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Abstract

A theoretical two-phase-flow analysis is developed to describe the quasi-steady propagation,
across a pressure jump, of a multi-phase deflagration in confined porous energetic materials. The
difference, or overpressure, between the upstream (unburned) and downstream (burned) gas pres-
sure leads to a more complex structure than that which is obtained for an unconfined deflagration
in which the pressure across the multi-phase flame region is approximately constant. In particular,
the structure of such a wave is shown by asymptotic methods to consist of a thin boundary layer
characterized by gas permeation into the unburned solid, followed by a liquid/gas flame region,
common to both types of problerhs, in Which the melted material is preheated further and ulti-
mately converted to gaseous products. The eﬁect of gas flow relative to the condensed material is
shown to be significant, both in the porous unburned solid as well as in the exothermic liquid/gas
melt layer, and is, in turn, strongly affected by the overpressure. Indeed, all quantities of interest,
including the burned temperature, gas velocity and the propagation speed, depend on this pressure
difference, leading to a significant enhancement of the burning rate with increasing overpressure.
In the limit that the overpressure becomes small, the pressure gradient is insufficient to drive gas
produced in the reaction zone in the upstream direction, and all gas flow relative to the condensed
material is directed in the downstream direction, as in the case of an unconfined deflagration.
The present analysis is particularly applicable to those types of porous energetic solids, such as
degraded nitramine propellants, that can experience significant gas flow in the solid preheat region
and which are characterized by the presence of exothermic reactions in a bubbling melt layer at

their surfaces.




INFLUENCE OF PRESSURE-DRIVEN GAS PERMEATION ON THE
QUASI-STEADY BURNING OF POROUS ENERGETIC MATERIALS

1. Introduction

The combustion behavior of porous energetic materials is of increasing interest due to the
realization that even supposedly nonporous materials may develop significant porosities over time
due either to aging or to other types of degradation that may arise from exposure to abnormal
environments. In such materials, two-phase-flow effects are especially significant due to the presence
of gas flow relative to the condensed material both within the unburned porous solid as well as in the
exothermic liquid/gas layers that typically form on the surfaces of many types propellants (e.g.,
nitramines). In the presence of confinement, the significance of the convective transport effects
due to two-phase flow are enhanced, leading, through gas permeation into the unburned solid, to
a preheating of the solid and, consequently, to a strong enhancement of the burning rate relative
to the unconfined case. Indeed, this type of preheating associated with gas permeation into the
unburned solid is generally associated with the onset of specially identified modes of combustion,
such as convective burning (cf. [1] and the references therein).

In the present work, we analyze, by means of asymptotic méthods, certain effects of confine-
ment on the deflagration structure and burning rate. In particular, we identify a quasi-steady
. propagation regime that is characterized by a leading boundary layer in the solid/gas region in
‘which there is a rapid rise in pressure, followed by a liquid/gas region in which additional preheating
and chemical reaction occur (Fig. 1). The pressure gradient in thehboundary layer, in turn, drives
gas produced in the reaction zone in the direction of the unburned solid, and thus one fundamental
difference between the confined and unconfined cases is the direction of the gas flow in the solid/gas
portion of the multi-phase flame structure. For this reason, this type of propagation mode that
we seek to describe has been described in other types of flame-sheet analyses as a “gas-permeation
boundary-layer” regime [2] by virtue of the fact that in sufficiently confined geometries, burning is
enhanced by burned-gas permeation ahead of the reaction zone into the solid/gas preheat region.

The model used to investigate the wave structure described above is a modification of that
derived previously [3], which, in turn, is essentially a simplified version of more general mod-
els of two-phase reacting flow (cf. [4]). In particular, the continuity and energy equations for
each coexisting phase remain the same as in our previous study [3], as is the expression used for
the liquid-phase velocity that, in turn, was motivated by liquid-phase momentum considerations
[5]. However, the approximation of constant gas pressure, although appropriate under certain
conditions for unconfined deflagrations, is clearly inadequate for the confined problem, which is

characterized by a gas-phase pressure gradient in the solid/gas portion the multi-phase flame, and
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a subsequent drag on the gas-phase velocity in the gas-permeation boundary layer. Accordingly, we
phenomenologically relate the gas velocity to the pressure gradient in this layer by adopting Darcy’s
law for flow in a porous medium. As an additional simplification, however, we shall assume good
thermal contact between coexisting phases and adopt the single-temperature approximation that
the temperature at a given spatial location is the same for each phase. In keeping with our goal of
focusing on two-phase-flow effects, we shall also deliberately simplify the chemistry by postulating
the overall process R(s) — R(l) — P(g), where the first step denotes the melting (assumed to
be slightly endothermic) of the solid material, and the second represents a one-step exothermic
process in which liquid-phase reactants are directly converted to burned gaseous products. For
the present, we confine our attention to the case of a one-dimensional quasi-steady deflagration,
leaving consideration of instability and other nonsteady and/or multidimensional effects for future

work.

2. Formulation

A sketch of the physical problem is shown in Fig. 1. The unburned porous solid lies generally
to the left, and the burned gas products lie to the right. The two are separated by a deflagration
wave that moves from right to left, converting the former into the latter. These regions (unburned
and burned) in turn are bounded on the left and right, respectively, but these boundaries are
assumed to be sufficiently far away (relative to the width of the flame region) that the primary
effect of confinement on the combustion wave itself is on the difference that develops between
the upstream and downstream values of the pressure. In particular, the pressure becomes greater
in the burned region (due to the production of gas via chemical reaction) than in the unburned
solid, where, unlike the liquid/gas region, the drag on the gas flow associated with Darcy’s law
implies that the pressure sufficiently far upstream approaches its ambient value. The structure of
the combustion wave thus consists of a solid/gas preheat region that contains a gas-permeation
boundary layer in which the pressure rises from its ambient value to its larger (possibly much larger)
value in the liquid/gas region, the melting surface that marks the left boundary of a liquid/gas
preheat region (and the right boundary of the gas-permeation layer), the liquid /gas preheat zone, a
relatively thin exothermic reaction layer in which chemical reaction occurs, and the burned region
that extends to the right boundary. In the present work, we shall restrict attention to one spatial
dimension (Z), and use the subscripts s, ! and g to denote solid, liquid and gas-phase quantities,
respectively. Upstream conditions in the unburned porous solid are denoted by the subscript u,
while downstream conditions in the product gases are identified by the subscript b. The appearance
of a tilde over a symbol (e.g., ) denotes a dimensional quantity.

The governing system of equations are as follows. Denoting the melting surface that separates
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the solid/gas and liquid/gas regions by Z = Z,, and the gas-phase volume fraction by «, continuity
in the region £ > &, is expressed separately for the liquid and gas phases, where the latter may

be replaced by an overall continuity equation for the two-phase medium. Consequently, we have
a - a - < e ..
P [(1—a)p} + F (1 - a)pty] = —Api(1 — a)exp (—El/R T> y > Iy, (1)

8 . . 5} .. . . -
Fr [(1—a)p +apy] + 3 (1 - a)pity + apgig) =0, Z> ZTp,. (2)

where p, 4 , T and t denote density, velocity, the single temperature and time, respectively. For
simplicity, we will assume a constant value for g;, but not for p,. In the reaction rate expression,
E; is the overall activation energy, R° is the universal gas constant, and A is the exponential
reciprocal-time prefactor which, for simplicity, will be assumed constant. For this type of global
kinetic modeling, however, it may be reasonable to assign a pressure, as well as a temperature,
dependency to A. In the solid /gas region & < &,,, we assume for the solid phase a constant density
ps and zero velocity (Gs; = 0), with @ = a; also constant in this region. Gas-phase continuity for
Z < Zy, is thus independent of the solid phase and is given by
%4—%(59&9):0, T < Ty (3)
* Conservation of energy for each phase in the liquid/gas and solid /gas regions is similarly
given by separate equations for each coexisting phase, which, as before, may be summed to give an
overall energy equation in each region. In the single-temperature limit, however, only the overall
energy equations remain (cf. [3]) and these are given by

2 [t - a)(Q + &T) + poEyad] + 2

= 5 [pla,u —-a)(Q+&T) + ﬁg&gaga:i“]

- - 5 4)
R or - oT Oy . . (
=% [A,(l a)——aa? +)\ga——x] +a Z> Ty,

6t
ar. . N 0 (.. . ~
5 [pscs(l —as)T + pgcgasT] + 5 (pgcgugasT) 5
~ = - 5
0 |+ or < oT 0py . -

= 55 l')\s(]. - as)ég + /\gas-a—j] + ag——=

where Eq. (1) has been used to eliminate the reaction-rate term in Eq. (4). Here, é, X and p denote
heat capacity (at constant volume for the liquid, and at constant pressure for the gas, both assumed
constant), thermal conductivity and pressure, respectively, and Q is the heat release for the global
reaction at temperature 7. We remark that because of the small Mach number and the small
ratio of gas-to-condensed phase densities in the problems to be considered, no terms involving the

pressures in the condensed phases appear in these equations, where the terms involving p, arises
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from the contribution to the rate of change of the internal energy of the gas from the sum of the
rate of surface work —8(aliyp,)/0% and the rate of volume work —p,8c/8% performed by the gas.

Although analogous equations may be written for momentum conservation, we avoid intro-
ducing them explicitly by adopting certain simplifying approximations which are often used in
these types of problems. In particular, in place of gas-phase momentum, we adopt Darcy’s law
in the solid/gas region, and assume, based on the small Mach number assumption, that the gas
pressure is homogeneous in the liquid/gas region. If it is further assumed that the gas pressure in
the burned region varies on a longer time scale than that associated with the flame structure itself
(i.e., provided the confining boundary is sufficiently remote with respect to the flame), then the
upstream and downstream pressures may be regarded as constant in the quasi-static sense. This
argument is supported by the numerical calculations in [2], which led the authors of that study,
which was based on a flame-sheet assumption, to delineate this quasi-steady regime as the “gas-
permeation boundary-layer solution,” so named because of the gas permeation in the solid/gas
region, described later in the paper, that arises from the difference, or overpressure, between the
upstream and downstream values of the gas pressure. Thus, in place of gas-phase momentum, we

adopt the conditions

ag—_——';—(j%%%‘i, F<im; Pg=Py, I>%Em, (6)
where % is the permeability of the solid/gas region and fi, is the gas-phase viscosity. The gas itself
is assumed to be ideal, and thus P, is coupled to the other field variables through the gas-phase
equation of state,

Pg = P~gROT/Wg s (7)
where Wg is the molecular weight of the product gas. Consideration of condensed-phase momen-
tum, on the other hand, leads in principle to an equation for the liquid-phase velocity 4;. Based
on the analysis in [5], a reasonable first approximation is to set the condensed velocity equal the

condensed mass burning rate divided by the condensed-phase density. In the present context, this
. . dz p Y -
ul=——5t~ﬂ<gj——1), Z>Zm, (8)

where dZ,,/dt < 0 is the (unknown) propagation velocity of the melting surface. A modification

implies that, since 4y =0,

to this expression that introduces a linear dependence of i; on the gas-phase volume fraction o
that qualitatively takes into account viscous and surface-tension-gradient (Marangoni) effects in
the liquid/gas region was also proposed [5], but in the present work we shall adopt the simpler
result given by Eq. (8).

The above equations now constitute a closed set for the variables a, i, T, pg and py. The

problem is thus completely determined once initial and boundary conditions (including interface
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relations at £ = Z,,) are specified. As in our previous study of the constant-pressure (unconfined)
problem [3], we will not be concerned with the initial-value problem, but only the long-time solu-
tion corresponding to a (quasi-) steadily propagating deflagration. Thus, the required boundary

conditions are given by
a=aqa, for < &y; d4y—0, T —T,, Dy — P, as T — —o0, (9)

b

b, T—T, as & — +o0, (10)

Pg =0, for £>&m; a—1, ;o0
where the burned temperature T, and burned gas velocity ﬁg are to be determined, and the
unburned and burned values gy and p”g of the gas density follow from the equation of state. We
remark that the upstream boundary condition on the gas velocity is in fact merely a consistency
condition in the present formulation, since it is implied by the corresponding upstream condition
on pressure and the first of Egs. (6). Finally, denoting by + superscripts quantities evaluated at

I= a”:;ﬁ, the continuity and jump conditions across the melting surface are

at=a =0, 1

+ o~
g—'lL

, B =pr=p,, Tt+=T"=T,, (11)

and, from conservation of enthalpy flux across & = &,

[0 ek + iy 2

- [0 - adh +adk,] S

=% F=37,

(12)
- ATy T. - N
— (1 — as)ps-ﬁ— [’Ys + (Cs — Cl)Tm] 3
where 7, is the heat of melting of the solid at temperature T' = 0 (s being negative when melting

is endothermic).

3. Nondimensionalizations and the Quasi-Steady Problem

In the present work, we confine our attention to the case of a quasi-steady deflagration that
propagates with the (unknown) speed U = —dZy, /df, which is a convenient characteristic velocity
for the problem. Assuming constant values for heat capacities and thermal conductivities, we then
introduce the nondimensional variables

5sCsU 5sCs U2 T, 7
p= Pl g o Py g = —he oy = Ug,g Pg _ Dy (13)
)\s /\s Tu U Pg

where gy = ﬁ;‘Wg / R°T,, denotes the gas density at the unburned temperature T,,. In addition, the

nondimensional parameters

- ~u 5‘ ) - R ~
N B R T T T r S
ps ps As As CS CS CsTu CS u (14)
5. G R . R -1 E . -
=ES~_SZ~79_, ’fr’:,.zjg~ :'FbX1 X=7__1 N=_~—'l-a A=~~S~ e_N
Asflg PsCs Ty g R°Ty psCsU?
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are defined, where -y is the ratio of specific heats for the gas. It may be remarked that A is the
appropriate burning-rate eigenvalue, the determination of which will provide the propagation speed
0.

In nondimensional units, the propagation speed is minus unity. Hence, transforming to the
moving coordinate £ = x + ¢ whose origin is defined to be z,,, and introducing the above nondi-
mensionalizations, steadily propagating deflagrations for the problem formulated in the previous

section will be determined as solutions of the steady eigenvalue problem

d
Eg[pg(ug—i-l)]:O, £<0, (15)
d R
7 [r(1 = a)(w + 1) + fapg(ug + 1)} =0, £>0, (16)
d T
a—{(1—a)(u1+1)]=—A(1—a)exp N 1—71; , £€>0, (17)
_d ~ . dT dpg
(1- )dg —i—rbas [(ug+1)pgT] =z [(1 o+ lag)—= dg} + Fros—= & £<0, (18)
4 [r(1 — ) +1)(Q + bT3) + hofuy +1)p,T] = 2 { it~y +ia] T 1, £>0, 9)
& o 10st] = &fr =T
pely = pqg, . (20)
w=—(1-1), (21)
subject to the boundary and melting-surface conditions
— — K(as) dpg f .
a=as, ug=-——>—2, for £<0; T—1, py—1as {— —o0, (22)
as; df
pg=pg for €>0; a—1, ug—>ug, T— Ty as £ — +o0, (23)

dp
at=a" =« u+=u'=-—M—i —=pr=p), Tt=T"=1T,, 24
$ 9 9 Qsplg d¢ £=0— Pg =Py =Py i ( )
. 1dT . 1dT
—ag)+la| |l - l—a e E| = -a)- ~1)T] -
(11 - o) + %o [1- oy + o) &, =T Nt 6Tl 25)

Thus, the final model for quasi-steady, planar deflagration that has been derived is given by Egs.
(15) ~ (25). We observe that p, and u; are readily eliminated from the problem by substituting
Eqs. (20) and (21) into Egs. (15) — (19), giving a simplified equation set for «, Pg, g and T as

CZ[pg(g+1)]--0 £<0, (26)
dig[(l—a)—}-fa%%(ug-i-l)] =0, £>0, (27)
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Edg(l—a)=—rA(1—a)exp[N<l—%)}, £>0, (28)

- dr . d d ~ . dT - d
(l—as)E +1‘bas£ [pg(ug +1)] = 7 [(1—as+las)d—€] +fbxasgp§i, £<0, (29)
- < [(1 - 0)(@+7) + fhap,(u +1)] —i{[l(l—a)+ia]fi—1:} £>0 (30)
df pg q - dé d& 3 ]

where the alternate expression for the coefficient # indicated in Eq. (14) has been used in the last

term of Eq. (29).

4. Determination of Ty, u"g’ and ug(0)

A partial solution in the region £ < 0, where chemical activity is absent, as well as expressions
for Ty, uf and u4(0) = ug|¢=o, are obtained as follows. From Eqgs. (26) and the boundary conditions
(22), we have

pgug+1)=T, £<0, (31)
and hence
- T,
Ugleg =5 — 1. (32)
Py
- We observe from Eq. (31) that since T" > 1, the gas velocity u, > —1 in the gas/solid region £ < 0.

That is, consistent with a quasi-steady mode of burning, the speed of gas permeation into the
solid must be less than the propagation speed of the deflagration. Equation (27) and the surface
conditions (24) and (32) then imply

a+ag(f —1)

Ph(ug +1) = T, £€>0, (33)

which, upon evaluation at £ = oo, determines ug in terms of T} as

1- 3 T,

ub = _a_s:ﬂ _?b _1. (34)
7 2

Turning attention to the energy equations (29) and (30), we may readily perform a single integration

and use the above relationships to obtain

. ~ . dT -
l—as+7bas)(T—1)=(1-as+ las)d—é" + fbxas(pys — 1), £<0, (35)

[b(1 — )+ bla— as + fas)] T = [1(1 —a)+ z‘a] %—(1—a)Q+8(1—as+fas)Tb , £>0. (36)

. Thus, subtracting Eq. (35) evaluated at £ = 0~ from Eq. (36) evaluated at £ = 0™ and using the

jump condition (25), we obtain an expression for T} given by

_ (1= ) (@+1+7) + e [1+ x(pf — 1)]

Ty =
b(1 — as + fas)

, 37)
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which, from Eq. (34), determines uz as
1 e e
uh= — (1= )@+ 1+, = 7B) = #b(ph = 1)1 — ax)] - (38)

T'pg

We note that in the limit pg — 1, Egs. (37) and (38) collapse to the previous results for unconfined
burning, where in place of Darcy’s law in the solid/gas region, the approximation py = 1 was used
throughout. It is clear from these results that, since 0 < x = 1 — 1/y < 1, T} increases linearly
with the overpressure pg — 1, as shown in Fig. 2. It is readily seen that for small overpressures Tp
decreases with increasing values of the porosity os, whereas at higher overpressures, the opposite
trend is observed. Indeed, denoting the burned temperature at zero porosity by 72 = (Q+1-+;)/ b,
which is independent of pg, we obtain from Eq. (37) that for as > 0, T, = T2 at the critical value
of overpressure given by pg — 1= (T — 1)/x. For overpressures greater than this critical value,
the preheating effect due to gas permeation is sufficient to overcome that due to a decrease in the
amount of solid material, resulting in an increase in burned temperature above 7. It is clear from
Fig. 2 that the magnitude of the difference T, — 7Y at a given value of the overpressure is an
increasing function of ;. In connection with this reéult, we observe from Eq. (38) and Fig. 3 that
the burned gas velocity uz is a monotonically decreasing function of the overpressure. In fact, for

sufficiently large overpressures that satisfy the condition

1—a; (Q+1+7s _1> _ (1—as (TP —#)
f(l_asX)

b (39)

which depends on «ag, we find that ug is negative, implying a gas flow in the upstream direction
throughout the multi-phase flame. This is clearly illustrated in Fig. 3, which shows the curves for
ug as a function of pg —1 crossing the horizontal axis at the above critical value of the overpressure.
Also shown in Fig. 3 is the value of the gas velocity ug(£) at the solid/liquid interface £ = 0, which

is only positive for relatively small values of the overpressure. In particular, from Eq. (32), u4(0)

crosses the horizontal axis at the critical value pg —1 = T,,—1, beyond which gas flow is directed into

the solid/gas region, resulting in the preheating effect due to gas permeation as described above.

Further solution of the problem in the liquid/gas region, which is necessary for the determination
of the burning-rate eigenvalue, is considered in the following section.

Before proceeding with an analysis of the liquid/gas reaction reaction region, we observe that
the problem in the solid/gas region can be reduced to a scalar problem for the gas pressure pg. In
particular, from Eq. (31) and the Darcy formula for u4 in Eq. (22), T and thus u, are given in

terms of p; by

K dpg T
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Substituting these results into Eq. (35) thus yields a second-order equation for py in the region
& < 0 given by

(l—as+f13as) {pg ( - ai%) - 1:' = (1—(15-*-{&3)% [pg ( - a,ifldp?g)] +fBXas(Pg‘1) 3 (41)

subject to the boundary conditions

dp o T,
Py =Py, ——£=—5(1——?—

d¢ P ) at {=0; p;—1 as {— —o0, (42)

g

where the second condition follows from the Darcy formula and Eq. (32) for u, evaluated at £ = 0.
We note that the last condition, aside from being consistent with the first of Eqs. (40), is already
built into Eq. (41) by virtue of the fact that Eq. (41) is really a first integral of Eq. (29). Had
the above expression for T been substituted directly into the latter, a third-order equation for p,
would have been obtained, permitting the specification of the three boundary conditions (42). The
problem (41) — (42), the solution of which will determine T and u,4 according to Eqgs. (40), will be

treated in the section following the determination of the burning-rate eigenvalue.

5. The Burning-Rate Eigenvalue

In order to determine the burning-rate eigenvalue, we must complete our analysis of the
liquid/gas region £ > 0. In this regard, Egs. (28) and (36) constitute two equations for T" and
a in this region, with u, then determined by Eq. (33) and the eigenvalue A determined by the \
boundary conditions. In order to handle the Arrhenius nonlinearity, we exploit the largeness of
the nondimensional activation energy N and analyze the problem in the asymptotic limit N > 1.
Since py = pg in the liquid/gas region, the analysis below follows closely that given in [3] for the
unconfined problem.

In the limit N — oo, all chemical activity is concentrated in a very thin region where T is
within O(1/N) of Tp. Denoting the location of this thin zone by & > 0, we see that the semi-
infinite liquid/gas region is comprised of a preheat zone (0 < £ < &) where chemical activity is
exponentially small, the thin reaction zone where the chemical reaction goes to completion, and a

burned region £ > &.. Thus, we conclude from Eq. (28) that

— Qg, § < £7‘
| «={ir 58 )
and from Egs. (33) and (34),
—_— T/pg - 1’ f < §'r
Yy = {f‘l(l—as+f0és)Tb/pg"1=Ug, §>€'r‘7 (44)
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Since T is within O(1/N) of T} in the reaction zone, the analysis of this thin region requires the
use of a stretched coordinate (see below). As a result, T' is continuous with respect to the O(1)
outer variable £ at £ = &, and thus the gas velocity jumps across £ = &, by the amount

ug'g:gi’ - uglg:g; = %(1 ~ (1 - as)"% ) (45)
which is positive assuming the unburned gas density is less than that of the solid (i.e., ¥ < 1).
Finally, using Eq. (43), Eq. (36) may be integrated a second time to completely determine the

outer temperature profile in the liquid/gas region as

(1 — o) + 7hag
T(€) = B + (T = B exp [ 1((1 —~ as))_i-_l— forg E] y 0<8<d (46)
Ty, §>¢&r,
where
g 1-e)d+7)+ #bass [1+ x(pb — n] (47)

b(1 — as) + Fbas
We note that T'(€) for £ < 0 is still to be determined from Eq. (40) and the solution of the
pressure problem (41) — (42), as described in the next section; however, it is not required for the
determination of the burning-rate eigenvalue A. The location &, of the reaction zone, which appears
as a sheet on the scale of the outer variable &, is thus determined by Egs. (46) from continuity of
T as

57":

I(1 = a,) + o ln(Tb"B). (48)

b(1 — a,) + 7ha, Im—-B

The determination of the burning-rate eigenvalue A, as well as the spatial evolution of the
variables o and w4 (whiéh are discontinuous on the scale of the outer variable ), requires an
analysis of the thin reaction-zone region in the vicinity of .. We thus introduce a stretched inner

variable 17 and a normalized temperature variable © defined by

O=7=7, n=AE-&), F=(-TIN>1, (49)
where 3 is the Zel'dovich number, aﬁd seek solutions in the form of the expansions
a~ag+Blar+B 2ag+ -, ug~ug+ P lur + B ug e, (50)
O~1+B710+87%0+ -, A~Pho+BT A +B2Ar+--1).

The coeflicients in the expansion of u, are readily determined from Eq. (33) in terms of the a;
and 6;, which themselves are obtained from solving the sequence of inner problems that arise from
substituting the above expansions into Eqs. (28) and (36) and matching with the outer solutions
for £ < & and € > &,.. In particular, at leading order the inner problem is given by

d
7"7"9 = rho(l — ap) ™, (51)
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1+ (= Dao] T2 = 7251 - aw), 62
subject to the matching conditions
a9 — as, O ~FEnas n— —c0, (53)
ag—1, 6, —0 as n— +oo. (54)
Here, D and E are defined as
D=0b-bTy+Q, EETbl_l‘(%E:{r_, (55)

where the latter is calculated from Eq. (46).

The problem (51) - (54) is identical in form to that obtained for the corresponding unconfined
problem [3], and is readily solved by employing aq as the independent variable. Thus, using Eq.
(61), Eq. (52) may be written as

. dé D
_ 61 271
rAo [l +( l)ao] o = (56)
which is readily integrated from «; (at 1 = —o0) to any ap < 1 to give
D /ao dao .

f1{xo)
e = A . 57
(Tb - 1)TA0 as L+ (l - l)ao ( )

Evaluating the latter at ap = 1 (at which 6; = 0) thus determines the leading-order coefficient Ap

in the expansion of the burning-rate eigenvalue as

D_ ln[ ! } 1#£1
T =D~ %) =t

and using this result in Eq. (57) for arbitrary o then determines 6;(ayg) as

(m [1+ 0~ o] = 1n [+ (= ey ) .
In T T N 1 ) l #l
6 (o) = Inl=In [l+ (- l)as)

Gg — Qg ~
=_ s l=1.
ln(l—as)’ l

The determination of ag(n), and hence 6, (n), then follows directly from Eq. (51).
From Eq. (58) and the definition of A [see the last of Egs. (14) and (50)], the leading-order

expression for the dimensional propagation speed U is given by

7a (T = 1AW
6Dp,

(59)

Ty A(pg) e Nu

-N _ F(Y Y =
¢ f(Ag>>\l) (b-—B)Tb+Q ﬁsés

/Ts . f(:\g, Xl) 1 (60)
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where N, = E) / R°T, = NT, is independent of T}, and the last factor, which contains the complete

dependence of the burning rate on the thermal conductivities, is given by

. - ~’~\g°~x‘ . . A #EN
FGo k) = 3 I (R/1h + Gy - M)a]) (61)
5\1/(1—-&3), Sg=5\l.

The expression (60) for the burning rate, though identical in form to that obtained for the case of
constant pressure [3], nonetheless differs implicitly from that result through the linear dependence
of T} on the overpressure pg —-1.

In order to analyze the dependence of the burning rate on the overpressure, it is convenient
to define the normalized burning rate U* = U (pg) /U (1), where the argument denotes the value of
pl. Consequently, from Eq. (60), we obtain U* = U, [A(pZ) JA(1)]Y/?, where the coefficient U, is

given by 12
(b-b0T(1) +Q Ny 1 1
(b— HTh(zt) + Q] P { 2 (Tb(l) Tb(pz)) ] ’ (©2)

and where T} as a function of pg is given by Eq.(37). In this form, it is readily seen, since T} is

Ty (p%)
Un = Ty(1)

a linearly increasing function of overpressure and the nondimensional activation-energy parameter
N, is typically very large (note the definition of N, is in terms of the unburned temperature
T.), that U, is exponentially sensitive to 73 and hence pg as the overpressure pg — 1 increases
from -zero. Thus, as the overpressure increases, the burning rate increases exponentially (Fig.
4), reflecting the sensitivity to the corresponding increasé in the rate of gas permeation into the
solid/gas region given by Eq. (32). We remark that this result cannot be predicted with the type
of constant-pressure model appropriate for unconfined deflagrations [3}, since in that case, the gas
flow is always in the downstream direction (if one imposes the upstream boundary condition that
ug vanish) and an increase in pressure serves to decrease Tj due to the increase in the gas density
(7 increases) that absorbs more of the heat of reaction. In the present context, the upstream gas
density 7 remains constant, and an increase in overpressure serves to preheat the unburned solid
through enhanced permeation of the burned gas into the solid/gas region. In the limit of large
overpressures, Tb_1 becomes small and the exponential factor in Eq. (62) approaches a constant
value. Consequently, in the range of large overpressures, the dependence of U, on pg becomes
algebraic. This is also illustrated in Fig. 4, in which case (since b = l;) the saturated dependence
of U, on pg is linear. We note that this feature (exponential transition to an algebraic pressure-
dependent burning rate) is qualitatively consistent with most experiments in Crawford-type (large
volume) bombs that indicate a rapid increase in the burning rate frequently associated with the
onset of convective burning (cf. [2],[6]), followed by a less dramatic pressure dependence that is

typically represented in the form Ap™.
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6. Analysis of the Gas-Permeation Layer

Although the calculation of the burning-rate eigenvalue in the previous section did not require
a detailed knowledge of the actual solution profiles in the solid/gas region [due to the fact that it
was sufficient to determine the results (31) — (32) for ug), it is nonetheless of interest to compute
those solutions to better understand the effect of an overpressure on gas permeation into the
unburned porous solid. It is thus convenient to define the overpressure p = py — 1, in terms of

which the pressure problem (41) — (42) can be written as

d ~ . d
(1— o, + 7bay) [p— —(p+ l)dﬂ =(1-a; +las)df [p— —(p+1)——] +#bxasp,  (63)
subject to
d; T,
p=10b=pg'—1, gg=%<1—pb:1> at £=0; p—0 as £ — —o0. (64)

Since our goal is a qualitative understanding of gas-permeation effects, it suffices to obtain approx-
imate solutions using asymptotic methods. In particular, we introduce a bookkeeping parameter
€ < 1 and consider the realistic parameter regime in which #, I, o, and k/a; are all O(¢), where
we note that the permeability & is usually proportional to some power of o that is greater than

unity (cf. [4,7]).‘ That is, we scale these small quantities as

s =0ote, k=~r'e, F=r%, l[=I%, (65)

in terms of which Egs. ((63) and (64) become

~ * d d ~
(1o +&4°b03) [p = (o + VG| = (1- <o+ @) e [p— (o + D] +bxal,
S

dp a’ 1
b —1%s m
=pp=p° -1, —=¢l122(1-
P=P="P TodE ¢ /c*( pp+ 1

We now proceed to obtain asymptotic solutions for two primary cases of interest.

) at £=0; p—0 as £ — —o0. (67)

(i) po ~ O(1):

For O(1) overpressures, the second condition in Eq. (67) suggests that there is an O(e)
boundary layer in the vicinity of £ = 0. Accordingly, we introduce the stretched coordinate
n = £/e and seek the boundary-layer, or inner, solution in the form p = p* ~ pg + - --. In terms of
these variables, the leading-order version of Eqs. (66) and (67) in the boundary layer is thus given
by .

;f?[po—-g;(po+1)ciln =0, (68)
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*

dpo o T
= , —_—— =511 t =0,
Po = Pb dn ( ot 1) at n=0 (69)

where only the first two conditions in Eq. (67) apply to the boundary-layer solution. Integrating

Eq. (68) twice and applying the above conditions at = 0, we obtain an implicit solution for pg as

(70)

pO'—Tm'*‘]-
K* )

a*
_S_nzpo—pb-f-Tmln(pb‘T 1
m

Denoting this solution by po(n), we note that since pg — T;, —1 > 0 as n — —o0, the inner solution

cannot satisfy the last boundary condition in Eq. (67). Thus it is necessary to construct an outer

solution p = p°® ~ qo + - - - on the scale of the outer variable £&. From Eq. (66), the equation for g

is given by
dgo
= 1
qo df ’ (7 )
or gy = c; e¢. This clearly satisfies the outer boundary condition at £ = —oco, whereas the require-

ment that it match with the inner solution (70) as £ — 0 determines that the integration constant

¢1 = limp—, —o0 o(17) = T;n — 1. Thus,
go = (Trmn — 1)é*, (72)
and a leading-order, uniformly-valid composite solution is given by

p=p°+p' = limp® ~ po(g/e) + (Tm — 1)(ef = 1), (73)

where the leading-order inner solution pp has been functionally expressed in terms of the outer
variable £. The above inner, outer and composite solutions are illustrated in Fig. 5. From Eq.
(73) and the first integral of Eq. (68), the gas velocity in the solid/gas region is, in turn, given by

Kk dp T K*

., —__—m - £
R N S E T AL (4

which, being the derivative of a leading-order approximation, is correct to O(1), with an O(e) error
at £ =0 [see Eq. (32)]. We observe that po(¢§/e) — T, — 1 as £ approaches O(1) negative values,
and thus, as indicated in Fig. 5, it is clear that gas permeation for O(1) overpressures is only
significant in the thin boundary layer adjacent to the solid/liquid interface, assuming py, > 75, — 1.
Although this last qualification is by far the typical case (since T, — 1 = Trm / T, — 1 is not likely
to be larger than unity), it is nonetheless of interest to point out that the structure of the solution
will change as p; approaches the value T,,, — 1 due to the fact that the gradient of pressure at £ = 0,
which has been scaled as O(e~!) in Eq. (67), will cease to be large in that limit. Indeed, for small

overpressures (0 < py < Ty, — 1), the pressure gradient becomes negative at £ = 0, indicating,
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according to Egs. (22) and (32), a gas flow out of the solid in the downstream direction, as in the

case of an unconfined deflagration analyzed previously under the constant-pressure approximation

[3].
(i) pp ~ O(e™) > 1:

The other primary case of interest in many applications is the limit in which the overpressure
itself becomes large. In that case, it is useful to rescale p in Egs. (66) and (67) by defining the
scaled overpressure P = ep. In terms of P, Egs. (66) and (67) become

. dP K* dP -
1_ * 2 A% * P 2l* * P—— 2 A% *
(1—eai+e€°7 bay) [ p (P+ )df] (1—eas+e ) [ a;(P+€)_d§]+e *bxaiP),
(75)
1 dP o} €T, o
P= szz(g 1), T (1 Pb+€) at £=0; P—0 as £ — —co. (76)

Since there is now no reason to suspect a boundary layer near £ = 0, we seek a straightforward
perturbation solution on the £ - scale as P = P° ~ Py + ---. From Eq. (75), the leading-order
problem for Py is thus given by

dP() d d P 0

Py — P — = — [ P, P 7

©dg T de ( Par g > )

Py=P5, i129=%afc§=0; Py —0 as £ » —0. : (78)

d€ K*
A single integration of Eq. (77) gives
dPy .
Po Po d & =ce, (79)

where the boundary conditions (78) at £ = 0 require that the integration constant ¢; = 0. In that

case, Eq. (79) implies two possible solutions, namely
a*
Py=0 or Po=—+ca, (80)

where the first solution satisfies the boundary condition at £ = —oo and the second satisfies the
conditions at £ = 0 provided we choose ¢y = F,. Since negative values of pressure are unphysical,

a continuous solution is given by

[4] { 0 , 5 < _€0 ’ €0 a* b ’ ( )
which is valid everywhere except at £ = —&p where the derivative is discontinuous. This kink in the

solution thus suggests the existence of a thin corner layer in that vicinity. Hence, we interpret Eq.

(81) as the leading-order outer solution, and proceed to construct an inner solution in a thin region
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centered about £ = —&. In particular, we now define the inner variable 7 = ¢7%(¢ + &) and seek
a solution of the form P = P% ~ ¢’ (pg + - - - ), where the latter scaling reflects the expectation that -
P is small in the corner layer, with § > 0 and o > 0 to be determined. Substituting these inner
variables into Eq. (75), we determine that the ability to match the inner solution with the outer
solution on either side of the corner layer requires that § = o = 1. In that case, the leading-order

equation for pg is given by

d K* dpg
— |pg — — 1)=—|=0
p [Po —(Po+1) an ] , (82)
the general solution of which is given by
o5
L +c2=po+ (c1+ 1) In(po — 1), (83)
where ¢; and ¢y are constants of integration. It is clear that pg — ¢; as n = —o0, thereby requiring

the choice ¢; = 0 in order that this solution match with the outer solution (81) for £ < —&. On
the other hand, the one-term outer expansion of the inner solution (83), written in terms of the
outer variables, is given by P = (a®/x*)(£ + &), which is identical to the outer solution (81) for
£ > —£&. Thus, the leading-order composite solution is, in fact, the inner solution (83), which,

when written in the outer variables, becomes
oy P
H—i(£+§o)~P+eln (-;) — €cy, (84)

where ¢ is still undetermined. Although Eq. (84) is a valid leading-order approximation, we
observe that the error at £ = 0 is O{eln€), since the exact boundary condition is P = P, at £ = 0.
Consequently, it is clear that higher-order approximations would involve terms of this magnitude
so as to satisfy this boundary condition. Examining Eq. (84), we may anticipate this development

by setting ¢z = In(Ps/¢), giving rise an enhanced approximation of the form

Z—E(g+gg)~1>+eln (g). (85)

The outer and composite solutions (81) and (85) for the scaled overpressure P are illustrated in Fig.

6. It is clear that in this case, gas permeation extends an O(1) distance into the gas/solid region,
although, as in the previous case of O(1) overpressures, the extent of gas permeation remains,
due to the relative smallness of the permeability «, an order of magnitude less than that of the

overpressure itself.

7. Conclusion

Identifying a quasi-steady burning regime applicable to the deflagration of confined porous

energetic materials, it was demonstrated that the existence of an overpressure in the burned gas
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region has a significant effect on the burned temperature, gas-velocity profile, and the burning
rate of the material. In particular, it was shown, by an analysis of an appropriate model incorpo-
rating the primary aspects of two-phase flow in a porous material, that the burned temperature
increases linearly, and hence the burning rate initially increases exponentially, with increases in
the overpressure, followed by a more modest algebraic pressure dependence suggestive of Ap™ -
type laws. This rapid increase in the burning rate, an explicit formula for which was derived, is in
qualitative agreement with most experimental results on confined materials, which tend to show a
sudden and rapid increase in the deflagration speed that is generally associated with the onset of
convective burning. The present results lend further support to the concept that this transition is
accompanied by gas permeation into the unburned material, the depth of which is generally less
in magnitude than that of the overpressure itself. Thus, in contrast to the case of an unconfined
deflagration, for which the gas flow relative to the condensed material is always in the downstream
direction, the flow of gas in the unburned solid is, except in the limit of small overpressures, always
directed in the upstream direction, providing an important mechanism for preheating the unburned

material that results in an exponential increase in the burning rate.
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Fig.

. Scaled pressure profile P(£) in the gas-permeation region for large overpressures.

Figure Captions

. Schematic illustration of deflagration in porous energetic material with two-phase flow in both

the solid/gas and liquid/gas regions, with combustion occurring in the latter. An overpressure
between the upstream (burned) and downstream (unburned) values of the gas pressure drives

a permeation of the burned gases into the pores of the unburned solid.

. Final burned temperature T3 as a function of the overpressure pg — 1. As the overpressure

increases past a critical value, T} changes from a decreasing to an increasing function of the

porosity as.

. Burned gas velocity ug as a function of the overpressure pg — 1. Also shown is gas velocity

u4(0) at the solid/liquid interface. Negative values indicate gas flow in the upstream direction,

toward the unburned solid.

. Normalized burning-rate coefficient U,, as a function of the overpressure pg - 1.

. Pressure profile p(¢) in the gas-permeation region for O(1) overpressures. Also shown is the

velocity profile ug4(£).
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