

12/9/80
4/5

ornl

ORNL/M-1332

**OAK RIDGE
NATIONAL
LABORATORY**

MARTIN MARIETTA

Validation of SCALE-4 for a Reference Problem Set

Stephen M. Bowman

**DO NOT MICROFILM
COVER**

MANAGED BY
MARTIN MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ORNL/M--1332

DE91 016050

VALIDATION OF SCALE-4 FOR A REFERENCE PROBLEM SET*

Principal Investigator:
Stephen M. Bowman

Computing and Telecommunications Division
Nuclear Engineering Applications Department
Oak Ridge National Laboratory
P.O. Box 2008, MS 6370
Oak Ridge, TN 37831

July 1991

NOTICE: This document contains information of a preliminary nature.
It is subject to revision or correction and therefore does not
represent a final report.

Prepared under the direction of
Sandia National Laboratories
under subcontract 66-0162 with Oak Ridge National Laboratory

MARTIN MARIETTA ENERGY SYSTEMS, INC.
managing the
Oak Ridge National Laboratory Oak Ridge Y-12 Plant
Oak Ridge Gaseous Diffusion Plant Paducah Gaseous Diffusion Plant
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-84OR21400

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

8b

This report presents the results of criticality calculations performed to validate the recently released SCALE-4 modular code system¹ for light water reactor (LWR) fuel for a proposed reference problem set of critical experiments² which model various conditions typical of transportation and storage casks. In order to validate SCALE-4, the CSAS4 control module was used to calculate the effective neutron multiplication factor (k_{eff}) via the BONAMI,³ NITAWL-II,⁴ and KENO V.a⁵ codes. Calculations were performed with both SCALE-4 and SCALE-3. The cross-section libraries used were the 27-group ENDF/B-IV library (27GROUPNDF4) and the 27-group ENDF/B-IV burnup library (27BURNUPLIB). The 27BURNUPLIB library is an extension of the 27GROUPNDF4 library to include fission product nuclides which are necessary for depleted fuel analyses. The added fission product cross sections were obtained from ENDF/B-V data.

Sixteen experiments from eight references were modeled in order to examine eight different aspects of criticality related to fuel storage in transportation and storage casks:

- (1) neutron interaction between fuel assemblies,
- (2) effectiveness of neutron flux traps between fuel assemblies to reduce reactivity,
- (3) effect of voiding on the effectiveness of neutron flux traps,
- (4) effectiveness of neutron absorber plates and rods to reduce interaction between fuel assemblies,
- (5) reactivity effect of commonly used biological shielding materials,
- (6) neutron spectra shift or relative neutron moderation caused by dissolved boron,
- (7) plutonium buildup and uranium depletion, and
- (8) subcritical neutron multiplication in a cask configuration, including neutron poison baskets.

Table 1 lists the experiments modeled, their distinctive characteristics as related to the aspects of criticality listed above, and the calculated k_{eff} values. The calculations were performed with 600 neutrons per batch and a minimum of 120,000 histories. All experiments were water moderated and

Table 1. Experiment descriptions and calculated results

<u>Reference/Experiment</u>	<u>Characteristics</u>	<u>SCALE-4 27GROUP</u>	<u>SCALE-4 27BURNUP</u>	<u>SCALE-3 27GROUP</u>
5 / 214R	Flux traps	.9894±.0022	.9933±.0022	.9891±.0024
5 / 214V3	Flux traps with voids	.9971±.0022	.9918±.0020	.9990±.0023
Mean k_{eff}		.9932	.9926	.9941
<hr/>				
6 / 005	No plates	.9950±.0021	.9912±.0021	.9950±.0022
6 / 017	Boral™ plates	.9970±.0022	.9915±.0020	.9894±.0020
6 / 024	Aluminum plates	.9943±.0020	.9956±.0017	.9972±.0022
6 / 028	SS304 plates	.9890±.0029	.9952±.0019	.9923±.0021
Mean k_{eff}		.9938	.9934	.9935
<hr/>				
7 / N/A	Depleted uranium walls	.9971±.0020	.9991±.0018	.9972±.0022
7 / N/A	Lead walls	1.0046±.0024	.9980±.0024	.9994±.0021
8 / N/A	Steel walls	.9979±.0023	.9981±.0021	1.0002±.0022
Mean k_{eff}		.9999	.9984	.9989
<hr/>				
9 / 173	No boron, wide pitch	.9920±.0024	.9918±.0022	.9950±.0021
9 / 177	2.55 g/l boron, wide pitch	.9925±.0016	.9957±.0020	.9969±.0020
9 / 178	No boron, narrow pitch	.9903±.0023	.9930±.0024	.9966±.0019
9 / 181	2.55 g/l boron, narrow pitch	.9870±.0015	.9897±.0019	.9916±.0020
Mean k_{eff}		.9904	.9925	.9950
<hr/>				
10 / 2282	B_4C rods between assemblies	.9893±.0022	.9862±.0020	.9886±.0020
<hr/>				
11 / 196	Ass'y of mixed oxide & UO_2 rods arranged in an uniform pattern to approximate 20,000 MWD/MTU burnup	.9840±.0020	.9801±.0018	.9843±.0017
<hr/>				
12 / TTC-5	7 assemblies encased in AlB_2 alloy sleeves arranged in a subcritical shipping cask geometry ($k_{\text{eff}}=0.92$)	.9051±.0020	.9032±.0024	.9001±.0024

reflected, unless otherwise noted. The labels "27GROUP" and "27BURNUP" denote the 27GROUPNDF4 and the 27BURNUPLIB libraries, respectively.

The first set of experiments⁶ listed in Table 1 consisted of four fuel assemblies of 4.31 weight percent (wt %) UO_2 rods in a 1.891-cm square lattice pitch arranged in a 2 x 2 array. The assemblies were separated by a 3.73-cm-wide neutron flux trap created by 0.673-cm-thick Boral™ plates. Voids were created in the flux trap region of experiment # 214V3 by inserting three 0.63-cm-thick aluminum plates. This resulted in voiding of 51% and decreased the critical size of the experiment by approximately 9.5%. This configuration is illustrated in Fig. 1.

The second experimental set⁷ consisted of three fuel assemblies of 2.35 wt % UO_2 rods in a 2.032-cm square lattice pitch arranged in a row. Plates of Boral™, aluminum, or stainless steel were inserted between the fuel assemblies (0.645 cm from the center assembly) to determine the effect on the critical separation between the fuel assemblies.

The third set^{8,9} consisted of three fuel assemblies of 4.31 wt % UO_2 rods in a 1.892-cm square lattice pitch arranged in a row, similar to the setup of the second set. Reflecting walls of depleted uranium, lead, or steel were positioned on both sides of the fuel assemblies, 1.956 cm from the cell boundary of the assemblies.

The fourth set¹⁰ examined the effects of adding soluble boron to the water moderator. These experiments used a single array of 4.31 wt % UO_2 rods at two different lattice pitches, 1.890 cm and 1.715 cm, in order to study the effect of water-to-fuel volume ratios on highly borated systems. Although the wide-pitched assembly required less rods (357) to achieve criticality than the narrow pitched one (509) with no boron in the system, the opposite was true for the borated cases (1237 versus 1192 rods, respectively). With no boron, the wide-pitched assembly has greater moderation than the narrow-pitched assembly and is, therefore, more reactive. For the borated cases, the greater moderation of the wide-pitched assembly results in greater boron worth and lower reactivity compared to the narrow-pitched experiment.

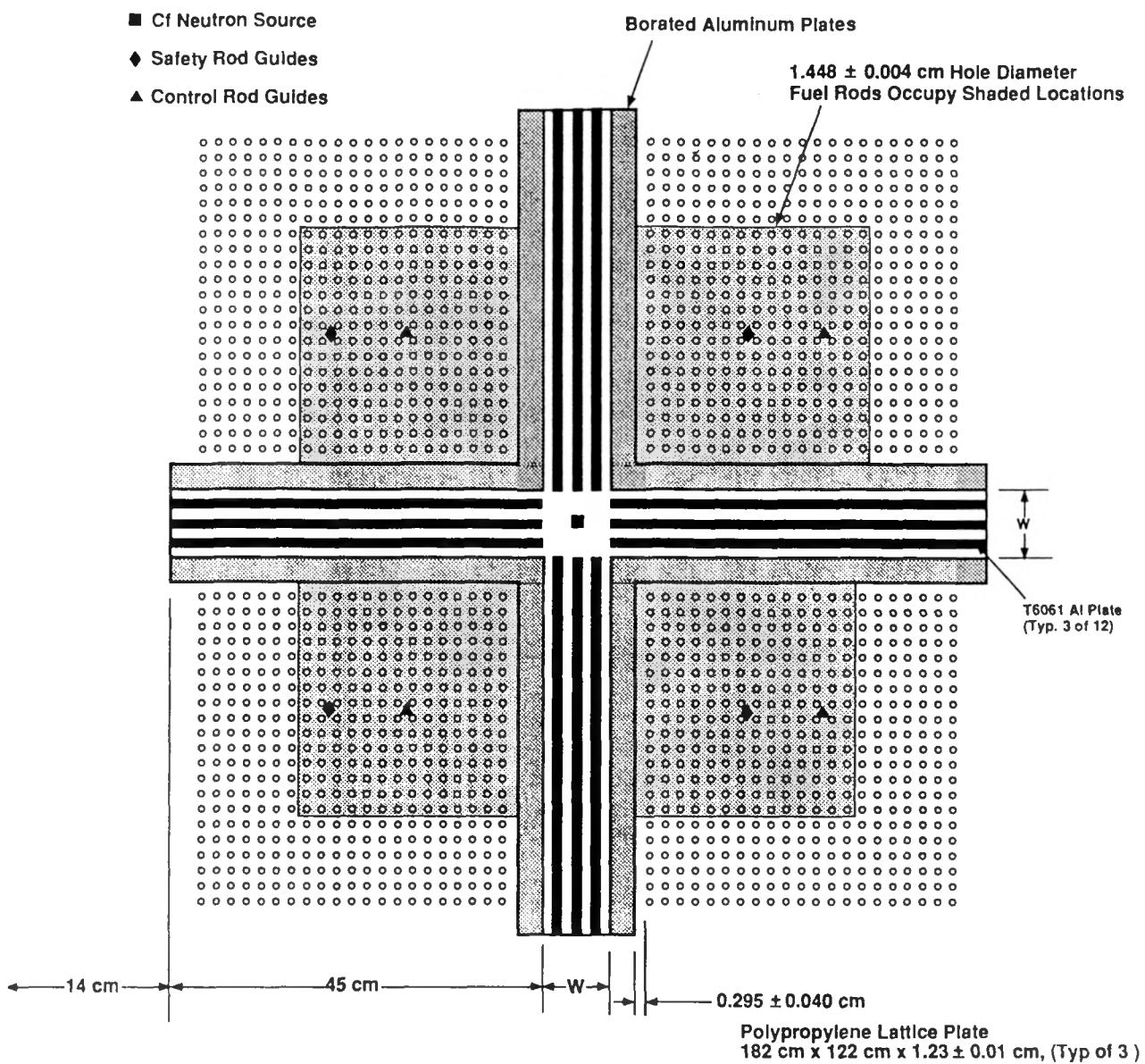


Fig. 1. Configuration for critical experiment no. 214V3.

The next experiment¹¹ consisted of nine fuel assemblies of 2.46 wt % UO₂ in a 1.636 square lattice pitch arranged in a 3 x 3 array. The assemblies were separated by a water gap containing 84 equally spaced B₄C rods.

The experiment from Ref. 12 had 583 mixed oxide pins (2 wt % PuO₂, 98 wt % natural UO₂) and 1174 4.31 wt % UO₂ rods distributed uniformly in a close-packed triangular pitch of 1.598 cm to obtain a Pu/²³⁵U ratio approximating that of 20,000 MWD/MTU burnup.

The final experiment¹³ consisted of seven assemblies of 4.31 wt % UO₂ rods encased in AlB₂ alloy sleeves arranged in a subcritical shipping cask geometry. The measured k_{eff} of this experiment was 0.92 ± 0.005 . This was determined using the Garellis-Russell method of analysis. The Gozani method was also used to analyze the measured data and yielded a k_{eff} of 0.91. Reference 13 concludes "even if the measurement data contains some harmonic contamination, k_{eff} for the assembly lies somewhere between 0.91 and 0.92 since the Gozani and the Garellis-Russell methods of analyses have a bracketing effect with respect to harmonics."

A summary of the results is presented in Table 2. The mean k_{eff} is given for various categories of experiments to help identify trends in predicting k_{eff} . SCALE-4 underpredicts k_{eff} by approximately 0.7% $\Delta k/k$ for all the critical experiments combined. The 11 water-reflected UO₂ cases have a mean k_{eff} of approximately 0.992 for both SCALE-4 cross-section libraries, while the 3 UO₂ cases with reflecting walls have a mean k_{eff} of almost 1.000. The mixed oxide case is underpredicted by 1.6% to 2.0% $\Delta k/k$, which is a greater underprediction than that seen for any of the individual UO₂ criticals. The subcritical case underpredicts the measured k_{eff} by 1.6 to 2.2% $\Delta k/k$. The trend to underpredict k_{eff} with the 27-group ENDF/B-IV cross-section libraries may generally be attributed to two reasons. First, there is no unresolved resonance shielding for ²³⁸U. This is worth approximately 0.5% Δk . Second, the difference in the resolved parameters between ENDF/B-IV and ENDF/B-V is also worth approximately 0.5% Δk . These worths will vary some with parameters which affect the neutron flux spectrum, such as lattice pitch and enrichment.

Table 2. Summary of results - mean k_{eff} by category

<u>Categories</u>	<u>(No. of experiments)</u>	SCALE-4	SCALE-4	SCALE-3
		27GROUP	27BURNUP	27GROUP
All critical experiments	(15)	.9931	.9927	.9941
UO ₂ criticals reflected by water	(11)	.9921	.9923	.9937
UO ₂ criticals reflected by metal	(3)	.9999	.9984	.9989
Mixed oxide criticals	(1)	.9840	.9801	.9843
Subcritical experiments	(1)	.9051	.9032	.9001

This reference problem set covers a large scope of typical transportation and storage cask conditions. SCALE-4 with the 27GROUPNDF4 and the 27BURNUPLIB cross-section libraries produces satisfactory results for unirradiated LWR fuel stored in cask conditions and gives statistically consistent results compared to SCALE-3. Analysis of additional mixed oxide critical experiments is recommended in order to substantiate the trend observed for the mixed oxide case in this study.

In addition to the reference problem set, another set of experiments¹⁴ was modeled to examine the ability of SCALE-4 and the 27-group ENDF/B-IV burnup library to predict gadolinium absorption in LWR fuel. Gadolinium is a strong neutron absorber and a significant fission product with respect to reactivity in burned LWR fuel. These experiments contained a small number of UO₂-Gd₂O₃ fuel rods inserted in selected patterns among fresh UO₂ fuel rods. The UO₂-Gd₂O₃ fuel rods contained 4 wt % Gd₂O₃ and 96 wt % UO₂ (1.944 wt % ²³⁵U). The cores simulated a 15 x 15 lattice PWR checkerboard loading of assemblies containing the gadolinium fuel rods. The central zone contained 4.02 wt % UO₂ fuel rods, and the outer zone contained 2.46 wt % UO₂ fuel rods. The strength of the gadolinium absorption is evidenced by the change in the boron concentration between the no-gadolinium case (Core 12) and the 12-Gd-rod assembly configuration (Core 14), which had a total loading of 28 Gd fuel rods. Based on a boron worth calculation of Core 14, this boron change is worth approximately 3.1% $\Delta k/k$. Core 16 was a 16-Gd-rod assembly configuration containing a

total rod assembly configuration containing a total of 36 Gd fuel rods. The results are presented in Table 3. The results are statistically consistent with the water-reflected UO_2 criticals in Table 2. These calculations indicate that SCALE-4 can accurately predict the reactivity effect of gadolinium absorption in LWR fuel.

Table 3. Calculated results of gadolinium critical experiments

<u>Reference/Experiment</u>	<u>Description</u>	<u>Boron (ppm)</u>	<u>SCALE-4 27BURNUP</u>
13 / 12	0 Gd rod configuration	1899	.9919 \pm .0015
13 / 14	12 Gd rod configuration	1654	.9939 \pm .0011
13 / 16	16 Gd rod configuration	1579	.9911 \pm .0011
Mean k_{eff}			.9923

REFERENCES

1. C. V. Parks, Ed., *SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation*, NUREG/CR-0200, Rev. 4 (ORNL/NUREG/CSD-2/R4) Vols. I, II, and III (Draft February 1990).
2. S. R. Bierman, Memorandum to C. V. Parks, "Fresh Fuel Benchmarks for Use in Reference Burnup Calculations," (February 6, 1990).
3. N. M. Greene, *BONAMI-S: Resonance Self-Shielding by the Bondarenko Method*, NUREG/CR-0200, Rev. 4, ORNL/NUREG/CSD-2, Vol. 2, Sect. F11 (Draft February 1990).
4. N. M. Greene et al., *NITAWL-II: SCALE System Module for Performing Resonance Shielding and Working Library Production*, NUREG/CR-0200, Rev. 4, ORNL/NUREG/CSD-2, Vol. 2, Sect. F2 (Draft February 1990).
5. L. M. Petrie and N. F. Landers, *KENO V.a: An Improved Monte Carlo Criticality Program With Supergrouping*, NUREG/CR-0200, Rev. 4, ORNL/NUREG/CSD-2, Vol. 2, Sect. F11 (Draft February 1990).
6. S. R. Bierman, *Criticality Experiments With Neutron Flux Traps Containing Voids*, PNL-7167, Battelle Pacific Northwest Laboratory (April 1990).
7. S. R. Bierman et al., *Critical Separation Between Subcritical Clusters of 2.35 Wt% ^{235}U Enriched UO_2 Rods in Water with Fixed Neutron Poisons*, PNL-2438, Battelle Pacific Northwest Laboratory (October 1977).

8. S. R. Bierman et al., *Criticality Experiments with Subcritical Clusters of 2.35 Wt% and 4.31 Wt% ^{235}U Enriched UO_2 Rods in Water with Uranium or Lead Reflecting Walls*, PNL-3926, Battelle Pacific Northwest Laboratory (December 1981).
9. S. R. Bierman and E. D. Clayton, *Criticality Experiments with Subcritical Clusters of 2.35 Wt% and 4.31 Wt% ^{235}U Enriched UO_2 Rods in Water with Steel Reflecting Walls*, PNL-3602, Battelle Pacific Northwest Laboratory (April 1981).
10. B. M. Durst et al., *Critical Experiments with 4.31 Wt% ^{235}U Enriched UO_2 Rods in Highly Borated Water Lattices*, PNL-4267, Battelle Pacific Northwest Laboratory (August 1982).
11. M. N. Baldwin et al., *Critical Experiments Supporting Close Proximity Water Storage of Power Reactor Fuel*, BAW-1484-7, Babcock and Wilcox (July 1979).
12. S. R. Bierman et al., *Criticality Experiments with Low Enriched UO_2 Fuel Rods in Water Containing Dissolved Gadolinium*, PNL-4976, Battelle Pacific Northwest Laboratory (February 1984).
13. S. R. Bierman, *Reactivity Measurements on an Experimental Assembly of 4.31 Wt% ^{235}U Enriched UO_2 Fuel Rods Arranged in a Shipping Cask Geometry*, PNL-6838, Battelle Pacific Northwest Laboratory (October 1989).
14. L. W. Newman et al., *Urania Gadolinia: Nuclear Model Development and Critical Experiment Benchmark*, BAW-1810, Babcock and Wilcox (April 1984).

INTERNAL DISTRIBUTION

1-5. S. M. Bowman	12-13. Central Research Library
6. M. C. Brady	14. ORNL Y-12 Research Library, Document Reference Section
7. L. F. Norris	15-16. Laboratory Records Dept.
8. C. V. Parks	17. Laboratory Records, ORNL (RC)
9. C. H. Shappert	18. ORNL Patent Office
10. R. M. Westfall	
11. G. E. Whitesides/R. P. Leinius	

EXTERNAL DISTRIBUTION

19. Office of the Assistant Manager for Energy Research and Development, Department of Energy, Oak Ridge Operations, P.O. Box 2001, Oak Ridge, TN 37831
20. S. R. Bierman, Battelle Pacific Northwest Laboratory, P.O. Box 999, Richland, WA 99352
21. T. L. Sanders, Sandia National Laboratories, Div. 6323, Albuquerque, NM 87185
22-31. Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831

DO NOT MICROFILM
THIS PAGE