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We have examined a variety of structures for the {510} symmetric tilt boundary in
using first-principles calculations. These calculations show that the observed structure in
Siis the lowest energy structure. This structure is more complicated than what is necessary
to preserve four-fold coordination. We compare the results to classical and tight-binding
models, in order to test these empirical approaches.

INTRODUCTION

Grain boun‘;iéries in semiconductors have been of interest for some time [1], due to the
importance of polycrystalline semiconductors in the microelectronic industry, the interest
in micromechanical materials, in solar energy applications, and in nanocrystalline Si [2].
The grain boundaries can provide preferential sites for dopants [3, 4], and act as low
energy diffusion pathways. For low energy tilt boundaries, which usually retain the four-
fold coordination found in bulk [1], the dominant electronic effects are presumed to be due
to dopant segregation to the grain boundary; however, intrinsic gap states localized to the
grain boundary may still occur if the bonding is sufficiently distorted.

The atomic structure of grain boundaries in Si and Ge has received some attention both
experimentally [5, 6, 7, 8, 9] and theoretically [1, 10, 11, 12], but both types of studies are
difficult. The experimental resolution necessary to examine the atomic structure of a grain
boundary is difficult to achieve. The theoretical studies are complicated by the presence

- of multiple structures for a given angle. For special low-energy boundaries, such as the
{210} and {310} tilt boundaries, there are only two boundaries to be considered. For
other boundaries, including thé {510} boundary considered here, there are considerably
more possibilities, all of which preserve four-fold bonding. Complicating the calculations
is the questionable ability of empirical potentials to correctly predict the lowest energy
structure. Also, the large system sizes necessary for the calculations (~ 400 atoms for
the boundaries in this study) makes first-principles calculations very costly in terms of
computer time. Furthermore, experiments on Ge have observed multiple structures for the
same grain boundary, suggesting that several configurations may be very close in energy,
and that energetics are not the complete story in predicting the structures [7, 8].

We have begun examining grain boundaries in Si and Ge, using first-principles calcu-
lations. In this paper, we briefly present work on the {510} symmetric tilt boundary. (A
more detailed account has been submitted elsewhere [13].) This boundary has been stud-
ied in Si and Ge experimentally [6, 7, 8, 9], and has also been simulated using empirical
potentials. The empirical potentials do not predict that the structure observed in Si [9] is
the lowest energy. The same structure (shown in fig. la) has also been seen in Ge [6, 7, 8],
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Figure 1: Eight possible structures for the {5610} symmetric tilt boundary. The structures
are shown in order of increasing grain boundary energy. The lowest energy structure (A)
has been experimentally observed in both Si and Ge. All structures are fully four-fold
bonded.

The crystallography of the [001] symmetric tilt boundaries has been examined thor-
oughly [1, 10]. For (510) boundaries, the repeat distance along the boundary is %\/%
times the cubiglattice constant ap. This boundary contains a number of dislocations, with
a total Burget’s vector of b = [100]. The individual dislocations that occur are either
b = 2[110] and b = £[110] pairs of edge dislocation, or b = 1[101] and b = %[101] 45°
mixed dislocation pairs. Grain boundaries made up solely of the edge dislocation structures
are shown in [001] projection in figs. le and 1f, and are characterized by a set of five-fold
and three-fold rings sharing a vertex. The mixed dislocation core structures, which can
form the (510) grain boundaries shown in fig. 1g and 1h, also appear as a combination of
a five-fold and a three-fold rings, but sharing an edge.

THEORY

The first step in studying these boundaries is to generate a set of possible structures. A
number of structures have been studied previously [6, 10, 12]. We felt that in addition to
including previously studied structures, we should also search for possible new structures.
This was done by constructing a system with two (510) boundaries, such that the system
had periodic boundary conditions. This system was then simulated at 1900 K using a
Tersoff potential [14]. Thirty two independent simulations were performed, each for 108
time steps of 0.54 fs. At this temperature, with the 0 K lattice constants, the bulk was
stable. The grain boundaries, on the other hand, changed structures occasionally, without
melting. By examining structures time averaged over 20,000 time steps, we identified eight
different structures, shown in fig. 1. These structures (appropriately relaxed) formed the
basis of the rest of the calculations. With the exception of structure b, these structures
had been previously considered as candidates [6]. Structure b is new, though it is similar
to structure d.

These structures were then fully relaxed using the Tersoff potential. This was done
in two ways: first, a single grain boundary was studied using open boundary conditions
along the direction perpendicular to the boundary. Second, a fully periodic system with
two identical boundaries was relaxed. The two boundaries were approximately 50 A apart,
depending upon the details of the structure. The numbers of atoms ranged from 380 to 416.
The grain boundary energies calculated from these two techniques were nearly identical.




Table I: Silicon grain boundary energies in units of mJ/m?. The structures are labeled
both according to their order in fig. 1, and by the notation used by Bourret.

-Structure | Ab Initio Tersoff Tight-Binding
mdJ/m?
a M 620 416 548
‘b none 686 443 617
c IVt 733 486 664
d TH+ 736 459 665
[ Zz‘[) 744 451 695
‘ £ Zoa 784 481 719
g Sl,l 798 479 740
h Sz 808 469 757

These energies are given in Table I. Within the Tersoff calculations, all of the different
structures had very similar energies, with the highest energy structure having an energy
about 20% higher than the lowest energy structure.

The relaxed, periodic structures were then used as starting points for a first-principles
conjugate gradient plane wave calculation of the atomic structure and energy. The calcu-
lations have been performed using the pseudopotential plane-wave self-consistent method
which is based on the density functional theory within the local density approximation
(LDA) [15, 16]. We adopted the Ceperley-Alder exchange and correlation potential func-
tional with the parameterization of Perdew and Zunger [17, 18]. We modeled the electron-
ion interaction using a norm-conserving pseudopotential [19] in the Kleinman-Bylander
form [20] with s and p nonlocality. The Kohn-Sham orbitals were expanded in plane waves
with an energy cutoff of 10 Ryd.

In these calculations, the dimensions normal to the grain boundaries are roughly ten
times larger than the dimensions along grain boundaries. This case is similar to that
in typical surface slab calculations. Ab initio calculations done for Si and Ge surfaces
show that a 10 Ryd energy cutoff is enough to correctly reflect the electronic and atomic
structures of Si and Ge surfaces (for example, see refs. [21, 22]). This is the reason why
we chose 10 Ryd as an energy cutoff in our grain boundary slab calculations (note that
no vacuum is involved in our slabs). So we can approximately consider the Brillouin Zone
as two-dimensional. A set of four special k-points is therefore chosen to sample the two-
dimensional rectangular Brillouin Zone[23].

We allowed all atoms in the system to relax until the forces were less than 10 meV/A.
We computed the bulk diamond energy using a slab cell with equivalent k-point sampling
and slab size as ones in the grain boundary calculations, in order to eliminate the error
induced by different k-point samplings and slab geometries. We can therefore compare
different calculated grain boundary energies with reliable accuracy.

RESULTS

-1
The Si grain boundary energies are shown in fable I. Structure a is clearly the lowest
in energy. This structure has been observed in Si [9] and in Ge [7]. The structures shown




Figure 2: Grain boundary energies for different structures. Letters indicate the appropriate
structure, as labeled in fig. 1.
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in fig. 1 are labeled in order of increasing energy. The highest energy structures are those
that contain regions that are structurally similar to the bulk, with a minimal number of
dislocation cores. The new structure that we located is also low in energy.

In fig. 2, we show the energies of the different structures, using the ab-initio values, the
Tersoff values, and the values obtained from an environment-dependent tight-binding po-
tential developed for Si by Pan et al. [24]. The tight-binding results accurately predict the
differences in energy, producing the correct ordering, and reasonable results for the actual
grain boundary energies as well. The Tersoff potential, on the other hand, does not cor-
rectly predict the lowest energy structure; indeed, the Tersoff results suggest (incorrectly)
that the energy is only weakly dependent upon the actual grain boundary structure.

One of the interests in grain boundaries in semiconductors is their electronic proper-
ties. In particular, the possibility of gap states would affect the properties of polycrystalline
semiconductors. While electronic activity of such boundaries has been noted experimen-
tally [2, 25], calculations of pure Si and Ge systems [3, 11, 26] have not shown any states
in the gap, although edge states localized to grain boundaries have been predicted.

We have begun analyzing the electronic structure using our tight-binding model. While
these calculations are still underway, we have been able to show that the presence of the
grain boundary shown in fig. 1a does not significantly affect the density of states, when
compared to a perfect system. In particular, the density of states (DOS), shown in fig. 3,
shows no evidence of mid-gap states. Although there is some increase in the DOS near the
band gap (see inset), this is not a strong effect. Preliminary analysis of states near the gap
using inverse participation ratios do not show strong localization of the states.

CONCLUSION

We have used first-principles calculations to examine eight different structures for the
{510} symmetric tilt boundary in Si, and have found that the experimentally observed
structure is lowest in energy. Despite the fact that all of the structures are four-fold bonded,




Figure 3: Electronic density of states, calculated using the tight-binding model. Comparing
the system with the boundaries shown in fig. 1a with the perfect diamond lattice, we see
that there are no mid-gap states introduced by the boundary. The inset shows the region

near the gap.
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there is a considerable variation in energy between the structures. Results based upon a
recently developed tight-binding Si potential compare very well with the ab-initio results.
Electronic density of states calculations, made with this tight-binding model, suggest that
the lowest energy grain boundary has little effect on the band structure, and no states
strongly localized near the boundary.
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