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Expressions for the mixing parameters.are obtained in terms

of mass ratios in the standard Weinberg-Salam model with permuta-

tion symmetry 83 for six quarks. 'The CP violating phase § is

taken into account and there are no arbitrary parameters except

for the quark masses. In the lowest order, the angles defined

. 4 1
- by Kobayashi-Maskawa are sinelsz(md/md-+ms)2,

sinezzz-[(ms/mb)2 -(mc/mt)z]%, and sine3==(ms/mb)2/cosel.

The model can be consistent with the observed magnitude of CP

violation. The b-quarks decay predominantly into c-quarks

with lifetime of T le-ll Sec.
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Recently, several authors have computed the mixing angles in gauge models
for six quarks in: terms of quark mass ratios. -7 The SU(Z) xSU(Z) x U(l) gauge
models are usually supplemented by discrete symmetr1es and left-right symmetry2 -3
whereas the standard Welnberg Salam SU(2) xU(l) gauge models are. supplemented

7 .
by permutation symmetry< and sometimes also by an add1t10na1~dlscrete symmetry.6

Our purposejls to Supplement the SU(2) xU(l) gauge model with permutation

. symmetry SB’ a simple extension that enables one to compute a11 three mixing

angles. The CP vlolatlng phase is taken into account.
In the present model the quark mass matrices are generated by a quark Higgs-

Yukawa interaction,

;:—T k (@, ¢.0,.)+h (@ &p.)] W
=/ [8;5(Q 1250 *1y5 Q%P1 :
i,5,k=1,2,3 - '

where.QiL represent- the quark.doublets QlL (u0 d )L’ Q2L (cb,so)L,

=(d,s ,b)

= (to,b ) , and n,_-and piR represent the quark singlets n, o’PolR

JR iR

and p, R (u ,c s o)R ”The coupling constants ggj and hgj are taken to be real.

Three nggs fields (¢1,¢2,¢3) with vacuum expectatlon values (vl,vz,v3) are required

‘to 1mp1ement S3 symmetry, and & —-102¢£

Let each combinatlon Q c0up1e to only one Higgs field and the Higgs

JR

field that couples to QanlR is defined to be ¢1. The application of S3

symmetry that we use is .the permutations 12 -21, 13 ~31, and 23 -32. This
leads to only three types of down-quark mass matrices mg (and ‘also similarly

for the up quark mass matrix, mi) after spontaneous symmetry breakdown, depending

on whether the term QlL 2R is coupled to ¢1, ¢2, or ¢3 For the case ¢2, we

obtaln the transpose of the mass matrix ml. The quark mass terms take the

form
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The alternative éssignment of the mass matrices, namely, taking the down quark
mass matrix to be m; and the up quark mass matrix to be m; does not lead to .- ' |
interesting physical results. We adjust the parameters in ‘the Higgs potential ‘ o 1

so that vy = 0 and divide all matrix elements as well as’ the‘ quark masses by \}3

and obtain
-i
0 0 0 g gre 8
m‘; = _]re.-i6 kre-16 s m; = g fre-l6 0 ,(3) -
j j gre ¥8 0 '
-ig -

Since m° and m° are not hermitian, we diagonalize the

where \_rz/v3 =re 1 2

square of the mass matrices mcimclﬂ' and mgmgf.' For the case of mcl’m;”, we find

that when v, =0, m =0. Further,when niu= 0, v, = 0 is a solution. The results.

1 u

presented below survive when vy is treated as small but non-zero. We obtain

from (3)
o " -0 0
: m§m§* 1o a?+23%:? (2kj +j°)yre 10 S
0 (2kj+j>)retd &% +235%)
| g.2 a1+ r2) fgre® 8 fgre 8
mcz’m;‘r = fgre-i6 f21:2+g2 gzreié . - ‘(4')f :
fgrei5 gzre-ii5 f2 +g2r2

ot

' : - 2 20 .
The characteristic equation for m‘im1 with eigenvalues (O.’mc’mt) yields



 by' the following unitary t:ransformations9 q;cl’-—r-Ulwl, xy;=U21y

mﬁ(lfq%/(l+;2)=k2+2ja Cq=m /m,

. 1 . .
mel (£ - g2 (1 - r2qD) /(L +5P) = r(2ki+3%), | o)

and for- momo-r

. . 2 2 2 .
oMy with eigenvalues (md,ms,m.b) yields

2 2 2 2 .2 2
-y +m;.+mb = (f +2g )(1 +r),

22 22, 22 2,2 2 2 4 .4 24,2, 2
mdms+msm'b+mdm'b =g (2f"+g") + r (f +28) + g (2f +g"),

222 2 4 3 6

mym m = f°g (L +2r7cos35+r ). (6)

The mass matrices Squared given by (4) are approximately diagonalizec_l

2
0 0
Ul = 0 c s >
-setd 'ce]'5
is_.. is . 16 2
e “cos@ ‘e sing e tane(ms/m.b)
U, =\ -singp . coso 0 » (7)

2i6

25, 2 2 21
-e 31ne(ms/m.b) -e sinetane(ms/mb) e

where.

¢ = (-t / A+ 1-aD1E, s= [P - D /a+DH-qD)IE

o

2y

wl-

(8)

>31ne = (md/ms +m
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he ch ' ‘ Pyl =T
The charged current coupled to Physical quarks are Ju.L WILYp."’ZL grlLFYuWZL

where a phase transformation WlL—'PlWlL is introduced to bring T to the form

tt | . o ,

| = PIUIUZ =
cosf . sing | tan@(m_/ >)2
' s Ty
is,. 2 o i A i '
-¢c sinB+s siflee 6(ms/mb) c cosf+ s sinftange 6(ms/mb) -se 8 : s (9)
| is, .2 16 2 .. 1%
\ -s sinf - cAsinee. (ms/m'b,) s cosf - ¢ singtange (ms/mb)' ~ce |
where
is 0
P, = 0
0]
This T can be identified with the Kobayashi’-Maskawa10 form
‘1 1°3 °1%3
_ 1. - is ig . o
r= §1Cy €1€,C3 = 8,848 €1Cy84 +85,Cqe R ‘ o .(10)
ig is f
3132 -c152c3 czs3e —clszs3 +c2c3e !
: |
?

where c1=cos el, Sl= sinel, etc., 91,, 62,' and 63 gre the wea.k mixing angles.

_Gomparison of (9) and (10) yields

)

s, =Vsine= (nid/ms +md) , sza-[s +c(mS/mb)2ei6], s3=_-(ms>/mb)2/c‘ose. ' (1})

If we require the mixing angles to be real when §=0 we obtain r2gq

which lgads to

mm > mbmc'= (4.75 GeV) x (1.5 GeV) = 7.1(GeV) | 4 (12)




wh1ch case 52 of (11) is Is |~s—1 97 X 10

: the mixing angles and § by

or m_ > 24 GeV for m =0.3 GeV. For"defi,niteness, we choose m_ = 25-GeV in
2

The CP v1olat10n 1n K -K system is proportional to Im(1"311"32) and is

the ratio of the 1mag1nary part of the off -diagonal element in the K -K

mass matrix and the KL -KS mass difference. It is. expressxble in terms of

11

5,5 ,sin| (e (m2/n? - n)on(ml /L) - ¢+ (me/n) ] (13)

lel = 2[ejepeqs,94

We obtain from Eqs.(11) and (13)

-l_ ' .
lel = 20n /m) g /m)? - (o fme) 1P ot /) + (m_m, /mm )% - 2]sins..

[

-The value of Iel ~0.7 xlO 3s1né‘> is consistent w1th that obtained in Ref. 6.

. We note from (8) and (9) that I'(b-~u+X)/T(b-c+X —tan o(m /mb) /s =10 -3

- so that 'bfquarks ‘decay: predominantly into c-quarks. . The b-quark lifetime Y

can be obtained from Ty = Tp(mp/mb)s/sz’ where Tu= 2.2 x 10-6 sec 1is the muon

A 1i£etime of mass m, One -obtains. szlo-ll sec for m,_= 25-GeV. When m, is

increased, |e| increases and ™ decreases.
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