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Matrix Factorization on a Hypercube Multiprocessor
O. A. Oelst and M. T. Heath*

Abstract. This paper is concerned with parallel algorithms for matrix fac-
torization on distributed-memory, message-passing multiprocessors, with special
emphasis on the hypercube. We consider both Cholesky factorization of sym-
metric positive definite matrices vn&LU factorization of nonsymmetric matrices
ii«e<f>g partial pivoting. We also consider the use of the resulting triangular fac-
tors to solve systems of linear equations by forward and back substitutions,

of various parallel computational approaches are compared In terms ofp p pp
empirical results obtained on an Intel IPSC hypercube.

1* Introduction. In this paper we study the efficiency of parallel algorithms
for matrix factorization on a hypercube multiprocessor. There have been a
number of theoretical studies of the parallel complexity of factoring dense
matrices on various types of distributed-memory multiprocessors (e.g^ [l], [6],
[7], [10], [13], [14], [15], [16], [13]), but relatively Uttle actual experience has
been reported. Therefore, our study will be largely empirical: we will assess the
efficiency of various strategies by numerical experiments on a hypercube, which Is
a typical distrlbuted-memory multiprocessor.

To avoid unnecessary complications, we initially restrict our attention to the
simplest case, that of computing the Cholesky factorization

A = LLT

where A is a symmetric, positive definite matrix of order n and L is lower tri-
angular. Many of our conclusions, however, are equally applicable to other
matrix factorizations. Later in the paper we consider W factorization by Gaus-
sian *»HtninjrHfln with partial pivoting for nonsymmetrlc matrices.
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Matrix factorization Is an Interesting case study for parallel Implementation
because It has two f ff»n»i requirements that tend to inhibit parallel efficiency:

1. serial precedence constraints must be imposed on some operations, and

2. global communication is required.

The first requirement means that although many of the computational operations
can take place concurrently, there are some operations that must occur In a strict
sequential order. The second requirement means that some results computed by a
given processor must be made available to all of the other processors. Both of
these requirements tend to cause delays in which some processors must wait for
necessary prior results to be computed or communicated by other prc

A detailed study of parallel Cholesky factorization on a shared-memory
multiprocessor is contained in [11]. Global communication is a relatively minor
issue in such an environment because global data access is available through the
common memory (although memory contention can still be a problem). There-
fore, [11] focuses primarily on the effect of precedence constraints and subtask
work profiles on concurrency and load balancing. It was found that among the
six ways of arranging the triple nested loop that Hpfinwe the Cholesky algorithm,
the method having the best combination of concurrency and dynamic load bal-
ance for a medium-grain parallel implementation is the column-oriented Chole-
sky algorithm denoted by jki (using the notation of [5]). By medium-grain we
mean for this particular problem that the basic units of computation are subtasks
of computational complexity O(.n*) arithmetic operations. A medium-grain
approach is most appropriate when the order of the matrix significantly exceeds
the number of processors available.

Developing a medium-grain parallel implementation of Cholesky factoriza-
tion for a dlstributed-memory multipreosssor is more complicated. In a
dMributed-memory environment, we must usually be content with a static load
balance that is determined In advance of the computation, in contrast to a
dynamic load balance that is easily implemented in shared memory by means of
a pool of tasks. Even more serious. In a dlstributed-memory system, communica-
tion is accomplished by passing messages among processors, and thus the neces-
sity of global <!omnninftmnpn becomes a critical factor affecting computational
efficiency. Our primary objectives in the present paper are to examine various
ways of mapping the matrix onto the processors, to study their effects on load
balancing and communication, and to determine how the communication require-
ments can best be met.

2. The Basic Algorithm. The jki formulation of the Cholesky algorithm is
as follows.*

" We number component! from 0 to n-1 fox compatibility with array '"•'—jug in our coda,
which an written is the C programmiing language. This ta alao conaiatcnt with the staadanl
numbering of node* la a hypercobe and rimplitte* tome of the formulas given below.



for,/ «Otort— Ido
begin

for* - 0 to / - I do
tori -j t o n - I d o

f o r * - / + ! t o n - l d o

end
In the inner loop of this algorithm, column j is modified by each previously com-
puted column * , an operation which for convenience we denote by cmod{j ,kX
After column / Is completely modified by all previous columns, it is then
divided by the square root of Its diagonal element to produce the final column j
of L. We refer to the latter operation as cdtv (j ). Using this notation, the algo-
rithm can be rewritten as

for/ -Oton—Ido
begin

for* - O t o ; - l d o
anodij.k)

end

We will view the cmodij ,k) and cdivij) operations as the basic subtasks
to be scheduled on the processors. This means that we will not try to exploit
parallelism within the cmod and cdrv operations, although in a finer-grained
parallel implementation this could be done. We note that the cxftv operations
must take place in sequential order, but that once a given column is completed, it
can be used to modify subsequent columns in any order, oreven to modify mul-
tiple columns concurrently. We will use this property to overlap the cmod
operations, thereby attaining a high degree of processor utilization.

An Implementation of this approach for a shared-memory system is given In
[11]. When a processor is assigned the task of computing a given column of L , it
first performs all of the necessary modifications by previous columns, then per-
forms the column division. All of the required previous columns are directly
accessible to each processor because they are stored in the common global
memory. Moreover, by sharing the pool of tasks among all of the processors and
assigning columns to processors dynamically, the computational load tends to be
automatically hfliyfft nmnng tliff processors. In a message-passing, dlstrlbuted-
memory system, the pool of tasks cannot easily be shared, so the load balance is
entirely dependent on the static assignment of columns to processors. Since all
memory Is private, each column computed by a given processor must be explicitly
sent to the other processors that need it for updating the columns they have been
assigned. Thus, in general, global communication is required, and this may or
may not be well supported by a particular interconnection network.

Let us assume that each piucwoA has been amlgned a sublet of the columns
of JL to compute and that the corresponding columns of the original matrix A



reside In the local memory of the processor. Later we will discuss ways to make
this assignment effectively. Then the program that runs on each prcceaaor in the
message-passing version of the column-Cholcsky algorithm Is as follows:

for/ -Oton—1 do
begin

If col j Is one of my cols then «ftv (/ )
communicate (col j )
for all of my cols * >j docmoiGt,;)

end

In tills algorithm the procedure communicate either sends or receives col j ,
depending on whether the processor calling communicate Is responsible for com-
puting col / . In either case, after returning from the communicate procedure,
every processor now has a copy of col / and uses it to modify any of its columns
that may be affected. Note that the aftv operation on a given column will be
done only after all of its necessary modifications have taken place. Thus, the
proper synchronization of the algorithm is Implicit in the flow of completed

~fhm network.

For simplicity, we stated the message-passing Cholesky algorithm In a syn-
chronous form: there is a strict alternation between computation and communica-
tion. It is possible to overlap the two, however, in an effort to mask some of the
communication cost with computation. The philosophy here Is to send out
results at the earliest possible time in the hope that this will minimize any subse-
quent waiting for them. In particular, as soon as any column has had all of its
modifications completed, the ctfrv operation should be carried out Immediately so
that the broadcast of the resulting column of L can be started. Thus, a test Is
inserted Into the anod loop to detect completion of modifications to any column,
in which case, the cdiv operation is carried out and the results transmitted before
continuing with the remaining cmod operations. The effect of this strategy is to
pipeline the computation of successive columns.

This overlapping of communication with computation enables the pipelined
algorithm to «Mriirt»iii a higher level of processor utilization •*»*" the synchronous
algorithm. The latter has a dip In utilization for each broadcast communication
step. The relative duration of these dips depends on the relative speeds of com-
munication ""d computation, so *h? difference in performance on a givenp g
may or may not be significant. These effects will be evident in the experimental
results given in section 5.

At this level of specification, the algorithm is Independent of the specific type
of message-passing multiprocessor architecture. Only the details of the communi-
cate procedure depend on the communication supported by a particular Intercon-
nection network. We will illustrate below with appropriate communication pro-
cedures for hypercube and ring networks. In addition to the communication tech-
nique, the other main feature affecting performance of the algorithm Is the map-
ping of the matrix onto the processors. In the sections 4 and 5 we take up the
issues of mapping and communication, after discussing our experimental metho-
dology In section 3.



3. Experimental Methodology. The particular type of distributed-memory
multiprocessor we consider Is the Unary hypercube (see, 6t>, I19D. We chose the
hypercube architecture for our implementation because it is available (hypercubes
have been produced by several organizations, including commercial manufacture
eis), flexib^
embedded in a hypercube), and nasonably representative of message-passing
multiprocessors In general. WeTgive expermental results obtained on an Intel
1PSCJ hypercube.

The individual processors of a hypercube are usually referred to as node pro-
cessors, or simply nodes. The nodes are numbered 0 , . . . ,p—lt where/>«2* and
d is the i rf ^ ' 1 1 1 ^ ' ' ' ^ ^ ^ 1 "
referred to as the host, which serves as the user taterfa« to the hypeicube, down-
loading compiled code and problem data to the nodes, and receiving results back
for display to the user. The host may or may not take an active pert during
computations on the node processors. In many hypercubes, including the iPSC,
the operating system provides automatic routing of messages between arbitrary
nodes, whether of not they are directly connected by the network.

Perhaps the most important parameter characterizing any message-passing
multiprocessor is the ratio of computation speed to communication speed. The
lPSC has relatively high startup cost for communications, and sends messages in
relatively large packets (1024 bytes), so that fine-grained algorithms, which do
relatively little computation between communications and send relatively small
messages, tend to perform poorly. Moreover, reUabie communication between the
host and nodes is many times slower still, so it Is Impractical for the host to par-
ticipate In computations on the hypercube. These considerations have affected our
choice of algorithms and the resulting performance, as will be seen below.

Our conclusions throughout the paper are based on numerical experiments.
Since timing data for a particular m«chi«^ have little universal Hi«w«i«g, we state
our results in terms of pwyiigi efficiency. The usotd definition of parallel

is

where p Is the number of processois used, T\ is the execution time for the best
sequential algorithm on one processor, and Tp is the execution time for the paral-
lel algorithm on p processors. A practical difficulty with this definition is that
most of our test problems are much too large to solve using only the memory of
a single processor, and thus we cannot obtain directly the value of Tx by numeri-
cal experiment. We have therefore estimated a value for Tx based on the meas-
ured peak execution rate of an individual processor for the equivalent serial com-
putation.

We use the rate for the "equivalent serial computation" rather than the "best
serial code" for the following reason. The best serial code available often has had
the benefit of years of fine tuning, often with extensive source-level code optimi-
zation such as loop unrolling, efficient use of registers, etc., and perhaps even with
some modules coded directly In assembler language. It Is impractical to spend the



and energy to perform the same kind of tuning on an experimental parallel
code, yet if one does not, then comparisons with the "best serial code" will appear
to yield an unfavorable estimated parallel efficiency. A more realistic approach is

, to use a serial code that implements the best serial algorithm but with the same
level of code optimization as the parallel code with which it is to be compared.
This -does not mean that we simply run the parallel code on a single processor,
because the parallel code will often contain overhead that would not be present in
a serial cod«, and may use algorithms or data structures that are fundamentally
less efficient for serial computation.

Although in one sense it Is Important to establish a fair and realistic serial
benchmark against which to measure parallel performance, in another sense the
result Is simply a rescaling of parallel execution times, with the interpretation in
terms of "speedup" or "efficiency" somewhat arbitrary. In a message-passing
environment, the true parallel efficiency Is largely determined by the ratio of

changes that ratio. Reported parallel efficiencies should be interpreted In this
light. In any case, the main point of our experiments is to compare the
effectiveness of various options withm a basic parallel algorithm rather than to
establish any absolute level of efficiency. To that end, we use the execution time
of the equivalent serial computation as a convenient time unit.

As we demonstrate below, there are many choices of strategy In implement-
ing Cholesky factorization on a dlstributed-memory multiprocessor such as a
hypercube. To facilitate systematic testing and fair comparisons, the numerical
results we give below were obtained with a single program in which various
options are Implemented for each major Issue we study. For a given series of
experimental runs exploring a particular issue, all of the other options are fixed at
reasonable values.

4. Mapping. The manner in which the matrix is mapped onto the processors
will affect the communication requirements, the degree of concurrency, and the
load balance among the processois. We would like to minimize communication,
maximize concurrency, and have a uniform work load across the processors.
These objectives tend to conflict, however, and so we must weigh the tradd-offs

With a column-oriented algorithm, the most natural way to partition the
'matrix for mapping onto the processors Is by vertical strips (Le., by sets of
columns). Other partitlonlngs may be more appropriate for other types of algo-
rithms, but in our experience such partitlonlngs (for example, by "patches" or
submatrlces [6], [7D are not competitive when used In a column-oriented algo-
rithm. Thus, we wish to consider ways of mapping columns 0 , . . . , n—1 of the
matrix onto piwessow 0, . • . , p—l, where we assume that n >

Perhaps the most obvious systematic mapping is to map a contiguous block
of n I p columns onto each processor, we call this block mapping. Another possi-
bility Is to assign the columiiS to the processors in the same manner one would
deal cards, assigning one column to each piotessoi and then wrapping back to the
beginning with further columns; we call this Tfrap mapping. A general expression



that includes both possibilities to given by

map c o l u m n / onto processor \jl blodtsize\mod p ,

where Mocksixe to the number of contiguous columns to be assigned to each pro-
cessor. Wrap mapping to given by toocksixe**\ and block mapping to given by
Ukta\n\ p\.

Which of these mappings should give the best performance? After complet-
fr dl f h l^yrimw ra, Idle for theing the last of ***

of the factorization. The block mapping therefore CBUMS the prcceEsors contain-
ing the earlier blocks to be Idle much of the time, whereas the wrap mapping
keeps all processors busy as long as possible. Thus, we would expect the wrap
mapping to yield much higher concurrency and processor utilization than the
block mapping. On the other hand, the block mapping has potentially smaller
communication requirements, since each completed column needs to be sent only
to higher numbered processors, rather than to all processors as In the wrap map-
ping*

TABLE!
Execution time (aec) forChoteaky factorization

as a function of biocksixe (p • 32, n - 512).
bloc1™47*

1
2
4
8

16
' BTWKBWTWI YflfflirirlilV

execution time
79.4
82.7
92.1

115.8
174.7
94.1

Although this tradeoff between concurrency and communication could con-
ceivably go either way depending on the relative speeds of communication and
computation, It turns out that even with rather slow communication the poor
concurrency of block mapping leads to performance that to uniformly inferior to
that of the wrap mapping. This to illustrated In Table 1, which gives execution
time as a function of blocksize for a problem having n*512 and p*32. In thto
case, a pure block mapping corresponds to Nocksixe=lb. The results shown use
the pipelined version of our algorithm with Acute communication, as explained hi
the next section. Also shown in Table 1 to the average execution time for 10 ran-
dom mappings of columns to prcxessots (for which the standard deviation was
1.94 sec), confirming that some care in ri>ojMH«g the mapping to worthwhile.

We note that there are other ways of achieving a more or less uniform
scattering of columns across the processors (e.g./reflection), but wrapping seems
as straightforward and effective as any. All of our remaining numoical experi-
ments use the wrap mapping.

& Qmntsaicatioa. As we have seen, the Cholesky factorization algorithm
requires global communication: upon completing each of its assigned columns, a
given nroassw must in general make its results available to all other processors.



Such a cftmmwikatlftn pattern is referred to as frrvndrwfring, The method used to
implement broadcasting, and Its resulting efficiency, depend on the details of the
underlying Interconnection network among the processors. In a bus-based sys-
tem, for example, broadcasting can usually be accomplished as a single send
operation since all of the processors are listening to the common bus. (On the
other hand, write access to the common bus Is necessarily serial; Le., all proces-
sors can receive simultaneously, but only one processor can send at a time.) In a
completely connected network (e.g., a crossbar switch), broadcasting Is accom-
plished by p—1 separate JBOJ operations, oneto each of the other processors. If
seine processors are not directly connected by the network, then broadcasting
requires tfeat the message be forwarded by intermediate processors In order to
reach some destinations. In a ring network, for example, broadcast messages
must be propagated around the ring, with a resulting delay of at least ^ / 2 com-
munication steps.

A hypercube interconnection network offers a number of possibilities for
implementing broadcasting. First, the "diameter" of a hypercube network is rela-
tively small: if p=2*, then the largest distaste between any two processors is d,
and thus a message never has to be forwarded more than d steps. Moreover, in
many hypercubes the operating system automatically forwards messages as
neccsMiy to reach arbitrary destination nodes. Thus, one option for Implement-
ing broadcasting is simply to write the program as though the network were
completely connected, with a separate aend from the source node to each destina-
tion node. For convenience, we will refer to this option as boast.

A second possibility is to propagate broadcasts through the hypercube along
an embedded ring. A suitable ordering of the nodes into a ring is provided by a
binary reflected Gray code [17], which has the property that consecutive nodes In
the ring are physically connected in the hypercube. This approach takes rela-
tively little advantage of the Interconnections in the hypercube network, and the
diameter of the ring to 2*~*. Nevertheless, a ring can be very effective for multi-
ple broadcasts if they are suitably pipelined. We will refer to this option as
r i n g . • • • ' • • - - • • • • • • • • - - - ' • .

Finally, it is easy to design a strategy for broadcasting that takes full advan-
tage of the recursive structure and small diameter of the hypercube. This
approach is based on embedding a minimal spanning tree in the hypercube net-
work, rootedat the source node of the broadcast. The root node of the broadcast
sends the musiage to all of its neighbors, who in turn send the message to all of
their neighbors who have not already received the message, etc, until after d
stages all nodes have received the mesiage. An example is shown In Fig. 1, in
which Hie root is assumed to be node 0. We will refer to this option as Acute.
An implementation in C with an arbitrary node as root is as follows (for
definlteneas, we use the communication primitives of the Intel IPSC hypercube):



FIG. 1. Spanning tree for hypercube broadcast.

bcuba ( vac . b y t e a . p . r o o t . c l . p l d . M g t y p * )
char *v«c;
int by U s . p. root. el. pld. Mgtypa;

/•
• Broadcast array v«c. of length bytes, to all p processors using a
• nininin spanning trae with glvan root. Channal Identifier ia el,
• procaaa id is pid, and swasage is of typs asgtype.
•/

Int M , cnt, nods;
ne - aynodeQtroot;
P /- 25
if ( M < p )

If ( P I" 1 ) beube ( vac. bytas. p. root, el, pid, aagtyp* );
sand ( el. asgtype. vac. bytes, (sj*+p)«root. pld );

alaa recvw ( ci. asgtype, vac. bytaa. tent, tnodv, tpici ) ;

Since beast tad ring each require O(p ) communication steps, whereas bcube
requires only OQo&p) steps, Acute appears to have a significant performance
advantage, and for a single broadcast this is certainly true. In Choleslcy factori-
zation, however, there is a whole series of broadcasts, one for each successive
column that is completed. In the pipelined version of the algorithm thfflg broad-
casts can be overlapped, so the length of any one broadcast is less important than
the degree of concurrency attainable. We can usually arrange in beast or ring
that the processor originating a broadcast always send the mi awiuur first to the
node that "needs It most" (IA, the processor assigned to compute the next
column of L), whereas this may not be convenient or even possible with babe.
Thus, for example, with beast or ting, the node — < tT < column 1 would receive
column 0 before any other procemv, whereupon it can complete column 1 and
initiate another broadcast immediately. With Acute, on the other hand, the node



column 1 may participate In the propagation of the Initial fan-out
broadcast for lo&p steps before resuming computational work.

This ftnhfl«cwt pipelining effect is critically dependent on<the order in which
the broadcast messages are sent With fccasf, the messages must be sent to the
processors in the samt order as the columns are mapped onto the processors, and
this may or may not be convenient depending on details of the Implementation.
With ring, there is no flexibility on the order In which the messages circulate
through the ring, so the ordering of the columns must be consistent with the
order of the processors in the ring. By contrast, the efficiency of bcube is less sen-
sitive to the order in which the columns are mapped onto the processors. For
example, the columns could be wrapped onto the processors in any order and the
performance of bcube would be unaffected, whereas the performance of any fixed
Implementation of beast or ring would be strongly affected.

TABLE 2
Execution time (sec) for Cholesky factorization as a function of

communication method and consistency of ordering (p-32,n- 512).

comxfc/ord.
beast
ring
bcube

synchronous
consistent inconsistent

137.7 189.3
81.2 134.5
90.0 90.7

pipelined
consistent inconsistent

109.7 156.9
74.4 126.6
79.2 80.2

These effects are illustrated in Table 2, in which we give results for all three
communication techniques using two different orderings of the columns on the
processors: both orderlngs have an equally uniform load balance, but one ordering
is consistent with the ordering used in implementing beast and ring, while the
other is not. For the consistent ordering, the performance of ring and Acute is
similar and both are distinctly superior to beast. For the Inconsistent ordering,
the performance of beast and ring is seriously degraded whereas the performance
of bcube remains about the same. We conclude that bcube is somewhat less
efficient than an optimally ordered implementation of ring, but is markedly
superior if the ordering of the columns on the processors is inconsistent with the
embedded ring. Thus, the choice of algorithm may depend on whether the user is
free to choose the ordering or must work with an ordering that is either fixed
(eg., left over from a previous computational phase) or unpredictable (e.g., due to
pivoting for numerical stability in the nonsymmetric case). Table 2 also shows
the relative performance of the synchronous and pipelined versions of the codes.
We see that pipelining yields a significant gain in performance in all cases. Those
options that are least efficient to begin with gain the most from pipelining, and
the most efficient gain the least, as might be expected.

Finally, Fig. 2 shows the efficiency of the pipelined ring and bcube algo-
rithms as a function of n. The serial time used here in computing parallel
efficiency is based on an observed execution rate of 0.024 Mflops for one processor
using a straightforward serial code for Cholesky factorization, coded In C and
dffilgneri specifically for serial computation on one processor, but otherwise unop-
timized (recall the discussion in section 3). An efficiency of 50%, for example,
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FIG. 2. Efficiency of Cholesky factorization as a function of nip - 32).

would mean that the execution rate per processor for the parallel code is 0.012
Mfiops. The observed increase in efficiency with problem size is to be expected as
communication becomes increasingly dominated by computation.

6. Triangular Solution. The Cholesky factorization is seldom an end in
itself. It is most commonly computed in order to solve symmetric positive
definite systems of linear equations by forward and back substitutions with the
triangular factors L and L*. Parallel algorithms for triangular solution entail
similar precedence constraints and global communication to those necessary for
factorization. However, there is an order of magnitude less computation (O (n2)
instead of O(n3J) In forward or back substitution, and so it is correspondingly
more difficult to mask the communication cost In order to attain good parallel
efficiency. Moreover, the convenience and efficiency of triangular solution are
dependent on the method of data access.

RecaUthat if A = LLT, then we can solve Ax=b by solving the two tri-
angular systems Ly=b and LTx=y by forward and back substitutions, respec-
tively. If the triangular matrix Is stored on the processors by rows, then a paral-
lel algorithm for triangular solution is easily implemented that has similar con-
currency and communication pattern to those of the factorization, and it gives
relaUvely good efficiency. For example, In our case LT is stored on the processors
by rows, and so the back substitution can be carried out by the following algo-
rithm, in which each processor contains the components of y and computes the



components of the solution x corresponding to the columns it was assigned.

for; -n—1 toOdo
begin

If col ; Is one of my cols then Xj — yjl LJ}

communicate (xj )
for all of my cols * < ; do yk=yk — Xj • LJk

end

Here again for simplicity we have vised a synchronous statement of the algorithm,
but a pipelined version is also easily implemented. Note that the communication
pattern is similar to that of the factorization algorithm, except that only a single
number is sent at each stage rather than a whole column. This algorithm works -
because a given processor has already stored all of the needed elements of L in its
local memory during the factorization phase.

If the triangular matrix is stored on the processors by columns, then It is
difficult to implement a parallel algorithm without an excessive amour t of com-
munication, which seriously impairs parallel efficiency. We can still maintain the
same communication pattern by using the following algorithm, In which each
processor contains the components of the right hand side b and computes the
components of y corresponding to the columns it was assigned.

for/ - O t o n - l d o
begin

if col j is one of my cols then yj = b} / LJJ
communicate (y, and col / )
for all of my cols it >j 6obk = bk —yj* Lkj

end

Note, however, that the volume of communication Is greatly increased because of
the necessity to communicate the elements of L that each processor needs but has
not previously stored. In fact, this algorithm has the same communication
volume as the factorization algorithm, but with an order of magnitude less com-
putation over which to amortize it. As a result, we have found that the trade-off
point at which this parallel algorithm outperforms a straightforward sequential
forward substitution algorithm Is larger than the largest triangular matrix our
hypercube can store (n > 1800).

Other possibilities exist for parallelizing the forward solution, but these also
involve increased communication. For example, one could use a finer-grained
algorithm in which Individual elements of b are communicated as soon as they
are updated. Such an algorithm has excellent concurrency, even with column-
oriented storage, but since it requires communication inside the inner loop, it per-
forms extremely poorly on a machine with relatively slow communication.
Another possibility would be to use a total exchange algorithm to transpose from
column to row storage for the forward substitution, but this would obviously
entail a great deal of communication. Moreover, it would either have to be done
twice (to return to column storage for the back substitution) or else two copies of
the matrix would have to be stored, thereby halving the size of problem that
could be solved.
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FIG. 3. Execution time (sec) of triangular solution as a function of nip- 32).
sc - serial by columns, pc - parallel by columns, pr - parallel by rows.

In order not to incur these high communication costs, we have also imple-
mented a forward substitution algorithm in which the right hand side vector is
passed from processor to processor sequentially (see [9] for details). The relative
performance of this serial forward solution, the parallel forward solution, and
the parallel backward solution are shown in Fig. 3. Thus, we see that due to its
very low communication requirements (Ofay), the serial algorithm performs
quite acceptably for modest sized problems. Moreover, if the right hand side is
known in advance of the factorization, then the forward substitution can easily
be pipelined with the factorization, using the processors when they would other-
wise become idle for the remainder of the factorization after completing their last
columns. Nevertheless, in order to be able to handle subsequent triangular solu-
tions efficiently for large problems, parallel algorithms for matrices stored by
columns bear further development.

7. LU Factorization. We now turn to the W factorization of nonsym-
metric matrices by Gaussian elimination, in which the principal new difficulty is
the necessity of partial pivoting for numerical stability. We again have a choice
of storing the matrix on the processors by columns or by rows. Storage by
columns would greatly simplify the pivoting procedure, since the search for a
pivot element in a given column would be confined to a single processor. On the
other hand, this would leave us with both L and U stored by columns, and



therefore both the f orwaid and back substitutions would be relatively Inefficient
for reasons discussed in section 6. Storage by rows would be ideal for the tri-
angular solutions, but significantly complicates the search for pivots, since the
necessary information is then spread over all of the processors. Nevertheless, If
the W factors are to be used for many right hand stdes, the potential payoff
resulting from row-oriented storage led us to develop a row-oriented implemen-
tation of the factorization with partial pivoting [8]. (For an alternative approach
using column storage for the factorization, and transposition to row storage
before the triangular solution, see [330

Tie global communication requirements for W factorization of a fionsym-
metric matrix are similar to those for Gholesky factorization of a symmetric
matrix, except that additional communication is required for determining »»«t
distributing pivoting Information. In principle, any of the broadcasting methods
discussed in section 5 could be used. Recall from Table 2, however, that tne per-
formance of ring communication depends strongly on the consistency of the ord-
ering, which is unlikely to be attainable when pivoting is required for numerical
stability. We have therefore used only Acute style communication in implement-
ing W factorization with pivoting.

The overall efficiency of n parallel algorithm for W factorization using
row-oriented storage depends on the efficiency of the pivot search. We developed
two basic strategies for the pivot search, with several variants of the second. Our
first strategy uses the host processor to select the pivot in a manner that almost
completely masks the communication cast by overlapping the selection process
with computation, provided communication between host and nodes is
sufficiently fast Upon receiving the pivot row, each processor computes its por-
tion of the first column of the reduced matrix, sends the largest element produced
to the host, and then resumes computing the remaining portion of the reduced
matrix. Meanwhile, the host receives the local maximum from each processor
and can therefore determine the global maximum and notify the processor hold-
ing ihe corresponding row to broadcast it to the other processors as the next pivot
row. Since the host performs the pivot search while the other processors are com-
pleting the computation of the remainder of the reduced matrix, the cost of
pivoting is potentially negligible, as was verified by simulation. Unfortunately,
the extremely slow communication rate between the host and nodes on the Intel
iPSC causes this approach to perform poorly in practice on that mnrinnp.

Our second approach relies solely on the node processors to make the pivot
selection. At each major step of the elimination, all of the processors must com-
municate among themselves sufficient information to determine the next pivot
row. One way to do this is to use a communication pattern that is the reverse of
the spanning tree broadcast discussed earlier. Each leaf node in the tree deter-
mines its local maximum in the pivot column (Le., the largest element in magni-
tude among those rows the processor holds), which is then sent to its parent
node. Each parent node determines its own local marimTmi, compares it with the
local maxima received from its children, and sends the overall local maximum to
its parent. After logzp steps, the global maximum has been determined by the
root node, which must then broadcast this information back out to the other pro-
cessors. Finally, the processor holding the pivot row must broadcast the pivot
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FIG. 4. Efficiency of W factorization as a function ofn(p- 32).
nmod - number of rows applied at a time.

row to all of the other processors. Thus, a total of three logarithmic communica-
tion stages are needed. This can be reduced to two If each processor sends its
entire candidate pivot row in the Initial fan-in cascade (rather than Just the local
maximum element in the pivot column), since then the subsequent broadcast
from the root node can send the pivot row to each processor, thereby avoiding the
final broadcast The price, however, Is a significant increase in the total communi-
cation volume, since many elements will be sent that are not used. In practice,
we observed little difference between these two variants, but this may be an
artifact of the large packet size on the 1PSC, which tends not to penalize large

The pivot selection process prior to each major step of elimination tends to
inhibit the use of pipelining techniques of the type used in Cholesky factoriza-
tion, In which successive eliminations are overlapped, it is possible to overlap
eliminations with pivoting, but quite Inconvenient, and so we have developed
only a synchronous version of our W algorithm. Another design choice Is
whether to Interchange rows according to the order of pivots chosen, as Is often
done In serial algorithms. In a dlstrlbuted-memory system, actual physical Inter-
change of rows among processors would incur a significant amount of communi-
cation overhead. On the other hand. If rows are not Interchanged, then pivoting
causes the ordering of rows on the processors to become essentially random,
thereby risking a poor load balance as we saw In Table 1. In our experience, the



degradation in performance caned by random pivoting compared to wrap map-
ping to in the range of 5% to 15%, which we deemed to be not substantial enough
to wMMwt the aiJMfflftOfl* complexity n*"* communication required t&> interchange
rows. Chu and George have investigated an explicit Interchange strategy in distri-
buted memory [2].

Another way to improve computational efficiency is to save several pivot
rows at a time before applying all of them to reduce the remaining unreduced
submatrix. !n effect, this unrolls the micWle loop of the elimination, thereby
reducing array mdwrfng overhead and allowing the possibility of more eftident
use of hardware registers (provided the compiler is sufficiently intelligent to take
such advantage). The price paid is a slight Increase in code complexity and the
temporary storage needed to accumulate the rows. We have observed significant
performance gains from this strategy, however, so we feel that it is worthwhile.
Rg. 4 shows comparative performance of applying 1, 2, 4, or 8 rows at a time to
the unreduced matrix. As the number of rows applied (nmods in the figure)
grows, a larger matrix is required in order to overcome startup overhead and real-

2 0 0 4 0 0 B00 8 0 0 1000

FIG. 5. Efficiency of LU factorization as a function of n, comparing
parallel row W with parallel UNPACK (p - 32).

In Fig. 5 the performance of our row-oriented implementation of W factori-
zation with partial pivoting is compared to that of a column-oriented Implemen-
tation based on SGEFA from UNPACK [4]. We should point out that the latter
implementation was not primarily motivated by seeking optimal performance,



but rather by the desire to port the serial UNPACK algorithm to a parallel
ffi^ninmgw* «*** m«"«">»i ghmiflwt. Nevertheless it is interesting to observe that
our row-oriented UJ factorization algorithm outperforms the column-oriented
factorization algorithm, despite the higher cost of pivot selection in the row algo-
rithm. „

The serial benchmark rate used In computing parallel efficiency In Figs. 4 and
5 is O04 Mflops OT one processor. This rate is higher than that used for Cholesky
factorization because both our parallel row-oriented It / code and the UNPACK
code use source-level code optimization techniques (notably loop unrolling) that
effectively Increase the computational speed, and the same applies to the serial
benchmark code. Ironically, this improvement in computational performance has
the effect of lowering the estimated efficiency, but this Is consistent with the
corresponding change in the effective ratio of computation speed to communica-
tion speed (Le^ as computation becomes faster relative to communication, com-
munication overhead becomes a relatively larger part of the total time, thereby
lowering parallel efficiency).

2 0 0 400 6 0 0 8 0 0 1000

FIG. 6. Execution time (sec) of triangular solutions (total for forward
and bade substitutions) as a function ofn(p~ 32).

The row-oriented factorization also makes possible very efficient row-oriented
triangular solutions, in contrast to the serial triangular solutions used in the UN-
PACK implementation. We observe in Fig. 6 that the UNPACK triangular solu-
tions are computation bound (O (n2)), whereas our row-oriented triangular solu-



bound, so that the execution time of the latter t
only linearly with n .

& Conclusion. In this paper we have empirically compared numerous stra-
tegies for solving Kymmetric and nonsymmetrlc linear systems on a hypercube.
Although our results are somewhat dependent on the particular characteristics of
the Intel iPSC fffM**™* used in our experiments, some general observations are
likely to be true of a wide variety of possible hypercube designs:

— Both column-oriented and row-oriented factorization algorithms can be
highly efficient (in the 80-90% range of the theoretical maximum) if the
matrix is large enough, even on a machine with relatively slow communica-
tion.

— For mapping the matrix onto the processors, a uniform scattering of the
columns or rows, such as that provided by wrap mapping, is preferable to
block mapping or any randomly chosen mapping.

— For dense matrix factorization, it pays to take full advantage of the structure
of the hypercube network for global communication. In particular, loga-
rithmic, spannlng-tree broadcasting is an effective method of implementing
global communication that is flexible enough to ha«i<tle unpredictable or
uncontrollable orderings efficiently.

— Using only an embedded ring for communication can also be very effective in
a highly regular and homogeneous computation such as matrix factorization,
but a ring is less flexible and more sensitive to the mapping of the matrix
onto the processors.

— 'Rffiffynt parallel triangular solutions are much easier to attain with row-
oriented storage of the matrix on the processors than with column-oriented
storage.

— The communication cost of searching for pivots in W factorization can be
overcome to produce an efficient row-oriented parallel algorithm, which also
facilitates subsequent triangular solutions.

Some of the Issues we have raised merit further study, including more
efficient triangular solutions using column-oriented storage and two-dimensional
partitionings of the matrix ("patches" instead of "strips"). We note that many
of the issues and techniques we have studied are also pertinent to the factoriza-
tion of sparse matrices to solve sparse linear systems [12]. We hope to run the
same experiments on several other hypercubes to see how relative performance
varies when the design parameters change. We have tried to answer a number of
specific technical questions concerning matrix factorization on a message-passing
multiprocessor. More generally, our computational experience with matrix fac-
torization shows that serial precedencs constraints and global communication are
not necessarily insurmountable obstacles to high parallel efficiency.
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