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Abstract

Magnetic excitations in an array of (VO)2P;07 single crystals have been
measured using inelastic neutron scattering. Until now, (VO)2P207 has been
-‘thought of as a two-leg antiferromagnetic Heisenberg spin ladder with chains
running in the e-direction. The present _. results show unequivocally that
(VO)2P207 is best described as an alternating spin-chain directed along the
crystallographic fb—direction. In addition to the expected magnon with mag-
netic zone-center energy gap A = 3.1 meV, a second excitation is observed
at an energy just below 2A. The higher mode may be a triplet two-magnon
bound state. Numerical results in support of bound modes are presented.
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I

The S=1/2 alternating Heisenberg chain (AHC) is a fascinating qﬁantum system that is
currently the subject of much interest. We ha,vé established [1] that the material (VO).P,07
, previously considered to be a spin ladder, is in fact an excellent realization of the AHC. The
physics of the AHC is also very relevant to spin-Peierls materials such as CuGeQO3 [2]. Recent
theoretical work [3] on the AHC underscored the potential importance of two-magnon bound
modes. In this paper, we review our neutron scattering experiments on the alternating chain
material (VO)oP207 . In addition to the expectedtt;ne-magnon excitations, we observe an
extra mode, which may be a two-magnon bound state. We follow with a discussion of some
related theoretical issues.

The crystal structure of (VO),P,07 is nearly orthorhombic, with a slight monoclinic
distortion so that the épace group is P2; [4]. The room temperature lattice parameters
are a=7.73A, b=16.594, c¢=9.58Aand $=89.98°. The mhgnetic properties of (VO),P,0;
arise from S = 1/2 V** ions situated within distorted VOg octahedra. Face-sharing pairs
of VOg octahedra are stacked in two-leg ladder structures oriented along the a-axis. The
ladders are separated by large, covalently bonded PO, complexes. The structure is illustrated
schematically in figure 1.

The susceptibility of (VO);P20; powder [5] can be accurately reproduced by either a
spin ladder (with J ~J 1) or by an alternating chain [5,6], but the expectation that the
POy group would provide a weak superexchange path led to a general acceptance of the
spin ladder interpretation of (VO);P,0; . Pulsed inelastic neutron scattering measurements
on (VO);P;07 powders [7] showed a spin gap of 3.7 meV, which was interpreted as further
sﬁébor‘t fo._r_,,’ghe ladder model.

| Beltrén—lgorter et al. [8] examined the superexchange pathways in several vanadyl phos-
phate compounds, and were led to question the spin-ladder interpretation of (VO)ngO}
. Instead they proposed that an alternating V-O-V-PO,-V chain in the b-direction was a
more likely magnetic sysﬁem. The observation of a second spiﬁ excitation near 6 meV (not

predicted by the ladder model) in a recent triple-axis neutron scattering experiment {9] on
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(VO),P;07 powder, and the discovery of strong superexchange thr‘oﬁgh POy groups in the
precursor compound VODPO, - 1/2D,0 [10], also cast doubt on the spin ladder interpre-
tation. For these reasons we undertook studies of the spin dynamics in (VO)Z'PQO-, single
crystals.

Measurements of the excitations were made using a single crystal array of approx. 200
oriented (VO),P307 crystals of typical size 1x1x0.25 mm3. The resulting sample had an
effective mosaic spread of 8 — 10° FWHM. Inelastic neutron scattering measurements were
carried out using triple-axis spectrometers at the HFIR reactor, Oak Ridge National Labo-
ratory; full experimental details can be found in [1].

Scans [1] at T = 10K showed two modes of roughly equal strength at the antiferromag-
netic zone-centre (0,7, 0) at energies of A; = 3.12(3) meV and A, = 5.75(2) meV. Full
resolution convolutions with the fitted dispersion showed these modes to be resolution lim-
ited. The disappearance of both modes at higher temperatures confirmed their magnetic
origin. The modes were found to track approximately in @ close to (0, 7, 0) (see Figure (2)).
At the zone-boundary (0, 7/2,0) only a single mode was observed at an energy of & 15meV.
Because of poor instrumental resolution it was not possible td tell whether the modes had
coalesced or were simply not resolved.

Fig. 2 shows the measured dispersion for both modes along a*, b* and ¢*. The excitation
energy is almost independent of .. (middle panel), implying a very weak coupling along
c. The dependence of energy on @, is much weaker than on @, and is ferromagnetic. The
strong )y dependence implies that the exchange coupling is dominantly one-dimensional
along the b-direction, confirming the V-O-V-PQ4-V alternating chain proposed in [8] and
[10].
For any exchange alternation — as occurs with the two inequivalent exchanges along b —
a gap should appear in the dispersion (as observed) and the absence of magnetic ordering in

(VO)2P,07 is consistent with a singlet ground state. However the observation of an extra

mode requires a more thorough theoretical investigation. Since the high temperature limit
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of the magnetic susceptibility [5] is consistent with expectations for éimple S=1/2,g=2
spins, the possibility that the upper mode is an additional low lying single ion excitation
can be ruled out. Two other plausible explanations of the second peak are (a) splitting due
to an exchange anisotropy, and (b) a physical two-magnon bound state. |

Although a pseudo-Boson calculation including exchange anisotropy gave an excellent fit
to the dispersion [1] — the solid line in Figure (2) is a fit to this model [1} ~ considerable
exchange anisotropy (=~ 15%) was necessary to aczount for the mode splitting. Recent
single crystal magnetic susceptibility measurements [11] were quantitatively consistent with
the previous powder results [5] and found little if any evidence for anisotropy. Also the
coupling in the precursor compound VODPOQ, - 1/2D;0O was found to be consistent with
isotropic exchange [10] suggesting that one should seek another explanation for the second
mode, and because the energy of the upper mode at (0,7,0), A,, is just below 24, a
bound t“}o-magnon mode may provide a good explanation. In support of this explanation,
preliminary high-field measurements show splitting of both modes which is consistent with
both modes being triplets [12].

To gain some insight into the formation of two-magnon modes in (VO);P,07 we have

studied the S = 1/2 AHC using numerical techniques. The isotropic AHC Hamiltonian is
7. . .
H=Y" JSy_1-Su+alSy- Su, (1)
i=1
where J > 0 and 1 > o > 0. Equation (1) has been studied analytically and numerically
over many years, but it had not been appreciated until recently that § = 0 and $ = 1 bound
magnon states may form. Uhrig and Schulz [3] have used field theory and RPA methods to
study these modes at £ = 7/2 and k = 0,7. The existence of these bound states depends
subtly on the kinetic and pbtential energies of pair formation, and occur for only certain
values of %.
Perturbation theory in o about the dimer limit (« = 0) provides a quantitative basis for

understanding the excitations for small a, and also provides insight into the competition

between potential and kinetic energy effects in bound states [13]. Figure (3) shows the one-
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and two-magnon excitation spectra calculated within a simplified épproximate first order
(one- and two-magnon manifold) treatment of the AHC. At k = n/2 there is a node in
the two-magnon continuum which correspbnds to a degeneracy in the total kinetic energy
w(ky) +w(m/2 — k1) of two magnons. The S =0 and S = 1 bound states lie well below the
continuum lower boundary. However at ¥ = 0 and 7 only the S = 0 bound state is seen. The
continuum is much broader at k¥ = 0,7 indicating larger mixing effects which disrupt the
S = 1 bound state. Although no S = 1 bound state forms, the attractive potential still leads
to a strongly enhanced scattering cross-section S(Q,w) at the continuum lower boundary
[13], see dashed line in Figure (4). The S = 1 bound state appears clearly at the k£ = 7 /2
point (solid line in Figure (4)). It should be noted that the neutron scattering cross-section
for the S = 0 mode is zero, however this mode may be visible by light scattering [13].
Harris [14] used a reciprocal space perturbation theory to calculate the ground state and
excited state energy up to Q(a3). This gives a k = 0,7 energy gap of Eyep = J(1 — a/2 —
3a0?/8 + a®/32). However these results can be derived more easily in real space [13], and in

the case of the ground state energy, we have extended the calculation to O(ca®),

eo(@)/J = =3/23 — (3/25) - a® — (3/2%) - &°

~(13/2'%) . a* — (95/3) - (1/2') - &® — O(a®). (2)

The perturbation series appears to be rapidly converging for o < 0.5, and may have a radius
of convergence of unity.

Because (VO)2P20; has o = 0.8 [1], we have used a numerical Lanczos algorithm on
finite L = 4n lattices of up to L = 28 _and with approximately 14 place accuracy to study
the ground states and binding energies up to similar values of . Full details will be given
" elsewhere [13]. Figure (4) shows the calculated binding energies of the S = 0 bound mode
at k = /2, and k = 0, as well as those for the S =1 bound mode at k = 7/2. The results
show strong binding at o = 0.8 of the S = 0 mode at k£ = 7/2 but the situation is not clear
for k = 0. They also suggest weak binding for the S=1 mode at 7/2 at the alternation for

(VO)2P207 . Unfortunately finite size effects precluded an accurate determination of this

S




binding energy.

In order to make a quantitative comparison with (VO)3P,07 S(Q,w) is required for the
bound modes and continuum. We are currently undertaking calculations to quantify this.
The effects of interchain coupling have been neglected and these may enhance thé binding.
Next-nearest neighour exchange within the chains may have a similar effect. The a pertur-
bation theory provides a useful quantitative guide to such effects, and further theoretiéal
studies are in progress. We also note that similar aynamics are also important in many
other low-dimensional Hamiltonians such as spin ladders and we shall present some work on
those in the future.

In conclusion, we have measured an extra mode in the alternating chain system
(VO)2P30O7 . The evidence suggests that this is a two-magnon bound state. Perturbation
theory and Lanczos calculations give an insight into the formation of bound modes.
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Figure Captions

Figure 1. Schematic depiction of the structure and magnetic interactions in VOPO.
The spin ladder model previously thought to describe VOPO has nearest neighbor exchange
constants Jj along the a (“Iédder”) direction and J, along the b (“rung”) direction. In the
alternating chain model, nearest neighbor V** ions are alternately coupled by constants J;

and J along the b (chain) direction. Neighboring spins in adjacent chains are coupled by

Jo. Magnetic coupling in the c direction is negligible.

Figure 2. Measured dispersion of magnetic excitations in VOPO at T = 10K. When not
visible error bars are smaller than the size of the plotted symbols. Filled circles (open dia-
monds) are points from the lower (upper) energy mode. T};e solid lines are dispersion curves
calculatea using parameters obtained by fitting to a pseudo-Boson model [1]. Wavevectors

are plotted in units corresponding to the VOPO reciprocal lattice.

Figure 3. Schematic depiction of the one- and two-magnon excitation spectra of the
S = 1/2 AHC with an alternation of & = 0.2. An S = 1 bound mode appears below the
continuum at k =~ 7/2. The more deeply bound S = 0 mode (dashed line) is not visible to

neutrons scattering.

Figure 4. Calculated S(Q,w) for constant-Q scans at k¥ = m/2 (solid line) and k = 7

(dashed line) using the first order perturbation approach with o = 0.2.

Figure 5. Calculated binding energies of the S = 0 and S = 1 bound states using a

Lanczos method {13] at £ = 0 and #/2. The binding energies are given in units of J.
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