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I. INTRODUCTION

A user oriented, automated uncertainty analysis capability has been
incorporated in the Fuel Rod Analysis Program (FRAP) computer codes.
The FRAP codes have been developed for the analysis of Light Water
Reactor fuel rod behavior during steady state (FRAPCON)1 and transient
(_FRAP-T)2 conditions as part of the United States Nuclear Regulatory
Commission's Water Reactor Safety Research Program. The objective
of uncertainty ana1yéis of these codes is to obtain estimates of the uncer-
tainty in computed outputs of the codes as a function of known uncertainties
in input variables. This objective has been accomplished through develop-
ment of an option that allows a user to perform an uncertainty analysis
on any FRAP problem for any choice of probabilistic inputs and outputs

desired. This capability will facilitate the following traditional
analyses:

(1) Sensitivity Studies: Most phenomenological models are de-
veloped independently before being incorporated into a complex
computer code. Their actual contributions to the final code
output are not necessarily well known. An uncertainty analysis
can be used as a sensitivity study in that the influence or im-
portance of each model may be ranked by its effect on the output.

(2) Experimental Data Needs: Determination of the relative con-
tribution of the uncertainty in various models and input
variables to the total uncertainty will provide guidelines
for future experimental work. For example, if it is found
that the uncertainty in fuel thermal conductivity contributes
80% of the uncertainty in cladding temperature, but the un-
certainty in fuel Poisson's ratio contributes less than 1%,

DISTRIBUTION OF THIS DOCUMERT 18 UNLIMITED

)



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



-

then this would suggest that future experimental programs be
aimed at refining the uncertainty in thermai conducfivity. |
Thus, an uncertainty analysis will provide the means for the
selection of cost effective experiments.

(3) Code Assessment: Determination of the agreement between code
predictions and experimental data requires comparing the un-
certainty in the code output with the uncertainty in the
experimental measurement. In this way only can systematic
differences be detected and evaluated. An uncertainty analysis
thus provides one half of the necessary information required
for code assessment.

This paper presents the methods used to generate an uncertainty
analysis of a large computer code, discusses the assumptions that
are made, and shows techniques for testing them. An uncertainty analysis
of FRAP-T calculated fuel rod behavior during a hypothetical loss-
of-coolant transient is presented as an example and carried through
the discussion to illustrate the various concepts.

IT. EXAMPLE PROBLEM

A FRAP-T analysis of a pressurized water reactor (PWR) hypothetical
loss-of-coolant accident (LOCA) was chosen as the example problem.
The nominal case was a PWR fuel rod subjected to thermal hydraulic conditions
resulting from a 200% cold leg break at 100% power. Beginning-of-1ife con-
ditions were assumed. The thermal-hydraulic boundary conditions through

3 The thermal-hydraulic conditions from

blowdown were supplied by RELAP4.
blowdown through reflood were calculated by FRAP-T. The nominal calculations
predicted that the fuel rod did not fail during the course of the

two hundred and fifty second transient.

The emphasis of the uncertainty analysis was on variables thought’
to significantly affect the fuel rod behavior during reflood. The variables
chosen were core flooding rate, coolant channel flow blockage, FLECHT
heat transfer coefficient, moisture carryout fraction, and the ANS decay
heat;curve, Two additional variables (gap heat transfer coefficient
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and fuel thermal conductivity) were included because of their known
importance to rod behavior during blowdown. The variables and their
respective uncertainty estimates are shown in Table 1. Cladding surface

temperature was chosen as the dependent variable not only for its importance

to licensing but also because it serves as a good example of the un-
certainty analysis process.

[TI. RESPONSE SURFACE METHOD

The uncertainty analysis option is based upon the response surface

.method.4 A response is any calculated output of the code. If it were

possible to evaluate the response over a range of input variable values

a surface could be constructed describing the relationship between the
inputs and the response, hence the term "response surface". For very
simple codes such a surface could potentially be analytically constructed.
However, in the case of the FRAP codes the range of problem types and in-
put values is very large and the response surface can. only be evaluated
at discrete points. The complete response surface cannot be determined
analytically. The response surface method of uncertainty analysis is
therefore based on a systematic sampling of the true surface to generate
a set of data. These data are used to fit polynomial approximations to
the true surface.- The polynomials, or response equations, are used to
study the effect of propagating errors through the inputs to determine
their effect on the output, or response. It is extremely important to
note the assumption that the polynomials reasonably approximate the be-
havior of the true surface. Techniques for testing this assumption'wi11
be discussed in Section IV. ’

The polynomial equation form chosen most frequently to approximate
the response surface is a truncated Taylor's series expansion. The ex-
bansion is carried out about the nominal code calculation and is usually
truncated at second order terms. The generated data are then used to
estimate the coefficients of this polynomial through a least squares
approach.



The systematic choosing of a pattern for perturbing the independent input
variables is known as experimental design. An experimental design may be en-
visioned as a matrix where the rows correspond to individual analyses to be
performed and the columns to the values of the inputs for each analysis.

One particular class of experimental designs, known as two level fractional
factorial designs, is well suited to generating data to fit truncated
Taylor's series expansions. Two level refers to the fact that each
independent variable will be input at two.different values or levels.
Factorial implies that all possible combinations of the independent
variables may be estimated (excluding powers of an input such as squares),
and fractional is used to indicate that frequently only a portion of the total
design is necessary. For example, consider the problem posed in Section II
of a seven variable FRAP-T uncertainty analysis of a PWR LOCA. A1l
possible combinations of possible equation coefficients, from a constant

to a seven factor crossproduct would equal two raised to the seventh

power, or one hundred twenty eight coefficients. However, a Taylor's
series truncated at second order will contain only terms up to two factor
crossproducts. Furthermore, for the purpose of this example only a linear
expansibn shall be considered, that is, a constant and seven linear
coefficients. Therefore, a one-sixteenth fraction of the design totalling
“eight analyses will be chosen as the experimental design. This design is
shown in Table 2 where the values of the inputs are shown as normal
deviates.

The choice of which one-sixteenth fraction to choose is not arbitrary,
In Table 2 the columns of the experimental design are orthogonal. This
will ensure that the coefficients will be estimated independently of one
another. The design has purposefully been chosen for this property, however,
the coefficients may be biased or confounded by the remaining one hundred
twenty unestimated coefficients., Essentially, the problem is one
of too many unknowns and too few equations. In order to solve for a speci-
fic set of unknowns the balance must be assumed to be zero. None
of the‘coefficients of interest depend on each other, however. Quite fre-
quently the assumption that higher order interactions are zero is justified,
but the user must be aware that the assumption has been made.



Once the design and variables have been chosen, the actual experiment
can be performed. The FRAP-T code automatically executes the required
number of cases, each time perturbing the input variables according to the
experimental design. The resulting data is illustrated in Figure
1, where the chosen response, cladding surface temperature, is plotted
for all eight analyses versus time. This is the raw data that will
be used to fit response surface equations for fixed time points throughout
the problem history.

IV. RESPONSE EQUATION FITTING AND VALIDATION

Response surface equations are obtained by fitting coefficients of a
Taylor's series expansion by a least squares technique. The coefficients
are determined by minimizing the sum of the squared differences between
the predicted and observed data values. This is a commonly accepted and
well documented practice for fitting equations to data. However, an examina-
tion of some of the usual assumptions made for least squares reveals
certain differences which must be considered when the method is applied to
computer code response data. In particular, it is often assumed that
(1) the model being fit is the true model, (2) the independent variables
are known exactly, and (3) the dependent variable observations contain an
element of uncorrelated random error with zéro mean and constant varijance.
In this case, (1) the model being fit is at best an approximation over a
specific region of interest, (2) the independent variables are input to
the code as exact values, but it is the purpose of the work tc propagate
errors in the inputs through the response equations and (3) the output
of the code can be observed without any random error whatsoever. This
leads to the conclusion that the residuals of a response surface equation
fit to computer generated data are due to lack of fit only, where a re-
sidual is defined to be the difference between the response surface
equation and the code calculations at each data point. These residuals
may be examined to determine the adequacy of fit of the response surface
equation.

In traditional least squares estimation a well proven result is that
the expected values of the estimated parameters are the parameters them-



selves. In other words, the parameters are unbiased. Under the present

conditions, however, it is easily shown5

that the parameters or coefficients
are in fact biased by the exclusion of significant terms from the re-
sponse equations (or, conversely, the inclusion of unimportant terms).

By postulating a true model in addition to the fitted model, postulated
residuals may be determined for any input values. These may be compared

to observed residuals to determine if the postulated model has merit.

The only difficulty with this scheme is that the residuals must be
independent of the data used to generate the response equation.
Practically, this presents a problem since the analyst frequently cannot
afford to generate such an additional data set. One independent residual
is always available, however, the nominal case. If a Tinear model

is fitted and a second order equation postulated, the difference

between the response equation and the nominal will be equal to the

sum of missing quadratic coefficients. Thus, possibly important terms that
might bias the response equation may be examined through this independent

residual.

Practically, the nominal is the only truly independent residual
available to the user. Fortunately, a technique has been devised for
choosing terms to include in the response equation that sequentially uses
each data point available for independent residual analysis. Known as
Prediction Error Sum of Squares6 (PRESS), the method removes one data
point at a time from the data set and fits an equation based on the remaining
data. The residual associated with the excluded data point is then squared
and the process repeated for all other data points. The equation that
minimizes PRESS is selected. This method has the advantage of using a
form of independent residuals without the need of generating additional
data.

Residuals of a PRESS selected response equation are shown, for example,
in Figure 2, where cladding surface temperature residuals at time
step forty (seventy eight seconds) are plotted versus the response
equation prediction. Interpretation of the plot must be undertaken
with care. In this instance the residuals are very small, of like



magnitude, and alternating sign. The residual at the nominal (not

shown) is also small (about eight degrees) indicating that quadratic

terms are probably not important. Thus the linear approximation appears
reasonable and the very small residuals are due to the inclusion of
unimportant terms in the equation. In fact, the last term added had

a coefficient an order of magnitude smaller than the next smallest coefficient.
In summary, this example response equation appears to reasonably approximate
the true response by a linear fit, has not omitted higher order terms,

and has included one unimportant term in the equation. Estimated uncertain-
ties obtained from this equation should be reasonably free of bias and

so give useful results.

V. RESPONSE UNCERTAINTY ESTIMATION

Once a response surface equation has been determined to adequately
approximate the true response, thé equation may be used to infer infor-
mation about the uncertainty of the response. The method for doing this
is known as second order ekror propagation. Second order refers to the
order of the Taylor's series expansion truncation. The method simply
finds the expected values of the first four moments of the response as
a function of the response equation coefficients and input distribution
moments. Since the equation is up to second order, the first eight
central moments of the inputs are required. The method is exact and the
only approximation is that inherent in the response equations. Figure
3 illustrates the estimated cladding surface temperature mean and standard
deviation during the course of the sample problem. Figure 3 actually
illustrates the net result of one hundred twenty six response equations
that approximated the true response atAtwo second intervals.

Using the four moments of response, the probability density function
for that response may be estimated through a technique known as moment
matching. The moments are compared to the Pearson family of distribu-
tions and a suitable distribution is se]ected.7 The density function and
cumulative distribution function for the responée may then be approxi-
mated. Figure 4 shows the probability density function of cladding



surface temperature at time step forty of the sample problem. The distribu-
tion is a normal or Gaussian distribution. This is not surprising since the
inputs were all assumed normally distributed and a linear response equation
fit. The method is, however, entirely free of assumptions about the

form of the input distributions and the user may input arbitrary distribu-
tional forms. In fact, so long as the standard deviation is not changed,
different assumptions about the form of the input distributions may be evalua-
ted after the basic experiment has been performed. This brings out

a curious but important fact. Inferences about uncertainty in the code outputs
are not actually made until the last stages of an analysis. Up until that
point the perturbations specified by the user can be entirely arbitrary

as, for example, a sensitivity study. Only at the end when inferences

are made about the output uncertainty do the input perturbations assume
meaning in terms of the input uncertainties.

The final task in achieving the puﬁBose of the uncertainty analysis
is to determine the sensitivity of the response uncertainty to the various
input uncertainties. This is accomblished by calculating the fractional
contributions to the variance (the square of the standard deviation)
of the response from each input. Figure 5 illustrates the fractional
contributions of each of the seven input variables to the estimated
cladding surface temperature uncertainty. Note that not only does the esti-
mated uncertainty vary during the problem history, as shown in Figure
3, but the fractional contributions to that uncertainty also vary signifi-
cantly during the problem. In this case, the gap heat transfer anc:fuel
thermal conductivity uncertainties are importanf during the bTowdown
phase of the transient while the flooding rate clearly dominates the
reflood portion. Reductions in the calculated uncertainty of cladding surface
temperature will be effected by a reduction in the uncertainty in flooding
rate, whether it be by improved modeling or refined experimental data.
Conversely, moisture carryout fraction and coolant channel flow blockage un-
certainties do not appear to affect the unceftainty in cladding surface
temperature for this problem and further work on these models and uncertainties
is not justified. Thus, the sensitivity of the various models and the direction
of experimental data needs have been defined through the example-uncertainty
analysis.



VI. SUMMARY

A user oriented, automated uncertainty analysis capability has been
incorporated in the FRAP computer codes. The option uses the response
surface method to generate equations that approximate the code
behavior. The equations are first subjected to a validation procedure
to determine how suitable the approximations are, then used to propagate
errors in the inputs so that estimates of the response uncertainty can be
made. Probability density functions for the responses are determined
and finally fractional contributions to the variance from each input
uncertainty calculated. All of the above functions are combined in
a flexible code package that can significantly reduce the time normally
required to conduct an uncertainty analysis, while providing a consistent,
well-documented methodology. The option will facilitate traditional
analyses such as sensitivity studies, analysis of eXpérimenta] data
needs, and code assessment in such a way that the mechanics of conducting
these analyses will be routine and emphasis can be placed more appropriately
on the interpretation and application of results.
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TABLE 1

. ASSUMED LOCA UMNCERTAIMTY FACTORS*

1. Flooding Rate ' 10%
2. Flow Blockage Percentage 5%
3. F]echf Heat Transfer : 10%
4. Carryout Fraction 10%
5. Gap Heat Transfer | 25%
6. Fuel Thermal Conductivity 0.4 (W/m:K)
7. ANS Decay Heat Curve ' 6.7%
4

* NORMAL DISTRIBUTIONS, ONE STANDARD DEVIATION ASSUMED



TABLE 2

7-4

DESIGN MATRIX FOR A 2 FRACTIONAL FACTORIAL
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Uncertainty Analysis

o Estimate the uncertainty in code outputs |
as a function of known uncertainties in

code inputs

o Determine fractional contributions to the
total uncertainty of individual inputs

. INEL-S-18 763




e Sensitivity studies
o Experimental data needs

o (Code assessment .
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Zion PWR LOCA
200% cold ileg break

Calculations by FRAP-T5 through reflood

Uncertainty emphasis on reflood variables
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- Assumed LOCA Uncertainty

Factors®
Flooding rate | 10%
Flow blockage percentage 5%
FLECHT heat transfer 10%
Carryout fraction 10%
Gap heat transfer 25%
Fuel thermal conductivity 0.4 (W/m-K)
ANS decay heat curve 6.7 %

No o s e N

*Normal distributions, assumed one standard deviation
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Response Surface Wethodology

“Respornses” are the FRAP outpuls

& énde@eﬁmm variables are code inpuls
The error analysis procedure determines
a relationship between each resgonse
and the inde pendent var jables.
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Approx. surface = True response
surface
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Respcnse

Response Uncertainty
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Design

Experimental

o Provides a systematic pattern for
perturbing the independent variables so
that the maximum information is obtained
with fewest FRAP runs

o Basic designs - Two level fractional
factorial - for estimating linear and (some)
two-factor coefficients
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Experimental Design
(cont’d)

s Plackett-Burman desugns used for numbers
of factors near 12 or 20

.o Foldover design used to eliminate two-
factor confounding of linear terms

o (Quadratic terms may be added to above
designs |
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latrix for a2 74
Fractional Famm’ia

Design M

FFactor Levels

ABCDEFG
AEIEIEIERERE
FIEIEIEIEIEIE
1[-1]1]-1]1 [-1]-1
EIEIEIEEISE
N EIREIEE
EIEIEISIEEIER
AEIEIEIEIEE
-1 {1 [1]

INEL-S-24 545

Runs

N O OWN -




Ciladding surface témperamre (K)

Cladding Surface Temn

~

iperature

1400 , , . , ,

1200} S ]

1000/} ]
800 | :
ool _‘
400} _
200

0 40 80 120

Time in LOCA (s)

160 200

INEL-S-24 548

240



e A response surface eqguation is a
polynomial that approximates the code
calculations over a given region

o A residual is the difference between the
response surface equation and the code
calculations at each data point
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- Response Eguation Validation

o Determine whether the response surface
-equations adequately approximate the
unknown functional form of the code
respornse | |

e Poor approximations will bias estimates of
uncertainty |
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" Residuals
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Least Squares Assumptions

General Regression

e The model fit is the true model

e The independent variables are known
exactiy

e The dependent variable observations -
contain random error

INEL-S-24 538
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Least Squares Assump
(cont’d.)

Regression on Computer Data
e The model is at best an approximation

o |t is the purpose of the work to propagate
errors in the inputs

e The output of the code can be observed
without error

- Conclusion

¢ These residuals are soley due to lack of fit
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Analysis of Residuals

Evenly dispersed and well distributed
residuals indicate good fit

Very small residuals of like magnitude and
alternating sign indicate overfit

Highly grouped residuals indicate underfit,
that is, significant terms omitted

Well dispersed residuals with one or two
outliers indicate a threshold response

INEL-S-18 767
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Fuel Centerline Temperature

Residuals
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Cladding Hmp Residuals
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Response Uncertainty
Estimation

"Second order error pmpagation

Requires first eight momems of the input
distributions |

Estimates first four moments of the output
distribution
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Cladding surface temperature (K)

800}
800

400

200

0 40 80 120 160 200 240

o

B ™ i Y A

2 & HhEE g
:

] L ¥ 7 1

---+1 One standard deviation _

Time in LOCA (s)

INEL-S-24 547



Response Uncertainty
Estimation (cont’d.)

e Estimate the probability density function of

the response at a point in time

e Moment matching technique
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Automated Error Analysis

User specifies inputs to vary and responses to
analyze

User specifies degree of polynomial

Code automatically
e Determines experimental design and
confounding pattern |

e Calls FRAP
e Fits response polynomial for all responses
o Estimates means and variances

o Computes fractional ccmrabutaon to
variance
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- Summary

A user oriented, automated uncertainty
analysis option is available in the FRAP
codes

It is based on response surface
methodology

The response equations must undergo

validation |

The option can be used for:
1) Sensitivity studies

- 2) Experimental data needs
3) Code assessment
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