AoNE-8508+HT &~

MATRIX FACTORIZATION ON A HYPERCUBE MULTIPROCESSOR

CONF-8508178=--1

DE86 011775
G. A. Geist

and
M. T. Heath

Mathematical Sciences Section
Engineering Physics and Mathematics Division
Ozk Ridge National Laboratory
Oak Ridge. Tennessee 37831

By acceptance of this article, the
publisher or recipient acknowledges
the U.S. Government’s right to
retain a nonexclusive, royaity-free
licanse in end to sny copyright
covering the article.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
. eniployees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or uscfulness of any information, apparatus, product, or
process disclosed, or repyesents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufactures, or otherwise does not necessarily constitute or imply its endorsement, recom-
mesdation, o5 favoring by the United States Government or any egency thereof. The views

and opinions of authors expressed herein do rot necessasily state or reflect those of the
United States Governraent or any agency thereof.

i ResumhsponsoredbytbgApphedMathmuealSc:mRmnhngmm Office of
Energy Resesrch, US. Department of Energy under contrzct DE-AC05-840R21400
with the Martin Marietta Energy Systems, Inc.

MAST[R

msmmmnn OF THIS IIIIGUIEW lS Iml.llﬂTEli

|

o

Matrix Factorization on a Hypercnbe Multiprocessor
G. A. Geist and M. T. Heath’

Abstract. This paper is concerned with parallel algorithms for matrix fao-
torization on distributed-memory, message-passing multiprocessors, with special
emphasis on the hypercube. We consider both Cholesky factorization of sym-
metric positive definite matrices and LU factorizziion of nonsymmetric matrices
using partial pivoting. Wealsoeonsldertheuseofthersulﬂngtﬂangularfao—
tors to solve systems of linear equations by forward and back substitutions.
Efficiencies of various parallel computational approaches are ‘compared in terms of
empirical results obtained on an Intel iPSC hypercube.

1. Introduction. In this paper we study the efficiency of paraliel algorithms
for matrix factorization on a hypercube multiprocessor. There have been a
nnmberoftheoreﬂmlstudlsofthepanllelcomplmdtyoffmrlngdense
matrices on various types of distributed-memory multiprocessors (e.g., [1], [6],
[7), [10), 113], [14), [15], [16], [18]), but relatively Httle actual experience has
been reported. Therefore, our study will be largely empirical: we will assess the
eﬁclencyofvmioussu-ategisbynmneﬂnlapeﬂmentsonahypetcube which is
a typical distributed-memory multiprocessor.

To avoid unnecessary complications, we lnltlallyrstrlctourattentlon to the
simplest case, that of computing the Cholesky factorization

A=L LT

where A is a symmetric, positive definite matrix of order n and L is iower tri-
angular. Many of our conclusions, however, are equally applicable to other
matrix factorizations. Later in the paper we consider ZU factorization by Gaus-
sian eiimination with partial pivoting for nonsymmetric matrices.

® Mathematical Sciences Section, Osk Ridge National Laborstory, P.O. Box Y, Oak Ridge,
Tennessee 37831. Research supported by the Applied Mathematical Sciences Research Program,
Office of Energy Research, U.S. Department of Encrgy under cuntract DE-ACOS-340R21400 with
Martin Mrrietta Energy Systems Inc,

Matrix factorization is an interesting case study for parallel implementation
because it has two sssential requirements that tend to inhibit parallel efficlency:

1. serial precedence constraints must be imposed on some operationg, and
2. global communication is reqmred.

The first requirement means that althoug,h many of the computational operations
cantakeplaceooncnuenﬂy,theremmeopemﬂonsthntmustoocurmastnct
sequential order. The second requirement means that some results computed by a
glvenproeesormustbemadeavulabletoalloftheotherpmm ‘Both of
theserequlmentstendtocausedehysmwhichsomeprocessmsmustwmfor
neeessaryprlorres\ﬂtstobecomputedoreommuniatedbyotherpmom

A detaﬂed study of parallel Cholesky factorization on a shared—memory
multiprocessor is contained in [11]). Global communication is a relatively minor
issuemsuchmenvimnmmtbemuseglobaldatamlsavaﬂablethmughthe
common memory (although memory contention can still be a problem). There-
fore, [11] fecuses primarily on the effect of precedence constraints and subtask
work profiles on concurrency and load balancing. It was found that among the
six ways of arranging the triple nested loop that defines the Cholesky algorithm,
the method having the best combination of concurrency and dynamic load bal-
ance for a medium-grain parallel implementation is the column-oriented Chole-
sky algorithm denoted by jki (using the notatica of [S]).” By medium-grain we
mean for this particular problem that thehaslcunitsofoomputaﬂonaresubusks
of computational complexity O(n) arithmetic operations. A medium-grain
approach is most appropriate when the order of the matrix slgnlﬁmnﬂyexceeds
the number of processors available.

Developing a medium-grain parallel implementation of Cholesky factoriza-
tion for & distributed-memory multiprecessor is more complicated. In a
distributed-memory environment, we must usuaily be content with a static load
balanoeﬂmthdetermlnedlnadvameofthewmpuuﬂon in contrast to a
dynamic load balance that is easily implerented in shared memory by means of
a pool of tasks. Even more serious, in a distributed-memory system, communica-
tion is accomplished by passing messages among processors, and thus the neces-
sity of giobal communication becomes a critical factor affecting computational
efficiency. Our primary objectives in the present paper are to examine various
ways of mapping the matrix ento the processors, to study their effects on load

balancing and communication, and to determine how the communication réquire-
ments can best be met.

2. 'l‘he Basic Algorithm. The jki formulation of the Cholesky algorithm is
as follows.’

® We number components from 0 to n-1 for compatibility with array indexing in our codes,

which sre written in the C programming language. This is also consistent with the standerd
numbering of nodes in & hypercube and simplifies some of the formulas given below.

forj =0toa-1do

fork =0to j—1do
fori =j ton—1do -
gy =ay —ag*an
"Il"’al
fork = j+1ton—1do

@) =ayl ay
end

In the inner 1o0p of this algorithm, column j is modified by each previously com-
puted column X, an operation which for convenience we denote by cmod (j, %).
After column j is completely modified by all previous columas, it is then
divided by the square root of its diagonal element to produce the final column j
of L. We refer to the latter operation as cdiv (j). Using this notation, the algo-
rithm can be rewritten as

forj =0ton-—1do

fork =0 to j—1do
cmod (f k)
cdiv(j)
end
We will view the cmod (j,k) and cdiv(j) operations as the basic subtasks
to be scheduled on the processors. This means that we will not try to exploit
parallelism ‘within ‘the cmod and cdiv operations, although in a finer-grained
parallel implementation this could be done. We note that the cdiv operations
must take place in sequential order, but that once a given column is completed, it
can be used to modify subsequent columns in any order, or even to modify mul-
tlplecolumnseoncnrmtly 'We will use.this property to ove.lap the cmod

Animplementaﬂonofthisapprmdxforashamd—memorysystemisgvmm
(11} When a processor is assigned the task of computing a given column of L, it
first performs all of the necessary modifications by previous columns, then per-
forms the column division. All of the reguired previous columns are directly
accessible to each processor because they are stored in the common global
memory. Moreover, by sharing the pool of tasks among all of the processors and
assigning columns to processors dynamically, the computational load tends tc be
automatically balanced among the processors. In a inessage-passing, distributed-
memory system, the pool of tasks cannot easily be shared, so the load balance is
entirely dependent on the static assignment of columns to processors. Since all
memory is private, each column computed by a given processor must be explicitly
sent to the other processors that need it for updating the columns they have been
assigned. Thus, in general, giobal communication is required, and this may or
may not be well supported by a particular interconnection network.

wumemmmmbmmamMofthecolm
of L to compute and that the corresponding columns of the original matrix A

reside in the local memory of the processor. Later we will discuss ways to make
this assignment effectively. Then the program that runs on each processor in the
taeasage-passing version of the column-Cholesky algorithm is as follows:

forj =Oton-1do

if col j 1s one of my cols then cdiv(j)

communicate (col j)

for all of my cols k > docmod(k, ;)
end

In this algorithm the procedure communicate elthersendsormwlvescol].
depending on whether the processor calling communicate is responsible for com-
puting col j. In either case, after returning from the communicate procedure,
everyprooumrnowhasacopyofeol; and uses it to modify any of its columns
that may be affected. Note that the cdiv operation on a given column will be
doneonlyafterallofltsnmrymodlﬁuﬂonshaveukaplwe. Thus, the

proper synchronization of the algorithm is implicit in the flow of completed
columnsthmughthenetwork.

For slmpudty. we stated the message-passing Cholesky algorithm in a syn-

tion. Itisposubletoova'hpthetwohowevermaneﬂ'orttomaskmeofthe
communication cost with computation. The philosophy here is to send out
multsattheenrustposslbleﬂmemthehopethatthlswmmmmzeanysubse-
quent waiting for them. - In particular, as soon 2s any column has had all of its
modifications completed, the cdiv operation should be carried out immediately so
that the broadcast of the resulting column of L can be started. Thus, a test is
inserted into the cmod loop to detect completion of modifications to zny column,
in which case, the cdiv operation is carried out and the results transmitted before
continuing with the remaining cmod operations. The effect of this strategy is to
pipeline the computation of successive cclumns.

This overlapping of communication with computation enables the pipelined
algorithm to maintain a higher level of processor utilization than the synchronous
algorithm. The latter has a dip in utilization for esch broadcast communication
step. The relative duration of these dips depends on the relative speeds of com-
munication and computation, so the difference in performance on a given machine

may or may not be significant. These effects wi]l be evident in the experimental
msultsglvmlnsectlons

At this level of specification, the slgorithm is independent of the specific type
of message-passing multiprocessor architecture. Only the details of the communi-
cate pmcedmdependontheoommnnlmﬂonsuppoﬂedbyaparﬂmhrmtemn
nection network. We will illustrate below with appropriate communication pro-
cedures for hypercube and ring networks. In addition to the communication tech-
nique, the other main feature affecting performance of the algorithm is the map-
ping of the matrix onto the processors. In the sections 4 and 5 we take up the

issues of mapping and communication, after discussing our experimental metho-
dology in section 3.

3. Experimental Methodology. The particular type of distributed-memory
multiprocessor we consider is the binary bypercube (see, eg., [19]). We chose the
hypercube architecture for cur implementation because it is available (hypercubes
have been produced by several organizations, including commercial manufactur-
ers), flexible (many - other - processor interconnection network topologies can be -
embedded in a hypercube), and reasonably representative of message-passing
mulﬂpmlnml. Weglveexpermentalmmuobumedonmhtel
{PSC hypercube.

Themdlvﬂmlprommofahypemubemusmﬂyrd‘endtoumdepm—
cessors, or simply nodes. The nodes are numbered 0, ..., p~1, where p=2¢ and
d is the dimension of the hypercube. 'l'hmhanaddmonalpmr.muy
referred to as the host, which serves as the user interface to the hypercube, down-
loading compiled code and problem data to the nodes, and receiving results back
for display to the user. The host may or may not take an active part during
computations on the node processors. In many hypercubes, including the iPSC,
theopmﬁngsystempmvidsauwmaﬂcmuungofmmbetwmarbmary
noda.whetherornotthcymdlmﬂymnwtdbythenetwork.

Perhaps the most important parameter chamcteﬂzmg any message-passing
multiprocessor is the ratio of computation speed to communication speed. The
iPSC has selatively high stariap cost for communications, and sends messages in
relatively large packets (1024 bytes), so that fire-grained algorithms, which do
relatively liitle computation between communications and send relatively small
messages, tend to perform poorly. Moreover, reliabie communication between the
hmtandnodmlsmmythnesslowersml so it is impractical for the host to par-
ticipate in computations on the hypercube. These considerations have affected our
choice of algorithms and the resulting performarnce, as will be seen below.

Our conclusions throughautthepaperarebasedonnumeﬁcalexpeﬂments.

cur results in terms of parallel efficiency. 'l'heusmldeﬁnltlonofpamllgl
efficiency is

efictency = 22eetup _ Tul Ty
P) 4

where p is the number ef processors uwsed, T'; is the execution time for the best
sequential algorithm on one processor, and 7, is the execution time for the paral-
lel algorithm on p processors. Apracﬂmldlﬁcultymththlsdeﬁnmonlsthat
most of our test problems are much too large to sclve using only the memory of
a single processor, and thus we cannot obtain directly the value of T; by numeri-
cal experiment. We have therefore estimated a valve for T’y based on the meas-

ured peak executicn rate of an individual processor for the equivalent serial com-
putatien.

'We use the rate for the “equivalent serial computation” rather than the “best
serial code” for the following reason. The best serial code available often has had
thebmeﬁtofymofﬁnemnmg.oftmwlthextensivesoume-levelmdeopunu-
zation such as loop unrolling, efficieat use of registers, etc., and perhaps even with
some modules coded directly in assembler language. It is impractical {0 spend the

ﬁmeandenmtoperformthenmeklndoftun!ngonanexpeﬂm-talpaﬁnel
code, yet if one does not, then comparisons with the “best serial code™ will appear
to yield an unfavorable estimated parallel efficency. A more realistic approach is
. 10 use a serial code that implements the best serial algorithm but with the same
level of code optimization as the parellel code with which it is to be compared.
‘This does not - mean that we sitaply run the parallel. code on a single processor,
heauethepanﬂelwdewﬂlofunmwnova'hadmtwouldnotbepmtm
a serial ‘code, and may use algorithms or data structures that are fundamentally
l-eﬁdmtforurmmmputaﬂon.

Althoughmoneltlslmportanttoestabnshafalrandmllsﬂcserhl
benchmark against which to measure parallel performance, in another sense the
rsultkﬂmplyamhngofmﬁelmcuﬁonﬂmu,wlththemterpmﬂonm
terms of “speedup” or “efficiency” somewhat arbitrary." In a message-passing
environment, thetrneparalleleﬁdencylslugelydetumlnedbytheraﬂoof
computation to communication speeds, and detailed code optimization in effect
changes that ratio. Reported parailel efficiencies should be interpreted in this
light.--In-any - case, the main ‘point ‘of - our experiments is to compare the
effectiveness of various options within a basic parallel algorithm rather than to
establish any absolute level of efficency. To that end, we use the execution time
of the equlvalmt serial computation as a eonvenimt time unit.

As we demonstrate below there are many choices of strategy in implement-
ing Cholesky factorization cn a dlstrlbuted—mory ‘multiprocessor such as a
hypercube. To facilitate systematic testing and fair comparisons, the numerical
rsnluweglvehelowwmobwnedwnhaslnglepmgraminwhmhvaﬂous
options are implemented for each major issue we study. For a given series of

experimental runs exploring a particular issue, all of the other options are fixed at
reasonable values.

4. Mapping. The manner in which the matrix is mapped onto the processors
will affect the communication requirements, the degree of concurrency, and the
load balance among the processors. We would like to minimize communication,
maximize concurrency, andhaveaumfomworklmdmthepmcuots.

These objectives tend to conflict, however, and 30 we must weigh the tradz-offs
among them.

X With a column-oriented algorithm, the most natural way to partition the
matrix for mapping onto the processors is by vertical strips (i.e., by sets of
columns). Otherparuuonlngsmaybemomappmpﬂateforothertypesofalgo-
rithms, but in our experience such partitionings (for example, by “patches” or
submatrices [6], [7]) are not competitive when used in a column-oriented algo-
rithm. ‘l‘hus.wewhhtoeonnda-waysofmppmgeolmo .., n—1 of the
matrix onto processors 0, p—1, where we assume that n 3p.

Perhaps the most obvions systematic mapping is to map a contiguous block
of n/ p columns onto each processor; we call this block mapping. Another possi-
bility is to assign the columwus to the processors in the same manner one would
deal cards, assigning one column to each processor and then wrapping back to the
beginning with further columns; we call this wrap mapping. A general expression

that includes both possibilities is given by
map column j onto processor |/ dlocksize|mod P,

whu'eblnckslu hthenumberofmﬁgﬁmeolnmmtobea-lgnedtouchpm-
‘ ‘kglmbyuocksue-landblockmpplnghglmby

Whlchofthuemappmgsshouklglvethebatperformanee? ‘After complet-
ing the last of its. ‘columns, eadaproosorbmmuldleforthemmdcr
of the factorization. The block mapping therefore causes the processors contain-
ing the earlier blocks to be idle much of the time, whereas the wrap mapping
keeps all processors busy as long as possible. Thus, we would expect the wrap
mapping to yield much higher concurrency and processor utilization than the
block mapping. On the other hand, the block mapping has potentially smaller
communication requirements, since each completed column needs to be sent only
to higher numbered processors, rather than to all processors as in the wrap map-
ping. .

TABLE 1
Execution time (sec) for Cholesky factorization
as a function of blocksize (p = 32, n = 512).

blocksize execution time
1 794
2 82.7
4 9.1
8 1158
. 16 174.7
nndom 94.1

Althoughthktradeoﬁ‘betweeneoncurrmcyandcommuninﬂonwuhoon—
ceivably go either way depending on the relative speeds of communication and
computation, it turns out that even with rather slow communicaticn the poor
concurrency of block mapping leads to performance that is uniformly inferior to
that of the wrap mapping. This is illustrated in Table 1, which gives execution
time as a function of blocksize for a problem having n =512 and p=32. In this
case, a pure block mapping corresponds to blocksize=16. The resuits shown use
the pipelined version of our algorithm with dcube communication; as 2xplained in
the next section. Also shown in Table 1 is the average sxecution time for 10 ran-
dom mappings of columns to precessors (for which the standard deviation was
1.94 sec), confirming that some care in choosing the mapping is worthwhile.

We note that there are other ways of achieving a more or less uniform
scattering of columns across the processors (e.g., reflection), but wrapping seems
as straightforward and effective as any. All of our remaining numerical experi-
ments use the wrap mapping.

S.Cmmmiaﬁm. As we have scen, the Cholesky factorization algorithm
requires global communication: upon completing each of its assigned columns, a
ummmmm;malmmmrsultamhbbtomothzrm

Such a commuanication pattern is referred to as droadcasting. The method used to
implement broadcasting, and its resulting efficiency, depend on the details of the
mderlmmmumnetworkamongthepm In a bus-based sys-

fmmmph.bmudmﬂngmmﬂyhempﬂsbduadnglew
‘operation since-all of the processors are listening to the common bus. (On-the
'othuhand.wﬂtemtothewmmmbusbnmrﬂymm.aupm-
* s0rs can receive simultaneously, but only one processor can send at a time.) In a
completely connected network (e.g., a crossbar switch), broadcasting is accom-
pllshedbyp-lupnratesmd opemtlons onetoeachoftheotherpmeessms. If

. reach some destinations. ‘In" a ring network, for example, ‘broadcast mmgs
mmtbempagaudmmdtheﬂng.witharsumngdehyofatleastpl 2 com-
municaﬂonlup.

A hypucube mmeonnectlon network oﬂ‘ers a number of posslbmtles for
hnplemenungbmadcasung First, the “diameter” of a hypercube network is rela-
tively small: if p=2¢, then the largest distane between any two processors is d ,
and thus a message never has to be forwarded more than d steps. Moreover, in
many hypsrcubes the operating system automatically forwards messages as
necessary to reach arbitrary destination nodes. Thus, one opticn for implement-
ing broadcasting is simply to write the program as though the network were
completely connected, with a separate send fromthesoumenodetoeachdestlna—
tion node. Forennvanlmce,wewﬂhefertothlsopuonasbcast

Aaauondpo.lbﬂ!tyhtopmpagatebmadmthromhthehypercubealong
an embedded ring. A suitable ordering of the nodes into a ring is provided by a
binary reflected Gray code [17], which has the property that consecutive nodes in
the ring are physically connected in the hypercube. This approach takes rela-
tively little advantage of the interconnections in the hypercube network, and the
diameter of the ring is 24, Nevertheless, a ring can be very effective for mult-
ple broadcasts if they are suitably pipelined. We will refer to this option as

Finally, it is easy to design a strategy for broadcasting that takes full advan-
tage of the recursive structure and small diameter of the hypercube. This
approach is based on embedding a minimal spanning tree in the hypercube net-
work, rooted at the source node of the broadcast. The root node of the broadcast
sends the messege to all of its neighbors, who in turn send the message to all of
their neighbors who have not already received the message, etc., until after d
stages all nodes have received the message. An example is shown in Fig. 1, in
which the root is assumed to be node 0. Wew!ll:d’ertothlsopﬂnnasbcube
AnlmplemumtlonlnCmthanarbltrarynodeumotnufollows(for
definiteness, we use the communication primitives of the Intel {PSC hypercube):

1
2
4
8
3
6
3 9 10 12
L LL 13 14
15

FIG. 1. Spanning tree for hypercube broadcast.

bcubs (vec, bytes, p. root, ci, pid, megtype)
char evec;
/ int bytes, p, root, ci, pid, magiype;
[]
s Broodcast array vec, of length bytes, to all p processors veing o
s minimum sponning tree with given root. Choanel ldentifier is ci,
-/ process id is pid, and meseage is of type msgtype.
[]

int me, ent, node:
me = mynode()troot;
P /= &
if(me<p)

if (p 1= 1) beube (vec, bytes, p, root, ci, pid, megtyps);
send (ci, msgtype. vec. bytes, (medp)troot. pid);

l olse recve (ci, msgtype, vec, bytes. &cnt, &mode, &pid):

Since bcast and ring eech require O(p) communication steps, whereas beube
requires only O(log; p) steps, bcube appears to have a significant performance
advantage, and for a single broadcast this is certainly true. In Cholesky factori-
2ation, however, there is a whole series of broadcasts, one for each successive
column that is completed. In the pipelined version of the algorithm these broad-
casts can be overlapped, so the length of any one broadcast is less important than
the degree of concurrency attainable. We can usually arrange in bcast or ring
that the processor originating a broadcast always send the message first to the
node that “needs it most” (lLe., the processor assizned to compute the next
column of L), whereas this may not be convenient or even possible with beube .
Thus, for example, with bcast or ring, the node assigned column 1 would receive
column O before any other processy, whereupon it can complete column 1 and
initiate another broadcast immediately. With bcube, on the other hand, the node

assigned column 1 may participate in the propagation of the initial fan-out
broadcast for log, p steps before resuming computational work.

This enhanced pipelining effect is critically dependent on.the order in which
the broadcast messages are sent.: With bcast, the messages must be sent to the
pmmthesam;orderasthecolumnsaremappedontothepmmrs.and
this may or may not be convenient depending on details of the implementation.
With ring, themlsnoﬂe:ubﬂltyontheordermwhlchthemmgsmw
thronghtherlng.sotheordeﬂngofthecolumnsmustbeconslstentwnhthe
order of the processors in the ring. By contrast, the effidency of bcube is less sen-
sitive to the order in which the columns are mapped onto the processors. For
example, the columns could be wraprped onto the processors in any order and the
performanceof beube wouldbeunaﬂ'ected. whereas ‘the performance of any ﬁxed

TABLE 2
Execution time (sec) for Cholesky factorization as a function of
communication method and consistency of ordering (p = 32, n = 512).

synchronous pipelined
comm./ord. | consistent inconsistent | consistent inconsistent
beast 137.7 189.3 109.7 156.9
ring 81.2 134.5 74.4 126.6
bcube 90.0 90.7 79.2 80.2

These effects are {llustrated in Table 2, in which we give results for all three
communication technigques using two different orderings of the columns on the
processors: both orderings have an equally uniform load balance, but one ordering
is consistent with the ordering used in implementing bcast and ring , while the
other is not. For the consistent ordering, the performance of ring and bcube is
similar and both are distinctly superior to bcast. For the inconsistent ordering,
the performance of bcast and ring is seriously degraded whereas the performance
of bcube remains about the same. We conclude that bcube is somewhat less
efficient than an optimally ordered implementation of ring, but is markedly
superior if the ordering of -the columns on the processors is inconsistent with the
embedded ring. Thus, the choice of algorithm may depend on whetiier the user is
free 10 choose the ordering or must work with an ordering that is either fixed
(e.g., left over from a previous computational phase) or unpredictable (e.g., due to
pivoting for numerical stability in the nonsymmetric case). Table 2 also shows
the relative performance of the synchronous and pipelined versions of the codes.
‘We see that pipelining yields a significant gain in performance in al! cases. Those

options that are lzast efficlent to begin with gain the most from pipelining, and
the most efficient gain the least, as might be expected.

Finally, Fig. 2 shows the efficency of the pipelined ring and bcube algo-
rithms as a function of n. The serfal time used here in computing paraliel
eﬁdmcylsbasedonmobsewedexecnﬂonmteofommopsforonepromor

using a straightforward serial code for Cholesky factorization, coded in C and
specifically for serial computation on one processor, but otherwise unop-
timized (recall the discussion in section 3). An efficiency of 50%, for example,

1861 ring

SGL _,——/’_————_”:cubc
Bar

70+

efficiency

%
'y

; } ' | 4 | — 4
200 400 600 800 1000 1200 1400 1600 1800
n

FIG. 2. Efficiency of Cholesky jactorization as a function of n (p = 32).

would mean that the execution rate per processor for the parallel code is 0.012
Mflops. The observed increase in efficiency with problem size is to be expected as
communication becomes increasingly dominated by computation.

6. Triangular Solution. The Cholesky factorization is seldom an end in
itself. It is most commonly computed in order to solve symmetric positive
definite systems of linear eqruations by forward and back substitutions with the
triangular factors L and L”. Parallel algorithms for iriangular solution entail
similar precedence constraints and global communication to those necessary for
factorization. However, there is an order of magnitude less computation (O (n2)
instead of O(n*)) in forward or back substitution, and so it is correspondingly
more difficult to mask the communication cost in order to attain good parallel
efficiency. Moreover, the convenience and efficency of trlangular solution are
dependent on the method of data access.

Recall that if A=LLT, then we can solve Ax=) by solving the two tri-
angular systems Ly=>b and LT x=y by forward and back substitutions, respec-
tively. Ifthetﬂangularmatﬂxisstmedonthepmcessorsbyrows,thenaparal—
lel algorithm for triangular solution is easily implemented that has similar con-
currency and communication pattern to those of the factorization, and it gives
relatively good efficency. For example, in our case LT is stored on the Processors
by rows, and so the back substitution can be carried out by the following algo-
rithm, in which each processor contains the components of y and computes the

components of the solution x corresponding to the columns it was assigned.
forj «n—1 t0 0 do

if col j isoneofniycolsthenx,=y,l L

communicate (x;)

for all of my cols £ <j doy,=y,—x;3 L
end

Here again for simplicity we have used a synchronous statement of the algorithm,
but a pipelined version is also easily implemented. Note that the communication
pattern is similar to that of the factorization algorithm, except that cnly a single
number is sent at each stage rather than a whole column. This algorithm works -
because a given processor has already stored all of the needed elements of L in its
local memory during the factorization phase.

If the triangular matrix is stored on the processors by columns, then it is
difficult to implement a parallel algorithm without an excessive amour t of com-
munication, which seriously impairs parallel efficiency. We can still maiitain the
same communication pattern by using the following algorithm, in which each
processor contains the components of the right hand side ¥ and computes the
components of y corresponding to the columns it was assigned.

forj =0ton—1do

begin
if col j isoneofmycolstheny,—b,l L
commanicate (y; and col j)
forallofmycolsk >j doby=b—y;x Ly

end

Note, however, that the volume of communication is greatly increased because of
the necessity to communicate the elements of L that each processor needs but has
not previously stored. In fact, this algorithm has the same communication
volume as the factorization algorithm, but with an order of magnitude less com-
putation over which to amortize it. As a result, we have found that the trade-off
point at which this parallel algorithm outperforms a straigatforward sequential
forward substitution algorithm is larger than the larges. triangular matrix our
hypercube can store (n >1800).

Other possibilities exist for parallelizing the forward solution, but these also
involve increased communication. For example, one could use a finer-grained
algorithm in which individual elements of » are communicated as soon as they
are updated. Such an algorithm has excellent concurrency, even with column-
oriented storage, but since it requires communication inside the inner loop, it per-
forms extremely poorly on a machine with relatively slow communication.
Another possibility would be to use a total exchange algorithm to transpose from
column to row storage for the forward substitution, but this would obviously
entail a great deal of communication. Moreover, it would either have to be done
twice (to return to cclumn storage for the back substitution) or else two coples of

the matrix would have to be stored, thereby halving the size of problem that
could be solved.

200)
180l
168L

1408+

-
N
£

time (sec)
-
®
2

]
P

- - } } } 4 ! } ;
200 400 688 200 1000 1200 1480 1600 1800
n

FIG. 3. Execution time (sec) of triangular solution as a function of n (p = 32).
sc = serial by columns, pc = parallel by columns, pr = parallel by rows.

In order not to incur these high communication costs, we have also imple-
mented a forward substitution algorithm in which the right hand side vector is
passed from processor to processor sequentially (see [9] for details). The relative
performance of this serial forward solution, the parallel forward solution, and
theparaﬂelbackwardsoluﬁonareshownlnﬂg 3. Thus, we see that due to its
very low communication requirements (O(n)), the serial algorithm performs
quite acceptably for modest sized problems. Moreover, if the right hand side is
known in advance of the factorization, then the forward substitution can easily
be pipelined with the factorization, using the processors when they would other-
wise become idle for the remainder of the factorization after completing their last
columns. Nevertheless, in order to be able to handle subsequent triangular solu-

tions efficlently for large problems, parallel algorithms for matrices stored by
columns bear further development.

7. LU Factorization. We now turn to the LU factorization of nonsym-
metric matrices by Gaussian elimination, in which the principal new difficulty is
the necessity of partial pivoting for numerical stability. We again have a choice
of storing the matrix on the processors by columns or by rows. Siorage by
columns would greatly simplify the pivoting procedure, since the search for a
pivot elemeat in a given column would be confined to a single processor. On the
other hand, this would leave us with both L and U stered by columns, and

therefore both the forward and back substitutions would be relatively ineSicient
for reasons discussed in section 6. Storage by rows would be ideal for the tri-
angular solutions, but significantly complicates the search for pivots, since the
necessary information is then spread over all of the processors. Mevertheless, if
the LU factors are to be-used for many right hand sides, the potential payoff
resulting from row-oriented storage led us to develop a row-oriented implemen-
tation of the factorization with partial pivoting [8]. (For an alternative approach
uslngcoimnﬂorageforthefactoﬂzaﬁon,andmsposmontomwstorage
before the triangular solution, see [3]}.)

Tie global communication requirements for LU factorization of a nonsym-
metﬁcmtﬂxaresimﬂartothmeforCholakyfactorlzaﬁonofasymmetﬂc
matrix, except that additional communication is required for determining and
distributing pivoting information. In principle, any of the broadcasting methods
discussed in section 5 could be used. Recall from Table 2, however, that the per-
formance of ring communlutlondependsstmnglyontheoonslstencyoftheord—
ering, which is unlikely 1o be attainable when pivoting is required for numerical
stability. We have therefore used only bcube style communication in implement-
ing LU factorization with pivoting.

The overall efficiency of # parallel algorithm for LU factorization using
row-oriented storage depends on the efficiency of the pivot search. We developed
two basic strategies for the pivot search, with several variants of the second. Our
first strategy uses the host processor to select the pivot in a manner that almost
completely masks the communication cast by overlapping the selection process
with computation, provided communication between host aud nodes is
sufficiently fast. Upon receiving the pivot row, each processor computes its por-
tion of the first column of the reduced matrix, sends the largest element produced
to the host, and then resumes computing the remaining portion of the reduced
matrix. Meaanwhile, the host receives the local maximum from each processor
and can therefore determine the global maximum and notify the processor hold-
ing the corresponding row to broadcast it to the other processors as the next pivot
row. Since the host performs the pivot search while the other processors are com-
pleting the computation of the remainder of the reduced matrix, the cost of
pivoting is potentially negligible, as was verified by simulaticn. Unfortunately,
the extremely siow communicaticn rate between the host and nodes on the Intel
iPSC causes this approach to perform poorly in practice on that machine.

Our second approach relies solely on the node processors to make the pivot
selection. At each major step of the eliraination, all of the processors must com-
municate among themselves sufficdent information to determine the next pivot
row. One way to do this is to use 2 communication pattern that is the reverse of
the spanning tree broadcast discussed earlier. Each leaf node in the tree deter-
mines its local maximum in the pivot column (Le., the largest element in magni-
tude among those rows the processor holds), which is then sent to its parent
node. Each parent node determines its own local maximum, compares it with the
local maxima recelved from its children, and sends the overall local maximum to
its parent. After log;p steps, the global maximum has been determined by the
root node, which must then broadcast this information back out to the other pro-
cessors. Finally, the processor hoiding the pivot row must broadcast the pivot

nmodel

% efficiency

o
“or

L i ! ! .|

209 400 680 800 1000

FIG. 4. Efficiency of LU factorization as a function of n (p = 32).
nmod = number of rows applied at a time.

row to all of the other processors. Thus, a total of three logarithmic communica-
tion stages are needed. This can be reduced to two if each processor sends its
entire candidate pivot row in the initial fan-in cascade (rather than just the local
maximum element in the pivot column), since then the subsequent broadcast
from the root node can send the pivot row to each processor, thereby avoiding the
final broadcast. The price, however, is a significant increase in the total communi-
cation volume, since many elements will be sent that are not used. In practice,
we observed little difference between these two varfants, hut this may be an
artifact of the large packet size on the IPSC, which tends not to penalize large
messages,

The pivot selection process prior to each major step of elimination tends to
inhibit the use of pipelining techniques of the type used in Cholesky factoriza-
tion, in which successive eliminations are overlapped. It is possible to overlap
eliminations with pivoting, but quite inconvenient, and so we have developed
only a synchronous version of our LU algorithm. Another design choice is
whether to interchange rows according to the order of pivots chosen, as is often
done in serial algorithms. In a distributed-memory system, actual physical inter-
chmgeofmwamongpmmorswonldinguraslgmﬁmtamountofmmum-
cation overhead. On the other hand, if rows are not interchanged, then pivoting
causes the ordering of rows on the processors to become essentially random.

thereby risking a poor load balance as we saw in Table 1. In our experience, the

Whmfmwuwedhymxbmngothgmmmmpmp-
ping s in the range of $% to 15%, which we deemed to be not substantial enough
to warrant the additional complexity and communication required to iaterchange
rows. Chu and George have investigated an explicit interchange strategy in distri-
innzdnummuylzl

Another way to improve computational efficdency is to save several pivot
mmatatlmebefmapplyinganofthemtomdwetherunammgmmdumd
redudngmyhdadngoverheadandanowingtheposslbmtyofmoreeﬁ.dent
use of hardware registers (proviGed the compiler is sufficiently intelligent to take
such advantage). The price paid is a slight increase in code complexity and the
tempomrystorageneededtommmatetherows. We have observed significant
performance gains from ‘this strategy, however, so we feel that it is worthwhile.
Fig. 4 shows comparative performance of applying 1, 2, 4, cr 8 rows at a time to
the unreduced matrix. Asthenmnberofrowsapplied(nmodsmtheﬁgm)

mahmmﬁxmmmmdmmmovmeMpovahadmm—
ize increased efficiency.

100+

% efficiency

43 1inpuck
i~ 18

1 1 1 [L
202 400 600 800 10080
n

FIG. 5. Efficiency of LU factorization as a function of n, comparing
parallel row LU with parallel LINPACK (p = 32).

In Fig. § the performance of our row-oriented implementation of ZI/ factori-
zation with partial pivoting is compared to that of a column-oriented implemen-
tation based on SGEFA from LINPACK [4]. We should point out that the latter
implementation was not primarily motivated by seeking optimal performance,

but rather by the desire to port the serial LINPACK algorithm to a parallel
environment with minimal changes. Nevertheless, it is interesting to observe that
our row-oriented LU/ factorization algorithm outperforms the column-oriented

factorization algorithm, despite the higher cost of pivot selection in the réw algo-
rithm. .

The serial benchmark rate vsed in computing parallel efliciency in Figs. 4 and
5 is 0.04 Mfiops 0a one processor. This rate is higher than that used for Cholesky
factorization because both cur parallel row-oriented LU code and the LINPACK
code use source-level code optimization techniques (notably loop unrolling) that
effectively increase the computational speed, and the same applies to the serial
benchmark code. ‘Ironically, this improvement in computational performance has
the effect of lowering the estimated efficiency, but this is consistent with the
corresponding change in the effective ratio of computation speed to communica-
ton speed (Le., &5 computation becomes faster relative to communication, com-
munication overhead becomes a reiatively larger part of the total time, thereby
lowering parallel efficiency).

2008} | inpack

time (sec)

FIG. 6. Execution. time (sec) of triangular solutions (total for forward
and back substitutions) as a function of n. (p = 32).

The row-oriented factorization also makes possible very effident row-oriented
triangular solutions, in contrast to the serial triangular solutions used in the LIN-
PACK implementation. We observe in Fig. 6 that the LINPACK triangular solu-
tions are computation bound (Q (n2)), whereas our row-oriented triangular soiu-

tions are communication bound, so that the execution time of the latter increases
only linearly with n.

8. Conclusion. In this paper we have empirically compared numerous stra-
teglsforsolvlnguymmetﬂcundnonsymmetﬂcunearsystemsonahypercube.
Although our results are somewhat dependent on the particular characteristics of
the Intel iPSC machine used in our experiments, some general observations are
likely to be true of a wide variety of possible hypercube designs:

— Both column-oriented and row-oriented factorization algorithms can be
highly eficent (in the 80-90% range of the theoretical maximum) if the

matrix is large enough, even on a machine with relatively slow communica-
tion.

—_ Formappingthematﬂxontotheprmrs a uniform scattering of the
columns or rows, such as that pr by wrap mapping, is preferable to
block mapping or any randomly chosen mapping.

— For dense matrix factorization, it pays to take full advantage of the structure
of the hypercube network for global communication. In particular, loga-
rithmic, spanning-tree broadcasting is an effective method of implementing
global communication that is flexible enough to handle unpredictable or
uncontroilable orderings efficiently.

— Using only an embedded ring for communication can also be very effective in
a highly regular and homogeneous computation such as matrix factorization,
butarlnglslessﬂmdbleundmoresensmvetothemappingofthematrlx
onto the processors.

— Efficient paraliel triangular solutions are much easier to attain with row-
oriented storage of the matrix on the processors than with column-oriented
storage.

— The communication cost of searching for pivots in LU factorization can be
overcome to produce an efficient row-oriented parallel algorithm, which also
facilitates subsequent triangular solutions.

Some of the issues we have raised merit further study, including more
efficient triangular solutions using column-oriented storage and two-dimensional
partitionings of the matrix (“patches” instead of “strips”). We note that many
of the issues and techniques we have studied are also pertinent to the factoriza-
tion of sparse matrices to solve sparse linear systems [12]. We hope to run the
same experiments on several other hypercubes to see how relative performance
varies when the design parameters change. We have tried to answer a number of
specific technical questions concerning matrix factorization on a message-passing
multiprocessor. More generally, our computational experience with matrix fac-
torization shows that serial precedence constraints and global communication are
ot necessarily insurmountable obstacles to high parallel eficiency.

(1]

(2]

13]

(4]
(5]

(6]
7

(8]

[9]

[10]

[11]

[12]

[13]

[14]

REFERENCEN

P. R. Cappello, Solving dense linear systems on a hypercube automaton, Tech.
Rept. TRCS85-11, Department of Computer Science, University of Califor-
nia, Santa Barbara, California, 198S.

E.ChnandA.George.Gamimaulimwithmidedlmd
balancing on a multiprocessor, Tech. hept., Department of Computer Sci-
ence, University of Waterloo, Waterloo. Ontario, Canada, 1986.

G. 1. Davis, Colzmn LU factorization with pivoting on a hypercube multipro-
cessor, Tech. Rept. ORNL-6219, Oak Ridge National Laboratory, Oak Ridge,
Tennessee, 1985. i

J. J. Dongarra, J. R. Bunch, C. B. Moler and G. W. Stewart, LINPACK
User’s Guide, SIAM, Philadelphia, 1979.

J. J. Dongarra, F. G. Gustavson and A. Karp, Implementing linear algebra
algorithms for dense matrices on. a vector pipeline machine, SIAM Rev., 26
(1984), pp. 921-112.

G. C. Fox, Matrix operations or. the homogeneous machine, Tech. Rept. HM-
5, California Institute of Technology, Pasadena, California, 1982.

G. C. Fox, Square matrix decompositions - symmetric, local, scattered, Tech.
Rept. HM-97, California Institute of Technology, Pasadena, California,
1984.

G. A. Geist, Eficient parallel LU factorization with pivoting on a hypercube
mudtiprocessor, Tech, Rept. ORNL-6211, Oak Ridge National Laboratory,
Oak Ridge, Tennessee, 198S5.

G. A. Geisi and M. T. Heath, Parallel Cholesky factorization on a hypercube
multiprocessor, Tech. Rept. ORNL-6190, Oak Ridge National Laboratory,
Oak Ridge, Tennessee, 1985.

W. M. Gentleman, Some complexity results for matrix computations on
parallel processors, J. ACM, 25 (1978), pp. 112-115.

A. George, M. T. Heath and J. Liu, Parallel Cholesky faciorization on a

il:;redmory multiprocessor, Linear Algebra Appl., 77 (1986), pp. 165-

A. George, M. T. Heath, J. Liu and E. Ng, Sparse Cholesky factorization on a
local-memory multiprocessor, Tech. Rept. ORNL/TM-9962, Oak Ridge
National Laboratory, Oak Ridge, Tennessee, 1986.

M. T. Heath, Parallel Cholesky factorization in message-passing multiproces-
sor environments, Tech. Rept. ORNL-6150, Oak Ridge National Laboratory,
Ouk Ridge, Tennessee, 1985.

L C. F. Ipsen, Y. Saad and M. H. Schultz, Complexity of dense linear system

solution on a multiprocessor ring, Linear Algebra Appl, 77 (1986), pp.
205-239.

(15]

[16]
[17]
[18]

[19]

S. L. Johnsson, Communication efficient basic linear algebra compuzations on
hypercube architectures, Tech Rept. YALEU/DCS/RR-361, Department of
Computer Science, Yale University, New Haven, Connacticut, 1983.

D. P. O'Leary and G. W. Stewart, Data-flow algorithms for parallel matrix
computations, Comm. ACM, 28 (1985), pp. 840-853.

E. M. Reingold, J. NlevergeltandN.Deo Combinatorial Algorithms: Theory
and Practice, Prentice-Hall, Englewood Cliffs, New Jersey, 1977.

Y. Saxdi, Communication complexity of the Gaussian elimination algorithm on
muttiprocessors, Linear Algebra Appl., 77 (1986), pp. 315-340.

C. L. Seitz, The cosmic cube, Comm. ACM, 28 (1985), pp. 22-33.

