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THE INFLUENCE OF ORIENTATION ON FRACTURE TOUGHNESS 
AND TENSILE MODULI I N  BERKELEY GRANITE 

BY 
P. Halleck and A. J. Kumnick 

Geosciences D iv i s ion  
Los Alamos S c i e n t i f i c  Laboratory 

Los Alamos, NM 87545 

ABSTRACT Because the  nature and extent o f  t he  f rac tu re  are 
v i t a l l y  important t o  the  heat exchange process, quan- 

Fracture toughness and t e n s i l e  modulus values f o r  t i t a t i v e  knowledge o f  t he  behavior o f  g ran i te  i s  re- 
Berkeley gran i te  show pronounced o r ien ta t i on  depen- quired for t he  design o f  an optimal system. I n  

dence. Apparent f rac tu re  toughness values (KQ) cor- add i t ion  t o  p red ic t ing  the  extent o f  t he  i n i t i a l  
respond t o  natural  strong and weak planes i n  the  rock: hydraul ic fracture, r e l i a b l e  f racture propert ies are 
cracks propagated i n  the  head gra in  (strongest) plane needed f o r  p red ic t ing  s t a b i l i t y  o f  t he  f rac tu re  over 
have KQ - 1.81 MPa 6 those grown i n  the  rift the  (20 year) l i f e t i m e  o f  an HDR reservo i r  and f o r  
(weakest) plane have K = 1.01 MPa f i a n d  those i n  model ing p o s s i b l e  thermal s t r e s s  c r a c k i n g  i n  t h e  

reservoir ,  which may a f f e c t  heat t rans fe r  rates. The t h e  gra in  (intermediate) plane have KQ = 1.40 MPa w. 
These d i rec t iona l  % data also cor re la te  w i th  t e n s i l e  present inves t iga t ion  o f  o r i en ta t i on  dependence o f  
modulus values, E, which are 50.7 GPa, 21.6 GPa, and f rac tu re  toughness was aimed a t  Improving our under- 
39.3 GPa respectively. An empir ical re la t ionsh ip  standing o f  f rac tu re  growth and s t a b i l i t y  i n  gran i te  
between KQ and E i s  demonstrated. Monitorfng o f  i n  support o f  t he  LASL HDR program. 
acoustic emission events shows promise as a detector Test Mater ia l  
o f  onset o f  crack growth. The rock used i n  t h i s  fnves t iga t ion  i s  Berkeley 

gran i te  from Georgia, selected f o r  i t s  small (~0.5-mm) 
gra in  s ize and a v a i l a b i l i t y  i n  l a rge  sample size. 
Physical and mechanical propert ies and modal analyses 

ecent yea rs  awareness o f  f o r  a re  shown i n  Table 1. The f o l l  g resu l t s  are based 

inexhaust ib le energy resources has focused a t ten t ion  on samples cu t  from a s ing le  0. block and oriented 
on the  development o f  ho t  d ry  rock (HDR) geothermal i n  orthogonal d i rec t ions  using t h e  s ing le  polished 
energy ClJ. This new technique involves ex t rac t ion  o f  face as a reference plane (Fig. 1). Sample nanen- 
heat from hot c rus ta l  rocks by creating'an a r t i f i c l a l  c la tu re  i s  arranged such t h a t  f rac tu re  propagation i s  
hydrothermal system. Currently a f e a s i b i l i t y  study i n  t h e  plane f o r  which the  sample i s  named. Fracture 
invo lv ing  the  formation o f  a reservo i r  for underground toughness and t e n s i l e  modulus specimens were cu t  i n  

ac t ion  i n  low-permeability, g r a n i t i c  basement pairs. Tensi le l oa  g is arranged perpendicular t o  

rock i s  underway on the  Jemez Plateau about 30 km t h e  f rac tu re  growth 
(184 m i )  west o f  Los Alarnos, New Mexico under t u r e  toughness specimens. 
d i r e z l o n  of t h e  Los Alamos S c i e n t i f i c  Laboratory Experimental Methods 
(LASL)[2]. The technique being studied uses hydraul ic Specimens f o r  three-point-bend f rac tu re  toughness 
f rac tu r ing  t o  produce a f l ow  connection between t w o  t e s t i n g  (Fig. 2) were cu t  from each or ientat ion 25 mn 
d r i l l e d  holes a t  depths from 3 t o  5 km . Large x 12 mm x 150 m (Fig. 1) using a diamond saw. Top 
f rac tu re  surface areas are required because the  rock and bottom surfaces were ground pa ra l l e l  t o  w i th in  
surrounding the  f rac tu re  conducts heat ra ther  poorly 0.025 mm (0.001 in.). A s t a r t e r  crack o f  depth 2.5 - 
and quickly cont ro ls  t h e  r a t e  o f  heat t rans fe r  t o  the  6.0 mm (0.1 - 0.25 i n . )  was cu t  i n t o  each specimen 
c i r c u l a t i n g  f l u i d  contained i n  the  f rac tu re  zone. using a wire saw, which was f i t t e d  n i th 0.20-mn 
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TABLE I 

Density: 
Porosity: 0.662 
Modal Analysis:* Mineral Percent by Volume 

2.63 x IO3 kg/m3 (164 l b / f t 3 )  

Quartz 27.5 
A1 ka l  i Feldspar 34.0 
Potassium Feldspar 26.2 
B i o t i t e  5.1 
Muscovite 4.1 
Other 3.1 

100.0 

*Average o f  separate analyses by Eddy [3] and by Sykes 
[41. Sykes performed analyses on three orthogonal 
sections f i nd ing  no s ign i f i can t  di f ferences w i th  
o r ien t  a t  ion. 

(0.008-in.) diamond impregnated steel  wire. Samples 
were 1 oaded i n  an Ins t ron  servc-mechanical t e s t i n g  
machine. 

- 
Crack growth was monitored by measuring crack 

opening displacement (COD) wi th  a 0.25-mm-range l i n e a r  

c 1 I I  
I I I  
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Figure 1. Orientat ion and nanenclature o f  f rac tu re  

toughness and t e n s i l e  modulus specimens 
r e l a t i v e  t o  the  quarried surfaces o f  the 
Berkeley Granite t e s t  block. 
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var iable- d i f f e r e n t i a l  transformer (LVDT) gauge head 
mounted as shown i n  (Fig. 2). The re la t ionsh ip  b 
between COD and crack length was establ ished using the  
compliance c a l i b r a t i o n  procedure (Schmidt [5]) i n  
which a r t i f i c i a l  "cracks" are sawn t o  a given depth i n  
8 t e s t  sample. A t  each depth, t h e  i n i t i a l  slope of 
t he  load vs. COD curve i s  used.to ca lcu la te  an ef fec- 
t i v e  compliance, C = bAM/S, where b i s  t he  sample 
thickness, and bM/S i s  the  reciprocal  o f  the  i n i t i a l  
slope. This i s  p lo t ted  vs. the  r e l a t i v e  crack length, 
a/W, where 2 i s  the  crack length and W i s  the  sample 
width. During actual f rac tu re  toughness tests,  t h e  
e f f e c t i v e  compliance f o r  each load cyc le  i s  determined 
and compared t o  t h i s  ca l i b ra t i on  data t o  deduce the  
crack length. 

I n  the  present tes ts ,  t h e  loading behavior was 
non-l inear making a unique determination o f  e f fec t i ve  
compliance impossible (Fig. 3) .  We a t t r i b u t e  t h i s  
behavior t o  interference between fractured surfaces 
which prevents complete c losure and r e s i s t s  reopening 
o f  a crack. The unloading port ions o f  each cycle 
were, however, h igh l y  1 inear and were used t o  estimate 
crack length  f o r  t h e  succeeding cycle. 

Cracks were always grown 2.5 - 5 mm (0.1-0.2 in.) 
away from the saw cu t  (using from one t o  th ree  loading 
cyc les )  be fo re  any f r a c t u r e  toughness da ta  were 
recorded. . This procedure minimizes the  e f fec ts  o f  
loca l  damage which may have been introduced by wire 
sawing, and assures "natural"  crack t i p  geometry. 

obtained fo r  each specimen by unloading as soon as 
steady crack growth occurred. The applied load was 
slowly raised (constant load l i n e  displacement ra te  = 

* 

Typical ly, several f rac tu re  toughness values were - 

S 

Figure 2. Diagram o f  experimental arrangement. For 
these t e s t s  L = 96.5 m, b g 12.5 nun, W g 
25.4 m. 
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CRACK OPENING DISPLACEMENT tmm x to'') 

Figure 3. Typical loading cycles showing load as a 
f u n c t i o n  o f  crack opening displacement 
(COD). The dark c i r c l e s  represent the  
onset o f  steady crack growth as determined 
by acoustic errhission (see Fig. 8). 

'0° e 

CRACK OPENING DISPLACMENT (mm x 16*) 

Figure 4. Acoustic emission frequency signature test .  . 
The r a t i o  o f  high frequency (0 .3  - 1.0 MH ) 
t o  low frequency ((0.1 MH counts w L  
measured over  t h e  darken& segment o f  
successive loading cycles. The dark c i r c l e  
represents t h e  median load o f  t h e  data 
co l l ec t i on  range f o r  each cyc le  (see Fig. 
9). 

8.5 x mm/sec) u n t i l  a maximum load was reached, shown i n  Fig. 1. The four-arm br idge c i r c u i t  used 
then decreased t o  zero. Values o f  c r i t i c a l  load (PQ) consisted o f  two ac t ive  s t r a i n  gauges mounted on each 
and crack length (a/w) were determined for each cyc le  sample and two addi t ional  passive gauges mounted i n  an 
from the  resu l t i ng  p l o t  o f  load vs. COD. unstrained ident ica l  sample. The samples were gripped 

~ Du r ing  a number o f  f r a c t u r e  toughness t e s t s ,  v i a  s tee l  holders epoxied t o  each end and loaded 
acoustic emission events were monitored using a Model through swivel platens. Secant moduli were calculated 
920 Dunegan/Endevco system. Attempts were made t o  between zero and maximum stress o f  approximately 3.1 
d is t ingu ish  frequency signatures f o r  various phases o f  MPa (450 psi).  
crack opening and growth, and t o  cor re la te  event r a t e  
w i th  the  onset. o f  crack growth. The signal f RESULTS AND DISCUSSION 
s ing le ,  broad-band t ransducer  was amp1 i f i e d  and 
f i l t e r e d  by two separate systems, one w i th  a 100 KHz The resu l t s  o f  t he  compliance ca l i b ra t i ons  f o r  
low-pass frequency range and the  other w i th  a 300 KHz each or ien ta t ion  are shown i n  Fig. 5. To t e s t  t h e i r  

v a l i d i t y ,  these data were converted t o  dimensionless 
form by mu l t i p l y ing  by the  t e n s i l e  modulus and corn 
pared w i th  both t h e  ana ly t i c  so lu t i on  o f  Jones and 
Brown 161, and experimental data on co ld  r o l l e d  steel  
specimens o f  t he  same geometry. Tensi le moduli f o r  
Berkeley Granite were measured as described above w i th  
resu l t s  as shown i n  Table 11. The t e n s i l e  modulus f o r  
t he  steel  was calculated from i t s  measured density o f  
7.887 x l o 3  kg/m3 and long i tud ina l  sound speed of 5.36 

2 7 km/sec, t o  be 2.27 x 10 GPa (3.29 x 10 psi). 
The ana ly t i ca l  Compliance curve CE vs. a/W (Fig. 

6) i s  lower than the  experimental one by a factor o f  
about 2 f o r  both g ran i te  and steel  specimens. The 
discrepancy i s  due t o  t h e  mechanical ampl i f i ca t ion  o f  

Ratios o f  
small port ions o f  successive loading 

), and compared t o  the  stress i n t e n s i t y  

g 

ere made i n  t h i s  manner. 

were cu t  with a diamond core d r i l l  i n  the  d i rec t ions  



TABLE I1 

Tensile moduli, E, f o r  Berkeley Granite 

Sample 
Orientat ion Modulus (GPa, ps i  x 1061 

39.3 f 2.2 (5.70 f 0.31) 
21.6 f 1.0 (3.14 f 0.14) 
50.7 f 2.5 (7.36 f 0.36) 

A 
B 

- c  

COD as a r e s u l t  o f  p lacing the  LVDT 12.7 mm (0.5 in.) 
below, ra ther  than f l ush  w i th  the  sample surface. To 
v e r i f y  t h i s ,  the  steel  was remeasured using a second 
COD gauge mounted f l ush  with the  lower sample surface. 
Data obtained i n  t h i s  manner are i n  excel lent  agree- 
ment w i th  theo'ry (Fig. 6). Since t h e  mu l t i p l y ing  
fac to r  thus introduced appl l ed  t o  both ca l i b ra t i on  
data and actual f rac tu re  toughness tests,  there  i s  no 
net e r ro r  i n  crack length determination. 

c 

RELATIVE CRACK LENGTH ( o l w )  

Figure 5. Compliance c a l i b r a t i o n  curves f o r  t h r e e  
or ientat ions o f  Berkeley Granite (see Fig. 
1). 
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Figure 6. Comparison o f  compliance curves w i th  t h e  
theore t ica l  r e l a t i o n  o f  Jones and Brown 
[61. The s o l i d  l i n e  i s  t he  theore t ica l  
r e l a t i o n  f o r  t h e  product C-E (compliance 
t imes  Young's modulus). T r i a n g l e s  and 
c i r c l e s  are data f o r  a steel  sample and "C" 
o r i en ta t i on  Berkeley Granite respectively. 
These data were taken' w i th  the  LVDT i n  
"pos i t ion  1," 12.7 mn below the  sample (see 
Fig. 2). The crosses are f o r  the  same 
s tee l  specimen w i th  LVDT mounted f l ush  w i th  
the  bottom surface o f  the  sample (pos i t ion  
2). 

The t e n s i l e  moduli data (Table 11) exh ib i t  a pro- 
nounced o r i e n t a t i o n  dependence. 'Samples s t ressed 
perpendicular t o  the  pol ished surface show the  highest 
values. The pol ished surface, o r  face C, i s  t he  
"hardway" o r  "headgrain' plane, terms used i n  
quarrying t o  describe t h e  d i rec t i on  most res i s ten t  t o  
s p l i t t i n g .  (The other two na tura l l y  orthogonal faces, 
A and B, are the  "grain" and "rift" planes respective- 
ly, the  l a t t e r  i nd i ca t i ng  the  easiest s p l i t t i n g  direc- 
t ion).  Simi lar  o r i en ta t i on  e f fec ts  have been observed 
i n  compressive modu l i  measurements on Chelmsford 
Granite by Peng and Johnson [7] and Todd e t  al. [SI. 
The present data a lso  correspond t o  the  o r ien ta t i on  
dependence o f  compliance ca l i b ra t i on  data i n  Fig. 5. 
From these observations, one would expect t he  rift 
plane t o  l i e  perpendicular t o  the  lowest modulus 
sample, i .e. B or ientat ion.  

C a l c u l a t i o n  o f  apparent f r a c t u r e  toughness i s  
based on the  app l ica t ion  o f  l i n e a r  e l a s t i c  f rac tu re  



I 
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TABLE I11 

FRACTURE TOUGHNESS, KQ, VALUES FOR BERKELEY GRANITE 

Sampl e Number Number Average Standard Average Standard 
Orien- o f  o f  data KQ 

Deviat ion 
KQ 

Devi a t  i on 
t a t i o n  Samples Points (MPa fi) (MPa f i r  Jksi f i )  (ks i  fi.) 

A 4 44 1.54 0.09 1.40 0.08 . 

B 10 41 1.10 0.11 1.00 0.10 
C 5 40 1.99 0.10 1.81 0.09 

- 

4' *- : -  

mechanics (LEFM), which i s  j u s t i f f e d  by the  resu l t s  on 
Westerly Granlte by Schmidt and Lutz [lo]. They found 

f i  (2.4 f 0.09 k s i  fi.) using 
both the  LEFM and J - in tegra l  methods. Measured values 
o f  K are even lower f o r  Berkeley Granite which allows Q 
the  LEFM approach t o  be employed w i th  even more con- 
f idence. 

The procedure f o r  ca lcu la t ing  KQ i s  based on ASTM 
E399-78[9], wherein 

= 2.6 f 0.1 MPa 
KQ 

- 
where P i s  the  c r i t i c a l  load, L, b, a, and W are 
dimensions shown i n  Fig. 2 and f(a/W) i s  a semi- 
empir ical func t ion  given as a polynomial. The load 
chosen f o r  determination o f  KQ was'khe maximum load 
durfng each cycle, because o f  d i f f i c u l t y  f n  applying 
t h e  ASTM secant-slope technique t o  the  nonlinear load 
vs. COD curves f o r  t h i s  granite. This procedure 
resu l t s  i n  a s l i g h t l y  higher (*3%) values than t h e  
ASTM procedure. Because o f  t h e  modif ied ASTM pro- 
cedure and l a c k  o f  re1 i ab le  standards f o r  es tab l i sh ing  
minimum specimen s f z e  i n  rocks,  o u r  
reported as "apparent." 

Average values o f  f rac tu re  toughne 

Q 

- 
c 

given I n  Table 111. Again, a pro- 
i o n  e f f e c t  i s  present. The toughest 

samples are 'C" or ientat ion,  with f rac tu re  growing i n  
t h e  plane o f  t h e  pol ished face. This i s  
since t h a t  d i r e c t i o n  I n  the  "head grain" as 
fo r  t h e  t e n s i l e  modulus data. Also, as predicted from 
t h e  t e n s i l e  data, "B" samples are Indeed the  weakest 
and the  B surface o f  t h e  block i s  thus t h e  rift direc- 
t ion.  

The only other K values f o r  g ran i te  i n  t h e  l it- 
erature besides Schmidt and Lutz [lo], are those f o r  
Chelmsford Granite by Peng and Johnson C71 and f o r  
Barre Granite by Wilkening [91. Values f o r  t he  former 
ranged from 0.59 - 0.64 MPa f i ( 0 . 5 4  - 0.58 k s i  fi.) 
and exhibi ted v i r t u a l l y  no o r ien ta t i on  dependence. 
This l a t t e r  observation i s  surpr is ing  because o f  the  
la rge  or ien ta t ion  dependence o f  e l a s t i c  modulus found 
i n  Chelmsford Granite. Peng and Johnson, however, 
used bend specimens I n  which t h e  crack s t a r t e d  
d i r e c t l y  from a wire sawn notch which i s  general ly 
much Jess r e l i a b l e  than using a pre-cracked specimen 
as was done by Schmidt and Lutz [lo] and i n  the  pres- 
ent work. 

Wilkening [ll] also grew cracks from a precut 
notch i n  h i s  J - in tegra l  measurements on Barre Granite. 
Although the  data sca t te r  i s  very wide, and no e l a s t i c  
modulus data are given, some q u a l i t a t i v e  i nd i ca t i on  o f  
o r i en ta t i on  e f f e c t  can be seen. Using average values 
for t e n s i l e  modulus (17.5 GPa) and Poisson's ratio 
(0.23) from Krech e t  a l .  1121, we obtain KQ values 
ranging from .95 t o  1.48 MPa fi with mean o f  1.17 
MPa Jiii and standard deviat ion of 0.15 MPa 6. This i s  
i n  good agreement with our data f o r  "B" or ien ta t ion  
Berkeley. 

The present resul ts,  those o f  Schmidt and Lutz 
[lo] f o r  Westerly Granite and the  data o f  Wilkening 
[ll] and Krech e t  al. [ l Z l  f o r  Barre Granite combine 
t o  produce an empirical re la t ionsh ip  between t e n s i l e  
modulus and f rac tu re  ness. A p l o t  o f  KQ vs. E 
produces a smooth cur  g. 7) which covers a l l  t he  
data points. The re la t ionsh ip  holds f o r  three d i f -  
ferent rocks, f o r  d i f f e r e n t  or jentat ions o f  t he  same 
rock and f o r  data obtained by d i f f e r e n t  techniques. 
Although a complete theore t ica l  j u s t i f i c a t i o n  o f  t h i s  

Q 
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Figure 7. Relat ionship between t e n s i l e  modulus and 
f r a c t u r e  toughness f o r  g ran i tes .  Data 
include Westerly Granite (Schmidt and Lutz 
[lo]), Barre Granite (Wilkening [ll]), and 
A, 8, and C o r i e n t a t i o n s  o f  Berke ley  
Gran i te  (p resent  work). E r r o r  ba rs  
represent one standard deviat ion from the  
mean values. 

re la t ionsh ip  i s  cur ren t ly  lacking, i t  does hold prom- 
i s e  as a .predict ive t o o l  f o r  determining f rac tu re  
toughness from modulus data alone. 

The a t tempts  made d u r i n g  these t e s t s  t o  use 
acoustic emission as a t o o l  t o  detect t h e  onset o f  
crack growth were also encouraging. I n  Fig. 8, 
cumulative low frequency events vs. COD are p lo t ted  
f o r  t he  fou r  successive cycles shown i n  Figure 3. 
These data are f o r  a "B" or ien ta t ion  sample, t he  crack 
growing i n  the  rift plane. 
recorded u n t i l  maximum load was reached, ind ica t ing  
steady crack growth, then gated during unloading u n t i l  
compression was resumed f o r  t he  next cycle. For each 
cyc le  a f t e r  the  f i r s t ,  the  r a t e  o f  events increases 
w i th  crack opening u n t i l  a steady r a t e  i s  reached. 
This steady r a t e  corresponds t o  steady crack growth 
under constant load l i n e  displacement rate. As shown 
i n  Figure 8, the  point  a t  which t h i s  steady growth 
commences can be estimated by extrapolat ing t h e  con- 
stant emission r a t e  por t ion  o f  t he  curve back t o  the  
s t a r t  f o r  each cycle. The di f ference between t h e  

\ 

For each cycle, data was . 

0 2 4 6 
CRACK OPENING DISPLACEMENT (mm x to-2 I 

Figure 8. Acoustic emission f o r  load cycles shown i n  
Fig. 3. The s t ra igh t  port ions represent 
steady c rack  growth r a t e  and t h e  dark 
c i r c l e s  are estimates o f  the  onset o f  crack 
growth ob ta ined by ex t rapo la t i on .  The 
values o f  COD thus obtained are also shown 
i n  Fig. 3 and correspond t o  c r i t i c a l  load. 

extrapolated s t ra igh t  l i n e  and the  actual curve repre- 
sents acoustic emission due t o  reopening the  ex i s t i ng  
crack. 

The COD values which correspond t o  the  onset o f  
steady crack growth have been rep lo t ted  on Fig. 3. 
These values correspond t o  load leve ls  s l i g h t l y  below 
the  peak and thus are analqgous t o  the  ASTM method o f  
obtaining PQ. Where such data i s  avai lable f o r  a l l  
samples tested, i t  may be advantageous t o  use t h i s  
po in t  as the  f a i l u r e  load i n  ca lcu la t ing  K 

Suzuki e t  al.  t131 have made a s im i la r  proposal 
based on observation o f  d i s t i n c t i v e  frequency spectra 
o f  emission dur ing crack growth i n  sandstones. Using 
a frequency analyzer, i t  was found t h a t  crack growth 
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.-I i s  accompanied by h igh  frequency (1 MHz) events com- 
pared t o  t h e  lower frequency (<lo0 KHz) events t h a t  
occur during reopening o f  ex i s t i ng  cracks. 

We have attempted t o  s imp l i f y  t h i s  process by 
f i l t e r i n g  data i n t o  two frequency ranges and observing 
the  r a t i o  as a func t ion  o f  K/KQ. Data were co l lec ted  
f o r  d i f f e r e n t  port ions o f  successive loading cycles as 
described above (Fig. 4). The heavy port ions o f  each 
cyc le  show t h e  region over which data were col lected. 
The dark c i r c l e  i s  t h e  median load o f  t h e  data co l -  
l e c t i o n  range which was div lded by t h e  peak load f o r  
t h a t  cyc le  t o  obtain a var iab le  corresponding t o  the  
r e l a t f v e  stress i n t e n s i t y  factor. A value o f  1.0 
represenrs the  c r i t i c a l  load f o r  which steady crack 
grgwth occurs. 

The best data are shown i n  Figs. 4 and 9. A sharp 
maximum i s  seen i n  the  r a t i o  o f  h igh frequency t o  low 
frequency counts f o r  K = KQ, corresponding t o  steady 

This i s  consistent with Suzuki, e t  al. 
observations [13], but t h e  technique i s  unre l iab le  and 
needs considerable refinement. 

' crack growth. 
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CONCLUSIONS 

We have observed marked or ien ta t ion  dependence i n  
b o t h  t e n s i l e  modulus and f r a c t u r e  toughness i n  
Berkeley Granite. A monotonic re la t ionsh ip  ex i s t s  
between the  two  parameters which holds f o r  t he  present 
data as we l l  as f o r  l i t e r a t u r e  data on Westerly and 
Barre Granites. These observations have important 
consequences i n  HDR geothermal energy and o t h e r  
geo-engineer ing app l i ca t i ons .  The o r i e n t a t i o n  o f  
hydrofractures a t  depth may be inf luenced as much by 
anisotropic f rac tu re  toughness as by i n  s i t u  stresses. 
I n  addit ion, i t  may be possible t o  p red ic t  KQ from 
rnodul i measurements alone. Acoustic emission shows 
promise as a technique f o r  est imating the  c r i t i c a l  
load needed t o  ca lcu la te  fracture toughness. 

ACKNOWLEDGMENT 

The f inanc ia l  support o f  t h e  D iv i s ion  o f  Geo- 
thermal Energy o f  t he  U.S. Department o f  Energy i s  
g r a t e f u l l y  acknowledged. We are a l so  indebted t o  K. 
Spicochi, D. Mann, and R. Anderson, and B. Hahn f o r  
t h e i r  technical  support and J. Blacic, R. Riecker, J. 
Petrovic and J. Tester f o r  he lp fu l  discussions o f  the 
text .  

MEDIAN LOAD I PEAK LOAD 

Figure 9. Frequency r a t i o  as a func t ion  o f  r e l a t i v e  
load. The r a t i o s  o f  high- t o  low-frequency 
counts obtained for t he  experiment i n  Fig. 
4 are p lo t ted  vs. t h e  r e l a t i v e  load. The 
median load was div ided by the  peak load so 
t h a t  a value o f  1.0 represents load dur ing 
steady crack growth. Values t o  t h e  r i g h t  
o f  1.0 rep resen t  da ta  taken  d u r i n g  
unloading. A sharp i nc rease  i n  h i g h  
frequency ' emission i s  seen dur ing crack 
growth. 

REFERENCES 

1. Cummings, R. G., Morris, G. E., Tester, J. W., and 
Bivins. R. L.. 1979. "Minina Earth's Heat: Hot 
Dry Rock Geothermal Energy," -Technology Review 81 
(4)s 1-19. 

2. Smith, M. C., Potter, R. M., hamodt, R. L., and 
Brown. D. W.. 1975. "Man-Made Geothermal 

2. Smith, M. C., Potter, R. M., hamodt, R. L., and 
Brown, D. W., 1975, "Man-Made Geothermal 
Reservoirs," Second U n i t e d  Na t ions  Geothermal 

Symposium, San Francisco, C a l i f . ,  
m 8 7 .  

_ -  
Reser;oirs," Sicond U n i t e d  Na t ions  Geothermal 

Symposium, San Francisco, C a l i f . ,  
m 8 7 .  

3. Eddy, A,, 1978, Pr iva te  communication. 

4. Sykes, M. L., 1979, Pr iva te  communication. 

5. Schmidt, R. A., 1975, "Fracture Toughness Testing 
o f  Rock ," Loop, 2(2), 3-12. 
Jones, M. H., Brown, W. F., 1970, "The Inf luence 
of Crack Lenath and Thickness i n  Plane St ra in  

6. 

7. Peng, S., Johnson, A. M.( 1972, "Crack Growth and 
Faul t fng I n  Cy l indr fca l  Specimens of Chelmsford 
Granite," In t .  J. Rock Mech. Min. Sci. 9, 37-06. 

8. Todd, T.. Simons, G., Baldridge, W. S., 1973, 
"Acous t ic  Double R e f r a c t i o n  i n  Low P o r o s i t y  
Rocks," Bul l .  Seis. SOC. Am. 63, 2007-2020. 



9. "Standbd Test Method f o r  P1 ane-Strai n Fracture 
Touqhness o f  M e t a l l i c  M a t e r i a l s  (ANSI/ASTM 
399-'78)," 1978, 1978 Annual Book o f  Standards, Am. 
SOC. f o r  Testing and Matls., Phil., PA. 

10. Schmidt, R. A., Lutz, T. J., 1979, "K and JlC o f  
Wester ly Gran i te  2 E f f e c t s  o f  Tdfckness and 
in-P1 an6 Dimensions," Fracture Mechanics Applied 
t o  B r i t t l e  Materials, ASTM STP . W. Freiman, 
Id., Am. SOC. f o r  T e s t F a d k . ?  166-182. 

11. Wilkening, W. W., 1978, "J-Integral Measurement i n  
Geological Materials," Proc. 19th U.S. Spp. on 
Rock Mech., Statel ine,  Nev., 1-3 May 1978, v. 1, 

54- 58. 

12. Krech, W. U., Henderson, F. A., Hjelmstad, K. E., 
1974, "A Standard Rock Sui te f o r  Rapid Excavation 
Research," U.S. Bur. Mines Report BM-RI-7865 m, 
4-6. 

13. Suzuki, M., Abe', H., Takahashi, H., Tamakawa, K., 
K ikuch i ,  M., 1978, "Acous t ic  Emission Charac- 
t e r i s t i c s  and Fracture Toughness o f  Sandstone,' 
Tech. Rpts., Tohoku University, 43, 231-240. 




