.M., *PRINCIPLES OF BIOMETRY*, D. Van Nostrand Co., Inc., pp. 62-69 and 329, Princeton, N.J., 1968.
6. Jones M.M., Weaver A.D., and Weller W.L., The relative effectiveness of some chelating agents as antidotes in acute cadmium poisoning. *Res. Communications in Chem. Path. and Pharm.* 22: No. 3, 581-588, 1978.

7. Schubert J., Answer to questions following the paper by J. Schubert and S.K. Derr: Mixed ligand therapy of toxic metals - Complete decorporation of plutonium and cadmium. Sixth International Congress of Radiation Research, Tokyo, Japan (May 18th, 1979).

Table 2. BIOLOGICAL RETENTION OF CADMIUM IN MALE C57BL/Do MICE AS MEASURED BY TOTAL-BODY COUNTING DURING CHELATION TREATMENT. STABLE CADMIUM WITH  $^{109}\text{Cd}$  WAS INJECTED 3 DAYS PRIOR TO THE START OF TREATMENT. RETENTION IS NORMALIZED TO THE START OF CHELATION TREATMENT.

| GROUP                | PERCENT BIOLOGICAL RETENTION |                  |                  |
|----------------------|------------------------------|------------------|------------------|
|                      | Day 0                        | Day 2            | Day 4            |
| Saline Control       | 100                          | 96.73 $\pm$ 0.57 | 96.10 $\pm$ 1.63 |
| DMPS 1 mmole/kg/day  | 100                          | 97.06 $\pm$ 1.22 | 95.84 $\pm$ 1.71 |
| DMPS 4 mmole/kg/day  | 100                          | 94.19 $\pm$ 1.60 | 93.09 $\pm$ 1.73 |
| DMPS 16 mmole/kg/day | 100                          | Dead             |                  |

Table 3. BIOLOGICAL RETENTION OF CADMIUM IN FEMALE C57BL/Do MICE AS MEASURED BY TOTAL-BODY COUNTING DURING CHELATION TREATMENT. STABLE CADMIUM WITH  $^{109}\text{Cd}$  WAS INJECTED 3 DAYS PRIOR TO THE START OF TREATMENT. RETENTION IS NORMALIZED TO THE START OF CHELATION TREATMENT.

| GROUP              | PERCENT BIOLOGICAL RETENTION |                  |                  |
|--------------------|------------------------------|------------------|------------------|
|                    | Day 0                        | Day 2            | Day 4            |
| Saline Controls    | 100                          | 98.76 $\pm$ 2.47 | 97.20 $\pm$ 1.02 |
| CaEDTA             | 100                          | 98.20 $\pm$ 1.02 | 97.41 $\pm$ 0.93 |
| SA                 | 100                          | 96.46 $\pm$ 1.47 | 95.87 $\pm$ 1.35 |
| CaEDTA + DMPS      | 100                          | 97.25 $\pm$ 2.03 | 95.14 $\pm$ 1.39 |
| CaEDTA + SA        | 100                          | 97.71 $\pm$ 1.34 | 97.10 $\pm$ 0.95 |
| CaEDTA + DMPS + SA | 100                          | 97.32 $\pm$ 1.88 | 94.75 $\pm$ 2.49 |

## DECORPORATION OF Pu OR Am IN BEAGLES BY 3,4,3-LICAMS

R. D. Lloyd, F. W. Bruenger, D. R. Atherton, C. W. Jones, F. L. Weitl,\*  
P. W. Durbin,\* K. N. Raymond,\* G. N. Taylor, W. Stevens, and C. W. Mays

ABSTRACT: The compound, 3,4,3-LICAMS =  $N^1, N^5, N^{10}, N^{14}$ -tetra(2,3-dihydroxy-5-sulfonyl)-tetraazatetradecane, tetrasodium salt, has been tested as a decorporation agent in beagles given  $^{237+239}\text{Pu} + ^{241}\text{Am}$  citrate 30 minutes prior to its administration. Compared to untreated beagles or those given Ca-DTPA alone, the concentration of Pu in blood plasma was reduced significantly in dogs given LICAMS. The Am concentration in plasma was not reduced by LICAMS. Instead, the rate of Am disappearance from plasma was slowed substantially. Total-body retention of Am was reduced from control values only slightly by LICAMS, but markedly by DTPA. In contrast, Pu retention was diminished by LICAMS to a greater extent than by DTPA. The effects of combined LICAMS and DTPA treatment were not additive. It appears that 3,4,3-LICAMS is an effective chelating agent for Pu, but an indication of nephrotoxic effects in 2 dogs given 30  $\mu\text{mol}$  LICAMS/kg indicates that the toxicity of the catecholates must be investigated thoroughly.

### INTRODUCTION

Scientists at the Lawrence Berkeley Laboratory, University of California, synthesized a series of chelons designed to be specific for the decorporation of PuIV (Weitl and Raymond, In Press). Their design was based on the fact that PuIV and FeIII have similar chemical properties with respect to their coordination chemistry. Both, to some extent, are bound to the same endogenous ligands (transferrin, ferritin) in biological systems. The chelons were modeled structurally to resemble some naturally occurring (microbially produced) iron chelators. The result of this effort was the synthesis of various linear catechoylamide sulfonate (LICAMS) compounds. The most promising of these, as determined in preliminary tests (Durbin, et al., In Press) of PuIV decorporation in mice, 3,4,3-LICAMS =  $N^1, N^5, N^{10}, N^{14}$ -tetra (2,3-dihydroxy-5-sulfonyl)-tetraazatetradecane, hydrated tetrasodium salt (MW

\*Lawrence Berkeley Laboratory, University of California.

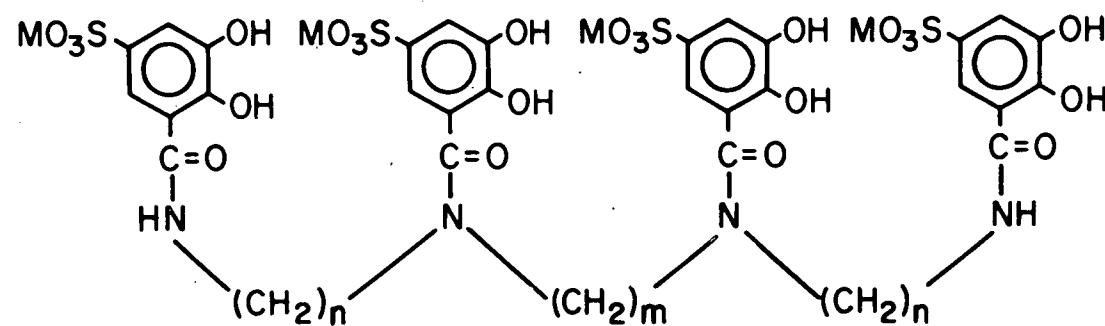



FIGURE 1. 3,4,3-LICAMS :  $n = 3, m = 4$ .

approximately 1200; see Fig. 1), in the following called LICAMS, was tested in beagles.

#### METHODS

Six young adult male beagles, 615 to 695 days of age, were each given a single intravenous injection of  $0.233 \mu\text{Ci}^{239}\text{Pu} + 0.087 \mu\text{Ci}^{237}\text{Pu} + 0.575 \mu\text{Ci}^{241}\text{Am}$  in citrate buffer solution of pH 3.5. Thirty minutes later, the animals were given an intravenous injection of  $30 \mu\text{mole Ca-DTPA/kg}$  or  $30 \mu\text{mole LICAMS/kg}$  or  $(30 \mu\text{mole Ca-DTPA} \pm 30 \mu\text{mole LICAMS})/\text{kg}$ , as shown in Table 1. The osmolarity of the DTPA solution was 247 mOs/kg, and that of the LICAMS (including  $0.154 \text{M NaCl}$ ) was 435 mOs/kg. The combined treatment with DTPA and LICAMS was administered by separate injections of DTPA followed 0.5 minutes later by LICAMS.

The concentrations of Pu and Am in the plasma of the 6 beagles were measured during the first day after injection. Two blood samples were drawn from each beagle before administration of the decomplexing agents and another four were taken 1, 2, 3, and 24 hours after nuclide injection. Total alpha-disintegrations ( $^{239}\text{Pu} + ^{241}\text{Am}$ ) were determined by liquid scintillation counting in Instagel<sup>R</sup> and  $^{239}\text{Pu}$  was measured by the method of Keough and Powers (1970). Americium was then calculated by subtracting the Pu from the sum of the Am and Pu alpha-disintegrations.

All excreta produced between radionuclide injection and sacrifice were collected and analyzed for their Pu and Am content by NaI(Tl) spectrometry. Retention of Pu and Am in the total-body and in the liver was determined *in vivo* at 7 days after injection, just prior to sacrifice by a combination of total-body and partial-body counting (Lloyd, et al., 1975a, 1976a). Measurement of  $^{237}\text{Pu}$  and  $^{241}\text{Am}$  in excised livers was made by photon counting shortly after death was induced by exsanguination under pentothal anesthesia.

#### RESULTS

The average concentrations of the two nuclides in plasma resulting from the various treatments are shown in Fig. 2 for Am and Pu. Each of the three treatment groups is compared with previously determined data from untreated dogs injected with Am or Pu. The disappearance of Am from plasma was not

Table 1. MALE BEAGLES USED IN THE STUDY

| <u>DOG</u>       | <u>Age at<br/>Injection<br/>(Days)</u> | <u>Weight at<br/>Injection<br/>(kg)</u> | <u>Treatment<br/>at 30<br/>Minutes*</u> |
|------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|
| 2403 (T226P1.7W) | 625                                    | 8.65                                    | Ca-DTPA                                 |
| 2406 (T227P1.7W) | 615                                    | 8.05                                    | Ca-DTPA                                 |
| 2404 (T228P1.7W) | 625                                    | 8.45                                    | LICAMS                                  |
| 2407 (T229P1.7W) | 615                                    | 9.30                                    | LICAMS                                  |
| 2384 (T230P1.7W) | 695                                    | 9.95                                    | Ca-DTPA + LICAMS                        |
| 2416 (T231P1.7W) | 591                                    | 7.75                                    | Ca-DTPA + LICAMS                        |

\*30  $\mu$ mol/kg of each agent.

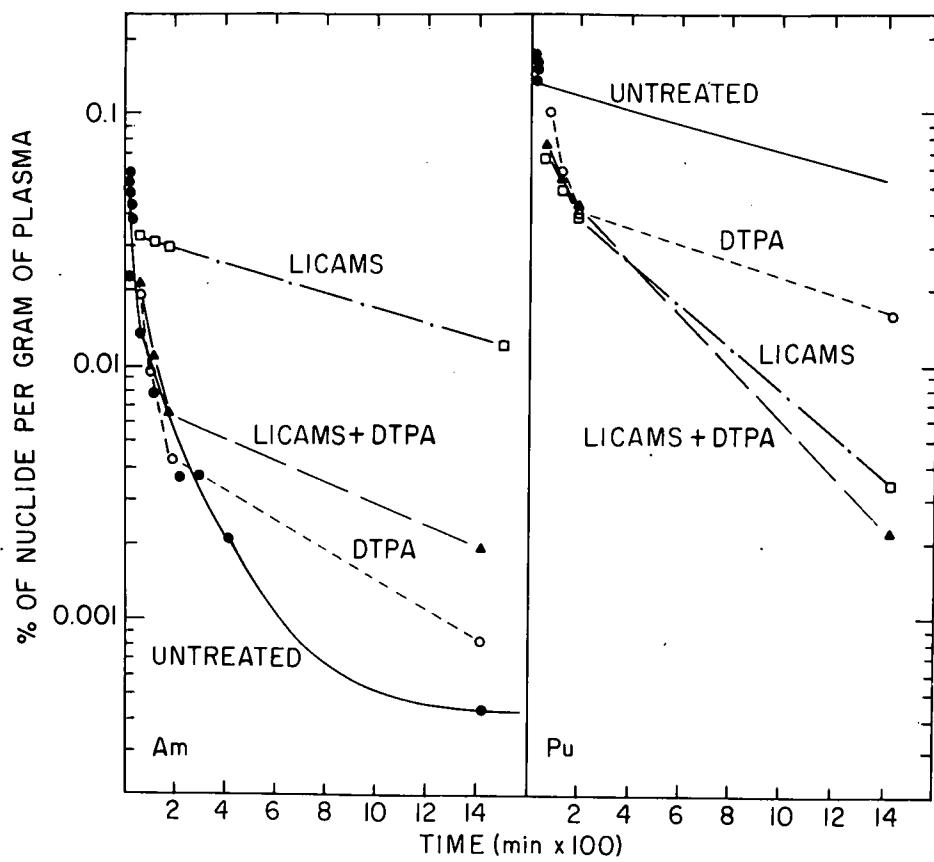



FIGURE 2. Concentration of  $^{241}\text{Am}$  (left) and  $^{237+239}\text{Pu}$  (right) in blood plasma of beagles as a function of time after radionuclide injection as influenced by treatment with DTPA alone or LICAMS alone, or DTPA + LICAMS at 30 minutes. Values for untreated animals were from 6 young adult beagles given  $^{241}\text{Am}$  and not treated (D.R. Atherton, unpublished) and Stover, et al. (1977), for  $^{239}\text{Pu}$ .

enhanced by treatment with either of the agents or their combination. In the plasma of dogs which received the LICAMS only, the concentration of Am at 1 day after injection was more than an order of magnitude higher than that seen in the untreated dogs or in those given DTPA. The concentration of Pu in plasma was considerably lower in the two groups which received the LICAMS, while the group receiving DTPA alone occupied a position between the untreated group and the LICAMS group. However, the effect of the combined treatment with DTPA and LICAMS was not additive.

Retention of both Pu and Am, as indicated by excreta subtraction, was diminished by each of the 3 treatments, as compared to other beagles given Am or Pu injections but not treated (Fig. 3). Ca-DTPA alone was more effective for removing Am from the body than LICAMS alone, but retention in dogs given the combination of LICAMS and Ca-DTPA was not lower than that of dogs given Ca-DTPA alone. In contrast, LICAMS alone was more effective in removing Pu than Ca-DTPA alone, and retention in dogs given the combination of LICAMS and Ca-DTPA was not substantially lower than that of dogs given LICAMS alone. Whereas DTPA was a much more effective decorporating agent for americium than for plutonium, LICAMS was substantially better for plutonium than for americium. Urinary excretion of Am and Pu accounted for about 90% of the total for all three groups, a value similar to that for Am in untreated beagles (Lloyd, et al., 1975b), but different from the 30% value reported for Pu in untreated beagles (Lloyd, et al., 1976b).

Plutonium and americium retention and partitioning between liver and non-liver (mainly skeleton) at 7 days following treatment are shown in Table 2. Values for the groups given DTPA and DTPA + LICAMS were similar for Am, and results for groups given LICAMS and LICAMS + DTPA were similar for Pu. There was no indication that the effects of these 2 agents might be additive for the removal of either element. Roughly half of the retained Am was found in each of the 2 compartments, whereas 0.4 of the residual Pu was in the liver (0.33 to 0.46), and the non-liver tissue contained 0.6 of the total (0.43 to 0.67). Although the non-liver tissue in the 2 dogs given LICAMS alone represented the lowest proportionate plutonium retention (0.54) of any group, differences between the 2 groups given LICAMS and the dogs given DTPA alone were not significant ( $P > 0.3$ ) according to the group comparison ("t") test (Woolf, 1968).

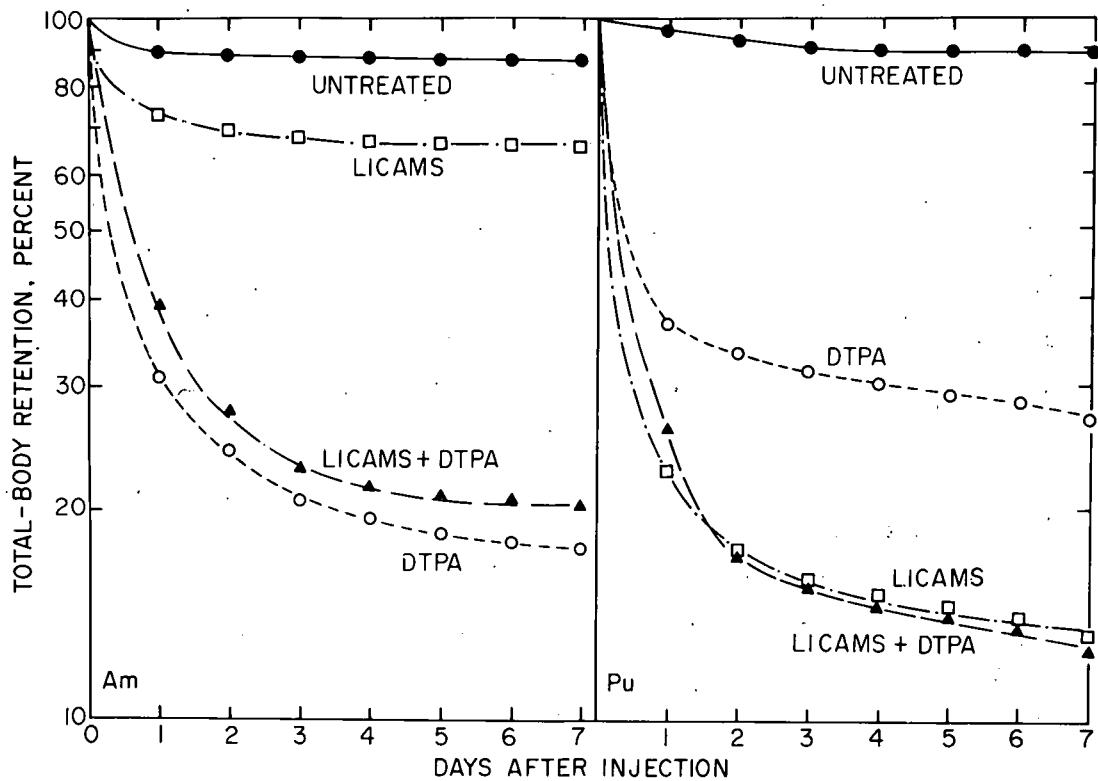



FIGURE 3. Total-body retention of injected  $^{241}\text{Am}$  (left) and  $^{237+239}\text{Pu}$  (right), determined from excreta assay, as influenced by treatment with DTPA alone or LICAMS alone or DTPA + LICAMS. Each of the curves marked with the name of the administered agent represents the average for the 2 dogs in the group. The curves marked "untreated" represent the mean values of 5 young adult beagles injected with  $^{241}\text{Am}$  and not treated for 7 days (Lloyd, et al., 1975b) and 14 young adult beagles injected with  $^{239}\text{Pu}$ (IV) citrate and given no decorporation treatments (see Fig. 1 of Lloyd, et al., 1976b).

Therefore, these data do not establish any substantial difference in partitioning between liver and non-liver tissue when compared to dogs given DTPA or to beagles not given DTPA or LICAMS.

During the period from injection to sacrifice, the blood urea nitrogen in two beagles treated with LICAMS (dogs 2407 and 2416) increased from 15 to 33 and from 16 to 50 mg/100 ml, respectively. In addition, dog 2407 exhibited focal renal hemorrhages and dog 2416 suffered from a marked kidney edema.

#### DISCUSSION

It appears from this limited experiment that 3,4,3-LICAMS is an effective chelating agent for PuIV. Administration of the chelate removed PuIV from the circulation and prevented its deposition in liver and skeleton by excretion to a greater extent than DTPA. Neither LICAMS nor DTPA seems to have altered substantially the partitioning of retained activity between liver and skeleton. The agent LICAMS has a greater affinity for PuIV than for AmIII, a finding that was expected from the small size of the charge cavity that was incorporated into the 3,4,3-LICAMS molecule (ionic radii of PuIV and AmIII are  $9 \times 10^{-3}$   $\mu\text{m}$  and  $9.9 \times 10^{-3}$   $\mu\text{m}$ , respectively).

A longer residence time of Am in the circulation of LICAMS-treated dogs may be explained by a lower excretion rate of Am-LICAMS vs. Am-DTPA by the kidney. Some rerouting of circulating Am-LICAMS to the urine does occur, however, as indicated by a somewhat reduced total-body and liver retention following LICAMS treatment (Fig. 3). No conclusion as to the removal of Pu or Am already deposited in liver or skeleton from exposure much earlier than 30 minutes before treatment can be drawn from this experiment.

The tetracatecholates show considerable promise as agents for incorporation of ions of high charge and small size. However, the as yet undetermined degree of nephrotoxicity observed in two of the dogs given this amount of LICAMS (which would be equivalent to 2.5 g in a 70 kg human) should receive further study. In general, these findings of enhanced removal of Pu from the circulation and reduced deposition in body tissues by LICAMS are very promising. The relationship between removal efficiency and toxicity of 3,4,3-LICAMS and similar agents should be investigated in detail and the compounds redesigned, if necessary.

Table 2. AMERICIUM AND PLUTONIUM RETENTION IN BEAGLES 7 DAYS AFTER DECORPORATION THERAPY VIA i.v. INJECTION OF DTPA ALONE, LICAMS ALONE, OR DTPA + LICAMS. EACH VALUE FOR TREATED DOGS REPRESENTS THE MEAN OF 2 ANIMALS. RETENTION OF  $^{241}\text{Am}$  AND  $^{237+239}\text{Pu}$  IN LIVER, IN NON-LIVER TISSUE AND IN THE TOTAL-BODY WAS DETERMINED BY *IN VIVO* COUNTING, AND HEPATIC RETENTION IN THE TREATED DOGS WAS CONFIRMED BY COUNTING OF EXCISED LIVERS. VALUES FOR UNTREATED ANIMALS WERE TAKEN FROM LLOYD, *ET AL.* (1975b) FOR  $^{241}\text{Am}$  AND FROM STOVER, *ET AL.* (1968, 1971, AND 1972) FOR  $^{239}\text{Pu}$ .

| $^{241}\text{Am}$     |                             |              |                  |                                |              |                  |
|-----------------------|-----------------------------|--------------|------------------|--------------------------------|--------------|------------------|
| <u>Treatment</u>      | <u>Percent Retention in</u> |              |                  | <u>Proportionate Retention</u> |              |                  |
|                       | <u>Total-Body</u>           | <u>Liver</u> | <u>Non-Liver</u> | <u>Total-Body</u>              | <u>Liver</u> | <u>Non-Liver</u> |
| Untreated             | 87.3                        | 42.2         | 45.1             | 1.0                            | 0.48         | 0.52             |
| LICAMS                | 67.2                        | 35.6         | 31.6             | 1.0                            | 0.53         | 0.47             |
| DTPA                  | 20.1                        | 9.5          | 10.6             | 1.0                            | 0.47         | 0.53             |
| DTPA + LICAMS         | 20.9                        | 11.0         | 9.9              | 1.0                            | 0.53         | 0.47             |
| Mean                  |                             |              |                  |                                | 0.50         | 0.50             |
| $^{237+239}\text{Pu}$ |                             |              |                  |                                |              |                  |
| <u>Treatment</u>      | <u>Percent Retention in</u> |              |                  | <u>Proportionate Retention</u> |              |                  |
|                       | <u>Total-Body</u>           | <u>Liver</u> | <u>Non-Liver</u> | <u>Total-Body</u>              | <u>Liver</u> | <u>Non-Liver</u> |
| Untreated             | 90                          | 35           | 55               | 1.0                            | 0.39         | 0.61             |
| DTPA                  | 29.7                        | 9.9          | 19.8             | 1.0                            | 0.33         | 0.67             |
| LICAMS                | 13.7                        | 6.3          | 7.4              | 1.0                            | 0.46         | 0.54             |
| DTPA + LICAMS         | 11.6                        | 4.9          | 6.7              | 1.0                            | 0.42         | 0.58             |
| Mean                  |                             |              |                  |                                | 0.40         | 0.60             |

REFERENCES

1. F.L. Weitl and K.N. Raymond, Specific sequestering agents for the actinides. 3. Polycatecholate Ligands derived from 2,3-dihydroxy-5-sulfo-benzene conjugates of diaza- and tetraaza-alkanes. *J. Am. Chem. Soc.*, In Press.
2. P.W. Durbin, E.S. Jones, K.N. Raymond, and F.L. Weitl, Specific sequestering agents for the actinides. 4. Removal of  $^{238}\text{Pu}(\text{IV})$  from mice by sulfonated tetrameric catechoyl amides. *Radiat. Res.*, In Press.
3. R.F. Keough and G.J. Powers, Determination of plutonium in biological materials by extraction and liquid scintillation counting. *Anal. Chem.* 42, 419-421 (1970).
4. R.D. Lloyd and C.W. Mays, Determining liver retention of transuranium elements in living beagles. *Radiat. Environ. Biophys.* 12, 139-145 (1975a).
5. R.D. Lloyd, Susan S. McFarland, G.N. Taylor, J.L. Williams, and C.W. Mays, Deporporation of  $^{241}\text{Am}$  in beagles by DTPA. *Radiat. Res.* 62, 97-106 (1975b).
6. R.D. Lloyd, D.H. Taysum, and C.W. Mays, Design and calibration of total-body counting system for measuring radioactivity in beagles. *Int. J. Appl. Radiat. Isotopes* 127, 100-111 (1976a).
7. R.D. Lloyd, D.R. Atherton, S.S. McFarland, C.W. Mays, W. Stevens, J.L. Williams, and G.N. Taylor, Studies of injected  $^{237}\text{Pu}(\text{IV})$  citrate in beagles. *Health Phys.* 30, 47-52 (1976b).
8. B.J. Stover, D.R. Atherton, F.W. Bruenger, and D.S. Buster, Pu-239 in liver, spleen, and kidneys of the beagle. *Health Phys.* 14, 193-197 (1968).
9. B.J. Stover, D.R. Atherton, and D.S. Buster, Protracted hepatic, splenic and renal retention of  $^{239}\text{Pu}$  in the beagle. *Health Phys.* 20, 369-374 (1971).
10. C.M. Woolf, *PRINCIPLES OF BIOMETRY*. D. Van Nostrand Co., Princeton, N.J., 359 pages (1968).

ADDITIONS TO BIBLIOGRAPHY

(1 April 1978 to 31 March 1979)

PUBLISHED PAPERS

1. Bruenger, F.W., Stevens, W., Atherton, D.R., Bates, D.S., and Buster, D.S., 1977. Distribution of  $^{239}\text{Pu}$  in neonatal beagles. In: *Developmental Toxicology of Energy-Related Pollutants (CONF-771017)*, D.D. Mahlum, Ed., pp. 344-360.
2. Calder, Scott E., Taylor, Glenn N., Lloyd, Ray D., Petersen, Robert V., Atherton, David R., and Mays, Charles W., 1978. Zn-DTPA administered by slow-release implant. *Health Physics* 35: 785-790.
3. Calder, Scott E., Mays, Charles W., Taylor, Glenn N., and Brammer, Thomas, 1979. Zn-DTPA safety in the mouse fetus. *Health Physics* 36: 524-526.
4. Lloyd, R.D., Boseman, J.J., Taylor, G.N., Bruenger, F.W., Atherton, D.R., Stevens, W., and Mays, C.W., 1978. Decorporation from beagles of a mixture of monomeric and particulate plutonium using Ca-DTPA and Zn-DTPA: Dependence upon frequency of administration. *Health Phys.* 35: 217-227.
5. Lloyd, R.D., McFarland, S.S., Atherton, D.R., Bruenger, F.W., Taylor, G.N., and Mays, C.W., 1978. Early retention of  $^{237}\text{Pu}$  +  $^{239}\text{Pu}$  in mature beagles. *Health Phys.* 35: 211-215.
6. Lloyd, R.D., McFarland, S.S., Atherton, D.R., and Mays, C.W., 1978. Plutonium retention, excretion, and distribution in juvenile beagles soon after injection. *Radiat. Research* 75: 633-641 (1978).
7. Lloyd, Ray D., Mays, Charles W., and Taysum, David H., 1979. Gamma-ray spectrometry of humans at the University of Utah. *Radiation and Environmental Biophysics* 16: 157-175.
8. Mays, C.W., 1978. Endosteal dose to Thorotrast patients. *Health Phys.* 35: 123-126.
9. Mays, C.W., Spiess, H., and Gerspach, A., 1978. Skeletal effects following  $^{224}\text{Ra}$  injections into humans. *Health Physics* 35: 83-90.

10. Mays, Charles W., 1979. Discussion of plutonium toxicity, in National Energy Issues - How Do We Decide? Plutonium As A Test Case. Proceedings of a Symposium held 29-30 Sept. 1978, at the Argonne National Laboratory by the American Academy of Arts and Sciences, Ed. by Robert G. Sachs, pp. 115-143 and 332-339 (Published by the Argonne National Laboratory on April 1979).
11. Mays, Charles W., and Spiess, Heinz, 1979. Bone tumors in Thorotrast patients. Environmental Research 18: 88-93.
12. Miller, S.C., and Jee, W.S.S., 1979. The effect of dichloromethylene diphosphonate, a pyrophosphate analog, on bone and bone cell structure in the growing rat. Anat. Rec. 193: 439-461.
13. Singh, N.P., Ibrahim, S.A., Cohen, N., and Wrenn, M.E., 1978. Solvent extraction method for determination of plutonium in soft tissue. Analytical Chemistry 50: No. 2., 357-360 (1978).
14. Singh, N.P., Ibrahim, S.A., Cohen, N., and Wrenn, M.E., 1979. Solvent extraction method for determination of thorium in soft tissues. Analyt. Chem. 51: 207.
15. Smith, J.M., McFarland, S.S., Calder, S.E., and Mays, C.W., 1978. The retention and distribution of  $^{243,244}\text{Cm}$  in C57BL/Do mice. Radiation Research 76: 436-440.
16. Spiess, H., Gerspach, A., and Mays, C.W., 1978. Soft tissue effects following  $^{224}\text{Ra}$  injections into humans. Health Physics 35: 61-82.
17. Spiess, Heinz, and Mays, Charles W., 1979. Liver diseases in patients injected with  $^{224}\text{Ra}$ . Environmental Research 18: 55-60.
18. Spitz, H.B., Wrenn, M.E., and Cohen, N., April 23-28, 1978. Diurnal variation of radon measures indoors and outdoors and its dependence upon natural and artificially enhanced source material in the environment. Proceedings of the Natural Radiation Environment III Meeting, Houston, Texas.
19. Stevens, W., Bruenger, F.W., Atherton, D.R., Buster, D.S., and Howerton, G., 1978. The retention and distribution of  $^{241}\text{Am}$  and  $^{65}\text{Zn}$  given as DTPA chelates in rats and of  $^{14}\text{C}$ -DTPA in rats and beagles. Radiat. Res. 75: 397-400.
20. Taylor, G.N., Lloyd, R.D., Boseman, J.J., Atherton, D.R., and Mays, C.W., 1978. Removal of plutonium from beagles using Ca-DTPA and Zn-DTPA. Effects of initial DTPA injection. Health Phys. 35: 201-210.

21. Taylor, G.N., and Mays, C.W., 1978. Fetal injury induced by Ca-DTPA in dogs. *Health Phys.* 35: 858-860.
22. Whitson, S.W., Dawson, L.R., and Jee, W.S.S., 1978. A tetracycline study of cyclic longitudinal bone growth in the female rat. *Endo.* 103: 2006-2010.
23. Wrenn, M.E., August 1978. Actinide research to solve some practical problems. Workshop on Research Needs in Actinide Biology, Proceedings of the Workshop, Battelle Seattle Research Center, Washington, April 5-7, 1977, CONF-770491, pp. 36-39.
24. Wrenn, M.E., et al., January 1978. Report to the APS by the Study Group on Nuclear Fuel Cycles and Waste Management. *Reviews of Modern Physics* 50: No. 1, Part II.
25. Wrenn, M.E., Singh, N.P., Ibrahim, S., Cohen, N., and Saccomanno, G., April 23-28, 1978. Thorium in human tissues. Proceedings of the National Radiation Environment III Meeting, Houston, Texas.
26. Wrenn, M.E., and Cohen, N., 11-15 February, 1979. Dosimetric and risk/benefit implications of Am-241 in smoke detectors disposed of in normal wastes. Proc. Health Physics Society Midyear Topical Symposium Low-Level Radioactivity Waste Management, Williamsburg, Virginia.

PUBLISHED ABSTRACTS

1. Bruenger, F.W., Neilson, E.R., Atherton, D.R., and Stevens, W., 1978. Synthesis and testing of partially lipophilic decorporation agents. *Radiat. Res.* 74: 560.
2. Jee, W.S.S., Smith, J.M., and Taylor, G.N., 1979. A technique of neutron-induced autoradiography with histological detail. Abstract C-21-1, Sixth International Congress of Radiation Research, Tokyo, Japan.
3. Kimmel, D.B., Malluche, H.H., Meyer, W.A., Keusch, G., and Massry, S.G., 1979. Effect of long term infusion of physiological dose on osteoprogenitor cells of bone. Abstracts of Fourth International Workshop on Phosphate and Other Minerals, Strasbourg, France.
4. Kimmel, D.B., Ritz, E., and Krempien, B., 1979. Skeletal growth and modeling in experimental uremia. Abstracts of Fourth International Workshop on Phosphate and other Minerals, Strasbourg, France.

5. Lloyd, R.D., Mays, C.W., Taylor, G.N., Atherton, D.R., Bruenger, F.W., and Jones, C.W., 1978. Early retention and distribution of injected  $^{224}\text{Ra}$  in beagles. *Health Physics* 35: 895.
6. Singh, N.P., Ibrahim, S.A., Cohen, N., and Wrenn, M.E., 1977. Radiochemical determination of thorium in soft tissues. *Proc. of the 23rd Bioassay Meeting in Jackson, Wyoming*, p. 27.
7. Steinhausler, F., Schaffer, S., Cohen, N., Lee, C.C., O'Conner, J., and Wrenn, M.E., May 14-18, 1978. Effect of high LET radiation on intracellular ATP content of prokaryotic and eukaryotic algae. *Radiat. Res. Soc. 26th Annual Scientific Meeting, Toronto, Canada*.
8. Wronski, T.J., and Jee, W.S.S., 1979. Variations in the rate of trabecular bone turnover within the beagle skeleton. *Anat. Rec.* 193: 726.

## APPENDIX: TABULAR DATA ON THE EXPERIMENTAL DOGS (31 MARCH 1979)

Tables I and II list the toxicity and test animals, respectively. Toxicity animals are those animals which are usually maintained until sacrifice becomes a clinical necessity; test animals may be sacrificed as needed for special studies.

Dogs are put into the toxicity study at graded injection levels. At each level, about half the dogs are male and half female. Litter mates are used whenever possible. Each animal receives the designated dose of one radionuclide in a single intravenous injection at approximately 17 months of age. At this age the skeleton is mature with all epiphyses fused except those of the ribs.

The five injection levels designated by integers are those specified at the early meetings of the consultants, and those designated by nonintegers have been added by the laboratory staff. Since those injection levels were originally specified in "retained" activities, the actual injections are four times the desired "retained"  $\mu\text{Ci}/\text{kg}$  for  $^{90}\text{Sr}$ ,  $^{210}\text{Pb}$ ,  $^{224}\text{Ra}$ ,  $^{226}\text{Ra}$ , and  $^{228}\text{Ra}$ , and 1.11 times the desired "retained"  $\mu\text{Ci}/\text{kg}$  for  $^{228}\text{Th}$ ,  $^{239}\text{Pu}$ ,  $^{241}\text{Am}$ ,  $^{243}/^{244}\text{Cm}$ ,  $^{249}/^{252}\text{Cf}$ , and  $^{253}\text{Es}$ .\* The desired "retained" activities are the same for all

---

\*Since radioactive decay and excretion occur continuously, the term "total body retention" is obviously meaningless unless the time after injection is specified. Our present measurements indicate that the effective retention of alkaline earth elements decrease to about 25% of that injected by the following times after injection:

| <u>Element</u>    | <u>Time (days)</u> |
|-------------------|--------------------|
| $^{90}\text{Sr}$  | 134                |
| $^{210}\text{Pb}$ | 98                 |
| $^{224}\text{Ra}$ | 5                  |
| $^{226}\text{Ra}$ | 271                |
| $^{228}\text{Ra}$ | 214                |

Retention of actinide elements decreases to about 90% at post-injection times shown below:

|                          |   |
|--------------------------|---|
| $^{228}\text{Th}$        | 6 |
| $^{239}\text{Pu}$        | 6 |
| $^{241}\text{Am}$        | 6 |
| $^{243}/^{244}\text{Cm}$ | 1 |
| $^{249}/^{252}\text{Cf}$ | 1 |
| $^{253}\text{Es}$        | 1 |

the radionuclides except  $^{90}\text{Sr}$ , in which case they are greater by a factor of 10. Injection level 1 is the basis of the scheme, and is 10 times the maximum permissible concentration of  $^{226}\text{Ra}$  in man. Level 1 =  $10 \times \frac{0.1 \mu\text{Ci} \text{ }^{226}\text{Ra}}{70 \text{ kg man}} = 0.0143$  "retained"  $\mu\text{Ci/kg}$ . All other injection levels are simple multiples of level 1, as shown below.

|                       |            |
|-----------------------|------------|
| Level 0.1 is 1/27     | of level 1 |
| Level 0.2 is 1/9      | of level 1 |
| Level 0.5 is 1/3      | of level 1 |
| Level 0.7 is 2/3      | of level 1 |
| Level 1.5 is 2 times  | level 1    |
| Level 1.7 is 3 times  | level 1    |
| Level 2 is 6 times    | level 1    |
| Level 3 is 18 times   | level 1    |
| Level 4 is 54 times   | level 1    |
| Level 4.5 is 94 times | level 1    |
| Level 5 is 162 times  | level 1    |

The numbering system for the dogs has been built around the injection program and serves as a code to describe each dog's place in the experiment. The first letter tells the sex of toxicity animals (M = male, F = female). When the first letter is T, the dog is a test animal. M, F, or T is followed by a number which denotes chronological order of groups in the case of toxicity dogs and of individual test dogs.

Next comes a code letter for the radionuclide: R =  $^{226}\text{Ra}$ , P =  $^{239}\text{Pu}$ , M =  $^{228}\text{Ra}$ , T =  $^{228}\text{Th}$ , S =  $^{90}\text{Sr}$ , J =  $^{85}\text{Sr}$ , Q =  $^{224}\text{Ra}$ , W =  $^{241}\text{Am}$ , L =  $^{210}\text{Pb}$ , G =  $^{249}\text{Cf}$ , F =  $^{252}\text{Cf}$ , C =  $^{243}/^{244}\text{Cm}$ , E =  $^{253}\text{Es}$ , K =  $^{237}\text{Pu}$ , U =  $^{233}\text{U}$ , V =  $^{238}\text{U}$ , and A = Ancillary.

"A" following the regular dog number means that the dog is a replacement, "H" following the regular dog number means that the dog received its dose in more than one injection. "B," "C," or "D" denotes an intended special assignment, but most of these dogs have been redesignated for lifespan toxicity studies. "E" in the final position is used to denote that the dog listed is a St. Bernard. "P" in the final position indicates that the nuclide was injected in particulate form. "Y" in the final position indicates that the animal was injected as a juvenile. "N" in the final position indicates that the animal was injected as a neonate. A plus (+) in the final position denotes that the animal was "old" when injected. Letters denoting a radionuclide may follow the final number, in which case the letter indicates that two radionuclides were given. The injection level refers to the radionuclide appearing first in the identifying code.

Example: M1R5 is a male animal in the first radium group at the highest injection level.

Although M1R5, M1R4, M1R3, M1R2, M1R1, and M1R0 constitute a group and were injected at the same time, the tables are arranged according to injection level to facilitate comparison of all the R5 animals, all the R4 animals, etc.

The conditions listed in the injection tables under "Comments on Dead Dogs" present the cancers and the lesions or factors that had the most prominent effect on the clinical status of the animal. For example, multiple rib fractures, which seldom produced symptoms, are not listed, even though their incidence was usually much higher than the crippling fractures involving the limb bones or mandible. The hematological changes have been omitted unless they were extreme. Increased rate of tooth loss, hepatic changes, eye lesions, and many other factors in the various syndromes have not been included because of space limitations. Over the years many soft tissue tumors have been removed surgically. In many instances, the conditions that have been listed were the reasons for sacrifice of the animal but they were not the immediate cause of death. Most of the animals were euthanized when death appeared imminent or when life could no longer be prolonged humanely.

#### DOSIMETRY

The tables include the calculated average dose in rads to the skeleton at death.  $^{90}\text{Sr}$ ,  $^{226}\text{Ra}$ ,  $^{228}\text{Ra}$ ,  $^{241}\text{Am}$ ,  $^{249}\text{Cf}$ , and  $^{252}\text{Cf}$  doses are calculated for each dog using its individually observed retention values:  $^{239}\text{Pu}$ ,  $^{228}\text{Th}$ , and  $^{224}\text{Ra}$  doses are based on our average skeletal retention equations. For our standard beagle, the following equations were used for the EFFECTIVE\* skeletal retention at (t) days after injection:

---

\*Effective retention is decreased both by radioactive decay and biological elimination.

$$^{226}\text{Ra} = 0.412e^{-0.558t} + 0.105e^{-0.0730t} + 0.196e^{-0.00488t} + 0.287e^{-0.000299t}$$

(5-level only)

$$^{226}\text{Ra} = 0.251e^{-0.982t} + 0.211e^{-0.269t} + 0.210e^{-0.0155t} + 0.177e^{-0.00204t} + 0.151e^{-0.000150t}$$

(lower levels)

$$\frac{^{222}\text{Rn}}{^{226}\text{Ra}} = 0.075 (1-e^{-0.181t}) t^{0.158}$$

(All levels)

$$^{239}\text{Pu} \text{ (dose level 5)} = 0.07e^{-0.0011t} + 0.43$$

$$^{239}\text{Pu} \text{ (dose level 4)} = 0.11e^{-0.0011t} + 0.39$$

$$^{239}\text{Pu} \text{ (dose level 3)} = 0.15e^{-0.0011t} + 0.34$$

$$^{239}\text{Pu} \text{ (lower levels)} = 0.29e^{-0.0011t} + 0.21$$

$$^{228}\text{Ra} = 0.251e^{-0.982t} + 0.211e^{-0.269t} + 0.21e^{-0.0158t} + 0.177e^{-0.00237t} + 0.151e^{-0.000479t}$$

(pure at t = 0)

84% retention of *in vivo* produced  $^{228}\text{Th}$  and daughters.

$$^{228}\text{Th} = 0.69e^{-0.00113t}$$

$$\frac{^{224}\text{Ra}}{^{228}\text{Th}} = 0.895$$

$$\frac{^{212}\text{Pb}}{^{228}\text{Th}} = 0.866$$

$$^{90}\text{Sr} = 0.36e^{-0.95t} + 0.29e^{-0.12t} + 0.10e^{-0.0092t} + 0.12e^{-0.0020t} + 0.13e^{-0.00022t}$$

$$^{241}\text{Am} \text{ (dose level 5)} = 0.359 + 0.157 (1-e^{-0.0065t})$$

$$^{241}\text{Am} \text{ (dose level 4)} = 0.359 + 0.141 (1-e^{-0.0029t})$$

$$^{241}\text{Am} \text{ (dose level 3)} = 0.359 + 0.076 (1-e^{-0.0021t})$$

$$^{241}\text{Am} \text{ (lower levels)} = 0.359 + 0.015 (1-e^{-0.0014t})$$

$$^{249}\text{Cf} = 0.498e^{-0.0000794t}$$

$$^{252}\text{Cf} = 0.498e^{-0.000791t}$$

$$^{224}\text{Ra} = 0.528 e^{-0.214t} - 0.228 e^{-9.01t}$$

with the effective retention of  $^{224}\text{Ra}$  daughters of:

$$^{220}\text{Rn} \text{ and } ^{216}\text{Po} = 0.486 e^{-0.214t} - 0.276 e^{-4.65t}$$

$$^{212}\text{Pb} = 0.447 e^{-0.214t} - 0.336 e^{-2.40t}$$

$$^{212}\text{Bi} = ^{212}\text{Po} + ^{208}\text{Tl} = 0.391 e^{-0.214t} - 0.350 e^{-2.38t}$$


---

Detailed retention data and dosimetric analysis have been presented in a special report, COO-119-241 (March 1970), supplemented by other reports in COO-119-252 (March 1977) and COO-119-253 (March 1978).

The skeletal doses in this report are based upon a wet skeleton which is 7.5% of the body weight at the time of injection (COO-119-246, pp. 167-192, 1972).

$^{228}\text{Ra}$  doses deserve special comment. The dose from "pure"  $^{228}\text{Ra}$  and its *in vivo* produced daughters is based on our best evaluation of  $5.77 \pm 0.02$  yr for the  $^{228}\text{Ra}$  half-period. The tabulated total doses include the contributions from  $^{228}\text{Th}$  contamination in the injection solutions. For example,  $^{228}\text{Th}$  contaminations of 0.6%, 3%, and 15%, respectively, account for 2.7%, 13%, and 42% of the total dose in rads at 1000 days. If injected  $^{228}\text{Th}$  is 4 times more toxic rad-for-rad than is *in vivo* produced  $^{228}\text{Th}$ , these injected  $^{228}\text{Th}$  contaminations would account for 10%, 37%, and 74% of the total biological damage at 1000 days. Therefore, it may be desirable to use only results from the slightly contaminated (0.6%  $^{228}\text{Th}$ ) dogs in evaluation of  $^{228}\text{Ra}$  toxicity.

TABLE I. CHRONIC TOXICITY ANIMALS (31 MAR. 1979)

## A. RADIUM - 226

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | DAYS SINCE INJECTION 31/3/79 DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|------------------------------------|-------------------------|
| MO01RO.O   | 558                  | 8.03        |                   | 20 4 53               | 3116                               |                         |
| MO02RO.O   | 487                  | 14.6        |                   | 16 11 53              | 3675                               |                         |
| FO03RO.O   | 601                  | 11.4        |                   | 10 3 54               | 2139                               |                         |
| MO04RO.O   | 461                  | 11.0        |                   | 7 4 54                | 5284                               |                         |
| MO05RO.O   | 460                  | 6.57        |                   | 22 6 54               | 4018                               |                         |
| FO06RO.O   | 483                  | 8.43        |                   | 27 7 54               | 3182                               |                         |
| MO07RO.O   | 511                  | 11.0        |                   | 24 8 54               | 3360                               |                         |
| FO08RO.O   | 638                  | 8.21        |                   | 21 12 54              | 3361                               |                         |
| FO09RO.O   | 700                  | 11.7        |                   | 11 4 55               | 1550                               |                         |
| MO10RO.O   | 522                  | 10.9        |                   | 27 7 55               | 4698                               |                         |
| FO11RO.O   | 544                  | 10.2        |                   | 20 12 55              | 4575                               |                         |
| FO12RO.O   | 501                  | 8.68        |                   | 17 1 56               | 4283                               |                         |
| MO13RO.O   | 515                  | 12.3        |                   | 4 3 64                | 4752                               |                         |
| FO14RO.O   | 536                  | 10.8        |                   | 23 10 64              | 5272                               |                         |
| MO15RO.O   | 564                  | 12.8        |                   | 4 2 65                | 4372                               |                         |
| FO16RO.O   | 469                  | 10.0        |                   | 7 4 65                | 3677                               |                         |
| MO17RO.O   | 469                  | 12.50       |                   | 27 4 66               | 4721                               |                         |
| FO18RO.O   | 497                  | 12.00       |                   | 25 5 66               | 4693                               |                         |
| FO19RO.O   | 533                  | 8.42        |                   | 13 10 66              | 4552                               |                         |
| MO20RO.O   | 536                  | 9.70        |                   | 29 12 66              | 4475                               |                         |
| FO21RO.O   | 549                  | 9.90        |                   | 26 1 67               | 4234                               |                         |
| MO22RO.O   | 533                  | 12.1        |                   | 22 3 67               | 3907                               |                         |
| FO31RO.OB  | 536                  | 10.6        |                   | 23 10 64              | 4458                               |                         |
| FO31RO.OC  | 536                  | 9.88        |                   | 23 10 64              | 4690                               |                         |
| FO31RO.OD  | 542                  | 9.9         |                   | 21 9 65               | 4889                               |                         |
| FO32RO.OB  | 542                  | 7.8         |                   | 21 9 65               | 4657                               |                         |
| FO32RO.OC  | 532                  | 11.7        |                   | 21 9 65               | 4845                               |                         |
| FO32RO.OD  | 532                  | 9.7         |                   | 21 9 65               | 4734                               |                         |
| FO33RO.OB  | 532                  | 9.8         |                   | 21 9 65               | 3670                               |                         |
| FO33RO.OC  | 496                  | 9.50        |                   | 25 5 66               | 4509                               |                         |
| FO33RO.OD  | 496                  | 11.80       |                   | 25 5 66               | 3916                               |                         |
| FO34RO.OB  | 525                  | 8.20        |                   | 26 1 67               | 4447                               |                         |
| FO34RO.OC  | 520                  | 8.9         |                   | 22 3 67               | 4392                               |                         |
| FO34RO.OD  | 484                  | 9.9         |                   | 22 3 67               | 3185                               |                         |
| FO35RO.OB  | 502                  | 9.41        |                   | 1 2 68                | 4076                               |                         |
| FO35RO.OC  | 502                  | 9.38        |                   | 1 2 68                | 4076                               |                         |
| FO35RO.OD  | 552                  | 8.86        |                   | 9 1 69                | 3733                               |                         |
| FO36RO.OB  | 467                  | 10.1        |                   | 2 7 68                | 3924                               |                         |
| FO36RO.OC  | 467                  | 9.17        |                   | 2 7 68                | 3924                               |                         |
| FO36RO.OD  | 467                  | 9.08        |                   | 2 7 68                | 3924                               |                         |
| FO37RO.OB  | 801                  | 11.1        |                   | 20 5 69               | 3602                               |                         |
| FO37RO.OC  | 501                  | 10.4        |                   | 23 9 70               | 2788                               |                         |
| FO37RO.OD  | 501                  | 10.9        |                   | 23 9 70               | 3111                               |                         |

## A. RADIUM - 226

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                        |
|---------------|----------------------------------------------|
| MO01RO.O      | SEMINOMA, LYMPHOSARCOMA                      |
| MO02RO.O      | TRANSITIONAL CELL CARCINOMA                  |
| FO03RO.O      | STATUS EPILEPTICUS                           |
| MO04RO.O      | CHRONIC INTERSTITIAL NEPHRITIS; THROMBOSIS   |
| MO05RO.O      | OBTURATING PULMONARY EMBOLISM                |
| FO06RO.O      | STATUS EPILEPTICUS                           |
| MO07RO.O      | STATUS EPILEPTICUS, NEPHRITIS                |
| FO08RO.O      | PANCREATIC ADENOCARCINOMA                    |
| FO09RO.O      | AORTIC BODY TUMOR                            |
| MO10RO.O      | NEPHRITIS                                    |
| FO11RO.O      | VAGINAL FIBROMA                              |
| FO12RO.O      | UNDETERMINED (NO BONE TUMOR)                 |
| MO13RO.O      | MALIGNANT MELANOMA (ORAL)                    |
| FO14RO.O      |                                              |
| MO15RO.O      | CHRONIC PANCREATITIS; HYDROCEPHALUS          |
| FO16RO.O      | EPIDERMOID CARCINOMA, LUNG CARCINOMA         |
| MO17RO.O      |                                              |
| FO18RO.O      |                                              |
| FO19RO.O      |                                              |
| MO20RO.O      |                                              |
| FO21RO.O      | MAMMARY CARCINOMA                            |
| MO22RO.O      | SEPTICEMIA                                   |
| FO31RO.OB     | STATUS EPILEPTICUS                           |
| FO31RO.OC     | BILIARY CALCULUS; VAGINAL LEIOMYOSARCOMA     |
| FO31RO.OD     | CHRONIC PANCREATITIS                         |
| FO32RO.OB     | VALVULAR INSUFFICIENCY; CHRONIC PANCREATITIS |
| FO32RO.OC     | MAMMARY CARCINOMA                            |
| FO32RO.OD     | TRANSITIONAL CELL CARCINOMA                  |
| FO33RO.OB     | MAMMARY CARCINOMA                            |
| FO33RO.OC     | MELANOMA (ORAL)                              |
| FO33RO.OD     | MAMMARY CARCINOMA                            |
| FO34RO.OB     |                                              |
| FO34RO.OC     |                                              |
| FO34RO.OD     | HEMANGIOSARCOMA (SOFT TISSUE)                |
| FO35RO.OB     |                                              |
| FO35RO.OC     |                                              |
| FO35RO.OD     |                                              |
| FO36RO.OB     |                                              |
| FO36RO.OC     |                                              |
| FO36RO.OD     |                                              |
| FO37RO.OB     |                                              |
| FO37RO.OC     | PNEUMONIA                                    |
| FO37RO.OD     |                                              |

## A. RADIUM - 226

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | DAYS SINCE INJECTION 31/3/79 DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|------------------------------------|-------------------------|
| FO38RO.OB  | 501                  | 11.5        |                   | 23 9 70               | 3111                               |                         |
| FO42RO.OB  | 338                  | 8.00        |                   | 25 4 69               |                                    | 33                      |
| M1O1RO.OY  | 92                   | 4.65        |                   | 1 4 75                | 1460                               |                         |
| M1O2RO.OY  | 88                   | 3.60        |                   | 25 3 75               | 1467                               |                         |
| M1O3RO.OY  | 93                   | 4.38        |                   | 24 4 75               | 1437                               |                         |
| F1O4RO.OY  | 89                   | 4.53        |                   | 14 3 75               | 1478                               |                         |
| F1O5RO.OY  | 88                   | 4.51        |                   | 25 3 75               | 1467                               |                         |
| F1O6RO.OY  | 92                   | 3.64        |                   | 1 4 75                | 1460                               |                         |
| M1O7RO.OY  | 93                   | 4.32        |                   | 8 3 77                | 753                                |                         |
| F1O8RO.OY  | 93                   | 4.22        |                   | 16 3 77               | 745                                |                         |
| F1O9RO.OY  | 88                   | 2.92        |                   | 19 1 78               | 436                                |                         |
| MO13RO.2   | 529                  | 9.77        | 0.00577           | 4 3 64                |                                    | 4518                    |
| FO14RO.2   | 460                  | 8.10        | 0.00836           | 23 10 64              |                                    | 3448                    |
| MO15RO.2   | 504                  | 10.8        | 0.00873           | 4 2 65                |                                    | 4102                    |
| FO16RO.2   | 486                  | 8.90        | 0.00665           | 7 4 65                |                                    | 4190                    |
| MO17RO.2   | 494                  | 11.80       | 0.00711           | 27 4 66               | 4721                               | 32                      |
| FO18RO.2   | 497                  | 9.30        | 0.00652           | 25 5 66               |                                    | 3387                    |
| FO19RO.2   | 533                  | 10.6        | 0.00785           | 13 10 66              |                                    | 3611                    |
| MO20RO.2   | 546                  | 11.4        | 0.00676           | 29 12 66              |                                    | 3493                    |
| FO21RO.2   | 549                  | 11.5        | 0.00687           | 26 1 67               |                                    | 3101                    |
| MO22RO.2   | 533                  | 12.9        | 0.00961           | 22 3 67               | 4392                               | 21                      |
| MO13RO.5   | 529                  | 11.0        | 0.0171            | 4 3 64                |                                    | 3676                    |
| FO14RO.5   | 510                  | 9.75        | 0.0220            | 23 10 64              |                                    | 5079                    |
| MO15RO.5   | 490                  | 10.4        | 0.0263            | 4 2 65                |                                    | 4297                    |
| FO16RO.5   | 500                  | 11.4        | 0.0205            | 7 4 65                |                                    | 4141                    |
| MO17RO.5   | 494                  | 9.20        | 0.0215            | 27 4 66               |                                    | 4052                    |
| FO18RO.5   | 496                  | 9.10        | 0.0197            | 25 5 66               | 4693                               | 85                      |
| FO19RO.5   | 533                  | 10.0        | 0.0230            | 13 10 66              | 4552                               |                         |
| MO20RO.5   | 536                  | 13.2        | 0.0206            | 29 12 66              | 4475                               |                         |
| FO21RO.5   | 538                  | 8.80        | 0.0208            | 26 1 67               |                                    | 4281                    |
| MO22RO.5   | 520                  | 12.3        | 0.0290            | 22 3 67               |                                    | 3192                    |
| MO31RO.5B  | 508                  | 11.40       | 0.021             | 27 4 66               |                                    | 4310                    |
| FO31RO.5C  | 537                  | 9.40        | 0.0235            | 22 12 65              |                                    | 4393                    |
| FO31RO.5D  | 537                  | 11.70       | 0.0238            | 22 12 65              |                                    | 4797                    |
| MO32RO.5B  | 496                  | 13.40       | 0.0196            | 25 5 66               |                                    | 3219                    |
| FO32RO.5C  | 519                  | 10.10       | 0.0239            | 22 12 65              |                                    | 4180                    |
| FO32RO.5D  | 509                  | 10.10       | 0.024             | 22 12 65              |                                    | 3870                    |
| MO33RO.5B  | 497                  | 12.90       | 0.0194            | 25 5 66               |                                    | 3848                    |
| FO33RO.5C  | 527                  | 10.60       | 0.0212            | 27 4 66               | 4721                               | 103                     |

## A. RADIUM - 226

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                      |
|---------------|--------------------------------------------|
| FO38RO.0B     |                                            |
| FO42RO.0B     | SPECIAL STUDY                              |
| M101RO.0Y     |                                            |
| M102RO.0Y     |                                            |
| M103RO.0Y     |                                            |
| F104RO.0Y     |                                            |
| F105RO.0Y     |                                            |
| F106RO.0Y     |                                            |
| M107RO.0Y     |                                            |
| F108RO.0Y     |                                            |
| F109RO.0Y     |                                            |
| MO13RO.2      | MALIGNANT MELANOMA (ORAL)                  |
| FO14RO.2      | MALIGNANT MELANOMA (ORAL)                  |
| MO15RO.2      | CIRCULATORY FAILURE                        |
| FO16RO.2      | LYMPHOSARCOMA                              |
| MO17RO.2      |                                            |
| FO18RO.2      | LUNG CARCINOMA                             |
| FO19RO.2      | PNEUMONIA                                  |
| MO20RO.2      | UNDIFFERENTIATED MALIGNANCY (SOFT TISSUE)  |
| FO21RO.2      | MAMMARY CARCINOMA                          |
| MO22RO.2      |                                            |
| MO13RO.5      | BILE DUCT CARCINOMA                        |
| FO14RO.5      | FIBROSARCOMA (MANDIBLE)                    |
| MO15RO.5      | MELANOMA (ORAL)                            |
| FO16RO.5      | MAMMARY CARCINOMA; UTERINE CARCINOMA       |
| MO17RO.5      | ORAL MELANOMA                              |
| FO18RO.5      |                                            |
| FO19RO.5      |                                            |
| MO20RO.5      |                                            |
| FO21RO.5      | HYPOTHALMIC HEMORRHAGE; GASTRIC ULCERATION |
| MO22RO.5      | THYROID ADENOCARCINOMA                     |
| MO31RO.5B     | THYROID CARCINOMA; Spondylitis             |
| FO31RO.5C     | TRAUMA                                     |
| FO31RO.5D     | AORTIC BODY TUMOR                          |
| MO32RO.5B     | HEMANGIO SARCOMA (SOFT TISSUE)             |
| FO32RO.5C     | ADENOCARCINOMA SALIVARY GLAND (CYLINDROMA) |
| FO32RO.5D     | HEMANGIOSARCOMA (SPLEEN)                   |
| MO33RO.5B     | EPIDERMOID CARCINOMA (ORAL)                |
| FO33RO.5C     |                                            |

## A. RADIUM - 226

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | DAYS SINCE INJECTION 31/3/79 DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|------------------------------------|-------------------------|
| FO33RO.5D  | 527                  | 8.70        | 0.0217            | 27 4 66               | 4697                               | 119                     |
| MO34RO.5B  | 496                  | 10.50       | 0.0196            | 25 5 66               | 4693                               |                         |
| FO34RO.5C  | 524                  | 9.90        | 0.0215            | 27 4 66               | 4322                               | 72                      |
| FO34RO.5D  | 508                  | 9.70        | 0.0212            | 27 4 66               | 4628                               | 110                     |
| MO35RO.5B  | 536                  | 10.4        | 0.0205            | 29 12 66              | 4367                               | 92                      |
| FO35RO.5C  | 532                  | 9.00        | 0.0201            | 29 12 66              | 4475                               |                         |
| FO35RO.5D  | 532                  | 10.2        | 0.0202            | 29 12 66              | 4475                               |                         |
| M101RO.5Y  | 88                   | 4.32        | 0.0186            | 25 3 75               | 1467                               |                         |
| M102RO.5Y  | 93                   | 4.44        | 0.0187            | 24 4 75               | 1437                               |                         |
| M103RO.5Y  | 90                   | 3.61        | 0.0192            | 6 5 75                | 1425                               |                         |
| F104RO.5Y  | 88                   | 4.09        | 0.0184            | 25 3 75               | 1467                               |                         |
| F105RO.5Y  | 88                   | 4.08        | 0.0184            | 25 3 75               | 1467                               |                         |
| F106RO.5Y  | 93                   | 3.60        | 0.0188            | 24 4 75               | 1437                               |                         |
| M107RO.5Y  | 93                   | 3.69        | 0.0191            | 8 3 77                | 753                                |                         |
| M108RO.5Y  | 88                   | 2.54        | 0.0185            | 19 1 78               | 436                                |                         |
| F109RO.5Y  | 90                   | 3.45        | 0.0177            | 9 3 78                | 387                                |                         |
| F110RO.5Y  | 94                   | 3.11        | 0.0195            | 8 8 78                | 235                                |                         |
| MO01R1.0   | 471                  | 8.48        | 0.0618            | 20 4 53               | 5727                               | 227                     |
| MO02R1.0   | 627                  | 10.0        | 0.0876            | 16 11 53              | 4054                               | 316                     |
| FO03R1.0   | 706                  | 8.68        | 0.0576            | 10 3 54               | 3860                               | 201                     |
| MO04R1.0   | 414                  | 8.60        | 0.0642            | 7 4 54                | 2038                               | 144                     |
| MO05R1.0   | 490                  | 11.7        | 0.0436            | 22 6 54               | 3780                               | 149                     |
| FO06R1.0   | 483                  | 7.23        | 0.0584            | 27 7 54               | 5260                               | 249                     |
| MO07R1.0   | 511                  | 11.4        | 0.0651            | 24 8 54               | 3544                               | 223                     |
| FO08R1.0   | 861                  | 8.98        | 0.0559            | 21 12 54              | 2988                               | 124                     |
| FO09R1.0   | 781                  | 9.88        | 0.0521            | 11 4 55               | 4399                               | 132                     |
| M010R1.0   | 523                  | 11.5        | 0.0573            | 27 7 55               | 4003                               | 209                     |
| FO11R1.0   | 511                  | 11.2        | 0.0522            | 20 12 55              | 5462                               | 200                     |
| FO12R1.0   | 501                  | 9.71        | 0.0444            | 17 1 56               | 3978                               | 165                     |
| M013R1.0   | 529                  | 11.7        | 0.0527            | 4 3 64                | 3739                               | 218                     |
| FO14R1.0   | 510                  | 10.5        | 0.0701            | 23 10 64              | 1729                               | 197                     |
| M015R1.0   | 490                  | 8.88        | 0.0797            | 4 2 65                | 893                                | 109                     |
| FO16R1.0   | 501                  | 8.99        | 0.0611            | 7 4 65                | 4557                               | 223                     |
| M017R1.0   | 494                  | 11.40       | 0.0639            | 27 4 66               | 4721                               |                         |
| FO18R1.0   | 496                  | 10.00       | 0.0589            | 25 5 66               | 3625                               | 192                     |
| FO19R1.0   | 526                  | 11.6        | 0.0682            | 13 10 66              | 3612                               | 275                     |
| MO20R1.0   | 536                  | 10.0        | 0.0610            | 29 12 66              | 4260                               | 324                     |
| FO21R1.0   | 525                  | 8.10        | 0.0633            | 26 1 67               | 4447                               |                         |
| MO22R1.0   | 484                  | 10.9        | 0.0861            | 22 3 67               | 4392                               |                         |
| FO31R1.OB  | 509                  | 10.40       | 0.0712            | 22 12 65              | 3009                               | 209                     |
| M101R1.OY  | 88                   | 4.09        | 0.0545            | 25 3 75               | 1467                               |                         |

## A. RADIUM - 226

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                       |
|---------------|---------------------------------------------|
| FO33RO.5D     | CHOLESTASIS                                 |
| MO34RO.5B     |                                             |
| FO34RO.5C     | MAMMARY CARCINOMA                           |
| FO34RO.5D     | TRANSITIONAL CELL CARCINOMA                 |
| MO35RO.5B     | UNDETERMINED (NO BONE TUMOR)                |
| FO35RO.5C     |                                             |
| FO35RO.5D     |                                             |
| M101RO.5Y     |                                             |
| M102RO.5Y     |                                             |
| M103RO.5Y     |                                             |
| F104RO.5Y     |                                             |
| F105RO.5Y     |                                             |
| F106RO.5Y     |                                             |
| M107RO.5Y     |                                             |
| M108RO.5Y     |                                             |
| F109RO.5Y     |                                             |
| F110RO.5Y     |                                             |
| MO01R1.O      | MELANOMA ORAL CAVITY                        |
| MO02R1.O      | SEMINOMA                                    |
| FO03R1.O      | MAMMARY GLAND CARCINOMA                     |
| MO04R1.O      | TRAUMA                                      |
| MO05R1.O      | TRANSITIONAL CELL CARCINOMA, HYDRONEPHROSIS |
| FO06R1.O      | NEPHRITIS                                   |
| MO07R1.O      | STATUS EPILEPTICUS                          |
| FO08R1.O      | LYMPHOSARCOMA                               |
| FO09R1.O      | PNEUMONIA                                   |
| MO10R1.O      | FIBROSARCOMA (GINGIVA)                      |
| FO11R1.O      | MELANOMA (EYE); MAMMARY CARCINOMA           |
| FO12R1.O      | MELANOMA, GINGIVA                           |
| MO13R1.O      | PROSTATIC CYST                              |
| FO14R1.O      | UNDETERMINED (NO NEOPLASIA)                 |
| MO15R1.O      | UNDETERMINED (NO NEOPLASIA)                 |
| FO16R1.O      | LYMPHOSARCOMA                               |
| MO17R1.O      |                                             |
| FO18R1.O      | MAMMARY CARCINOMA                           |
| FO19R1.O      | OSTEOSARCOMA                                |
| MO20R1.O      | CHONDROSARCOMA (NASAL CAVITY)               |
| FO21R1.O      |                                             |
| MO22R1.O      |                                             |
| FO31R1.OB     | STATUS EPILEPTICUS                          |
| M101R1.OY     |                                             |

## A. RADIUM - 226

| DOG<br>NUMBER | INJECTION     |                | INJECTED<br>(uCi/KG) | DATE<br>INJECTED |    |    | DAYS SINCE<br>INJECTION<br>31/3/79 DEATH | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|---------------|----------------|----------------------|------------------|----|----|------------------------------------------|-------------------------------|
|               | AGE<br>(DAYS) | WEIGHT<br>(KG) |                      | D                | MO | YR |                                          |                               |
| M1O2R1.OY     | 92            | 4.54           | 0.0546               | 1                | 4  | 75 | 1460                                     |                               |
| M1O3R1.OY     | 90            | 3.03           | 0.0564               | 6                | 5  | 75 | 1425                                     |                               |
| F1O4R1.OY     | 88            | 3.71           | 0.0541               | 25               | 3  | 75 | 1467                                     |                               |
| F1O5R1.OY     | 92            | 4.70           | 0.0528               | 1                | 4  | 75 | 1460                                     |                               |
| F1O6R1.OY     | 93            | 4.20           | 0.0557               | 24               | 4  | 75 | 1437                                     |                               |
| M1O7R1.OY     | 93            | 4.12           | 0.0575               | 8                | 3  | 77 | 753                                      |                               |
| M1O8R1.OY     | 88            | 2.52           | 0.0548               | 19               | 1  | 78 | 436                                      |                               |
| F1O9R1.OY     | 90            | 3.61           | 0.0544               | 9                | 3  | 78 | 387                                      |                               |
| M111R1.OY     | 90            | 2.95           | 0.0527               | 23               | 5  | 78 | 312                                      |                               |
| MOO1R1.7      | 523           | 9.98           | 0.137                | 17               | 1  | 56 |                                          | 455                           |
| MOO2R1.7      | 598           | 7.85           | 0.163                | 30               | 11 | 56 |                                          | 155                           |
| MOO2R1.7A     | 493           | 12.0           | 0.222                | 6                | 3  | 63 |                                          | 973                           |
| FOO3R1.7      | 473           | 13.1           | 0.165                | 20               | 12 | 55 |                                          | 513                           |
| MOO4R1.7      | 514           | 6.20           | 0.163                | 20               | 12 | 55 |                                          | 684                           |
| MOO5R1.7      | 511           | 10.1           | 0.151                | 20               | 12 | 55 |                                          | 651                           |
| FOO6R1.7      | 491           | 7.9            | 0.152                | 20               | 12 | 55 |                                          | 556                           |
| MOO7R1.7      | 598           | 7.17           | 0.163                | 30               | 11 | 56 |                                          | 412                           |
| FOO8R1.7      | 491           | 9.50           | 0.154                | 20               | 12 | 55 |                                          | 504                           |
| FOO9R1.7      | 598           | 7.55           | 0.168                | 30               | 11 | 56 |                                          | 349                           |
| MO10R1.7      | 590           | 9.57           | 0.167                | 30               | 11 | 56 |                                          | 557                           |
| MOLOR1.7A     | 545           | 10.6           | 0.183                | 7                | 1  | 59 |                                          | 681                           |
| FO11R1.7      | 598           | 8.17           | 0.165                | 30               | 11 | 56 |                                          | 400                           |
| FO12R1.7      | 590           | 8.95           | 0.167                | 30               | 11 | 56 |                                          | 280                           |
| M1O1R1.7Y     | 92            | 4.19           | 0.163                | 1                | 4  | 75 | 1460                                     |                               |
| M1O2R1.7Y     | 93            | 5.45           | 0.167                | 24               | 4  | 75 | 1437                                     |                               |
| M1O3R1.7Y     | 90            | 2.84           | 0.167                | 6                | 5  | 75 | 1425                                     |                               |
| F1O4R1.7Y     | 88            | 3.65           | 0.159                | 25               | 3  | 75 | 1467                                     |                               |
| F1O5R1.7Y     | 88            | 3.66           | 0.158                | 25               | 3  | 75 | 1467                                     |                               |
| F1O6R1.7Y     | 93            | 3.62           | 0.180                | 24               | 4  | 75 | 1437                                     |                               |
| M1O7R1.7Y     | 93            | 3.77           | 0.166                | 16               | 3  | 77 |                                          | 8 19                          |
| M1O8R1.7Y     | 88            | 3.95           | 0.180                | 20               | 4  | 78 | 345                                      |                               |
| F1O9R1.7Y     | 90            | 2.98           | 0.164                | 23               | 5  | 78 | 312                                      |                               |
| F110R1.7Y     | 91            | 2.24           | 0.160                | 20               | 6  | 78 | 284                                      |                               |
| M111R1.7Y     | 90            | 3.39           | 0.158                | 23               | 5  | 78 | 312                                      |                               |
| MOO1R2.0      | 471           | 8.74           | 0.382                | 20               | 4  | 53 |                                          | 1147                          |
| MOO2R2.0      | 592           | 8.21           | 0.387                | 16               | 11 | 53 |                                          | 833                           |
| FOO3R2.0      | 541           | 8.53           | 0.347                | 10               | 3  | 54 |                                          | 1163                          |
| MOO4R2.0      | 414           | 10.5           | 0.361                | 7                | 4  | 54 |                                          | 325 252                       |
| MOO4R2.OA     | 420           | 10.6           | 0.306                | 11               | 4  | 55 |                                          | 4368 1523                     |

## A. RADIUM - 226

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                                      |
|---------------|------------------------------------------------------------|
| M102R1.OY     |                                                            |
| M103R1.OY     |                                                            |
| F104R1.OY     |                                                            |
| F105R1.OY     |                                                            |
| F106R1.OY     |                                                            |
| M107R1.OY     |                                                            |
| M108R1.OY     |                                                            |
| F109R1.OY     |                                                            |
| M111R1.OY     |                                                            |
| MO01R1.7      | OBTURATING ABDOMINAL AORTA AND PULMONARY EMBOLISM          |
| MO02R1.7      | LYMPHOSARCOMA                                              |
| MO02R1.7A     | FIBROSARCOMA (GINGIVA)                                     |
| FO03R1.7      | MAMMARY GLAND CARCINOMA                                    |
| MO04R1.7      | NEPHRITIS                                                  |
| MO05R1.7      | OSTEOSARCOMA                                               |
| FO06R1.7      | PULMONARY CALCIFICATION (NO BONE TUMOR)                    |
| MO07R1.7      | BACTERIAL TOXEMIA, INTERSTITIAL CELL ADENOMA               |
| FO08R1.7      | DRUG ALLERGY                                               |
| FO09R1.7      | PYOMETRA                                                   |
| MO10R1.7      | TRAUMA                                                     |
| MO10R1.7A     | UNDIFFERENTIATED MALIGNANCY (NON-SKELETAL); MELANOMA (EYE) |
| FO11R1.7      | MELANOMA (ORAL); THYROID CARCINOMA                         |
| FO12R1.7      | UNDETERMINED (NO BONE TUMOR)                               |
| M101R1.7Y     |                                                            |
| M102R1.7Y     |                                                            |
| M103R1.7Y     |                                                            |
| F104R1.7Y     |                                                            |
| F105R1.7Y     |                                                            |
| F106R1.7Y     |                                                            |
| M107R1.7Y     | ANESTHESIA ACCIDENT                                        |
| M108R1.7Y     |                                                            |
| F109R1.7Y     |                                                            |
| F110R1.7Y     |                                                            |
| M111R1.7Y     |                                                            |
| MO01R2.O      | HEMANGIOSARCOMA (SPLEEN)                                   |
| MO02R2.O      | OSTEOSARCOMA                                               |
| FO03R2.O      | RETICULUM CELL SARCOMA (NON-SKELETAL)                      |
| MO04R2.O      | PERFORATED ILEUM                                           |
| MO04R2.OA     | OSTEOSARCOMA; VALVULAR ENDOCARDITIS                        |

## A. RADIUM - 226

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | DAYS SINCE INJECTION 31/3/79 DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|------------------------------------|-------------------------|
| MO05R2.0   | 461                  | 11.5        | 0.267             | 22 6 54               | 4703                               | 1325                    |
| FO06R2.0   | 486                  | 10.6        | 0.360             | 27 7 54               | 4615                               | 1685                    |
| MO07R2.0   | 514                  | 11.1        | 0.413             | 24 8 54               | 3425                               | 1229                    |
| FO08R2.0   | 572                  | 6.95        | 0.331             | 21 12 54              | 4781                               | 1328                    |
| FO09R2.0   | 592                  | 9.38        | 0.317             | 11 4 55               | 3998                               | 1355                    |
| MO10R2.0   | 523                  | 9.95        | 0.345             | 27 7 55               | 3569                               | 1627                    |
| FO11R2.0   | 495                  | 9.30        | 0.310             | 20 12 55              | 3297                               | 971                     |
| FO12R2.0   | 497                  | 10.3        | 0.281             | 17 1 56               | 2948                               | 989                     |
| M101R2.OY  | 90                   | 4.64        | 0.317             | 7 3 75                | 1485                               |                         |
| M102R2.OY  | 90                   | 4.27        | 0.324             | 7 3 75                | 1485                               |                         |
| M103R2.OY  | 90                   | 5.35        | 0.320             | 7 3 75                | 1485                               |                         |
| F104R2.OY  | 90                   | 4.36        | 0.317             | 7 3 75                | 1485                               |                         |
| F105R2.OY  | 90                   | 3.93        | 0.321             | 7 3 75                | 1485                               |                         |
| F106R2.OY  | 89                   | 4.19        | 0.309             | 14 3 75               | 1478                               |                         |
| M107R2.OY  | 93                   | 4.53        | 0.329             | 16 3 77               | 745                                |                         |
| M108R2.OY  | 88                   | 4.43        | 0.348             | 20 4 78               | 345                                |                         |
| F109R2.OY  | 88                   | 2.79        | 0.332             | 19 1 78               | 436                                |                         |
| F110R2.OY  | 90                   | 3.55        | 0.320             | 20 6 78               | 284                                |                         |
| MO01R3.0   | 473                  | 8.91        | 1.20              | 20 4 53               | 2850                               | 3193                    |
| MO02R3.0   | 470                  | 9.02        | 1.21              | 16 11 53              | 2226                               | 2303                    |
| FO03R3.0   | 386                  | 7.74        | 1.11              | 10 3 54               | 2497                               | 3097                    |
| MO04R3.0   | 412                  | 11.7        | 1.16              | 7 4 54                | 1917                               | 3148                    |
| MO05R3.0   | 461                  | 13.0        | 0.846             | 22 6 54               | 2955                               | 3089                    |
| FO06R3.0   | 486                  | 9.75        | 1.14              | 27 7 54               | 1932                               | 2995                    |
| MO07R3.0   | 514                  | 12.3        | 1.29              | 24 8 54               | 2099                               | 4039                    |
| FO08R3.0   | 542                  | 7.76        | 1.03              | 21 12 54              | 2612                               | 2555                    |
| FO09R3.0   | 551                  | 8.02        | 0.987             | 11 4 55               | 2487                               | 2452                    |
| MO10R3.0   | 525                  | 10.1        | 1.06              | 27 7 55               | 1737                               | 3115                    |
| FO11R3.0   | 495                  | 12.9        | 0.938             | 20 12 55              | 1610                               | 1777                    |
| FO12R3.0   | 497                  | 11.4        | 0.883             | 17 1 56               | 1897                               | 2185                    |
| M101R3.OY  | 93                   | 4.41        | 1.01              | 24 4 75               | 1437                               |                         |
| M102R3.OY  | 93                   | 5.40        | 1.01              | 24 4 75               | 1437                               |                         |
| M103R3.OY  | 90                   | 2.94        | 1.08              | 6 5 75                | 1425                               |                         |
| F104R3.OY  | 88                   | 3.74        | 1.02              | 25 3 75               | 1467                               |                         |
| F105R3.OY  | 93                   | 4.51        | 1.02              | 24 4 75               | 1437                               |                         |
| F106R3.OY  | 90                   | 3.25        | 1.07              | 6 5 75                | 1425                               |                         |
| M107R3.OY  | 88                   | 2.46        | 1.05              | 19 1 78               | 436                                |                         |
| M108R3.OY  | 88                   | 2.34        | 0.462             | 9 5 78                | 326                                |                         |
| F109R3.OY  | 93                   | 3.40        | 1.09              | 19 1 78               | 436                                |                         |
| F110R3.OY  | 91                   | 3.04        | 1.02              | 8 8 78                | 235                                |                         |
| F501R3.O+  | 1787                 | 10.4        | 0.806             | 10 6 75               | 1390                               |                         |

## A. RADIUM - 226

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS |
|---------------|-----------------------|
|---------------|-----------------------|

|           |                                              |
|-----------|----------------------------------------------|
| M005R2.0  | OSTEOSARCOMA, ADRENAL CORTICAL CARCINOMA     |
| F006R2.0  | EPIDERMOID CARCINOMA (TYMPANIC BULLA)        |
| M007R2.0  | OSTEOSARCOMA, CUSHING SYNDROME               |
| F008R2.0  | UNDIFFERENTIATED MALIGNANCY, SMALL INTESTINE |
| F009R2.0  | MAMMARY CARCINOMA                            |
| M010R2.0  | OSTEOSARCOMA                                 |
| F011R2.0  | OSTEOSARCOMA                                 |
| F012R2.0  | MAMMARY ADENOCARCINOMA                       |
| M101R2.OY |                                              |
| M102R2.OY |                                              |
| M103R2.OY |                                              |
| F104R2.OY |                                              |
| F105R2.OY |                                              |
| F106R2.OY |                                              |
| M107R2.OY |                                              |
| M108R2.OY |                                              |
| F109R2.OY |                                              |
| F110R2.OY |                                              |
| <br>      |                                              |
| M001R3.0  | OSTEOSARCOMA                                 |
| M002R3.0  | OSTEOSARCOMA                                 |
| F003R3.0  | OSTEOSARCOMA                                 |
| M004R3.0  | OSTEOSARCOMA                                 |
| M005R3.0  | OSTEOSARCOMA                                 |
| F006R3.0  | OSTEOSARCOMA                                 |
| M007R3.0  | OSTEOSARCOMA                                 |
| F008R3.0  | OSTEOSARCOMA                                 |
| F009R3.0  | OSTEOSARCOMA                                 |
| M010R3.0  | OSTEOSARCOMA                                 |
| F011R3.0  | PYOMETRITIS + SECONDARY PERITONITIS          |
| F012R3.0  | OSTEOSARCOMA                                 |
| M101R3.OY |                                              |
| M102R3.OY |                                              |
| M103R3.OY |                                              |
| F104R3.OY |                                              |
| F105R3.OY |                                              |
| F106R3.OY |                                              |
| M107R3.OY |                                              |
| M108R3.OY |                                              |
| F109R3.OY |                                              |
| F110R3.OY |                                              |
| F501R3.O+ |                                              |

## A. RADIUM - 226

| DOG<br>NUMBER | INJECTION     |                | INJECTED<br>(uCi/KG) | DATE<br>INJECTED |    |    | DAYS SINCE<br>INJECTION<br>31/3/79 DEATH | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|---------------|----------------|----------------------|------------------|----|----|------------------------------------------|-------------------------------|
|               | AGE<br>(DAYS) | WEIGHT<br>(KG) |                      | D                | MO | YR |                                          |                               |
| F502R3.O+     | 1918          | 8.26           | 0.972                | 22               | 9  | 76 | 920                                      |                               |
| F503R3.O+     | 1836          | 10.0           | 1.08                 | 29               | 11 | 77 | 487                                      |                               |
| F504R3.O+     | 1713          | 9.33           | 1.02                 | 5                | 10 | 78 | 177                                      |                               |
| F505R3.O+     | 1814          | 8.15           | 1.23                 | 2                | 11 | 78 | 149                                      |                               |
| M506R3.O+     | 1716          | 9.72           | 1.00                 | 5                | 10 | 78 |                                          | 21 36                         |
| M507R3.O+     | 1708          | 10.8           | 1.01                 | 5                | 10 | 78 | 177                                      |                               |
| M508R3.O+     | 1711          | 11.5           | 1.01                 | 5                | 10 | 78 | 177                                      |                               |
| M509R3.O+     | 1829          | 11.8           | 1.23                 | 2                | 11 | 78 | 149                                      |                               |
| M510R3.O+     | 1827          | 10.6           | 1.23                 | 2                | 11 | 78 | 149                                      |                               |
| MO01R4.O      | 471           | 9.08           | 3.51                 | 20               | 4  | 53 | 1606                                     | 8767                          |
| MO02R4.O      | 470           | 9.53           | 3.55                 | 16               | 11 | 53 | 1884                                     | 8200                          |
| FO03R4.O      | 384           | 8.65           | 3.33                 | 10               | 3  | 54 | 490                                      | 2944                          |
| FO03R4.OA     | 598           | 7.20           | 3.10                 | 30               | 11 | 56 | 1614                                     | 5140                          |
| MO04R4.O      | 408           | 8.83           | 3.47                 | 7                | 4  | 54 | 1518                                     | 8084                          |
| MO05R4.O      | 461           | 13.2           | 2.42                 | 22               | 6  | 54 | 1659                                     | 6007                          |
| FO06R4.O      | 486           | 8.55           | 3.44                 | 27               | 7  | 54 | 1939                                     | 9511                          |
| MO07R4.O      | 453           | 9.55           | 3.88                 | 24               | 8  | 54 | 1647                                     | 7792                          |
| FO08R4.O      | 474           | 8.94           | 3.14                 | 21               | 12 | 54 | 1324                                     | 6153                          |
| FO09R4.O      | 542           | 8.53           | 3.02                 | 11               | 4  | 55 | 1471                                     | 5460                          |
| MO10R4.O      | 527           | 10.8           | 3.28                 | 27               | 7  | 55 | 1553                                     | 10109                         |
| FO11R4.O      | 491           | 10.4           | 2.84                 | 20               | 12 | 55 | 1469                                     | 7031                          |
| FO12R4.O      | 496           | 9.61           | 2.81                 | 17               | 1  | 56 | 1435                                     | 5169                          |
| F501R4.O+     | 1787          | 10.5           | 2.50                 | 10               | 6  | 75 | 303                                      | 1330                          |
| F502R4.O+     | 1933          | 9.09           | 2.96                 | 22               | 9  | 76 | 920                                      |                               |
| F503R4.O+     | 1836          | 10.9           | 3.44                 | 29               | 11 | 77 | 487                                      |                               |
| F504R4.O+     | 1735          | 7.93           | 1.98                 | 10               | 1  | 78 | 445                                      |                               |
| F505R4.O+     | 1876          | 11.6           | 2.89                 | 5                | 10 | 78 | 177                                      |                               |
| M506R4.O+     | 1881          | 10.1           | 2.97                 | 5                | 10 | 78 | 177                                      |                               |
| M507R4.O+     | 1823          | 11.2           | 3.04                 | 9                | 5  | 78 | 326                                      |                               |
| M508R4.O+     | 1845          | 10.5           | 2.99                 | 5                | 10 | 78 | 177                                      |                               |
| M509R4.O+     | 1827          | 13.2           | 3.65                 | 2                | 11 | 78 | 149                                      |                               |
| M510R4.O+     | 1807          | 12.2           | 3.61                 | 2                | 11 | 78 | 149                                      |                               |
| MO01R5.O      | 473           | 9.87           | 10.5                 | 20               | 4  | 53 | 908                                      | 19924                         |
| MO02R5.O      | 470           | 8.85           | 10.8                 | 16               | 11 | 53 | 1380                                     | 24095                         |
| FO03R5.O      | 380           | 7.82           | 10.1                 | 10               | 3  | 54 | 481                                      | 9529                          |
| MO04R5.O      | 408           | 8.90           | 10.6                 | 7                | 4  | 54 | 1091                                     | 21889                         |
| MO05R5.O      | 458           | 10.9           | 10.1                 | 22               | 6  | 54 | 1220                                     | 20577                         |
| FO06R5.O      | 486           | 9.66           | 10.2                 | 27               | 7  | 54 | 1015                                     | 20552                         |
| MO07R5.O      | 453           | 8.85           | 11.9                 | 24               | 8  | 54 | 1288                                     | 22277                         |

## A. RADIUM - 226

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS |
|---------------|-----------------------|
| F502R3.0+     |                       |
| F503R3.0+     |                       |
| F504R3.0+     |                       |
| F505R3.0+     |                       |
| M506R3.0+     | ANESTHETIC ACCIDENT   |
| M507R3.0+     |                       |
| M508R3.0+     |                       |
| M509R3.0+     |                       |
| M510R3.0+     |                       |
| <br>          |                       |
| M001R4.0      | OSTEOSARCOMA          |
| M002R4.0      | OSTEOSARCOMA          |
| F003R4.0      | CANINE DISTEMPER      |
| F003R4.OA     | OSTEOSARCOMA          |
| M004R4.0      | OSTEOSARCOMA          |
| M005R4.0      | OSTEOSARCOMA          |
| F006R4.0      | OSTEOSARCOMA          |
| M007R4.0      | OSTEOSARCOMA          |
| F008R4.0      | OSTEOSARCOMA          |
| F009R4.0      | OSTEOSARCOMA          |
| M010R4.0      | OSTEOSARCOMA          |
| F011R4.0      | OSTEOSARCOMA          |
| F012R4.0      | OSTEOSARCOMA          |
| F501R4.0+     | PERITONITIS           |
| F502R4.0+     |                       |
| F503R4.0+     |                       |
| F504R4.0+     |                       |
| F505R4.0+     |                       |
| M506R4.0+     |                       |
| M507R4.0+     |                       |
| M508R4.0+     |                       |
| M509R4.0+     |                       |
| M510R4.0+     |                       |
| <br>          |                       |
| M001R5.0      | OSTEOSARCOMA          |
| M002R5.0      | OSTEOSARCOMA          |
| F003R5.0      | CANINE DISTEMPER      |
| M004R5.0      | OSTEOSARCOMA          |
| M005R5.0      | OSTEOSARCOMA          |
| F006R5.0      | OSTEOSARCOMA          |
| M007R5.0      | OSTEOSARCOMA          |

## A. RADIUM - 226

| DOG<br>NUMBER | INJECTION<br>AGE<br>(DAYS) | WEIGHT<br>(KG) | INJECTED<br>(uCi/KG) | DATE<br>INJECTED<br>D MO YR | DAYS SINCE<br>INJECTION<br>31/3/79 DEATH | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|----------------------------|----------------|----------------------|-----------------------------|------------------------------------------|-------------------------------|
| FO08R5.O      | 474                        | 7.76           | 9.68                 | 21 12 54                    | 968                                      | 15419                         |
| FO09R5.O      | 420                        | 9.16           | 9.48                 | 11 4 55                     | 1288                                     | 21255                         |
| M010R5.O      | 527                        | 10.7           | 10.2                 | 27 7 55                     | 825                                      | 14905                         |
| F501R5.O+     | 1827                       | 12.8           | 10.2                 | 16 8 77                     | 266                                      | 3456                          |
| F502R5.O+     | 1812                       | 9.65           | 9.97                 | 29 11 77                    | 487                                      |                               |
| F503R5.O+     | 1819                       | 10.8           | 6.31                 | 10 1 78                     | 419                                      | 3470                          |
| F504R5.O+     | 1855                       | 7.52           | 9.22                 | 9 5 78                      | 326                                      |                               |

A. RADIUM - 226

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS             |
|---------------|-----------------------------------|
| F008R5.0      | OSTEOSARCOMA                      |
| F009R5.0      | OSTEOSARCOMA + ANEMIA             |
| M010R5.0      | OSTEOSARCOMA + FRACTURED MANDIBLE |
| F501R5.0+     | NEPHRITIS                         |
| F502R5.0+     |                                   |
| F503R5.0+     | NEPHRITIS                         |
| F504R5.0+     |                                   |

## B. PLUTONIUM - 239 \*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | DAYS SINCE INJECTION 31/3/79 DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|------------------------------------|-------------------------|
| MO01PO.O   | 443                  | 9.70        |                   | 1 12 52               |                                    | 4003                    |
| FO02PO.O   | 424                  | 6.36        |                   | 2 3 53                |                                    | 2755                    |
| MO03PO.O   | 515                  | 10.8        |                   | 1 6 53                |                                    | 5362                    |
| MO04PO.O   | 426                  | 10.7        |                   | 16 9 53               |                                    | 5138                    |
| FO05PO.O   | 620                  | 9.75        |                   | 14 10 53              |                                    | 4088                    |
| FO06PO.O   | 410                  | 5.59        |                   | 12 5 54               |                                    | 4490                    |
| FO07PO.O   | 515                  | 6.90        |                   | 25 10 54              |                                    | 5344                    |
| MO08PO.O   | 585                  | 10.9        |                   | 15 3 55               |                                    | 4072                    |
| FO09PO.O   | 574                  | 11.0        |                   | 9 9 55                |                                    | 3032                    |
| FO10PO.O   | 658                  | 11.0        |                   | 22 11 55              |                                    | 3971                    |
| MO11PO.O   | 602                  | 10.3        |                   | 24 4 56               |                                    | 3821                    |
| MO12PO.O   | 630                  | 10.9        |                   | 29 5 56               |                                    | 4143                    |
| FO13PO.O   | 517                  | 9.47        |                   | 4 3 64                |                                    | 5361                    |
| FO14PO.O   | 452                  | 9.89        |                   | 12 5 64               |                                    | 4105                    |
| MO15PO.O   | 527                  | 12.1        |                   | 23 10 64              |                                    | 3750                    |
| MO16PO.O   | 486                  | 13.9        |                   | 7 4 65                |                                    | 4756                    |
| MO17PO.O   | 551                  | 12.2        |                   | 8 11 66               | 4526                               |                         |
| FO18PO.O   | 536                  | 11.4        |                   | 29 11 66              | 4505                               |                         |
| MO19PO.O   | 536                  | 13.1        |                   | 29 11 66              | 4505                               |                         |
| FO20PO.O   | 546                  | 8.50        |                   | 29 12 66              |                                    | 3748                    |
| MO21PO.O   | 549                  | 13.3        |                   | 26 1 67               |                                    | 4157                    |
| FO22PO.O   | 489                  | 10.6        |                   | 25 5 67               | 4328                               |                         |
| MO31PO.OB  | 452                  | 11.8        |                   | 12 5 64               |                                    | 1763                    |
| MO31PO.OC  | 452                  | 12.6        |                   | 12 5 64               |                                    | 3629                    |
| MO32PO.OB  | 452                  | 11.2        |                   | 12 5 64               |                                    | 4840                    |
| MO32PO.OC  | 542                  | 10.3        |                   | 21 9 65               | 4939                               |                         |
| MO33PO.OB  | 517                  | 12.1        |                   | 21 9 65               |                                    | 4923                    |
| MO33PO.OC  | 503                  | 11.70       |                   | 18 11 65              |                                    | 4164                    |
| MO34PO.OB  | 525                  | 13.5        |                   | 26 1 67               | 4447                               |                         |
| MO34PO.OC  | 484                  | 12.7        |                   | 22 3 67               |                                    | 4139                    |
| MO35PO.OB  | 484                  | 12.5        |                   | 22 3 67               | 4392                               |                         |
| MO35PO.OC  | 484                  | 13.1        |                   | 22 3 67               |                                    | 3501                    |
| MO36PO.OB  | 489                  | 11.0        |                   | 25 5 67               |                                    | 2525                    |
| MO36PO.OC  | 485                  | 12.2        |                   | 25 5 67               | 4328                               |                         |
| MO37PO.OB  | 507                  | 11.7        |                   | 22 6 67               |                                    | 4179                    |
| MO37PO.OC  | 493                  | 10.4        |                   | 22 6 67               | 4300                               |                         |
| MO38PO.OB  | 529                  | 10.7        |                   | 16 11 67              |                                    | 3623                    |
| MO38PO.OC  | 529                  | 12.2        |                   | 16 11 67              |                                    | 3382                    |
| MO39PO.OB  | 503                  | 10.7        |                   | 21 12 67              | 4118                               |                         |
| MO39PO.OC  | 503                  | 10.1        |                   | 21 12 67              | 4118                               |                         |
| MO40PO.OB  | 484                  | 10.3        |                   | 30 7 68               | 3896                               |                         |
| MO40PO.OC  | 552                  | 11.4        |                   | 9 1 69                |                                    | 3377                    |
| MO41PO.OB  | 560                  | 9.49        |                   | 17 1 69               | 3725                               |                         |

## B. PLUTONIUM - 239 \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                             |
|---------------|---------------------------------------------------|
| MO01PO.O      | SPLENIC RUPTURE, METASTATIC SEMINOMA              |
| FO02PO.O      | ANESTHETIC ACCIDENT                               |
| MO03PO.O      | PANCREATIC ADENOCARCINOMA                         |
| MO04PO.O      | THYROID CARCINOMA, NEPHRITIS                      |
| FO05PO.O      | ADRENAL CORTICAL CARCINOMA                        |
| FO06PO.O      | OBTRUATING PULMONARY EMBOLISM                     |
| FO07PO.O      | RHABDOMYOSARCOMA                                  |
| MO08PO.O      | CIRCULATORY FAILURE                               |
| FO09PO.O      | PULMONARY EMBOLISM, NEPHRITIS                     |
| FO10PO.O      | LEUKEMIA                                          |
| MO11PO.O      | FIBROSARCOMA (SPLEEN)                             |
| MO12PO.O      | TESTICULAR CARCINOMA                              |
| FO13PO.O      | OSTEOSARCOMA                                      |
| FO14PO.O      | SURGICAL SHOCK; PYOMETRA                          |
| MO15PO.O      | TRANSITIONAL CELL CARCINOMA                       |
| MO16PO.O      | SENILITY                                          |
| MO17PO.O      |                                                   |
| FO18PO.O      |                                                   |
| MO19PO.O      |                                                   |
| FO20PO.O      | PLEURAL EFFUSION                                  |
| MO21PO.O      | AORTIC BODY TUMOR                                 |
| FO22PO.O      |                                                   |
| MO31PO.OB     | STATUS EPILEPTICUS; BILE DUCT OBSTRUCTION         |
| MO31PO.OC     | MALIGNANT MELANOMA (ORAL)                         |
| MO32PO.OB     | CARDIAC INSUFFICIENCY                             |
| MO32PO.OC     |                                                   |
| MO33PO.OB     | SENILITY                                          |
| MO33PO.OC     | UNDETERMINED (NO BONE TUMOR)                      |
| MO34PO.OB     |                                                   |
| MO34PO.OC     | UNDETERMINED (NO BONE TUMOR)                      |
| MO35PO.OB     |                                                   |
| MO35PO.OC     | PARALYSIS (UNDETERMINED ETIOLOGY) (NO BONE TUMOR) |
| MO36PO.OB     | STATUS EPILEPTICUS                                |
| MO36PO.OC     |                                                   |
| MO37PO.OB     | UNDETERMINED (NO BONE TUMOR)                      |
| MO37PO.OC     |                                                   |
| MO38PO.OB     | TRANSITIONAL CELL CARCINOMA                       |
| MO38PO.OC     | PNEUMONIA                                         |
| MO39PO.OB     |                                                   |
| MO39PO.OC     |                                                   |
| MO40PO.OB     |                                                   |
| MO40PO.OC     | PERIARTERITIS                                     |
| MO41PO.OB     |                                                   |

## B. PLUTONIUM - 239 \*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | DAYS SINCE INJECTION 31/3/79 DEATH | DOSE TO SKELETON (RADS) |   |
|------------|----------------------|-------------|-------------------|-----------------------|------------------------------------|-------------------------|---|
| MO42PO.O   | 479                  | 14.0        |                   | 24 4 74               | 1802                               |                         |   |
| MO42PO.OB  | 338                  | 11.6        |                   | 25 4 69               |                                    | 32                      |   |
| MO43PO.O   | 479                  | 13.8        |                   | 24 4 74               | 1802                               |                         |   |
| MO44PO.O   | 479                  | 12.7        |                   | 24 4 74               | 1802                               |                         |   |
| MO45PO.O   | 497                  | 11.5        |                   | 29 8 74               |                                    | 1537                    |   |
| MO46PO.O   | 497                  | 11.5        |                   | 29 8 74               | 1675                               |                         |   |
| MO47PO.O   | 497                  | 11.3        |                   | 29 8 74               | 1675                               |                         |   |
| MO48PO.O   | 497                  | 11.7        |                   | 29 8 74               | 1675                               |                         |   |
| MO81PO.OY  | 105                  | 7.10        |                   | 9 3 72                | 2578                               |                         |   |
| FO82PO.OY  | 105                  | 7.30        |                   | 9 3 72                | 2578                               |                         |   |
| FO83PO.OY  | 91                   | 3.97        |                   | 25 4 72               | 2531                               |                         |   |
| FO84PO.OY  | 89                   | 3.67        |                   | 25 4 72               | 2531                               |                         |   |
| MO86PO.OY  | 91                   | 4.37        |                   | 25 4 72               | 2531                               |                         |   |
| F101PO.OY  | 93                   | 2.97        |                   | 19 9 74               | 1654                               |                         |   |
| M102PO.OY  | 89                   | 4.65        |                   | 21 11 74              | 1591                               |                         |   |
| F103PO.OY  | 91                   | 2.54        |                   | 19 9 74               | 1654                               |                         |   |
| M104PO.OY  | 89                   | 4.68        |                   | 26 11 74              | 1586                               |                         |   |
| M105PO.OY  | 92                   | 4.90        |                   | 27 4 76               | 1068                               |                         |   |
| F106PO.OY  | 92                   | 3.46        |                   | 13 4 76               | 1082                               |                         |   |
| M107PO.OY  | 90                   | 4.07        |                   | 27 4 76               | 1068                               |                         |   |
| F108PO.OY  | 91                   | 4.28        |                   | 16 12 76              | 835                                |                         |   |
| M109PO.OY  | 91                   | 4.08        |                   | 16 12 76              | 835                                |                         |   |
| FO13PO.1   | 515                  | 9.46        | 0.00068           | 4 3 64                |                                    | 4492                    | 3 |
| FO14PO.1   | 452                  | 10.3        | 0.00055           | 12 5 64               |                                    | 4503                    | 2 |
| MO15PO.1   | 536                  | 9.67        | 0.00071           | 23 10 64              |                                    | 4319                    | 3 |
| MO16PO.1   | 501                  | 12.0        | 0.00059           | 7 4 65                |                                    | 4146                    | 2 |
| MO17PO.1   | 551                  | 12.2        | 0.00057           | 8 11 66               |                                    | 4346                    | 2 |
| FO18PO.1   | 536                  | 9.28        | 0.00070           | 29 11 66              |                                    | 4221                    | 3 |
| MO19PO.1   | 536                  | 11.6        | 0.00063           | 29 11 66              | 4505                               |                         |   |
| FO20PO.1   | 536                  | 9.80        | 0.00075           | 29 12 66              |                                    | 3939                    | 3 |
| MO21PO.1   | 538                  | 11.3        | 0.00059           | 26 1 67               | 4447                               |                         |   |
| FO22PO.1   | 489                  | 9.8         | 0.00059           | 25 5 67               |                                    | 2968                    | 2 |
| MO31PO.1B  | 517                  | 12.2        | 0.00068           | 4 3 64                |                                    | 2760                    | 2 |
| FO32PO.1B  | 549                  | 10.4        | 0.00059           | 18 11 65              | 4881                               |                         |   |
| MO33PO.1B  | 549                  | 10.8        | 0.00079           | 18 11 65              |                                    | 4156                    | 3 |
| FO34PO.1B  | 533                  | 11.1        | 0.00058           | 8 11 66               |                                    | 3292                    | 2 |
| MO35PO.1B  | 489                  | 10.3        | 0.00059           | 25 5 67               | 4328                               |                         |   |
| FO36PO.1B  | 493                  | 9.79        | 0.00060           | 22 6 67               |                                    | 3600                    | 4 |
| MO37PO.1B  | 493                  | 11.3        | 0.00059           | 22 6 67               | 4300                               |                         |   |
| FO38PO.1B  | 513                  | 9.52        | 0.00057           | 21 12 67              |                                    | 1979                    | 1 |
| MO39PO.1B  | 490                  | 10.5        | 0.00058           | 21 12 67              | 4118                               |                         |   |

## B. PLUTONIUM - 239 \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                    |
|---------------|------------------------------------------|
| MO42PO.0      |                                          |
| MO42PO.0B     | SPECIAL STUDY                            |
| MO43PO.0      |                                          |
| MO44PO.0      |                                          |
| MO45PO.0      | STATUS EPILEPTICUS                       |
| MO46PO.0      |                                          |
| MO47PO.0      |                                          |
| MO48PO.0      |                                          |
| MO81PO.OY     |                                          |
| FO82PO.OY     |                                          |
| FO83PO.OY     |                                          |
| FO84PO.OY     |                                          |
| MO86PO.OY     |                                          |
| F101PO.OY     |                                          |
| M102PO.OY     |                                          |
| F103PO.OY     |                                          |
| M104PO.OY     |                                          |
| M105PO.OY     |                                          |
| F106PO.OY     |                                          |
| M107PO.OY     |                                          |
| F108PO.OY     |                                          |
| M109PO.OY     |                                          |
| FO13PO.1      | TRANSITIONAL CELL CARCINOMA; PERITONITIS |
| FO14PO.1      | CHONDROSARCOMA (PROXIMAL HUMERUS)        |
| MO15PO.1      | PANCREATIC DYSTROPHY                     |
| MO16PO.1      | EPIDERMOID CARCINOMA (FRONTAL SINUS)     |
| MO17PO.1      | UNDIFFERENTIATED SARCOMA (SOFT TISSUE)   |
| FO18PO.1      | MALIGNANT MELANOMA (ORAL)                |
| MO19PO.1      |                                          |
| FO20PO.1      | MAMMARY CARCINOMA                        |
| MO21PO.1      |                                          |
| FO22PO.1      | ACCIDENTAL STRANGULATION                 |
| MO31PO.1B     | STATUS EPILEPTICUS                       |
| FO32PO.1B     |                                          |
| MO33PO.1B     | BONE MARROW APLASIA                      |
| FO34PO.1B     | CHRONIC PANCREATITIS                     |
| MO35PO.1B     |                                          |
| FO36PO.1B     | INHALATION PNEUMONIA                     |
| MO37PO.1B     |                                          |
| FO38PO.1B     | TRAUMA                                   |
| MO39PO.1B     |                                          |

## B. PLUTONIUM - 239 \*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | DAYS SINCE INJECTION 31/3/79 DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|------------------------------------|-------------------------|
| MO44PO.1B  | 500                  | 10.9        | 0.00057           | 8 8 73                | 2061                               |                         |
| FO44PO.1C  | 569                  | 8.34        | 0.00072           | 2 12 70               | 3041                               |                         |
| MO45PO.1B  | 504                  | 13.5        | 0.00122           | 30 5 74               | 1766                               |                         |
| FO45PO.1C  | 500                  | 9.00        | 0.00051           | 8 8 73                | 2061                               |                         |
| MO46PO.1B  | 504                  | 13.2        | 0.00120           | 30 5 74               | 1766                               |                         |
| FO46PO.1C  | 500                  | 10.2        | 0.00057           | 8 8 73                | 2061                               |                         |
| FO47PO.1   | 500                  | 9.34        | 0.00051           | 8 8 73                | 2061                               |                         |
| FO48PO.1   | 527                  | 10.9        | 0.00120           | 30 5 74               | 1766                               |                         |
| FO49PO.1   | 504                  | 9.71        | 0.00124           | 30 5 74               | 1766                               |                         |
| FO13PO.2   | 517                  | 9.44        | 0.00206           | 4 3 64                |                                    | 3221                    |
| FO14PO.2   | 516                  | 7.44        | 0.00173           | 12 5 64               |                                    | 3983                    |
| MO15PO.2   | 505                  | 10.9        | 0.00201           | 23 10 64              |                                    | 4808                    |
| MO16PO.2   | 500                  | 11.4        | 0.00163           | 7 4 65                |                                    | 2841                    |
| MO17PO.2   | 533                  | 11.8        | 0.00171           | 8 11 66               |                                    | 4391                    |
| FO18PO.2   | 530                  | 9.46        | 0.00200           | 29 11 66              | 4505                               |                         |
| MO19PO.2   | 530                  | 12.1        | 0.00198           | 29 11 66              |                                    | 4392                    |
| FO20PO.2   | 532                  | 8.30        | 0.00224           | 29 12 66              |                                    | 4299                    |
| MO21PO.2   | 538                  | 12.1        | 0.00181           | 26 1 67               | 4447                               |                         |
| FO22PO.2   | 485                  | 8.3         | 0.00176           | 25 5 67               |                                    | 4080                    |
| MO31PO.2B  | 515                  | 10.7        | 0.00185           | 4 3 64                |                                    | 2640                    |
| FO31PO.2C  | 452                  | 11.9        | 0.00169           | 12 5 64               |                                    | 4971                    |
| FO31PO.2D  | 429                  | 9.35        | 0.00186           | 12 5 64               |                                    | 5378                    |
| MO32PO.2B  | 549                  | 13.60       | 0.00178           | 18 11 65              |                                    | 3591                    |
| FO32PO.2C  | 494                  | 10.1        | 0.00183           | 4 2 65                |                                    | 3881                    |
| FO32PO.2D  | 490                  | 8.04        | 0.00193           | 4 2 65                | 5168                               |                         |
| MO33PO.2B  | 513                  | 14.50       | 0.00178           | 18 11 65              |                                    | 2776                    |
| FO33PO.2C  | 549                  | 12.50       | 0.00176           | 18 11 65              |                                    | 4615                    |
| FO33PO.2D  | 513                  | 12.70       | 0.00178           | 18 11 65              | 4881                               |                         |
| MO34PO.2B  | 533                  | 12.7        | 0.00170           | 8 11 66               |                                    | 3934                    |
| FO34PO.2C  | 533                  | 11.5        | 0.00172           | 8 11 66               |                                    | 4515                    |
| FO34PO.2D  | 519                  | 9.92        | 0.00167           | 8 11 66               | 4526                               |                         |
| MO35PO.2B  | 489                  | 11.2        | 0.00173           | 25 5 67               | 4328                               |                         |
| FO35PO.2C  | 507                  | 10.5        | 0.00175           | 22 6 67               |                                    | 2593                    |
| FO35PO.2D  | 507                  | 9.10        | 0.00175           | 22 6 67               | 4300                               |                         |
| MO36PO.2B  | 479                  | 12.9        | 0.00177           | 25 5 67               | 4328                               |                         |
| FO36PO.2C  | 493                  | 10.4        | 0.00177           | 22 6 67               |                                    | 3291                    |
| FO36PO.2D  | 569                  | 8.74        | 0.00146           | 16 11 67              |                                    | 3351                    |
| MO37PO.2B  | 529                  | 10.6        | 0.00149           | 16 11 67              |                                    | 2804                    |
| FO37PO.2C  | 529                  | 10.1        | 0.00150           | 16 11 67              | 4153                               |                         |
| FO37PO.2D  | 529                  | 7.14        | 0.00153           | 16 11 67              | 4153                               |                         |
| MO38PO.2B  | 517                  | 10.0        | 0.00152           | 16 11 67              |                                    | 3546                    |

## B. PLUTONIUM - 239 \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                     |
|---------------|-------------------------------------------|
| MO44PO.1B     |                                           |
| FO44PO.1C     |                                           |
| MO45PO.1B     |                                           |
| FO45PO.1C     |                                           |
| MO46PO.1B     |                                           |
| FO46PO.1C     |                                           |
| FO47PO.1      |                                           |
| FO48PO.1      |                                           |
| FO49PO.1      |                                           |
| FO13PO.2      | INTESTINAL ILEUS                          |
| FO14PO.2      | ENTERITIS                                 |
| MO15PO.2      | ATHEROSCLEROSIS                           |
| MO16PO.2      | ENCEPHALITIS                              |
| MO17PO.2      | LYMPHOSARCOMA                             |
| FO18PO.2      |                                           |
| MO19PO.2      | UNDETERMINED (NO SKELETAL NEOPLASIA)      |
| FO20PO.2      | THROMBOEMBOLISM                           |
| MO21PO.2      |                                           |
| FO22PO.2      | RETICULUM CELL SARCOMA (LIVER)            |
| MO31PO.2B     | MELANOMA (ORAL)                           |
| FO31PO.2C     | PULMONARY THROMBO-EMBOLISM                |
| FO31PO.2D     | UNDIFFERENTIATED MALIGNANCY (SOFT TISSUE) |
| MO32PO.2B     | HEMANGIOSARCOMA (SPLEEN)                  |
| FO32PO.2C     | MAMMARY CARCINOMA; LUNG THROMBO-EMBOLISM  |
| FO32PO.2D     |                                           |
| MO33PO.2B     | PNEUMONIA                                 |
| FO33PO.2C     | RENAL HEMORRHAGE                          |
| FO33PO.2D     |                                           |
| MO34PO.2B     | PROSTATIC CARCINOMA                       |
| FO34PO.2C     | LUNG CARCINOMA                            |
| FO34PO.2D     |                                           |
| MO35PO.2B     |                                           |
| FO35PO.2C     | LUNG CARCINOMA                            |
| FO35PO.2D     |                                           |
| MO36PO.2B     |                                           |
| FO36PO.2C     | ENTERITIS                                 |
| FO36PO.2D     | INTESTINAL PERFORATION                    |
| MO37PO.2B     | HEMANGIOSARCOMA (ABDOMINAL CAVITY)        |
| FO37PO.2C     |                                           |
| FO37PO.2D     |                                           |
| MO38PO.2B     | PLASMA CELL MYELOMA (HUMERUS)             |

## B. PLUTONIUM - 239 \*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | 31/3/79 | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|---------|-------------------------|
| FO38PO.2C  | 503                  | 7.95        | 0.00211           | 21 12 67              | 4118    |                         |
| FO38PO.2D  | 499                  | 9.08        | 0.00176           | 21 12 67              |         | 2880 5                  |
| MO39PO.2B  | 542                  | 11.6        | 0.00214           | 2 12 70               |         | 2916 5                  |
| FO39PO.2C  | 499                  | 9.46        | 0.00173           | 21 12 67              | 4118    |                         |
| FO39PO.2D  | 499                  | 9.34        | 0.00176           | 21 12 67              |         | 3401 6                  |
| MO42PO.2B  | 504                  | 9.42        | 0.00182           | 8 8 73                | 2061    |                         |
| FO42PO.2C  | 589                  | 9.55        | 0.00176           | 4 9 69                | 3495    |                         |
| MO43PO.2B  | 497                  | 11.0        | 0.00179           | 24 4 74               | 1802    |                         |
| FO43PO.2C  | 542                  | 9.50        | 0.00239           | 2 12 70               | 3041    |                         |
| MO44PO.2B  | 540                  | 11.6        | 0.00177           | 17 11 71              |         | 97 <1                   |
| MO44PO.2C  | 491                  | 12.0        | 0.00188           | 24 4 74               | 1802    |                         |
| MO44PO.2D  | 488                  | 11.6        | 0.00184           | 24 4 74               | 1802    |                         |
| MO45PO.2B  | 488                  | 11.6        | 0.00184           | 24 4 74               | 1802    |                         |
| MO45PO.2C  | 482                  | 11.4        | 0.00188           | 24 4 74               | 1802    |                         |
| MO46PO.2B  | 482                  | 11.1        | 0.00179           | 24 4 74               | 1802    |                         |
| FO13PO.5   | 517                  | 9.93        | 0.00540           | 4 3 64                |         | 2388 15                 |
| FO13PO.5A  | 501                  | 11.2        | 0.00495           | 23 9 70               | 3111    |                         |
| FO14PO.5   | 516                  | 9.98        | 0.00493           | 12 5 64               |         | 4537 21                 |
| MO15PO.5   | 505                  | 8.41        | 0.00627           | 23 10 64              |         | 4588 28                 |
| MO16PO.5   | 501                  | 12.6        | 0.00521           | 7 4 65                |         | 4062 21                 |
| MO17PO.5   | 533                  | 13.4        | 0.00506           | 8 11 66               | 4526    |                         |
| FO18PO.5   | 530                  | 8.98        | 0.00594           | 29 11 66              |         | 4333 25                 |
| MO19PO.5   | 530                  | 11.9        | 0.00645           | 29 11 66              |         | 3829 24                 |
| FO20PO.5   | 532                  | 9.30        | 0.00553           | 29 12 66              |         | 3490 20                 |
| MO21PO.5   | 538                  | 9.80        | 0.00526           | 26 1 67               | 4447    |                         |
| FO22PO.5   | 485                  | 8.1         | 0.00525           | 25 5 67               | 4328    |                         |
| MO25PO.5   | 509                  | 9.70        | 0.00539           | 30 1 74               | 1886    |                         |
| MO26PO.5   | 509                  | 9.96        | 0.00536           | 30 1 74               | 1886    |                         |
| MO31PO.5B  | 515                  | 10.5        | 0.00549           | 4 3 64                |         | 1648 15                 |
| FO31PO.5C  | 494                  | 8.44        | 0.00572           | 4 2 65                |         | 2546 16                 |
| MO32PO.5B  | 549                  | 13.60       | 0.00546           | 18 11 65              |         | 2270 14                 |
| FO33PO.5B  | 503                  | 10.10       | 0.00559           | 18 11 65              |         | 4509 24                 |
| MO34PO.5B  | 530                  | 12.5        | 0.00642           | 29 11 66              |         | 1920 14                 |
| FO35PO.5B  | 501                  | 9.54        | 0.00520           | 22 6 67               | 4300    |                         |
| MO36PO.5B  | 479                  | 11.5        | 0.00527           | 25 5 67               |         |                         |
| FO37PO.5B  | 517                  | 8.39        | 0.00454           | 16 11 67              | 4153    | 3885 20                 |
| MO38PO.5B  | 517                  | 10.5        | 0.00448           | 16 11 67              |         | 3497 35                 |
| FO39PO.5B  | 490                  | 10.9        | 0.00528           | 21 12 67              | 4118    |                         |
| MO42PO.5B  | 542                  | 13.1        | 0.00675           | 2 12 70               | 3041    |                         |
| MO42PO.5C  | 542                  | 12.2        | 0.00668           | 2 12 70               | 3041    |                         |
| FO42PO.5D  | 542                  | 9.71        | 0.00668           | 2 12 70               | 3041    |                         |

## B. PLUTONIUM - 239 \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                     |
|---------------|-------------------------------------------|
| FO38PO.2C     |                                           |
| FO38PO.2D     | NEPHRITIS; PANCREATITIS                   |
| MO39PO.2B     | HEMANGIOSARCOMA (HEART)                   |
| FO39PO.2C     |                                           |
| FO39PO.2D     | RHABDOMYOSARCOMA                          |
| MO42PO.2B     |                                           |
| FO42PO.2C     |                                           |
| MO43PO.2B     |                                           |
| FO43PO.2C     |                                           |
| MO44PO.2B     | SPECIAL STUDY                             |
| MO44PO.2C     |                                           |
| MO44PO.2D     |                                           |
| MO45PO.2B     |                                           |
| MO45PO.2C     |                                           |
| MO46PO.2B     |                                           |
| FO13PO.5      | MAMMARY CARCINOMA                         |
| FO13PO.5A     |                                           |
| FO14PO.5      | CHONDROSARCOMA (NASAL CAVITY)             |
| MO15PO.5      | AORTIC THROMBOEMBOLISM; THYROID CARCINOMA |
| MO16PO.5      | CHROMAPHOB E ADENOMA                      |
| MO17PO.5      |                                           |
| FO18PO.5      | HEMANGIO SARCOMA (SOFT TISSUE)            |
| MO19PO.5      | OSTEOSARCOMA                              |
| FO20PO.5      | EPIDERMOID CARCINOMA (ORAL)               |
| MO21PO.5      |                                           |
| FO22PO.5      |                                           |
| MO25PO.5      |                                           |
| MO26PO.5      |                                           |
| MO31PO.5B     | STATUS EPILEPTICUS                        |
| FO31PO.5C     | SPECIAL STUDY                             |
| MO32PO.5B     | SPECIAL STUDY                             |
| FO33PO.5B     | MAMMARY CARCINOMA                         |
| MO34PO.5B     | SPECIAL STUDY                             |
| FO35PO.5B     |                                           |
| MO36PO.5B     | OSTEOSARCOMA (NASAL CAVITY)               |
| FO37PO.5B     |                                           |
| MO38PO.5B     | UNDETERMINED (NO BONE TUMOR)              |
| FO39PO.5B     |                                           |
| MO42PO.5B     |                                           |
| MO42PO.5C     |                                           |
| FO42PO.5D     |                                           |

## B. PLUTONIUM - 239 \*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | 31/3/79 | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|---------|-------------------------|
| FO43PO.5B  | 545                  | 11.6        | 0.00484           | 3 10 69               | 3466    |                         |
| FO43PO.5C  | 537                  | 10.7        | 0.00480           | 3 10 69               | 3466    |                         |
| MO43PO.5D  | 500                  | 12.0        | 0.00546           | 8 8 73                | 2061    |                         |
| MO44PO.5B  | 445                  | 11.5        | 0.00360           | 3 6 69                |         | 99 <1                   |
| FO44PO.5C  | 504                  | 8.48        | 0.00604           | 8 8 73                | 2061    |                         |
| MO45PO.5B  | 472                  | 10.3        | 0.00350           | 3 6 69                |         | 42 <1                   |
| FO45PO.5C  | 540                  | 10.0        | 0.00516           | 17 11 71              |         | 35 <1                   |
| MO46PO.5B  | 484                  | 11.8        | 0.00336           | 3 6 69                |         | 7 <1                    |
| FO46PO.5C  | 540                  | 9.15        | 0.00516           | 17 11 71              |         | 7 <1                    |
| MO47PO.5   | 568                  | 11.9        | 0.00524           | 8 8 74                | 1696    |                         |
| MO48PO.5   | 568                  | 12.1        | 0.00546           | 8 8 74                | 1696    |                         |
| FO49PO.5   | 569                  | 9.10        | 0.00537           | 8 8 74                | 1696    |                         |
| FO50PO.5   | 568                  | 12.8        | 0.00541           | 8 8 74                | 1696    |                         |
| MO51PO.5   | 506                  | 11.9        | 0.00552           | 29 8 74               | 1675    |                         |
| MO52PO.5   | 506                  | 10.4        | 0.00549           | 29 8 74               | 1675    |                         |
| MO53PO.5   | 498                  | 13.2        | 0.00515           | 29 8 74               | 1675    |                         |
| MO54PO.5   | 497                  | 10.8        | 0.00551           | 29 8 74               | 1675    |                         |
| FO55PO.5   | 533                  | 9.65        | 0.00547           | 17 10 74              | 1626    |                         |
| FO56PO.5   | 533                  | 9.56        | 0.00552           | 17 10 74              | 1626    |                         |
| FO57PO.5   | 523                  | 8.14        | 0.00524           | 17 10 74              | 1626    |                         |
| F101PO.5Y  | 93                   | 2.74        | 0.00617           | 19 9 74               | 1654    |                         |
| M102PO.5Y  | 91                   | 3.43        | 0.00618           | 19 9 74               | 1654    |                         |
| F103PO.5Y  | 91                   | 3.39        | 0.00611           | 19 9 74               | 1654    |                         |
| M104PO.5Y  | 90                   | 3.43        | 0.00525           | 27 4 76               | 1068    |                         |
| M105PO.5Y  | 89                   | 4.17        | 0.00570           | 26 11 74              | 1586    |                         |
| F106PO.5Y  | 89                   | 4.51        | 0.00580           | 26 11 74              | 1586    |                         |
| F107PO.5Y  | 94                   | 3.53        | 0.00553           | 22 9 76               | 920     |                         |
| M108PO.5Y  | 91                   | 4.47        | 0.00484           | 16 12 76              | 835     |                         |
| F109PO.5Y  | 88                   | 3.95        | 0.00542           | 20 4 78               | 345     |                         |
| M110PO.5Y  | 90                   | 4.48        | 0.00521           | 9 3 78                | 387     |                         |
| F111PO.5Y  | 88                   | 3.67        | 0.00533           | 23 5 78               | 312     |                         |
| FO14PO.7   | 533                  | 8.98        | 0.00947           | 22 7 69               | 3539    |                         |
| MO15PO.7   | 533                  | 10.3        | 0.00941           | 22 7 69               |         | 3471 33                 |
| MO16PO.7   | 516                  | 11.9        | 0.0102            | 4 9 69                | 3495    |                         |
| MO17PO.7   | 540                  | 8.04        | 0.0103            | 3 10 69               | 3466    |                         |
| FO18PO.7   | 531                  | 9.66        | 0.00942           | 22 7 69               | 3539    |                         |
| MO19PO.7   | 501                  | 11.6        | 0.0104            | 23 9 70               |         | 1737 22                 |
| FO20PO.7   | 521                  | 9.18        | 0.00926           | 22 7 69               | 3539    |                         |
| MO21PO.7   | 499                  | 11.1        | 0.0104            | 23 9 70               | 3111    |                         |
| FO22PO.7   | 538                  | 9.69        | 0.0108            | 4 9 69                | 3495    |                         |
| FO23PO.7   | 538                  | 9.56        | 0.0108            | 4 9 69                | 3495    |                         |

## B. PLUTONIUM - 239 \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS         |
|---------------|-------------------------------|
| FO43PO.5B     |                               |
| FO43PO.5C     |                               |
| MO43PO.5D     |                               |
| MO44PO.5B     | SPECIAL STUDY                 |
| FO44PO.5C     |                               |
| MO45PO.5B     | SPECIAL STUDY                 |
| FO45PO.5C     | SPECIAL STUDY                 |
| MO46PO.5B     | SPECIAL STUDY                 |
| FO46PO.5C     | SPECIAL STUDY                 |
| MO47PO.5      |                               |
| MO48PO.5      |                               |
| FO49PO.5      |                               |
| FO50PO.5      |                               |
| MO51PO.5      |                               |
| MO52PO.5      |                               |
| MO53PO.5      |                               |
| MO54PO.5      |                               |
| FO55PO.5      |                               |
| FO56PO.5      |                               |
| FO57PO.5      |                               |
| F101PO.5Y     |                               |
| M102PO.5Y     |                               |
| F103PO.5Y     |                               |
| M104PO.5Y     |                               |
| M105PO.5Y     |                               |
| F106PO.5Y     |                               |
| F107PO.5Y     |                               |
| M108PO.5Y     |                               |
| F109PO.5Y     |                               |
| M110PO.5Y     |                               |
| F111PO.5Y     |                               |
| FO14PO.7      |                               |
| MO15PO.7      | CHONDROSARCOMA (NASAL CAVITY) |
| MO16PO.7      |                               |
| MO17PO.7      |                               |
| FO18PO.7      |                               |
| MO19PO.7      | STRANGULATED HERNIA           |
| FO20PO.7      |                               |
| MO21PO.7      |                               |
| FO22PO.7      |                               |
| FO23PO.7      |                               |

## B. PLUTONIUM - 239 \*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | 31/3/79 | DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|---------|-------|-------------------------|
| FO24PO.7   | 516                  | 8.90        | 0.0110            | 4 9 69                | 3495    |       |                         |
| MO25PO.7   | 506                  | 10.9        | 0.0117            | 8 8 73                |         | 2042  | 28                      |
| MO26PO.7   | 494                  | 10.2        | 0.0112            | 20 9 73               | 2018    |       |                         |
| MO27PO.7   | 494                  | 11.9        | 0.0116            | 20 9 73               | 2018    |       |                         |
| FO28PO.7   | 494                  | 10.6        | 0.0110            | 20 9 73               | 2018    |       |                         |
| FO29PO.7   | 493                  | 8.63        | 0.0113            | 20 9 73               | 2018    |       |                         |
| FO30PO.7   | 487                  | 9.91        | 0.0113            | 20 9 73               | 2018    |       |                         |
| MO31PO.7   | 521                  | 13.2        | 0.00956           | 4 12 73               | 1943    |       |                         |
| MO32PO.7   | 521                  | 9.46        | 0.00967           | 4 12 73               | 1943    |       |                         |
| MO33PO.7   | 509                  | 10.7        | 0.0103            | 30 1 74               | 1886    |       |                         |
| MO34PO.7   | 521                  | 10.1        | 0.00979           | 4 12 73               | 1943    |       |                         |
| FO35PO.7   | 521                  | 10.6        | 0.00981           | 4 12 73               | 1943    |       |                         |
| FO36PO.7   | 521                  | 11.1        | 0.00999           | 4 12 73               | 1943    |       |                         |
| MO37PO.7   | 520                  | 11.6        | 0.00999           | 4 12 73               | 1943    |       |                         |
| FO38PO.7   | 520                  | 11.4        | 0.00995           | 4 12 73               | 1943    |       |                         |
| FO39PO.7   | 512                  | 8.24        | 0.00969           | 4 12 73               | 1943    |       |                         |
| MO40PO.7   | 512                  | 10.7        | 0.00990           | 4 12 73               | 1943    |       |                         |
| MO41PO.7   | 533                  | 11.9        | 0.0105            | 30 1 74               | 1886    |       |                         |
| MO42PO.7   | 533                  | 11.6        | 0.0106            | 30 1 74               | 1886    |       |                         |
| MO43PO.7   | 533                  | 10.1        | 0.0106            | 30 1 74               | 1886    |       |                         |
| FO44PO.7   | 533                  | 10.2        | 0.0105            | 30 1 74               | 1886    |       |                         |
| MO45PO.7   | 509                  | 10.8        | 0.0104            | 30 1 74               | 1886    |       |                         |
| FO46PO.7   | 509                  | 10.2        | 0.0105            | 30 1 74               | 1886    |       |                         |
| FO47PO.7   | 508                  | 8.39        | 0.0103            | 30 1 74               | 1886    |       |                         |
| MO48PO.7   | 502                  | 10.30       | 0.00910           | 5 3 74                | 1852    |       |                         |
| MO49PO.7   | 471                  | 12.30       | 0.00990           | 5 3 74                | 1852    |       |                         |
| FO50PO.7   | 522                  | 9.33        | 0.0112            | 29 8 74               | 1675    |       |                         |
| FO51PO.7   | 522                  | 11.8        | 0.0105            | 29 8 74               | 1675    |       |                         |
| MO01P1.0   | 443                  | 9.41        | 0.0150            | 1 12 52               |         | 4572  | 66                      |
| FO02P1.0   | 422                  | 6.85        | 0.0163            | 2 3 53                |         | 4810  | 74                      |
| MO03P1.0   | 515                  | 8.00        | 0.0165            | 1 6 53                |         | 4292  | 68                      |
| MO04P1.0   | 608                  | 9.97        | 0.0139            | 16 9 53               |         | 4549  | 60                      |
| FO05P1.0   | 620                  | 8.80        | 0.0142            | 14 10 53              |         | 1539  | 27                      |
| FO05P1.OA  | 472                  | 11.0        | 0.0168            | 3 9 58                |         | 3764  | 63                      |
| FO06P1.0   | 410                  | 7.38        | 0.0140            | 12 5 54               |         | 4292  | 58                      |
| FO07P1.0   | 510                  | 6.36        | 0.0167            | 25 10 54              |         | 3981  | 65                      |
| MO08P1.0   | 453                  | 10.6        | 0.0172            | 15 3 55               |         | 3367  | 50                      |
| FO09P1.0   | 556                  | 7.87        | 0.0168            | 9 9 55                |         | 2257  | 43                      |
| FO10P1.0   | 641                  | 12.00       | 0.0152            | 22 11 55              |         | 3649  | 56                      |
| MO11P1.0   | 602                  | 8.90        | 0.0157            | 24 4 56               |         | 5160  | 76                      |
| MO12P1.0   | 629                  | 9.67        | 0.0167            | 29 5 56               |         | 2374  | 44                      |

## B. PLUTONIUM - 239 \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                           |
|---------------|-------------------------------------------------|
| FO24PO.7      |                                                 |
| MO25PO.7      | STATUS EPILEPTICUS                              |
| MO26PO.7      |                                                 |
| MO27PO.7      |                                                 |
| FO28PO.7      |                                                 |
| FO29PO.7      |                                                 |
| FO30PO.7      |                                                 |
| MO31PO.7      |                                                 |
| MO32PO.7      |                                                 |
| MO33PO.7      |                                                 |
| MO34PO.7      |                                                 |
| FO35PO.7      |                                                 |
| FO36PO.7      |                                                 |
| MO37PO.7      |                                                 |
| FO38PO.7      |                                                 |
| FO39PO.7      |                                                 |
| MO40PO.7      |                                                 |
| MO41PO.7      |                                                 |
| MO42PO.7      |                                                 |
| MO43PO.7      |                                                 |
| FO44PO.7      |                                                 |
| MO45PO.7      |                                                 |
| FO46PO.7      |                                                 |
| FO47PO.7      |                                                 |
| MO48PO.7      |                                                 |
| MO49PO.7      |                                                 |
| FO50PO.7      |                                                 |
| FO51PO.7      |                                                 |
| MO01P1.O      | OSTEOSARCOMA                                    |
| FO02P1.O      | CIRCULATORY FAILURE                             |
| MO03P1.O      | OSTEOSARCOMA                                    |
| MO04P1.O      | BILE DUCT CARCINOMA                             |
| FO05P1.O      | COLITIS, ENTERITIS + SECONDARY HEPATIC NECROSIS |
| FO05P1.OA     | THYROID CARCINOMA                               |
| FO06P1.O      | CARCINOMA OF COLON                              |
| FO07P1.O      | TRAUMA LYMPHADENOGRAPHY                         |
| MO08P1.O      | OSTEOSARCOMA                                    |
| FO09P1.O      | OSTEOSARCOMA                                    |
| FO10P1.O      | MAMMARY CARCINOMA                               |
| MO11P1.O      | THYROID CARCINOMA                               |
| MO12P1.O      | CHRONIC PANCREATITIS                            |

## B. PLUTONIUM - 239 \*

| DOG<br>NUMBER | INJECTION<br>AGE<br>(DAYS) | WEIGHT<br>(KG) | INJECTED<br>(uCi/KG) | DATE<br>INJECTED<br>D MO YR | DAYS SINCE<br>INJECTION<br>31/3/79 DEATH | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|----------------------------|----------------|----------------------|-----------------------------|------------------------------------------|-------------------------------|
| MO13P1.0      | 504                        | 12.7           | 0.0153               | 3 9 58                      | 5277                                     | 75                            |
| FO14P1.0      | 533                        | 10.4           | 0.0141               | 22 7 69                     | 3539                                     |                               |
| MO15P1.0      | 516                        | 12.8           | 0.0159               | 4 9 69                      | 3495                                     |                               |
| MO16P1.0      | 516                        | 10.6           | 0.0165               | 4 9 69                      | 3495                                     |                               |
| MO17P1.0      | 537                        | 10.9           | 0.0151               | 3 10 69                     | 3466                                     |                               |
| FO18P1.0      | 531                        | 9.89           | 0.0140               | 22 7 69                     | 3539                                     |                               |
| MO19P1.0      | 501                        | 9.82           | 0.0159               | 23 9 70                     | 3111                                     |                               |
| FO20P1.0      | 521                        | 10.4           | 0.0141               | 22 7 69                     | 3482                                     | 50                            |
| MO21P1.0      | 499                        | 10.0           | 0.0156               | 23 9 70                     | 3111                                     |                               |
| FO22P1.0      | 521                        | 9.04           | 0.0139               | 22 7 69                     | 3539                                     |                               |
| FO23P1.0      | 538                        | 11.2           | 0.0163               | 4 9 69                      | 3495                                     |                               |
| FO24P1.0      | 516                        | 10.4           | 0.0163               | 4 9 69                      | 3308                                     | 55                            |
| MO25P1.0      | 504                        | 11.0           | 0.0168               | 8 8 73                      | 2061                                     |                               |
| F101P1.OY     | 93                         | 2.23           | 0.0171               | 19 9 74                     | 1654                                     |                               |
| M102P1.OY     | 91                         | 2.83           | 0.0171               | 19 9 74                     | 1654                                     |                               |
| F103P1.OY     | 89                         | 3.56           | 0.0137               | 21 11 74                    | 1591                                     |                               |
| M104P1.OY     | 89                         | 5.14           | 0.0158               | 21 11 74                    | 1591                                     |                               |
| M105P1.OY     | 91                         | 5.19           | 0.0143               | 2 3 76                      | 1124                                     |                               |
| F106P1.OY     | 91                         | 4.36           | 0.0142               | 2 3 76                      | 1124                                     |                               |
| F107P1.OY     | 92                         | 4.46           | 0.0194               | 8 10 76                     | 904                                      |                               |
| F108P1.OY     | 91                         | 2.52           | 0.0146               | 16 12 76                    | 835                                      |                               |
| M109P1.OY     | 90                         | 3.78           | 0.0155               | 9 3 78                      | 387                                      |                               |
| M110P1.OY     | 88                         | 3.77           | 0.0158               | 23 5 78                     | 312                                      |                               |
| F501P1.O+     | 1787                       | 9.54           | 0.0158               | 10 6 75                     | 1390                                     |                               |
| F502P1.O+     | 1830                       | 11.4           | 0.0174               | 6 7 77                      | 633                                      |                               |
| F503P1.O+     | 1855                       | 9.76           | 0.0163               | 9 5 78                      | 326                                      |                               |
| M507P1.O+     | 1481                       | 13.3           | 0.0158               | 9 5 78                      | 326                                      |                               |
| MO01P1.7      | 657                        | 8.72           | 0.0475               | 26 6 56                     | 3025                                     | 151                           |
| FO02P1.7      | 527                        | 8.62           | 0.0431               | 22 11 55                    | 3430                                     | 150                           |
| MO03P1.7      | 642                        | 8.63           | 0.0495               | 26 6 56                     | 3430                                     | 173                           |
| MO04P1.7      | 673                        | 8.37           | 0.0484               | 10 10 56                    | 3312                                     | 165                           |
| FO05P1.7      | 642                        | 11.6           | 0.0493               | 26 6 56                     | 2659                                     | 142                           |
| FO06P1.7      | 642                        | 10.3           | 0.0459               | 26 6 56                     | 2221                                     | 116                           |
| FO07P1.7      | 756                        | 9.73           | 0.0481               | 10 10 56                    | 3353                                     | 165                           |
| MO08P1.7      | 673                        | 13.6           | 0.0479               | 10 10 56                    | 3282                                     | 162                           |
| FO09P1.7      | 756                        | 9.72           | 0.0485               | 10 10 56                    | 2500                                     | 134                           |
| FO10P1.7      | 739                        | 10.6           | 0.0495               | 10 10 56                    | 467                                      | 36                            |
| FO10P1.7A     | 472                        | 8.07           | 0.0457               | 3 9 58                      | 4214                                     | 187                           |
| MO11P1.7      | 599                        | 11.6           | 0.0486               | 24 4 56                     | 2777                                     | 145                           |
| MO12P1.7      | 673                        | 9.41           | 0.0491               | 10 10 56                    | 2973                                     | 154                           |
| MO13P1.7      | 504                        | 10.60          | 0.0473               | 3 9 58                      | 4375                                     | 200                           |

## B. PLUTONIUM - 239 \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS |
|---------------|-----------------------|
|---------------|-----------------------|

|           |                             |
|-----------|-----------------------------|
| M013P1.0  | SENIILITY, HYDROCEPHALUS    |
| F014P1.0  |                             |
| M015P1.0  |                             |
| M016P1.0  |                             |
| M017P1.0  |                             |
| F018P1.0  |                             |
| M019P1.0  |                             |
| FO20P1.0  | TRANSITIONAL CELL CARCINOMA |
| M021P1.0  |                             |
| FO22P1.0  |                             |
| FO23P1.0  |                             |
| FO24P1.0  | OSTEOSARCOMA; EMPYEMA       |
| M025P1.0  |                             |
| F101P1.OY |                             |
| M102P1.OY |                             |
| F103P1.OY |                             |
| M104P1.OY |                             |
| M105P1.OY |                             |
| F106P1.OY |                             |
| F107P1.OY |                             |
| F108P1.OY |                             |
| M109P1.OY |                             |
| M110P1.OY |                             |
| F501P1.O+ |                             |
| F502P1.O+ |                             |
| F503P1.O+ |                             |
| M507P1.O+ |                             |

|           |                                                       |
|-----------|-------------------------------------------------------|
| M001P1.7  | OSTEOSARCOMA                                          |
| FO02P1.7  | OSTEOSARCOMA                                          |
| M003P1.7  | CHROMOPHOB E ADENOMA OF PITUITARY, PROSTATE CARCINOMA |
| M004P1.7  | OSTEOSARCOMA                                          |
| FO05P1.7  | OSTEOSARCOMA                                          |
| FO06P1.7  | OSTEOSARCOMA                                          |
| FO07P1.7  | OSTEOSARCOMA                                          |
| M008P1.7  | OSTEOSARCOMA                                          |
| FO09P1.7  | OSTEOSARCOMA                                          |
| FO10P1.7  | ACUTE ENTERITIS                                       |
| FO10P1.7A | OSTEOSARCOMA                                          |
| M011P1.7  | BILE DUCT CARCINOMA                                   |
| M012P1.7  | LEUKEMIA                                              |
| M013P1.7  | CHONDROSARCOMA (PROXIMAL HUMERUS)                     |

## B. PLUTONIUM - 239 \*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | DAYS SINCE INJECTION 31/3/79 DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|------------------------------------|-------------------------|
| F1O1P1.7Y  | 93                   | 2.34        | 0.0543            | 19 9 74               | 1654                               |                         |
| M1O2P1.7Y  | 91                   | 2.97        | 0.0545            | 19 9 74               | 1654                               |                         |
| F1O3P1.7Y  | 89                   | 3.84        | 0.0453            | 21 11 74              | 1591                               |                         |
| M1O4P1.7Y  | 93                   | 3.40        | 0.0488            | 27 4 76               | 1068                               |                         |
| M1O5P1.7Y  | 90                   | 4.06        | 0.0485            | 27 4 76               | 1068                               |                         |
| F1O6P1.7Y  | 89                   | 4.20        | 0.0529            | 26 11 74              | 1586                               |                         |
| F1O7P1.7Y  | 93                   | 3.91        | 0.0477            | 24 9 76               | 918                                |                         |
| M1O8P1.7Y  | 92                   | 4.32        | 0.0473            | 8 10 76               | 904                                |                         |
| F1O9P1.7Y  | 88                   | 3.06        | 0.0510            | 20 4 78               | 345                                |                         |
| M11OP1.7Y  | 92                   | 3.07        | 0.0464            | 11 7 78               | 263                                |                         |
| F111P1.7Y  | 92                   | 3.02        | 0.0471            | 11 7 78               | 263                                |                         |
| F5O1P1.7+  | 1725                 | 10.0        | 0.0456            | 24 6 75               | 1376                               |                         |
| F5O2P1.7+  | 1732                 | 10.0        | 0.0416            | 16 12 75              | 1201                               |                         |
| F5O3P1.7+  | 1826                 | 10.2        | 0.0519            | 13 5 76               | 1052                               |                         |
| F5O4P1.7+  | 1831                 | 11.2        | 0.0527            | 6 7 77                | 633                                |                         |
| F5O5P1.7+  | 1846                 | 9.96        | 0.0441            | 9 5 78                | 326                                |                         |
| F5O6P1.7+  | 1823                 | 9.56        | 0.0449            | 9 5 78                | 326                                |                         |
| M5O7P1.7+  | 1849                 | 10.7        | 0.0458            | 20 7 78               | 254                                |                         |
| M5O8P1.7+  | 1840                 | 12.6        | 0.0430            | 7 9 78                | 205                                |                         |
| M5O9P1.7+  | 1845                 | 12.7        | 0.0498            | 30 11 78              | 121                                |                         |
| M51OP1.7+  | 1835                 | 11.5        | 0.0503            | 30 11 78              | 121                                |                         |
| MOO1P2.0   | 443                  | 7.61        | 0.0853            | 1 12 52               | 2985                               | 268                     |
| FOO2P2.0   | 422                  | 7.73        | 0.112             | 2 3 53                | 2780                               | 334                     |
| MOO3P2.0   | 485                  | 10.5        | 0.0940            | 1 6 53                | 3185                               | 310                     |
| MOO4P2.0   | 608                  | 9.84        | 0.0862            | 16 9 53               | 2948                               | 268                     |
| FOO5P2.0   | 594                  | 8.12        | 0.0846            | 14 10 53              | 2423                               | 228                     |
| FOO6P2.0   | 417                  | 7.54        | 0.0902            | 12 5 54               | 2947                               | 281                     |
| FOO7P2.0   | 485                  | 8.40        | 0.0996            | 25 10 54              | 2093                               | 240                     |
| MOO8P2.0   | 406                  | 9.73        | 0.0957            | 15 3 55               | 1761                               | 203                     |
| FOO9P2.0   | 552                  | 9.72        | 0.101             | 9 9 55                | 2014                               | 237                     |
| FO10P2.0   | 551                  | 7.94        | 0.0968            | 22 11 55              | 2912                               | 299                     |
| MO11P2.0   | 599                  | 10.3        | 0.0961            | 24 4 56               | 1617                               | 191                     |
| MO12P2.0   | 622                  | 9.98        | 0.100             | 29 5 56               | 2284                               | 258                     |
| F1O1P2.OY  | 91                   | 2.60        | 0.0981            | 19 9 74               | 1654                               |                         |
| M1O2P2.OY  | 91                   | 2.85        | 0.106             | 19 9 74               | 1654                               |                         |
| M1O3P2.OY  | 93                   | 4.27        | 0.0904            | 2 3 76                | 1124                               |                         |
| F1O4P2.OY  | 92                   | 3.12        | 0.0904            | 13 4 76               | 1082                               |                         |
| M1O5P2.OY  | 90                   | 4.10        | 0.0963            | 27 4 76               | 1068                               |                         |
| F1O6P2.OY  | 91                   | 2.81        | 0.0961            | 27 4 76               | 1068                               |                         |
| F1O7P2.OY  | 94                   | 3.22        | 0.0980            | 22 9 76               | 920                                |                         |
| M1O8P2.OY  | 91                   | 3.69        | 0.0834            | 16 12 76              | 835                                |                         |

## B. PLUTONIUM - 239 \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                   |
|---------------|-----------------------------------------|
| F101P1.7Y     |                                         |
| M102P1.7Y     |                                         |
| F103P1.7Y     |                                         |
| M104P1.7Y     |                                         |
| M105P1.7Y     |                                         |
| F106P1.7Y     |                                         |
| F107P1.7Y     |                                         |
| M108P1.7Y     |                                         |
| F109P1.7Y     |                                         |
| M110P1.7Y     |                                         |
| F111P1.7Y     |                                         |
| F501P1.7+     |                                         |
| F502P1.7+     |                                         |
| F503P1.7+     |                                         |
| F504P1.7+     |                                         |
| F505P1.7+     |                                         |
| F506P1.7+     |                                         |
| M507P1.7+     |                                         |
| M508P1.7+     |                                         |
| M509P1.7+     |                                         |
| M510P1.7+     |                                         |
| <br>          |                                         |
| M001P2.0      | OSTEOSARCOMA                            |
| F002P2.0      | OSTEOSARCOMA                            |
| M003P2.0      | OSTEOSARCOMA                            |
| M004P2.0      | OSTEOSARCOMA                            |
| F005P2.0      | OSTEOSARCOMA                            |
| F006P2.0      | OSTEOSARCOMA                            |
| F007P2.0      | SQUAMOUS CELL CARCINOMA (FRONTAL SINUS) |
| M008P2.0      | ASPIRATION PNEUMONIA                    |
| F009P2.0      | OSTEOSARCOMA                            |
| F010P2.0      | OSTEOSARCOMA                            |
| M011P2.0      | OSTEOSARCOMA                            |
| M012P2.0      | OSTEOSARCOMA                            |
| F101P2.OY     |                                         |
| M102P2.OY     |                                         |
| M103P2.OY     |                                         |
| F104P2.OY     |                                         |
| M105P2.OY     |                                         |
| F106P2.OY     |                                         |
| F107P2.OY     |                                         |
| M108P2.OY     |                                         |

## B. PLUTONIUM - 239 \*

| DOG<br>NUMBER | INJECTION<br>AGE    WEIGHT |      | INJECTED<br>(uCi/KG) | DATE<br>INJECTED |    |    | DAYS SINCE<br>INJECTION<br>31/3/79 | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|----------------------------|------|----------------------|------------------|----|----|------------------------------------|-------------------------------|
|               | (DAYS)                     | (KG) |                      | D                | MO | YR |                                    |                               |
| F109P2.OY     | 88                         | 2.60 | 0.0921               | 9                | 5  | 78 | 326                                |                               |
| M110P2.OY     | 92                         | 3.28 | 0.0929               | 11               | 7  | 78 | 263                                |                               |
| F111P2.OY     | 92                         | 3.18 | 0.0958               | 11               | 7  | 78 | 263                                |                               |
| F501P2.O+     | 1787                       | 10.2 | 0.0903               | 10               | 6  | 75 | 1390                               |                               |
| F502P2.O+     | 1757                       | 10.2 | 0.0908               | 5                | 3  | 76 | 1121                               |                               |
| F503P2.O+     | 1743                       | 8.44 | 0.110                | 5                | 3  | 76 | 1121                               |                               |
| F504P2.O+     | 1874                       | 8.87 | 0.0922               | 20               | 7  | 78 | 254                                |                               |
| F505P2.O+     | 1855                       | 7.60 | 0.0942               | 20               | 7  | 78 | 254                                |                               |
| F506P2.O+     | 1887                       | 7.95 | 0.0923               | 7                | 9  | 78 | 205                                |                               |
| M507P2.O+     | 1838                       | 11.8 | 0.0911               | 20               | 7  | 78 | 254                                |                               |
| M508P2.O+     | 1817                       | 7.91 | 0.0917               | 7                | 9  | 78 | 205                                |                               |
| M509P2.O+     | 1835                       | 10.6 | 0.0979               | 30               | 11 | 78 | 121                                |                               |
| M510P2.O+     | 1794                       | 12.0 | 0.0988               | 30               | 11 | 78 | 121                                |                               |
|               |                            |      |                      |                  |    |    |                                    |                               |
| MO01P3.O      | 418                        | 8.00 | 0.261                | 1                | 12 | 52 | 1476                               | 579                           |
| FO02P3.O      | 422                        | 6.85 | 0.312                | 2                | 3  | 53 | 1947                               | 886                           |
| MO03P3.O      | 485                        | 8.74 | 0.291                | 1                | 6  | 53 | 1604                               | 695                           |
| MO04P3.O      | 608                        | 8.51 | 0.292                | 16               | 9  | 53 | 1950                               | 830                           |
| FO05P3.O      | 650                        | 8.22 | 0.288                | 14               | 10 | 53 | 1504                               | 650                           |
| FO06P3.O      | 415                        | 8.38 | 0.282                | 12               | 5  | 54 | 1617                               | 678                           |
| FO07P3.O      | 485                        | 9.00 | 0.314                | 25               | 10 | 54 | 1627                               | 760                           |
| MO08P3.O      | 406                        | 9.73 | 0.300                | 15               | 3  | 55 | 1770                               | 782                           |
| FO09P3.O      | 552                        | 7.67 | 0.300                | 9                | 9  | 55 | 1894                               | 831                           |
| FO10P3.O      | 533                        | 8.94 | 0.298                | 22               | 11 | 55 | 1547                               | 689                           |
| MO11P3.O      | 599                        | 10.5 | 0.309                | 24               | 4  | 56 | 1198                               | 569                           |
| MO12P3.O      | 622                        | 10.2 | 0.308                | 29               | 5  | 56 | 1659                               | 758                           |
| MO81P3.OY     | 91                         | 4.03 | 0.320                | 25               | 4  | 72 | 2531                               |                               |
| MO86P3.OY     | 89                         | 3.29 | 0.319                | 25               | 4  | 72 | 2531                               |                               |
| MO89P3.OY     | 89                         | 4.23 | 0.312                | 25               | 4  | 72 | 2531                               |                               |
| F101P3.OY     | 91                         | 2.88 | 0.332                | 19               | 9  | 74 | 1654                               |                               |
| M102P3.OY     | 93                         | 3.93 | 0.316                | 27               | 4  | 76 | 1068                               |                               |
| F103P3.OY     | 92                         | 3.54 | 0.269                | 13               | 4  | 76 | 1082                               |                               |
| M104P3.OY     | 92                         | 4.65 | 0.317                | 27               | 4  | 76 | 1068                               |                               |
| M105P3.OY     | 91                         | 3.86 | 0.312                | 27               | 4  | 76 | 1068                               |                               |
| F106P3.OY     | 91                         | 4.22 | 0.315                | 1                | 6  | 76 | 1033                               |                               |
| F107P3.OY     | 93                         | 3.69 | 0.295                | 24               | 9  | 76 | 918                                |                               |
| M108P3.OY     | 90                         | 3.56 | 0.283                | 16               | 12 | 76 | 835                                |                               |
| F109P3.OY     | 88                         | 2.78 | 0.300                | 9                | 5  | 78 | 326                                |                               |
| F501P3.O+     | 1718                       | 10.3 | 0.290                | 17               | 6  | 75 | 1383                               |                               |
| F502P3.O+     | 1739                       | 9.56 | 0.298                | 23               | 12 | 75 | 1194                               |                               |
| F503P3.O+     | 1887                       | 10.9 | 0.273                | 7                | 9  | 78 | 205                                |                               |
| F504P3.O+     | 1845                       | 9.09 | 0.318                | 30               | 11 | 78 | 121                                |                               |

## B. PLUTONIUM - 239 \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS |
|---------------|-----------------------|
| F109P2.OY     |                       |
| M110P2.OY     |                       |
| F111P2.OY     |                       |
| F501P2.O+     |                       |
| F502P2.O+     |                       |
| F503P2.O+     |                       |
| F504P2.O+     |                       |
| F505P2.O+     |                       |
| F506P2.O+     |                       |
| M507P2.O+     |                       |
| M508P2.O+     |                       |
| M509P2.O+     |                       |
| M510P2.O+     |                       |
| <br>          |                       |
| M001P3.O      | OSTEOSARCOMA          |
| FO02P3.O      | OSTEOSARCOMA          |
| M003P3.O      | OSTEOSARCOMA          |
| M004P3.O      | OSTEOSARCOMA          |
| FO05P3.O      | OSTEOSARCOMA          |
| FO06P3.O      | OSTEOSARCOMA          |
| FO07P3.O      | OSTEOSARCOMA          |
| M008P3.O      | OSTEOSARCOMA          |
| FO09P3.O      | OSTEOSARCOMA          |
| FO10P3.O      | OSTEOSARCOMA          |
| M011P3.O      | OSTEOSARCOMA          |
| M012P3.O      | OSTEOSARCOMA          |
| MO81P3.OY     |                       |
| MO86P3.OY     |                       |
| MO89P3.OY     |                       |
| F101P3.OY     |                       |
| M102P3.OY     |                       |
| F103P3.OY     |                       |
| M104P3.OY     |                       |
| M105P3.OY     |                       |
| F106P3.OY     |                       |
| F107P3.OY     |                       |
| M108P3.OY     |                       |
| F109P3.OY     |                       |
| F501P3.O+     |                       |
| F502P3.O+     |                       |
| F503P3.O+     |                       |
| F504P3.O+     |                       |

## B. PLUTONIUM - 239 \*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | DAYS SINCE INJECTION 31/3/79 DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|------------------------------------|-------------------------|
| F505P3.O+  | 1835                 | 8.19        | 0.312             | 30 11 78              | 121                                |                         |
| F506P3.O+  | 1823                 | 7.55        | 0.274             | 7 9 78                | 205                                |                         |
| M507P3.O+  | 1853                 | 11.8        | 0.274             | 7 9 78                | 205                                |                         |
| M508P3.O+  | 1829                 | 10.2        | 0.304             | 2 11 78               | 149                                |                         |
| M509P3.O+  | 1827                 | 11.6        | 0.306             | 2 11 78               | 149                                |                         |
| M510P3.O+  | 1794                 | 11.1        | 0.313             | 30 11 78              | 121                                |                         |
| MO01P4.O   | 443                  | 7.61        | 0.823             | 1 12 52               | 1724                               | 2215                    |
| FO02P4.O   | 568                  | 8.65        | 1.03              | 2 3 53                | 1556                               | 2521                    |
| MO03P4.O   | 485                  | 9.36        | 0.929             | 1 6 53                | 1198                               | 1784                    |
| MO04P4.O   | 566                  | 8.74        | 0.974             | 16 9 53               | 1066                               | 1678                    |
| FO05P4.O   | 650                  | 7.05        | 0.872             | 14 10 53              | 1245                               | 1736                    |
| FO06P4.O   | 420                  | 9.26        | 0.811             | 12 5 54               | 1357                               | 1749                    |
| FO07P4.O   | 485                  | 8.45        | 0.963             | 25 10 54              | 1198                               | 1850                    |
| MO08P4.O   | 651                  | 9.22        | 0.887             | 15 3 55               | 1157                               | 1650                    |
| FO09P4.O   | 552                  | 8.58        | 0.960             | 9 9 55                | 1343                               | 2050                    |
| FO10P4.O   | 527                  | 6.48        | 0.868             | 22 11 55              | 1241                               | 1723                    |
| MO11P4.O   | 596                  | 9.56        | 0.927             | 24 4 56               | 1288                               | 1904                    |
| MO12P4.O   | 598                  | 11.4        | 0.838             | 29 5 56               | 1463                               | 1938                    |
| MO01P5.O   | 418                  | 8.86        | 2.67              | 1 12 52               | 1324                               | 5873                    |
| FO02P5.O   | 1151                 | 8.75        | 3.30              | 2 3 53                | 1576                               | 8575                    |
| MO03P5.O   | 515                  | 8.10        | 3.00              | 1 6 53                | 499                                | 2577                    |
| MO04P5.O   | 566                  | 9.18        | 3.17              | 16 9 53               | 1562                               | 8167                    |
| FO05P5.O   | 691                  | 8.77        | 2.77              | 14 10 53              | 2059                               | 9292                    |
| FO06P5.O   | 407                  | 7.90        | 2.57              | 12 5 54               | 1194                               | 5121                    |
| FO07P5.O   | 482                  | 8.33        | 2.99              | 25 10 54              | 1491                               | 7368                    |
| MO08P5.O   | 497                  | 9.55        | 2.69              | 15 3 55               | 1192                               | 5351                    |
| FO09P5.O   | 552                  | 9.45        | 2.73              | 9 9 55                | 1145                               | 5226                    |
| MO81P5.OY  | 94                   | 4.60        | 2.68              | 1 3 72                | 1161                               | 2503                    |
| FO82P5.OY  | 94                   | 4.80        | 2.66              | 1 3 72                | 1295                               | 3280                    |
| FO83P5.OY  | 94                   | 4.00        | 2.66              | 1 3 72                | 1442                               | 3862                    |
| FO84P5.OY  | 94                   | 3.55        | 2.68              | 1 3 72                | 1259                               | 2727                    |
| FO85P5.OY  | 94                   | 4.15        | 2.64              | 1 3 72                | 1134                               | 2503                    |
| MO86P5.OY  | 93                   | 3.75        | 2.95              | 25 4 72               | 1345                               | 2792                    |
| FO87P5.OY  | 93                   | 4.15        | 2.93              | 25 4 72               | 1119                               | 3095                    |
| FO88P5.OY  | 93                   | 3.65        | 2.96              | 25 4 72               | 1227                               | 2562                    |
| MO89P5.OY  | 93                   | 3.79        | 2.92              | 25 4 72               | 1443                               | 2432                    |
| MO90P5.OY  | 93                   | 4.38        | 2.97              | 25 4 72               | 1137                               | 2512                    |
| MO91P5.OY  | 91                   | 3.78        | 2.90              | 25 4 72               | 1491                               | 2619                    |
| MO92P5.OY  | 91                   | 3.82        | 2.87              | 25 4 72               | 1616                               | 3307                    |

\*

F502P2+ and F503P2+ were given tracer (<sup>237</sup>Pu) in the same injection solution containing their <sup>239</sup>Pu.

## B. PLUTONIUM - 239 \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                                 |
|---------------|-------------------------------------------------------|
| F505P3.0+     |                                                       |
| F506P3.0+     |                                                       |
| M507P3.0+     |                                                       |
| M508P3.0+     |                                                       |
| M509P3.0+     |                                                       |
| M510P3.0+     |                                                       |
| MO01P4.0      | OSTEOSARCOMA                                          |
| FO02P4.0      | OSTEOSARCOMA                                          |
| MO03P4.0      | OSTEOSARCOMA                                          |
| MO04P4.0      | OSTEOSARCOMA                                          |
| FO05P4.0      | OSTEOSARCOMA                                          |
| FO06P4.0      | OSTEOSARCOMA                                          |
| FO07P4.0      | OSTEOSARCOMA                                          |
| MO08P4.0      | OSTEOSARCOMA                                          |
| FO09P4.0      | OSTEOSARCOMA                                          |
| FO10P4.0      | OSTEOSARCOMA                                          |
| MO11P4.0      | OSTEOSARCOMA                                          |
| MO12P4.0      | OSTEOSARCOMA                                          |
| MO01P5.0      | OSTEOSARCOMA                                          |
| FO02P5.0      | OSTEOSARCOMA + FRACTURED MANDIBLE                     |
| MO03P5.0      | LIVER DEGENERATION + ASCITES                          |
| MO04P5.0      | OSTEOSARCOMA                                          |
| FO05P5.0      | OSTEOSARCOMA, LIVER DEGENERATION + HEPATIC HEMORRHAGE |
| FO06P5.0      | OSTEOSARCOMA                                          |
| FO07P5.0      | OSTEOSARCOMA + CRIPPLING FRACTURE                     |
| MO08P5.0      | GINGIVITIS                                            |
| FO09P5.0      | OSTEOSARCOMA, EPISTAXIS + CIRCULATORY COLLAPSE        |
| MO81P5.OY     | OSTEOSARCOMA                                          |
| FO82P5.OY     | OSTEOSARCOMA                                          |
| FO83P5.OY     | OSTEOSARCOMA; FIBROSARCOMA (SOFT TISSUE)              |
| FO84P5.OY     | OSTEOSARCOMA                                          |
| FO85P5.OY     | OSTEOSARCOMA                                          |
| MO86P5.OY     | OSTEOSARCOMA                                          |
| FO87P5.OY     | OSTEOSARCOMA                                          |
| FO88P5.OY     | OSTEOSARCOMA                                          |
| MO89P5.OY     | OSTEOSARCOMA                                          |
| MO90P5.OY     | OSTEOSARCOMA                                          |
| MO91P5.OY     | OSTEOSARCOMA                                          |
| MO92P5.OY     | OSTEOSARCOMA                                          |

## C. RADIUM - 228 (MESOTHORIUM) \*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | DAYS SINCE INJECTION 31/3/79 DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|------------------------------------|-------------------------|
| FO01MO.0   | 732                  | 7.33        |                   | 4 1 54                | 3451                               |                         |
| FO02MO.0   | 545                  | 6.94        |                   | 29 11 54              | 6155                               |                         |
| MO03MO.0   | 579                  | 13.0        |                   | 13 3 56               | 5056                               |                         |
| MO04MO.0   | 601                  | 10.3        |                   | 15 1 57               | 4816                               |                         |
| FO05MO.0   | 671                  | 11.2        |                   | 5 3 57                | 4581                               |                         |
| MO06MO.0   | 492                  | 7.56        |                   | 23 4 57               | 4934                               |                         |
| FO07MO.0   | 395                  | 8.71        |                   | 4 6 57                | 1414                               |                         |
| FO07MO.OA  | 594                  | 10.9        |                   | 15 1 63               | 3624                               |                         |
| FO08MO.0   | 654                  | 11.6        |                   | 9 3 60                | 5009                               |                         |
| MO09MO.0   | 575                  | 12.4        |                   | 13 4 60               | 4130                               |                         |
| MO10MO.0   | 581                  | 13.3        |                   | 17 7 62               | 2991                               |                         |
| FO11MO.0   | 475                  | 9.31        |                   | 18 9 62               | 3248                               |                         |
| MO12MO.0   | 695                  | 10.0        |                   | 22 12 60              | 4810                               |                         |
| FO01MO.5   | 492                  | 9.47        | 0.0173            | 17 7 62               | 5460                               | 92                      |
| FO02MO.5   | 492                  | 9.15        | 0.0173            | 17 7 62               | 3689                               | 124                     |
| MO03MO.5   | 493                  | 10.8        | 0.0199            | 18 9 62               | 4697                               | 147                     |
| MO04MO.5   | 475                  | 12.8        | 0.0199            | 18 9 62               | 4193                               | 159                     |
| FO05MO.5   | 534                  | 7.83        | 0.0172            | 23 10 62              | 3958                               | 107                     |
| MO06MO.5   | 510                  | 10.3        | 0.0171            | 23 10 62              | 3019                               | 95                      |
| FO07MO.5   | 492                  | 8.87        | 0.0172            | 17 7 62               | 4997                               | 148                     |
| FO08MO.5   | 654                  | 12.6        | 0.0159            | 9 3 60                | 4208                               | 93                      |
| MO09MO.5   | 485                  | 11.9        | 0.0170            | 13 4 60               | 5321                               | 141                     |
| MO10MO.5   | 492                  | 10.6        | 0.0174            | 17 7 62               | 4567                               | 147                     |
| FO11MO.5   | 505                  | 7.82        | 0.0202            | 18 9 62               | 4033                               | 140                     |
| MO12MO.5   | 510                  | 10.6        | 0.0165            | 23 10 62              | 3920                               | 111                     |
| FO01M1.0   | 718                  | 7.75        | 0.0463            | 4 1 54                | 2950                               | 261                     |
| FO01M1.OA  | 590                  | 8.07        | 0.0512            | 23 10 62              | 4292                               | 292                     |
| FO02M1.0   | 459                  | 8.25        | 0.0324            | 29 11 54              | 5267                               | 284                     |
| MO03M1.0   | 575                  | 13.8        | 0.0589            | 13 3 56               | 3157                               | 408                     |
| MO04M1.0   | 601                  | 9.90        | 0.0481            | 15 1 57               | 4260                               | 175                     |
| FO05M1.0   | 658                  | 8.80        | 0.0490            | 5 3 57                | 4565                               | 256                     |
| MO06M1.0   | 521                  | 10.6        | 0.0468            | 23 4 57               | 3402                               | 363                     |
| FO07M1.0   | 534                  | 9.89        | 0.0489            | 4 6 57                | 2159                               | 199                     |
| FO08M1.0   | 654                  | 12.4        | 0.0491            | 9 3 60                | 3886                               | 320                     |
| MO09M1.0   | 485                  | 10.1        | 0.0504            | 13 4 60               | 4670                               | 429                     |
| MO10M1.0   | 492                  | 9.43        | 0.0501            | 17 7 62               | 2966                               | 284                     |
| FO11M1.0   | 505                  | 8.91        | 0.0613            | 18 9 62               | 4943                               | 536                     |
| MO12M1.0   | 528                  | 9.27        | 0.0498            | 23 10 62              | 3786                               | 308                     |

## C. RADIUM - 228 (MESOTHORIUM) \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                                  |
|---------------|--------------------------------------------------------|
| FO01MO.0      | PURULENT MENINGOENCEPHALITIS                           |
| FO02MO.0      | UNDETERMINED; SENILITY                                 |
| MO03MO.0      | BRAIN INFARCTION                                       |
| MO04MO.0      | VALVULAR ENDOCARDITIS; MYOCARDIAL INFARCTION           |
| FO05MO.0      | MAMMARY CARCINOMA                                      |
| MO06MO.0      | NEPHRITIS                                              |
| FO07MO.0      | STATUS EPILEPTICUS                                     |
| FO07MO.OA     | PNEUMONIA                                              |
| FO08MO.0      | AORTIC THROMBOEMBOLISM                                 |
| MO09MO.0      | VIRUS PNEUMONIA                                        |
| MO10MO.0      | MALIGNANT MELANOMA (ORAL)                              |
| FO11MO.0      | ASPIRATION PNEUMONIA                                   |
| MO12MO.0      | PULMONARY THROMBOEMBOLISM; TRANSITIONAL CELL CARCINOMA |
| FO01MO.5      | THROMBO-EMBOLISM PORTAL VEIN                           |
| FO02MO.5      | CHRONIC PANCREATITIS                                   |
| MO03MO.5      | AORTIC THROMBO-EMBOLISM                                |
| MO04MO.5      | UNDIFFERENTIATED SARCOMA (NON-SKELETAL)                |
| FO05MO.5      | UNDETERMINED (NO BONE TUMOR)                           |
| MO06MO.5      | MALIGNANT MELANOMA (EYE)                               |
| FO07MO.5      | PNEUMONIA; MELANOMA (EYE)                              |
| FO08MO.5      | BACTERIAL ENTERITIS                                    |
| MO09MO.5      | AORTA THROMBO-EMBOLISM                                 |
| MO10MO.5      | KIDNEY DEGENERATION; AORTA THROMBOEMBOLISM             |
| FO11MO.5      | BILE DUCT OBSTRUCTION; EYE MELANOMA                    |
| MO12MO.5      | STATUS EPILEPTICUS                                     |
| FO01M1.0      | SARCOMA (SPLEEN)                                       |
| FO01M1.OA     | KIDNEY DEGENERATION                                    |
| FO02M1.0      | OSTEOSARCOMA                                           |
| MO03M1.0      | OSTEOSARCOMA                                           |
| MO04M1.0      | PNEUMONIA; PANCREATITIS                                |
| FO05M1.0      | MALIGNANT MELANOMA (EYE)                               |
| MO06M1.0      | EPIDERMOID CARCINOMA (PENIS)                           |
| FO07M1.0      | SARCOMA (HEART)                                        |
| FO08M1.0      | MALIGNANT MELANOMA (EYE)                               |
| MO09M1.0      | VALVULAR ENDOCARDITIS                                  |
| MO10M1.0      | MALIGNANT MELANOMA (EYE)                               |
| FO11M1.0      | MAMMARY CARCINOMA                                      |
| MO12M1.0      | LYMPHATIC LEUKEMIA                                     |

## C. RADIUM - 228 (MESOTHORIUM) \*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | 31/3/79 | DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|---------|-------|-------------------------|
| FO01M1.7   | 510                  | 7.52        | 0.151             | 23 10 62              |         | 4265  | 956                     |
| FO02M1.7   | 560                  | 9.90        | 0.183             | 13 3 56               |         | 2383  | 977                     |
| MO03M1.7   | 576                  | 11.0        | 0.180             | 13 3 56               |         | 2709  | 964                     |
| MO04M1.7   | 601                  | 8.94        | 0.143             | 15 1 57               |         | 2864  | 565                     |
| FO05M1.7   | 658                  | 12.8        | 0.141             | 5 3 57                |         | 3234  | 833                     |
| MO06M1.7   | 521                  | 10.0        | 0.144             | 23 4 57               |         | 3424  | 524                     |
| FO07M1.7   | 534                  | 10.2        | 0.146             | 4 6 57                |         | 2646  | 800                     |
| FO08M1.7   | 654                  | 10.8        | 0.148             | 9 3 60                |         | 2486  | 515                     |
| MO09M1.7   | 485                  | 12.6        | 0.149             | 13 4 60               |         | 2799  | 896                     |
| MO10M1.7   | 492                  | 10.1        | 0.124             | 17 7 62               |         | 3101  | 997                     |
| FO11M1.7   | 505                  | 10.7        | 0.179             | 18 9 62               |         | 3325  | 1347                    |
| MO12M1.7   | 524                  | 9.28        | 0.153             | 23 10 62              |         | 3017  | 957                     |
| FO01M2.0   | 676                  | 7.60        | 0.276             | 4 1 54                |         | 1780  | 1160                    |
| FO02M2.0   | 517                  | 8.25        | 0.194             | 29 11 54              |         | 965   | 264                     |
| MO03M2.0   | 576                  | 11.0        | 0.358             | 13 3 56               |         | 619   | 473                     |
| MO04M2.0   | 601                  | 9.88        | 0.282             | 15 1 57               |         | 2282  | 1377                    |
| FO05M2.0   | 509                  | 8.30        | 0.295             | 5 3 57                |         | 2688  | 1237                    |
| MO06M2.0   | 502                  | 12.4        | 0.306             | 23 4 57               |         | 2674  | 1843                    |
| FO07M2.0   | 534                  | 10.1        | 0.298             | 4 6 57                |         | 2239  | 1419                    |
| FO08M2.0   | 654                  | 12.4        | 0.300             | 9 3 60                |         | 2386  | 1237                    |
| MO09M2.0   | 630                  | 9.99        | 0.302             | 13 4 60               |         | 1254  | 748                     |
| MO10M2.0   | 430                  | 11.2        | 0.311             | 17 7 62               |         | 2373  | 1931                    |
| FO11M2.0   | 505                  | 7.03        | 0.381             | 18 9 62               |         | 2878  | 1461                    |
| MO12M2.0   | 524                  | 9.47        | 0.306             | 23 10 62              |         | 2471  | 1992                    |
| FO01M3.0   | 519                  | 10.4        | 0.858             | 4 1 54                |         | 918   | 2444                    |
| FO02M3.0   | 460                  | 6.70        | 0.612             | 29 11 54              |         | 1856  | 2767                    |
| MO03M3.0   | 579                  | 10.4        | 0.965             | 13 3 56               |         | 1185  | 3285                    |
| MO04M3.0   | 601                  | 10.2        | 0.916             | 15 1 57               |         | 1176  | 2123                    |
| FO05M3.0   | 531                  | 8.51        | 0.940             | 5 3 57                |         | 1869  | 2864                    |
| MO06M3.0   | 502                  | 9.09        | 0.953             | 23 4 57               |         | 1421  | 2541                    |
| FO07M3.0   | 534                  | 9.94        | 0.907             | 4 6 57                |         | 1463  | 4193                    |
| FO08M3.0   | 633                  | 11.8        | 0.950             | 9 3 60                |         | 1447  | 2877                    |
| MO09M3.0   | 630                  | 9.83        | 0.918             | 13 4 60               |         | 1570  | 3036                    |
| MO10M3.0   | 581                  | 10.4        | 1.00              | 17 7 62               |         | 1575  | 3091                    |
| FO11M3.0   | 499                  | 11.0        | 1.19              | 18 9 62               |         | 1395  | 3289                    |
| MO12M3.0   | 510                  | 12.9        | 0.987             | 23 10 62              |         | 1638  | 3153                    |
| FO01M4.0   | 510                  | 7.56        | 2.60              | 4 1 54                |         | 841   | 7485                    |
| FO02M4.0   | 460                  | 6.95        | 1.86              | 29 11 54              |         | 770   | 3029                    |

## C. RADIUM - 228 (MESOTHORIUM) \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS |
|---------------|-----------------------|
|---------------|-----------------------|

|          |                           |
|----------|---------------------------|
| FO01M1.7 | OSTEOSARCOMA              |
| FO02M1.7 | OSTEOSARCOMA              |
| MO03M1.7 | OSTEOSARCOMA              |
| MO04M1.7 | CARCINOMA SMALL INTESTINE |
| FO05M1.7 | OSTEOSARCOMA              |
| MO06M1.7 | OSTEOSARCOMA              |
| FO07M1.7 | OSTEOSARCOMA              |
| FO08M1.7 | OSTEOSARCOMA              |
| MO09M1.7 | OSTEOSARCOMA              |
| MO10M1.7 | OSTEOSARCOMA              |
| FO11M1.7 | OSTEOSARCOMA              |
| MO12M1.7 | UNKNOWN (NO BONE TUMOR)   |

|          |                       |
|----------|-----------------------|
| FO01M2.0 | OSTEOSARCOMA          |
| FO02M2.0 | INTESTINAL HEMORRHAGE |
| MO03M2.0 | PNEUMONIA             |
| MO04M2.0 | OSTEOSARCOMA          |
| FO05M2.0 | OSTEOSARCOMA          |
| MO06M2.0 | OSTEOSARCOMA          |
| FO07M2.0 | CHRONIC PANCREATITIS  |
| FO08M2.0 | OSTEOSARCOMA          |
| MO09M2.0 | OSTEOSARCOMA          |
| MO10M2.0 | OSTEOSARCOMA          |
| FO11M2.0 | OSTEOSARCOMA          |
| MO12M2.0 | OSTEOSARCOMA          |

|          |              |
|----------|--------------|
| FO01M3.0 | OSTEOSARCOMA |
| FO02M3.0 | OSTEOSARCOMA |
| MO03M3.0 | OSTEOSARCOMA |
| MO04M3.0 | OSTEOSARCOMA |
| FO05M3.0 | OSTEOSARCOMA |
| MO06M3.0 | OSTEOSARCOMA |
| FO07M3.0 | OSTEOSARCOMA |
| FO08M3.0 | OSTEOSARCOMA |
| MO09M3.0 | OSTEOSARCOMA |
| MO10M3.0 | OSTEOSARCOMA |
| FO11M3.0 | OSTEOSARCOMA |
| MO12M3.0 | OSTEOSARCOMA |

|          |                                  |
|----------|----------------------------------|
| FO01M4.0 | OSTEOSARCOMA + CRIPLING FRACTURE |
| FO02M4.0 | OSTEOSARCOMA                     |

## C. RADIUM - 228 (MESOTHORIUM) \*

| DOG<br>NUMBER | INJECTION     |                | INJECTED<br>(uCi/KG) | DATE<br>INJECTED |    |    | DAYS SINCE<br>INJECTION<br>31/3/79 DEATH | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|---------------|----------------|----------------------|------------------|----|----|------------------------------------------|-------------------------------|
|               | AGE<br>(DAYS) | WEIGHT<br>(KG) |                      | D                | MO | YR |                                          |                               |
| MO03M4.0      | 579           | 9.65           | 3.37                 | 13               | 3  | 56 | 418                                      | 2393                          |
| MO03M4.0A     | 494           | 7.34           | 2.64                 | 4                | 6  | 57 | 1063                                     | 7472                          |
| MO04M4.0      | 609           | 7.84           | 2.47                 | 15               | 1  | 57 | 896                                      | 3573                          |
| FO05M4.0      | 509           | 9.63           | 2.67                 | 5                | 3  | 57 | 1064                                     | 5811                          |
| MO06M4.0      | 502           | 9.49           | 2.66                 | 23               | 4  | 57 | 1121                                     | 6379                          |
| FO07M4.0      | 544           | 8.40           | 2.67                 | 4                | 6  | 57 | 1253                                     | 6181                          |
| FO01M5.0      | 494           | 7.77           | 8.11                 | 4                | 1  | 54 | 232                                      | 5139                          |
| FO02M5.0      | 460           | 7.35           | 5.46                 | 29               | 11 | 54 | 780                                      | 10221                         |
| MO03M5.0      | 579           | 8.87           | 10.4                 | 13               | 3  | 56 | 688                                      | 18868                         |
| MO04M5.0      | 482           | 7.29           | 7.89                 | 15               | 1  | 57 | 561                                      | 7549                          |
| FO05M5.0      | 658           | 11.1           | 8.48                 | 5                | 3  | 57 | 770                                      | 12745                         |
| MO06M5.0      | 580           | 7.53           | 8.67                 | 23               | 4  | 57 | 792                                      | 9015                          |
| FO07M5.0      | 494           | 7.35           | 8.92                 | 4                | 6  | 57 | 966                                      | 24125                         |

\*

(uCi 228Th/uCi 228Ra) injected = 0.15 for F1M1.0, 2.0, 3.0, 4.0, 5.0.

= 0.03 for F2M1.0, 1.7, 2.0, 3.0, 4.0, 5.0.  
M3M1.0, 1.7, 2.0, 3.0, 4.0, 5.0.

= 0.006 for groups 4, 5, 6, 7, 8, 9, 10, 11, 12  
and dogs F1M0.5, F2M0.5, M3M0.5,  
F1M1A, F1M1.7, M3M4.0A

## C. RADIUM - 228 (MESOTHORIUM) \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                                      |
|---------------|------------------------------------------------------------|
| MO03M4.0      | STRANGULATED INGUINAL HERNIA                               |
| MO03M4.0A     | OSTEOSARCOMA, NEPHRITIS, ULCERATIVE GINGIVITIS + PNEUMONIA |
| MO04M4.0      | FRACTURED MANDIBLE + ULCERATIVE GINGIVITIS                 |
| FO05M4.0      | OSTEOSARCOMA                                               |
| MO06M4.0      | OSTEOSARCOMA                                               |
| FO07M4.0      | OSTEOSARCOMA                                               |
| FO01M5.0      | NEPHRITIS + SEVERE ANEMIA                                  |
| FO02M5.0      | CRIPPLING FRACTURES                                        |
| MO03M5.0      | ULCERATIVE GINGIVITIS                                      |
| MO04M5.0      | CRIPPLING FRACTURE                                         |
| FO05M5.0      | ULCERATIVE GINGIVITIS                                      |
| MO06M5.0      | OSTEOSARCOMA +CRIPPLING FRACTURE                           |
| FO07M5.0      | ULCERATIVE GINGIVITIS, MYOCARDIAL INFARCTION + GLAUCOMA    |

## D. THORIUM - 228 (RADIOTHORIUM)

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | 31/3/79 | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|---------|-------------------------|
| MO01TO.0   | 493                  | 8.24        |                   | 8 2 54                |         | 4895                    |
| MO02TO.0   | 488                  | 7.28        |                   | 28 9 54               |         | 5510                    |
| FO03TO.0   | 797                  | 11.6        |                   | 6 6 55                |         | 2592                    |
| MO04TO.0   | 591                  | 8.10        |                   | 18 10 55              |         | 3072                    |
| MO05TO.0   | 458                  | 10.4        |                   | 14 10 58              |         | 5306                    |
| FO06TO.0   | 489                  | 9.64        |                   | 10 1 61               |         | 171                     |
| FO06TO.OA  | 688                  | 8.61        |                   | 15 12 60              |         | 4549                    |
| MO07TO.0   | 517                  | 10.5        |                   | 7 2 61                |         | 1412                    |
| MO08TO.0   | 533                  | 10.8        |                   | 24 5 61               |         | 4963                    |
| FO09TO.0   | 569                  | 8.28        |                   | 29 6 61               |         | 5061                    |
| FO10TO.0   | 536                  | 10.4        |                   | 28 7 61               |         | 4700                    |
| FO11TO.0   | 530                  | 9.45        |                   | 4 6 63                |         | 4271                    |
| FO12TO.0   | 492                  | 9.09        |                   | 9 7 63                |         | 4137                    |
| MO01TO.2   | 682                  | 11.4        | 0.00164           | 27 3 62               |         | 4837                    |
| MO02TO.2   | 682                  | 10.4        | 0.00166           | 27 3 62               |         | 4822                    |
| FO03TO.2   | 478                  | 9.86        | 0.00163           | 27 3 62               |         | 4720                    |
| MO04TO.2   | 478                  | 10.0        | 0.00166           | 27 3 62               |         | 4515                    |
| MO05TO.2   | 625                  | 13.8        | 0.00162           | 9 2 60                |         | 889                     |
| MO05TO.2A  | 530                  | 13.4        | 0.00173           | 4 6 63                |         | 5609                    |
| FO06TO.2   | 489                  | 8.85        | 0.00176           | 10 1 61               |         | 4767                    |
| MO07TO.2   | 532                  | 10.5        | 0.00159           | 7 2 61                |         | 3897                    |
| MO08TO.2   | 494                  | 13.9        | 0.00189           | 24 5 61               |         | 4826                    |
| FO09TO.2   | 569                  | 7.82        | 0.00171           | 29 6 61               |         | 3897                    |
| FO10TO.2   | 508                  | 10.5        | 0.00170           | 28 7 61               |         | 4217                    |
| FO11TO.2   | 530                  | 9.76        | 0.00171           | 4 6 63                |         | 4573                    |
| FO12TO.2   | 492                  | 7.37        | 0.00190           | 9 7 63                |         | 3350                    |
| MO01TO.5   | 699                  | 14.3        | 0.00496           | 7 9 56                |         | 3471                    |
| MO02TO.5   | 455                  | 10.5        | 0.00490           | 28 9 54               |         | 1976                    |
| FO03TO.5   | 659                  | 8.59        | 0.00485           | 6 6 55                |         | 3032                    |
| MO04TO.5   | 516                  | 8.58        | 0.00540           | 18 10 55              |         | 2159                    |
| MO05TO.5   | 513                  | 8.46        | 0.00522           | 14 10 58              |         | 4856                    |
| FO06TO.5   | 489                  | 9.66        | 0.00510           | 10 1 61               |         | 4518                    |
| MO07TO.5   | 532                  | 9.11        | 0.00491           | 7 2 61                |         | 5840                    |
| MO08TO.5   | 533                  | 9.53        | 0.00562           | 24 5 61               |         | 4599                    |
| FO09TO.5   | 569                  | 8.62        | 0.00529           | 29 6 61               |         | 4149                    |
| FO10TO.5   | 508                  | 10.2        | 0.00510           | 28 7 61               |         | 4947                    |
| FO11TO.5   | 530                  | 7.78        | 0.00518           | 4 6 63                |         | 3952                    |
| FO12TO.5   | 492                  | 9.94        | 0.00567           | 9 7 63                |         | 1682                    |

## D. THORIUM - 228 (RADIOTHORIUM)

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                              |
|---------------|----------------------------------------------------|
| MO01TO.0      | RETICULUM CELL SARCOMA (SOFT TISSUE)               |
| MO02TO.0      | NEPHROSIS                                          |
| FO03TO.0      | BRAIN HEMORRHAGE                                   |
| MO04TO.0      | LYMPHOSARCOMA                                      |
| MO05TO.0      | LYMPHOSARCOMA                                      |
| FO06TO.0      | TRAUMA                                             |
| FO06TO.OA     | PERICARDITIS                                       |
| MO07TO.0      | BRAIN HEMORRHAGE                                   |
| MO08TO.0      | UNDETERMINED (NO BONE TUMOR)                       |
| FO09TO.0      | TRANSITIONAL CELL CARCINOMA                        |
| FO10TO.0      | AORTIC BODY TUMOR                                  |
| FO11TO.0      | STATUS EPILEPTICUS                                 |
| FO12TO.0      | TRANSITIONAL CELL CARCINOMA                        |
| MO01TO.2      | LUNG CARCINOMA                                     |
| MO02TO.2      | MELANOMA (ORAL); GASTRIC CARCINOMA                 |
| FO03TO.2      | STATUS EPILEPTICUS                                 |
| MO04TO.2      | TRANSITIONAL CELL CARCINOMA; AORTA THROMBOEMBOLISM |
| MO05TO.2      | STRANGULATION ON VOMITUS + GRAND MAL               |
| MO05TO.2A     | SENILITY                                           |
| FO06TO.2      | ISLET CELL TUMOR                                   |
| MO07TO.2      | UNDIFFERENTIATED MALIGNANCY (INTESTINE)            |
| MO08TO.2      | LEIOMYOSARCOMA                                     |
| FO09TO.2      | PULMONARY THROMBO EMBOLISM                         |
| FO10TO.2      | BILE DUCT OBSTRUCTION; MAMMARY CARCINOMA           |
| FO11TO.2      | BILE DUCT OBSTRUCTION, ISLET CELL CARCINOMA        |
| FO12TO.2      | HEPATIC CELL CARCINOMA                             |
| MO01TO.5      | CEREBRAL INFARCTION HEMORRHAGE                     |
| MO02TO.5      | STRANGULATION ON VOMITUS + GRAND MAL               |
| FO03TO.5      | PYOMETRITIS + SECONDARY PERITONITIS                |
| MO04TO.5      | STATUS EPILEPTICUS + PNEUMONIA                     |
| MO05TO.5      | PROSTATITIS                                        |
| FO06TO.5      | ISLET CELL TUMOR                                   |
| MO07TO.5      | NEPHRITIS; PROSTATE CARCINOMA                      |
| MO08TO.5      | OSTEOSARCOMA                                       |
| FO09TO.5      | MAMMARY CARCINOMA                                  |
| FO10TO.5      | OSTEOSARCOMA; THYROID CARCINOMA                    |
| FO11TO.5      | PULMONARY THROMBOEMBOLISM                          |
| FO12TO.5      | LIVER DEGENERATION, ANESTHETIC REACTION            |

## D. THORIUM - 228 (RADIOTHORIUM)

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | DAYS SINCE INJECTION 31/3/79 DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|------------------------------------|-------------------------|
| MO01T1.0   | 493                  | 9.36        | 0.0146            | 8 2 54                | 3172                               | 176                     |
| MO02T1.0   | 699                  | 9.27        | 0.0146            | 7 9 56                | 4570                               | 180                     |
| FO03T1.0   | 723                  | 8.84        | 0.0145            | 7 9 56                | 4142                               | 177                     |
| MO04T1.0   | 699                  | 8.27        | 0.0146            | 7 9 56                | 3217                               | 176                     |
| MO05T1.0   | 513                  | 11.9        | 0.0146            | 14 10 58              | 2886                               | 173                     |
| FO06T1.0   | 489                  | 8.81        | 0.0150            | 10 1 61               | 3273                               | 181                     |
| MO07T1.0   | 532                  | 9.18        | 0.0147            | 7 2 61                | 3538                               | 179                     |
| MO08T1.0   | 533                  | 8.69        | 0.0166            | 24 5 61               | 5298                               | 205                     |
| FO09T1.0   | 527                  | 10.0        | 0.0160            | 29 6 61               | 2546                               | 187                     |
| FO10T1.0   | 508                  | 10.2        | 0.0150            | 28 7 61               | 3420                               | 181                     |
| FO11T1.0   | 521                  | 7.55        | 0.0154            | 4 6 63                | 4034                               | 189                     |
| FO12T1.0   | 472                  | 9.96        | 0.0167            | 9 7 63                | 1263                               | 157                     |
| MO01T1.5   | 699                  | 7.95        | 0.0289            | 7 9 56                | 2894                               | 344                     |
| MO02T1.5   | 458                  | 10.0        | 0.0293            | 28 9 54               | 2576                               | 343                     |
| FO03T1.5   | 609                  | 10.3        | 0.0303            | 6 6 55                | 1921                               | 332                     |
| MO04T1.5   | 591                  | 8.59        | 0.0299            | 18 10 55              | 2309                               | 343                     |
| MO05T1.5   | 598                  | 9.65        | 0.0286            | 9 2 60                | 1624                               | 297                     |
| FO06T1.5   | 489                  | 8.14        | 0.0292            | 10 1 61               | 2373                               | 336                     |
| MO07T1.5   | 517                  | 8.83        | 0.0292            | 7 2 61                | 380                                | 127                     |
| MO07T1.5A  | 521                  | 9.08        | 0.0311            | 4 6 63                | 3110                               | 373                     |
| MO08T1.5   | 494                  | 11.6        | 0.0324            | 24 5 61               | 2665                               | 381                     |
| FO09T1.5   | 527                  | 8.80        | 0.0306            | 29 6 61               | 2983                               | 365                     |
| FO10T1.5   | 508                  | 11.6        | 0.0296            | 28 7 61               | 1859                               | 321                     |
| FO11T1.5   | 518                  | 11.4        | 0.0305            | 4 6 63                | 2408                               | 375                     |
| FO12T1.5   | 465                  | 7.56        | 0.0329            | 9 7 63                | 2120                               | 371                     |
| MO01T2.0   | 491                  | 10.2        | 0.0976            | 8 2 54                | 1282                               | 924                     |
| MO02T2.0   | 483                  | 9.16        | 0.0875            | 28 9 54               | 1234                               | 815                     |
| FO03T2.0   | 474                  | 7.87        | 0.0908            | 6 6 55                | 1541                               | 927                     |
| MO04T2.0   | 553                  | 13.0        | 0.0900            | 18 10 55              | 78                                 | 93                      |
| MO04T2.0A  | 650                  | 10.6        | 0.0899            | 7 9 56                | 1222                               | 833                     |
| MO05T2.0   | 598                  | 9.12        | 0.0848            | 9 2 60                | 1085                               | 741                     |
| FO06T2.0   | 451                  | 8.65        | 0.0879            | 10 1 61               | 1108                               | 777                     |
| MO07T2.0   | 517                  | 8.85        | 0.0881            | 7 2 61                | 1015                               | 744                     |
| MO08T2.0   | 533                  | 10.7        | 0.0981            | 24 5 61               | 1078                               | 855                     |
| FO09T2.0   | 527                  | 8.09        | 0.0979            | 29 6 61               | 1209                               | 903                     |
| FO10T2.0   | 508                  | 10.7        | 0.0919            | 28 7 61               | 1022                               | 779                     |
| FO11T2.0   | 518                  | 10.8        | 0.0904            | 4 6 63                | 1038                               | 772                     |
| FO12T2.0   | 464                  | 8.92        | 0.100             | 9 7 63                | 1449                               | 997                     |

## D. THORIUM - 228 (RADIOTHORIUM)

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                                  |
|---------------|--------------------------------------------------------|
| MO01T1.0      | OSTEOSARCOMA                                           |
| MO02T1.0      | PERIANAL GLAND ADENOMA                                 |
| FO03T1.0      | UNDIFFERENTIATED MALIGNANCY (SOFT TISSUE)              |
| MO04T1.0      | OSTEOSARCOMA THYROID CARCINOMA PERIANAL ADENOCARCINOMA |
| MO05T1.0      | STATUS EPILEPTICUS                                     |
| FO06T1.0      | STOMACH PERFORATION                                    |
| MO07T1.0      | OSTEOSARCOMA                                           |
| MO08T1.0      | LUNG CARCINOMA; NEPHRITIS                              |
| FO09T1.0      | LEIOMYOSARCOMA                                         |
| FO10T1.0      | OSTEOSARCOMA                                           |
| FO11T1.0      | OSTEOSARCOMA                                           |
| FO12T1.0      | PNEUMONIA                                              |
| MO01T1.5      | OSTEOSARCOMA                                           |
| MO02T1.5      | OSTEOSARCOMA                                           |
| FO03T1.5      | COMA OF UNKNOWN ETIOLOGY (NO BONE TUMOR)               |
| MO04T1.5      | OSTEOSARCOMA                                           |
| MO05T1.5      | OSTEOSARCOMA                                           |
| FO06T1.5      | OSTEOSARCOMA                                           |
| MO07T1.5      | LEPTOSPIROSIS                                          |
| MO07T1.5A     | OSTEOSARCOMA; (PNEUMONIA)                              |
| MO08T1.5      | OSTEOSARCOMA                                           |
| FO09T1.5      | OSTEOSARCOMA                                           |
| FO10T1.5      | OSTEOSARCOMA                                           |
| FO11T1.5      | OSTEOSARCOMA                                           |
| FO12T1.5      | OSTEOSARCOMA                                           |
| MO01T2.0      | OSTEOSARCOMA                                           |
| MO02T2.0      | OSTEOSARCOMA                                           |
| FO03T2.0      | OSTEOSARCOMA                                           |
| MO04T2.0      | TRAUMA                                                 |
| MO04T2.0A     | OSTEOSARCOMA                                           |
| MO05T2.0      | OSTEOSARCOMA                                           |
| FO06T2.0      | OSTEOSARCOMA                                           |
| MO07T2.0      | OSTEOSARCOMA                                           |
| MO08T2.0      | OSTEOSARCOMA                                           |
| FO09T2.0      | OSTEOSARCOMA                                           |
| FO10T2.0      | OSTEOSARCOMA                                           |
| FO11T2.0      | OSTEOSARCOMA                                           |
| FO12T2.0      | OSTEOSARCOMA                                           |

## D. THORIUM - 228 (RADIOTHORIUM)

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | DAYS SINCE INJECTION 31/3/79 DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|------------------------------------|-------------------------|
| MO01T3.0   | 314                  | 9.15        | 0.301             | 8 2 54                | 988                                | 2505                    |
| MO02T3.0   | 458                  | 11.9        | 0.301             | 28 9 54               | 859                                | 2315                    |
| FO03T3.0   | 471                  | 12.0        | 0.272             | 6 6 55                | 547                                | 1552                    |
| MO04T3.0   | 606                  | 9.69        | 0.285             | 18 10 55              | 801                                | 2100                    |
| MO05T3.0   | 571                  | 10.7        | 0.269             | 9 2 60                | 890                                | 2112                    |
| FO06T3.0   | 451                  | 8.83        | 0.282             | 10 1 61               | 1156                               | 2545                    |
| MO07T3.0   | 427                  | 9.90        | 0.266             | 7 2 61                | 861                                | 2048                    |
| MO08T3.0   | 494                  | 10.1        | 0.313             | 24 5 61               | 685                                | 2088                    |
| FO09T3.0   | 511                  | 11.5        | 0.298             | 29 6 61               | 1062                               | 2577                    |
| FO10T3.0   | 508                  | 9.26        | 0.280             | 28 7 61               | 971                                | 2309                    |
| FO11T3.0   | 518                  | 10.3        | 0.290             | 4 6 63                | 826                                | 2121                    |
| FO12T3.0   | 459                  | 11.5        | 0.320             | 9 7 63                | 804                                | 2364                    |
| MO01T4.0   | 480                  | 8.32        | 0.882             | 8 2 54                | 645                                | 5649                    |
| MO02T4.0   | 458                  | 8.32        | 0.916             | 28 9 54               | 833                                | 6913                    |
| FO03T4.0   | 461                  | 7.25        | 0.800             | 6 6 55                | 763                                | 5720                    |
| MO04T4.0   | 606                  | 8.81        | 0.835             | 18 10 55              | 793                                | 6116                    |
| MO01T5.0   | 480                  | 9.48        | 2.76              | 8 2 54                | 212                                | 7276                    |
| MO02T5.0   | 483                  | 8.22        | 2.63              | 28 9 54               | 97                                 | 3380                    |

## D. THORIUM - 228 (RADIOTHORIUM)

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                        |
|---------------|----------------------------------------------|
| MO01T3.O      | OSTEOSARCOMA + SEVERE ANEMIA                 |
| MO02T3.O      | OSTEOSARCOMA + TRAUMA                        |
| FO03T3.O      | OSTEOSARCOMA                                 |
| MO04T3.O      | OSTEOSARCOMA                                 |
| MO05T3.O      | OSTEOSARCOMA                                 |
| FO06T3.O      | OSTEOSARCOMA                                 |
| MO07T3.O      | OSTEOSARCOMA                                 |
| MO08T3.O      | OSTEOSARCOMA                                 |
| FO09T3.O      | OSTEOSARCOMA                                 |
| FO10T3.O      | OSTEOSARCOMA                                 |
| FO11T3.O      | OSTEOSARCOMA                                 |
| FO12T3.O      | HEMANGIOSARCOMA (HUMERUS)                    |
| MO01T4.O      | OSTEOSARCOMA + CRIPPLING FRACTURE            |
| MO02T4.O      | OSTEOSARCOMA, CRIPPLING FRACTURE + NEPHRITIS |
| FO03T4.O      | ULCERATIVE GINGIVITIS + NEPHRITIS            |
| MO04T4.O      | ULCERATIVE GINGIVITIS                        |
| MO01T5.O      | NEPHRITIS                                    |
| MO02T5.O      | PANCYTOPENIA                                 |

## E. STRONTIUM - 90

| DOG<br>NUMBER | INJECTION     |                | INJECTED<br>(uCi/KG) | DATE<br>INJECTED |    |    | DAYS SINCE<br>INJECTION<br>31/3/79 DEATH | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|---------------|----------------|----------------------|------------------|----|----|------------------------------------------|-------------------------------|
|               | AGE<br>(DAYS) | WEIGHT<br>(KG) |                      | D                | MO | YR |                                          |                               |
| FO01SO.0      | 502           | 8.48           |                      | 18               | 1  | 55 |                                          | 5484                          |
| MO02SO.0      | 600           | 11.1           |                      | 14               | 2  | 56 |                                          | 3838                          |
| MO03SO.0      | 493           | 9.03           |                      | 11               | 9  | 57 |                                          | 3516                          |
| FO04SO.0      | 520           | 8.19           |                      | 15               | 10 | 57 |                                          | 5755                          |
| MO05SO.0      | 542           | 10.6           |                      | 19               | 11 | 57 |                                          | 4158                          |
| MO06SO.0      | 466           | 9.68           |                      | 27               | 5  | 58 |                                          | 4726                          |
| FO07SO.OA     | 462           | 9.46           |                      | 7                | 1  | 59 |                                          | 3303                          |
| FO08SO.0      | 483           | 9.29           |                      | 19               | 5  | 59 |                                          | 4482                          |
| FO09SO.0      | 549           | 12.4           |                      | 11               | 8  | 59 |                                          | 708                           |
| FO09SO.OA     | 535           | 11.2           |                      | 4                | 6  | 63 |                                          | 3425                          |
| MO10SO.0      | 522           | 13.9           |                      | 29               | 9  | 59 |                                          | 4977                          |
| FO11SO.0      | 541           | 9.60           |                      | 3                | 11 | 59 |                                          | 4831                          |
| MO12SO.0      | 605           | 8.99           |                      | 6                | 1  | 60 |                                          | 5374                          |
| FO01S1.0      | 1525          | 6.84           | 0.573                | 18               | 1  | 55 | 308                                      | 28                            |
| FO01S1.OA     | 521           | 9.38           | 0.588                | 14               | 2  | 56 | 5219                                     | 90                            |
| MO02S1.0      | 567           | 8.81           | 0.606                | 14               | 2  | 56 | 5077                                     | 120                           |
| MO03S1.0      | 493           | 10.9           | 0.572                | 11               | 9  | 57 | 5363                                     | 189                           |
| FO04S1.0      | 525           | 8.96           | 0.560                | 15               | 10 | 57 | 5902                                     | 198                           |
| MO05S1.0      | 555           | 10.2           | 0.532                | 19               | 11 | 57 | 2705                                     | 95                            |
| MO06S1.0      | 466           | 9.56           | 0.581                | 27               | 5  | 58 | 5739                                     | 292                           |
| FO07S1.0      | 524           | 9.94           | 0.517                | 11               | 11 | 58 | 5837                                     | 161                           |
| FO08S1.0      | 483           | 10.8           | 0.697                | 19               | 5  | 59 | 2783                                     | 105                           |
| FO09S1.0      | 549           | 11.6           | 0.534                | 11               | 8  | 59 | 3601                                     | 116                           |
| MO10S1.0      | 522           | 11.5           | 0.558                | 29               | 9  | 59 | 5321                                     | 144                           |
| FO11S1.0      | 543           | 10.3           | 0.550                | 3                | 11 | 59 | 4944                                     | 141                           |
| MO12S1.0      | 607           | 13.7           | 0.559                | 6                | 1  | 60 | 4184                                     | 133                           |
| FO01S1.7      | 526           | 7.41           | 1.78                 | 14               | 2  | 56 | 5624                                     | 627                           |
| MO02S1.7      | 567           | 11.6           | 1.84                 | 14               | 2  | 56 | 4297                                     | 540                           |
| MO03S1.7      | 493           | 9.19           | 1.69                 | 11               | 9  | 57 | 4846                                     | 451                           |
| FO04S1.7      | 522           | 9.60           | 1.68                 | 15               | 10 | 57 | 4628                                     | 372                           |
| MO05S1.7      | 560           | 9.85           | 1.60                 | 19               | 11 | 57 | 1715                                     | 220                           |
| MO05S1.7A     | 493           | 11.4           | 1.78                 | 6                | 3  | 63 | 5379                                     | 765                           |
| MO06S1.7      | 466           | 10.6           | 1.72                 | 27               | 5  | 58 | 5581                                     | 725                           |
| FO07S1.7      | 488           | 10.2           | 1.60                 | 11               | 11 | 58 | 3990                                     | 331                           |
| FO08S1.7      | 472           | 8.47           | 2.03                 | 19               | 5  | 59 | 1973                                     | 285                           |
| FO09S1.7      | 549           | 10.0           | 1.62                 | 11               | 8  | 59 | 4803                                     | 552                           |
| MO10S1.7      | 519           | 13.6           | 1.66                 | 29               | 9  | 59 | 2947                                     | 408                           |
| FO11S1.7      | 543           | 11.0           | 1.68                 | 3                | 11 | 59 | 3180                                     | 319                           |
| MO12S1.7      | 607           | 11.9           | 1.68                 | 6                | 1  | 60 | 4717                                     | 473                           |

## E. STRONTIUM - 90

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                              |
|---------------|----------------------------------------------------|
| FO01SO.0      | CARCINOMA PANCREAS                                 |
| MO02SO.0      | LUNG CARCINOMA                                     |
| MO03SO.0      | OBTURATING AORTIC EMBOLISM, NEPHRITIS              |
| FO04SO.0      | NEPHRITIS; SENILITY                                |
| MO05SO.0      | TRANSITIONAL CELL CARCINOMA                        |
| MO06SO.0      | MELANOMA (ORAL)                                    |
| FO07SO.OA     | DIABETES MELLITUS                                  |
| FO08SO.0      | DIABETES MELLITUS                                  |
| FO09SO.0      | TRAUMA                                             |
| FO09SO.OA     | MAMMARY CARCINOMA                                  |
| MO10SO.0      | FIBROSARCOMA (NON-SKELETAL)                        |
| F011SO.0      | MAMMARY CARCINOMA                                  |
| MO12SO.0      | INTESTINAL CARCINOMA; SENILITY                     |
| FO01S1.0      | SACRIFICED -IMPROPER INJECTION AGE-                |
| FO01S1.OA     | PULMONARY THROMBO-EMBOLISM                         |
| MO02S1.0      | AORTIC BODY TUMOR                                  |
| MO03S1.0      | SQUAMOUS CELL CARCINOMA (OROPHARYNX)               |
| FO04S1.0      | NEPHRITIS; MAMMARY CARCINOMA                       |
| MO05S1.0      | STATUS EPILEPTICUS                                 |
| MO06S1.0      | LYMPHOSARCOMA                                      |
| FO07S1.0      | LYMPHOSARCOMA; MAMMARY CARCINOMA                   |
| FO08S1.0      | PANCREATIC ISLET CELL CARCINOMA                    |
| FO09S1.0      | FOREIGN BODY PNEUMONIA; ENTERITIS                  |
| MO10S1.0      | SEBACEOUS GLAND ADENOCARCINOMA                     |
| F011S1.0      | TRANSITIONAL CELL CARCINOMA                        |
| MO12S1.0      | BILIARY OBSTRUCTION                                |
| FO01S1.7      | HEMANGIOENDOTHELIAL SARCOMA (LIVER)                |
| MO02S1.7      | HEMANGIOSARCOMA (SOFT TISSUE ORIGIN)               |
| MO03S1.7      | OBTURATING THROMBOEMBOLISM, AORTA                  |
| FO04S1.7      | PANCREATIC CARCINOMA                               |
| MO05S1.7      | COMA OF UNKNOWN ETIOLOGY (NO BONE TUMOR)           |
| MO05S1.7A     | SENILITY                                           |
| MO06S1.7      | TRANSITIONAL CELL CARCINOMA; HYDRONEPHROSIS        |
| FO07S1.7      | ARTHRITIS; MAMMARY CARCINOMA                       |
| FO08S1.7      | STATUS EPILEPTICUS, CHRONIC PANCREATITIS           |
| FO09S1.7      | LYMPHOSARCOMA; NEPHRITIS                           |
| MO10S1.7      | OBTURATING PULMONARY EMBOLISM, NEPHRITIS           |
| F011S1.7      | AORTIC THROMBUS; METASTATIC CALCIFICATION OF LUNGS |
| MO12S1.7      | ISLET CELL TUMOR                                   |

## E. STRONTIUM - 90

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | 31/3/79 | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|---------|-------------------------|
| FO01S2.0   | 502                  | 5.59        | 3.70              | 18 1 55               | 3269    | 636                     |
| MO02S2.0   | 567                  | 8.97        | 3.42              | 14 2 56               | 3768    | 841                     |
| MO03S2.0   | 494                  | 7.82        | 3.39              | 11 9 57               | 4295    | 893                     |
| FO04S2.0   | 522                  | 9.68        | 3.41              | 15 10 57              | 4775    | 981                     |
| MO05S2.0   | 560                  | 8.72        | 3.24              | 19 11 57              | 3253    | 708                     |
| MO06S2.0   | 466                  | 9.19        | 3.50              | 27 5 58               | 5193    | 1131                    |
| FO07S2.0   | 488                  | 11.2        | 3.19              | 11 11 58              | 3421    | 609                     |
| FO08S2.0   | 465                  | 9.49        | 4.14              | 19 5 59               | 3955    | 913                     |
| FO09S2.0   | 473                  | 14.1        | 3.28              | 11 8 59               | 2467    | 755                     |
| MO10S2.0   | 508                  | 10.7        | 3.34              | 29 9 59               | 3430    | 791                     |
| FO11S2.0   | 543                  | 10.4        | 3.41              | 3 11 59               | 4880    | 879                     |
| MO12S2.0   | 607                  | 11.6        | 3.49              | 6 1 60                | 4584    | 943                     |
| FO01S3.0   | 468                  | 7.36        | 11.6              | 18 1 55               | 5149    | 4385                    |
| MO02S3.0   | 565                  | 9.62        | 11.6              | 14 2 56               | 4263    | 3473                    |
| MO03S3.0   | 494                  | 11.4        | 10.8              | 11 9 57               | 4947    | 3197                    |
| FO04S3.0   | 527                  | 9.17        | 10.6              | 15 10 57              | 3101    | 1987                    |
| MO05S3.0   | 557                  | 8.90        | 10.1              | 19 11 57              | 4640    | 2849                    |
| MO06S3.0   | 466                  | 9.44        | 10.9              | 27 5 58               | 5667    | 4090                    |
| FO07S3.0   | 486                  | 9.80        | 10.1              | 11 11 58              | 4018    | 2421                    |
| FO08S3.0   | 465                  | 12.5        | 12.9              | 19 5 59               | 4832    | 3749                    |
| FO09S3.0   | 468                  | 10.0        | 10.1              | 11 8 59               | 4599    | 3547                    |
| MO10S3.0   | 519                  | 12.5        | 10.3              | 29 9 59               | 2898    | 2799                    |
| FO11S3.0   | 541                  | 9.00        | 10.8              | 3 11 59               | 4831    | 1273                    |
| MO12S3.0   | 605                  | 8.43        | 10.2              | 6 1 60                | 4831    | 2176                    |
| FO01S4.0   | 468                  | 8.74        | 33.3              | 18 1 55               | 3682    | 8817                    |
| MO02S4.0   | 567                  | 11.2        | 32.6              | 14 2 56               | 2093    | 7584                    |
| MO03S4.0   | 593                  | 9.83        | 32.1              | 11 9 57               | 2781    | 5519                    |
| FO04S4.0   | 528                  | 8.24        | 32.1              | 15 10 57              | 4844    | 10373                   |
| MO05S4.0   | 562                  | 9.65        | 30.6              | 19 11 57              | 4427    | 8369                    |
| MO06S4.0   | 504                  | 16.0        | 32.7              | 3 9 58                | 3530    | 9199                    |
| FO07S4.0   | 478                  | 10.9        | 30.9              | 11 11 58              | 4664    | 10560                   |
| FO08S4.0   | 465                  | 10.9        | 40.6              | 19 5 59               | 2206    | 10355                   |
| FO09S4.0   | 468                  | 9.56        | 30.6              | 11 8 59               | 4942    | 10132                   |
| MO10S4.0   | 517                  | 8.20        | 31.3              | 29 9 59               | 4242    | 8493                    |
| FO11S4.0   | 542                  | 8.86        | 32.7              | 3 11 59               | 2114    | 4432                    |
| MO12S4.0   | 605                  | 10.9        | 32.3              | 6 1 60                | 4226    | 7053                    |

## E. STRONTIUM - 90

DOG  
NUMBER

## COMMENTS ON DEAD DOGS

|          |                                                         |
|----------|---------------------------------------------------------|
| FO01S2.0 | BACTERIAL PNEUMONIA                                     |
| MO02S2.0 | UNDETERMINED SOFT TISSUE SARCOMA; LUNG CARCINOMA        |
| MO03S2.0 | STATUS EPILEPTICUS; THYROID CARCINOMA                   |
| FO04S2.0 | MAMMARY CARCINOMA                                       |
| MO05S2.0 | ULCERATIVE STOMATITIS                                   |
| MO06S2.0 | UNDIFFERENTIATED SARCOMA (LIVER); NEPHRITIS             |
| FO07S2.0 | PANCREATIC ISLET CELL ADENOMA                           |
| FO08S2.0 | PNEUMONIA                                               |
| FO09S2.0 | UNDETERMINED (NO BONE TUMOR)                            |
| MO10S2.0 | BACTERIAL VALVULAR ENDOCARDITIS                         |
| FO11S2.0 | MAMMARY SARCOMA                                         |
| MO12S2.0 | HEPATIC CELL CARCINOMA                                  |
| FO01S3.0 | UNDETERMINED (NO BONE TUMOR)                            |
| MO02S3.0 | NEPHRITIS                                               |
| MO03S3.0 | SEMINOMA; HYDROCEPHALUS                                 |
| FO04S3.0 | MAMMARY CARCINOMA                                       |
| MO05S3.0 | SERTOLI CELL TUMOR                                      |
| MO06S3.0 | NEPHRITIS; TESTICULAR MALIGNANCY                        |
| FO07S3.0 | MAMMARY CARCINOMA; THYROID CARCINOMA                    |
| FO08S3.0 | UNDETERMINED (NO BONE TUMOR)                            |
| FO09S3.0 | CHROMAPHOBIC ADENOMA                                    |
| MO10S3.0 | FIBROSARCOMA (GINGIVA)                                  |
| FO11S3.0 | PYELONEPHRITIS                                          |
| MO12S3.0 | TRANSITIONAL CELL CARCINOMA                             |
| FO01S4.0 | NOT DETERMINED (NO OSTEOSARCOMA)                        |
| MO02S4.0 | SQUAMOUS CELL CARCINOMA - GINGIVA -                     |
| MO03S4.0 | OBTURATING PULMONARY EMBOLISM                           |
| FO04S4.0 | OSTEOSARCOMA; SQUAMOUS CELL CARC. (ORAL), THYROID CARC. |
| MO05S4.0 | HEMANGIOSARCOMA (SPLEEN)                                |
| MO06S4.0 | SEMINOMA                                                |
| FO07S4.0 | OSTEOSARCOMA                                            |
| FO08S4.0 | UNDETERMINED (NO BONE TUMOR)                            |
| FO09S4.0 | UNDETERMINED (NO BONE TUMOR)                            |
| MO10S4.0 | MENINGIOMA; PERIANAL GLAND CARCINOMA                    |
| FO11S4.0 | BLOOD DYSCRASIA, PYOMETRA                               |
| MO12S4.0 | ADENOCARCINOMA NASAL CAVITY                             |

## E. STRONTIUM - 90

| DOG<br>NUMBER | INJECTION     |                | INJECTED<br>(uCi/KG) | DATE<br>INJECTED |    |    | DAYS SINCE<br>INJECTION |       | DOSE TO<br>SKELETON<br>(RADS) |       |
|---------------|---------------|----------------|----------------------|------------------|----|----|-------------------------|-------|-------------------------------|-------|
|               | AGE<br>(DAYS) | WEIGHT<br>(KG) |                      | D                | MO | YR | 31/3/79                 | DEATH |                               |       |
| FO01S4.5      | 530           | 9.00           | 64.2                 | 16               | 3  | 66 |                         |       | 3030                          | 9890  |
| MO02S4.5      | 530           | 12.20          | 63.6                 | 16               | 3  | 66 |                         |       | 2707                          | 9660  |
| MO03S4.5      | 530           | 11.90          | 63.8                 | 16               | 3  | 66 |                         |       | 1493                          | 7932  |
| FO04S4.5      | 530           | 9.80           | 64.5                 | 16               | 3  | 66 |                         |       | 2197                          | 12133 |
| MO05S4.5      | 496           | 13.30          | 61.3                 | 16               | 3  | 66 |                         |       | 993                           | 7232  |
| MO06S4.5      | 496           | 12.00          | 63.8                 | 16               | 3  | 66 |                         |       | 2843                          | 9990  |
| FO07S4.5      | 511           | 9.90           | 64.5                 | 16               | 3  | 66 |                         |       | 2813                          | 13480 |
| FO08S4.5      | 511           | 9.90           | 64.5                 | 16               | 3  | 66 |                         |       | 2325                          | 12725 |
| FO09S4.5      | 511           | 10.30          | 64.0                 | 16               | 3  | 66 |                         |       | 1028                          | 6935  |
| MO10S4.5      | 496           | 14.00          | 60.9                 | 16               | 3  | 66 |                         |       | 2064                          | 14240 |
| FO11S4.5      | 496           | 11.90          | 63.8                 | 16               | 3  | 66 |                         |       | 1758                          | 8579  |
| MO12S4.5      | 485           | 11.40          | 63.7                 | 16               | 3  | 66 |                         |       | 2253                          | 13116 |
| FO01S5.0      | 434           | 9.38           | 103.                 | 18               | 1  | 55 |                         |       | 960                           | 11179 |
| MO02S5.0      | 551           | 12.2           | 102.                 | 14               | 2  | 56 |                         |       | 255                           | 4284  |
| MO02S5.OA     | 545           | 11.4           | 96.6                 | 7                | 1  | 59 |                         |       | 1740                          | 16393 |
| MO03S5.0      | 507           | 10.3           | 102.                 | 15               | 10 | 57 |                         |       | 2256                          | 22079 |
| FO04S5.0      | 528           | 11.4           | 105.                 | 15               | 10 | 57 |                         |       | 1448                          | 12703 |
| MO05S5.0      | 621           | 8.53           | 95.2                 | 19               | 11 | 57 |                         |       | 1285                          | 13657 |
| MO06S5.0      | 504           | 9.33           | 98.8                 | 3                | 9  | 58 |                         |       | 35                            | 869   |
| MO06S5.OA     | 462           | 11.2           | 94.2                 | 7                | 1  | 59 |                         |       | 1021                          | 15384 |
| FO07S5.0      | 478           | 10.2           | 92.7                 | 11               | 11 | 58 |                         |       | 1129                          | 14532 |
| FO08S5.0      | 535           | 11.2           | 90.5                 | 7                | 1  | 59 |                         |       | 1469                          | 14843 |
| FO09S5.0      | 459           | 8.82           | 93.5                 | 11               | 8  | 59 |                         |       | 1982                          | 18143 |
| MO10S5.0      | 517           | 8.55           | 95.9                 | 29               | 9  | 59 |                         |       | 990                           | 10209 |
| FO11S5.0      | 542           | 8.97           | 102.                 | 3                | 11 | 59 |                         |       | 1667                          | 13355 |
| MO12S5.0      | 606           | 12.5           | 99.2                 | 6                | 1  | 60 |                         |       | 1165                          | 10837 |

## E. STRONTIUM - 90

DOG  
NUMBER

## COMMENTS ON DEAD DOGS

FO01S4.5 PURPURA HEMORRHAGICA  
MO02S4.5 OSTEOSARCOMA  
MO03S4.5 SEVERE ANEMIA, INFARCTION, MYELOID METAPLASIA  
FO04S4.5 HEMANGIOSARCOMA (SPLEEN)  
MO05S4.5 OSTEOSARCOMA  
MO06S4.5 OSTEOSARCOMA  
FO07S4.5 OSTEOSARCOMA; SQUAMOUS CELL CARCINOMA (FRONTAL SINUS)  
FO08S4.5 HEMANGIOSARCOMA (BONE)  
FO09S4.5 OSTEOSARCOMA  
MO10S4.5 SQUAMOUS CELL CARCINOMA (FRONTAL SINUS)  
FO11S4.5 OSTEOSARCOMA  
MO12S4.5 OSTEOSARCOMA; HEMANGIOSARCOMA (BONE)

FO01S5.0 OSTEOSARCOMA  
MO02S5.0 STRANGULATED INGUINAL HERNIA  
MO02S5.OA OSTEOSARCOMA  
MO03S5.0 OSTEOSARCOMA  
FO04S5.0 OSTEOSARCOMA  
MO05S5.0 SEVERE ANEMIA, AUTOAGGLUTINATION, INFARCTION, SPLENOMEGLY  
MO06S5.0 INTESTINAL HEMORRHAGE  
MO06S5.OA OSTEOSARCOMA, INFARCTION + THROMBOCYTOPENIA  
FO07S5.0 STATUS EPILEPTICUS  
FO08S5.0 OSTEOSARCOMA  
FO09S5.0 SQUAMOUS CELL CARCINOMA ARISING FROM FRONTAL SINUS  
MO10S5.0 SEVERE ANEMIA + THROMBOCYTOPENIA  
FO11S5.0 HEMANGIOSARCOMA (LEFT MANDIBLE)  
MO12S5.0 HEMANGIOSARCOMA (RIB)

## F. RADIUM - 224 (QUICKRADIUM)

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | 31/3/79 | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|---------|-------------------------|
| MO01Q0.OH  | 458                  | 11.6        |                   | 19 5 77               |         | 681                     |
| FO02Q0.OH  | 647                  | 10.7        |                   | 19 5 77               |         | 681                     |
| MO03Q0.OH  | 646                  | 10.4        |                   | 30 11 77              |         | 486                     |
| FO04Q0.OH  | 586                  | 10.3        |                   | 19 5 77               |         | 681                     |
| MO05Q0.OH  | 646                  | 11.3        |                   | 30 11 77              |         | 486                     |
| FO06Q0.OH  | 586                  | 9.58        |                   | 19 5 77               |         | 681                     |
| MO41Q0.O   | 589                  | 10.1        |                   | 9 1 79                |         | 81                      |
| MO43Q0.O   | 638                  | 9.95        |                   | 12 9 78               |         | 200                     |
| MO45Q0.O   | 673                  | 10.6        |                   | 12 9 78               |         | 200                     |
| FO46Q0.O   | 619                  | 11.2        |                   | 10 8 77               |         | 598                     |
| MO81Q0.OH  | 639                  | 10.4        |                   | 14 2 79               |         | 45                      |
| FO82Q0.OH  | 623                  | 7.80        |                   | 14 2 79               |         | 45                      |
| MO83Q0.OH  | 639                  | 9.17        |                   | 14 2 79               |         | 45                      |
| MO01Q2.OH  | 647                  | 11.9        | 0.291             | 19 5 77               |         | 681                     |
| FO02Q2.OH  | 647                  | 10.9        | 0.317             | 19 5 77               |         | 681                     |
| MO03Q2.OH  | 635                  | 9.62        | 0.359             | 19 5 77               |         | 681                     |
| FO04Q2.OH  | 635                  | 8.18        | 0.423             | 19 5 77               |         | 681                     |
| MO05Q2.OH  | 643                  | 10.1        | 0.342             | 19 5 77               |         | 681                     |
| FO06Q2.OH  | 632                  | 9.82        | 0.352             | 19 5 77               |         | 681                     |
| MO07Q2.OH  | 683                  | 10.9        | 0.317             | 19 5 77               |         | 681                     |
| FO08Q2.OH  | 647                  | 11.1        | 0.312             | 19 5 77               |         | 681                     |
| MO09Q2.OH  | 610                  | 11.4        | 0.303             | 19 5 77               |         | 681                     |
| FO10Q2.OH  | 610                  | 8.52        | 0.406             | 19 5 77               |         | 681                     |
| MO11Q2.OH  | 610                  | 10.3        | 0.336             | 19 5 77               |         | 681                     |
| FO12Q2.OH  | 610                  | 8.62        | 0.401             | 19 5 77               |         | 681                     |
| MO41Q2.O   | 704                  | 11.2        | 0.365             | 9 1 79                |         | 81                      |
| FO42Q2.O   | 662                  | 9.78        | 0.352             | 5 12 78               |         | 116                     |
| MO43Q2.O   | 687                  | 9.22        | 0.355             | 9 1 79                |         | 81                      |
| FO44Q2.O   | 687                  | 7.99        | 0.359             | 9 1 79                |         | 81                      |
| MO45Q2.O   | 621                  | 9.15        | 0.344             | 5 12 78               |         | 116                     |
| FO46Q2.O   | 687                  | 10.8        | 0.362             | 9 1 79                |         | 81                      |
| MO47Q2.O   | 636                  | 11.1        | 0.343             | 30 11 77              |         | 486                     |
| FO48Q2.O   | 603                  | 8.05        | 0.356             | 9 1 79                |         | 81                      |
| MO49Q2.O   | 646                  | 12.2        | 0.348             | 30 11 77              |         | 486                     |
| FO50Q2.O   | 667                  | 11.4        | 0.383             | 12 9 78               |         | 200                     |
| MO51Q2.O   | 636                  | 10.7        | 0.348             | 30 11 77              |         | 486                     |
| FO52Q2.O   | 619                  | 11.2        | 0.344             | 10 8 77               |         | 598                     |
| MO81Q2.OH  | 662                  | 10.6        | 0.283             | 14 2 79               |         | 45                      |
| FO82Q2.OH  | 639                  | 8.68        | 0.345             | 14 2 79               |         | 45                      |
| MO83Q2.OH  | 594                  | 8.10        | 0.370             | 14 2 79               |         | 45                      |
| FO84Q2.OH  | 594                  | 7.32        | 0.409             | 14 2 79               |         | 45                      |

## F. RADIUM - 224 (QUICKRADIUM)

DOG  
NUMBER

COMMENTS ON DEAD DOGS

MO01Q0.OH  
FO02Q0.OH  
MO03Q0.OH  
FO04Q0.OH  
MO05Q0.OH  
FO06Q0.OH  
MO41Q0.O  
MO43Q0.O  
MO45Q0.O  
FO46Q0.O  
MO81Q0.OH  
FO82Q0.OH  
MO83Q0.OH

MO01Q2.OH  
FO02Q2.OH  
MO03Q2.OH  
FO04Q2.OH  
MO05Q2.OH  
FO06Q2.OH  
MO07Q2.OH  
MO08Q2.OH  
MO09Q2.OH  
FO10Q2.OH  
MO11Q2.OH  
FO12Q2.OH  
MO41Q2.O  
FO42Q2.O  
MO43Q2.O  
FO44Q2.O  
MO45Q2.O  
FO46Q2.O  
MO47Q2.O  
FO48Q2.O  
MO49Q2.O  
FO50Q2.O  
MO51Q2.O  
FO52Q2.O  
MO81Q2.OH  
FO82Q2.OH  
MO83Q2.OH  
FO84Q2.OH

## F. RADIUM - 224 (QUICKRADIUM)

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | 31/3/79 | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|---------|-------------------------|
| MO85Q2.OH  | 590                  | 9.23        | 0.325             | 14 2 79               | 45      |                         |
| FO86Q2.OH  | 583                  | 8.28        | 0.362             | 14 2 79               | 45      |                         |
| MO01Q3.OH  | 647                  | 10.3        | 1.06              | 19 5 77               | 681     |                         |
| FO02Q3.OH  | 647                  | 10.4        | 1.05              | 19 5 77               | 681     |                         |
| MO03Q3.OH  | 642                  | 10.3        | 1.06              | 19 5 77               | 681     |                         |
| FO04Q3.OH  | 643                  | 8.16        | 1.33              | 19 5 77               | 681     |                         |
| MO05Q3.OH  | 632                  | 11.8        | 0.922             | 19 5 77               | 681     |                         |
| FO06Q3.OH  | 647                  | 10.4        | 1.05              | 19 5 77               | 681     |                         |
| MO07Q3.OH  | 642                  | 11.8        | 0.922             | 19 5 77               | 681     |                         |
| FO08Q3.OH  | 632                  | 9.10        | 1.20              | 19 5 77               | 681     |                         |
| MO09Q3.OH  | 666                  | 13.4        | 0.822             | 19 5 77               | 681     |                         |
| FO10Q3.OH  | 666                  | 11.3        | 0.962             | 19 5 77               | 681     |                         |
| MO11Q3.OH  | 610                  | 10.5        | 1.04              | 19 5 77               | 681     |                         |
| FO12Q3.OH  | 610                  | 9.75        | 1.12              | 19 5 77               | 681     |                         |
| MO41Q3.O   | 670                  | 9.98        | 1.10              | 5 12 78               | 116     |                         |
| FO42Q3.O   | 705                  | 9.04        | 1.11              | 9 1 79                | 81      |                         |
| MO43Q3.O   | 656                  | 9.42        | 1.12              | 5 12 78               | 116     |                         |
| FO44Q3.O   | 688                  | 8.42        | 1.11              | 9 1 79                | 81      |                         |
| MO45Q3.O   | 704                  | 11.3        | 1.15              | 9 1 79                | 81      |                         |
| FO46Q3.O   | 687                  | 9.68        | 1.15              | 9 1 79                | 81      |                         |
| MO47Q3.O   | 656                  | 10.2        | 1.14              | 9 1 79                | 81      |                         |
| FO48Q3.O   | 687                  | 8.95        | 1.12              | 9 1 79                | 81      |                         |
| MO49Q3.O   | 630                  | 9.58        | 1.12              | 30 11 77              | 486     |                         |
| FO50Q3.O   | 572                  | 9.40        | 1.21              | 12 9 78               | 200     |                         |
| MO51Q3.O   | 638                  | 9.85        | 1.08              | 30 11 77              | 486     |                         |
| FO52Q3.O   | 619                  | 9.97        | 1.10              | 10 8 77               | 598     |                         |
| MO81Q3.OH  | 657                  | 12.1        | 0.720             | 14 2 79               | 45      |                         |
| FO82Q3.OH  | 639                  | 8.73        | 0.999             | 14 2 79               | 45      |                         |
| MO83Q3.OH  | 664                  | 8.28        | 1.05              | 14 2 79               | 45      |                         |
| FO84Q3.OH  | 594                  | 6.77        | 1.29              | 14 2 79               | 45      |                         |
| MO85Q3.OH  | 590                  | 7.75        | 1.12              | 14 2 79               | 45      |                         |
| FO86Q3.OH  | 583                  | 8.07        | 1.08              | 14 2 79               | 45      |                         |
| MO01Q4.OH  | 653                  | 10.2        | 3.23              | 19 5 77               | 681     |                         |
| FO02Q4.OH  | 653                  | 9.44        | 3.49              | 19 5 77               | 681     |                         |
| MO03Q4.OH  | 642                  | 13.5        | 2.44              | 19 5 77               | 681     |                         |
| FO04Q4.OH  | 643                  | 9.10        | 3.62              | 19 5 77               | 681     |                         |
| MO05Q4.OH  | 643                  | 10.5        | 3.14              | 19 5 77               | 681     |                         |
| FO06Q4.OH  | 647                  | 10.8        | 3.05              | 19 5 77               | 681     |                         |
| MO41Q4.O   | 607                  | 10.9        | 3.04              | 30 11 77              | 486     |                         |

F. RADIUM - 224 (QUICKRADIUM)

DOG  
NUMBER

COMMENTS ON DEAD DOGS

MO85Q2.OH  
FO86Q2.OH

MO01Q3.OH  
FO02Q3.OH  
MO03Q3.OH  
FO04Q3.OH  
MO05Q3.OH  
FO06Q3.OH  
MO07Q3.OH  
FO08Q3.OH  
MO09Q3.OH  
FO10Q3.OH  
MO11Q3.OH  
FO12Q3.OH  
MO41Q3.O  
FO42Q3.O  
MO43Q3.O  
FO44Q3.O  
MO45Q3.O  
FO46Q3.O  
MO47Q3.O  
FO48Q3.O  
MO49Q3.O  
FO50Q3.O  
MO51Q3.O  
FO52Q3.O  
MO81Q3.OH  
FO82Q3.OH  
MO83Q3.OH  
FO84Q3.OH  
MO85Q3.OH  
FO86Q3.OH

MO01Q4.OH  
FO02Q4.OH  
MO03Q4.OH  
FO04Q4.OH  
MO05Q4.OH  
FO06Q4.OH  
MO41Q4.O

## F. RADIUM - 224 (QUICKRADIUM)\*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | 31/3/79 | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|---------|-------------------------|
| FO42Q4.O   | 705                  | 10.8        | 3.28              | 9 1 79                | 81      |                         |
| MO43Q4.O   | 662                  | 11.2        | 3.25              | 5 12 78               | 116     |                         |
| FO44Q4.O   | 691                  | 7.74        | 3.28              | 9 1 79                | 81      |                         |
| MO45Q4.O   | 630                  | 10.2        | 3.28              | 30 11 77              | 486     |                         |
| FO46Q4.O   | 674                  | 8.85        | 3.56              | 12 9 78               | 200     |                         |
| MO81Q4.OH  | 657                  | 11.0        | 2.90              | 14 2 79               | 45      |                         |
| FO82Q4.OH  | 639                  | 8.80        | 3.62              | 14 2 79               | 45      |                         |
| MO83Q4.OH  | 608                  | 10.6        | 3.01              | 14 2 79               | 45      |                         |
| MO01Q5.OH  | 653                  | 10.6        | 8.64              | 19 5 77               | 681     |                         |
| FO02Q5.OH  | 653                  | 11.4        | 8.04              | 19 5 77               | 681     |                         |
| MO03Q5.OH  | 643                  | 10.6        | 8.64              | 19 5 77               | 681     |                         |
| FO04Q5.OH  | 647                  | 8.35        | 10.97             | 19 5 77               | 681     |                         |
| MO05Q5.OH  | 635                  | 9.88        | 9.27              | 19 5 77               | 681     |                         |
| FO06Q5.OH  | 647                  | 9.12        | 10.00             | 19 5 77               | 681     |                         |
| MO41Q5.O   | 705                  | 11.4        | 9.65              | 9 1 79                | 81      |                         |
| FO42Q5.O   | 670                  | 7.76        | 10.2              | 5 12 78               | 116     |                         |
| MO43Q5.O   | 697                  | 9.41        | 9.59              | 9 1 78                |         | 9                       |
| FO44Q5.O   | 656                  | 8.08        | 10.3              | 5 12 78               |         | 16                      |
| MO45Q5.O   | 604                  | 9.75        | 12.0              | 7 12 77               | 479     | 324                     |
| FO46Q5.O   | 656                  | 8.22        | 9.64              | 9 1 79                | 81      | 402                     |
| MO81Q5.OH  | 618                  | 8.37        | 10.0              | 14 2 79               | 45      |                         |
| FO82Q5.OH  | 664                  | 9.73        | 8.63              | 14 2 79               | 45      |                         |
| MO83Q5.OH  | 618                  | 9.00        | 9.33              | 14 2 79               | 45      |                         |

\*Groups 41-52 received  $^{224}\text{Ra}$  in 1 injection; Groups 81-92 received  $^{224}\text{Ra}$  in 10 fractions (1/week); Groups 1-12 received  $^{224}\text{Ra}$  in 50 fractions (1/week).

F. RADIUM - 224 (QUICKRADIUM)

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS |
|---------------|-----------------------|
| FO42Q4.O      |                       |
| MO43Q4.O      |                       |
| FO44Q4.O      |                       |
| MO45Q4.O      |                       |
| FO46Q4.O      |                       |
| MO81Q4.OH     |                       |
| FO82Q4.OH     |                       |
| MO83Q4.OH     |                       |
| MO01Q5.OH     |                       |
| FO02Q5.OH     |                       |
| MO03Q5.OH     |                       |
| FO04Q5.OH     |                       |
| MO05Q5.OH     |                       |
| FO06Q5.OH     |                       |
| MO41Q5.O      |                       |
| FO42Q5.O      |                       |
| MO43Q5.O      | BLOOD DYSCRASIA       |
| FO44Q5.O      | PURPURA HEMORRHAGICA  |
| MO45Q5.O      |                       |
| FO46Q5.O      |                       |
| MO81Q5.OH     |                       |
| FO82Q5.OH     |                       |
| MO83Q5.OH     |                       |

## G. AMERICIUM - 241 \*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | 31/3/79 | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|---------|-------------------------|
| FO13WO.2   | 533                  | 10.6        | 0.00179           | 13 10 66              | 3815    | 7                       |
| MO14WO.2   | 533                  | 14.9        | 0.00178           | 13 10 66              | 3185    | 7                       |
| FO24WO.2   | 477                  | 11.3        | 0.00181           | 21 3 68               | 4027    |                         |
| FO31WO.2   | 472                  | 10.9        | 0.00180           | 8 5 68                | 1478    | 4                       |
| MO41WO.2   | 467                  | 11.9        | 0.00180           | 2 7 68                | 3924    |                         |
| MO48WO.2   | 484                  | 11.0        | 0.00174           | 30 7 68               | 3896    |                         |
| MO49WO.2   | 498                  | 10.7        | 0.00175           | 25 11 69              | 3413    |                         |
| FO58WO.2   | 496                  | 10.4        | 0.00168           | 26 1 70               | 3157    | 7                       |
| MO62WO.2   | 486                  | 13.3        | 0.00175           | 24 2 70               | 3322    |                         |
| FO69WO.2   | 542                  | 10.8        | 0.00180           | 22 4 70               | 3265    |                         |
| MO78WO.2   | 501                  | 13.5        | 0.00178           | 16 7 70               | 3180    |                         |
| MO79WO.2   | 501                  | 10.0        | 0.00179           | 16 7 70               | 3180    |                         |
| FO88WO.2   | 531                  | 8.36        | 0.00177           | 25 8 70               | 3140    |                         |
| MO95WO.2   | 526                  | 13.1        | 0.00173           | 25 8 70               | 3140    |                         |
| FO11WO.5   | 533                  | 8.17        | 0.00532           | 13 10 66              | 4552    |                         |
| MO12WO.5   | 533                  | 11.9        | 0.00539           | 13 10 66              | 3649    | 25                      |
| MO23WO.5   | 487                  | 12.2        | 0.00530           | 21 3 68               | 4027    |                         |
| MO29WO.5   | 472                  | 10.4        | 0.00548           | 8 5 68                | 2239    | 18                      |
| FO30WO.5   | 472                  | 10.6        | 0.00538           | 8 5 68                | 3979    |                         |
| FO40WO.5   | 467                  | 9.40        | 0.00528           | 2 7 68                | 3924    |                         |
| MO50WO.5   | 552                  | 11.8        | 0.00526           | 25 11 69              | 3413    |                         |
| MO59WO.5   | 496                  | 11.5        | 0.00503           | 26 1 70               | 3351    |                         |
| MO63WO.5   | 486                  | 11.4        | 0.00524           | 24 2 70               | 3322    |                         |
| MO70WO.5   | 497                  | 12.8        | 0.00531           | 22 4 70               | 3265    |                         |
| FO80WO.5   | 501                  | 11.9        | 0.00545           | 16 7 70               | 3180    |                         |
| FO81WO.5   | 501                  | 12.1        | 0.00548           | 16 7 70               | 3180    |                         |
| FO89WO.5   | 531                  | 9.66        | 0.00527           | 25 8 70               | 3140    |                         |
| MO96WO.5   | 490                  | 12.0        | 0.00533           | 25 8 70               | 3140    |                         |
| FO09W1.0   | 517                  | 8.60        | 0.016             | 15 9 66               | 4580    |                         |
| FO10W1.0   | 517                  | 9.90        | 0.0162            | 15 9 66               | 2750    | 59                      |
| MO20W1.0   | 513                  | 10.8        | 0.0161            | 21 3 68               | 3060    | 69                      |
| FO21W1.0   | 513                  | 9.36        | 0.0166            | 21 3 68               | 232     | 6                       |
| FO21W1.OA  | 552                  | 11.4        | 0.0159            | 25 11 69              | 3262    | 93                      |
| MO22W1.0   | 487                  | 11.6        | 0.0164            | 21 3 68               | 4027    |                         |
| MO28W1.0   | 472                  | 12.1        | 0.0158            | 8 5 68                | 3632    | 76                      |
| FO51W1.0   | 552                  | 8.25        | 0.0163            | 25 11 69              | 3413    |                         |
| MO60W1.0   | 496                  | 10.0        | 0.0157            | 26 1 70               | 3351    |                         |
| MO64W1.0   | 486                  | 10.4        | 0.0158            | 24 2 70               | 3134    | 76                      |
| FO71W1.0   | 485                  | 12.1        | 0.0157            | 22 4 70               | 3265    |                         |

## G. AMERICIUM - 241 \*

DOG  
NUMBER

## COMMENTS ON DEAD DOGS

FO13WO.2 UNDETERMINED (NO BONE TUMOR)  
MO14WO.2 HEMANGIOSARCOMA (SPLEEN)  
FO24WO.2  
FO31WO.2 LUNG CARCINOMA  
MO41WO.2  
MO48WO.2  
MO49WO.2  
FO58WO.2 TRAUMA  
MO62WO.2  
FO69WO.2  
MO78WO.2  
MO79WO.2  
FO88WO.2  
MO95WO.2

FO11WO.5  
MO12WO.5 PANCREATIC DYSTROPHY  
MO23WO.5  
MO29WO.5 MALIGNANT MELANOMA (ORAL)  
FO30WO.5  
FO40WO.5  
MO50WO.5  
MO59WO.5  
MO63WO.5  
MO70WO.5  
FO80WO.5  
FO81WO.5  
FO89WO.5  
MO96WO.5

FO09W1.0  
FO10W1.0 LUNG CARCINOMA  
MO20W1.0 MYXOSARCOMA (LIVER)  
FO21W1.0 ACCIDENTAL STRANGULATION  
FO21W1.OA MAST CELL LEUKEMIA  
MO22W1.0  
MO28W1.0 EPIDERMOID CARCINOMA (GINGIVA)  
FO51W1.0  
MO60W1.0  
MO64W1.0 THROMBO-EMBOLISM  
FO71W1.0

## G. AMERICIUM - 241 \*

| DOG<br>NUMBER | INJECTION     |                | INJECTED<br>(uCi/KG) | DATE<br>INJECTED |    |    | DAYS SINCE<br>INJECTION<br>31/3/79 | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|---------------|----------------|----------------------|------------------|----|----|------------------------------------|-------------------------------|
|               | AGE<br>(DAYS) | WEIGHT<br>(KG) |                      | D                | MO | YR |                                    |                               |
| MO82W1.0      | 501           | 12.4           | 0.0163               | 16               | 7  | 70 | 3180                               |                               |
| FO90W1.0      | 526           | 10.9           | 0.0160               | 25               | 8  | 70 | 3140                               |                               |
| MO97W1.0      | 490           | 10.4           | 0.0160               | 25               | 8  | 70 |                                    | 2530                          |
| F122W1.0      | 504           | 9.38           | 0.0150               | 6                | 11 | 75 | 1241                               | 63                            |
| M123W1.0      | 516           | 11.8           | 0.0156               | 9                | 12 | 75 | 1208                               |                               |
| F124W1.0      | 516           | 8.36           | 0.0157               | 9                | 12 | 75 | 1208                               |                               |
| F127W1.0      | 494           | 8.89           | 0.0152               | 6                | 11 | 75 | 1241                               |                               |
| M128W1.0      | 493           | 13.2           | 0.0153               | 6                | 11 | 75 | 1241                               |                               |
| F130W1.0      | 491           | 10.3           | 0.0153               | 6                | 11 | 75 | 1241                               |                               |
| M132W1.0      | 482           | 9.86           | 0.0153               | 6                | 11 | 75 | 1241                               |                               |
| M134W1.0      | 490           | 9.03           | 0.0150               | 6                | 11 | 75 | 1241                               |                               |
| F137W1.0      | 515           | 7.71           | 0.0154               | 9                | 12 | 75 | 1208                               |                               |
| F138W1.0      | 514           | 8.63           | 0.0152               | 9                | 12 | 75 | 1208                               |                               |
| M139W1.0      | 513           | 9.11           | 0.0157               | 9                | 12 | 75 | 1208                               |                               |
| F141W1.0      | 504           | 8.89           | 0.0154               | 9                | 12 | 75 | 1208                               |                               |
| FO42W1.7      | 495           | 9.26           | 0.0484               | 30               | 7  | 68 |                                    | 2960                          |
| FO43W1.7      | 492           | 10.4           | 0.0481               | 30               | 7  | 68 |                                    | 3666                          |
| FO44W1.7      | 492           | 7.46           | 0.0473               | 30               | 7  | 68 |                                    | 3306                          |
| MO45W1.7      | 492           | 11.9           | 0.0486               | 30               | 7  | 68 | 3896                               | 249                           |
| MO46W1.7      | 484           | 8.42           | 0.0479               | 30               | 7  | 68 |                                    | 2848                          |
| MO47W1.7      | 484           | 11.1           | 0.0486               | 30               | 7  | 68 |                                    | 3486                          |
| FO52W1.7      | 552           | 9.57           | 0.0493               | 25               | 11 | 69 | 3413                               |                               |
| MO61W1.7      | 496           | 10.7           | 0.0458               | 26               | 1  | 70 | 3351                               |                               |
| MO65W1.7      | 486           | 11.2           | 0.0471               | 24               | 2  | 70 | 3322                               |                               |
| FO72W1.7      | 500           | 11.1           | 0.0479               | 22               | 4  | 70 | 3265                               |                               |
| MO83W1.7      | 501           | 12.6           | 0.0493               | 16               | 7  | 70 | 3180                               |                               |
| FO91W1.7      | 490           | 13.3           | 0.0480               | 25               | 8  | 70 |                                    | 2193                          |
| MO98W1.7      | 490           | 13.3           | 0.0480               | 25               | 8  | 70 | 3140                               | 127                           |
| F115W1.7      | 502           | 8.73           | 0.0468               | 17               | 10 | 74 | 1626                               |                               |
| F116W1.7      | 502           | 8.56           | 0.0470               | 17               | 10 | 74 | 1626                               |                               |
| F121W1.7      | 504           | 9.36           | 0.0458               | 6                | 11 | 75 | 1241                               |                               |
| M125W1.7      | 515           | 10.0           | 0.0471               | 9                | 12 | 75 | 1208                               |                               |
| F126W1.7      | 494           | 9.63           | 0.0456               | 6                | 11 | 75 | 1241                               |                               |
| M129W1.7      | 493           | 8.26           | 0.0453               | 6                | 11 | 75 | 1241                               |                               |
| F131W1.7      | 491           | 9.16           | 0.0457               | 6                | 11 | 75 | 1241                               |                               |
| M133W1.7      | 491           | 10.8           | 0.0459               | 6                | 11 | 75 | 1241                               |                               |
| M135W1.7      | 490           | 10.0           | 0.0458               | 6                | 11 | 75 | 1241                               |                               |
| F136W1.7      | 522           | 8.91           | 0.0461               | 9                | 12 | 75 | 1208                               |                               |
| M140W1.7      | 513           | 10.5           | 0.0469               | 9                | 12 | 75 | 1208                               |                               |

## G. AMERICIUM - 241 \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                     |
|---------------|-------------------------------------------|
| MO82W1.0      |                                           |
| FO90W1.0      |                                           |
| MO97W1.0      | THROMBOSIS RIGHT HEART CHAMBERS           |
| F122W1.0      |                                           |
| M123W1.0      |                                           |
| F124W1.0      |                                           |
| F127W1.0      |                                           |
| M128W1.0      |                                           |
| F130W1.0      |                                           |
| M132W1.0      |                                           |
| M134W1.0      |                                           |
| F137W1.0      |                                           |
| F138W1.0      |                                           |
| M139W1.0      |                                           |
| F141W1.0      |                                           |
| FO42W1.7      | LYMPHOSARCOMA                             |
| FO43W1.7      | POST SURGICAL HEMORRHAGE                  |
| FO44W1.7      | UNDIFFERENTIATED MALIGNANCY (SOFT TISSUE) |
| MO45W1.7      |                                           |
| MO46W1.7      | STATUS EPILEPTICUS                        |
| MO47W1.7      | HEPATIC HEMORRHAGE                        |
| FO52W1.7      |                                           |
| MO61W1.7      |                                           |
| MO65W1.7      |                                           |
| FO72W1.7      |                                           |
| MO83W1.7      |                                           |
| FO91W1.7      | BLOOD DYSCRASIA                           |
| MO98W1.7      |                                           |
| F115W1.7      |                                           |
| F116W1.7      |                                           |
| F121W1.7      |                                           |
| M125W1.7      |                                           |
| F126W1.7      |                                           |
| M129W1.7      |                                           |
| F131W1.7      |                                           |
| M133W1.7      |                                           |
| M135W1.7      |                                           |
| F136W1.7      |                                           |
| M140W1.7      |                                           |

## G. AMERICIUM - 241 \*

| DOG<br>NUMBER | INJECTION     |                | INJECTED<br>(uCi/KG) | DATE<br>INJECTED |    |    | DAYS SINCE<br>INJECTION<br>31/3/79 | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|---------------|----------------|----------------------|------------------|----|----|------------------------------------|-------------------------------|
|               | AGE<br>(DAYS) | WEIGHT<br>(KG) |                      | D                | MO | YR |                                    |                               |
| FO07W2.O      | 561           | 12.60          | 0.0952               | 15               | 9  | 66 |                                    | 1847 226                      |
| FO08W2.O      | 561           | 11.70          | 0.0957               | 15               | 9  | 66 |                                    | 2841 362                      |
| MO19W2.O      | 513           | 13.4           | 0.0970               | 21               | 3  | 68 |                                    | 2785 368                      |
| MO27W2.O      | 473           | 12.7           | 0.0961               | 8                | 5  | 68 |                                    | 2887 347                      |
| MO38W2.O      | 477           | 9.88           | 0.0945               | 2                | 7  | 68 |                                    | 3047 427                      |
| FO39W2.O      | 468           | 9.21           | 0.0948               | 2                | 7  | 68 |                                    | 3066 473                      |
| MO53W2.O      | 498           | 9.24           | 0.0960               | 25               | 11 | 69 |                                    | 3055 434                      |
| FO66W2.O      | 486           | 9.12           | 0.0935               | 24               | 2  | 70 | 3322                               |                               |
| MO73W2.O      | 552           | 14.3           | 0.0965               | 17               | 6  | 70 |                                    | 2476 324                      |
| FO84W2.O      | 493           | 10.6           | 0.0984               | 16               | 7  | 70 |                                    | 2773 398                      |
| MO85W2.O      | 493           | 10.8           | 0.0987               | 16               | 7  | 70 | 3180                               |                               |
| FO92W2.O      | 490           | 10.6           | 0.0962               | 25               | 8  | 70 |                                    | 2318 345                      |
|               |               |                |                      |                  |    |    |                                    |                               |
| MO05W3.O      | 561           | 15.00          | 0.305                | 15               | 9  | 66 |                                    | 1917 792                      |
| FO06W3.O      | 561           | 11.9           | 0.310                | 15               | 9  | 66 |                                    | 1510 664                      |
| FO18W3.O      | 523           | 8.60           | 0.307                | 21               | 3  | 68 |                                    | 1756 823                      |
| MO26W3.O      | 473           | 12.4           | 0.310                | 8                | 5  | 68 |                                    | 2127 1022                     |
| MO36W3.O      | 477           | 11.0           | 0.305                | 2                | 7  | 68 |                                    | 1696 749                      |
| FO37W3.O      | 468           | 8.44           | 0.294                | 2                | 7  | 68 |                                    | 1764 716                      |
| MO54W3.O      | 498           | 10.5           | 0.306                | 25               | 11 | 69 |                                    | 1876 969                      |
| MO67W3.O      | 485           | 11.8           | 0.295                | 24               | 2  | 70 |                                    | 1883 904                      |
| FO74W3.O      | 542           | 10.0           | 0.302                | 22               | 4  | 70 |                                    | 1700 727                      |
| FO75W3.O      | 555           | 9.42           | 0.308                | 17               | 6  | 70 |                                    | 1533 765                      |
| MO86W3.O      | 493           | 11.3           | 0.312                | 16               | 7  | 70 |                                    | 1558 761                      |
| FO93W3.O      | 490           | 11.2           | 0.301                | 25               | 8  | 70 |                                    | 1884 903                      |
| M100W3.O      | 542           | 11.0           | 0.304                | 2                | 12 | 70 |                                    | 1198 575                      |
|               |               |                |                      |                  |    |    |                                    |                               |
| MO03W4.O      | 517           | 12.60          | 0.897                | 28               | 6  | 66 |                                    | 1779 2787                     |
| FO04W4.O      | 517           | 9.40           | 0.911                | 28               | 6  | 66 |                                    | 1533 2393                     |
| MO17W4.O      | 523           | 9.87           | 0.924                | 21               | 3  | 68 |                                    | 1132 1711                     |
| FO25W4.O      | 473           | 10.5           | 0.927                | 8                | 5  | 68 |                                    | 1527 2465                     |
| MO34W4.O      | 477           | 10.7           | 0.893                | 2                | 7  | 68 |                                    | 1566 2011                     |
| FO35W4.O      | 477           | 8.87           | 0.902                | 2                | 7  | 68 |                                    | 1323 2065                     |
| FO55W4.O      | 498           | 8.37           | 0.914                | 25               | 11 | 69 |                                    | 1388 2390                     |
| MO68W4.O      | 485           | 11.8           | 0.890                | 24               | 2  | 70 |                                    | 1415 1980                     |
| FO76W4.O      | 485           | 9.37           | 0.899                | 22               | 4  | 70 |                                    | 1569 2359                     |
| MO77W4.O      | 500           | 10.5           | 0.906                | 22               | 4  | 70 |                                    | 633 945                       |
| MO87W4.O      | 501           | 13.1           | 0.916                | 16               | 7  | 70 |                                    | 1300 1881                     |
| FO94W4.O      | 490           | 11.3           | 0.912                | 25               | 8  | 70 |                                    | 1381 2159                     |

## G. AMERICIUM - 241 \*

DOG  
NUMBER

## COMMENTS ON DEAD DOGS

|          |                                             |
|----------|---------------------------------------------|
| FO07W2.O | OSTEOSARCOMA                                |
| FO08W2.O | OSTEOSARCOMA                                |
| MO19W2.O | FIBROSARCOMA (LIVER)                        |
| MO27W2.O | MAST CELL SARCOMA                           |
| MO38W2.O | OSTEOSARCOMA                                |
| FO39W2.O | OSTEOSARCOMA; ADENOCARCINOMA (NASAL CAVITY) |
| MO53W2.O | OSTEOSARCOMA                                |
| FO66W2.O |                                             |
| MO73W2.O | COLLAPSED VERTEBRA                          |
| FO84W2.O | OSTEOSARCOMA                                |
| MO85W2.O |                                             |
| FO92W2.O | OSTEOSARCOMA                                |
|          |                                             |
| MO05W3.O | OSTEOSARCOMA                                |
| FO06W3.O | OSTEOSARCOMA                                |
| FO18W3.O | OSTEOSARCOMA                                |
| MO26W3.O | OSTEOSARCOMA; FIBROSARCOMA (BONE); HEPATOMA |
| MO36W3.O | OSTEOSARCOMA                                |
| FO37W3.O | OSTEOSARCOMA                                |
| MO54W3.O | OSTEOSARCOMA                                |
| MO67W3.O | KIDNEY DEGENERATION; THYROID DEGENERATION   |
| FO74W3.O | OSTEOSARCOMA                                |
| FO75W3.O | OSTEOSARCOMA                                |
| MO86W3.O | OSTEOSARCOMA                                |
| FO93W3.O | OSTEOSARCOMA                                |
| M100W3.O | OSTEOSARCOMA                                |
|          |                                             |
| MO03W4.O | OSTEOSARCOMA; NEPHRITIS                     |
| FO04W4.O | KIDNEY, THYROID AND LIVER DEGENERATION      |
| MO17W4.O | OSTEOSARCOMA; THROMBOSIS                    |
| FO25W4.O | MESOTHELIOMA; KIDNEY DEGENERATION           |
| MO34W4.O | OSTEOSARCOMA                                |
| FO35W4.O | PANCREATIC ADENOCARCINOMA                   |
| FO55W4.O | OSTEOSARCOMA                                |
| MO68W4.O | OSTEOSARCOMA                                |
| FO76W4.O | OSTEOSARCOMA                                |
| MO77W4.O | LIVER DEGENERATION                          |
| MO87W4.O | OSTEOSARCOMA                                |
| FO94W4.O | OSTEOSARCOMA                                |

A - 70

G. AMERICIUM - 241 \*

| DOG<br>NUMBER | INJECTION<br>AGE<br>(DAYS) | WEIGHT<br>(KG) | INJECTED<br>(uCi/KG) | DATE<br>INJECTED<br>D MO YR | DAYS SINCE<br>INJECTION<br>31/3/79 DEATH | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|----------------------------|----------------|----------------------|-----------------------------|------------------------------------------|-------------------------------|
| MO01W5.0      | 517                        | 10.4           | 2.78                 | 28 6 66                     | 401                                      | 1970                          |
| MO02W5.0      | 517                        | 12.7           | 2.83                 | 28 6 66                     | 448                                      | 2169                          |

\*

Measurements made to date indicate the liver dose to be approximately 4 times that to the skeleton.

The original "T" (test) designation for the above animals has been changed to "M" or "F" (male or female toxicity) designations. For example, the male dog originally injected as TO0W5.0 is now redesignated as MO01W5.0.

A - 71

G. AMERICIUM - 241 \*

DOG  
NUMBER

COMMENTS ON DEAD DOGS

MO01W5.O LIVER DEGENERATION; KIDNEY DEGENERATION  
MO02W5.O LIVER DEGENERATION; KIDNEY DEGENERATION

## H. CALIFORNIUM - 252

| DOG<br>NUMBER | INJECTION     |                | INJECTED<br>(uCi/KG) | DATE<br>INJECTED |    |    | DAYS SINCE<br>INJECTION<br>31/3/79 DEATH | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|---------------|----------------|----------------------|------------------|----|----|------------------------------------------|-------------------------------|
|               | AGE<br>(DAYS) | WEIGHT<br>(KG) |                      | D                | MO | YR |                                          |                               |
| MO01FO.0      | 562           | 12.0           |                      | 1                | 2  | 72 | 2615                                     |                               |
| FOO2FO.0      | 545           | 10.6           |                      | 3                | 1  | 73 | 2278                                     |                               |
| FOO3FO.0      | 545           | 9.43           |                      | 3                | 1  | 73 | 2278                                     |                               |
| FOO4FO.0      | 492           | 10.6           |                      | 27               | 2  | 73 | 2223                                     |                               |
| MO05FO.0      | 562           | 10.4           |                      | 1                | 2  | 72 | 2615                                     |                               |
| MO06FO.0      | 509           | 10.9           |                      | 28               | 11 | 72 | 2314                                     |                               |
| MO01FO.1      | 498           | 13.0           | 0.00060              | 26               | 7  | 72 | 2439                                     |                               |
| FOO2FO.1      | 524           | 9.15           | 0.00064              | 2                | 11 | 72 | 2340                                     |                               |
| FOO3FO.1      | 545           | 10.1           | 0.00075              | 3                | 1  | 73 | 2278                                     |                               |
| FOO4FO.1      | 492           | 9.44           | 0.00060              | 27               | 2  | 73 | 2223                                     |                               |
| MO05FO.1      | 498           | 10.4           | 0.00060              | 26               | 7  | 72 | 2439                                     |                               |
| MO06FO.1      | 524           | 10.3           | 0.00062              | 2                | 11 | 72 | 2340                                     |                               |
| MO01FO.5      | 498           | 12.2           | 0.00525              | 26               | 7  | 72 | 2439                                     |                               |
| FOO2FO.5      | 513           | 11.0           | 0.00529              | 2                | 11 | 72 | 2340                                     |                               |
| FOO3FO.5      | 511           | 8.89           | 0.00525              | 27               | 2  | 73 | 2223                                     |                               |
| FOO4FO.5      | 485           | 11.2           | 0.00518              | 27               | 2  | 73 | 2223                                     |                               |
| MO05FO.5      | 494           | 9.44           | 0.00530              | 26               | 7  | 72 | 2439                                     |                               |
| MO06FO.5      | 524           | 11.0           | 0.00529              | 2                | 11 | 72 | 2340                                     |                               |
| MO01F1.0      | 586           | 9.69           | 0.0163               | 8                | 9  | 71 | 2761                                     |                               |
| FOO2F1.0      | 586           | 8.28           | 0.0167               | 8                | 9  | 71 | 2761                                     |                               |
| FOO3F1.0      | 539           | 8.89           | 0.0167               | 8                | 9  | 71 | 2761                                     |                               |
| FOO4F1.0      | 539           | 10.0           | 0.0165               | 8                | 9  | 71 | 2761                                     |                               |
| MO05F1.0      | 539           | 12.9           | 0.0165               | 8                | 9  | 71 | 2761                                     |                               |
| MO06F1.0      | 513           | 9.67           | 0.0165               | 2                | 11 | 72 | 2340                                     |                               |
| MO01F2.0      | 498           | 11.5           | 0.0922               | 26               | 7  | 72 | 2439                                     |                               |
| FOO2F2.0      | 545           | 9.85           | 0.0905               | 3                | 1  | 73 | 2278                                     |                               |
| FOO3F2.0      | 511           | 9.16           | 0.0907               | 27               | 2  | 73 | 2223                                     |                               |
| FOO4F2.0      | 473           | 9.33           | 0.0910               | 27               | 2  | 73 | 2223                                     |                               |
| MO05F2.0      | 494           | 10.2           | 0.0905               | 26               | 7  | 72 | 2439                                     |                               |
| MO06F2.0      | 513           | 11.4           | 0.0912               | 2                | 11 | 72 | 2340                                     |                               |
| MO01F3.0      | 583           | 11.6           | 0.289                | 3                | 3  | 71 |                                          | 1546                          |
| FOO2F3.0      | 583           | 10.6           | 0.289                | 3                | 3  | 71 |                                          | 1730                          |
| FOO3F3.0      | 583           | 8.66           | 0.292                | 3                | 3  | 71 |                                          | 1104                          |

H. CALIFORNIUM - 252

DOG  
NUMBER

COMMENTS ON DEAD DOGS

MO01FO.0  
FO02FO.0  
FO03FO.0  
FO04FO.0  
MO05FO.0  
MO06FO.0

MO01FO.1  
FO02FO.1  
FO03FO.1  
FO04FO.1  
MO05FO.1  
MO06FO.1

MO01FO.5  
FO02FO.5  
FO03FO.5  
FO04FO.5  
MO05FO.5  
MO06FO.5

MO01F1.0  
FO02F1.0  
FO03F1.0  
FO04F1.0  
MO05F1.0  
MO06F1.0

MO01F2.0  
FO02F2.0  
FO03F2.0  
FO04F2.0  
MO05F2.0  
MO06F2.0

MO01F3.0 FIBROSARCOMA (SKELETON)  
FO02F3.0 OSTEOSARCOMA  
FO03F3.0 OSTEOSARCOMA

A - 74

H. CALIFORNIUM - 252

| DOG<br>NUMBER | INJECTION<br>AGE<br>(DAYS) | WEIGHT<br>(KG) | INJECTED<br>(uCi/KG) | DATE<br>INJECTED<br>D MO YR | 31/3/79 | DEATH | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|----------------------------|----------------|----------------------|-----------------------------|---------|-------|-------------------------------|
| FO04F3.0      | 583                        | 9.69           | 0.295                | 3 3 71                      |         | 2015  | 1167                          |
| MO05F3.0      | 524                        | 11.1           | 0.284                | 28 11 72                    |         | 1675  | 1108                          |
| MO06F3.0      | 513                        | 10.2           | 0.293                | 2 11 72                     |         | 1846  | 1120                          |

A - 75

H. CALIFORNIUM - 252

DOG  
NUMBER

COMMENTS ON DEAD DOGS

FO04F3.O OSTEOSARCOMA  
MO05F3.O OSTEOSARCOMA  
MO06F3.O OSTEOSARCOMA

## I. CALIFORNIUM - 249

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | DAYS SINCE INJECTION 31/3/79 DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|------------------------------------|-------------------------|
| FO01GO.0   | 499                  | 7.77        |                   | 23 10 73              | 1985                               |                         |
| MO02GO.0   | 509                  | 10.5        |                   | 28 11 72              | 2314                               |                         |
| MO03GO.0   | 509                  | 10.1        |                   | 28 11 72              | 2314                               |                         |
| FO04GO.0   | 502                  | 11.1        |                   | 5 3 74                |                                    | 269                     |
| FO05GO.0   | 514                  | 11.0        |                   | 30 5 74               | 1766                               |                         |
| MO06GO.0   | 499                  | 11.4        |                   | 23 10 73              | 1985                               |                         |
| FO01GO.1   | 499                  | 9.91        | 0.00061           | 23 10 73              | 1985                               |                         |
| MO02GO.1   | 486                  | 13.1        | 0.00063           | 5 7 72                | 2460                               |                         |
| MO03GO.1   | 486                  | 10.1        | 0.00063           | 5 7 72                | 2460                               |                         |
| FO04GO.1   | 488                  | 11.4        | 0.00060           | 24 4 74               | 1802                               |                         |
| FO05GO.1   | 488                  | 8.70        | 0.00060           | 24 4 74               | 1802                               |                         |
| MO06GO.1   | 486                  | 11.6        | 0.00064           | 5 7 72                | 2460                               |                         |
| FO01GO.5   | 499                  | 9.20        | 0.00485           | 23 10 73              | 1985                               |                         |
| MO02GO.5   | 514                  | 12.0        | 0.00514           | 29 2 72               | 2587                               |                         |
| MO03GO.5   | 514                  | 12.6        | 0.00518           | 29 2 72               | 2587                               |                         |
| FO04GO.5   | 471                  | 10.9        | 0.00516           | 5 3 74                | 1852                               |                         |
| FO05GO.5   | 504                  | 11.3        | 0.00559           | 30 5 74               | 1766                               |                         |
| MO06GO.5   | 514                  | 11.8        | 0.00511           | 29 2 72               |                                    | 2037                    |
| FO01G1.0   | 555                  | 8.58        | 0.0154            | 16 12 71              |                                    | 1584                    |
| MO02G1.0   | 486                  | 11.4        | 0.0152            | 5 7 72                | 2460                               | 48                      |
| MO03G1.0   | 486                  | 11.5        | 0.0154            | 5 7 72                | 2460                               |                         |
| FO04G1.0   | 555                  | 10.5        | 0.0154            | 16 12 71              | 2662                               |                         |
| FO05G1.0   | 471                  | 9.29        | 0.0153            | 5 3 74                | 1852                               |                         |
| MO06G1.0   | 524                  | 10.6        | 0.0160            | 28 11 72              | 2314                               |                         |
| FO01G2.0   | 558                  | 9.32        | 0.0905            | 16 12 71              |                                    | 2029                    |
| MO02G2.0   | 555                  | 11.0        | 0.0916            | 16 12 71              |                                    | 2301                    |
| MO03G2.0   | 486                  | 10.8        | 0.0935            | 5 7 72                | 2460                               | 416                     |
| FO04G2.0   | 558                  | 10.3        | 0.0915            | 16 12 71              |                                    | 2561                    |
| FO05G2.0   | 555                  | 9.44        | 0.0913            | 16 12 71              | 2662                               | 437                     |
| MO06G2.0   | 524                  | 10.0        | 0.0963            | 28 11 72              | 2314                               |                         |
| FO01G3.0   | 584                  | 11.6        | 0.290             | 24 2 71               |                                    | 1716                    |
| MO02G3.0   | 580                  | 13.2        | 0.282             | 24 2 71               |                                    | 977                     |
| MO03G3.0   | 580                  | 13.7        | 0.284             | 24 2 71               |                                    | 1464                    |
|            |                      |             |                   |                       |                                    | 791                     |

## I. CALIFORNIUM - 249

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                 |
|---------------|---------------------------------------|
| FO01GO.0      |                                       |
| MO02GO.0      |                                       |
| MO03GO.0      |                                       |
| FO04GO.0      | ACCIDENTAL STRANGULATION              |
| FO05GO.0      |                                       |
| MO06GO.0      |                                       |
| FO01GO.1      |                                       |
| MO02GO.1      |                                       |
| MO03GO.1      |                                       |
| FO04GO.1      |                                       |
| FO05GO.1      |                                       |
| MO06GO.1      |                                       |
| FO01GO.5      |                                       |
| MO02GO.5      |                                       |
| MO03GO.5      |                                       |
| FO04GO.5      |                                       |
| FO05GO.5      |                                       |
| MO06GO.5      | NASAL ADENOCARCINOMA                  |
| FO01G1.0      | STATUS EPILEPTICUS                    |
| MO02G1.0      |                                       |
| MO03G1.0      |                                       |
| FO04G1.0      |                                       |
| FO05G1.0      |                                       |
| MO06G1.0      |                                       |
| FO01G2.0      | OSTEOSARCOMA                          |
| MO02G2.0      | EPIDERMOID CARCINOMA (TYMPANIC BULLA) |
| MO03G2.0      |                                       |
| FO04G2.0      | OSTEOSARCOMA                          |
| FO05G2.0      |                                       |
| MO06G2.0      |                                       |
| FO01G3.0      | OSTEOSARCOMA                          |
| MO02G3.0      | OSTEOSARCOMA                          |
| MO03G3.0      | OSTEOSARCOMA                          |

## I. CALIFORNIUM - 249

| DOG<br>NUMBER | INJECTION<br>AGE<br>(DAYS) | WEIGHT<br>(KG) | INJECTED<br>(uCi/KG) | DATE<br>INJECTED<br>D MO YR | 31/3/79 | DEATH | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|----------------------------|----------------|----------------------|-----------------------------|---------|-------|-------------------------------|
| FO04G3.O      | 580                        | 8.79           | 0.283                | 24 2 71                     |         |       | 1541 932                      |
| FO05G3.O      | 514                        | 9.12           | 0.380                | 30 5 74                     |         |       | 1657 1273                     |
| MO06G3.O      | 524                        | 10.1           | 0.293                | 28 11 72                    |         |       | 1322 807                      |

A - 79

I. CALIFORNIUM - 249

DOG  
NUMBER

COMMENTS ON DEAD DOGS

F004G3.O OSTEOSARCOMA  
F005G3.O OSTEOSARCOMA  
M006G3.O OSTEOSARCOMA

## J. EINSTIENIUM - 253 \*

| DOG<br>NUMBER | INJECTION     |                | INJECTED<br>(uCi/KG) | DATE<br>INJECTED<br>D MO YR | DAYS SINCE<br>INJECTION<br>31/3/79 DEATH | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|---------------|----------------|----------------------|-----------------------------|------------------------------------------|-------------------------------|
|               | AGE<br>(DAYS) | WEIGHT<br>(KG) |                      |                             |                                          |                               |
| FO01E3.0      | 470           | 11.2           | 0.284                | 5 6 73                      | 2125                                     |                               |
| MO03E3.0      | 470           | 11.3           | 0.288                | 5 6 73                      | 2125                                     |                               |
| MO04E3.0      | 470           | 7.93           | 0.294                | 5 6 73                      | 2125                                     |                               |
| FO01E5.0      | 495           | 8.70           | 2.85                 | 5 6 73                      | 2125                                     |                               |
| FO02E5.0G     | 483           | 9.21           | 2.81                 | 5 6 73                      |                                          | 2009                          |
| MO03E5.0      | 470           | 10.4           | 2.84                 | 5 6 73                      | 2125                                     | 1015                          |

\*

FO02E5.0G received 0.318 uCi/kg of 249Cf on 28 May 1974.

A - 81

J. EINSTIENIUM - 253 \*

DOG  
NUMBER

COMMENTS ON DEAD DOGS

FO01E3.0  
MO03E3.0  
MO04E3.0

FO01E5.0  
FO02E5.0G OSTEOSARCOMA  
MO03E5.0

TABLE II. TEST ANIMALS (31 MAR. 1979)

## A. RADIUM - 226 \*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | DAYS SINCE INJECTION 31/3/79 | DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|------------------------------|-------|-------------------------|
| TO01R5.O   | 996                  | 11.1        | 10.3              | 1 12 52               |                              | 1074  | 12625                   |
| TO02R5.O   | 920                  | 8.40        | 4.39              | 12 1 53               |                              | 1368  | 6299                    |
| TO03R5.O   | 1467                 | 8.29        | 4.76              | 12 1 53               |                              | 428   | 1755                    |
| TO04R5.O   | 459                  | 10.0        | 10.6              | 6 7 53                |                              | 1     | 32                      |
| TO05R5.O   | 126                  | 6.14        | 11.7              | 6 10 53               |                              | 1     | 33                      |
| TO06R5.O   | 126                  | 6.14        | 11.4              | 6 10 53               |                              | 1     | 32                      |
| TO07R5.O   | 126                  | 6.14        | 11.8              | 6 10 53               |                              | 1     | 33                      |
| TO08R5.O   | 290                  | 5.52        | 1.92              | 10 5 55               |                              | 58    | 651                     |
| TO09R5.O   | 2275                 | 10.4        | 1.94              | 10 5 55               |                              | 58    | 780                     |
| TO10R5.O   | 43                   | 1.02        | 1.98              | 10 5 55               |                              | 49    | 391                     |
| TO11R5.O   | 43                   | 1.58        | 1.91              | 10 5 55               |                              | 49    | 484                     |
| TO12R5.O   | 397                  | 12.3        | 9.72              | 9 5 56                |                              | 220   | 3609                    |
| TO13R5.O   | 397                  | 7.59        | 9.76              | 9 5 56                |                              | 188   | 3092                    |
| TO14R4.O   | 674                  | 8.12        | 3.17              | 11 7 56               |                              | 72    | 507                     |
| TO15R4.O   | 672                  | 9.03        | 3.11              | 11 7 56               |                              | 2127  | 6823                    |
| TO16R5.O   | 604                  | 12.4        | 9.68              | 11 7 57               |                              | 12    | 244                     |
| TO17R5.OH  | 383                  | 12.2        | 9.87              | 28 10 58              |                              | 1140  | 18207                   |
| TO18R5.OH  | 383                  | 11.1        | 10.8              | 28 10 58              |                              | 1226  | 16837                   |
| TO19R5.OH  | 383                  | 11.3        | 10.7              | 28 10 58              |                              | 1219  | 15440                   |
| TO20R5.OH  | 383                  | 11.4        | 10.6              | 28 10 58              |                              | 1340  | 18641                   |
| TO21R5.OH  | 381                  | 11.8        | 10.1              | 28 10 58              |                              | 386   | 4947                    |
| TO22R5.OH  | 381                  | 11.9        | 10.1              | 28 10 58              |                              | 587   | 7881                    |
| TO23R4.OH  | 384                  | 9.50        | 4.05              | 25 11 58              |                              | 1471  | 5787                    |
| TO24R4.OH  | 384                  | 11.9        | 3.24              | 25 11 58              |                              | 1505  | 7457                    |
| TO25R4.OH  | 379                  | 11.3        | 3.42              | 25 11 58              |                              | 1309  | 6229                    |
| TO26R4.OH  | 379                  | 11.0        | 3.48              | 25 11 58              |                              | 1780  | 6292                    |
| TO27R4.OH  | 372                  | 11.5        | 3.34              | 25 11 58              |                              | 1414  | 4509                    |
| TO28R3.OH  | 372                  | 11.7        | 1.11              | 25 11 58              |                              | 387   | 476                     |
| TO29R5.O   | 474                  | 13.5        | 10.4              | 3 3 59                |                              | 216   | 4539                    |
| TO30R5.O   | 474                  | 11.5        | 10.4              | 3 3 59                |                              | 178   | 3801                    |
| TO31R5.O   | 471                  | 10.5        | 10.4              | 3 3 59                |                              | 303   | 6344                    |
| TO32R3.O   | 471                  | 11.4        | 1.13              | 3 3 59                |                              | 2249  | 2485                    |
| TO33R3.O   | 471                  | 10.6        | 1.15              | 3 3 59                |                              | 1822  | 2561                    |
| TO34R3.O   | 470                  | 15.7        | 1.12              | 3 3 59                |                              | 1737  | 2137                    |
| TO35R3.OJ  | 670                  | 9.44        | 0.951             | 5 5 59                |                              | 8     | 19                      |
| TO36R4.O   | 695                  | 10.2        | 2.99              | 22 12 60              |                              | 1154  | 4863                    |
| TO37R4.O   | 695                  | 9.53        | 3.00              | 22 12 60              |                              | 1627  | 4312                    |

## A. RADIUM - 226 \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                |
|---------------|--------------------------------------|
| TO01R5.O      | OSTEOSARCOMA                         |
| TO02R5.O      | OSTEOSARCOMA                         |
| TO03R5.O      | SPECIAL STUDY                        |
| TO04R5.O      | SPECIAL STUDY                        |
| TO05R5.O      | SPECIAL STUDY                        |
| TO06R5.O      | SPECIAL STUDY                        |
| TO07R5.O      | SPECIAL STUDY                        |
| TO08R5.O      | SPECIAL STUDY                        |
| TO09R5.O      | SPECIAL STUDY                        |
| TO10R5.O      | SPECIAL STUDY                        |
| TO11R5.O      | SPECIAL STUDY                        |
| TO12R5.O      | SPECIAL STUDY                        |
| TO13R5.O      | SPECIAL STUDY                        |
| TO14R4.O      | SPECIAL STUDY                        |
| TO15R4.O      | OSTEOSARCOMA                         |
| TO16R5.O      | SPECIAL STUDY                        |
| TO17R5.OH     | OSTEOSARCOMA + ULCERATIVE GINGIVITIS |
| TO18R5.OH     | OSTEOSARCOMA + ULCERATIVE GINGIVITIS |
| TO19R5.OH     | OSTEOSARCOMA + ULCERATIVE GINGIVITIS |
| TO20R5.OH     | OSTEOSARCOMA + ULCERATIVE GINGIVITIS |
| TO21R5.OH     | NEPHRITIS                            |
| TO22R5.OH     | CRIPPLING FRACTURES                  |
| TO23R4.OH     | OSTEOSARCOMA                         |
| TO24R4.OH     | OSTEOSARCOMA                         |
| TO25R4.OH     | OSTEOSARCOMA                         |
| TO26R4.OH     | OSTEOSARCOMA                         |
| TO27R4.OH     | OSTEOSARCOMA                         |
| TO28R3.OH     | SPECIAL STUDY                        |
| TO29R5.O      | NEPHRITIS                            |
| TO30R5.O      | NEPHRITIS                            |
| TO31R5.O      | NEPHRITIS                            |
| TO32R3.O      | OSTEOSARCOMA                         |
| TO33R3.O      | OSTEOSARCOMA, NEPHRITIS              |
| TO34R3.O      | OSTEOSARCOMA                         |
| TO35R3.OJ     | SPECIAL STUDY                        |
| TO36R4.O      | OSTEOSARCOMA                         |
| TO37R4.O      | OSTEOSARCOMA                         |

## A. RADIUM - 226 \*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | DAYS SINCE INJECTION 31/3/79 DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|------------------------------------|-------------------------|
| TO38R4.O   | 695                  | 10.1        | 3.02              | 22 12 60              | 1503                               | 4876                    |
| TO40R1.O   | 899                  | 13.0        | 0.0483            | 3 4 62                | 7                                  | 1                       |
| TO41R1.O   | 899                  | 12.7        | 0.0487            | 3 4 62                | 63                                 | 4                       |
| TO42R1.7   | 967                  | 14.0        | 0.146             | 4 4 62                | 7                                  | 3                       |
| TO43R1.7   | 963                  | 13.2        | 0.145             | 4 4 62                | 64                                 | 15                      |
| TO44R3.O   | 938                  | 11.1        | 0.937             | 4 4 62                | 68                                 | 95                      |
| TO45R3.O   | 939                  | 13.6        | 0.941             | 5 4 62                | 7                                  | 16                      |
| TO46R3.O   | 810                  | 12.5        | 0.928             | 5 4 62                | 69                                 | 137                     |
| TO47R6.O   | 99                   | 5.27        | 29.4              | 11 6 62               | 4                                  | 469                     |
| TO48R6.O   | 2842                 | 11.2        | 25.1              | 27 12 62              | 49                                 | 2129                    |
| TO49R5.O   | 485                  | 10.6        | 7.54              | 2 5 63                | 5                                  | 148                     |
| TO50R5.O   | 485                  | 13.7        | 7.46              | 2 5 63                | 15                                 | 365                     |
| TO51R5.O   | 418                  | 13.3        | 8.48              | 8 5 63                | 92                                 | 2252                    |
| TO52R5.O   | 418                  | 10.7        | 8.57              | 8 5 63                | 15                                 | 344                     |
| TO53R5.O   | 418                  | 12.0        | 8.50              | 8 5 63                | 33                                 | 815                     |
| TO54R5.O   | 417                  | 11.4        | 8.76              | 22 5 63               | 5                                  | 117                     |
| TO55R5.O   | 417                  | 11.6        | 8.61              | 22 5 63               | 33                                 | 712                     |
| TO56R5.O   | 417                  | 11.6        | 8.61              | 22 5 63               | 90                                 | 1948                    |
| TO57R4.O   | 501                  | 12.1        | 2.72              | 15 8 63               | 14                                 | 72                      |
| TO58R4.O   | 496                  | 11.7        | 2.41              | 15 8 63               | 61                                 | 381                     |
| TO59R4.O   | 496                  | 9.64        | 2.57              | 15 8 63               | 60                                 | 363                     |
| TO60R4.O   | 490                  | 12.1        | 2.33              | 15 8 63               | 117                                | 553                     |
| TO61R4.O   | 490                  | 9.48        | 2.70              | 15 8 63               | 371                                | 2089                    |
| TO62R4.O   | 490                  | 8.63        | 2.68              | 15 8 63               | 460                                | 2115                    |
| TO63R3.O   | 559                  | 8.72        | 0.899             | 29 1 64               | 36                                 | 68                      |
| TO64R3.O   | 551                  | 8.42        | 0.919             | 29 1 64               | 63                                 | 97                      |
| TO65R3.O   | 551                  | 11.6        | 0.922             | 29 1 64               | 70                                 | 132                     |
| TO66R3.O   | 549                  | 10.1        | 0.904             | 29 1 64               | 132                                | 187                     |
| TO67R3.O   | 549                  | 12.7        | 0.898             | 29 1 64               | 134                                | 224                     |
| TO68R3.O   | 549                  | 12.1        | 0.917             | 29 1 64               | 1667                               | 1377                    |
| TO69R3.O   | 499                  | 8.84        | 0.919             | 29 1 64               | 622                                | 868                     |
| TO70R3.O   | 499                  | 14.2        | 0.922             | 29 1 64               | 1996                               | 2819                    |
| TO71R5.O   | 4025                 | 13.8        | 9.23              | 28 1 69               | 42                                 | 931                     |
| TO72R5.O   | 4776                 | 9.45        | 12.4              | 17 8 72               | 54                                 | 1593                    |

## A. RADIUM - 226 \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                          |
|---------------|------------------------------------------------|
| TO38R4.O      | OSTEOSARCOMA                                   |
| TO40R1.O      | SPECIAL STUDY                                  |
| TO41R1.O      | SPECIAL STUDY                                  |
| TO42R1.7      | SPECIAL STUDY                                  |
| TO43R1.7      | SPECIAL STUDY                                  |
| TO44R3.O      | SPECIAL STUDY                                  |
| TO45R3.O      | SPECIAL STUDY                                  |
| TO46R3.O      | SPECIAL STUDY                                  |
| TO47R6.O      | SPECIAL STUDY                                  |
| TO48R6.O      | LEUKOPENIA, PNEUMONIA + SPECIAL MELANOMA STUDY |
| TO49R5.O      | SPECIAL STUDY                                  |
| TO50R5.O      | SPECIAL STUDY                                  |
| TO51R5.O      | SPECIAL STUDY                                  |
| TO52R5.O      | SPECIAL STUDY                                  |
| TO53R5.O      | SPECIAL STUDY                                  |
| TO54R5.O      | SPECIAL STUDY                                  |
| TO55R5.O      | SPECIAL STUDY                                  |
| TO56R5.O      | SPECIAL STUDY                                  |
| TO57R4.O      | SPECIAL STUDY                                  |
| TO58R4.O      | SPECIAL STUDY                                  |
| TO59R4.O      | SPECIAL STUDY                                  |
| TO60R4.O      | SPECIAL STUDY                                  |
| TO61R4.O      | SPECIAL STUDY                                  |
| TO62R4.O      | SPECIAL STUDY                                  |
| TO63R3.O      | SPECIAL STUDY                                  |
| TO64R3.O      | SPECIAL STUDY                                  |
| TO65R3.O      | SPECIAL STUDY                                  |
| TO66R3.O      | SPECIAL STUDY                                  |
| TO67R3.O      | SPECIAL STUDY                                  |
| TO68R3.O      | OSTEOSARCOMA                                   |
| TO69R3.O      | SPECIAL STUDY                                  |
| TO70R3.O      | OSTEOSARCOMA                                   |
| TO71R5.O      | MELANOMA ORAL CAVITY                           |
| TO72R5.O      | SPECIAL STUDY                                  |

## A. RADIUM - 226 \*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | 31/3/79 | DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|---------|-------|-------------------------|
| TO73R2.O   | 487                  | 8.68        | 0.350             | 6 5 75                |         | 380   | 225                     |
| TO74R2.O   | 488                  | 12.0        | 0.314             | 13 5 75               |         | 28    | 21                      |
| TO75R0.O   | 488                  | 9.38        |                   | 13 5 75               |         | 134   |                         |
| TO76R2.O   | 488                  | 11.6        | 0.318             | 13 5 75               |         | 56    | 41                      |
| TO77R2.O   | 489                  | 12.3        | 0.313             | 14 5 75               |         | 7     | 5                       |
| TO78R0.O   | 503                  | 9.77        |                   | 28 5 75               |         | 55    |                         |
| TO79R2.O   | 503                  | 9.23        | 0.357             | 28 5 75               |         | 127   | 94                      |
| TO80R0.O   | 500                  | 12.1        |                   | 28 5 75               |         | 208   |                         |
| TO81R2.O   | 495                  | 11.1        | 0.365             | 28 5 75               |         | 205   | 143                     |
| TO82R2.O   | 495                  | 10.3        | 0.359             | 28 5 75               |         | 28    | 24                      |
| TO83R0.O   | 495                  | 8.06        |                   | 28 5 75               |         | 26    |                         |
| TO84R2.O   | 512                  | 11.0        | 0.314             | 6 6 75                |         | 132   | 85                      |
| TO85R2.O   | 490                  | 9.24        | 0.265             | 10 6 75               |         | 210   | 106                     |
| TO86R2.O   | 487                  | 13.8        | 0.313             | 24 6 75               |         | 15    | 11                      |
| TO87R0.O   | 488                  | 12.2        |                   | 25 6 75               |         | 15    |                         |
| TO88R2.O   | 490                  | 11.7        | 0.328             | 1 7 75                |         | 365   | 204                     |
| TO89R2.O   | 491                  | 12.2        | 0.329             | 2 7 75                |         | 15    | 12                      |
| TO90R0.O   | 502                  | 9.63        |                   | 9 7 75                |         | 7     |                         |
| TO91R2.O   | 513                  | 10.3        | 0.253             | 10 6 75               |         | 56    | 32                      |
| TO92R2.O   | 459                  | 11.6        | 0.327             | 5 8 75                |         | 7     | 5                       |
| TO93R3.O   | 576                  | 7.75        | 0.969             | 27 1 76               |         | 3     | 7                       |
| TO94R3.O   | 571                  | 9.88        | 0.930             | 23 1 76               |         | 11    | 25                      |
| TO95R3.O   | 580                  | 10.2        | 1.03              | 13 2 76               |         | 14    | 35                      |
| TO96R3.O   | 584                  | 7.94        | 0.990             | 13 2 76               |         | 14    | 33                      |
| TO97R3.O   | 583                  | 10.8        | 0.972             | 26 2 76               |         | 4     | 10                      |
| TO98R3.O   | 549                  | 9.51        | 0.966             | 20 2 76               |         | 18    | 42                      |
| TO99R2.OE  | 563                  | 55.4        | 0.335             | 3 11 77               | 513     |       |                         |
| T100R2.OE  | 490                  | 48.6        | 0.341             | 22 11 77              | 494     |       |                         |

## A. RADIUM - 226 \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS |
|---------------|-----------------------|
| TO73R2.O      | SPECIAL STUDY         |
| TO74R2.O      | SPECIAL STUDY         |
| TO75R2.O      | SPECIAL STUDY         |
| TO76R2.O      | SPECIAL STUDY         |
| TO77R2.O      | SPECIAL STUDY         |
| TO78R2.O      | SPECIAL STUDY         |
| TO79R2.O      | SPECIAL STUDY         |
| TO80R2.O      | SPECIAL STUDY         |
| TO81R2.O      | SPECIAL STUDY         |
| TO82R2.O      | SPECIAL STUDY         |
| TO83R2.O      | SPECIAL STUDY         |
| TO84R2.O      | SPECIAL STUDY         |
| TO85R2.O      | SPECIAL STUDY         |
| TO86R2.O      | SPECIAL STUDY         |
| TO87R2.O      | SPECIAL STUDY         |
| TO88R2.O      | SPECIAL STUDY         |
| TO89R2.O      | SPECIAL STUDY         |
| TO90R2.O      | SPECIAL STUDY         |
| TO91R2.O      | SPECIAL STUDY         |
| TO92R2.O      | SPECIAL STUDY         |
| TO93R3.O      | SPECIAL STUDY         |
| TO94R3.O      | SPECIAL STUDY         |
| TO95R3.O      | SPECIAL STUDY         |
| TO96R3.O      | SPECIAL STUDY         |
| TO97R3.O      | SPECIAL STUDY         |
| TO98R3.O      | SPECIAL STUDY         |
| TO99R2.OE     |                       |
| T100R2.OE     |                       |

## A. RADIUM - 226 \*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | DAYS SINCE INJECTION 31/3/79 DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|------------------------------------|-------------------------|
| T101R3.OE  | 490                  | 45.6        | 1.05              | 22 11 77              | 494                                |                         |
| T102R2.OE  | 501                  | 47.3        | 0.342             | 9 12 77               | 477                                |                         |
| T103R3.OE  | 501                  | 45.4        | 1.10              | 9 12 77               | 477                                |                         |
| T104R0.5E  | 519                  | 47.9        | 0.0191            | 27 12 77              | 459                                |                         |
| T105R1.OE  | 519                  | 49.5        | 0.0558            | 27 12 77              | 459                                |                         |
| T106R0.1E  | 535                  | 46.9        | 0.0021            | 12 1 78               | 443                                |                         |

\*

The multiple injection dogs were male beagles born in Davis, California, but injected in our laboratory. Each was injected 6 times over a 280 day period with 56 days between each injection. Each 226 Ra injection was 20.0 uCi for the dogs T17R5H - T22R5H; 6.41 uCi for T23R4H - T27R4H; and 2.16 uCi for T28R3H. Tabulated for each dog are his age at 1st injection, his average weight during the injection period, total uCi/average weight, the date of 1st injection, the time from 1st injection to death, and sum of the skeletal doses computed from each injection to death.

T35R3J also received 99 uCi 85 Sr  
 T39R0.0 has been reassigned and is now M12M0.0.

A. RADIUM - 226 \*

DOG  
NUMBER

COMMENTS ON DEAD DOGS

T1O1R3.OE

T1O2R2.OE

T1O3R3.OE

T1O4R0.5E

T1O5R1.OE

T1O6R0.1E

## B. PLUTONIUM - 239 \*

| DOG<br>NUMBER | INJECTION     |                | INJECTED<br>(uCi/KG) | DATE<br>INJECTED |    |    | DAYS SINCE<br>INJECTION<br>31/3/79 | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|---------------|----------------|----------------------|------------------|----|----|------------------------------------|-------------------------------|
|               | AGE<br>(DAYS) | WEIGHT<br>(KG) |                      | D                | MO | YR |                                    |                               |
| TO00P5.0      | 647           | 11.4           | 3.05                 | 24               | 6  | 52 | 1                                  | 5                             |
| TO01P5.0      | 1581          | 12.7           | 3.04                 | 13               | 10 | 52 | 29                                 | 156                           |
| TO02P5.0      | 914           | 11.9           | 6.85                 | 15               | 9  | 52 | 44                                 | 534                           |
| TO03P5.0      | 942           | 9.65           | 3.22                 | 13               | 10 | 52 | 610                                | 3361                          |
| TO04P5.0      | 1016          | 8.78           | 3.02                 | 13               | 10 | 52 | 365                                | 1912                          |
| TO05P5.0      | 474           | 10.4           | 2.69                 | 14               | 12 | 54 | 400                                | 1862                          |
| TO06P5.0      | 527           | 6.16           | 2.73                 | 14               | 12 | 54 | 406                                | 1918                          |
| TO07P5.0      | 475           | 7.40           | 2.68                 | 14               | 12 | 54 | 777                                | 3534                          |
| TO08P5.0      | 527           | 8.32           | 2.67                 | 14               | 12 | 54 | 863                                | 3896                          |
| TO09P5.0      | 551           | 10.3           | 2.80                 | 22               | 11 | 55 | 15                                 | 75                            |
| TO10P5.0      | 534           | 11.9           | 2.74                 | 23               | 11 | 55 | 15                                 | 73                            |
| TO11P5.0      | 516           | 12.1           | 2.76                 | 22               | 11 | 55 | 28                                 | 137                           |
| TO12P5.0      | 487           | 9.23           | 2.74                 | 23               | 11 | 55 | 28                                 | 136                           |
| TO13P5.0      | 587           | 8.27           | 3.16                 | 24               | 4  | 56 | 3                                  | 17                            |
| TO14P5.0      | 587           | 9.38           | 2.43                 | 24               | 4  | 56 | 7                                  | 30                            |
| TO15P5.0      | 737           | 8.32           | 2.79                 | 15               | 10 | 56 | 1                                  | 5                             |
| TO16P5.0      | 673           | 10.7           | 2.85                 | 10               | 10 | 56 | 92                                 | 463                           |
| TO17P5.0      | 739           | 11.1           | 3.01                 | 12               | 2  | 57 | 210                                | 1107                          |
| TO18P5.0      | 739           | 8.16           | 2.83                 | 12               | 2  | 57 | 217                                | 1075                          |
| TO19P5.0      | 688           | 8.86           | 2.91                 | 15               | 12 | 60 | 1400                               | 6752                          |
| TO20P5.0      | 688           | 13.0           | 2.68                 | 15               | 12 | 60 | 474                                | 2189                          |
| TO21P5.0      | 688           | 10.3           | 2.72                 | 15               | 12 | 60 | 939                                | 4304                          |
| TO23P1.0      | 1485          | 13.1           | 0.0172               | 28               | 7  | 61 | 96                                 | 3                             |
| TO24P1.0      | 559           | 13.1           | 0.0172               | 28               | 7  | 61 | 97                                 | 3                             |
| TO25P1.0      | 559           | 13.8           | 0.0167               | 28               | 7  | 61 | 467                                | 12                            |
| TO26P1.0      | 556           | 12.0           | 0.0160               | 28               | 7  | 61 | 647                                | 15                            |
| TO27P3.0      | 556           | 11.5           | 0.332                | 28               | 7  | 61 | 755                                | 402                           |
| TO28P1.0      | 552           | 10.5           | 0.0150               | 9                | 8  | 61 | 559                                | 13                            |
| TO29P3.0      | 552           | 12.1           | 0.296                | 9                | 8  | 61 | 560                                | 272                           |
| TO30P1.0      | 548           | 12.4           | 0.0148               | 9                | 8  | 61 | 30                                 | <1                            |
| TO31P3.0      | 520           | 13.0           | 0.305                | 9                | 8  | 61 | 40                                 | 21                            |
| TO32P1.0      | 520           | 8.47           | 0.0162               | 9                | 8  | 61 | 274                                | 7                             |
| TO33P1.0      | 550           | 10.7           | 0.0153               | 15               | 9  | 61 | 375                                | 9                             |
| TO34P1.0      | 550           | 9.68           | 0.0154               | 15               | 9  | 61 | 746                                | 17                            |
| TO35P3.0      | 550           | 11.9           | 0.303                | 15               | 9  | 61 | 362                                | 184                           |

## B. PLUTONIUM - 239 \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                             |
|---------------|---------------------------------------------------|
| TO00P5.O      | SPECIAL STUDY                                     |
| TO01P5.O      | SPECIAL STUDY                                     |
| TO02P5.O      | SPECIAL STUDY                                     |
| TO03P5.O      | SPECIAL STUDY                                     |
| TO04P5.O      | SPECIAL STUDY                                     |
| TO05P5.O      | SPECIAL STUDY                                     |
| TO06P5.O      | SPECIAL STUDY                                     |
| TO07P5.O      | SPECIAL STUDY                                     |
| TO08P5.O      | SPECIAL STUDY                                     |
| TO09P5.O      | SPECIAL STUDY                                     |
| TO10P5.O      | SPECIAL STUDY                                     |
| TO11P5.O      | SPECIAL STUDY                                     |
| TO12P5.O      | SPECIAL STUDY                                     |
| TO13P5.O      | SPECIAL STUDY                                     |
| TO14P5.O      | SPECIAL STUDY                                     |
| TO15P5.O      | SPECIAL STUDY                                     |
| TO16P5.O      | SPECIAL STUDY                                     |
| TO17P5.O      | SPECIAL STUDY                                     |
| TO18P5.O      | SPECIAL STUDY                                     |
| TO19P5.O      | OSTEOSARCOMA, BLOOD DYSCRASIA, LIVER DEGENERATION |
| TO20P5.O      | LIVER DEGENERATION, ASCITES + THROMBOCYTOPENIA    |
| TO21P5.O      | TOXIC NEPHRITIS + LIVER DEGENERATION              |
| TO23P1.O      | SPECIAL STUDY                                     |
| TO24P1.O      | SPECIAL STUDY                                     |
| TO25P1.O      | SPECIAL STUDY                                     |
| TO26P1.O      | SPECIAL STUDY                                     |
| TO27P3.O      | SPECIAL STUDY                                     |
| TO28P1.O      | SPECIAL STUDY                                     |
| TO29P3.O      | SPECIAL STUDY                                     |
| TO30P1.O      | SPECIAL STUDY                                     |
| TO31P3.O      | SPECIAL STUDY                                     |
| TO32P1.O      | SPECIAL STUDY                                     |
| TO33P1.O      | SPECIAL STUDY                                     |
| TO34P1.O      | SPECIAL STUDY                                     |
| TO35P3.O      | SPECIAL STUDY                                     |

## B. PLUTONIUM - 239 \*

| DOG<br>NUMBER | INJECTION     |                | INJECTED<br>(uCi/KG) | DATE<br>INJECTED |    |    | DAYS SINCE<br>INJECTION<br>31/3/79 DEATH |      | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|---------------|----------------|----------------------|------------------|----|----|------------------------------------------|------|-------------------------------|
|               | AGE<br>(DAYS) | WEIGHT<br>(KG) |                      | D                | MO | YR |                                          |      |                               |
| TO36P1.O      | 544           | 10.4           | 0.0158               | 15               | 9  | 61 |                                          | 5    | <1                            |
| TO37P1.O      | 542           | 8.59           | 0.0148               | 15               | 9  | 61 |                                          | 186  | 5                             |
| TO38P3.O      | 489           | 7.96           | 0.304                | 15               | 9  | 61 |                                          | 187  | 98                            |
| TO39P1.O      | 1534          | 10.7           | 0.0151               | 15               | 9  | 61 |                                          | 376  | 9                             |
| TO40P1.O      | 1534          | 9.92           | 0.0177               | 15               | 9  | 61 |                                          | 769  | 20                            |
| TO41P5.O      | 543           | 8.50           | 3.01                 | 30               | 11 | 64 |                                          | 1227 | 6156                          |
| TO42P5.O      | 510           | 11.4           | 2.40                 | 10               | 2  | 65 |                                          | 13   | 55                            |
| TO43P5.OH     | 600           | 14.0           | 2.86                 | 15               | 7  | 65 |                                          | 40   | 203                           |
| TO44P5.OH     | 517           | 12.0           | 2.72                 | 21               | 9  | 65 |                                          | 35   | 169                           |
| TO45P5.OH     | 420           | 12.3           | 2.98                 | 28               | 10 | 65 |                                          | 5/24 | 1                             |
| TO46P5.O      | 420           | 11.90          | 3.01                 | 28               | 10 | 65 |                                          | 732  | 3747                          |
| TO47P5.O      | 806           | 12.4           | 3.02                 | 30               | 11 | 65 |                                          | 69   | 368                           |
| TO48P5.O      | 554           | 8.5            | 2.61                 | 11               | 3  | 66 |                                          | 1327 | 5754                          |
| TO49P1.O      | 103           | 5.00           | 0.0162               | 5                | 7  | 66 | 4652                                     |      |                               |
| TO50P3.O      | 103           | 5.30           | 0.296                | 5                | 7  | 66 |                                          | 2835 | 1175                          |
| TO51P5.O      | 104           | 4.80           | 2.73                 | 6                | 7  | 66 |                                          | 1055 | 4831                          |
| TO52P4.O      | 437           | 11.8           | 0.949                | 7                | 7  | 67 |                                          | 14   | 24                            |
| TO53P5.O      | 1517          | 13.9           | 2.82                 | 11               | 3  | 69 |                                          | 1559 | 7016                          |
| TO54P5.O      | 906           | 11.3           | 2.77                 | 11               | 3  | 69 |                                          | 404  | 1936                          |
| TO55P4.O      | 445           | 10.6           | 0.785                | 3                | 6  | 69 |                                          | 14   | 20                            |
| TO56P5.5      | 501           | 11.2           | 3.73                 | 29               | 7  | 69 |                                          | 7    | 46                            |
| TO57P2.OE     | 618           | 49.4           | 0.0961               | 10               | 9  | 69 |                                          | 1506 | 181                           |
| TO58P3.OE     | 573           | 52.3           | 0.291                | 10               | 9  | 69 |                                          | 917  | 421                           |
| TO59P3.OE     | 591           | 44.5           | 0.290                | 5                | 11 | 69 |                                          | 973  | 442                           |
| TO60P3.OE     | 567           | 45.2           | 0.314                | 6                | 1  | 70 |                                          | 784  | 393                           |
| TO61P2.OE     | 581           | 47.2           | 0.0983               | 6                | 1  | 70 |                                          | 1639 | 198                           |
| TO62P2.OE     | 583           | 52.5           | 0.156                | 22               | 1  | 70 |                                          | 1223 | 251                           |
| TO63P5.O      | 581           | 9.13           | 2.77                 | 14               | 12 | 70 |                                          | 490  | 2337                          |

## B. PLUTONIUM - 239 \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                                        |
|---------------|--------------------------------------------------------------|
| TO36P1.O      | SPECIAL STUDY                                                |
| TO37P1.O      | SPECIAL STUDY                                                |
| TO38P3.O      | SPECIAL STUDY                                                |
| TO39P1.O      | SPECIAL STUDY                                                |
| TO40P1.O      | SPECIAL STUDY                                                |
| TO41P5.O      | PURPURA HEMORRHAGICA; AUTOHEMAGGLUTINATION; LIVER DEGENERATN |
| TO42P5.O      | SPECIAL STUDY                                                |
| TO43P5.OH     | SPECIAL STUDY                                                |
| TO44P5.OH     | SPECIAL STUDY                                                |
| TO45P5.OH     | SPECIAL STUDY                                                |
| TO46P5.O      | LIVER DEGENERATION                                           |
| TO47P5.O      | SPECIAL STUDY                                                |
| TO48P5.O      | UNDIFFERENTIATED SARCOMA (BONE)                              |
| TO49P1.O      |                                                              |
| TO50P3.O      | OSTEOSARCOMA                                                 |
| TO51P5.O      | OSTEOSARCOMA                                                 |
| TO52P4.O      | SPECIAL STUDY                                                |
| TO53P5.O      | LIVER DEGENERATION; ADRENALECTOMY                            |
| TO54P5.O      | SPECIAL STUDY                                                |
| TO55P4.O      | SPECIAL STUDY                                                |
| TO56P5.5      | SPECIAL STUDY                                                |
| TO57P2.OE     | OSTEOSARCOMA                                                 |
| TO58P3.OE     | OSTEOSARCOMA                                                 |
| TO59P3.OE     | OSTEOSARCOMA                                                 |
| TO60P3.OE     | OSTEOSARCOMA                                                 |
| TO61P2.OE     | OSTEOSARCOMA                                                 |
| TO62P2.OE     | OSTEOSARCOMA                                                 |
| TO63P5.O      | SPECIAL STUDY                                                |

## B. PLUTONIUM - 239 \*

| DOG NUMBER      | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | 31/3/79 | DOSE TO SKELETON (RADS) |
|-----------------|----------------------|-------------|-------------------|-----------------------|---------|-------------------------|
| <b>TO64PO.O</b> |                      |             |                   |                       |         |                         |
| TO65P4.OP       | 542                  | 11.5        | 0.904             | 30 11 71              |         | 14                      |
| TO66P4.OP       | 542                  | 10.6        | 0.913             | 30 11 71              |         | 1184                    |
| TO67P4.OP       | 539                  | 10.4        | 0.907             | 30 11 71              |         | 1148                    |
| TO68P1.OE       | 569                  | 44.2        | 0.0158            | 20 4 72               |         | 2393                    |
| TO69P1.OE       | 569                  | 32.0        | 0.0160            | 20 4 72               | 2536    | 42                      |
| TO70P1.OE       | 588                  | 40.6        | 0.0152            | 9 5 72                | 2517    |                         |
| TO71PO.5E       | 588                  | 48.9        | 0.00521           | 9 5 72                | 2517    |                         |
| TO72PO.5E       | 611                  | 44.5        | 0.00512           | 1 6 72                | 2494    |                         |
| TO73PO.5E       | 611                  | 38.8        | 0.00507           | 1 6 72                | 2494    |                         |
| TO74P4.O        | 3694                 | 7.73        | 0.937             | 28 3 73               |         | 705                     |
| TO75P4.O        | 3478                 | 8.47        | 0.897             | 28 3 73               |         | 1451                    |
| TO76P4.O        | 3413                 | 10.7        | 0.894             | 28 3 73               |         | 1357                    |
| TO77P3.O        | 3413                 | 9.95        | 0.310             | 28 3 73               |         | 1623                    |
| TO78P3.O        | 2488                 | 8.21        | 0.320             | 28 3 73               |         | 1633                    |
| TO79PO.5        | 483                  | 11.1        | 0.00523           | 5 6 73                |         | 134                     |
| TO80PO.2E       | 569                  | 48.7        | 0.00153           | 25 7 73               | 2075    |                         |
| TO81PO.2E       | 569                  | 44.3        | 0.00157           | 25 7 73               | 2075    |                         |
| TO82PO.2E       | 597                  | 47.2        | 0.00191           | 22 8 73               | 2047    |                         |
| TO83PO.1E       | 575                  | 51.3        | 0.00061           | 22 8 73               | 2047    |                         |
| TO84PO.1E       | 517                  | 55.7        | 0.00066           | 19 2 75               | 1501    |                         |
| TO85PO.1E       | 557                  | 52.0        | 0.00071           | 1 4 75                | 1460    |                         |
| TO86P4.OE       | 525                  | 46.0        | 0.903             | 27 2 75               |         | 901                     |
| TO87P5.O        | 3008                 | 10.1        | 2.93              | 24 2 75               |         | 182                     |
| TO88P5.O        | 2194                 | 9.80        | 3.01              | 24 2 75               |         | 184                     |
| TO89P1.O        | 490                  | 8.99        | 0.0176            | 6 5 75                |         | 379                     |
| TO90PO.O        | 487                  | 7.60        |                   | 6 5 75                |         | 378                     |
| TO91P1.O        | 488                  | 10.6        | 0.0134            | 13 5 75               |         | 7                       |
| TO92P1.O        | 488                  | 10.8        | 0.0134            | 13 5 75               |         | 29                      |
| TO93P1.O        | 488                  | 9.04        | 0.0144            | 13 5 75               |         | 133                     |
|                 |                      |             |                   |                       |         | <1                      |
|                 |                      |             |                   |                       |         | <1                      |
|                 |                      |             |                   |                       |         | 3                       |

## B. PLUTONIUM - 239 \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                      |
|---------------|--------------------------------------------|
| TO64PO.0      | REASSIGNED, SEE T124P1.7                   |
| TO65P4.OP     | SPECIAL STUDY                              |
| TO66P4.OP     | FIBROSARCOMA (VERTEBRA)                    |
| TO67P4.OP     | OSTEOSARCOMA                               |
| TO68P1.OE     | OSTEOSARCOMA                               |
| TO69P1.OE     |                                            |
| TO70P1.OE     |                                            |
| TO71PO.5E     |                                            |
| TO72PO.5E     |                                            |
| TO73PO.5E     |                                            |
| TO74P4.O      | UNDIFFERENTIATED MALIGNANCY (NON-SKELETAL) |
| TO75P4.O      | OSTEOSARCOMA                               |
| TO76P4.O      | OSTEOSARCOMA                               |
| TO77P3.O      | OSTEOSARCOMA                               |
| TO78P3.O      | OSTEOSARCOMA                               |
| TO79PO.5      | SPECIAL STUDY                              |
| TO80PO.2E     |                                            |
| TO81PO.2E     |                                            |
| TO82PO.2E     |                                            |
| TO83PO.1E     |                                            |
| TO84PO.1E     |                                            |
| TO85PO.1E     |                                            |
| TO86P4.OE     | OSTEOSARCOMA                               |
| TO87P5.O      | SPECIAL STUDY                              |
| TO88P5.O      | SPECIAL STUDY                              |
| TO89P1.O      | SPECIAL STUDY                              |
| TO90PO.0      | SPECIAL STUDY                              |
| TO91P1.O      | SPECIAL STUDY                              |
| TO92P1.O      | SPECIAL STUDY                              |
| TO93P1.O      | SPECIAL STUDY                              |

## B. PLUTONIUM - 239 \*

| DOG<br>NUMBER | INJECTION     |                | INJECTED<br>(uCi/KG) | DATE<br>INJECTED |    |    | 31/3/79 | DAYS SINCE<br>INJECTION<br>DEATH | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|---------------|----------------|----------------------|------------------|----|----|---------|----------------------------------|-------------------------------|
|               | AGE<br>(DAYS) | WEIGHT<br>(KG) |                      | D                | MO | YR |         |                                  |                               |
| TO94P1.0      | 500           | 11.1           | 0.0166               | 28               | 5  | 75 |         | 27                               | <1                            |
| TO95P1.0      | 511           | 9.46           | 0.0178               | 5                | 6  | 75 |         | 60                               | 2                             |
| TO96P1.0      | 501           | 10.9           | 0.0159               | 8                | 7  | 75 |         | 7                                | <1                            |
| TO97P1.0      | 490           | 13.0           | 0.0164               | 10               | 6  | 75 |         | 211                              | 6                             |
| TO98P1.0      | 490           | 11.5           | 0.0162               | 10               | 6  | 75 |         | 209                              | 6                             |
| TO99P1.0      | 497           | 10.9           | 0.0151               | 17               | 6  | 75 |         | 15                               | <1                            |
| T100P1.0      | 487           | 13.0           | 0.0155               | 24               | 6  | 75 |         | 363                              | 9                             |
| T101P1.0      | 490           | 10.0           | 0.0158               | 22               | 8  | 75 |         | 56                               | 2                             |
| T102P1.0      | 494           | 11.7           | 0.0152               | 26               | 8  | 75 |         | 140                              | 4                             |
| T103P1.0      | 490           | 8.97           | 0.0157               | 5                | 9  | 75 |         | 14                               | <1                            |
| T104P1.7      | 565           | 7.75           | 0.0477               | 16               | 1  | 76 |         | 11                               | 1                             |
| T105PO.0      | 574           | 11.8           |                      | 23               | 2  | 76 |         | 11                               |                               |
| T106P1.7      | 585           | 8.84           | 0.0455               | 6                | 2  | 76 |         | 3                                | <1                            |
| T107P1.7      | 581           | 9.35           | 0.0451               | 6                | 2  | 76 |         | 7                                | <1                            |
| T108PO.0      | 582           | 10.3           |                      | 6                | 2  | 76 |         | 14                               |                               |
| T109PO.0      | 581           | 8.50           |                      | 13               | 2  | 76 |         | 4                                |                               |
| T110PO.0      | 579           | 9.31           |                      | 12               | 2  | 76 |         | 7                                |                               |
| T111P1.7      | 578           | 8.56           | 0.0433               | 11               | 2  | 76 |         | 14                               | 1                             |
| T112P1.7      | 589           | 8.90           | 0.0435               | 23               | 2  | 76 |         | 4                                | <1                            |
| T113P1.7      | 548           | 10.6           | 0.0438               | 19               | 2  | 76 |         | 18                               | 1                             |
| T114PO.0      | 555           | 9.25           |                      | 26               | 2  | 76 |         | 18                               |                               |
| T115PO.0      | 570           | 13.2           |                      | 12               | 3  | 76 |         | 4                                |                               |
| T116P5.5      | 533           | 8.72           | 4.32                 | 13               | 1  | 76 |         | 2                                | 15                            |
| T117P2.OY     | 96            | 3.79           | 0.108                | 15               | 1  | 76 |         | 7                                | 1                             |
| T118P2.OY     | 96            | 3.87           | 0.105                | 15               | 1  | 76 |         | 14                               | 3                             |
| T119P2.OY     | 84            | 4.42           | 0.0922               | 15               | 1  | 76 |         | 28                               | 5                             |
| T120P2.OY     | 96            | 4.85           | 0.0840               | 15               | 1  | 76 |         | 56                               | 8                             |
| T121P2.OY     | 84            | 3.64           | 0.112                | 15               | 1  | 76 |         | 119                              | 2                             |
| T122P2.OY     | 96            | 3.69           | 0.110                | 15               | 1  | 76 |         | 89                               | 3                             |
| T123P2.O      | 2366          | 10.5           | 0.0882               | 15               | 1  | 76 |         | 14                               | 2                             |
| T124P1.7      | 2558          | 7.68           | 0.0527               | 13               | 5  | 76 |         | 118                              | 8                             |
| T125P2.ON     | 2             | 0.32           | 0.127                | 22               | 6  | 76 |         | 3                                | 1                             |
| T126P2.ON     | 2             | 0.29           | 0.160                | 22               | 6  | 76 |         | 3                                | 1                             |

## B. PLUTONIUM - 239 \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS |
|---------------|-----------------------|
| TO94P1.0      | SPECIAL STUDY         |
| TO95P1.0      | SPECIAL STUDY         |
| TO96P1.0      | SPECIAL STUDY         |
| TO97P1.0      | SPECIAL STUDY         |
| TO98P1.0      | SPECIAL STUDY         |
| TO99P1.0      | SPECIAL STUDY         |
| T100P1.0      | SPECIAL STUDY         |
| T101P1.0      | SPECIAL STUDY         |
| T102P1.0      | SPECIAL STUDY         |
| T103P1.0      | SPECIAL STUDY         |
| T104P1.7      | SPECIAL STUDY         |
| T105PO.0      | SPECIAL STUDY         |
| T106P1.7      | SPECIAL STUDY         |
| T107P1.7      | SPECIAL STUDY         |
| T108PO.0      | SPECIAL STUDY         |
| T109PO.0      | SPECIAL STUDY         |
| T110PO.0      | SPECIAL STUDY         |
| T111P1.7      | SPECIAL STUDY         |
| T112P1.7      | SPECIAL STUDY         |
| T113P1.7      | SPECIAL STUDY         |
| T114PO.0      | SPECIAL STUDY         |
| T115PO.0      | SPECIAL STUDY         |
| T116P5.5      | SPECIAL STUDY         |
| T117P2:OY     | SPECIAL STUDY         |
| T118P2:OY     | SPECIAL STUDY         |
| T119P2:OY     | SPECIAL STUDY         |
| T120P2:OY     | SPECIAL STUDY         |
| T121P2:OY     | SPECIAL STUDY         |
| T122P2:OY     | SPECIAL STUDY         |
| T123P2:O      | SPECIAL STUDY         |
| T124P1.7      | SPECIAL STUDY         |
| T125P2.ON     | SPECIAL STUDY         |
| T126P2.ON     | SPECIAL STUDY         |

## B. PLUTONIUM - 239 \*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | 31/3/79 | DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|---------|-------|-------------------------|
| T127P2.ON  | 2                    | 0.31        | 0.148             | 19 7 76               |         | 1     | 1                       |
| T128P2.ON  | 2                    | 0.30        | 0.153             | 19 7 76               |         | 1     | 1                       |
| T129P2.ON  | 2                    | 0.28        | 0.197             | 19 7 76               |         | 1     | 1                       |
| T130P4.OP  | 609                  | 9.66        | 0.569             | 18 11 76              |         | 60    | 7                       |
| T131P4.OP  | 609                  | 12.6        | 0.844             | 18 11 76              | 863     |       |                         |
| T132P4.OP  | 609                  | 10.1        | 0.850             | 18 11 76              |         | 132   | 16                      |
| T133P4.OP  | 609                  | 9.95        | 0.844             | 18 11 76              | 863     |       |                         |
| T134P4.OP  | 609                  | 9.87        | 0.832             | 18 11 76              | 863     |       |                         |
| T135P4.OP  | 609                  | 11.3        | 0.577             | 18 11 76              |         | 69    | 8                       |
| T136P4.OP  | 603                  | 10.2        | 0.842             | 18 11 76              | 863     |       |                         |
| T137P4.OP  | 609                  | 11.4        | 0.572             | 18 11 76              |         | 257   |                         |
| T138P4.OP  | 603                  | 9.66        | 0.831             | 18 11 76              |         | 138   |                         |
| T139P4.OP  | 609                  | 12.2        | 0.576             | 18 11 76              |         | 417   |                         |
| T140P4.OP  | 603                  | 9.79        | 0.574             | 18 11 76              |         | 824   |                         |
| T141P4.OP  | 602                  | 10.3        | 0.834             | 18 11 76              |         | 40    | 6                       |
| T142P4.OP  | 602                  | 8.28        | 0.834             | 18 11 76              |         | 33    | 4                       |
| T143P4.OP  | 603                  | 10.2        | 0.842             | 18 11 76              | 863     |       |                         |
| T144P4.OP  | 602                  | 9.82        | 0.836             | 18 11 76              | 863     |       |                         |
| T145P4.OP  | 603                  | 10.0        | 0.575             | 18 11 76              |         | 117   | 23                      |
| T146P4.OP  | 602                  | 9.63        | 0.570             | 18 11 76              |         | 124   | 26                      |
| T147P4.OP  | 597                  | 11.0        | 0.848             | 18 11 76              | 863     |       |                         |
| T148P4.OP  | 602                  | 9.67        | 0.581             | 18 11 76              |         | 250   |                         |
| T149P4.OP  | 597                  | 9.86        | 0.833             | 18 11 76              | 863     |       |                         |
| T150P4.OP  | 597                  | 9.84        | 0.571             | 18 11 76              |         | 424   |                         |
| T151P4.OP  | 597                  | 11.4        | 0.572             | 18 11 76              |         | 831   |                         |
| T152P4.OP  | 597                  | 8.90        | 0.833             | 18 11 76              | 863     |       |                         |
| T153P5.O   | 803                  | 12.0        | 2.55              | 16 11 76              |         | 22    | 100                     |
| T154P2.ON  | 2                    | 0.20        | 0.154             | 9 11 76               |         | 7     | 1                       |
| T155P2.ON  | 2                    | 0.20        | 0.151             | 9 11 76               |         | 7     | 1                       |
| T156P2.ON  | 2                    | 0.28        | 0.0897            | 9 11 76               |         | 7     | 1                       |
| T157P4.OP  | 609                  | 11.2        | 0.833             | 18 11 76              | 863     |       |                         |
| T158P2.O   | 695                  | 9.68        | 0.0866            | 11 1 77               |         | 14    | 1                       |
| T159P2.O   | 700                  | 10.7        | 0.0783            | 11 1 77               |         | 14    | 1                       |
| T160P2.O   | 689                  | 8.71        | 0.0962            | 11 1 77               |         | 14    | 1                       |
| T161P2.O   | 700                  | 10.4        | 0.0806            | 11 1 77               |         | 14    | 1                       |
| T162P2.O   | 686                  | 9.59        | 0.0874            | 11 1 77               |         | 14    | 2                       |
| T163P2.O   | 686                  | 10.6        | 0.0791            | 11 1 77               |         | 14    | 2                       |
| T164P2.O   | 686                  | 10.0        | 0.0838            | 11 1 77               |         | 14    | 1                       |

## B. PLUTONIUM - 239 \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS |
|---------------|-----------------------|
| T127P2.ON     | SPECIAL STUDY         |
| T128P2.ON     | SPECIAL STUDY         |
| T129P2.ON     | SPECIAL STUDY         |
| T130P4.OP     | SPECIAL STUDY         |
| T131P4.OP     |                       |
| T132P4.OP     | SPECIAL STUDY         |
| T133P4.OP     |                       |
| T134P4.OP     |                       |
| T135P4.OP     | SPECIAL STUDY         |
| T136P4.OP     |                       |
| T137P4.OP     | SPECIAL STUDY         |
| T138P4.OP     | SPECIAL STUDY         |
| T139P4.OP     | SPECIAL STUDY         |
| T140P4.OP     | SPECIAL STUDY         |
| T141P4.OP     | SPECIAL STUDY         |
| T142P4.OP     | SPECIAL STUDY         |
| T143P4.OP     |                       |
| T144P4.OP     |                       |
| T145P4.OP     | SPECIAL STUDY         |
| T146P4.OP     | SPECIAL STUDY         |
| T147P4.OP     |                       |
| T148P4.OP     | SPECIAL STUDY         |
| T149P4.OP     |                       |
| T150P4.OP     | SPECIAL STUDY         |
| T151P4.OP     | SPECIAL STUDY         |
| T152P4.OP     |                       |
| T153P5.O      | SPECIAL STUDY         |
| T154P2.ON     | SPECIAL STUDY         |
| T155P2.ON     | SPECIAL STUDY         |
| T156P2.ON     | SPECIAL STUDY         |
| T157P4.OP     |                       |
| T158P2.O      | SPECIAL STUDY         |
| T159P2.O      | SPECIAL STUDY         |
| T160P2.O      | SPECIAL STUDY         |
| T161P2.O      | SPECIAL STUDY         |
| T162P2.O      | SPECIAL STUDY         |
| T163P2.O      | SPECIAL STUDY         |
| T164P2.O      | SPECIAL STUDY         |

## A - 100

## B. PLUTONIUM - 239 \*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | 31/3/79 | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|---------|-------------------------|
| T165P2.0   | 695                  | 10.4        | 0.0806            | 11 1 77               |         | 14 1                    |
| T166P2.0   | 707                  | 9.27        | 0.0904            | 1 2 77                |         | 14 1                    |
| T167P2.0   | 707                  | 12.6        | 0.0665            | 1 2 77                |         | 14 1                    |
| T168P2.0   | 707                  | 9.39        | 0.0893            | 1 2 77                |         | 14 1                    |
| T169P2.0   | 699                  | 10.9        | 0.0769            | 1 2 77                |         | 14 1                    |
| T170P2.0   | 699                  | 10.8        | 0.0776            | 1 2 77                |         | 14 2                    |
| T171P2.0   | 710                  | 11.3        | 0.0742            | 1 2 77                |         | 14 2                    |
| T172P2.0   | 699                  | 9.79        | 0.0856            | 1 2 77                |         | 14 1                    |
| T173P2.0   | 707                  | 10.4        | 0.0806            | 1 2 77                |         | 14 1                    |
| T174P2.OY  | 93                   | 3.52        | 0.0989            | 8 2 77                | 781     | 512 44                  |
| T175P2.OY  | 93                   | 3.14        | 0.0936            | 8 2 77                |         | 360                     |
| T176P2.OY  | 93                   | 2.89        | 0.0953            | 8 2 77                |         | 364                     |
| T177P2.OY  | 92                   | 4.01        | 0.0981            | 8 2 77                |         | 513 46                  |
| T178P2.OY  | 92                   | 4.34        | 0.0969            | 8 2 77                |         | 669 54                  |
| T179P2.OY  | 92                   | 3.60        | 0.0967            | 8 2 77                |         |                         |
| T180PO.0   | 502                  | 9.78        |                   | 24 2 77               |         | 27                      |
| T181P1.0   | 518                  | 8.44        | 0.0162            | 24 3 77               |         | 33 2                    |
| T182PO.0   | 518                  | 8.52        |                   | 24 3 77               |         | 56                      |
| T183PO.0   | 516                  | 11.3        |                   | 14 4 77               |         | 28                      |
| T184P1.0   | 516                  | 9.60        | 0.0168            | 14 4 77               |         | 56 2                    |
| T185P2.OY  | 90                   | 3.31        | 0.0941            | 9 3 78                |         | 182 20                  |
| T186P2.OY  | 88                   | 3.71        | 0.0918            | 9 5 78                |         | 86 11                   |
| T187P2.OY  | 93                   | 3.20        | 0.0994            | 21 11 78              |         | 28 4                    |
| T188P2.OY  | 88                   | 3.32        | 0.0988            | 21 11 78              |         | 128 14                  |
| T198P5.5   | 1560                 | 7.92        | 4.57              | 10 4 78               |         | 2 16                    |
| T199P5.5   | 1337                 | 10.7        | 4.54              | 10 4 78               |         | 2 16                    |
| T200P5.5   | 657                  | 10.9        | 4.34              | 13 6 77               |         | 2 31                    |
| T201PO.0   | 576                  | 8.95        |                   | 4 10 77               |         | 29                      |
| T202P1.0   | 586                  | 7.67        | 0.0173            | 12 10 77              |         | 27 1                    |
| T203P2.0   | 607                  | 10.9        | 0.0826            | 5 9 78                |         | 7 1                     |
| T204P2.0   | 563                  | 7.70        | 0.117             | 6 9 78                |         | 7 1                     |
| T205P2.0   | 520                  | 9.55        | 0.0943            | 7 9 78                |         | 7 1                     |
| T206P2.0   | 1282                 | 11.2        | 0.0804            | 24 8 78               |         | 7 1                     |
| T207P2.0   | 942                  | 9.20        | 0.0979            | 24 8 78               |         | 7 1                     |

A - 101

B. PLUTONIUM - 239 \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS |
|---------------|-----------------------|
| T165P2.O      | SPECIAL STUDY         |
| T166P2.O      | SPECIAL STUDY         |
| T167P2.O      | SPECIAL STUDY         |
| T168P2.O      | SPECIAL STUDY         |
| T169P2.O      | SPECIAL STUDY         |
| T170P2.O      | SPECIAL STUDY         |
| T171P2.O      | SPECIAL STUDY         |
| T172P2.O      | SPECIAL STUDY         |
| T173P2.O      | SPECIAL STUDY         |
| T174P2.OY     | SPECIAL STUDY         |
| T175P2.OY     | SPECIAL STUDY         |
| T176P2.OY     | SPECIAL STUDY         |
| T177P2.OY     | SPECIAL STUDY         |
| T178P2.OY     | SPECIAL STUDY         |
| T179P2.OY     | SPECIAL STUDY         |
| T180PO.O      | SPECIAL STUDY         |
| T181P1.O      | SPECIAL STUDY         |
| T182PO.O      | SPECIAL STUDY         |
| T183PO.O      | SPECIAL STUDY         |
| T184P1.O      | SPECIAL STUDY         |
| T185P2.OY     | SPECIAL STUDY         |
| T186P2.OY     | SPECIAL STUDY         |
| T187P2.OY     | SPECIAL STUDY         |
| T188P2.OY     | SPECIAL STUDY         |
| T198P5.5      | SPECIAL STUDY         |
| T199P5.5      | SPECIAL STUDY         |
| T200P5.5      | SPECIAL STUDY         |
| T201PO.O      | SPECIAL STUDY         |
| T202P1.O      | SPECIAL STUDY         |
| T203P2.O      | SPECIAL STUDY         |
| T204P2.O      | SPECIAL STUDY         |
| T205P2.O      | SPECIAL STUDY         |
| T206P2.O      | SPECIAL STUDY         |
| T207P2.O      | SPECIAL STUDY         |

## B. PLUTONIUM - 239 \*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | 31/3/79 | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|---------|-------------------------|
| T208P2.O   | 942                  | 10.9        | 0.0827            | 24 8 78               | 7       | 1                       |
| T209P2.O   | 940                  | 9.80        | 0.0919            | 24 8 78               | 7       | 1                       |
| T210P2.O   | 920                  | 9.25        | 0.0974            | 24 8 78               | 7       | 1                       |
| T211P2.O   | 1295                 | 7.40        | 0.122             | 23 8 78               | 8       | 2                       |
| T212P2.O   | 802                  | 8.80        | 0.103             | 21 8 78               | 10      | 2                       |
| T213P2.OW  | 549                  | 9.50        | 0.0703            | 10 10 78              | 7       | 1                       |
| T214P2.OW  | 549                  | 9.00        | 0.0742            | 10 10 78              | 7       | 2                       |
| T215P2.OW  | 549                  | 8.60        | 0.0777            | 10 10 78              | 7       | 1                       |
| T216P2.OW  | 533                  | 11.4        | 0.0586            | 10 10 78              | 7       | 1                       |
| T217P2.OW  | 533                  | 9.40        | 0.0711            | 10 10 78              | 7       | 1                       |
| T218P1.OW  | 611                  | 10.2        | 0.0116            | 25 10 78              | 7       | 1                       |
| T219P2.OW  | 904                  | 12.0        | 0.0731            | 1 12 78               | 32      | 10                      |
| T220P2.OW  | 904                  | 11.3        | 0.0776            | 1 12 78               | 42      | 14                      |
| T221P2.OW  | 806                  | 9.36        | 0.0938            | 1 12 78               | 35      | 14                      |
| T222P5.OY  | 91                   | 3.08        | 3.27              | 15 1 79               | 7       | 40                      |
| T223P5.OY  | 91                   | 2.18        | 2.77              | 15 1 79               | 7       | 23                      |
| T224P5.OY  | 91                   | 2.55        | 3.23              | 15 1 79               | 14      | 50                      |
| T225P5.OY  | 91                   | 2.08        | 2.72              | 15 1 79               | 14      | 50                      |

\*

T22PO.O had been reassigned and is now F06TO.OA  
 TO43P5.OH was also given 1.01 uCi 239Pu/kg one day prior to sacrifice  
 TO44P5.OH was given 0.833 uCi 239Pu /kg and about 9.17 uCi 59Fe/kg  
 one day prior to sacrifice.

Dogs in the above tabulation having the letter E as the final entry in the "DOG NUMBER" column are St. Bernards. Those having the letter P in that position were given plutonium in particulate form.

T117 . . . T122P2Y and T123P2 were given tracer 237Pu in the same solution containing their 239Pu.

Dogs in the sequence T213P2.OW . . . T221P2.OW were given a mixture of 239Pu, 237Pu and 241Am in their injection solution.

A - 103

B. PLUTONIUM - 239 \*

DOG

NUMBER

COMMENTS ON DEAD DOGS

T208P2.O SPECIAL STUDY

T209P2.O SPECIAL STUDY

T210P2.O SPECIAL STUDY

T211P2.O SPECIAL STUDY

T212P2.O SPECIAL STUDY

T213P2.OW SPECIAL STUDY

T214P2.OW SPECIAL STUDY

T215P2.OW SPECIAL STUDY

T216P2.OW SPECIAL STUDY

T217P2.OW SPECIAL STUDY

T218P1.OW SPECIAL STUDY

T219P2.OW SPECIAL STUDY

T220P2.OW SPECIAL STUDY

T221P2.OW SPECIAL STUDY

T222P5.OY SPECIAL STUDY

T223P5.OY SPECIAL STUDY

T224P5.OY SPECIAL STUDY

T225P5.OY SPECIAL STUDY

A - 104

C. RADIUM - 228 (MESOTHORIUM) \*

| DOG<br>NUMBER | INJECTION<br>AGE<br>(DAYS) | WEIGHT<br>(KG) | INJECTED<br>(uCi/KG) | DATE<br>INJECTED<br>D MO YR | 31/3/79 | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|----------------------------|----------------|----------------------|-----------------------------|---------|-------------------------------|
| TOO1M4.5      | 529                        | 9.13           | 4.23                 | 8 9 54                      |         | 314                           |
| TOO2M4.5      | 463                        | 8.93           | 4.27                 | 8 9 54                      |         | 755                           |
| TOO3M5.0      | 579                        | 9.15           | 10.6                 | 13 3 56                     |         | 21156                         |

\*

(uCi 228Th/uCi 228Ra) injected = 0.03.

A - 105

C. RADIUM - 228 (MESOTHORIUM) \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                                     |
|---------------|-----------------------------------------------------------|
| TOO1M4.5      | CANINE DISTEMPER                                          |
| TOO2M4.5      | SPECIAL STUDY                                             |
| TOO3M5.0      | ULCERATIVE GINGIVITIS, SEVERE ANEMIA + CRIPPLING FRACTURE |

## A - 106

## D. THORIUM - 228 (RADIOTHORIUM) \*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | 31/3/79 | DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|---------|-------|-------------------------|
| TOO1T5.0   | 607                  | 9.30        | 4.88              | 1 12 53               |         | 23    | 1548                    |
| TOO2T5.0   | 501                  | 8.48        | 2.56              | 8 2 54                |         | 77    | 2639                    |
| TOO3T4.0   | 429                  | 10.4        | 0.870             | 8 2 54                |         | 820   | 6504                    |
| TOO4T5.0   | 455                  | 8.92        | 2.59              | 28 9 54               |         | 113   | 3844                    |
| TOO5T5.0   | 455                  | 10.1        | 2.32              | 28 9 54               |         | 65    | 2032                    |
| TOO6T4.0   | 591                  | 7.01        | 0.884             | 18 10 55              |         | 651   | 5697                    |
| TOO7T3.0   | 591                  | 9.23        | 0.298             | 18 10 55              |         | 910   | 2369                    |
| TOO8T3.0   | 606                  | 9.23        | 0.293             | 14 10 58              |         | 1043  | 2511                    |
| TOO9T3.0   | 447                  | 11.0        | 0.285             | 4 2 59                |         | 1     | 4                       |
| TO10T3.0   | 447                  | 14.2        | 0.289             | 4 2 59                |         | 8     | 32                      |
| TO11T3.0   | 500                  | 8.62        | 0.335             | 16 6 59               |         | 22    | 101                     |
| TO12T3.0   | 514                  | 10.6        | 0.302             | 7 7 59                |         | 22    | 92                      |
| TO13T3.0   | 754                  | 13.1        | 0.298             | 28 7 59               |         | 22    | 91                      |

\* T11, 12, 13T3 received 40, 4, and 0.4 mg. 232Th, respectively

A - 107

D. THORIUM - 228 (RADIOTHORIUM) \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                 |
|---------------|---------------------------------------|
| TO01T5.0      | DIED, SPECIAL STUDY                   |
| TO02T5.0      | SPECIAL STUDY                         |
| TO03T4.0      | CRIPPLING FRACTURES + NEPHRITIS       |
| TO04T5.0      | THROMBOCYTOPENIA + PURPURA            |
| TO05T5.0      | NEPHRITIS, THROMBOCYTOPENIA + PURPURA |
| TO06T4.0      | CRIPPLING FRACTURES                   |
| TO07T3.0      | SPECIAL STUDY                         |
| TO08T3.0      | OSTEOSARCOMA                          |
| TO09T3.0      | SPECIAL STUDY                         |
| TO10T3.0      | SPECIAL STUDY                         |
| TO11T3.0      | SPECIAL STUDY                         |
| TO12T3.0      | SPECIAL STUDY                         |
| TO13T3.0      | SPECIAL STUDY                         |

## E. STRONTIUM - 90 \*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | 31/3/79 | DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|---------|-------|-------------------------|
| TO01SO.0   | 151                  | 7.71        |                   | 5 3 54                |         | 112   |                         |
| TO02S5.0   | 149                  | 6.85        | 148.              | 5 3 54                |         | 18    | 835                     |
| TO03S5.0   | 144                  | 6.19        | 148.              | 5 3 54                |         | 28    | 1276                    |
| TO04S5.0   | 151                  | 7.05        | 148.              | 5 3 54                |         | 41    | 2593                    |
| TO05S5.0   | 144                  | 5.25        | 148.              | 5 3 54                |         | 116   | 6484                    |
| TO06S5.0   | 155                  | 7.01        | 87.0              | 16 3 54               |         | 1/24  | 3                       |
| TO07S5.0   | 155                  | 6.74        | 87.0              | 16 3 54               |         | 2     | 112                     |
| TO08SO.0   | 243                  | 7.00        |                   | 4 11 54               |         | 1/24  |                         |
| TO08S2.OH  | 67                   | 3.69        | 2.74              | 27 9 55               |         | 66    | 41                      |
| TO09S2.OH  | 67                   | 2.79        | 3.62              | 27 9 55               |         | 66    | 53                      |
| TO10S2.OH  | 67                   | 3.11        | 3.25              | 27 9 55               |         | 132   | 124                     |
| TO11S2.OH  | 67                   | 3.85        | 2.62              | 27 9 55               |         | 132   | 100                     |
| TO12S3.0   | 593                  | 10.6        | 10.5              | 11 9 57               |         | 5     | 20                      |
| TO13S4.0   | 324                  | 10.5        | 19.1              | 8 7 60                |         | 8     | 67                      |
| TO14S5.0   | 542                  | 10.0        | 96.1              | 7 11 61               |         | 9     | 233                     |
| TO15S5.0   | 595                  | 9.43        | 98.4              | 7 11 61               |         | 30    | 564                     |
| TO16S2.0   | 604                  | 9.71        | 3.27              | 8 11 61               |         | 9     | 8                       |
| TO17S6.0   | 670                  | 7.18        | 295.              | 19 1 62               |         | 14    | 919                     |
| TO18S6.0   | 670                  | 5.94        | 302.              | 19 1 62               |         | 1369  | 25217                   |
| TO19S6.0   | 670                  | 5.43        | 284.              | 19 1 62               |         | 23    | 849                     |
| TO20S4.OJ  | 440                  | 8.54        | 28.9              | 2 10 63               |         | 13    | 104                     |
| TO21S2.5J  | 363                  | 7.20        | 8.3               | 2 10 63               |         | 13    | 191                     |
| TO22S5.0   | 545                  | 9.01        | 99.0              | 1 4 69                |         | 1525  | 11690                   |
| TO23S5.0   | 545                  | 11.6        | 100.              | 1 4 69                |         | 1379  | 14121                   |

\*

TO8 . . . 11S2.OH were given 10 injections, 1 uCi each at weekly intervals. Age is at first injection, wt. is average during the injection period, uCi/kg is total 90Sr/average weight, date is at first injection. days are from first injection to death, and dose is computed from mid-injection to death.

## E. STRONTIUM 90 \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                  |
|---------------|----------------------------------------|
| TO01S0.0      | SPECIAL STUDY                          |
| TO02S5.0      | SPECIAL STUDY                          |
| TO03S5.0      | SPECIAL STUDY                          |
| TO04S5.0      | SPECIAL STUDY                          |
| TO05S5.0      | SPECIAL STUDY                          |
| TO06S5.0      | SPECIAL STUDY                          |
| TO07S5.0      | SPECIAL STUDY                          |
| TO08S0.0      | SPECIAL STUDY                          |
| TO08S2.OH     | SPECIAL STUDY                          |
| TO09S2.OH     | SPECIAL STUDY                          |
| TO10S2.OH     | SPECIAL STUDY                          |
| TO11S2.OH     | SPECIAL STUDY                          |
| TO12S3.0      | BREMSSTRAHLUNG PHANTOM                 |
| TO13S4.0      | BREMSSTRAHLUNG PHANTOM SAM MCGEE       |
| TO14S5.0      | SPECIAL STUDY                          |
| TO15S5.0      | SPECIAL STUDY                          |
| TO16S2.0      | SPECIAL STUDY                          |
| TO17S6.0      | LEUKOPENIA, THROMBOCYTOPENIA + PURPURA |
| TO18S6.0      | HEMANGIOSARCOMA (ISCHIUM)              |
| TO19S6.0      | LEUKOPENIA, THROMBOCYTOPENIA + PURPURA |
| TO20S4.OJ     | SPECIAL STUDY                          |
| TO21S2.5J     | SPECIAL STUDY                          |
| TO22S5.0      | HEMANGIOSARCOMA (BONE)                 |
| TO23S5.0      | OSTEOSARCOMA                           |

---

\* T20S4J received 0.5 uCi 85Sr in addition to the 246.8 uCi 90Sr  
 T21S2.5J received 0.5 uCi 85Sr and 600 uCi 89Sr in addition to  
 the 59.8 uCi 90Sr.

## F. RADIUM - 224 \*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | 31/3/79 | DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|---------|-------|-------------------------|
| TO01Q3.0J  | 460                  | 9.55        | 0.875             | 26 3 63               |         | 4/24  | 1                       |
| TO02Q4.0   | 466                  | 12.0        | 2.91              | 27 3 63               |         | 2317  | 937                     |
| TO03Q4.0   | 466                  | 13.1        | 2.91              | 27 3 63               |         | 2708  | 1017                    |
| TO04Q5.0   | 480                  | 9.55        | 9.71              | 24 4 63               |         | 1462  | 4951                    |
| TO05Q5.0   | 455                  | 9.67        | 9.59              | 24 4 63               |         | 1638  | 5236                    |
| TO06Q6.0   | 455                  | 8.29        | 21.4              | 17 10 63              |         | 13    | 1137                    |
| TO07Q5.0   | 465                  | 11.8        | 8.56              | 6 11 63               |         | 2053  | 604                     |
| TO08Q5.0   | 475                  | 9.77        | 8.62              | 6 11 63               |         | 16    | 450                     |
| TO09Q4.0   | 503                  | 9.80        | 2.57              | 4 12 63               |         | 1451  | 156                     |
| TO10Q4.0   | 503                  | 10.3        | 2.57              | 4 12 63               |         | 262   | 144                     |
| TO11Q3.0   | 495                  | 9.10        | 0.885             | 4 12 63               |         | 3668  | 56                      |
| TO12Q3.0   | 495                  | 13.5        | 0.889             | 4 12 63               |         | 4087  | 56                      |
| TO13Q3.0   | 495                  | 11.3        | 0.912             | 4 12 63               |         | 4605  | 58                      |
| TO14Q3.0   | 438                  | 10.3        | 0.870             | 4 12 63               |         | 4785  | 55                      |
| TO15Q4.0   | 515                  | 12.7        | 2.73              | 1 2 68                |         | 1692  | 3881                    |
| TO16Q2.0   | 515                  | 9.36        | 0.310             | 1 2 68                |         | 3757  | 650                     |
| TO17Q2.0   | 515                  | 10.2        | 0.311             | 1 2 68                | 4076    |       |                         |
| TO18Q2.0   | 502                  | 9.68        | 0.306             | 1 2 68                | 4076    |       |                         |
| TO19Q1.0   | 515                  | 11.8        | 0.0475            | 1 2 68                | 4076    |       |                         |
| TO20Q1.0   | 515                  | 10.4        | 0.0472            | 1 2 68                | 4076    |       |                         |
| TO21Q1.0   | 502                  | 9.08        | 0.0447            | 1 2 68                | 4076    |       |                         |
| TO22Q5.0   | 643                  | 8.39        | 10.1              | 13 12 77              |         | 3/24  | 7                       |
| TO23Q5.0   | 619                  | 10.9        | 8.37              | 3 1 78                |         | 1/24  | 1                       |
| TO24Q5.0   | 649                  | 9.14        | 10.1              | 19 12 77              |         | 1     | 63                      |
| TO25Q5.0   | 638                  | 8.78        | 10.1              | 10 1 78               |         | 8/24  | 17                      |
| TO26Q5.0   | 685                  | 8.81        | 9.98              | 24 1 78               |         | 7     | 309                     |
| TO27Q5.0   | 642                  | 10.6        | 10.1              | 14 1 78               |         | 3     | 148                     |

\*The skeletal doses in rads are from  $^{224}\text{Ra}$  (and daughters) plus contamination from  $^{210}\text{Pb}$  and  $^{228}\text{Th}$ . In some cases the  $^{210}\text{Pb}$  and  $^{228}\text{Th}$  contamination was appreciable. Please see the article, " $^{224}\text{Ra}$  toxicity from a pilot study in beagles" in C00-119-252, March 1977, pp. 272-287, particularly see p. 278.

TO01Q3.0J also received 18.0  $\mu\text{Ci}$   $^{85}\text{Sr}$ .

\*\*Skeletal doses in rads for T22Q5 to T27Q5 are from  $^{224}\text{Ra}$  (and daughters). Contamination of the injection solution with other emitters was negligible. Dosimetric details are to be found in C00-119-253, pp. 263-276, March 1978.

## F. RADIUM - 224 (QUICKRADIUM) \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                              |
|---------------|----------------------------------------------------|
| TO01Q3.OJ     | SPECIAL STUDY                                      |
| TO02Q4.O      | OSTEOSARCOMA                                       |
| TO03Q4.O      | HEMANGIOSARCOMA (ILIUM)                            |
| TO04Q5.O      | OSTEOSARCOMA, EPIDERMOID CARCINOMA (FRONTAL SINUS) |
| TO05Q5.O      | OSTEOSARCOMA                                       |
| TO06Q6.O      | PURPURA HEMORRHAGICA                               |
| TO07Q5.O      | OSTEOSARCOMA                                       |
| TO08Q5.O      | PURPURA HEMORRHAGICA                               |
| TO09Q4.O      | STRANGULATION ON VOMITUS AND GRAND MAL             |
| TO10Q4.O      | STATUS EPILEPTICUS                                 |
| TO11Q3.O      | AORTIC BODY TUMOR                                  |
| TO12Q3.O      | AORTA THROMBO-EMBOLISM                             |
| TO13Q3.O      | CIRCULATORY FAILURE                                |
| TO14Q3.O      | NEPHRITIS                                          |
| TO15Q4.O      | OSTEOSARCOMA                                       |
| TO16Q2.O      | OSTEOSARCOMA                                       |
| TO17Q2.O      |                                                    |
| TO18Q2.O      |                                                    |
| TO19Q1.O      |                                                    |
| TO20Q1.O      |                                                    |
| TO21Q1.O      |                                                    |
| TO22Q5.O      | SPECIAL STUDY                                      |
| TO23Q5.O      | SPECIAL STUDY                                      |
| TO24Q5.O      | SPECIAL STUDY                                      |
| TO25Q5.O      | SPECIAL STUDY                                      |
| TO26Q5.O      | SPECIAL STUDY                                      |
| TO27Q5.O      | SPECIAL STUDY                                      |

A - 112

## G. AMERICIUM - 241 \*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | DAYS SINCE INJECTION 31/3/79 DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|------------------------------------|-------------------------|
| T015W5.5   | 858                  | 11.5        | 4.53              | 23 10 67              | 1                                  | 6                       |
| T016W5.0   | 461                  | 10.7        | 2.78              | 29 1 68               | 20                                 | 66                      |
| T032W5.5   | 553                  | 11.0        | 4.46              | 30 4 68               | 7                                  | 36                      |
| T033W5.5   | 393                  | 10.5        | 4.47              | 30 4 68               | 8                                  | 44                      |
| T056W5.0   | 552                  | 11.3        | 2.90              | 25 11 69              | 15                                 | 65                      |
| T057W5.0   | 496                  | 7.01        | 2.77              | 26 1 70               | 15                                 | 56                      |
| T099W5.0   | 547                  | 11.3        | 2.67              | 10 11 70              | 252                                | 966                     |
| T101W5.0   | 399                  | 10.4        | 2.98              | 17 8 72               | 1                                  | 4                       |
| T102W3.0   | 515                  | 11.6        | 0.280             | 10 10 72              | 17                                 | 7                       |
| T103W3.0   | 501                  | 10.6        | 0.283             | 10 10 72              | 2363                               |                         |
| T104W3.0   | 2658                 | 7.67        | 0.305             | 28 11 72              | 1864                               | 701                     |
| T105W3.0   | 2224                 | 7.78        | 0.301             | 28 11 72              | 1100                               | 647                     |
| T106W3.0   | 2224                 | 13.8        | 0.308             | 28 11 72              | 1909                               | 791                     |
| T107W5.0   | 3543                 | 9.24        | 2.34              | 2 4 73                | 36                                 | 110                     |
| T108W3.0   | 507                  | 12.6        | 0.304             | 8 8 73                | 2061                               |                         |
| T109W3.0   | 506                  | 9.90        | 0.306             | 8 8 73                | 2061                               |                         |
| T110W3.0   | 506                  | 9.30        | 0.306             | 8 8 73                | 1506                               | 341                     |
| T111W3.0   | 506                  | 9.81        | 0.303             | 8 8 73                | 2061                               |                         |
| T112W3.0   | 506                  | 6.92        | 0.333             | 23 10 73              | 44                                 | 19                      |
| T113W3.0   | 499                  | 9.35        | 0.333             | 23 10 73              | 1985                               |                         |
| T114W3.0   | 531                  | 12.9        | 0.300             | 2 7 74                | 1505                               | 667                     |
| T117W4.0   | 385                  | 9.98        | 1.20              | 19 11 74              | 1416                               | 2680                    |
| T118W4.0   | 385                  | 8.96        | 1.34              | 19 11 74              | 1593                               |                         |
| T119W4.0   | 385                  | 8.36        | 1.44              | 19 11 74              | 1593                               |                         |
| T120W5.0   | 2894                 | 8.77        | 3.17              | 24 2 75               | 283                                | 1376                    |
| T142W3.0   | 586                  | 9.76        | 0.299             | 28 1 76               | 1158                               |                         |
| T143W3.0   | 533                  | 9.21        | 0.317             | 4 2 76                | 1151                               |                         |
| T144W4.0   | 397                  | 11.8        | 0.804             | 19 5 76               | 545                                | 697                     |
| T145W4.0   | 397                  | 11.6        | 0.983             | 19 5 76               | 545                                | 852                     |
| T146W3.0   | 593                  | 7.07        | 0.301             | 13 2 76               | 1142                               |                         |
| T147W5.ON  | 1                    | 0.25        | 3.11              | 1 2 76                | 1                                  | 6                       |
| T148W5.ON  | 1                    | 0.26        | 2.97              | 1 2 76                | 3                                  | 21                      |

## G. AMERICIUM - 241 \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                           |
|---------------|-------------------------------------------------|
| T015W5.5      | SPECIAL STUDY                                   |
| T016W5.0      | SPECIAL STUDY                                   |
| T032W5.5      | SPECIAL STUDY                                   |
| T033W5.5      | SPECIAL STUDY                                   |
| T056W5.0      | SPECIAL STUDY                                   |
| T057W5.0      | SPECIAL STUDY                                   |
| T099W5.0      | SPECIAL STUDY                                   |
| T101W5.0      | SPECIAL STUDY                                   |
| T102W3.0      | SPECIAL STUDY                                   |
| T103W3.0      |                                                 |
| T104W3.0      | EMPYEMA                                         |
| T105W3.0      | FIBROSARCOMA (ORAL); KIDNEY DEGENERATION        |
| T106W3.0      | TRAUMA                                          |
| T107W5.0      | MELANOMA (MOUTH)                                |
| T108W3.0      |                                                 |
| T109W3.0      |                                                 |
| T110W3.0      | ANESTHETIC ACCIDENT; ADRENO-CORTICAL HYPOPLASIA |
| T111W3.0      |                                                 |
| T112W3.0      | INTUSSUSCEPTION                                 |
| T113W3.0      |                                                 |
| T114W3.0      | OSTEOSARCOMA                                    |
| T117W4.0      | OSTEOSARCOMA                                    |
| T118W4.0      |                                                 |
| T119W4.0      |                                                 |
| T120W5.0      | KIDNEY DEGENERATION; LIVER DEGENERATION         |
| T142W3.0      |                                                 |
| T143W3.0      |                                                 |
| T144W4.0      | SPECIAL STUDY                                   |
| T145W4.0      | SPECIAL STUDY                                   |
| T146W3.0      |                                                 |
| T147W5.ON     | SPECIAL STUDY                                   |
| T148W5.ON     | SPECIAL STUDY                                   |

## G. AMERICIUM - 241 \*

| DOG NUMBER | INJECTION AGE (DAYS) | WEIGHT (KG) | INJECTED (uCi/KG) | DATE INJECTED D MO YR | 31/3/79 | DEATH | DOSE TO SKELETON (RADS) |
|------------|----------------------|-------------|-------------------|-----------------------|---------|-------|-------------------------|
| T149W5.ON  | 1                    | 0.27        | 2.88              | 1 2 76                |         |       | 5 33                    |
| T150W5.ON  | 1                    | 0.28        | 2.79              | 1 2 76                |         |       | 5 32                    |
| T151W5.ON  | 1                    | 0.24        | 3.20              | 1 2 76                |         |       | 1 6                     |
| T152W5.ON  | 1                    | 0.25        | 3.11              | 1 2 76                |         |       | 1 7                     |
| T153W5.ON  | 1                    | 0.27        | 2.84              | 1 2 76                |         |       | 3 18                    |
| T154W3.O   | 535                  | 9.96        | 0.287             | 4 8 76                |         |       | 21 11                   |
| T155W3.O   | 532                  | 10.2        | 0.280             | 4 8 76                | 969     |       |                         |
| T156W3.O   | 528                  | 10.0        | 0.286             | 4 8 76                | 969     |       |                         |
| T157W3.O   | 526                  | 9.99        | 0.286             | 4 8 76                |         | 23    | 10                      |
| T158W0.O   | 553                  | 12.9        |                   | 30 12 76              | 821     |       |                         |
| T159W0.O   | 546                  | 10.6        |                   | 30 12 76              | 821     |       |                         |
| T160W1.O   | 577                  | 11.4        | 0.0159            | 30 12 76              | 821     |       |                         |
| T161W1.O   | 546                  | 11.9        | 0.0159            | 30 12 76              | 821     |       |                         |
| T162W1.O   | 546                  | 9.64        | 0.0164            | 30 12 76              | 821     |       |                         |
| T163W1.O   | 544                  | 9.32        | 0.0162            | 30 12 76              | 821     |       |                         |
| T164W1.7   | 553                  | 11.3        | 0.0481            | 30 12 76              | 821     |       |                         |
| T165W1.7   | 546                  | 8.73        | 0.0488            | 30 12 76              | 821     |       |                         |
| T166W1.7   | 544                  | 9.28        | 0.0480            | 30 12 76              | 821     |       |                         |
| T167W1.7   | 544                  | 9.04        | 0.0482            | 30 12 76              | 821     |       |                         |
| T168W4.O   | 997                  | 9.80        | 0.976             | 21 6 78               |         |       | 7 9                     |
| T169W4.O   | 934                  | 10.4        | 0.919             | 21 6 78               |         |       | 7 8                     |
| T170W4.O   | 997                  | 10.2        | 0.937             | 21 6 78               |         |       | 7 7                     |
| T171W4.O   | 856                  | 9.00        | 1.06              | 21 6 78               |         |       | 7 6                     |
| T172W4.O   | 876                  | 11.6        | 0.824             | 21 6 78               |         |       | 7 5                     |
| T173W4.O   | 933                  | 11.7        | 0.817             | 20 6 78               |         |       | 8 9                     |
| T174W4.O   | 994                  | 8.50        | 1.12              | 18 6 78               |         |       | 10 15                   |

G. AMERICIUM - 241 \*

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS |
|---------------|-----------------------|
| T149W5.ON     | SPECIAL STUDY         |
| T150W5.ON     | SPECIAL STUDY         |
| T151W5.ON     | SPECIAL STUDY         |
| T152W5.ON     | SPECIAL STUDY         |
| T153W5.ON     | SPECIAL STUDY         |
| T154W3.O      | SPECIAL STUDY         |
| T155W3.O      |                       |
| T156W3.O      |                       |
| T157W3.O      | SPECIAL STUDY         |
| T158W0.O      |                       |
| T159W0.O      |                       |
| T160W1.O      |                       |
| T161W1.O      |                       |
| T162W1.O      |                       |
| T163W1.O      |                       |
| T164W1.7      |                       |
| T165W1.7      |                       |
| T166W1.7      |                       |
| T167W1.7      |                       |
| T168W4.O      | SPECIAL STUDY         |
| T169W4.O      | SPECIAL STUDY         |
| T170W4.O      | SPECIAL STUDY         |
| T171W4.O      | SPECIAL STUDY         |
| T172W4.O      | SPECIAL STUDY         |
| T173W4.O      | SPECIAL STUDY         |
| T174W4.O      | SPECIAL STUDY         |

A - 116

H. LEAD - 210

| DOG<br>NUMBER | INJECTION<br>AGE (DAYS) |      | WEIGHT<br>(KG) | INJECTED<br>(uCi/KG) | DATE<br>INJECTED<br>D MO YR |   |    | DAY(S) SINCE<br>INJECTION<br>31/3/79 DEATH | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|-------------------------|------|----------------|----------------------|-----------------------------|---|----|--------------------------------------------|-------------------------------|
| TOO1L5.0      | 522                     | 9.78 |                | 10.7                 | 24                          | 6 | 69 |                                            | 1497                          |
| TOO2L5.0      | 522                     | 9.16 |                | 10.7                 | 24                          | 6 | 69 |                                            | 28                            |
| TOO3L5.0      | 522                     | 9.78 |                | 10.7                 | 24                          | 6 | 69 |                                            | 1100                          |

A - 117

H. LEAD - 210

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS |
|---------------|-----------------------|
| TO01L5.0      | OSTEOSARCOMA          |
| TO02L5.0      | SPECIAL STUDY         |
| TO03L5.0      | OSTEOSARCOMA          |

A - 118

I. CALIFORNIUM - 252

| DOG<br>NUMBER | INJECTION     |                | DATE<br>INJECTED | DAY S SINCE<br>INJECTION | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|---------------|----------------|------------------|--------------------------|-------------------------------|
|               | AGE<br>(DAYS) | WEIGHT<br>(KG) | (uCi/KG)         | D MO YR                  | 31/3/79 DEATH                 |
| TOO1F5.0      | 586           | 11.4           | 2.81             | 8 9 71                   | 36                            |
| TOO2F5.0      | 540           | 10.7           | 2.87             | 17 11 71                 | 13                            |

A - 119

I. CALIFORNIUM - 252

DOG  
NUMBER

COMMENTS ON DEAD DOGS

TO01F5.O SPECIAL STUDY  
TO02F5.O SPECIAL STUDY

A - 120

J. CALIFORNIUM - 249

| DOG<br>NUMBER | INJECTION     |                | INJECTED<br>(uCi/KG) | DATE<br>D MO YR | DAYS SINCE<br>INJECTION<br>31/3/79 DEATH | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|---------------|----------------|----------------------|-----------------|------------------------------------------|-------------------------------|
|               | AGE<br>(DAYS) | WEIGHT<br>(KG) |                      |                 |                                          |                               |
| TOO1G5.0      | 597           | 12.2           | 2.84                 | 24 2 71         | 500                                      | 2728                          |
| TOO2G5.0      | 584           | 10.7           | 2.77                 | 24 2 71         | 7                                        | 39                            |
| TOO3G5.0      | 584           | 9.89           | 2.80                 | 24 2 71         | 21                                       | 111                           |

A - 121

J. CALIFORNIUM - 249

DOG  
NUMBER

COMMENTS ON DEAD DOGS

TO01G5.O NEPHRITIS; MYOCARDIAL INFARCTION  
TO02G5.O SPECIAL STUDY  
TO03G5.O SPECIAL STUDY

A - 122

K. CURIUM - 243/244

| DOG<br>NUMBER | INJECTION<br>AGE<br>(DAYS) | WEIGHT<br>(KG) | INJECTED<br>(uCi/KG) | DATE<br>INJECTED<br>D MO YR | 31/3/79 | DEATH | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|----------------------------|----------------|----------------------|-----------------------------|---------|-------|-------------------------------|
| TOO1C5.0      | 511                        | 10.4           | 2.60                 | 27 2 73                     |         | 1142  | 7346                          |
| TOO2C5.0      | 485                        | 12.2           | 2.64                 | 27 2 73                     |         | 6     | 32                            |
| TOO3C5.0      | 485                        | 11.4           | 2.64                 | 27 2 73                     |         | 13    | 69                            |
| TOO4C5.0      | 485                        | 12.5           | 2.64                 | 27 2 73                     |         | 20    | 107                           |
| TOO5C5.0      | 485                        | 12.8           | 2.63                 | 27 2 73                     |         | 384   | 2613                          |
| TOO6C5.0      | 498                        | 10.7           | 2.90                 | 22 10 73                    |         | 87    | 463                           |

A - 123

K. CURIUM - 243/244

DOG  
NUMBER

COMMENTS ON DEAD DOGS

|          |                                         |
|----------|-----------------------------------------|
| TO01C5.0 | KIDNEY DEGENERATION; LIVER DEGENERATION |
| TO02C5.0 | SPECIAL STUDY                           |
| TO03C5.0 | SPECIAL STUDY                           |
| TO04C5.0 | SPECIAL STUDY                           |
| TO05C5.0 | LIVER DEGENERATION                      |
| TO06C5.0 | SPECIAL STUDY                           |

A - 124

L. EINSTIENIUM - 253

| DOG<br>NUMBER | INJECTION<br>AGE<br>(DAYS) | WEIGHT<br>(KG) | INJECTED<br>(uCi/KG) | DATE<br>INJECTED<br>D MO YR | 31/3/79 | DEATH | DOSE TO<br>SKELETON<br>(RADs) |
|---------------|----------------------------|----------------|----------------------|-----------------------------|---------|-------|-------------------------------|
| TOO1E5.0      | 470                        | 9.82           | 2.87                 | 5 6 73                      |         | 7     | 33                            |
| TOO2E5.0      | 483                        | 12.2           | 2.89                 | 5 6 73                      |         | 21    | 171                           |
| TOO3E5.0      | 483                        | 11.0           | 2.84                 | 5 6 73                      |         | 55    | 201                           |
| TOO4E5.0      | 484                        | 12.3           | 2.97                 | 6 6 73                      | 2124    |       |                               |
| TOO5E5.0      | 484                        | 11.2           | 2.93                 | 10 9 73                     |         | 7     | 57                            |

A - 125

L. EINSTIENIUM - 253

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS |
|---------------|-----------------------|
| TO01E5.0      | SPECIAL STUDY         |
| TO02E5.0      | SPECIAL STUDY         |
| TO03E5.0      | SPECIAL STUDY         |
| TO04E5.0      |                       |
| TO05E5.0      | SPECIAL STUDY         |

A - 126

M. PLUTONIUM - 237

| DOG<br>NUMBER | INJECTION     |                | INJECTED<br>(uCi/KG) | DATE<br>INJECTED<br>D MO YR | DAYS SINCE<br>INJECTION<br>31/3/79 DEATH | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|---------------|----------------|----------------------|-----------------------------|------------------------------------------|-------------------------------|
|               | AGE<br>(DAYS) | WEIGHT<br>(KG) |                      |                             |                                          |                               |
| TOO1K1.0      | 520           | 9.53           | 0.0286               | 10 12 74                    |                                          | 13                            |
| TOO2K1.0      | 517           | 10.3           | 0.0266               | 10 12 74                    |                                          | 20                            |
| TOO3K1.0      | 517           | 9.72           | 0.0281               | 10 12 74                    |                                          | 27                            |

A - 127

M. PLUTONIUM - 237

DOG  
NUMBER

COMMENTS ON DEAD DOGS

TO01K1.O SPECIAL STUDY  
TO02K1.O SPECIAL STUDY  
TO03K1.O SPECIAL STUDY

A - 128

N. URANIUM - 233

| DOG<br>NUMBER | INJECTION<br>AGE<br>(DAYS) | WEIGHT<br>(KG) | INJECTED<br>(uCi/KG) | DATE<br>INJECTED<br>D MO YR | 31/3/79 | DEATH | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|----------------------------|----------------|----------------------|-----------------------------|---------|-------|-------------------------------|
| TOO1U5.0      | 539                        | 10.4           | 2.91                 | 23 2 76                     |         | 94    | 45                            |
| TOO2U5.0      | 524                        | 12.0           | 2.91                 | 11 3 76                     |         | 726   | 196                           |
| TOO3U5.0      | 541                        | 11.4           | 2.42                 | 25 2 76                     |         | 7     | 4                             |
| TOO4U5.0      | 541                        | 9.01           | 2.91                 | 25 2 76                     |         | 14    | 9                             |
| TOO5U5.0      | 541                        | 9.08           | 2.96                 | 25 2 76                     |         | 21    | 7                             |
| TOO6U5.0      | 509                        | 12.2           | 2.92                 | 25 2 76                     |         | 364   | 192                           |
| TOO7U5.0      | 667                        | 10.4           | 2.77                 | 10 5 76                     |         | 1     | 1                             |

A - 129

N. URANIUM - 233

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS |
|---------------|-----------------------|
| TO01U5.0      | SPECIAL STUDY         |
| TO02U5.0      | SPECIAL STUDY         |
| TO03U5.0      | SPECIAL STUDY         |
| TO04U5.0      | SPECIAL STUDY         |
| TO05U5.0      | SPECIAL STUDY         |
| TO06U5.0      | SPECIAL STUDY         |
| TO07U5.0      | SPECIAL STUDY         |

A - 130

O. URANIUM - 238

| DOG<br>NUMBER | INJECTION<br>AGE<br>(DAYS) | WEIGHT<br>(KG) | INJECTED<br>(uCi/KG) | DATE<br>INJECTED<br>D MO YR | DAYS SINCE<br>INJECTION<br>31/3/79 DEATH | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|----------------------------|----------------|----------------------|-----------------------------|------------------------------------------|-------------------------------|
| TOOLVO.1      | 568                        | 11.3           | 0.0001               | 16 11 76                    | 865                                      |                               |

A - 131

O. URANIUM - 238

DOG  
NUMBER

COMMENTS ON DEAD DOGS

TOOLVO.1

## P. ANICILLARY

| DOG<br>NUMBER | INJECTION<br>AGE<br>(DAYS) | WEIGHT<br>(KG) | INJECTED<br>(uCi/KG) | DATE<br>INJECTED<br>D MO YR | AGE (DAYS)<br>AS OF<br>31/3/79 DEATH | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|----------------------------|----------------|----------------------|-----------------------------|--------------------------------------|-------------------------------|
| FO01AO.0      |                            |                |                      |                             | 1383                                 |                               |
| FO02AO.0      |                            |                |                      |                             | 2492                                 |                               |
| MO03AO.0      |                            |                |                      |                             | 1451                                 |                               |
| MO04AO.0      |                            |                |                      |                             | 3346                                 |                               |
| MO05AO.0      |                            |                |                      |                             | 3747                                 |                               |
| MO06AO.0      |                            |                |                      |                             | 5266                                 |                               |
| MO07AO.0      |                            |                |                      |                             | 3896                                 |                               |
| MO08AO.0      |                            |                |                      |                             | 3746                                 |                               |
| FO09AO.0      |                            |                |                      |                             | 3719                                 |                               |
| FO10AO.0      |                            |                |                      |                             | 2605                                 |                               |
| FO11AO.0      |                            |                |                      |                             | 4198                                 |                               |
| FO12AO.0      |                            |                |                      |                             | 4219                                 |                               |
| FO13AO.0      |                            |                |                      |                             | 4527                                 |                               |
| FO14AO.0      |                            |                |                      |                             | 3777                                 |                               |
| FO15AO.0      |                            |                |                      |                             | 4874                                 |                               |
| FO16AO.0      |                            |                |                      |                             | 4410                                 |                               |
| FO17AO.0      |                            |                |                      |                             | 2145                                 |                               |
| FO18AO.0      |                            |                |                      |                             | 5921                                 |                               |
| FO19AO.0      |                            |                |                      |                             | 4166                                 |                               |
| FO20AO.0      |                            |                |                      |                             | 2464                                 |                               |
| FO21AO.0      |                            |                |                      |                             | 5508                                 |                               |
| FO22AO.0      |                            |                |                      |                             | 4350                                 |                               |
| MO23AO.0      |                            |                |                      |                             | 1741                                 |                               |
| MO24AO.0      |                            |                |                      |                             | 3074                                 |                               |
| FO25AO.0      |                            |                |                      |                             | 5646                                 |                               |
| MO26AO.0      |                            |                |                      |                             | 4133                                 |                               |
| MO27AO.0      |                            |                |                      |                             | 2130                                 |                               |
| MO28AO.0      |                            |                |                      |                             | 3114                                 |                               |
| MO29AO.0      |                            |                |                      |                             | 5017                                 |                               |
| FO31AO.0      |                            |                |                      |                             | 5266                                 |                               |
| FO32AO.0      |                            |                |                      |                             | 1990                                 |                               |
| FO33AO.0      |                            |                |                      |                             | 3282                                 |                               |
| FO34AO.0      |                            |                |                      |                             | 2584                                 |                               |
| MO35AO.0      |                            |                |                      |                             | 529                                  |                               |
| MO36AO.0      |                            |                |                      |                             | 1971                                 |                               |
| MO37AO.0      |                            |                |                      |                             | 4091                                 |                               |
| FO38AO.0      |                            |                |                      |                             | 3802                                 |                               |
| MO39AO.0      |                            |                |                      |                             | 4406                                 |                               |
| MO40AO.0      |                            |                |                      |                             | 4666                                 |                               |
| FO41AO.0      |                            |                |                      |                             | 4704                                 |                               |
| MO42AO.0      |                            |                |                      |                             | 1265                                 |                               |
| FO43AO.0      |                            |                |                      |                             | 3883                                 |                               |
| FO44AO.0      |                            |                |                      |                             | 5016                                 |                               |

## P. ANCILLARY

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                             |
|---------------|---------------------------------------------------|
| FO01AO.O      | SPECIAL STUDY                                     |
| FO02AO.O      | SPECIAL STUDY                                     |
| MO03AO.O      | SPECIAL STUDY                                     |
| MO04AO.O      | NOT DETERMINED (NO BONE TUMOR)                    |
| MO05AO.O      | TRANSITIONAL CELL CARCINOMA, NEPHRITIS, PNEUMONIA |
| MO06AO.O      | BRAIN HEMORRHAGE                                  |
| MO07AO.O      | LYMPHOSARCOMA                                     |
| MO08AO.O      | PROGRESSIVE PARALYSIS, CAUSE UNKNOWN              |
| FO09AO.O      | VAGINAL FIBROMA                                   |
| FO10AO.O      | SPECIAL STUDY                                     |
| FO11AO.O      | MAMMARY CARCINOMA                                 |
| FO12AO.O      | SEVERE OSTEOARTHRITIS                             |
| FO13AO.O      | SPECIAL STUDY                                     |
| FO14AO.O      | OBTURATING EMBOLISM OF PORTAL VEIN                |
| FO15AO.O      | TRANSITIONAL CELL CARCINOMA URINARY BLADDER       |
| FO16AO.O      | SPECIAL STUDY                                     |
| FO17AO.O      | TRAUMA                                            |
| FO18AO.O      | NEPHRITIS                                         |
| FO19AO.O      | MAMMARY GLAND CARCINOMA                           |
| FO20AO.O      | SPECIAL STUDY                                     |
| FO21AO.O      | MAMMARY CARCINOMA; THYROID CARCINOMA              |
| FO22AO.O      | LYMPHOSARCOMA                                     |
| MO23AO.O      | OBTURATING PULMONARY EMBOLISM                     |
| MO24AO.O      | SPECIAL STUDY                                     |
| FO25AO.O      | ISLET CELL TUMOR; PNEUMONIA                       |
| MO26AO.O      | SEMINOMA                                          |
| MO27AO.O      | SPECIAL STUDY                                     |
| MO28AO.O      | SPECIAL STUDY                                     |
| MO29AO.O      | MELANOMA ORAL CAVITY                              |
| FO31AO.O      | UNDETERMINED                                      |
| FO32AO.O      | LYMPHOSARCOMA                                     |
| FO33AO.O      | OBTURATING PULMONARY EMBOLISM                     |
| FO34AO.O      | SPECIAL STUDY                                     |
| MO35AO.O      | SPECIAL STUDY                                     |
| MO36AO.O      | SPECIAL STUDY                                     |
| MO37AO.O      | SPECIAL STUDY                                     |
| FO38AO.O      | MAMMARY CARCINOMA                                 |
| MO39AO.O      | OBTURATING PULMONARY THROMBO EMBOLISM             |
| MO40AO.O      | EPIDERMOID CARCINOMA (GINGIVA), PNEUMONIA         |
| FO41AO.O      | LEIOMYOSARCOMA (SPLEEN)                           |
| MO42AO.O      | STATUS EPILEPTICUS                                |
| FO43AO.O      | SPECIAL STUDY                                     |
| FO44AO.O      | ADRENAL CORTICAL CARCINOMA                        |

## P. ANICILLARY

| DOG<br>NUMBER | INJECTION<br>AGE<br>(DAYS) | WEIGHT<br>(KG) | INJECTED<br>(uCi/KG) | DATE<br>INJECTED<br>D MO YR | AGE (DAYS)<br>AS OF<br>31/3/79 DEATH | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|----------------------------|----------------|----------------------|-----------------------------|--------------------------------------|-------------------------------|
| FO45AO.0      |                            |                |                      |                             | 6182                                 |                               |
| FO47AO.0      |                            |                |                      |                             | 1732                                 |                               |
| FO48AO.0      |                            |                |                      |                             | 5075                                 |                               |
| FO49AO.0      |                            |                |                      |                             | 4773                                 |                               |
| MO50AO.0      |                            |                |                      |                             | 2264                                 |                               |
| FO51AO.0      |                            |                |                      |                             | 1089                                 |                               |
| FO52AO.0      |                            |                |                      |                             | 509                                  |                               |
| FO53AO.0      |                            |                |                      |                             | 5520                                 |                               |
| FO54AO.0      |                            |                |                      |                             | 3190                                 |                               |
| FO55AO.0      |                            |                |                      |                             | 4563                                 |                               |
| MO56AO.0      |                            |                |                      |                             | 701                                  |                               |
| FO57AO.0      |                            |                |                      |                             | 4322                                 |                               |
| MO58AO.0      |                            |                |                      |                             | 767                                  |                               |
| MO59AO.0      |                            |                |                      |                             | 567                                  |                               |
| MO61AO.0      |                            |                |                      |                             | 5511                                 |                               |
| FO62AO.0      |                            |                |                      |                             | 5348                                 |                               |
| FO63AO.0      |                            |                |                      |                             | 4530                                 |                               |
| FO68AO.0      |                            |                |                      |                             | 4521                                 |                               |
| FO70AO.0      |                            |                |                      |                             | 5914                                 |                               |
| MO71AO.0      |                            |                |                      |                             | 1472                                 |                               |
| MO73AO.0      |                            |                |                      |                             | 5695                                 |                               |
| FO74AO.0      |                            |                |                      |                             | 5553                                 |                               |
| MO75AO.0      |                            |                |                      |                             | 5284                                 |                               |
| FO76AO.0      |                            |                |                      |                             | 5813                                 |                               |
| FO77AO.0      |                            |                |                      |                             | 6046                                 |                               |
| FO78AO.0      |                            |                |                      |                             | 5110                                 |                               |
| FO79AO.0      |                            |                |                      |                             | 4359                                 |                               |
| FO80AO.0      |                            |                |                      |                             | 5419                                 |                               |
| FO81AO.0      |                            |                |                      |                             | 5921                                 |                               |
| MO82AO.0      |                            |                |                      |                             | 3627                                 |                               |
| FO83AO.0      |                            |                |                      |                             | 4988                                 |                               |
| MO84AO.0      |                            |                |                      |                             | 5292                                 |                               |
| MO85AO.0      |                            |                |                      |                             | 5499                                 |                               |
| MO86AO.0      |                            |                |                      |                             | 499                                  |                               |
| FO87AO.0      |                            |                |                      |                             | 4862                                 |                               |
| FO88AO.0      |                            |                |                      |                             |                                      |                               |
| FO89AO.0      |                            |                |                      |                             | 4797                                 |                               |
| FO90AO.0      |                            |                |                      |                             | 4799                                 |                               |
| FO91AO.0      |                            |                |                      |                             |                                      |                               |
| FO92AO.0      |                            |                |                      |                             |                                      |                               |
| MO93AO.0      |                            |                |                      |                             |                                      |                               |
| FO94AO.0      |                            |                |                      |                             |                                      |                               |
| FO95AO.0      |                            |                |                      |                             | 4719                                 |                               |

## P. ANCILLARY

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS                             |
|---------------|---------------------------------------------------|
| FO45AO.O      | PNEUMONIA; SENILITY                               |
| FO47AO.O      | SPECIAL STUDY                                     |
| FO48AO.O      | CHRONIC PANCREATITIS                              |
| FO49AO.O      | ISLET CELL TUMOR; BRAIN HEMORRHAGE                |
| MO50AO.O      | SPECIAL STUDY                                     |
| FO51AO.O      | SPECIAL STUDY                                     |
| FO52AO.O      | SPECIAL STUDY                                     |
| FO53AO.O      | THYROID CARCINOMA                                 |
| FO54AO.O      | SPECIAL STUDY                                     |
| FO55AO.O      | NEPHRITIS; METASTATIC CALCIFICATION               |
| MO56AO.O      | VOLVULUS + PERITONITIS                            |
| FO57AO.O      | UNDIFFERENTIATED MALIGNANCY                       |
| MO58AO.O      | SPECIAL STUDY                                     |
| MO59AO.O      | SPECIAL STUDY                                     |
| MO61AO.O      | FIBROSARCOMA (ABDOMEN)                            |
| FO62AO.O      | AORTA THROMBO-EMBOLISM                            |
| FO63AO.O      | MAMMARY CARCINOMA, TRANSITIONAL CELL CARCINOMA    |
| FO68AO.O      | UNDIFFERENTIATED CARCINOMA                        |
| FO70AO.O      | FIBROSARCOMA (ORAL); NEPHRITIS                    |
| MO71AO.O      | SPECIAL STUDY                                     |
| MO73AO.O      | DEGENERATION OF ADRENAL GLAND + DIABETES MELLITUS |
| FO74AO.O      | LYMPHO SARCOMA                                    |
| MO75AO.O      | AORTIC THROMBUS                                   |
| FO76AO.O      | EPIDERMOID CARCINOMA (ORAL); THYROID CARCINOMA    |
| FO77AO.O      | SENILITY                                          |
| FO78AO.O      | MAMMARY CARCINOMA                                 |
| FO79AO.O      | PNEUMONIA                                         |
| FO80AO.O      | LUNG CARCINOMA                                    |
| FO81AO.O      | FIBROSARCOMA (ORAL); NEPHRITIS                    |
| MO82AO.O      | LUNG CARCINOMA                                    |
| FO83AO.O      | SARCOMA (INTESTINE)                               |
| MO84AO.O      | PEMPHIGUS VULGARIS                                |
| MO85AO.O      | SENILITY                                          |
| MO86AO.O      | SPECIAL STUDY                                     |
| FO87AO.O      | SPECIAL STUDY                                     |
| FO88AO.O      | REASSIGNED, SEE T107W5.O                          |
| FO89AO.O      | REASSIGNED, SEE T074P4.O                          |
| FO90AO.O      | REASSIGNED, SEE T075P4.O                          |
| FO91AO.O      | SPECIAL STUDY                                     |
| FO92AO.O      | SPECIAL STUDY                                     |
| MO93AO.O      | REASSIGNED, SEE T076P4.O                          |
| FO94AO.O      | REASSIGNED, SEE T077P3.O                          |
| FO95AO.O      | SPECIAL STUDY                                     |

## P. ANICILLARY

| DOG<br>NUMBER | INJECTION<br>AGE<br>(DAYS) | WEIGHT<br>(KG) | INJECTED<br>(uCi/KG) | DATE<br>INJECTED<br>D MO YR | AGE (DAYS)<br>AS OF<br>31/3/79 DEATH | DOSE TO<br>SKELETON<br>(RADs) |
|---------------|----------------------------|----------------|----------------------|-----------------------------|--------------------------------------|-------------------------------|
| FO96AO.0      |                            |                |                      |                             | 4373                                 |                               |
| FO97AO.0      |                            |                |                      |                             | 4117                                 |                               |
| FO98AO.0      |                            |                |                      |                             | 3752                                 |                               |
| FO99AO.0      |                            |                |                      |                             | 479                                  |                               |
| M100AO.0      |                            |                |                      |                             | 407                                  |                               |
| M101AO.0      |                            |                |                      |                             | 290                                  |                               |
| F102AO.0      |                            |                |                      |                             | 243                                  |                               |
| M103AO.0      |                            |                |                      |                             | 217                                  |                               |
| M104AO.0      |                            |                |                      |                             | 188                                  |                               |
| F105AO.0      |                            |                |                      |                             | 157                                  |                               |
| F106AO.0      |                            |                |                      |                             | 4325                                 |                               |
| F107AO.0      |                            |                |                      |                             | 4137                                 |                               |
| F108AO.0      |                            |                |                      |                             | 1969                                 |                               |
| F109AO.0      |                            |                |                      |                             | 2253                                 |                               |
| F110AO.0      |                            |                |                      |                             |                                      |                               |
| F111AO.0      |                            |                |                      |                             | 2923                                 |                               |
| F112AO.0      |                            |                |                      |                             | 2942                                 |                               |
| F113AO.0      |                            |                |                      |                             |                                      |                               |
| F114AO.0      |                            |                |                      |                             | 2591                                 |                               |
| F115AO.0      |                            |                |                      |                             | 2057                                 |                               |
| F116AO.0      |                            |                |                      |                             |                                      |                               |
| F117AO.0      |                            |                |                      |                             |                                      |                               |
| F118AO.0      |                            |                |                      |                             |                                      |                               |
| F119AO.0      |                            |                |                      |                             |                                      |                               |
| F120AO.0      |                            |                |                      |                             |                                      |                               |
| F121AO.0      |                            |                |                      |                             |                                      |                               |
| F122AO.0      |                            |                |                      |                             |                                      |                               |
| F123AO.0      |                            |                |                      |                             | 375                                  |                               |
| F124AO.0      |                            |                |                      |                             |                                      |                               |
| F125AO.0      |                            |                |                      |                             |                                      |                               |
| F126AO.0      |                            |                |                      |                             |                                      |                               |
| F127AO.0      |                            |                |                      |                             |                                      |                               |
| F128AO.0      |                            |                |                      |                             |                                      |                               |
| F129AO.0      |                            |                |                      |                             |                                      |                               |
| F130AO.0      |                            |                |                      |                             | 2464                                 |                               |
| F131AO.0      |                            |                |                      |                             | 2463                                 |                               |
| F132AO.0      |                            |                |                      |                             | 2419                                 |                               |
| F133AO.0      |                            |                |                      |                             | 2323                                 |                               |
| F134AO.0      |                            |                |                      |                             | 2323                                 |                               |
| F135AO.0      |                            |                |                      |                             | 2299                                 |                               |
| M136AO.0      |                            |                |                      |                             | 2419                                 |                               |
| F137AO.0      |                            |                |                      |                             |                                      |                               |
| F138AO.0      |                            |                |                      |                             |                                      |                               |

## P. ANCILLARY

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS        |
|---------------|------------------------------|
| F096AO.0      |                              |
| FO97AO.0      | SPECIAL STUDY                |
| FO98AO.0      | MAMMARY CELL CARCINOMA       |
| FO99AO.0      | SPECIAL STUDY                |
| M100AO.0      | SPECIAL STUDY                |
| M101AO.0      | SPECIAL STUDY                |
| F102AO.0      | SPECIAL STUDY                |
| M103AO.0      | SPECIAL STUDY                |
| M104AO.0      | SPECIAL STUDY                |
| F105AO.0      | SPECIAL STUDY                |
| F106AO.0      | SPECIAL STUDY                |
| F107AO.0      | SPECIAL STUDY                |
| F108AO.0      | ENCEPHALOMALACIA (BACTERIAL) |
| F109AO.0      | METRITIS                     |
| F110AO.0      | REASSIGNED, SEE T078P3.0     |
| F111AO.0      | PNEUMONIA                    |
| F112AO.0      | SPECIAL STUDY                |
| F113AO.0      | REASSIGNED, SEE T123P2.0     |
| F114AO.0      | SPECIAL STUDY                |
| F115AO.0      | GASTRIC CARCINOMA            |
| F116AO.0      | REASSIGNED, SEE F501P2.0+    |
| F117AO.0      | REASSIGNED, SEE F501R4.0+    |
| F118AO.0      | REASSIGNED, SEE F501P1.0+    |
| F119AO.0      | REASSIGNED, SEE F501P1.7+    |
| F120AO.0      | REASSIGNED, SEE F501P3.0+    |
| F121AO.0      | REASSIGNED, SEE F501R3.0+    |
| F122AO.0      | REASSIGNED, SEE F502P3.0+    |
| F123AO.0      | ACCIDENTAL STRANGULATION     |
| F124AO.0      | REASSIGNED, SEE F502P1.7+    |
| F125AO.0      | REASSIGNED, SEE F502P2.0+    |
| F126AO.0      | REASSIGNED, SEE F503P1.7     |
| F127AO.0      | REASSIGNED, SEE F503P2.0+    |
| F128AO.0      | REASSIGNED, SEE F502R4.0+    |
| F129AO.0      | REASSIGNED, SEE F503R3.0+    |
| F130AO.0      |                              |
| F131AO.0      |                              |
| F132AO.0      |                              |
| F133AO.0      |                              |
| F134AO.0      |                              |
| F135AO.0      |                              |
| M136AO.0      |                              |
| F137AO.0      | REASSIGNED; SEE F504R5.0+    |
| F138AO.0      | REASSIGNED; SEE F504P2.0+    |

## P. ANICILLARY

| DOG<br>NUMBER | INJECTION<br>AGE<br>(DAYS) | WEIGHT<br>(KG) | INJECTED<br>(uCi/KG) | DATE<br>INJECTED<br>D MO YR | AGE (DAYS)<br>AS OF<br>31/3/79 DEATH | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|----------------------------|----------------|----------------------|-----------------------------|--------------------------------------|-------------------------------|
| F139AO.0      |                            |                |                      |                             |                                      |                               |
| F140AO.0      |                            |                |                      |                             |                                      |                               |
| F141AO.0      |                            |                |                      |                             | 1830                                 |                               |
| F142AO.0      |                            |                |                      |                             |                                      |                               |
| F143AO.0      |                            |                |                      | 2092                        |                                      |                               |
| F144AO.0      |                            |                |                      | 2264                        |                                      |                               |
| F145AO.0      |                            |                |                      | 2280                        |                                      |                               |
| F146AO.0      |                            |                |                      | 2058                        |                                      |                               |
| F147AO.0      |                            |                |                      |                             |                                      |                               |
| F148AO.0      |                            |                |                      |                             | 1801                                 |                               |
| F149AO.0      |                            |                |                      | 1906                        |                                      |                               |
| F150AO.0      |                            |                |                      | 1793                        |                                      |                               |
| F151AO.0      |                            |                |                      | 1793                        |                                      |                               |
| F152AO.0      |                            |                |                      |                             | 568                                  |                               |
| F153AO.0      |                            |                |                      | 1870                        |                                      |                               |
| F154AO.0      |                            |                |                      | 1732                        |                                      |                               |
| F155AO.0      |                            |                |                      | 1730                        |                                      |                               |
| F156AO.0      |                            |                |                      | 1745                        |                                      |                               |
| F157AO.0      |                            |                |                      | 1732                        |                                      |                               |
| F158AO.0      |                            |                |                      | 1721                        |                                      |                               |
| F159AO.0      |                            |                |                      | 1515                        |                                      |                               |
| F160AO.0      |                            |                |                      |                             |                                      |                               |
| F161AO.0      |                            |                |                      | 1515                        |                                      |                               |
| F162AO.0      |                            |                |                      | 1515                        |                                      |                               |
| F163AO.0      |                            |                |                      |                             | 1257                                 |                               |
| F164AO.0      |                            |                |                      |                             |                                      |                               |
| M165AO.0      |                            |                |                      | 730                         |                                      |                               |
| M166AO.0      |                            |                |                      |                             | 388                                  |                               |
| M167AO.0      |                            |                |                      |                             | 369                                  |                               |
| M168AO.0      |                            |                |                      |                             | 517                                  |                               |
| M169AO.0      |                            |                |                      |                             | 513                                  |                               |
| M170AO.0      |                            |                |                      |                             | 510                                  |                               |
| M171AO.0      |                            |                |                      |                             | 95                                   |                               |
| F172AO.0      |                            |                |                      |                             | 518                                  |                               |
| F173AO.0      |                            |                |                      |                             | 89                                   |                               |
| F174AO.0      |                            |                |                      |                             | 94                                   |                               |
| F175AO.0      |                            |                |                      |                             | 520                                  |                               |
| F176AO.0      |                            |                |                      |                             | 521                                  |                               |
| M177AO.0      |                            |                |                      |                             | 3420                                 |                               |
| M178AO.0      |                            |                |                      |                             | 1168                                 |                               |
| M179AO.0      |                            |                |                      |                             | 4125                                 |                               |
| F180AO.0      |                            |                |                      |                             | 3658                                 |                               |
| M181AO.0      |                            |                |                      |                             | 1211                                 |                               |

## P. ANCILLARY

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS     |
|---------------|---------------------------|
| F139AO.0      | REASSIGNED; SEE F505P2.0+ |
| F140AO.0      | REASSIGNED; SEE F505P1.7+ |
| F141AO.0      | CHRONIC PANCREATITIS      |
| F142AO.0      | REASSIGNED; SEE F503P1.0+ |
| F143AO.0      |                           |
| F144AO.0      |                           |
| F145AO.0      |                           |
| F146AO.0      |                           |
| F147AO.0      | REASSIGNED; SEE F506P1.7+ |
| F148AO.0      | SPECIAL STUDY             |
| F149AO.0      |                           |
| F150AO.0      |                           |
| F151AO.0      |                           |
| F152AO.0      | SPECIAL STUDY             |
| F153AO.0      |                           |
| F154AO.0      |                           |
| F155AO.0      |                           |
| F156AO.0      |                           |
| F157AO.0      |                           |
| F158AO.0      |                           |
| F159AO.0      |                           |
| F160AO.0      | REASSIGNED; SEE T211P2.0  |
| F161AO.0      |                           |
| F162AO.0      |                           |
| F163AO.0      | SPECIAL STUDY             |
| F164AO.0      | REASSIGNED; SEE T206P2.0  |
| M165AO.0      | SPECIAL STUDY             |
| M166AO.0      | SPECIAL STUDY             |
| M167AO.0      | SPECIAL STUDY             |
| M168AO.0      | SPECIAL STUDY             |
| M169AO.0      | SPECIAL STUDY             |
| M170AO.0      | SPECIAL STUDY             |
| M171AO.0      | SPECIAL STUDY             |
| F172AO.0      | SPECIAL STUDY             |
| F173AO.0      | SPECIAL STUDY             |
| F174AO.0      | SPECIAL STUDY             |
| F175AO.0      | SPECIAL STUDY             |
| F176AO.0      | SPECIAL STUDY             |
| M177AO.0      | SPECIAL STUDY             |
| M178AO.0      | SPECIAL STUDY             |
| M179AO.0      | SPECIAL STUDY             |
| F180AO.0      | SPECIAL STUDY             |
| M181AO.0      | SPECIAL STUDY             |

## P. ANICILLARY

| DOG<br>NUMBER | INJECTION<br>AGE<br>(DAYS) | WEIGHT<br>(KG) | INJECTED<br>(uCi/KG) | DATE<br>INJECTED<br>D MO YR | AGE (DAYS)<br>AS OF<br>31/3/79 DEATH | DOSE TO<br>SKELETON<br>(RADS) |
|---------------|----------------------------|----------------|----------------------|-----------------------------|--------------------------------------|-------------------------------|
| M182AO.0      |                            |                |                      |                             | 196                                  |                               |
| M183AO.0      |                            |                |                      |                             | 3064                                 |                               |
| F184AO.0      |                            |                |                      |                             | 184                                  |                               |
| M185AO.0      |                            |                |                      |                             | 524                                  |                               |
| M186AO.0      |                            |                |                      |                             | 189                                  |                               |
| F187AO.0      |                            |                |                      |                             | 93                                   |                               |
| F188AO.0      |                            |                |                      |                             | 193                                  |                               |
| F189AO.0      |                            |                |                      |                             | 262                                  |                               |
| F190AO.0      |                            |                |                      |                             | 372                                  |                               |
| F191AO.0      |                            |                |                      |                             | 176                                  |                               |
| M192AO.0      |                            |                |                      |                             | 91                                   |                               |
| M193AO.0      |                            |                |                      |                             | 369                                  |                               |
| F194AO.0      |                            |                |                      |                             | 371                                  |                               |
| M195AO.0      |                            |                |                      |                             | 362                                  |                               |
| M196AO.0      |                            |                |                      |                             | 1168                                 |                               |
| M197AO.0      |                            |                |                      |                             | 275                                  |                               |
| F198AO.0      |                            |                |                      |                             | 274                                  |                               |
| M199AO.0      |                            |                |                      |                             | 279                                  |                               |
| M200AO.0      |                            |                |                      |                             | 263                                  |                               |
| F201AO.0      |                            |                |                      |                             | 267                                  |                               |
| M202AO.0      |                            |                |                      |                             | 4150                                 |                               |
| F203AO.0      |                            |                |                      |                             | 3546                                 |                               |
| M204AO.0      |                            |                |                      |                             | 182                                  |                               |
| F205AO.0      |                            |                |                      |                             | 91                                   |                               |
| F206AO.0      |                            |                |                      |                             | 1347                                 |                               |
| F207AO.0      |                            |                |                      |                             | 1316                                 |                               |
| M208AO.0      |                            |                |                      |                             | 797                                  |                               |
| M209AO.0      |                            |                |                      |                             | 782                                  |                               |
| M210AO.0      |                            |                |                      |                             | 1389                                 |                               |
| F211AO.0      |                            |                |                      |                             | 1217                                 |                               |
| F212AO.0      |                            |                |                      |                             |                                      |                               |
| F213AO.0      |                            |                |                      |                             |                                      |                               |
| F214AO.0      |                            |                |                      |                             |                                      |                               |
| F215AO.0      |                            |                |                      |                             | 1116                                 |                               |
| F216AO.0      |                            |                |                      |                             | 1915                                 |                               |
| F217AO.0      |                            |                |                      |                             | 1515                                 |                               |
| F218AO.0      |                            |                |                      |                             | 1497                                 |                               |
| F219AO.0      |                            |                |                      |                             | 1473                                 |                               |
| F220AO.0      |                            |                |                      |                             | 1425                                 |                               |
| F221AO.0      |                            |                |                      |                             |                                      |                               |
| F222AO.0      |                            |                |                      |                             | 934                                  |                               |
| F223AO.0      |                            |                |                      |                             | 558                                  |                               |
| F224AO.0      |                            |                |                      |                             | 548                                  |                               |

## P. ANCILLARY

| DOG<br>NUMBER | COMMENTS ON DEAD DOGS    |
|---------------|--------------------------|
| M182AO.O      | SPECIAL STUDY            |
| M183AO.O      | SPECIAL STUDY            |
| F184AO.O      | SPECIAL STUDY            |
| M185AO.O      | SPECIAL STUDY            |
| M186AO.O      | SPECIAL STUDY            |
| F187AO.O      | SPECIAL STUDY            |
| F188AO.O      | SPECIAL STUDY            |
| F189AO.O      | SPECIAL STUDY            |
| F190AO.O      | SPECIAL STUDY            |
| F191AO.O      | SPECIAL STUDY            |
| M192AO.O      | SPECIAL STUDY            |
| M193AO.O      | SPECIAL STUDY            |
| F194AO.O      | SPECIAL STUDY            |
| M195AO.O      | SPECIAL STUDY            |
| M196AO.O      | SPECIAL STUDY            |
| M197AO.O      | SPECIAL STUDY            |
| F198AO.O      | SPECIAL STUDY            |
| M199AO.O      | SPECIAL STUDY            |
| M200AO.O      | SPECIAL STUDY            |
| F201AO.O      | SPECIAL STUDY            |
| M202AO.O      | SPECIAL STUDY            |
| F203AO.O      | SPECIAL STUDY            |
| M204AO.O      | SPECIAL STUDY            |
| F205AO.O      | SPECIAL STUDY            |
| F206AO.O      |                          |
| F207AO.O      |                          |
| M208AO.O      | SPECIAL STUDY            |
| M209AO.O      | SPECIAL STUDY            |
| M210AO.O      |                          |
| F211AO.O      |                          |
| F212AO.O      | REASSIGNED; SEE T207P2.O |
| F213AO.O      | REASSIGNED; SEE T208P2.O |
| F214AO.O      | REASSIGNED; SEE T209P2.O |
| F215AO.O      |                          |
| F216AO.O      |                          |
| F217AO.O      |                          |
| F218AO.O      |                          |
| F219AO.O      |                          |
| F220AO.O      |                          |
| F221AO.O      | REASSIGNED; SEE T212P2.O |
| F222AO.O      |                          |
| F223AO.O      |                          |
| F224AO.O      |                          |