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ABSTRACT 

The renormalized coupling strength of the p-decay axial vector current is related to 
Tt* p cross sections through the Adler-Weisberger sum rule, that follows from 
chiral symmetry. We attempt to understand the Adler-Weisberger sum rule in the 
1/NC expansion in QCD, and in the Skyrme-Witten model that realizes the 1/N^ 
expansion in the low energy limit, using it to explicitly calculate both gA and the Jt* 
p cross sections. 

From QCD and electroweak theory, neutron p-decay proceeds through a d"W quark in a neutron 
making a transition to a u 2 ' 3 quark in a proton, emitting a virtual W", which then converts to the e" 
v pair. At the Lagrangian level, the W couples with the same strength, once accounting for the 
Cabbibo angle, to all quarks and leptons. Nevertheless, it is remarkable that there is approximate 
universality in P-decay — the parameters that describe this neutron decay process and nuclear P-
decay processes are very close to those in |i-decay — despite the strong interaction gluon radiative 
corrections in the hadronic cases. The differential decay rate for neutron P-decay is [1] 

r 2 

dT = cos2ec-^E-E5pIdpcdi2edQv(gv + 3 gA) 
32it 2 

• ^ ^ P e ' P v - 2 ( 4 ^ ) s n . p e + 2 ( 4 ^ ) s n . p v 

gv + 3 g A Uv + 3 g A / lgv + 3 g A / 

where E v = M n-M p - Eg. The renormalization of the hadronic vector current, g v, is very close to 1 
because isospin is such a good symmetry, and because the hadronic charged isospin currents are 
parr of an isovector multiplet with the electromagnetic current. Low energy theorms for QED then 
guarantee the lack of renormalization corrections at low q 2 [2]. For the hadronic ?xial vector 
current, even though it too is almost conserved, there is no corresponding low energy theorm. 
There is, however, the remarkable Adler-Weisberger sum rule [3,4], that follows from chiral 
symmetry, that relates gA to the cross sections of massless 71* from protons, 

^MoVpM-oVpCs)) . 

The integrated cross sections approximately cancel, leaving gA = 1.24. 
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I will argue here that this approximate cancellation is a reflection of tha approximate validity of the 
1/NC expansion in QCD [5]. I will sketch the dual conceptualization of QCD of Witten [6,7] that 
follows from generalizing the number of quark colors from 3 to N c, and expanding in 1/NC. I will 
indicate how one can analyse low energy hadronic interactions, and nuclei and nuclear interactions, 
from the Skyrme -Witten model, an effective Lagrangian for massless pseudoscalar degrees of 
freedom, in which baryons and nuclei are topological solitons, skyrmions [8]. This is a radical 
conceptualization of nuclear physics, which I will attempt to justify. Skyrme introduced many of 
these ideas in a visionary way 30 years ago. His worl- was largely ignored until they were shown 
by Witten to fit into QCD. It is perhaps fitting that Stu Bloom, who's career we celebrate today, 
who's contributions to |5-decay range from both fundamental experiments on parity violation to 
shell model calculations of P-decay processes in complex nuclei, should be about to participate in 
exploring this old problem in a very new way. It is within this framework that we will attempt to 
understand the renormalization of the Gamow-Teller strength. 

First, a brief review of QCD. QCD describes the interactions of quarks through a generalization of 
electromagnetism, 

where q=(u, d, s, ...) l, and where X.a , a = 1, - , N2-1 are the NxN matrix generators of SU(N). 
Each quark is in the complex N-dimensional representation of SU(N) on which the Xa act. Thus 
the SU(3) theory has been embedded into a class of similar theories. There are also mass terms for 
the quarks, which arise from the electroweak interactions, and which are perturbations on the 
dynamics of this theory. For the lightest u, d, and s quarks, the quarks play an important 
dynamical role; the heavier c, b, and t quarks have little effect on the dynamics of the color fields 
in which they move. There are primarily three kinds of basic physical excitations of the theory-
mesons, baryor.s, and giueballs. The mesons are quark-ani:quark pairs, 

£ q ^ q c ^ q ^ x ' ) P e x J i J y G^dxMqdx) , 

where the operator on the left is a local color singlet, and where Dirac or flavor matrices or 
derivative operators could be inserted between the fields to define meson operators of different 
Lorentz or flavor quantum numbers; on the right, P is the path ordering symbol, and the separated 
quark fields are connected by a string of color electric flux created by the exponential of the line 
integral of the vector potential. Such an operator for the extended meson is gauge invariant. 
Baryons are created by the local operator, 

anti-symmetric in color indices, and where the corresponding flavor and non-local generalizations 
are analogous to the meson case. Giueballs are created by the operator, 

t r P e x p j i - ^ J j G ^ d x M 
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where the line integral is now around a closed curve, C; this operator creates loops (closed strings) 
of color electric flux. There are also exotic states, such as baryonium, color singlet states of Nc-1 
quarks and Nc-1 antiquarks that are both antisymmetric in color. 

In contrast to QED. this theory actually has no coupling constant. The effective coupling, 
corrected by quantum fluctuations, is asymptotically free [9], 

vtm- ,g'"-, . - r - f *-tf# *ft 
2 

where the middle expression is valid for - P 2 » M- , where n is an arbitrary subtraction scale 
needed to define renormalized Green's functions, and 

b 0 = ^ - { l l N c - 2 n f ) , 
24 7t2 

where nr is the number of quarks of mass lighter than u.. The second form follows from the 
definition, 

A = u. exp - Nc/bog2 • 

A sets the mass scale, and 1/A sets the size for all panicles in the theory. If (i is chosen differently, 
g 2 must also be readjusted to keep A fixed. This trading of g for A is called dimensional 
transmutation. All mass ratios are pure numbers. In the SU(3) theory, there are no parameters; 
by embedding the theory in the SU(N) class of theories, there is now a parameter, 1/NC. 

With massless quarks there is a large global symmetry of the theory, chiral symmetry. The left and 
right handed flavor multiplet of quarks can be independently transformed into one another, 

q L - » A q L , 

qR -> B q R . 

At the classical level, the matrices A and B are U(nf) matrices, but quantum mechanically one of the 
symmetry generators is "anomalous," 

g 2/N c B ^ T S q - Z n ^ o ' ^ " 
16 31 

This lack of current conservation of the flavor singlet axial current reduces the exact chiral 
symmetry to [10] 



Page 4 

SUL(nf)xSUR(nf)XUB(l)xZA(nf), 

where UB( 1) is the baryon number symmetry, and ZA(nf) is a discrete nf-fold subgroup of the axial 
UA(1) symmetry that is still left unbroken despite the anomaly. The dynamics of the theory will 
lead to a vacuum that spontaneously breaks the chiral SUL(nf)xSUR(nf) symmetry down to 
SU(nf); that is, the vacuum is infinitely degenerate, the axial SU(nf) charges generate 
transformations from one equivalent vacuum to another, and each vacuum state is invariant under a 
vector SU(nr) symmetry, so physical particles in the theory will be in irreducible representations of 
SU(nr). (The degenerate vacua correspond to the points of a coset manifold, 
SUL(nr)xSUR(nf)/SU(nr).) As we mentioned above, when the quark masses are turned on, nr =3, 
although even for the heavier quarks, the particles' qu-jitum numbers will be those of SU(6) 
representations. Quark masses lift the degenerancy of the vacuum and pick out a single direction in 
the vacuum coset manifold. 

In order to calculate masses, scattering amplitudes, or nuclear structure from this theory, some 
kind of approximation scheme is required. Since the theory has no expansion paramerer one must 
create one — lattice gauge theory and the 1/NC expansion are the possibilities so far. On the lattice 
there is a coupling, g, and in the leading approximation of the strong coupling expansion one has a 
perturbation expansid. in the correct physical degrees of freedom — quark confinement and 
spontaneous chiral symmetry breaking are features of the strong coupling limit. (While quark 
confinement can be understood in strong coupling perturbation theory [11], spontaneous chiral 
symmetry breaking is nonperturbative [12].) However, the continuum limit, taking the lattice 
spacing a —> 0, requires g —> 0 as well, keeping 

A = -*-exp — 1 — 
a bog* 

fixed. Monte Carlo methods have been very useful for studying the hadron mass spectrum and 
thermodynamic quantities, but physical calculations with dynamical quarks are still beyond the 
computing capabilities of even special purpose supercomputers [13]. Hamiltonian variational 
methods (such as the t - expansion [14] that Stu and Grant and I [15] have worked on) may hold 
promise for calculating similar quantities. 

Physical processes for which there is factorization of short and long distance physics have 
perturbatively calculable short distance parts, and may also have calculable matrix elements by 
lattice methods. 

The 1/NC expansion [5,6,16], while much more qualitative thus far, holds great promise as a way 
of understanding low energy scattering processes and nuclear structure. Instead of focusing on the 
quark and gluon degrees of freedom of the theory, there is an (in principle) exact rewriting of the 
theory in terms of meson fields, and in which baryons and nuclei [6] are topological solitons. 

The 1/NC expansion is a topological expansion of Feynman diagrams. That is, each order in 1/NC 

sums an ~ class of Feynman diagrams involving gluon exchanges, but such that the diagrams fit 
on 2-dimensional surfaces of different topology, with the number of holes or handles increasing to 
each order in 1/NC [16]. A quark line is a boundary, and gluon lines are expressed as quark-
antiquark lines. Each closed quark closed loop gives a factor of Kc. The topological expansion is 
exactly analogous to similar expansions in the dual resonance modol and string theory. In a string 
theory one generalizes Feynman path integrals from trajectories to .surfaces, and sums over all 
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surfaces of increasing topological complexity, with more holes or handles to each higher order of 
approximation. In the leading order of the 1/NC expansion, there are ~ Regge trajectories of 
noninteracting mesons. To order 1/V N c, these mesons interact. 

Baryons are antisymmetric in color, and have totally symmetric spatial wavefunctions. For Nc—> 
~, the state of the quark spatial wavefunction becomes macroscopically occupied; that is, the wave 
function becomes a classical field. The baryon mass is of order N c , or like 1/(1/NC). This 
behavior is characteristic of solitons [6]. 

If 1/NC can be considered small, then mesons are weakly interacting, and baryons and nuclei are 
semiclassical solitons of this theory of mesons. The semiclassical approximation to this quantum 
field theory is a generalization of the WKB approximation of quantum mechanics [17], and 1/NC 

corresponds to ft. 

The string theory that corresponds to the meson theory of the 1/NC expansion is so far unknown. 
However, for understanding nuclei and low energy nuclear scattering, one does not really need to 
have a meson theory with an °° tower of increasing mass mesons. Even for large nuclei, one does 
not need to start from an effective theory that includes excitations comparable to the nuclear mass. 
The relevant point is how sensitive is the physics of nuclei to short distance degrees of freedom. 
Those higher mass excitations just renormalize the parameters in the effective Lagrangian for the 
lightest mesons. We will in fact include only massless it and K and r\ degrees of freedom. The p 
and higher mass particles are only necessary as explicit degrees of freedom in the effective 
Lagrangian if the pion fields are changing in space or time on scales of order l/m p -1/4 f. Our 
effective Lagrangian will therefore not be sufficient to describe the annhilation of the N N system, 
even though it may describe heavy nucbi. Also, the exact chiral Lagrangian describing 
pseudoscalar dynamics involves all powers of a field describing fluctuations in the vacuum coset 
space; higher powers of the field involve higher derivatives and dimensional couplings. The 
effective Lagrangian we will consider is a truncation of this derivative expansion series. Since 
higher derivative terms of the chiral fields have dimensional compensating factors of inverse 
masses, and these masses will correspond to more massive mesons with the order of the term, 
only a few terms may be necessary. 

The effective Lagrangian for the low energy dynamics of massless pseudoscalar mesons, for 3 
quark flavors, is 

1 = i t t t a n u 3 ' l u ' 1 + N<RV)+• • • • 
where U = exp(2i7ta(x,t)Xa/f,t)js an element of SU(3), and where fn -186 MeV is the pion decay 
constant measured in w -> \i- v .̂. The first term in this effective Lagrangian, the nonlinear sigma 
model, was shown by Weinberg [18,19] to reproduce standard current algebra. Expanding the 
exponential gives interactions of arbitrary numbers of mesons. T is the Wess-Zumino [20] term 
introduced originally to explain anomalous processes like K+K- -> JI+JTJI 0. Witten [7] showed 
that the Wess-Zumino term makes the it fields pseudoscalar, and that N c must be an integer, and 
corresponds to color. (We will return to the ••• terms below.) This effective lagrangian has al! the 
same symmetries and topology of QCD. It can be deduced directly from QCD [21]. Not only 
does this effective Lagrangian describe pseudoscalar meson dynamics, but it also describes baryon 
dynamics. All field configurations U(x,t) fit into discrete classes characterized by 
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B = -1—£« k d3x tr U"1 V,U U' 1 V;U U> VOJ . 
24K2 J ' 

B is an integer and corresponds to baryon number [8]. 

Since many features of strong interaction dynamics follow from the symmetry and topology of the 
1/NC expansion, this kind of effective chiral lagrangian may be a good approximation to describing 
the physics of hadrons and nuclei, especially when quark mass symmetry breaking effects that mix 
representations are included [19], One may first ask, though, why an SU(3) chiral model with K's 
and ri's should be required to describe nuclear physics. It is only the SU(3) chiral model with 
Wess-Zumino term that properly correlates color and flavor, and has all the symmetries and 
topology of QCD [7]. The quantum numbers that come from allowed symmetrized wavefunctions 
of spin 1/2 colored quarks of given isospin and hypercharge are exactly reproduced from the 
topology of meson field configurations; baryons are fermions if N c is odd, bosons if Wc is even, 
and the Gell-Mann SU(3) representations for baryons, a spin 1/2 octet and spin 3/2 decuplet are 
correlated with N c=3. For the SU(2) model, there is an additional symmetry not present in QCD 
[7]; ther is a naive parity, x -> - x, and there is also the symmetry, U -» U"1, while only the 
product is a symmetry of QCD corresponding to pions being pseudoscalar. Also, color does not 
explicitly enter the soliton quantum number determination; the freedom to quantize the soliton as 
either a fermion or boson may be interpreted as odd or even color, but the isospin representations 
are the same for all N c , although the number of allowed representations increases with N c. In the 
model, since there is no constraint on the maximum isospin, this suggests N c -»<». 

One may also object that with IDR -1/2 GeV, the pseudoscalar masses are far from zero, so how is 
it possible to dynamically neglect them. Despite the relatively large K and r\ (and even JI) masses, 
they are in fact perturbations on the QCD dynamics, just as the Coulomb interaction is a 
perturbation on conventional nuclear interactions. Both quark masses and Coulomb interactions 
should be considered perturbations of the same magnitude. The Coulomb interaction breaks 
isospin symmetry in nuclei; the Coulomb interaction is an isospin magnetic field — just as an 
external magnetic field on atoms produces the Zeeman splitting of angular momentum multiplets, 
the Coulomb interaction produces the isospin Zeeman effect splitting of isospin multiplets. 
Similarly, the quark masses are like an external magnetic field on a ferromagnet. (Actually, the 
chiral vacuum is more like an antiferromagnet.) Just as the spin waves in a ferromagnet become 
higher energy excitations due to the external field, so do the pseudoscalar mesons. The 
pseudoscalar masses, while large (because they are proportional to VA), are anomalously light 
compared to their spin flip vector partners. Their masses are properly explained in this way. Also, 
the sucess of current algebra in explaining the dynamics of pseudoscalar mesons is comparable to 
Gell-Mann SU(3) Clebsch-Gordan relations; chiral symmetry is as good a dynamical symmetry 
as unitary symmetry, which is almost as good a symmetry as isospin [32]. 

Returning to the effective chiral Lagrangian, if the Skyrme term [8], 

—L— trfu- '^U.U-'dvU] 2 , 
•^Bpjm 

is added, one of two terms of the next order in the derivative expansion, stable finite energy soliton 
solutions of the classical field equations exist with integer B. gpnK •* mp/tK [22] is the pint 
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coupling that determines the p width. In the 1/NC expansion, frc - VNC, and g p T O l ~ 1/VNC [6], so 
ihis term is of the same order in N c as the first terms. In perturbation theory in the fields n, this 
term gives the low energy limit of it-Jt scattering through the p meson. 

For B=1, the soliton solution is of the form 

U A = A( « • J )A-' . 

where Un(x) = exp(iF(r)r.T) , and where F(r=~) = 0, and F(r=0) = it, and A is a constant SU(3) 
matrix. This field configuration has localized energy of size l/gp^f^ - (N c) n . The Gell'Mann 
SU(3) invariance of a vacuum state, corresponding to different values of A, leads, in the 
semiclassical quantization [7,23], to excited states as excited rotational modes. Restrictions on the 
SU(3) rotor quantum numbers, mentioned above, linking color and flavor representations, 
follows from symmetry of the skyrmion and topology. 

The K fluctuations about the soliton, 

U = exp(iF(r^D1(A)Xi+2i5ita(x,t)X,'/fn) , 

correspond to vibrational modes. The action for the fluctuating field is of the form [25], 

H\J) = L(VA) + ia^Sit •0,18it (l -25jt2/f£ +-••)+ -j-B^n: - J^UA) + d^n x 5K .JM(U A) + • • • . 
^ MI 

Since UA is a solution to the equations of motion, the axial current JSUTLJA) 'S conserved. The 
term quadratic in pion fluctuation fields, is of the form 

terms; , 

where D"1 is the inverse pion propagator in the background field of a Skyrmion, A determinant of 
the fluctuation operator arises from summing over all fluctuations SJI. From d e r ^ D - 1 ] = exp[-
1/2 tr log[£H], the iog, which is the sum of afi continuum eigenvalues times the time, can be 
expanded in an infinate sum of one-loop Feynman diagrams of the pion with insertions of the 
external classical field. Divergences, which arise from the first few grpphs, are absorbed into a 
renormalization of fn (seagull and self-energy graphs of the pion propagator), of gpj[K , plus a 
renormalization of the coefficient of 

[tr(a,uAj-f, 

a term of the same order in derivatives as the Skyrme term. This term contains momentum 
corrections to the low energy limit of cr exchange for 7t-ic scattering. The renormalization of this 
term and the Skyrme term arise from the one-loop 2-pion exchange graphs of n-iz scattering [19], 
with a or p-exchange quantum numbers. (Because the effective field theory is nonrenormalizable, 
additional terms in the effective Lagrangian must be included to each order in perturbation theory to 
absorb the divergences. The higher loop graphs with multiple pion exchange correspond to higher 
mass meson resonances; their large masses suppress the contribution of the higher derivative 
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counterterms.) The divergent renormalizations for B>0 have exactly the same counterterms as the 
B=0 sector [16, 24]. After renormalizing the divergences, the sum of eigenvalues of the 
fluctuation operator gives a finite renormalization of the soliton mass. 

While the continuous eigenvalues of the fluctuation operator give the renormalizations, the 
asymptotic behavior of the corresponding eigenfunctions give the scattering phase shifts for jt-N 
scattering. In the lowest approximation to JI-N scattering [26], of order (Nc)0, the terms in dA/dt 
are neglected, 

D ! ( U A ) = D 1 ( A ) 0 1 ( U O ) D I ( A - 1 ) , 

The operator K = L(pion) + I(pion) commutes with D"'(Uo), and so the eigenfuncrions are of the 
form 

Sjt(x,t)= £ iTKdr)e-iEiXia.KJe,<t>) . 
K.L 

where X are the vector spherical harmonics, and the orbital angular momentum has the values: 
L=K, K±l. For L=K, for example, 

lKK(r)-» A(co)jK<kr) + B(co) nic(kr) , 

the S-matrix is 

SKKK("3) = ^ ± J § - = e2i8«i"=<<0' . 
A - I D 

The other channels, with L=K+1 are similar. From these amplitudes the physical S-matrix with 
conserved total angular momentum and isospin (or flavor SU(3) ) are constructed by angular 
momentum recoupling methods [26, 27]. 

Neutron B-decay is a function of gv and gA- In this model, gv is calculated, in lowest order, from 
the matrix elements of the vector current, 

dA Xi/21/2(A) -WUA) X%MM e i , - x d 3 x • 

where X1/2*i3 s3(A) is ihe wavefunction for the isospin 1/2, spin 1/2 nucleon. For q—> 0, only the 
rime component of the vector current is nonzero, and there is no spin flip. Explicit calculation of 
this matrix element gives gv =1. This is a consequence of exact isospin invariance of the model. 
When pion electromagnetic mass splitting is included, gv will differ from 1 by effects of order 
a/it. 

As for gA, if it is calculated in the analogous way to gv, only the spatial components of the axial 
current contribute for a nucleon spin flip, as it should for a nonrelativisric Gamow-Teller transition. 
The resuming value of gA [28] is, however, too small. Furthermore, it is of order N c , making its 
small value even harder to understand. The Adler-Weisberger sum rule should contain the solution 
to this mystery. We will argue that it implies the lowest order wrong value of gA should be related 
to a lowest order wrong value for the integrated cross sections fo- Jt-N scattering. 
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From the elastic 7C-N scattering phase shifts, 8m> with J=L±l/2, one calculates 

0VP - oy P = 2f£ (2J+l)[sin2 5L,3/2.J - j j s i n 2 °L,3/2,j + | s i n 2 SLJCJ)] . 

From the lowest order phase shifts, of order (Nc)°, 'lumerical evaluation of the spectral integral 
gives a small result [28]; its value being sensitive to the numerical accuracy. l j see what this 
implies about gA, consider the Adler-Wessberger relation re-expressed 

g 2 A=l+t1 *2^( ^ K - P M - ^ P N ) -

We have expressed the spectral integral in the lab frame, and have used the Goldberger-Treiman 
relation [30], 2MgA/gitNN = fit . which is satisfied in the model [287. Now the lowest order 
calculation of gA is of order N c, making the ;eft hand side of order N c

2 , and fn - -•JNC , making 
the coefficient of the spectral integral of order N c. Rewriting the spectral integral 

g A - 1 + £ & a ( X (2J+l)|[sin 2 SL.3/2.J -sin2 8L. 1 / 2,j] 

it is not clear how the integral can be of order Nc to match tht Wc dependence of the left hand side, 
since the phase shifts are of order (N c)°. One seems forced to assume that the integral is 
dominated by (0 - l/N; 1 ' 3 (which I do not understand, although to lowest order, the A resonance 
is a threshold bound state [26], and once past the baryon resonance regime the it* cross sections 
rapidly become equal). If this is true, though, then, equating terms of order M c

2, the small value 
of gA is related to the small value of the lowest order difference of the Jt-N scattering cross 
sections. The 1 term is still missing; however, it is contained in the order 1/NC contribution to the 
Jt-N scattering cross sections. The excitation of the A resonance, the dominant feature of the Tt-N 
scattering cross section, and of c^+p - Gn-p, i.- a 1/NC effect [26]. Without the A resonance, the 
integrated dufsre^e of cross sections almost cai.xel, e\plaining the small value of gA found by 
Adkins, Nappi, and Witten [28]. Therefore, tht 1/MC corrections should be responsible for 
determining the correct value of gA. 

The proper way to confirm this 1/NC analysis is to return to the derivation of the Adler-Weisberger 
sum rule. It follows from the proton matrix elements of [3] 

[Oi,Q-5] = 2I 3 . 

A complete set of states is inserted, and the evaluation is carried out in the infinite momentum 
frame. It is interesting that the time components c," the axial charges enter here, and as we have 
mentioned, in lowest order in P-decay only the space components contribute. However, the 
charge is a limit of the 1-ourier transform of the current, and the time components will contribute to 
the terms of order q. (By Lorentz invariance, gA must be the same coefficient of the nucleon 
matrix el ;ments of either the space or time components.) The evaluation of the commutator in the 
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1/NC expansion is analogous i.o the evaluation of the soliton expectation value of the canonical 
commutaiion relations that Goldstone and Jackiw [31 j evaluated in models in one spatial 
dimension. Inelastic processes in ir-N scattering are higher order in 1/NC, just as states with a 
soliton and many mesons are suppressed in the semiclassical expansion. This would then explain 
the rapid convergence of the Adler-Weisberger sum rule. The implementation of this analysis is in 
progress. 

The 1/NC corrections to ic-N scattering are of three kinds. The first corresponds to the A resonance 
pole contributior, and nrises zs the classical Skyrmion background field contribution to the pion 
propagator. The second and third correspond respectively to the recoil of the Skyrmion in the 
scattering process and to the vibrational-rotational mode correction to the inverse pion propagator 
in the background (iso)rotating Skyrmion field. The addition of the terms in dX/dt and dA/dt 
should correct the S, P, and D waves of the analyses of Mattis, Peskin, and Karliner [26,27]. It is 
this problem that, wi:h Stu, we are currently engaged in understanding. 

This work was performed under the auspices of the U.S. Department of Energy by the Lawrence 
Livermore National Laboratory under contract number W-7405-ENG--1? 
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