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ABSTRACT

Recent work for developing dynamical symmetries and
supersymmetries Is reviewed.

1 . INTRODUCTION

The Interacting Boson-Fermi on Model (IBFM) has greatly f ac i l i t a tes

both experimental and theoretical studies of odd-mass nuclei. This

model| provides a simple phenomenological description to analyze and

classify the experimental da ta 1 ) . In addition, the IBFM has con-

siderable theoretical importance in two ways. F i r s t , the coupling of

single part ic le degrees of freedom to bosons, invoked in this model,

provides an excellent theoretical laboratory to investigate boson-

fermipn mapping. Second, when the even-even core is described by one

of the symmetry chains of the Interacting Boson Model and the odd fe r -

nrion is in a configuration with particular j values, the solutions of

the IBFM Hamiltonian exhibit dynamical supersymmetries2), thus pro-

vidinb the f i r s t experimentally observed example of a supersymmetry in

!nature. Consequently, the IBFM has been widely used to analyze data

for odd-even nuclei .
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situation fpr odd-odd nuclei is completely different. The
excitjation spectra are much more compressed than those of odd-even
nucleji, and the Information on the electromagnetic transitions is very

Nevertheless, there are some recent attempts to search for
dynamical symmetries describing odd-odd nuclei3»'*»5). One major moti-j
vation 1s the simultaneous success of the U(6/4) dynamical supersym- j
metryj for m P t and l 95Au, and the U(6/12) dynamical supersymmetry for i
19l*Pt! and l 9 5Pt. The existence of these two schemes together raises
the question whether or not the odd-odd nucleus 196Au can be described
by a ,sui table combination of them. I t turns out that the simplest such
scheme1**5), incorporating the direct product supergroup U(6/4) x

1 i

11(6/1,2)» cannot account for the correct ground state spin.
Before we study algebraic approaches to the odd-odd nuclei, let me

emphasize that such nuclei are systems with two fermions. Furthermorej
since! very l i t t l e data are available for the excited states in odd-even
nucleii with two unpaired nucleons, odd-odd nuclei are the only candi-
dates1 for a mixed system of many bosons and two fermions that we can
investigate experimentally and theoretically. In order to be able to
describe odd-even nuclei properly, i t is sufficient to incorporate the
correct form of the boson-fermion exchange interaction in the
Interacting Boson-Fermion Hamil+'onian. However, an accurate descrip-
tion [of odd-odd nuclei requires the correct form of the fermion-fermion
force, (the residual interaction) as well. Correspondingly, the alge- ;
braid modeling of the spectra of odd-odd nuclei is intrinsically more i
difficult.

One major step towards a proper account of the residual neutron-
protojn residual force is to algebraically distinguish between the fer - i
m1on iconfigurations which are particle-l ike and those which are hole-
like.] To i l lustrate how this is done, let me assume for simplicity
that rthe unpaired proton (TT) and the unpaired neutron (v) occupy single
j orb;itals j and j . The dimension of unpaired proton space is m =
24^+1), and that of the unpaired neutron space is mv = 2j +1. The odd-
proton is placed in an m -dimensional representation of the group

jUpOn )̂ and the odd-neutron in an m -dimensional representation of
[ r \ n u i r v , i



ithpsgrroiupi y(N) has two N-dimensional representations: the
i .—.

fundamental (particle) representation (denoted by |_J in the Young
tableau notation), and its conjugate (antiparticle) representation

-— (4e?io :ed by Q ) . The unpaired fermions which are mostly particle-

l ike (u. > v.) are placed in the fundamental representation [~j of the

appropriate fermionic group, and the unpaired fermions which are hole-

l ike 1n the conjugate representation jVj of the associated fermionic

group*). I will denote the group realized in the conjugate represen-

tation byTJ(m). Consequently, i f the odd-proton is hole-like and the

odd-neutron is particle-l ike, the group structure of the Hamiltonran is

UB(6)jx Up(m ) x Tĵ (m ) . In a similar way, when they both are hole- |

l i ke , the group structure is Ug(6) x Up(mff) x Up(mv).

REALIZATION OF THE PARABOLIC RULE
$ome time ago i t was shown that7) the energies of the lowest-lying

states of the proton-neutron multiplet in odd-odd nuclei are quadratic ;

unctions of L(L+1), where L is the angular momentum of such states. ,

Furthermore, 1f neutron and proton are both particle-like or both hole-i

l ike,,the parabola is open down, and i f one of them is hole-like, but \

the other one is particle-like, the parabola is open up7). Let me now

demonstrate that an approximate parabolic dependence readily follows

from the scheme described in the previous paragraph. To do so, I wil l

assume that j = j = 3/2. For the two cases, when both unpaired

nucleons are particle-like (or hole-like), or when one of them is

particle-like and the other one is hole-like, the energy spectrum is

described by the same energy formula. However, since the groups are

realized In different representations, the quantum numbers, hence the

level schemes are different for these two cases. Typical spectra for

theseitwo possibilities are shown in Fig. 1 , where the same parameters

are used to calculate both spectra. The energies of four low-lying

Estates as a function of L(L+1) are plotted in Fig. 2. We observe that

Ithesejstates approximately l ie on a parabola, which is inverted

appropriately when particle or hole character of the configuration

changes6).
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Fig. 1 . Typical spectra for odd-odd nuclei when j ^ = j v = 3 /2. The
; SpinJ»v(6) representations are shown at the top of the f igure.
i
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3. EMBEDDING IN A SUPERGROUP

So far I have only talked about the Bose-Fermi symmetries for odd-

odd nuclei. Now le t me br ie f ly explain how to embed a group structure

l i ke Ug(6) x uF(m ) x TJ_(m ) into a supergroup. First i f m̂  = mv = m,

we observe that the embedding8)

SpF(2m) D SUF(m) (1)

places the odd-odd nucleus, and the two quasi-particle states of the

even-even nuclei in the same representation of SpF(2m) since the <12>

representation of Sp(2m) decomposes into SU(m) representations as

<i2> - • 9 0 » EDB (2)

The decomposition UF(m) x UF(m) D Up'
v(m) yields the adjoint ( f7j~| )

jand the singlet representations of UF(m). The adjoint representation
iis already included in Eq. (IV.2). The singlet comes from the
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Fig. 2. Realization of the
parabolic rule in the
Bose-Ferm1 symmetry for
odd-odd nuclei.

decomposition Up(2m) DSpF(2m), since the two-fermion representation

{ l 2 } of UF(2m)2' contains <12> and <0> of Spp(2m). Hence the dynamical

supersymmetry starts with the chain

U(6/2m) D UB(6) x Up(2m) D Ug(6) x Spp(2m) D Ug(6) x Up(m) (3)

and can be continued in the standard fashion2 ) .

4 . APPLICATION TO ODD-ODD GOLD ISOTOPES

In the Pt-Au region, the odd-neutron occupies mostly the levels
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\ = K°

7, 5/27 (Pi/2, P3/2. f 5 / 2 ) . and t h e odd-proton occupies

the ifevels j = l / 2 + , 3 / 2 \ 5/2+ (s^/2, d 3 / 2 , d 5 / 2 ) . For this region

12, We assume that for 196Au and 198Au nuclei, the neutron i

enumerated above can be considered as part icle- l ike9 ) . Since ;

the protons are hole-Uke, unpaired protons and neutrons can be placed |

in conjugate representations and the scheme described in the previous I

isections may be applicable. A typical spectrum predicted by the Sp(24)

'scheme is shown in Fig. 3, where the boson number is taken to be n = 5
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as the *?6Au core). Unfortunately, there is very l i t t l e data
[available on the level scheme of 196Au. I f one assumes that the
(structure of the low-lying levels would not considerably change from |
**5Atfi one might expect to get a rough idea about the applicability of !
this Scheme by examining the level scheme of l 98Au. A comparison of j
F1g. ? with the experimental level scheme for 198Au is encouraging. In|
this figure a third band 1s not shown. The two lowest levels of this
band has L = 1 and 3, and the bandhead (L=l) state can be placed at
~200 kev by choosing the parameters appropriately. Except for a low-
ly ing\3" state, there is a reasonable correspondence between the
experimental spectra and the levels predicted for E < 300 keV. In par-
it icular, the ground state spin is correct, the experimentally observed \
three11" states and the 4~ state are accounted for. On the contrary, ;
ithe scheme presented in Refs. 4 and 5 predicts the wrong ground state
ispin.and an additional low-lying 0" state which is not experimentally ;
iseen., Furthermore, i t cannot account for the experimentally observed
4~ state. These states cannot originate from the coupling of the
jpositjve-parity i i3 /2 neutron orbit and the negative-parity h n / 2 pro-
jton orbit either as was also pointed out in Ref. 5. Further experimen-
ta l exploration of a low-lying 3~ state in 198Au and a study of the
jlow-lying negative parity states in 196Au is requisite to establish the
(validity of our scheme in this region. Obviously, a study of the
jenergy spectrum alone is not sufficient in assessing the significance ,
(of a ftew symmetry, especially since the energy differences are very
small|(~75 keV). I t is also essential to study experimentally the
electromagnetic transition rates, since such a study provides the best
test i f the wavefunctions of the model. I should Indicate, however, a i
(potential d i f f icu l ty i f one wants to extend the present scheme to a !

dynamical supersymmetry describing the neighboring even-even, odd-even,
and even-odd nuclei 1n this region. Namely, the odd-proton isotopes
l95Au and l97Au would not be satisfactorily described in such an ex-
tended scheme. In particular, the appropriate Spin(6) l imi t , which was
shown,to be successful in describing these isotopes, cannot be obtained
when the odd proton occupies three orbitals with j = 1/2, 3/2, 5/2.
Hencê  no attempt has been made to extend this dynami cal Bose-Fermi
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fo.r odd-odd j nuclei to a supersymmetry.

The Sp(24) scheme outlined above motivated further work on the

dynamical symmetries for odd-odd nuc le i 1 1 ) . These authors found that

fcitftdugh there 1s considerable difference between part icle-hole and

hot'e-fiole representations of the dynamical symmetry Ug(6) x Up(12) x

Uv(12), there is negligible difference between the hole-hole and

partible-hole representations of the dynamical symmetry Ug(6) x Up(12)

!x U?(4). Much further work is needed before we achieve a successful
j «

algebraic description of odd-odd nuclei. However, I believe that the
algebraic distinction between the fermions with particle and hole
(character, and the following realization of the parabolic rule are the
right,steps in this direction.
; I would l ike to thank V. Paar, in collaboration with whom most of
; i
{the work described here is done.
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