

Conf. 920307--58

WSRC-MS--91-363

DE92 010693

RADIONUCLIDE LIMITS FOR VAULT DISPOSAL AT THE SAVANNAH RIVER SITE (U)

by

J. R. Cook *J. R. Cook* 2-4-92
Westinghouse Savannah River Co.
Savannah River Site
Aiken, South Carolina

A paper proposed for presentation at the
Waste Management '92 Conference
Tuscon, Arizona
March 1 - 5, 1992

and for publication in the proceedings

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This paper was prepared in connection with work done under Contract No. DE-AC09-89SR18035 with the U.S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U.S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

RADIONUCLIDE LIMITS FOR VAULT DISPOSAL AT THE SAVANNAH RIVER SITE

by

James R. Cook
Savannah River Laboratory
Westinghouse Savannah River Company
Aiken, SC 29802

ABSTRACT

The Savannah River Site is developing a facility called the E-Area Vaults which will serve as the new radioactive waste disposal facility beginning early in 1992. The facility will employ engineered below-grade concrete vaults for disposal and above-grade storage for certain long-lived mobile radionuclides. This report documents the determination of interim upper limits for radionuclide inventories and concentrations which should be allowed in the disposal structures. The work presented here will aid in the development of both waste acceptance criteria and operating limits for the E-Area Vaults.

Disposal limits for forty isotopes which comprise the SRS waste streams were determined. The limits are based on total facility and vault inventories for those radionuclides which impact groundwater, and on waste package concentrations for those radionuclides which could affect intruders.

BACKGROUND

The new facility for disposal and storage of low-level radioactive waste at the Savannah River Site will consist of four types of disposal units; low activity waste (LAW) vaults, intermediate activity waste (IAW) vaults, tritium waste (TW) vaults, and long-lived waste (LLW) storage buildings.

The disposal vaults will be used to meet the performance objectives of DOE Order 5820.2A.(1) Engineered concrete barriers will provide primary confinement for the waste. To minimize waste contact with water and as a secondary confining feature, a highly permeable layer of gravel will be placed beneath each below-grade unit. In addition, at final closure, a layer of highly impermeable clay will be placed over the vaults to minimize infiltration of water.

DOE Order 5820.2A sets forth the requirements for radioactive waste disposal within the DOE complex. Among other things, each disposal facility is required to have a site-specific performance assessment to demonstrate that the facility will meet the performance requirements stated in the order. Waste acceptance criteria, which guarantee that the waste emplaced in the facility is within the bounds of that analyzed by the performance assessment, are also required. Ideally, the performance assessment would be completed first, and the waste acceptance criteria written based on the results. In the case of the E-Area Vaults, the facility will be constructed and operating before the performance assessment is completed.

The work presented here provides interim limits on the amounts of individual radionuclides, with the exception of tritium, which can be placed in each of the nontritium disposal units in the new facility. A separate study was undertaken to recommend tritium limits for each of the disposal units. These limits will be superseded when the performance assessment work being done by Oak Ridge National Laboratory at Grand Junction, Colorado is completed in 1993.

Two computer programs were used in this work, the HELP code and PATHRAE code. Each of these codes is described in the following sections, and the methodology used to apply them to this problem is explained.

DESCRIPTION OF THE HELP CODE

The Hydrologic Evaluation of Landfill Performance (HELP) code was developed by the U. S. Army Corps of Engineers for the U. S. Environmental Protection Agency. (2,3,4) The purpose of the code is to evaluate various designs for shallow land burial waste disposal systems in terms of their effect on the overall water balance. Up to fourteen layers may be used, including both closure caps and liners.

Input data required by the code consist of the physical dimensions of the waste site and each of the layers, hydraulic properties of the layers, and climatic information. The dimensions of the site and the cap layers, as well as the layer materials were taken from the conceptual closure design included in the Design Review package. The code itself provides default hydraulic properties for a number of possible cap and liner materials, including most of those proposed for the E-Area Vaults. The only exceptions are properties for highly permeable drainage materials. A saturated hydraulic conductivity of 1 cm/sec was assigned to this material. (5) Climatic data consisted of ten years of daily rainfall data from a nearby onsite meteorologic tower and other data provided with the code for Augusta, Georgia.

Output from the code is the water balance resulting from the particular design and climate. Water balance means that the amount of water exiting the overall system must equal that which enters the system as precipitation. This exiting water is partitioned into evapotranspiration back into the atmosphere, surface runoff, lateral drainage, and infiltration. In general, evapotranspiration and lateral drainage are beneficial to the closure system. Surface runoff can cause erosion of the cap system and should be minimized. Infiltration causes leaching of the buried waste, so it should be reduced to the extent possible.

The HELP code has been the subject of several verification studies by the U. S. Army Corps of Engineers, (6,7) and it has undergone a sensitivity analysis by Oak Ridge National Laboratory. The methodology used in the sensitivity analysis also performs a very rigorous check on the actual computer code to insure that it is self consistent.

DESCRIPTION OF THE PATHRAE CODE

The purpose of the PATHRAE(8) computer code is to calculate doses and health effects which might be caused by disposal of waste material in the near-surface environment. The code was developed by Rogers and Associates Engineering Corporation, of Salt Lake City, Utah, for the U. S. Environmental Protection Agency, and is accepted by that organization. PATHRAE was selected for use in the Environmental Impact Statement on Waste Management Activities and Groundwater Protection at the Savannah River Site(9).

Input to the code consists of a number of parameters which describe the characteristics of the waste, the disposal site, and the surrounding area. The more that is known about the waste and the site, the more confidence there will be in the results produced by the code.

The PATHRAE code can calculate doses due to a number of exposure pathways: groundwater transport to a surface stream, groundwater use in a nearby well, surface erosion and subsequent waste exposure, trench overflow (bathtub effect), food grown on the site, biointrusion into the waste, direct gamma exposure, inhalation of dust onsite, inhalation of radon gas, and atmospheric transport of particulates offsite.

The code assumes that the waste inventory is evenly distributed throughout the waste volume. For the groundwater transport pathways, a specified fraction of the inventory is leached from the waste each year and transported vertically through the unsaturated zone, then

horizontally to hypothetical wells at distances of 1 meter and 100 meters, and to a nearby stream. The water velocity through the unsaturated zone is calculated in the code from input values for infiltration and soil porosity. The velocity in the water table is a code input, the value of which was taken from three-dimensional numerical modeling work.

The velocity of each radionuclide considered is calculated based on the partition coefficient (commonly called K_d) and the water velocity. A quantity called the retardation factor is calculated from the partition coefficient and used to modify the velocity of a species relative to the water velocity. For example, uranium with a partition coefficient of 40 has a retardation factor equal to 320, meaning that uranium is transported 320 times more slowly than the groundwater. Reference 10 provides the bases for these values.

In each of the pathways a hypothetical person is exposed to radiation released from the disposal facility. The PATHRAE code calculates the dilution, dispersion, or attenuation provided by the waste site and the environment, and thus the curie concentration of each radionuclide to which the person will be exposed. For the ingestion and inhalation pathways, dose conversion factors from the International Commission on Radiological Protection (ICRP) (11,12) are used to calculate annual doses from curie concentrations. Dose conversion factors for direct gamma exposure are taken from the PRESTO data base(13).

As just stated, the PATHRAE code was used as the basis for dose calculations for the Groundwater Protection and Waste Management Environmental Impact Statement issued by DOE in 1987. One of the supporting documents for the EIS was a quality assurance report on the models used.(14) Several levels of review are documented in this report, (1) review of code documentation, history of use, and previous validation and verification studies, (2) comparison of model results to alternate models using different boundary conditions, (3) comparison of model predictions to measured concentrations, and (4) sensitivity analysis to identify critical input parameters.

DOSE CRITERIA

The dose criteria set forth in DOE Order 5820.2A were used in this study. The order states that the dose to an inadvertent intruder be no more than 500 mrem/yr for a single acute exposure, such as digging into or drilling through the buried waste. For continuous exposure, that is living on the waste site and growing food there, the limit is 100 mrem/yr. No member of the general population should

receive more than 25 mrem/yr by all pathways. In addition, the order states that the disposal facility must meet all applicable local, state, and federal regulations for groundwater protection. Though no such regulations exist at this time for radionuclides, SRS has a self-imposed limit of 4 mrem/yr for groundwater at the edge of the disposal facility at all times during operation and after closure.

For this study the 100 mrem/yr limit was used and applied at 100 years after site closure to estimate intruder doses. Studies by Kennedy and Peloquin(15) and Aaberg and Kennedy(16) have shown that the 100 mrem/yr limit for continuous exposure always results in lower allowable waste concentrations than the 500 mrem short-term exposure limit. For times less than 100 years, the general population was considered to be at the SRS boundary. Between 100 and 500 years, the general population was assumed to be at the edge of the disposal site. The SRS exposure limit for workers at the E-Area Vaults is currently 1,500 mrem/yr. In this study the dose criterion for worker exposure was conservatively set at 500 mrem/yr.

The times, locations, and performance objectives for each type of exposure considered in this report are summarized in Table I.

Table I. Locations, Times, and Dose Limits Used

Point and Time of Compliance					
Performance Objective		Waste Site	Waste Site Boundary	SRS Boundary	
Worker	500 mrem/yr(a)	0-100 years	NA	NA	
Groundwater Protection	4 mrem/yr(b)	NA	All time	NA	
General Population	25 mrem/yr(c)	NA	>100 years	0-100 years	
Intruder	100 mrem/yr(c)	>100 years >300 years	LAW IAW	NA	NA

-
- a. DOE limit is 5000 mrem/yr, SRS limit is 3000 mrem/yr, E-Area Vaults limit is 1500 mrem/yr. This limit is one-third the E-Area limit.
 - b. Proposed EPA limit (Ref 17).
 - c. From DOE Order 5820.2A (Ref 1).

METHODOLOGY

The initial modeling step in this work was to use the HELP code to estimate the long-term infiltration rate to be expected from the closure cap design currently planned for the E-Area Vaults. The calculated infiltration rate was used both directly as an input to PATHRAE, and to calculate the leach rate for each radionuclide using the method developed by Baes and Sharp.(18)

Dimensions of the E-Area Vaults site and the vaults themselves were taken from design drawings. All other parameters for the PATHRAE code were taken from values used in the Environmental Information Document for new radioactive waste disposal facilities(19) with a few exceptions:

1. For the groundwater pathway the hypothetical person consumed 730 liters of water per year (2 liters per day). In the EID this value was 365 liters per year (1 liter per day).
2. The dose from drinking groundwater was calculated using well characteristics of a monitoring well rather than a domestic well, i.e., a fifteen-foot screen zone rather than the 33 feet used in the EID. This is consistent with the 4 mrem/yr groundwater protection criterion.
3. The dose from groundwater considered only drinking water. Other uses, such as irrigation and watering food and milk producing animals were excluded. This is consistent with the 4 mrem/yr groundwater protection criterion.
4. The atmospheric transport pathway, where contamination is spread by a trench fire to offsite individuals, was not considered credible for vault disposal of waste.
5. The LAW vaults were considered to remain intact and retain all radionuclides for 100 years (the same assumption used in the EID), while the IAW vaults were assumed to retain all radionuclides for 300 years as a result of their more substantial design.
6. In addition to the 100 year active institutional control period mandated by DOE Order 5820.2A, the IAW vaults were assumed to provide an additional 200 years of passive control, by virtue of their more massive construction, to deter intrusion into the waste. The Nuclear Regulatory Commission allows up to 500 years of passive control for stabilized waste forms such as the IAW vaults.(20)

7. The ingrowth of daughters of uranium and the transuranics inside the vaults was considered.
8. The potential dose to postclosure workers from direct gamma exposure from the undisturbed waste was considered.

Each radionuclide was initially assigned an inventory of one billion curies, which is about 100 times the total historic inventory of low-level waste disposed at SRS. The results for each pathway and each radionuclide were examined and compared with the performance objectives in Table I. Radionuclide inventories were adjusted so that the calculated dose for the most limiting pathway for each radionuclide would equal the performance objective for that pathway. Only a few of the ten pathways considered by PATHRAE were found to be significant: groundwater, direct gamma, and food grown onsite.

One of the useful features of the PATHRAE code is that it computes the inventory remaining in the facility at future times considering decay and transport. Since uranium and the transuranics have decay chains which include other radioactive species, this feature was used to determine if any daughter radionuclides would be produced in sufficient quantity to exceed the inventory limit calculated for them as parents. The decay chains which are included in PATHRAE are:

Cm-244 => Pu-240 => U-236

Pu-240 => U-236 => Th-232

Am-243 => Pu-239 => U-235

Pu-241 => Am-241 => Np-237

Pu-238 => U-234 => Th-230 => Ra-226

Pu-242 => U-238 => U-234

Several cases were found where consideration of daughters produced a more restrictive limit than that of the parent isotope. The results of the decay chain calculations are shown in Table II.

Table II. Comparison of Parent and Daughter Limits
 (Total Inventory, Curies)
 [Most Limiting Vaule is Underlined]

Limit Basis	IAW Vaults		LAW Vaults	
	Parent	Daughter	Parent	Daughter
Cm-244=>U-236	1E+9	<u>7E+6</u>	1E+9	<u>1E+8</u>
Pu-240=>U-236	7E+5	1E+4	2E+5	<u>2E+5</u>
Pu-240=>Th-232	7E+5	>1E+4	<u>2E+5</u>	>2E+5
U-236=>Th-232	<u>1E+0</u>	>1E+0	<u>2E+1</u>	>2E+1
Am-243=>U-235	<u>8E+2</u>	1E+7	<u>2E+3</u>	2E+8
Pu-239=>U-235	<u>7E+5</u>	2E+6	<u>1E+4</u>	4E+7
Pu-241=>Np-237	1E+9	<u>9E+3</u>	2E+5	<u>1E+5</u>
Am-241=>Np-237	2E+6	<u>2E+2</u>	4E+7	<u>3E+3</u>
Pu-238=>U-234	7E+8	<u>5E+3</u>	4E+5	<u>8E+4</u>
Pu-242=>U-238	<u>6E+2</u>	2E+6	<u>6E+3</u>	2E+7
Pu-242=>U-234	<u>6E+3</u>	>2E+6	<u>6E+3</u>	>2E+7
U-238=>U-234	<u>2E+0</u>	>2E+0	<u>3E+1</u>	>3E+1

RESULTS

The results of this study for the IAW vaults and the LAW vaults are shown in Table III. Many of the radionuclides are shown as having no limit, meaning that even with an initial inventory of 1 billion curies the performance objectives are not exceeded. The property that these "No Limit" nuclides have in common is a short half-life. Because the vaults prevent radionuclide release for 100 to 300 years, isotopes with half-lives less than about 5 years decay to insignificant amounts before they can reach the environment. These "No Limit" nuclides will not be considered further in this report.

The remaining isotopes fall into two categories, those which are limited by the groundwater pathway and those which are limited by intruder pathways. This difference in the method of exposure has implications for the manner in which facility limits should be implemented. Radionuclides which

impact the groundwater system must first be leached out of the wasteforms by percolating water and then be transported through the vadose (unsaturated) zone. This mechanism therefore integrates over the entire disposal facility, so that the overall facility inventory is the controlling factor. Intrusion scenarios, however, involve a small fraction of the waste disposed of in the facility, only that which is disturbed by excavation and drilling. This means that individual waste package concentrations are the controlling factor.

Table IV summarizes the calculated limits for each radionuclide. Those isotopes which are groundwater limited are given in units of total curies and curies per vault. The intrusion limited isotopes are given in concentration units, curies per cubic meter, curies per cubic foot, and nanocuries per gram (assuming a waste density of 1600 kg/m³). Several of the transuranic isotopes, which by themselves were intrusion limited, had more restrictive inventories when ingrowth of neptunium and the uranium isotopes was considered. Since the daughters are limited by groundwater, the parent radionuclide is listed in the groundwater side of the table.

DISCUSSION

To assess the impact of the inventory limits calculated in this work, a comparison was made with the historic waste inventory as shown in SRS records. This comparison is given in Table V. Five isotopes, C-14 in reactor moderator deionizers, Np-237, Th-232, U-234, and U-238 have historic inventories higher than the limits calculated here. The deionizers will be sent to the LLW storage building and will not impact the E-Area Vaults. The Th-232 in the existing inventory resulted from programs many years ago to develop a thorium fuel cycle.(21) Such work is not anticipated in the future, so little if any thorium is expected in the E-Area Vaults.

The uranium isotopes are somewhat more problematic. A great deal of the U-234 in the existing inventory came from the Naval Fuel program at SRS, which has since been discontinued. U-234 is the primary isotope of concern in enriched uranium. Future operations are expected to generate only about one-third the amount of enriched uranium waste as in the past.(22) In addition, most enriched uranium wastes are now collected for offsite recovery, so little enriched uranium waste will be disposed in the E-Area Vaults. U-238 is a major component of both enriched and

Table III. PATHRAE Results for E-Area Vaults

Nuclide	IAW Vaults			LAW Vaults		
	Ci	Limiting Pathway		Ci	Limiting Pathway	
Am-241	2E+2	Np-237 Ingrowth		3E+3	Np-237 Ingrowth	
Am-243	8E+2	Groundwater		2E+3	Direct Gamma	
C-14	1E+0	Groundwater		2E+1	Groundwater	
Ce-144	1E+9	No Limit		1E+9	No Limit	
Cf-252	1E+9	No Limit		1E+9	No Limit	
Cm-244	7E+6	U-236 Ingrowth		1E+8	U-236 Ingrowth	
Co-60	1E+9	No Limit		1E+9	No Limit	
Cs-134	1E+9	No Limit		1E+9	No Limit	
Cs-137	8E+7	Direct Gamma		1E+7	Direct Gamma	
Eu-154	1E+9	No Limit		1E+9	No Limit	
Eu-155	1E+9	No Limit		1E+9	No Limit	
I-129	1E-2	Groundwater		2E-1	Groundwater	
Nb-94	1E+1	Direct Gamma		3E+1	Direct Gamma	
Nb-95	1E+9	No Limit		1E+9	No Limit	
Ni-59	2E+3	Direct Gamma		2E+4	Direct Gamma	
Ni-63	1E+9	No Limit		1E+9	No Limit	
Np-237	2E-2	Groundwater		4E-1	Groundwater	
Pm-147	1E+9	No Limit		1E+9	No Limit	
Pr-144	1E+9	No Limit		1E+9	No Limit	
Pu-238	5E+3	U-234 Ingrowth		8E+4	U-234 Ingrowth	
Pu-239	1E+4	Direct Gamma		5E+4	Direct Gamma	
Pu-240	1E+4	U-236 Ingrowth		2E+5	Direct Gamma	
Pu-241	9E+3	Np-237 Ingrowth		1E+5	Np-237 Ingrowth	
Pu-242	6E+2	Direct Gamma		6E+3	Direct Gamma	
Rb-87	1E+1	Groundwater		2E+2	Groundwater	
Rh-106	1E+9	No Limit		1E+9	No Limit	
Ru-106	1E+9	No Limit		1E+9	No Limit	
Sb-125	1E+9	No Limit		1E+9	No Limit	
Se-75	1E+9	No Limit		1E+9	No Limit	
Se-79	3E+0	Groundwater		5E+1	Groundwater	
Sm-151	1E+9	No Limit		1E+9	No Limit	
Sr-90	1E+9	No Limit		3E+8	Food	
Tc-99	9E-1	Groundwater		1E+1	Groundwater	
Te-125	1E+9	No Limit		1E+9	No Limit	
Th-232	3E-1	Groundwater		5E+0	No Limit	
U-234	2E+0	Groundwater		3E+1	Groundwater	
U-235	1E+0	Groundwater		2E+1	Groundwater	
U-236	1E+0	Groundwater		2E+1	Groundwater	
U-238	2E+0	Groundwater		3E+1	Groundwater	
Y-90	1E+9	No Limit		1E+9	No Limit	

depleted uranium. As previously stated, little enriched uranium waste is expected in the future. Depleted uranium is used as target material in the production of Pu-239. If future efforts at SRS are directed only towards tritium production, then there will be little if any depleted uranium waste sent to the E-Area Vaults.

Pu-238 production is currently being restarted after a period of inactivity. The allowed inventory of Pu-238 is quite large (90,000 curies), and the difference between the calculated and historic inventories is quite large (9 times), so with a little care in waste management practices the limit should not be a problem. Of much more concern is the fact that an intermediate product in Pu-238 manufacture is Np-237, which has a very low calculated limit (0.4 curie) and a historic inventory from past Pu-238 production exceeding the limit (0.7 curie). Disposal of Np-237 must therefore be carefully monitored.

The historic inventories of four other isotopes, Pu-238, Tc-99, U-235 and U-236, are within an order of magnitude of the limits calculated in this report. Pu-238 and associated Np-237 waste has just been discussed. As previously stated, the generation of all types of uranium waste is expected to be much reduced in the future. As Pu-239 production is reduced, reprocessing waste containing fission product material will be reduced as well, which will reduce the amount of technetium sent for disposal.

It should be kept in mind that there will be major programs of Decontamination and Decommissioning arising in the future. Activities in the canyon buildings and the tank farms will produce fission product waste, and efforts in the reactor areas will result in waste containing activation products. Another consideration is the large stockpile of depleted uranium at SRS which may ultimately require disposal.

RECOMMENDATIONS

The inventory and concentration limits presented in this report are intended as interim guidance, pending the conclusion of the much more formal and comprehensive performance assessment that is currently underway. The limits, for the most part, are not restrictive in the context of either past waste generation or that projected for the future. The formal performance assessment may produce limits which are either more or less restrictive than those presented here.

Table IV. Disposal Limits for E-Area Vaults
 Intermediate Activity Waste Vaults

Inventory Limited			Concentration Limited			
Nuclide	Curies	Ci/Vault	Nuclide	Ci/m ³	Ci/ft ³	nCi/g
Am-241	2E+02	2E+01	Cs-137	1E+03	3E+01	7E+05
Am-243	8E+02	8E+01	Nb-94	1E-04	4E-06	8E-02
C-14	1E+00	1E-01	Ni-59	3E-02	7E-04	2E+01
Cm-244	7E+06	7E+05	Pu-239	2E-01	5E-03	1E+02
I-129	1E-02	1E-03				
Np-237	2E-02	2E-03				
Pu-238	5E+03	5E+02				
Pu-240	1E+04	1E+03				
Pu-241	9E+03	9E+02				
Rb-87	1E+01	1E+00				
Se-79	3E+00	3E-01				
Tc-99	9E-01	9E-02				
Th-232	3E-01	3E-02				
U-234	2E+00	2E-01				
U-235	1E+00	1E-01				
U-236	1E+00	1E-01				
U-238	2E+00	2E-01				

Low Activity Waste Vaults

Inventory Limited			Concentration Limited			
Nuclide	Curies	Ci/Vault	Nuclide	Ci/m ³	Ci/ft ³	nCi/g
Am-241	3E+03	1E+02	Am-243	1E-03	4E-05	9E-01
C-14	2E+01	9E-01	Cs-137	1E+01	3E-01	7E+03
I-129	2E-01	8E-03	Nb-94	2E-05	6E-07	1E-02
Np-237	4E-01	2E-02	Ni-59	1E-02	3E-04	7E+00
Pu-238	8E+04	4E+03	Pu-239	4E-02	1E-03	2E+01
Pu-241	1E+05	7E+03	Pu-240	1E-01	4E-03	9E+01
Rb-87	2E+02	8E+00	Pu-242	4E-03	1E-04	3E+00
Se-79	5E+01	2E+00	Sr-90	2E+02	7E+00	1E+05
Tc-99	1E+01	7E-01				
Th-232	5E+00	3E-01				
U-234	3E+01	1E+00				
U-235	2E+01	1E+00				
U-236	2E+01	1E+00				
U-238	3E+01	1E+00				

Table V. E-Area Vault Limits vs. SRS Historic Inventory

Nuclide	E-Area Vault Limits			Historic Inventory
	ILNT	LAW	Total	
	Curies	Curies	Curies	Curies
Am-241	2E+02	3E+03	3E+03	1E+01
Am-243	8E+02	2E+03	3E+03	0E+00
C-14	1E+00	2E+01	2E+01	6E-04 (a)
Cm-244	7E+06	1E+08	1E+08	9E+03
Cs-137	8E+07	1E+07	9E+07	7E+04
I-129	2E-02	2E-01	2E-01	3E-03
Nb-94	1E+01	3E+01	4E+01	1E-05
Ni-59	2E+03	2E+04	2E+04	5E-01
Np-237	2E-02	4E-01	4E-01	7E-01 (b)
Pu-238	5E+03	8E+04	9E+04	1E+04
Pu-239	1E+04	5E+04	6E+04	1E+03
Pu-240	1E+04	2E+05	2E+05	2E+01
Pu-241	9E+03	1E+05	1E+05	1E+03
Pu-242	6E+02	6E+03	7E+03	2E-03
Rb-87	1E+01	2E+02	2E+02	3E-06
Se-79	3E+00	5E+01	5E+01	5E-02
Sr-90	1E+09	3E+08	1E+09	7E+04
Tc-99	9E-01	1E+01	1E+01	2E+00
Th-232	3E-01	5E+00	5E+00	3E+03 (b)
U-234	2E+00	3E+01	3E+01	6E+01 (b)
U-235	1E+00	2E+01	2E+01	2E+00
U-236	1E+00	2E+01	2E+01	7E+00
U-238	2E+00	3E+01	3E+01	6E+01 (b)

Notes:

- (a) Does not include approximately 7000 curies in reactor deionizers. These will be stored in the future and not disposed in E-Area Vaults.
- (b) Indicates cases where historic inventory exceeds calculated E-Area Vaults inventory limit.

Since the concentration limits in Table IV were derived by determining the maximum amount of each radionuclide which would produce the maximum allowable exposure, the Sum of Fractions rule must be used when applying the limits. This means that the ratio of each radionuclide in a waste package or in a vault to its limit is calculated, and all the ratios summed. The sum must be less than one to be acceptable for disposal. For example, if a package contains one-half the limit for one radionuclide and three-fourths the limit for another, then the sum of fractions would be 1.25, and that package would not meet the disposal criteria.

It is also recommended that the inventories of each radionuclide be controlled on a vault basis, perhaps using a moving average technique. This will insure that those isotopes which could impact groundwater are dispersed over the disposal facility, in accordance with the modeling assumptions.

If the limits are viewed as overly restrictive from the point of view of either Waste Management or the waste generators, there is a precedent from the Nuclear Regulatory Commission for increasing concentration limits by a factor of ten using peak to average ratioing.(23)

REFERENCES

1. U.S. DEPARTMENT OF ENERGY, **Radioactive Waste Management**, DOE Order 5820.2A, September 1988.
2. SCHROEDER, P. R., MORGAN, J. M., WALSKI, T. M., and GIBSON, A. C., **The Hydrologic Evaluation of Landfill Performance (HELP) Model: Volume I. User's Guide for Version I**, EPA/530-SW-84-009, U. S. EPA, Cincinnati OH, August 1983.
3. SCHROEDER, P. R., GIBSON, A. C., and SMOLEN, M. D., **The Hydrologic Evaluation of Landfill Performance (HELP) Model: Volume II. Documentation for Version I**, EPA/530-SW-84-010, U. S. EPA, Cincinnati OH, June 1984.
4. SCHROEDER, P. R., **Interim User's Guide for HELP Version 2 for Experienced Users**, U. S. Army Corps of Engineers, Vicksburg, MS, March 1988.
5. BEAR, JACOB and VERRUIJT, ARNOLD, **Modeling Groundwater Flow and Pollution**, D. Reidel Publishing Company, Boston, MA, p 32, 1987.
6. SCHROEDER, P. R. and PEYTON, R. L., **Verification of the Lateral Drainage Component of the HELP Model Using Physical Models**, EPA/600/2-87/049, U. S. EPA, Cincinnati OH, July 1987.

7. SCHROEDER, P. R. and PEYTON, R. L., **Verification of the Hydrologic Evaluation of Landfill Performance (HELP) Model Using Field Data**, EPA/600/2-87/050, U. S. EPA, Cincinnati OH, July 1987.
8. MERRELL, GARY B., ROGERS, VERN C., and BOLLENBACHER, MICHAEL K., **The PATHRAE-RAD Performance Assessment Code for the Land Disposal of Radioactive Wastes**, RAE-8511-28, Rogers and Associates Engineering Corporation, Salt Lake City UT, August 1986.
9. U. S. DEPARTMENT OF ENERGY, **Final Environmental Impact Statement, Waste Management Activities for Groundwater Protection, Savannah River Plant, Aiken, South Carolina**, DOE/EIS-0120, U.S. Department of Energy, December 1987.
10. LOONEY, B. B., GRANT, M. W., and KING, C. M., **Environmental Information Document: Estimation of Geochemical Parameters for Assessing Subsurface Transport at the Savannah River Plant**, DPST-85-904, March 1987.
11. INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION (ICRP), **Limits for Intakes of Radionuclides by Workers**, ICRP Publication 30, Part 1 (and subsequent parts and supplements), Vol 2, No. 3/4 through Vol 8, No. 4, Pergamon Press, New York, 1979-1983.
12. INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION (ICRP), **The Metabolism of Plutonium and Related Elements**, ICRP Publication 48, Pergamon Press, New York, 1986.
13. ROGERS, VERN and HUNG, CHENG, **PRESTO-EPA-CPG: A Low-Level Radioactive Waste Environmental Transport and Risk Assessment Code - Methodology and Users Manual**, EPA 520/1-87-026, U.S. Environmental Protection Agency, Office of Radiation Programs, December 1987.
14. LOONEY, B. B., KING, C. M., and STEPHENSON, D. E., **Environmental Information Document: Quality Assurance Program for Environmental Assessment of Savannah River Plant Waste Sites**, E. I. du Pont de Nemours & Co., Savannah River Laboratory, March 1987.
15. KENNEDY, W. E., JR., and PELOQUIN, R. A., **Intruder Scenarios for Site-Specific Low-Level Radioactive Waste Classification**, DOE/LLW-71T, prepared for the U.S. Department of Energy Idaho Operations Office by Pacific Northwest Laboratory, Richland, Washington, September 1988.

16. AABERG, R. L., and KENNEDY, W. E., JR., **Definition of Intrusion Scenarios and Example Concentration Ranges for the Disposal of Near-Surface Waste at the Hanford Site**, PNL-6312, Pacific Northwest Laboratory, Richland, Washington, October 1990.
17. U.S. ENVIRONMENTAL PROTECTION AGENCY, **EPA Advance Notice of Proposed Rulemaking Dealing With Radionuclides Under Safe Drinking Water Act**, 51 FR 34836, September 1986.
18. BAES, C. F., III, and SHARP, R. D., **A Proposal for Estimation of Soil Leaching and Leaching Constants for Use in Assessment Models**, Journal of Environmental Quality, Vol 12, No. 1, pp 17-28, 1983.
19. COOK, JAMES R., TOWLER, OSCAR A., and GRANT, MICHAEL W., **Environmental Information Document - New Low-Level Radioactive Waste Storage/Disposal Facilities at SRP**, DPST-85-862, E. I. du Pont de Nemours & Company, Savannah River Laboratory, Aiken, SC, April 1987.
20. **TITLE 10 CFR PART 61, Licesing Requirements for Land Disposal of Radioactive Waste**, U. S. Nuclear Regulatory Commission, December 27, 1982.
21. BEBBINGTON, WILLIAM P., **History of Du Pont at the Savannah River Plant**, E. I. du Pont de Nemours & Company, Wilmington DE, 1990.
22. COOK, J. R., McDONELL, W. R., and WILHITE, E. L., **Uranium Waste Disposal at the Savannah River Site**, in Proceedings of the Joint International Waste Management Conference, Seoul, Korea, October 1991.
23. **Final Environmental Impact Statement on 10 CFR Part 61 "Licensing Requirements for Land Disposal of Radioactive Waste"**, NUREG-0945, Vol 1, U.S. Nuclear Regulatory Commission, November 1982.

The information contained in this article was developed during the course of work under Contract No. DE-AC09-89SR18035 with the U.S. Department of Energy.

END

**DATE
FILMED**

5 / 18 / 92

