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B-DECAY IN THE SKYRME-WITTEN REPRESENTATION OF QCD
Neal J. Snyderman

Physics Department UCRL-JC--107462
Lawrence Livermore National Laboratory
P.0. Box 808 DE91 015122
Livermore, CA 94550
ABSTRACT

The renormalized coupling strength of the B-decay axial vector current is related to
7 p cross sections through the Adler-Weisberger sum rule, that follows from
chiral symmetry. We attempt to understand the Adler-Weisberger sum rule in the
1/N; expansion in QCD, and in the Skyrme-Witten model that realizes the 1/N,
expansion in the low energy limit, using it to explicitly calculatc both ga and the n*
p cross sections.

From QCD and electroweak theory, neutron f-decay proceeds through a d-1/3 quark in a neutron
making a transition to a u?/3 quark in a proton, emitting a virtual W-, which then converts to the &
v pair. At the Lagrangian level, the W couples with the same strength, once accounting for the
Cabbibo angle, to all quarks and leptons. Nevertheless, it is remarkable that there is approximare
universality in B-decay — the parameters that describe this neutron decay process and nuclear -
decay processes are very close to those in ji-decay — despite the strong interaction giuon radiative
corrections in the hadronic cases. The differential decay rate for neutron B-decay is [1]

2
dr= coszec3—(2:‘fr-2—E%p3dpedchQv( g8 +3g2)
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where Ey = Mp-Mp - Ee. The renormalization of the hadronic vector current, gy, is very close to |
because isospin is such a good symmetry, and because the hadronic charged isospin currents are
part of an isovector multiplet with the electromagnetic current. Low energy theorms for QED then
guarantee the lack of renormalization corrections at low qz [2]. For the hadronic #xial vector
current, even though it t0o is almost conserved, there is no corresponding low energy theorm.
There is, however, the remarkable Adler-Weisberger sum rule [3,4], that follows from chiral
symmetry, that relates ga to the cross sections of massless n* from protons,

2
1- 1_2 = —Z];'i—f d;lz {Gnp (8) ~ Onp (5)) .
A TEANN Jisamap S~

The integrated cross sections approximately cancel, leaving ga = 1.24.
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I will argue here that this approximate cancellation is a reflection of the approximate validity of the
1/N. expansion in QCD [5]. I will sketch the dual conceptualization of QCD of Witten [6,7] that
follows from generalizing the number of quark colors from 3 to N¢, and expanding in 1/N¢. I will
indicate how one can analyse low energy hadronic interactions, and nuclei and nuclear interactions,
from the Skyrme -Witten model, an effective Lagrangian for massless pseudoscalar degrees of
freedom, in which baryons and nuclei are topological solitons, skyrmions [§]. This is a radical
conceptualization of nuclear physics, which I will attempt to justify. Skyrme introduced many of
these ideas in a visionary way 30 years ago. His work was largely ignored until they were shown
by Witten to fit into QCD. [t is perhaps fitting that Stu Bloom, who's career we celebrate today,
who's contributions to B-decay range from both fundamental experiments on parity violation to
shell model calculations of B-decay processes in complex nuclei, should be about to participate in
exploring this old problem in a very new way. It is within this framework that we will attempt 10
understand the renormalization of the Gamow-Teller strength.

First, a brief review of QCD. QCD describes the interactions of quarks through a generalization of
electromagnetism,

_= g A, 1ra2
L-q(D-ﬁG“z)q La?

where q=(u, d, s, ...)}, and where A% ,a=1, -, N2-1 are the NxN matrix generators of SU(N).
Each quark is in the complex N-dimensional representation of SU(N) on which the A2 act. Thus
the SU(3) theory has been embedded into a class of similar theories. There are also mass terms for
the quarks, which arise from the electroweak interactions, and which are perturbations on the
dynamics of this theory. For the lightest u, d, and s quarks, the quarks play an important
dynamical role; the heavier c, b, and t quarks have little effect on the dynamics of the color fields
in which they move. There are primarily three kinds of basic physical excitations of the theory—
mesons, baryors, and giueballs. The mesons are quark-amiquark pairs,

T9c — qi(x ')Pexp(i -{%J

where the operator on the left is a local color singlet, and where Dirac or flavor matrices or
derivative operators could be inseried between the fields to define meson operators of different
Lorentz or flavor quantum numbers; on the right, P is the path ordering symbol, and the separated
quark fields are connected by a string of color electric flux created by the exponential of the line
integral of the vector potential. Such an operator for the extended meson is gauge invariant.
Baryons are created by the local operator,

N Ca
Gﬂ%dx“) adx) ,

c=1

€97 % qc,Qey - Qe

anti-symmetric in color indices, and where the corresponding flavor and non-local generalizations
are analogous to the meson case. Glueballs are created by the operator,

.8 A2
U'Pexp(xﬁc{q; ) dxH) .
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where the line integral is now around a closed curve, C; this operator creates loops (closed strings)
of color electric flux. There are also exotic states, such as baryonium, color singlet states of Nc-1
quarks and N¢-1 antiquarks that are both antisymmetric in color.

In contrast to QED. this theory actually has no coupling constant. The effective coupling,
corrected by quantum fluctuations, is asymptotically free [9},

g %Ne =
EQ(P/u) h‘ ln{ P2) .
where the middle expression is valid for - P2>> u? , where [ is an arbitrary subtraction scale

needed to define renormalized Green's functions, and

bo=—L1—(11N:-2ng) ,
24 n? ¢ )

where ny is the number of quarks of mass lighter than . The second form follows from the
definition,

& polinl = 8 p Lin L
+ 2 bpAln-- = 2 botIn-L- |

Ne "2 y2 Ne 7272

or
A =u exp - No/bog? .

A sets the mass scale, and 1/A sets the size for all particles in the theory. If L is chosen differently,
g2 must also be readjusted to keep A fixed. This trading of g for A is called dimensional
transmutation. All mass ratios are pure numbers. In the SU(3) theory, there are no parameters;

by embedding the theory in the SU(N) class of theories, there is now a parameter, 1/N.

With massless quarks there is a large global symmetry of the theory, chiral symmerry. The left and
right handed flavor multiplet of quarks can be independently ransformed into one another,

qu—>AqL,
qr > Bar .

At the classical level, the matrices A and B are U(ny) matrices, but quantum mechanically one of the
symmetry generators is "anomalous,”

s 2, -~
Fqhrsq = 2nENeG e
16n2 "

This lack of current conservation of the flavor singlet axial current reduces the exact chiral
symmetry to [10}
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SUL(np)xSUR(npxUg(1)xZA(np),

where Ug(1) is the baryon number symmetry, and Z(np) is a discrete ng-fold subgroup of the axial
UA(1) symmetry that is still left unbroken despite the anomaly. The dynamics of the theory will
lead to a vacuum that spontaneously breaks the chiral SUL(n)xSURr(nf) symmetry down to
SU(ng); that is, the vacuum is infinitely degenerate, the axial SU(ng) charges generate
transformations from one equivalent vacuum to another, and each vacuum state is invariant under a
vector SU(nf) symmetry, so physical particles in the theory will be in irreducible representations of
SU(ng). (The degenerate vacua correspond to the points of a coset manifold,
SUL(nPxSUR(np/SU(ng).) As we mentioned above, when the quark masses are turned on, ng =3,
although even for the heavier quarks, the particles' qu-ntum numbers will be those of SU(6)
representations. Quark masses lift the degenerancy of the vacuum and pick out a single direction in
the vacuum coset manifold.

In order to calculate masses, scattering amplitudes, or nuclear structure from this theory, some
kind of approximation scheme is required. Since the theory has no expansion paramerer one must
create one — latrice gauge theory and the 1/N¢ expansion are the possibilities so far. On the lattice
there is a coupling, g, and in the leading approximation of the strong coupling expansion one has a
perturbation expansic.. in the correct physical degrees of freedom — quark confinement and
spontaneous chiral symmetry breaking are features of the strong coupling limit. (While quark
confinement can be understood in strong coupling perturbation theory [11], spontaneous chiral
symmetry breaking is nonperturbative [12].) However, the continuum limit, taking the lattice
spacing a — 0, requires g — 0 as well, keeping )
A= _’fl_exp 1
bog?

fixed. Monte Carlo methods have been very useful for studying the hadron mass spectrum and
thermodynamic quantities, but physical calculations with dynamical quarks are still beyond the
computing capabilities of even special purpose supercomputers [13]. Hamiltonian variational
methods (such as the t - expansion [14] that Stu and Grant and I [15] have worked on) may hold
promise for calculating similar quantities.

Physical processes for which there is factorization of short and long distance physics have
perturbatively calculable short distance parts, and may also have calculable matrix elements by
lattice methods.

The 1/N¢ expansion [5,6,16], while much more qualitative thus far, hoids great promise as a way
of understanding low energy scattering processes and nuclear saucture. Instead of focusing on the
quark and gluon degrees of freedom of the theory, there is an (in principle) exact rewriiing of the
theory in terms of meson fields, and in which baryons and nuclei [6] are topological solitons.

The 1/N; expansion is a topological expansion of Feynman diagrams. That is, each order in 1/N¢
sums an o class of Feynman diagrams involving gluon exchanges, but such that the diagrams fit
on 2-dimensional surfaces of different topology, with the number of holes or handles increasing 10
each order in 1/N [16]. A quark line is a boundary, and gluon lines are expressed as quark-
antiquark lines. Each closed quark closed loop gives a factor ot iv¢. The topological expansicn is
exactly analogous to similar expansions in the dual resonance modvl and string theory. In a siring
theory one generalizes Feynman path integrals from trajectories to surfaces, and sums over all
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surfaces of increasing topological complexity, with more holes or handles to each higher order of
approximation. In the leading order of the 1/N, expansion, there are = Regge trajectories of
noninteracting mesons. To order 1/¥ N, these mesons interact.

Baryons are antisymmetric in color, and have totally symmetric spatial wavefunctions. For Nc—
oo, the state of the quark spatial wavefunction becomes macroscopically occupied; that is, the wave
function becomes a classical field. The baryon mass is of order N¢, or like 1/(1/N¢). This
behavior is characteristic of solitons [6].

If 1/N¢ can be considered small, then mesons are weakly interacting, and baryons and nuclei are
semiclassical solitons of this theory of mesons. The semiclassical approximation to this quan::m
field theory is a generalization of the WKB approximation of quantum mechanics [17], and 1/N¢
corresponds to A.

The string theory that corresponds to the meson theory of the 1/N¢ expansion is so far unknown.
However, for understanding nuclei and low energy nuclear scattering, one does not really need to
have a meson theory with an o= tower of increasing mass mesons. Even for large nuclei, one does
not need to start from an effective theory that includes excitations comparable to the nuclear mass.
The relevant point is how sensitive is the physics of nuclei to short distance degrees of freedom.
Those higher mass excitations just renormalize the parameters in the effective Lagrangian for the
lightest mesons. We will in fact include only massless © and K and n degrees of freedom. The p
and higher mass particles are only necessary as explicit degrees of freedom in the effective
Lagrangian if the pion fields are changing in space or time on scales of order 1/my, ~1/4 f. Our
effective Lagrangian will therefore not be sufficient to describe the annhilation of the N N system,
even though it may describe heavy nuclzi. Also, the exact chiral Lagrangian describing
pseudoscalar dynamics involves all powers of a field describing fluctuations in the vacuum coset
space; higher powers of the field involve higher derivatives and dimensional couplings. The
effective Lagrangian we will consider is a truncation of this derivative £xpansion series. Since
higher derivative terms of the chiral fields have dimensional compensating factors of inverse
masses, and these masses will correspond to more massive mesons with the orcer of the term,
only a few terms may be necessary.

The effective Lagrangiaa for the low energy dynamics of massless pseudoscalar mesons, for 3
quark flavors, is

L=%:rauua“u-l FNJIU) +---

where U = exp(2in2(x,0)A?/fr) is an element of SU(3), and where fr ~186 MeV is the pion decay
constant measured in T — W~ vy, The first term in this effective Lagrangian, the nonlinear sigma
model, was shown by Weinberg [18,19] to reproduce standard current algebra. Expanding the
exponential gives interactions of arbitrary numbers of mesons. I’ is the Wess-Zumino [20] term
introduced originally to explain anomalous processes like K+K- — n+n-n0. Witen [7] showed
that the Wess-Zumino term makes the x fields pseudoscalar, and that N¢ must be an integer, and
corresponds to color. (We will return to the - terms below.) This effective lagrangian has all the
same symmetries and topology of QCD. It can be deduced directly from QCD [21]. Not only
does this effective Lagrangian describe pseudoscalar meson dynamics, but it also describes baryon
dynamics. All field configurations U(x,t) fit into discrete classes characterized by
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B =—Ll_¢iik| &3 r U'IV,U U'V,U U W, U .
24r2 !

B is an integer and corresponds to baryon number [8].

Since many features of strong interaction dynamics follow from the symmetry and topology of the
1/N¢ expansion, this kind of effective chiral lagrangian may be a good approximation to describing
the physics of hadrons and nuclei, especially when quark mass symmetry breaking effects that mix
representations are included [19]. One may first ask, though, why an SU(3) chiral model with K's
and M's should be required to describe nuclear physics. It is only the SU(3) chiral model with
Wess-Zumino term that properly correlates color and flavor, and has all the symmetries and
topology of QCD [7]. The quantum numbers that conrc from allowed symmetrized wavefunctions
of spin 1/2 colored quarks of given isospin and hypercharge are exactly reproduced from the
topology of meson field configurations; baryons are fermions if N is odd, bosons if iN. is even,
and the Gell-Mann SU(3) representations for baryons, a spin 1/2 octet and spin 3/2 decuplet are
correlated with N¢=3. For the SU(2) model, there is an additional symmetry not present in QCD
[7); ther is a naive parity, X = — X, and there is also the symmetry, U — U-l, while only the
prodict is a symmetry of QCD corresponding to pions being pseudoscalar. Also, color does not
explicitly enter the soliton quantum number determination; the freedom to quantize the soliton as
either a ferrnion or boson may be interpreted as odd or even color, but the isospin representations
are the same for all N , although the number of allowed representations increases with Nc. In the
model, since there is no constraint on the maximum isospin, this suggests N¢ — e

QOne may also object that with mg ~1/2 GeV, the pseudoscalar masses are far from zero, so how is
it possible to dynamically neglect them. Despite the relatively large K and 1 (and even m) masses,
they are in fact perturbations on the QCD dynamics, just as the Coulomb interaction is a
perturbation on conventional nuclear interactions. Both quark masses and Coulomb interactions
should be considered perturbations of the same magnitude. The Coulomb interaction breaks
isospin symmetry in nuclei; the Coulomb interaction is an isospin magnetic field — just as an
external magnetic field on atoms produces the Zeeman splitting of angular momentum multiplets,
the Coulomb interaction produces the isospin Zeeman effect splitting of isospin muliiplets.
Similarly, the quark masses are like an external magnetic field on a ferromagner. (Actually, the
chiral vacuum is more like an antiferromagnet.) Just as the spin waves in a ferromagnet become
higher energy excitations due to the external field, so do the pseudoscalar mesons. The
pseudoscalar masses, while large (because they are proportional 10 VA), are anomalously light
compared to their spin flip vector partners. Their masses are properly explained in this way. Also,
the sucess of current algebra in explaining the dynamics of pseudoscalar mesons is comparable to
Gell-Mann SU(3) Clebsch-Gordan relations; chiral symmetry is as good a dynamical symmetry
as unitary symmetry, which is almost as good a symmetry as isospin {32].

Returning to the effective chiral Lagrangian, if the Skyrme term (8],

—L_w[U3,U, U3 U
3282,

is added, one of two terms of the next order in the derivative expansion, stable finite energy soliton
solutions of the classical field equations exist with integer B. gonp o mp/fr [22] is the pan
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coupling that determines the p width. In the 1/N; expansion, fr ~ VN, and Epnn ~ 14N, 16}, so
this term is of the same order in N as the first terms. In perturbation theory in the fields =, this
term gives the low energy limit of n-%t scattering through the p meson.

For B=1, the soliton solution is of the form
Al Uo O ) a
Ua A{ 0o 1 1A

where Ug(x) = exp(iF(r)T.1) , and where F(r=o) = 0, and F(r=0) = &, and A is a constant SU(3)
matrix. This field configuration has localized energy of size 1/gpnafy ~ (No)V. The Gell'Mann
SU(3) invariance of a vacuum state, corresponding to different values of A, leads, in the
semiclassical quantization (7, 23], to excited states as excited rotational modes. Restrictions on the
SU(3) rotor uantum numbers, mentioned above, linking color and flavor representations,
follows from symmertry of the skyrmion and topology.

The 7 fluctuations about the soliton,
U = expliF(rfiDY AN+ 2i6x%x, A Ex) |,
correspond to vibrationa! modes. The action for the fluctuating field is of the form [25],

L{U)=L{Up) + —é—apﬁn: 2"8n (1—281:2/f,2, +- } + fiapan J5{Un) + 0,81 x 8 o J{Up) +- -+ .
21

Since Ua is a solution to the equations of motion, the axial current J5#(Ua) is conserved. The
term quadratic in pion fluctuation fields, is of the form

j&:-D"(UA)-Sn + (A terms) |

where D! is the inverse pion propagator in the background field of a Skyrmion, A determinant of
the fluctuation operator arises from summing over all fluctuations 8n. From det-1/2[D-1] = exp[-
1/2 r log{3-1], the log, which is the sum of all continuum eigenvalues times the time, can be
expanded in an infirate sum of one-loop Feynman diagrams of the pion with insertions of the
external classical field. Divergences, which arise from the first few graphs, are absorbed into a
renormalization of fr (seagull and self-energy graphs of the pion propagator), of gpnr , pius a
renormalization of the coefficient of

[rr (a“UB"U")]Z ,

a term of the same order in derivatives as the Skyrme term. This term contains momentum
corrections to the low energy limit of & exchange for n-x scattering. The renormalization of this
term and the Skyrme term arise from the one-loop 2-pion exchange graphs of n-x scattering [19] ,
with G or p-exchange quantum numbers. (Because the effective field theory is nonrenormalizable,
additional terms in the effective Lagrangian must be included to each order in perturbation theory to
absorb the divergences. The higher loop graphs with multiple pion exchange correspond to higher
mass meson resonances; their large masses suppress the contribution of the higher derivative
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counterterms.) The divergent renormalizations for B>{ have exactly the same counterterms as the
B=0 sector [16, 24]. After renormalizing the divergences, the sum of eigenvalues of the
flucuation operator gives a finite renormalization of the soliton mass.

While the continuous eigenvalues of the fluctuation operator give the renormalizations, the
asymptotic behavior of the corresponding eigenfunctions give the scattering thasc shifts for 7-N

scattering. In the lowest approximation to x-N scattering [26], of order (N¢)Y, the terms in dA/dt
are neglected,

D-Y(Ua)=DYA) D-{Uo) DI(A™)

The operator K = L{pion) + I(pion) commutes with D-1(Up), and so the eigenfunctions are of the
form

Sufx,t) = 3 melr) e Bt X (0,0)
KL

where X are the vector spherical harmonics, and the orbital angular momentum has the values:
L=K, Ktl. For L=K, for example,

kk{r)—> A(w) julkr) + B(w) ng(kr) |

the S-matrix is

Skxx(®) = /:\4- ;g = e2ibkxl®)

The other channels, with L=K*1 are similar. From these amplitudes the physical S-matrix with
conserved total angular momentum and isospin (or flavor SU(3) ) are constructed by angula~
momentumn recoupling methods [26, 27].

Neutron B-decay is a function of gy and ga. In this model, gy is calculated, in lowest order, from
the matrix elements of the vector current,

f dA X1 AA) JUA) X T 4A) eiax dx

where %1/2%;3 s3(A) is the wavefunction for the isospin 1/2, spin 1/2 nucleon. For q— 0, only the
time component of the vector current is nonzero, and there is no spin flip. Explicit calculation of
this matrix element gives gy =1. This is a consequence of exact isospin invariance of the model.
When pion electromagnetic mass splitting is included, gy will differ from 1 by effects of order
a/n.

As for ga, if it is calculated in the analogous way to gy. only the spatial components of the axial
current contribute for a nucleon spin flip, as it should for a nonrelativistic Gamow-Teller transitivn.
The resulting value of ga {28] is, however, too small. Furthermore, it is of arder N , making its
small value even harder to understand. The Adler-Weisberger sum rule should contain the solution
to this mystery. We will argue that it implies the lowest order wrong value of ga should be related
to a lowest order wrong value for the integrated cross sections fo+ n-N scattering.
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From the elastic ®-N scattering phase shifts, 3t pr, with J=L£1/2, one calculates

Or'p - Onp = ig—z (21+1)[Sin2 SL3/20 {%—Sin2 5|_|3/2'1 + %—Sin2 8|_,1/;~__1)] .
L.J

From the lowest order phase shifts, of order (N¢)9, umerical evaluation of the spectral integral
gives a small result [28]; its value being sensitive to the numerical accuracy. T. see what this
implies about ga, consider the Adler-Wessberger relation re-expressed

Bl aﬁj 49 (050)- o) -

™

We have expressed the spectral integral in the lab frame, and have used the Goldberger-Treiman
relation [30], 2ZMga/gaNN = iy , which is satisfied in the model (28]. Now the lowest order
calculation of ga is of order N, making the :eft hand side of order N¢Z, and fy ~ VN , making
the coefficient of the spectral integral of order Nc. Rewriting the spectral integral

g?\ =1+f2 d—%’-(z (2]+1)%[sin2 83727 -sin? 8[_‘[/2‘]] ) .
@’ L)

it is not clear how the integral can be of crder N to match the N dependence of the left hand side,
since the phase shifts are of order (Ng)O. One seems forced to assume thart the integral is
dominated by @ ~ 1/N.1/3 (which I do not understand, although to lowest order, the A resonance
is a threshold bound state [26], and once past the baryon resonance regime the n* cross sections
rapidly become equal). If this is wue, thougn, then, equating terms of order M2, the small value
of g is related to the small value of the lowest order difference of the n-N scattering cross
sections. The 1 term is still missing; however, it is contained in the order 1/N¢ contribution to the
7-N scattering cross secticns. The excitation of the A resonance, the dominant feature of the n-N
scatcering cross section, and of Oy4p - Ox—p, ir a I/N¢ effect [26]. Without the A resonance, the
integrated diifzrence of cross sections almost caicel, eaplaining the small value of g4 found by
Adkins, Nappi, and Witten [28). Therefore, the 1/N; corrections should be responsible for
determining the correct value of ga,

The proper way to confirm this 1/N¢ analysis is to return 1o the derivation of the Adler-Weisberger
sum rule. It follows from the proton matrix elements of [3]

[Qf.Qsl=25; .

A complete set of states is inserted, and the evaluation is carried out in the infinite momentum
frame. It is interesting that the time components ¢. the axial charges enter here, and as we have
mentioned, in Iowest order in B-decay only the space components conwibute. However, the
charge is a limit of the Fourier transform of the current, and the time components will contribute to
the terms of order q. (By Loreatz invariance, g4 must be the same coefficient of the nucleon
matrix el :ments of either the space or time components.) The evaluation of the commutator in the
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1/N; expansion is analogous io the evaluation of the soliton expectation value of the canonical
commuta:ion relations that Goldstone and Jackiw [31] evaluated in models in one spatial
dimension. Inelastic processes in ®-N scattering are higher order in 1/Ng, just as states with a
soliton and many mesons are suppressed in the semiclassical expansion. This would then explain
the rapid convergence of the Adler-Weisberger sum rule. The implementation of this analysis is in
progress.

The 1/N corrections to ®t-N scattering are of three kinds. The first corresponds to the A resonance
pole contributior, and arises 2s the classical Skymmion background field contribution to the pion
propagator. The second and third correspond respectively to the recoil of the Skyrmion in the
scattering process and to the vibrational-rotational mode correction to the inverse pion propagator
in the background (iso)rotating Skyrmion field. The addition of the terms in dX/dt and dA/dt
should correct the S, P, and D waves of the analyses of Mattis, Peskin, and Karliner [26,27]. ltis
this probivm that, with Stu, we are currently engaged in understanding.

This work was performed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore National Laboratory under contract number W-7405-ENG-4#8
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