

REVISED VERSION

MASTER

Mixing Angles and CP Violation
 in SU(2) \times U(1) Gauge Model

S. Nandi and K. Tanaka

Department of Physics
 The Ohio State University
 Columbus, Ohio 43210

Abstract

Expressions for the mixing parameters are obtained in terms of mass ratios in the standard Weinberg-Salam model with permutation symmetry S_3 for six quarks. The CP violating phase δ is taken into account and there are no arbitrary parameters except for the quark masses. In the lowest order, the angles defined by Kobayashi-Maskawa are $\sin\theta_1 \approx (m_d/m_d + m_s)^{\frac{1}{2}}$, $\sin\theta_2 \approx -[(m_s/m_b)^2 - (m_c/m_t)^2]^{\frac{1}{2}}$, and $\sin\theta_3 = (m_s/m_b)^2/\cos\theta_1$. The model can be consistent with the observed magnitude of CP violation. The b-quarks decay predominantly into c-quarks with lifetime of $\tau_b \approx 10^{-11}$ sec.

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Recently, several authors have computed the mixing angles in gauge models for six quarks in terms of quark mass ratios.¹⁻⁷ The $SU(2)_L \times SU(2)_R \times U(1)$ gauge models are usually supplemented by discrete symmetries and left-right symmetry²⁻⁵ whereas the standard Weinberg-Salam $SU(2)_L \times U(1)$ gauge models⁸ are supplemented by permutation symmetry⁷ and sometimes also by an additional discrete symmetry.⁶

Our purpose is to supplement the $SU(2)_L \times U(1)$ gauge model with permutation symmetry S_3 , a simple extension that enables one to compute all three mixing angles. The CP violating phase is taken into account.

In the present model the quark mass matrices are generated by a quark Higgs-Yukawa interaction,

$$\mathcal{L} = \sum_{i,j,k=1,2,3} [g_{ij}^k (\bar{Q}_{iL} \phi_k n_{jR}) + h_{ij}^k (\bar{Q}_{iL} \tilde{\phi}_k p_{jR})], \quad (1)$$

where Q_{iL} represent the quark doublets $Q_{1L} = (u_o, d_o)_L$, $Q_{2L} = (c_o, s_o)_L$, $Q_{3L} = (t_o, b_o)_L$, and n_{jR} and p_{iR} represent the quark singlets $n_{jR} = (d_o, s_o, b_o)_R$ and $p_{iR} = (u_o, c_o, t_o)_R$. The coupling constants g_{ij}^k and h_{ij}^k are taken to be real. Three Higgs fields (ϕ_1, ϕ_2, ϕ_3) with vacuum expectation values (v_1, v_2, v_3) are required to implement S_3 symmetry, and $\tilde{\phi}_k = i\sigma_2 \phi_k^\dagger$.

Let each combination $\bar{Q}_{iL} n_{jR}$ couple to only one Higgs field and the Higgs field that couples to $\bar{Q}_{1L} n_{1R}$ is defined to be ϕ_1 . The application of S_3 symmetry that we use is the permutations 12-21, 13-31, and 23-32. This leads to only three types of down quark mass matrices m_2^0 (and also similarly for the up quark mass matrix, m_1^0) after spontaneous symmetry breakdown, depending on whether the term $\bar{Q}_{1L} n_{2R}$ is coupled to ϕ_1 , ϕ_2 , or ϕ_3 . For the case ϕ_2 , we obtain the transpose of the mass matrix m_1^0 . The quark mass terms take the form

$$\sum_{i=1,2} \bar{\psi}_i^0 m_i^0 \psi_i^0 + \text{h.c.},$$

where $\psi_1^0 = (u_o, c_o, t_o)$, $\psi_2^0 = (d_o, s_o, b_o)$,

$$m_2^0 = \begin{pmatrix} fv_1 & gv_3 & gv_2 \\ gv_3 & fv_2 & gv_1 \\ gv_2 & gv_1 & fv_3 \end{pmatrix}, \quad m_1^0 = \begin{pmatrix} kv_1 & jv_1 & jv_1 \\ jv_2 & kv_2 & jv_2 \\ jv_3 & jv_3 & kv_3 \end{pmatrix}. \quad (2)$$

The alternative assignment of the mass matrices, namely, taking the down quark mass matrix to be m_1^0 and the up quark mass matrix to be m_2^0 does not lead to interesting physical results. We adjust the parameters in the Higgs potential so that $v_1 = 0$ and divide all matrix elements as well as the quark masses by v_3 and obtain

$$m_1^0 = \begin{pmatrix} 0 & 0 & 0 \\ jre^{-i\delta} & kre^{-i\delta} & jre^{-i\delta} \\ j & j & k \end{pmatrix}, \quad m_2^0 = \begin{pmatrix} 0 & g & gre^{-i\delta} \\ g & fre^{-i\delta} & 0 \\ gre^{-i\delta} & 0 & f \end{pmatrix}, \quad (3)$$

where $v_2/v_3 = re^{-i\delta}$. Since m_1^0 and m_2^0 are not hermitian, we diagonalize the square of the mass matrices $m_1^0 m_1^{0\dagger}$ and $m_2^0 m_2^{0\dagger}$. For the case of $m_1^0 m_1^{0\dagger}$, we find that when $v_1 = 0$, $m_u = 0$. Further, when $m_u = 0$, $v_1 = 0$ is a solution. The results presented below survive when v_1 is treated as small but non-zero. We obtain from (3)

$$m_1^0 m_1^{0\dagger} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & (k^2 + 2j^2)r^2 & (2kj + j^2)re^{-i\delta} \\ 0 & (2kj + j^2)re^{i\delta} & (k^2 + 2j^2) \end{pmatrix},$$

$$m_2^0 m_2^{0\dagger} = \begin{pmatrix} g^2(1+r^2) & fgre^{i\delta} & fgre^{-i\delta} \\ fgre^{-i\delta} & f^2r^2 + g^2 & g^2re^{i\delta} \\ fgre^{i\delta} & g^2re^{-i\delta} & f^2 + g^2r^2 \end{pmatrix}. \quad (4)$$

The characteristic equation for $m_1^0 m_1^{0\dagger}$ with eigenvalues $(0, m_c^2, m_t^2)$ yields

$$m_t^2(1+q^2)/(1+r^2) = k^2 + 2j^2, \quad q = m_c/m_t,$$

$$m_t^2[(r^2 - q^2)(1 - r^2 q^2)]^{1/2}/(1+r^2) = r(2kj + j^2), \quad (5)$$

and for $m_2^0 m_2^0 \dagger$ with eigenvalues (m_d^2, m_s^2, m_b^2) yields

$$m_d^2 + m_s^2 + m_b^2 = (f^2 + 2g^2)(1+r^2),$$

$$m_d^2 m_s^2 + m_s^2 m_b^2 + m_d^2 m_b^2 = g^2(2f^2 + g^2) + r^2(f^4 + 2g^4) + g^2 r^4(2f^2 + g^2),$$

$$m_d^2 m_s^2 m_b^2 = f^2 g^4 (1 + 2r^3 \cos 3\delta + r^6). \quad (6)$$

The mass matrices squared given by (4) are approximately diagonalized by the following unitary transformations⁹ $\psi_1^0 = U_1 \psi_1$, $\psi_2^0 = U_2 \psi_2$

$$U_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c & s \\ 0 & -se^{i\delta} & ce^{i\delta} \end{pmatrix},$$

$$U_2 = \begin{pmatrix} e^{i\delta} \cos \theta & e^{i\delta} \sin \theta & e^{i\delta} \tan \theta (m_s/m_b)^2 \\ -\sin \theta & \cos \theta & 0 \\ -e^{2i\delta} \sin \theta (m_s/m_b)^2 & -e^{2i\delta} \sin \theta \tan \theta (m_s/m_b)^2 & e^{2i\delta} \end{pmatrix}, \quad (7)$$

where

$$c = [(1 - q^2 r^2)/(1 + r^2)(1 - q^2)]^{1/2}, \quad s = [(r^2 - q^2)/(1 + r^2)(1 - q^2)]^{1/2},$$

$$\sin \theta = (m_d/m_s + m_d)^{1/2}. \quad (8)$$

The charged current coupled to physical quarks are $J_{\mu L}^0 = \bar{\psi}_{1L}^0 \gamma_\mu \psi_{2L}^0 = \bar{\psi}_{1L}^0 \Gamma \gamma_\mu \psi_{2L}$
 where a phase transformation $\psi_{1L} \rightarrow P_1 \psi_{1L}$ is introduced to bring Γ to the form

$$\Gamma = P_1^\dagger U_1^\dagger U_2 =$$

$$\begin{pmatrix} \cos\theta & \sin\theta & \tan\theta (m_s/m_b)^2 \\ -c \sin\theta + s \sin\theta e^{i\delta} (m_s/m_b)^2 & c \cos\theta + s \sin\theta \tan\theta e^{i\delta} (m_s/m_b)^2 & -s e^{i\delta} \\ -s \sin\theta - c \sin\theta e^{i\delta} (m_s/m_b)^2 & s \cos\theta - c \sin\theta \tan\theta e^{i\delta} (m_s/m_b)^2 & c e^{i\delta} \end{pmatrix}, \quad (9)$$

where

$$P_1 = \begin{pmatrix} e^{i\delta} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

This Γ can be identified with the Kobayashi-Maskawa¹⁰ form

$$\Gamma = \begin{pmatrix} c_1 & s_1 c_3 & s_1 s_3 \\ -s_1 c_2 & c_1 c_2 c_3 - s_2 s_3 e^{i\delta} & c_1 c_2 s_3 + s_2 c_3 e^{i\delta} \\ s_1 s_2 & -c_1 s_2 c_3 - c_2 s_3 e^{i\delta} & -c_1 s_2 s_3 + c_2 c_3 e^{i\delta} \end{pmatrix}, \quad (10)$$

where $c_1 = \cos\theta_1$, $s_1 = \sin\theta_1$, etc., θ_1 , θ_2 , and θ_3 are the weak mixing angles.

Comparison of (9) and (10) yields

$$s_1 = \sin\theta = (m_d/m_s + m_d)^{\frac{1}{2}}, \quad s_2 \cong -[s + c(m_s/m_b)^2 e^{i\delta}], \quad s_3 \cong (m_s/m_b)^2 / \cos\theta. \quad (11)$$

If we require the mixing angles to be real when $\delta = 0$ we obtain $r \geq q$

which leads to

$$m_t m_s > m_b m_c = (4.75 \text{ GeV}) \times (1.5 \text{ GeV}) = 7.1 (\text{GeV})^2 \quad (12)$$

or $m_t \geq 24$ GeV for $m_s = 0.3$ GeV. For definiteness, we choose $m_t = 25$ GeV in which case s_2 of (11) is $|s_2| \approx s = 1.97 \times 10^{-2}$.

The CP violation in $K^0 - \bar{K}^0$ system is proportional to $\text{Im}(\Gamma_{31}^* \Gamma_{32})$ and is the ratio of the imaginary part of the off-diagonal element in the $K^0 - \bar{K}^0$ mass matrix and the $K_L - K_S$ mass difference. It is expressible in terms of the mixing angles and δ by¹¹

$$|\epsilon| = 2 |c_1 c_2 c_3 s_2 s_3 \sin \delta| [c_2^2 (m_t^2/m_t^2 - m_c^2) \ln(m_t^2/m_c^2) - c_2^2 + s_2^2 (m_t^2/m_c^2)]. \quad (13)$$

We obtain from Eqs.(11) and (13)

$$|\epsilon| \approx 2 (m_s/m_b)^2 [(m_s/m_b)^2 - (m_c/m_t)^2]^{\frac{1}{2}} [\ln(m_t^2/m_c^2) + (m_s m_t/m_b m_c)^2 - 2] \sin \delta.$$

The value of $|\epsilon| \approx 0.7 \times 10^{-3} \sin \delta$ is consistent with that obtained in Ref. 6.

We note from (8) and (9) that $\Gamma(b \rightarrow u + X)/\Gamma(b \rightarrow c + X) = \tan^2 \theta (m_s/m_b)^4/s^2 \approx 10^{-3}$ so that b-quarks decay predominantly into c-quarks. The b-quark lifetime τ_b can be obtained from $\tau_b = \tau_\mu (m_\mu/m_b)^5/s^2$, where $\tau_\mu = 2.2 \times 10^{-6}$ sec is the muon lifetime of mass m_μ . One obtains $\tau_b \approx 10^{-11}$ sec for $m_t = 25$ GeV. When m_t is increased, $|\epsilon|$ increases and τ_b decreases.

Acknowledgements

We thank Professor T. Kitazoe for an interesting communication. This work was supported in part by the U.S. Department of Energy under Contract No. EY-76-C-02-1545.*000.

References

1. Recent papers on the u, d, s, c sector are H. Fritzsch, Phys. Lett. 70B, 436 (1977); F. Wilczek and A. Zee, Phys. Lett. 70B, 418 (1977); S. Weinberg, *Festschrift in honor of I. I. Rabi*, 1977 (to be published); A. De Rújula, H. Georgi, and S. L. Glashow, Ann. Phys. (N.Y.) 109, 258 (1977).
2. H. Fritzsch, Phys. Lett. 73B, 317 (1978); Nucl. Phys. B155, 189 (1979).
3. T. Hagiwara, T. Kitazoe, G. B. Mainland, and K. Tanaka, Phys. Lett. 76B, 602 (1978).
4. H. Harari, H. Haut, and J. Weyers, Phys. Lett. 78B, 459 (1978).
5. M. A. de Crombrugghe, Phys. Lett. 80B, 365 (1979).
6. G. Segre, H. A. Weldon, and J. Weyers, Phys. Lett. 83B, 351 (1979).
7. S. Pakvasa and H. Sugawara, Phys. Lett. 82B, 105 (1979).
8. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967); A. Salam, Elementary Particle Physics, Nobel Symposium No.8, edited by N. Svartholm (Almqvist and Wiksell, Stockholm, 1968), p.367.
9. The solution of (4), (5), and (6) to leading order $f = m_b$, $g = (m_s m_d)^{\frac{1}{2}}$, and $r = m_s/m_b$ is used.
10. M. Kobayashi and K. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
11. J. Ellis, M. K. Gaillard, and D. V. Nanopoulos, Nucl. Phys. B109, 213 (1976).