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Abstract

Computer simulation of electron micrographs is an invaluable aid in their proper interpre-
tatior and in defining optimum conditions for obtaining images experimentally. Since modern
instruments are capable of atomic resolution, simulation techniques employing high precision

are required. This thesis makes contributions to four specific areas of this field.

First, the validity of a new method for simulating high resolution electron microscope
images has been critically examined. This method, which has been termed the real space
method (RSP) since the entire calculation is performed without any Fourier transforms, offers a
considerable reduction in computing time over the conventional multislice approach when
identical sampling conditions are employed. However, for the same level of accuracy the real
space method requires more sampling points and more computing time than the convehtional
multislice method. These characteristics are illustrated with calculated results using both

methods to identify practical limitations.

Second, three different methods for computing scattering amplitudes in High Resolution
Transmission Electron Microscopy (HRTEM) have been investigated as to their ability to
include upper Laue layer (ULL) interaction. The conventional first order multislice method
using fast Fourier transform (FFT) and the second order multislice (SOMj method are shown to
yield calculated intensities of first order Laue reflections with the use of slice thicknesses

smaller than the crystal periodicity along the incident electron beam direction. It is argued that
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the calculated intensities of ULL reflections approach the correct values in the limiting case of
vanishing slice thickness and electron wavelength. The third method, the improved phasegrat-
ing method (IPG) does also in principle include ULL effects, but is severely limited as to choice
of slice thickness and sampling interval. A practical way to use slice thicknesses less than the
crystal periodicity along the incident beam direction is shown for both the conventional FFT
method and the second order multislice method and tested on a spinel structure. It is also
shown that the IPG method does not easily allow for a slice thickness different from the crystal
periodicity in the beam directior.

Third, a new method for computing scattering amplitudes in high resolution transmission
electron microscopy has been exsimined. The method which is called the Improved Phasegrat-
ing (IPG) method is shown to produce reasosiable results cnly for very small specimen
thicknesses and diverges for thicknesses larger than 20 A in [001] copper for accelerating vol-
tages between 200kV and IMV. The validity of the method is discussed and is shown to
depend on electron wavelength, slice thickness,the number of reflections that are included in
the calculation and the choice of specimen. It is also shown that the method does not readily

allow for slice thicknesses smaller than the specimen periodicity along the incident electron
beam direction,

Fourth, the effect of a surface layer of amorphous silicon dioxide on images of crystalline
silicon has been investigated for a range of crystal thicknesses varying from zero to 21 times
that of the surface Iayer. It is shown that an amorphous surface produces fluctuations in image
contrast which introduces difficulties in the interpretation of defects in very thin specimens.
These difficulties are less pronounced but still present in thicker crystals. It is also shown that
an edge smoothly approaching zero thickness produces an image that changes gradually from
crystalline to axﬂorphous character,
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Chapter 1

Introduction

The current generation of electron microscopes makes possible the attainment of near
atomic resolution in images of crystals [1]. However as the resolution of transmission electron
microscop} increases so does the need for reliable computer simulation of electron micrographs
[2]. The image contrast in high resolution electron micrographs varies rapidly with objective
lens defocus and specimen thickness. Only for very thin specimens, typically less than 30-40 A
and for selective settings of defocus does the image contrast bear a one to one correspondence
to the specimen structure [3-6]. To provide proper interpretation of the image it is usually
necessary to match experimental images to computed images for a range of defocus values.
Only then can one assume that the different parameters that enter the calculation, in particular

the specimen thickness, are correct.

At lower resolution (typically greater than 20 A), the observed image contrast is well
understood and specific rules apply to the interpretation of these images. Thus there are rules
that determine whether a stacking fault is intri.nsic or extrinsic [7] and rules that allow the deter-
mination of dislocation Burgers vectors [8]. The image contrast in this regime is usually
referred to as “amplitude contrast,” and the image is formed by ONE beam of electrons, that
being either the forward scattered beam or one scattered through a specific angle, normaily a
Bragg scattering angle in the specimen. Thus the variation of contrast in the image arises due

to local variation of scattering amplitudes across the area of the specimen under observation.

In high resolution microscopy the image contrast is referred to as “phase contrast,” that
is, two or more diffracted beams recombine in the image plane to give essentially an interfer-
ence pattern. The periodicities that are present in the image are determined by the total
number of reflections that combine to form the image and to what degree the magnetic lenses

in the microscope are able to preserve the phase reiationships among scattered elecu_'ons. The



highest resolution microscope presently available, the Atomic Resolution Microscope at
Lawrence Berkeley Laboratory can be tuned to introduce approximately a constant phase shift
to scattered electrons associated with a shift in wave vectors of magnitude less than 0.63 A~!,
corresponding to a point to point resolution of 1.6 A. It is possible to get information beyond
this limit [9), usually referred to as the Scherzer limit [10] or the structure image resolution limit,
by proper adjustment of the defocus of the objective lens to reach the linear image resolution
limit [11] or the information retrieval limit which is set by the objective lens chromatic aberra-

tion and voltage and current instabilities [12].

The simulation of an image can be considered to consist of three parts. The first is the
calculation of the effective potential seen by the electron as it moves through the specimen. In
principle the potential should include all scattering processes, both elastic and inelastic. How-
ever, in practice only elastic scattering is usually included. Complex lattice potentials account-
ing for certain inelastic scattering mechanisms, notably plasmon, phonon and core excitations,
have been calculated [13-14], but in the rare cases that inelastic scéﬁering is considered, the
complex part of the potential is varied to provide the best match. The elastic part of the poten-
tial is computed from electron scattering factors which are calculated using either relativistic
Hatree-Fock atomic wave functions [15] or relativistic Dirac-Slater wave functions [16], the
former being the most common. The electron scattering factors can also be computed from

experimental x-ray structure factors.

The second part of the calculation involves the actual propagation of the electron through
the specimen. This means finding the electron distribution as 2 function of specimen thickness.
The imaging clectrons are assumed to be incoherent, the final image is a sum of one-electron
images, and the calculation involves solving the one-electron Schridinger equation where the
relativistic nature of the electrons at accelerating voltages of several hundred thousand volts is
incorporated in the relativistic mass. Because of the difficulty in solving Schridinger’s equa-
tion, several approximate solutions exist, each with its own regime of validity and advantages

and disadvaniages.



The third part of the calculation treats the interaction between the electrons and the imag-
ing system of the microscope. The most important leris determining the resolutior: of the

microscope is the objective lens, and the parameters that are considered at this stage include:
-  Spkherical abberation in the objective lens..
~  Chromatic abberation in the objective lens.
-  Any objective lens aperture.
- Objective lens defocus.
—~  Temporal and spatial incoherence of the imaging electrons.
- Any current and voltage instability of the microscope.

The part of computation that treats the interaction between the specimen and the electron
beam are mostly based upon a dynamical multislice formulation proposed by Cowley and
Moodie using physical optics l17]. The connection to quantum mechanics, notably the
Schrodinger equation was provided by Van Dyck [18] and independently by Jap and Glaeser
[19]. These methods are referred to as multislice methods because the specimen is divided into
thin slices each normally having the same slice thickness Az. The electron wave function is cal-
culated at each slice from the wave function at the previous slice; beginning with the known

electron distribution at the top of the specimen.

This thesis consists of four independent research projects, each designed to further
knowledge in the field of computer simulation of high resolution electron micrographs.
Chapter 2, 3 and 4 discuss different multislice methods for computing scattering amplitudes in
High Resolution Transmission Electron Microscopy (HRTEM), while Chapter 5 shows how
computer simulation can be applied to answer important questions regarding the interpretation

of high resolution images.



In some sense the work presented in this thesis can be regarded as experiments carried out
on an experimental system that took several years to build. Before any of this work could be
undertaken, it was necessary to write a few thousands of line of computer code to implement
the latest in the theory of image simulation. With no resident expert on image simulation in
HRTEM and no previous existing scftware at LBL this was a long and often frustrating task.
However, it all paid off and there are now programs residing on discs under PSS library
MSLICE at LBL that will compute scattering factors, perform multislicing, simulate the effect
of the microscope lenses, plot images as gray level plots, plot projected slice potentials, compute
and plot diffraction patterns, plot amplitudes and phases of selected beams as a function of
thickness and plot contrast transfer functions. These programs and some that have not been

mentioned were all necessary in order to carry out the work that is presented in the following

chapters.
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Chapter 2

Real Space Image Simulation in High Resolution Electron Microscopy

Abstract

The validity of a new method for simulating high resolution electron microscope images
has been critically examined. This method, which has been termed the real space method
(RSP) since the entire calculation is performed without any Fourier transforms, offers a consid-
erable reduction in computing time over the conventional multislice approach when identical
sampling conditions are employed. However, for the same level of accuracy the real space
method requires more sampling points and more computing time than the conventional mul-
tislice method. These characteristics are illustrated with calculated results using both methods
to identify practical limitations.

1. Introduction

The curvent generation of eleziron microscopes makes possible the attainment of near-
atomic resolution [l'] in xmages of crystals; nevertheless there is still an urgent need for reliable
computer simulation of these images in order that they might be correctly interpreted [2|. From
2 pragmatic point of view the full potential of computer sirnulation is realized only in an on-
site, real-time system which affords immediate comparison between computed and experimen-

" tal results. This in turn requires the development of more rapid and more accurate algorithms.

Most image calculation programs are based upon a dynamical multislice formulation ori-
ginally proposed by Cowley and Moodie [3] using physical optics. Quantum mechanical argu-
ments were later provided by Van Dyck [4] and independently by Jap and Glaeser (5| The ori-
ginal calculation time of these early programs is proportional to N2, N being the number of
dynamical reflections included in the calculation. However, using fast Fourier transforms

(FFT), Ishizuka and Uyeda [6] demonstrated that the time becomes proportional to N LogN.



More recently, a method derived by Van Dyck [7] promises to further reduce the calculation
time such that it is directly proportional to N alone. This method, which treats the interaction
between the electron beam and the specimen, will be referred to as the real space method since

the entire calculation is done in real space without the use of Fourier transforms.

This paper examines the domain of validity of the real space method and presents a com-
parison between the real space method and the conventional multislice method. Specific
emphasis is placed on the number of dynamical reflections that must be included, maximum
slice thickness and calculation time.

2. Theory

2.1 General theory

The geometry of the problem is outlined in Fig. 2-1. An electron with wave-vector kg is
incident upon a thin region described by a potential U(r) and for simplicity the electron is ~
assumed to be traveling in the z-direction. In the actual computation the specimen is
represented by a sandwich of successive slices, each slice having a thickness .

The electron wave function ¥(r) is a solution to Schrodinger’s equation

2 h?
[- sl‘zm V2 — eUr) | ¥(r) = Z:f
2

¥(r) . (2.1.1)

B A
For high energy electrons eU(r) << —2;53, therefore the potential U can be considered a pertur-

bation and the total wave function can be written as a modulated wave function of the form
W(r) = ¢(r) e"ikeT = grjetrie | 2.1.2)
By inserting the above expression into (2.1.1), one has

(V2 + driky 2 + %‘- U@ &) = 0 . @.13)

By involving the definition



V(r) = U(r) . (214

equaﬁon (2.1.3) becomes

[V2 + driko L + Vi) o)) = 0 . (2.1.5)
At this point it is customary to ignore the second derivative with respect to z in (2.1.5) by mak-

ing the assumntion that ¢(r) is a slowly varyirg function with respect to z, such that

& 3
|azzl<<k° = (2.1.6)

This amounts to ignoring backscattered electrons and a slight change in the electron wavevector

as the electron traverses the potential. A more complete discussion has been given by Van

Dyck (8],
Ignoring the second order derivative transforms (2.1.5) into a first order differential equa-

tion in z,
2 Pl Uy — [V + V@) | ) . (2.1.7)

Formally the solution to (2.1.7) can be written

L+ [ Virdz|

#xy,) = e*™ { #(x,y.0) .

Note that e*¥ is defined through the power series
Ay = 3 (—) v .

(2.1.8)

DeﬁningA-k—koVL andVa: {V(r)dz

it follows that

B(x,y,€) = e+l g(x,y,0) . (2.1.9)



2.2 Analytical Solutions to (2.1.9)

Unfortunately there are no closed analytical solutions to (2.1.9), requiring the use of vari-

ous approximate solutions.

i) General Multislice
In the formation of the general multislice method one writes
#(xy,6) = BV g(x,y,0) = ele™ ¢(x,y,0) . (2.2.1)
Since A and V,, do not commute, (2.2.1) is comrect to first order in ¢, A and V,, with a resulting
error of the order of (A, V| where [ ] denotes commutation. The advantage to using equation

(2.1.1) is that it becomes possible to write down analytical solutions to the expressions

fix.y.e) = eV i (x,y,0) (222)
fx,y.e) = e f (x,y,0) (2.2.3)
of the form
() = exp (70 [V (v 22 (3.0) @24)
ko z, . ’ lfko - 2
fxy.0 = < [[ dxayfAx’y’,0) exp {(—— [x—x) + (y=y)7} . 2.2.5)

Defining the functions h and g through the expressions

fi(e) = b-fy (0)

fie) = gof2 (0)
equation (2.2.1) can be written in alternative form:

&(e) = goh-¢(0)] . (2.2.6)
Since the specimen possesses a periodic potential of period ¢ in the z-direction over its total
thickness N, it is necessary to use N successive applications of (2.2;6). The quickest way tc

numerically solve the equation

#(Ne) = g * [h{ge{b(ge] ...... 4(0)] - - - | (2.2.7)
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is to use Fourier transforms as shown by Ishizuka and Uyeda [6] who utilized the alzorithm

shown in Fig. 2-1. In the remaining part of this paper the general multislice method will be
referred to as the FFT method.

ii) Real Space Method

A different approach to finding an approximate solution to (2.1.9) is to expand the
exponential in powers of A and V,, (Van Dyck [7]), and construct a solution that can be written
as a product of functions f; (A) g (V) that when expanded in powers of A and V;, corresponds
to the expansion of (2.1.9) to any desired order of A and V,. A unique solution correct to

second order in A and V, was found to be

@(e) = exp {3e (1+3)V; } exp {eA} exp{3¢ (1=5)V, } #(0) (2.2.8)
where
5o T2 - _ [FYey e (2.2.9),2.2.10)

/2’ T,
The parameter &(x,y) is a measure of potential eccentricity and is zero for Z = ¢/2. The major
difference between the real space (RSP) method and the FFT method is that the RSP method \
uses zn expansion of the propagator, exp {eA}, keeping only terms up to second order in e. The
argument is that (2.2.8) itself is correct only to second order in ¢, and no accuracy should be

lost by using an expansion of the propagator. The expression for the propagator thus becomes

2.4 e @ P
exp{edl m 1+ e + 1A% =1 + 4l'[ax2 + ayll
N PR
2.2 [ax2 + P ]2‘. (2.2.11)
Nﬁmerieally one solves the equation
fix,y.) = exp {eA} Rx,y,0) = (1 + A + 1 €A% fix,y,0) 2.2.12)

by dividing up the x and y axes in intervals of  and 5 respectively. Thus
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fix,y,e) = fix,y,0) + % {5—12 [x+6,y,0) + flx—4,y,0) — 2f(x,y,0)]
+# [fix,y+n,0) + flx,y—,0) — 2{x,y.0)}}
2
- ;252 {'517 [f(x+26,y,0) + flx—24,y,0)
— 4f{x+35,y,0) — 4flx—35,y,0) — 6f(x,y,0)]} +
+ 25 [fxy+200) + fuy=200) — 4fny+10)
— 4ftx,y—,0) — 6f(x,y,0)]
+ 25 [ctay+n0) + Rx+oy=n0) + f=ay+10)
+ fix—3,y—n,0)

— 2f{x+4,y,0) — 2{x—34,y,0) — 2f(x,y+2,0) — 2f{x,y—,0)

~ 4f(x,y,0)] . - O @213)
The computation time for the RSP method becomes proportional to N, the number of sam-
pling points, while it is proportional to NLogN for the FFT method. Another advantage to a

real space approach is that it can eliminate the need to use periodic extension when simulating

images from faulted crystals.

In the case of a potential having a mirror plane at z = ¢/2, one obtains

1y,
6 (No = 3" (1+-ea+Lae™ (1 +a+1dade™ ..

Ly,
. (1+ea+1eade?™ g(0) 2.2.14)
Thus the general multislice calculation becomes accurate to second order for this particular case

by simply beginning and ending with haif a phasegrating.
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2.3 The valicity of the Real Space Method

Compared to the FFT method, the usefulness of the RSP method depends on the effect of
throwing away terms of order (&, A%) in (2.2.11). The error depends on the slice thickness ¢ as
well as the magnitude of the derivatives. Dy studying the effect of the operatur exp {eA} on the

function ¢(x,y,0), one notices that in reciprocal space the effect is that of a pure phase-operator.

¥(g0) = [[ dxdye(p.0)e 2" 3.1
Hgo) = [ [ dxdyle¢(p,0)e 2" = ¥(g,0)e " 23.2)

The expansion of the propagator to second order in ¢ and A is equivalent to writing

Hge) ~ (1 — inheg? + Lo\2s%) $(g,0) (23.3)
such that the intensity of th= corresponding reflection after the electron has traveled the dis-
tance ¢, is

g = |#g9|* = [1 + {(xAeg)| (g0} . (2.3.4)

To make sure that high order reflections (large g-vector) are not significantly amplified through

the action of the propagator, it is necessary to use a slice thickness ¢ and an effective g, such
that

X 2 2 N2 _ .
V3 Eaax << | or A << - 0.45 . (2.3.9)

For a periodic potential, period a, of cubic symmetyry, the only 2-vectors allowed are of the type
gx = l;. yBy ™= %; h,k integers. For a numerical calculation with N sampling points in the x-

and y-direction, § = a/N and n = a/N. The equivalent expression to (2.3.4) is obtained by

inserting (2.2.13) into the expression
Huv,e) = T dx,y,e)e” rinny
xy

and letting 71 = h/a and v = k/a.

This gives



13

I(h,k,e) = I(h,k,0){1 + ( )4 [cos 4xh/N + cos 4xrk/N —

8 cos 2xh/N — 8 cos 2xk/N + 2 cos 2x(h+k)/N +

2 cos 2x(h~Kk)/N + 10} . (2.3.6)
For the special case of h = k,
XEN 4
I(h,h,e) = I(h,h,0) - {1 + ( 7) [cos 4xh/N — 16 cos 2xh/N
+ 120 . 23.7)
By dividing the a-axis up to N intervals, one is limited to g, = Browe % This gives
(B honas) = (Bgrhinss,0) - {1 + (4‘/5"‘ 82a)'} (2.38)
and correspondingly one must impose
kegm << n \/— = (.56 . . (2.3.9)

Equations (2.3.5) and (2.3.9) set an upper limit on the slice thickness and the number of reflec-
tions that can be included in the calculation. The slice thickness ¢ and the number cf sampling

points in each direction x and y must be chosen so as to satisfy
Kon = Agdas << . (2.3.10)
3. Results of Computer Calculations

In order to compare the real space method with the conventional multislice method using
fast Fourier transforms, programs were written that could be run in either FFT or RSP mode.
To make it possible to use different values for the slice thickness, a three dimensional potential
was calculated through a 3 dimensional Fourier transfofm. The specimen is copper (lattice
const. 3.6 A) and the c-axis (z-dir.) was divided into 16 intervals such that a slice thickness of
either 3.6 A, 1.8 A, 0.9 A, or 0.45 A could be used. To be able to compare the results of the

two methods under various conditions, amplitudes and phases of selected reflections were plot-
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ted as a function of thickness.

Figure 2-3 shows what happens when K = Aeg2,. increases beyond the critical value of
1/2. The reflections are 000, 200, 220,and 440 and the solid line is the result of the FFT
method while the broken line represents the PSP methed. Only amplitude vs. thickness is plot-
ted and the slice thickness is kept constant at 3.6 A. The maximum rceiprocal lattice vector
Zmax takes on the values of 1.4 A~!, 1.9 A~), and 2.5 A™! to give a value for K of 0.18, 0.33,

and 0.57 respectively.

As K increases the discrepancy between the two methods decreases, and significantly,
when K increases beyond its critical value the RSP method starts to diverge. For this particular
value of K the divergence sets in at about 100 A and the intensity of the reflection 400 is seen
to start growing almost exponentially. At about 100 A there is enough intensity in the 440
reflection for it to be affected by the action of the propagator. The low order refiections are not
affected directly by the propagator, although they are iriﬂuenced by the interaction with higher

order reflections through the cryswai potential.

Figure 2-4 shows the amplitudes and phases of various refiections for 3 different values of
¢ and g,y keeping K constant at 0.25. Notice that while in Figure 2-1 the accelerating voltage
is 200 kV, it is now set at 1 MV. The FFT calculation is almost unaffected by changes in ¢ and
Bmax (the results for ¢ = 3.6 A and gpy = 2.8 A are shown here) indicating that for
8max > 2.8 A™!, no appreciable aliasing effects are introduced. However, the results of the RSP
calculation vary significantly as g,y increases (e decreases), but the results of the RSP method
approach that of the FFT method as the number of reflections included in the calculation
increases.

Figure 2-5 shows the result of the RSP calculation for three different vaiues of the slice
thicknéss, at constant gq,, equal to 2.8 A™!. Although the results vary somewhat depending on
the slice thickness, reducing the slice thickness does not have a major effect; i.e., it does not

cause the result of the RSP method to approach that of the FFT calculation.
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Finally, Table 1 shows some computation times for the FFT and RSP methods. The
times that are given are the computational times per slice for a slice thickness of 3.6 A at three
different numbers of sampling points. Using ¢ = 3.6 A obviously results in the fastest calcula-
tion since it is only necessary to calculate one Vy(x,y). The programs were all run on a CDC

7600 computer.

4. Discussion

The primary motive behind the formulation of the real space method as an alternative
way to do computer simulation of electron microscope images is that the RSP method appears

to offer the following advantages:
1)  There is no error due to aliasing which might occur when using Fourier transforms.

2) There is a possibility of eliminating the need to use periodic extension in faulted cry-
stals.

3) The method might allow using a larger slice thickness, being correct to second order
n e
4) A reduction in computer time is possible for the RSP method, the time per slice

being proportional to N, the number of sampling points, rather than NLogN as for
the FFT method.

As to the first claim, it is true that there is no aliasing associated with the RSP method. How-
ever, when all the physically relevant reflections are taken into account in an FFT calculation,
aliasing should not be a problem. Rather one can argue that if aliasing ever does affect the
result, not enough refiections have been included to give a meaningful result anyway. Although
there has been no attention given here to determining when aliasing begins to affect the FFT
calculation, the above results indicate that for an accelerating voltage of 1 MV, no such effect

occurs as long as guay > 2.8 AL
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In most cases it will be possible to avoid using a period unit cell in an RSP calculation
and thus avoid the need to use a periodic continuation when simulating images of defective
crystals.. The choice to use periodic continuation or not depends on how one decides to calcu-

late the derivatives at the boundary of the x-y plane.

With respect to the third possible advantage, it is instructive to examine the asymptotic
behavior of the RSP method as the slice thickness is decreased and the number of sampling
points is increased. The first condition imposed on the RSP method is that
K = Aegl, << 1/2. Similarly, a limit on K is also imposed in the conventional multislice
methed. For example, Ishizuka and Uyeda [6] using a stationary phase method in deriving the
multislice formula arrive at the condition K << 1. Lynch and O’Keefe [9] argue that to avoid
upper layer line reinforcement, the parameter for the pseudo-layer interaction a(g) = %Aegz
should be less than 0.5. This again corresponds to K < 1, however for safety, a value of
Kmnax = 0.2 was used. Thus the major difference between the RSP method and the FFT
method in this respect is that while an RSP calculation for Kps, > 1/2 beings to diverge, the
corresponding FFT calculation does not. In either case, care should be taken with respect to

the size of the slice thickness and the number of reflections needed to satisfy the condition

K<1/2

However, in spite of similar conditions imposed on the two methods, it is seen from the
results of the computer calculations that there are important differences between the RSP and
FFT methods. Only as the slice thickness decreases and the number of reflections increases,
does the result of the RSP calculation approach that of the FFT calculation. Furthermore while
the FFT method is barely affected by changes in « and .g.,,.,l (as long as ¢ =< 3.6 A and
Bamax & 2.8 A~ for V, = 1 MV), the RSP calculation is strongly affected. Reducing the slice
thickness gives only minor changes in the result of the RSP calculation, which means that the
number of reflections included in the calculation has the strongest influence on the result.

Although the need to incorporate reflections beyond 2.8 A~! is not indicated for the FFT
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approach, this may be necessary in the RSP approach to ensure that none of the relevant reflec-
tions become artificially amplified through the acticn of the expanded propagator. Thus
instead of being able to use a larger slice thickness in the RSP method compared to the FFT
method, it seems more likely that a smaller slice thickness is essential in order to accommodate

the inclusion of a larger number of reflections.

Finally, under identical conditions the RSP method offers a significant reduction in com-
puter time. For the range of commonly used N (number of sampling points), the reduction in
computer time per slice amounts to a factor of 3-5. This represents a significant savings in
computer time and could prove to be a great value when using smaller and slower computers.
It must however be acted that the saving is in calculation time per slice for the same N and is

only effective if the same slice thickness and the same number of reflections can be used in the

two methods.

§. Conclusion

The RSP method gives results similar to the conventional multislice calculation when care
is taken to include enough reflections. To keep within the domain of validity of the RSP
method, it might be necessary to reduce the slice thickness as the number of reflections
increases, as needed to maintain Aeg2,, < 1/2. If this condition is not satisfied, the RSP
method will begin to diverge due to a near-exponential grotwth of higher order reflections. The
divergence is due to the amplification effect of the expanded propagator and does not set in
until a nominally low intensity has been scattered into those reflections having g-vectors with
magnitude close 10 gmax- Although a similar boundary condition is imposed on the validity of
the FFT method, going beyond the domain of validity does not cause any divergence. In order
to obtain reliable results from the RSP method it might be necessary to include more reflections
than required with the FFT method which consequently also requires smaller slice thicknesses
and therefore increased computational time. Investigations into further improvements of, and

extended applications of the real space method are currently under way.
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NNy | N = Nx'Ny | trsp [SCC] tFFT [SCC]
20 400 0.017 0.063
28 784 0.034 0.12
40 1600 0.066 0.23

Table 1. Computational times per slice, slice

thickness 3.6 A, for the FFT method and the RSP
method at three different values of the number of

sampling points N.
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Fig. 2-1.

Fig. 2-2.

Fig. 2-3.

. Fig. 24.

Fig. 2-5.
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FIGURE CAPTIONS

Schematic representation of the scattering problem. The specimen is depicted as a
potential distribution of U(r) which may be divided into a series of slices having

thickness ¢.

Schematic representation of the fast Fourier transform (FFT) algorithm used by Ish-
izuka and Uyeda [6].

Amplitude vs. thickness for the reflections 000, 200, 220, and 440 for copper [001].
Accelerating voltage is 200 kV and the slice thickness is 3.6 A. The result from the
FFT calculation is shown by the solid line, and the broken line represents the RSP
calculation. In the first column gne = 1.4 A~! (K = 0.18), in the second column

Samax = 1.9 A~! (K = 0.33) and in the third column gmex = 2.5 A~! (K = 0.57).

Amplitude and phase (in units of =) vs. thickness for 3 sets of values of the slice
thickness € and gma.. The valuesare (1) e = 3.6 A, gnax = 2.8 A "1, (2) e = 1.8 A,
Boax = 3.9A "5 (3)e=09 A, gnax = 5.5 A ~! labeled separately for the RSP
method. These values gave essentially the same results for the FFT method, plotted

as the single FFT curve.

Amplitude and phase (in units of =) vs. thickness for 3 different values of the slice
thickness ¢; gmax is kept constant at 2.8 A™!, ¢ takes the values 3.6 A (-), 1.8 A (—)

and 0.9 A (++). Calculation is by the RSP method.
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Chapter 3
On the Inclusion of Upper Laue Layers in Computational Methods

In High Resolution Transmission Electron Microscopy

Abstract

Three different methods for computing scattering amplitudes in High Resolution
Transmission Electron Microscopy (HRTEM) have been investigated as to their ability to
include upper Laue layer (ULL) interaction. The conventional first order multislice method
using fast Fourier transform (FFT) and the second order multislice method (SOM method) are
shown to yield calculated intensities of first order Laue reflections with the use of slice
thicknesses ;maller than the crystal periodicity along the incident electron beam direction. It is
argued that the calculated intensities of ULL reflections approach.the correct values in the lim-
iting case of vanishing slice thickness and electron wavelength. The third method, the
improved phasegrating method (IPG) does also in principle include ULL effects, but is severely

limited as to choice of slice thickness and sampling interval.

A practical way to use slice thicknesses less than the crystal periodicity along the incident
beam direction is shown for both the conventional FFT method and the second order mul-
tislice method and tested on a spinel structure. It is also shown that the IPG method does not

easily allow for a slice thickness different from the crystal periodicity in the beam direction.

1. Introduction

Because of the small curvature of the Ewald sphere most electrons scatter into directions
given by the reciprocal lattice points lying in the zero order Laue zone [ZOLZ], see Fig. 3-1.
Diffraction into upper Laue layers is a small effect, but is easily observed in Convergent Beam

Electron Diffraction and High Resolution Transmission Electron Microscopy. The ULL reflec-
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tions do not contribute directly to the image in HRTEM since the abjective aperture, whether a
real aperture or a virtual aperture defined by the Envelope Function'[1], exclude the contribu-
tion to the image from the ULL beams. However, because of dynamical scattering the ULL
reflections will modify the intensity of the zero order Laue reflections and consequently affect
the image. Where ULL interactions are no longer negligible they must be included in the com-

putation of electron micrographs to give correct results.

For practical reasons most image simulations in HRTEM employ a method based on
multislicing. The specimen is sectioned into slices perpendicular to the electron beam and the
electron wave function is calculated at every slice in a recursive way starting from the known
electron distribution at the beginning of the first slice. Again for practical reasons, the crystal
periodicity parallel to the electron beam is invariably chosen as the slice thickness provided it

does not violate the criteria of validity for these multislice methods, see Chapter 2.
Various methods to include the effect of the ULL have been suggested. These are:

1.  The use of slices smaller than the crystal periodicity parallel to the direction of the

incoming electron beam (2},(3].
2. Second order multislice, using potential eccentricity within the slice [4].
3. Improved phase grating method |5].

Se far the success of these methods in including ULL fnteractions has not been proven. It
is generally believed that as the variation of the crystal potential along the incident electron
beam direction is taken into account, the ULL reflections are automatically included. The

degree to which this is correct is the topic of this paper.

The 200 reflections in MgALO, [001] are not allowed by the structure (spinel). However
Steeds (6] has shown that they appear in experimental diffraction patterns and accredit their
presence to scattering from the first order Laue layer (FOLZ). This being the case, the ability to

account for their presence would serve as a test as to the inclusion of ULL effects in present

multislice calculations.
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Additionally, with the use of small slice thicknesses it is of utmost importance that one
correctly takes into account the potential for each slice in each of the three multislice calcula-
tions. Different authors approach this pro!.:2m in different ways, not all equivalent and unfor-

tunately not all correct, and this paper will address this question.

2. Theory

The three multislice formulations that will be discussed are all approximations to the

solution of the modified Schrodinger equation below [4]

%%‘zl = igVe + % A 2.1
where
2xmel
- ._._":2‘ (2.2)
and
3% 3?
V2 = - + ?)'7 (2.3)

V is the crystal potential in volts.

2.1 Conventional Multislice with Small Slice Thicknesses

The conventional multislice formulation involves a recursive application of the following

equation:

#X.Y,Zm + Az) = P(x,y,AZ) * [Q(X,Y,Zm,AZ) * HX,Y,Zm)] (2.1.1)
where P(x,y,2) is the free space propagator, and Q(x,y,z,Az) is called the phasegrating. The

expressions for P and Q are:

I=+AZ
Q(x,Y,Zm A2z) = expYic f V(x,y,z)dz (2.1.2)
i

P(x,y,Az) = — —A;—z exp{,‘—zz— (x? + yz)} (2.1.3)
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All information about the scattering potential is contained in Q and only reflections
allowed by the Fourier transform of Q are possible. Similarly all the information about the cur-
vature of the Ewald sphere is contained in the propagator which keep track of the excitation

errors of each reflection (in the zero order Laue zone), see Appendix A.

If the crystal periodicity (c) parallel to the electron beam is used as a slice thickness i.e.
Az = ¢, then only reciprocal lattice points in the ZOLZ together with the corresponding struc-

ture factors determine the allowed reflections, as shown below.

It is customary to define a “projected” potential as follows :

Vu(X,Y,Zm,AZ)

Za+Az
1 ,
= 1_[ Vix,y,2)dz (2.1.4)

w2 b 202,

Za+AZ
aAzjzva:u)e b ¢ dz

Za bhke

where V has been expressed as a Fourier series. The V(h,k,£)’s are calculated by performing a

sum over all atoms within the unit cell

Vibke) = ZAbkOe R Oy @.1.5)
'y v 'y 'y ¥

where (x;,y,,z) is the position of atom no. i with an electron scattering factor & V_is the

volume of the unit cell. Performing the integral gives ,as also pointed out by Self et al. (7} :

hx !!.
wi(— )
Vo(kyZad2) = 2 z Vihkoe ﬂ'{{% g2eiczm/c @2.1.6)

where 25, = 2 + Az/2

Setting Az = ¢/n gives the following expression for the projected potential

by
VitzaAz=c/n) = 3 VihkOke e ’5‘—3%5 2icranlc 2.1.8)

Withn = |, (2.1.8) reduces to

iR 4 MY,
Vo(ZmAz=c) = ¥ V(hko}e * ° 2.1.9)
hk




As-can be seen from the expression above, only the components of the potential with a
reciprocal vector lying in the ZOLZ contribute to the scattering. Thus no ULL effects can enter
in the calculation. If, however n is not 1, the expression for the projected potential is a sum
over all reciprocal vectors with a weighting factor proportional to the Fourier coefficient of the
crystal potential. In principle this should allow for dynamical scattering between all (hk¢)
reflections and thus automatically account for ULL effects. Whether this is accurate or not will

be addressed later in paragraph 5.
Previously the projected potential has been calculated in several ways:

i)  Calculate the projected potential for a slice of thickness c. If a slice thickness of ¢c/n

is to be used, then simply divide the previously calculated potential by n and use

this as the projected potential for each slice.

ii) Divide the unit cell into n volume elements which may include atom section.:is
The projected potential for each slice is calculated from the projection of the atoms
contained within the slice according to (2.1.5). The sum is carried out over the

atoms contained within the slice.

iii) Calculate a three dimensional crystal potential by summing over V(hk¢) and using a
3 d. Fourier transform to find V(x,y,z). With modern computers the integral over V

from z to z + Az can easily be performed.

The first approach is obviously incorrect. The second method would be correct if it where
not for the fact that the crystal potential is periodic in ¢ and not in ¢/n. The third method is
correct, but is impractical in cases where large unit cells are considered because of the huge

amount of computer memory (1283 = 8Mbytes) that is needed to store a three dimensional

potential.

A practical method to calculate the projected potential for each slice is based on (2.1.6)
and thus doesn’t require additional memory. Starting from (2.1.6) one calculates the projected

potential by first summing over £. One can write
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2ei( 22+ XL
Vo(X,Y,Zm0) = T Vi o(hk)e 2 ° (2.1.10)
hk
where
’ i e 1
Vaaalhh) = 3 V(b ke S50 o @.1.11)

This amounts to modifying all V(h,k,0) by adding in a contribution from the ULL, as shown in
Fig. 3-1. Thus reflections that were forbidden by V(h,k,0) may now be allowed by V‘(h,k,0).
The intensity of forbidden reflections will be zero for thicknesses corresponding to a muitiple of

unit cell distances c, only if there is a complete cancellation from the contents of the unit cell.

This yields an effective algorithm for dividing the specimen up into slices smaller than c.
First, the coefficients V(h,k.#) should be formed by summing over all atoms within a bona fide
unit cell with a periodicity ¢ along the incident beam direction. Secondly, if there are n “sub-
slices™, it is necessary to calculate n separate phasegratings or projected potentials according to
(2.1.8), where for a given n, only Z__ will change from sub-slice to sub-slice. The most efficient |

way to generate the n phasegratings depends on available computer memory.

2.2 Second Order Multislice

This method goes one step further and aspires to include ULL effects within the slice.
Developed by Van Dyck (5] it introduces the concept of potential eccentricity within each slice.
The equivalent to (2.1.1) is the recursive operation (see Chapter 2, equation 2.2.8):

1. iAAz
EMAz(l -f-J)V.e a

v %iaAz(l ~8)V,
e

¢(X,Y’2m+AZ) = ﬂx,y,zm) : (2.2.1)

where the potential eccentricity § ic given as

5 = by(xy) = 31(‘%/_2—“/3 2.22)
The average quantity z is defined as
Za+Az
Zu(X,y) = J' (z = zm) V(x,y,2)dz 2.2.3)

In
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In the evaluation of the real space method (Chapter 2), the above recursive operation was
used to calculate both projected potentials arid potential eccentricities from the 3-dim. crystal
potential as outlined in 2.1 iii). However, the expressions 1 /2(1+5)Vp and 1/2(1 —6)Vp can be
calculated in a way similar to the procedure described in 2.1 for calculating the projected poten-
tial as shown below:

It is useful to first calculate the quantity

1 1 tatAz
~ViZa = — —zm) V(x,y;
Pm = 57 £ Zw) V(x,y,2)dz
1 ataz 11_:_ by Iz)
== &;’ @—2m) VKO  * Sz (2.2.4)
Ta
ﬂ. _kl 27l Zas/C :
=1 ® ]e rieaze _ Sinmé€Az/c
AEE EV(h,k,t’ 2xi¢/c [Az e xl/c ]
Setting Az = ¢/n gives
ViZm 2% + 50 2itza/c | aritzes/c _ SIDXE/D
A - hz,k e EV(h,k,f)—-e i € - -T/n— (2.2.5)
= zvi(h,k)ez'i(%+%)
hk
One can now write:
i B8 4 K1
L1485V, = % -2 Vihke s P @2.2.6)
(2% 4 XY
=8V, =V, - % = 3 [V(h,k) — Vi(hk)] e s o) (2.2.7)
hk

2.3 Improved Phasegrating Method

This method, again suggested by Van Dyck (5], is based upon a modulated phasegrating.
The effect of the potential is considered larger than the effect of the propagator which is treated

as a perturbation. In this case the wavefunction is written

#(x,y,z) = exp {ia [Vixy,2)dz } 8(x,y,z) (2.3.1)
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Substituting the above expression into the equation for ¢ (2.1) gives
. z
#(x,y,2) = 6(x,y,0) + -}"4; Jaz {vfa(z') + i0AZ V2V (2)H(Z) (23.2)
o

+ 2i0AzY, Vi(Z) - V. 8(Z) + (iAz)? 0(2’)[V_|_Vp(z’)]1}

which yields a first order perturbation result for theta
iAAz y
8(z) =~ 8(0) + == Vi’8(0) + ivAzé(o) [dz’ (2.3.3)
[+

z
| V2V, + ioAz=(V, V)| + ZioAzV,60) - [dz éviv,}
[+

A practical application of (2.3.3) can be formulated as follows: One considers a multislice
approach where the specimen is divided into N slices perpendicular to the incident electron

beam. The wavefunction after the first slice of thickness Az is written

#(x,y,Az) = exp{icAzV (Az)}6(Az) : 2.3.9)
For N slices of thickness Az (2.3.4) becomes n
Naz
#(x,y,NAz) = exp {ia f V(x,y,z) }G(NAZ) (2.3.5)

where 8 (NAz) is a recursive application of (2.3.3).

The major problem using (2.3.3) above comes from solving for the integrals over Vp(z).

However, proceeding as before, one gets

zat+A2 wi(2X 4+ 5L 2 2
L f ViV dz = —(Zr)zze s b [%2- + -:7] (2.3.6)
n Iritzae/c I XE/M
X ZVkOnie [° Txtin ’]
Za+A2 i by,
i J' —;—g— = Zﬂz ( b ( )EV(h k.l)—— [ez""’h-/cﬁ:;/tl’lln - 1] 2.3.7)
Is
1 = v, o Ry n | sriezeesinxé/n _
= J; Ty- = Zmae (;)?V(h,k,t’)-z—& € “wein ! 238
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. 2z GV, Voo . .
The expression for | [(F + (W—)z]dz is given as
Im

1 Vo, @V
= {i‘ax’z““‘ay’z]d’

. h+h’ k+k
2xi{ . x+ 5 Y)

- by | kK
(2")2 E( ") + b )e
b

, n n xi(¢+)Za/c SINX(E+E)/n
X ;V(h,k,l)V(h ’k”l’)_Z:‘i? 2xif’ [ez x(€+¢€)/n

(2.3.9)

— eriflac singf/n e2FitZumlc sin x€’/n +1
=f/n =¢'/n

Equation 2.3.9 is complicated by the crossterms contained within the []. In the limiting case

Azfc goes to zero (2.3.9) simplifies to

—1—1.+Az f_v_p_ aV,, ’ _ 2 !l_ zﬁ(%+%) 2
Az £[( ax)z+(—a_y—)]dz’ 3 ZaV(h,k,O)e
i IX 4 Y
+ [E§V(h,k,0)e’ T ’] ] (2.3.10)
The other simplifying case is Az = ¢. In this case one obtains as follows
lh+c Zﬁ(%'kﬂ) hz k.‘z
< £ ViVdz = — (21)25e b [;z- + i~ (2.3.11)
Zm n
x [%+—:)V(h,k,0) - lgov(h,k,f) Imit ]
Lz-+ca o ) Zri(%+—?—) h Zm - n
= ZﬂE e (—a-) (%+—C-)V(h,k,0) - ,?.,v(h’k'l)ﬁ (2.3.12)
LY i D K Zm n
. i 3y Zﬂzee (F) . %+T)V(h,k,0) - ,?ov(h’k’l)?;i? (2.3.13)
177 oV, Zn ., Zm . h e
< £ (E-)zdz' - %+T(I+T)][nzk Zﬂ(-;)V(h,k,O)e b (2.3.19)

tib-‘- b ﬁE y
+ 2[? 2a-i(%)vax,k.0)ez D )][E 211(%)3 s (-%)va,k,e)]
k

ér0 2%
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BB
+ (l+—) EZn(—)V(h k,O)e
. h z.i(-'l"-+!¥-) i
X| 22T * 2.‘ 2z T ukt)

| h, 22+ 2
3 2i( e 2 50 k)

aV
The expression for the integral | (Ty‘l)zdz follows from (2.3.14).

3. Procedure

Computer programs to implement the various methods were written according to the
theory outlined in paragraph 2. and applied to the test case of a crystal of MgALO,. In the case
of the improved phasegrating method only Az = ¢ was considered since this was the only case
that allowed the expression given by (2.3.9) to be calculated in a reasonable time. As with the
conventional multislice method and the second order multislice method, slice thicknesses of

8.08 A, 4.04 A, 2,02 A and 1.01 A were used, corresponding to n = 1,2,4 and 8 respectively.

4. Results

The results of the computations are given in Figs. 3-2 through 3-5. Figure 3-2 shows
amplitudes for the central beam and the reflections 110, 200, 220 and 400 for a slice thickness
of 8.08 A, 2.02 A and 1.01 A calculated by the conventional multislice (FFT) method, while
Fig. 3-3 shows the corresponding results calculated by the second order multislice method. The
accelerating voltage is 200 kV and all reflections out to 4.0 A~! were included in the calcula-
tiois. The improved phasegrating method failed to produce reasonable results for this structure
in the casc of Az = cand g, = 4.0 A~! (see Discussion).

| The 110 reflection is forbidden in the classical sense by the FCC structure and has zero
amplitude for any thickness when Az = c. The 200 is forbidden by reflections within the ZOLZ,

but is claimed to be allowed through scattering from the first order Laue layer [6]. The calcula-

tions however do not show any significant amount of scattering; into the 200 reflection
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(compared to the 110 reflection). Within the unit cell both the amplitudes of the 110 and the
200 reflection deviates from zero, (n = 4,8) and only at thicknesses corresponding to multiples
of ¢, do they become negligibly small. The reflections are “forbidden” because scattering from
one part of the unit cell interferes destructively with scattering from another part of the unit
cell. Only if the cancellation is complete, which would require that the electron wavefunction

for all scattering purposes remains the same throughout the cell, does the amplitude go to zero.

Figures 3-4 and 3-5 show four diffraction patterns calculated from a 300 A thick crystal of
MgALO,. In a) the slice thickness is ¢, while in b), ) and d) the slice thickness is c/2, ¢/4 and
c/8 respectively. The resuit in Fig. 3-4 are for the FFT method while the results in Fig. 3-5 are
for the SOM method.

5. Discussion

The failure to give reasonable resuits by the improved phasegrating method is caused by
the large slice thickness required to perform the calculation and is discussed in Chapter 4.
Because of the necessary large 8.max that must be used, the computation cannot be performed

within the domain of validity for this method. The results show in Chapter 4 that the criteria

for validity of the IPG are more severe than that of the real §pace method.

Both the first order FFT method and the second order multislice method fail to indicate
any scattering into the 200 reflections from out of the ZOLZ. This does not mean that the FFT
or the SOM methods do not include upper Laue layer effects, only that they fail to account for
the experimentally observed intensities of the 200 reflections. It is not clear whether these
intensities are due to multiple scattering off the first order zone (i.e. [1,25,1] + [1,25,1)) or due to
the effect of the higher order zones directly through the modified Fourier coefficient V'(200) of
the crystal potential. A systematic study of the behavior of the diffracted beams with beam tilt

is under way and should hopefully clarify this.

The circle of excited reflections showing up in Figs. 3-4a and 3-5a are not first order Laue

reflections as their location in reciprocal space would indicate, but ZOLZ that are excited
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because the excitation error associated with these reflections become equal to 1/c corresponding
to the Ewald sphere cutting through the first order Laue zone. At this point the phase in the
propagator becomes 2, equivalent to an excitation error of 0. This occurs whenever £(h,k,0) =
1/Az. In the case of n = 2,4,and 8 the “pseudo™ ULL reflections correspond to scattering vec-
tors larger than the maximum reciprocal vector included in the calculations and are no longer
visible. However a new set of reflections located on the same circle in reciprocal space now
start to appear and this time they correspond to actual first order Laue reflections, Figs. 3-4c,d,
and 3-5b,c,d. Figure 3-4b does not show any ULL reflections, indicating that in the case of the
FFT method a slice thickness of half a unit cell is insufficient to give ULL effects. This is not
true for the SOM method which show ULL reflections even for n = 2 (Fig. 3-5b). This can
only be attributed to the use of potential eccentricity which allow for modulations within the
slice. Thus even in the case of n = 4 and n = 8, where both methods show the presence of ULL

reflections, it must be concluded that the SOM method is the more accurate of the two.

The degree of accuracy to which the intensities of higher order reflections have been cal-
culated still remains to be discussed. Cnly as the wavelength and the slice thickness approach
zero do the first order and the second order method accurately include the interactions of upper
Laue layers. As pointed out in paragraph 2 the information about the scattering potential is
contained in the phasegrating while the propagator keeps track of the excitation errors. Physi-
cally, ULL scattering occurs when the Ewald sphere approaches the first order L#ue layer as
shown in Fig. 3-1, that is when the excitation error for the corresponding reflection becomes
small. From (2.1.11) and (2.2.5) it is clear that the contribution of a particular (hk¢) reflection
is proportional to V(hk¢), the Fourier coefficient of the potential, and does not depend upon its
excitation error.In the case where the Ewald sphere passes through an ULL reflection, say
(1,25,1), V(1,25,1) would be summed into V’(1,25,0) with a weighting factor which does not
depend on £(1,25,1). Additionally the rernaining V(1,25,1) are all summed into V’(1,25,0)
regardless of their excitation error. In effect the phasegrating “sees™ a flat Ewald sphere cutting

through every section of the reciprocal space. When the phasegrating is convoluted with the
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-propagator the contribution of V(1,25,0) depends on £(1,25,0) and not on £(1,25,1). The error
in the phase of the propagator for a first order Laue reflection depends on the slice thickness
and the electron wavelength and is shown in Appendix A to be 2xA2Azg?/c. As the wavelength
and slice thickness decreases the propagator approaches its correct value and the accuracy to

which the ULL are included in the FFT method and the SOM method increases.

The improved phasegrating method does not separate the effect of the potential and the
Ewald sphere (through the wavelength) and should thus better allow for the inclusion of ULL
interactions. However, the restriction on wavelength, slipe thickness and sampling interval
associated with the IPG, see Chapter 4, excludes the use of this method on the given problem.
The Ewald sphere cuts through the first ULL at approx. 3.1 A~! which sets a lower limit on
8., the maximum reciprocal scattering vector that must be included in the calculations. In
order to produce reasonable results, it is necessary to use a slice thickness less than 1 A, but the

complexity of the method does not readily allow for a slice thickness less than ¢ (8.08 A).

6. Conclusion

Of the three methods that are discussed in this paper, the second order multislice method
is the most suited for inclusion of ULL reflections. The use of potential eccentricity permits
the use of larger slice thicknesses without sacrificing the inclusion of ULL effects. The accuracy
of the calculation of higher. order reflections depends on both slice thickness and electron
wavelength and increases as the thickness of the slice and the wavelength approach zero. This
is true for both the FFT method and the SOM method. The IPG method contains 3 dimen-
sional information even when the slice thickness equals the crystal periodicity in the electron
beam direction, but the method is impractical under most conditions because of severe restric-

tions on sampling interval and slice thickness.
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Fig. 3-3.

Fig. 3-4.

Fig. 3-5.

Fig. 3-6.

Fig. 3-7.

FIGURE CAPTIONS

Schematic drawing showing a segment of the Ewald sphare and its relation to the
reciprocal lattice. The zero and the first order Laue zones arc indlicated in the figure.
Large open circles represent reflections lying in the zero order zone, while small open
circles indicate the “column” of reciprocal points whose Fourier coefficients of the
potential are summed into the Fourier coefficient of the corresponding zero order

reflection to give a new effective potential.

Amplitude vs. thickness for the reflections 000, 110, 200, 220, and 400 for MgAlL,O,
[001]. Accelerating voltage is 200 kV and the slice thickness is 8.08 A, 2.02 A and

1.01 A corresponding to n = 1, 4, and 8 respectively. Calculation is by the FFT
method.

Same as for Fig. 3-2 except that the calculation is by the SOM method.

Computed diffraction patterns for a 300 A thick specimen of MgAL,O,. The calcula-
tion is by the FFT method and the slice thickness is indicated by the value of n

(Az = 8.08 A/n).
The same as for Fig. 3-4 except that the calculation is by the SOM method.

Schematic drawing illustrating the central beam (k;) and a scattered beam (k,)

traversing a slice of thickness Az.

Schematic drawing showing two scattered beams; one corresponding to scattering in

the zero order zone and one corresponding to scattering into the first order zone.
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Chapter 4

On The Improved Phasegrating Method

Abstract

A new method for computing scattering amplitudes in High Resolution Transmission
Electron Microscopy has been examined. The method which is called the Improved Phasegrat-
ing (IPG) method is shown to produce reasonable results only for very small specimen
thicknesses and diverges for thicknesses larger than 20 A - 40 A in copper [001] for accelerating
voltages between 200kV — IMV. The validity of the method is discussed and is shown to
depend on electron wavelength, slice thickness,the number of reflections that are included in
the calculation and the choice of specimen. It is also shown that the method does not readily

allow for slice thicknesses smaller than the specimen periodicity along the incident electron
beam direction. '

1. Introduction

The ability of present multislice calculations to include upper Laue layer interactions were
studied in chapter 3 and it was shown that the Second Order Multislice (SOM) method allows
for a larger slice thicknes;f» than the conventional first order multislice method employing fast
Fouri: - transforms (the FFT method) while still including ULL effects. In order to include
ULL easects into the SOM method and the FFT method it is necessary to use slice thicknesses
smaller than the crystal periodicity (c) in the electron beam direction. The improved phasegrat-
ing method proposed by Van Dyck (1] allows for the inclusion of higher order zones even when
the slice thickness is equal to c. However, no results using this method have been published
and it is not clear that the IPG method presents an alternative to existing methods. This work
was undertaken in a hope to shed light on the applicability of the method. The model system

is a specimen of Cu [001], and the formulation presented in Chapter 3 is used. In order to facili-
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tate the reading, some of the theory in Chapter 3 is repeated below.

2. Theory

The improved phasegrating methed is an approximate solution of the following modified
Schrodinger equation (2}:

9 _ LN F

Fe ioVe + o Vi = eV + Ad 2.1
where

o= 2 ze)\ 2.2)

1}
and
2 @&
vz - a— + — -
= E T o 23)

and the wave function J has been written as a modulated plane wave of the form:

W) = o(r) e* : (2.4)
V is the crystal potential in volts. If the effect of the potential is larger than that of 4, it is
appropriate to start from an exact solution in V and treat A as a perturbation. Van Dyck [1]

suggests writing the wave function as a modulated phasegrating of the form:

#(x,y,z) = exp {ia [V(xy.z)dz } 8(x,y.2) (2.5)

which, after substitution into (2.1) yields:
#(x,y,z) = &(x,y,0) + % far {Vfﬂ(Z’) + ioAzZ| V2V (2)8(z) ©(26)

+ 2i0AzV, V(2) - V. #z) + (i0Az)? o(z')[vlv,(z')]’}

The first order perturbation result for theta becomes

8(z) = B(0) + % {vfa(o) + ioAz8(0) [dz’ @7
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z
[zlz-v_,_zvp + ldAZ?AI;(VJ.vD)Z] + ZiUAZVJ_G(O) - fdz’ ‘A‘IZ—VJ.VP}
o

It was shown in Chapter 3 that the integrals appearing in (2.7) can be expressed as follows:

atAz L hx | ky. 2 2
1 ==+ | h k
2 [ Ve = - @iFe ° [; + g] 238)
n vitzes/c SID XE/D
X ;;V(h,k,ew [e’ ey et 7n 1]
-l—h}hﬁ dz = 2xi3 ez""T & )EV(h k,e)—— grricmmicSinEE/D _ (2.9)
Az ; &x bk ’ xé/n :
Zatdz iBx .
L7 Y v Tk n_ |} 2secsinmé/n _
= £ P dz ZnEe (b);V(h,k,()zE [e “em ! (2.10)
atAz v
& [ G+ & Po ) gz =
h+h k+L’
(2w)zz(— + ey
h’l’

X BN 15Ey 3| oo SO

(2.11)

_ 2eieZac SIDTE/NM ritZa/c SID ®E/N
¢ ) “xé/n ¢ ) x¢'/n +l]

where the slice thickness Az is equal to ¢/n. Equation (2.11) simplifies in two cases :

i) thelimitAz =0
zataz ke )2
& [ G+ G - %’ﬁ[ [E-Evm,k,mez A ’}

VL 5 4
+ [E%V(h,k,O)em O "’]] @.12)

i) n=1
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The equivalent expression for the derivative with respect to y follows from (2.13).

2.1 Validity of the Improved Phasegrating Method

Equation (2.7) represents the second term in & series expansion for theta, the first being
8, = 6(0). In order to get a feeling for the error introduced by the truncation of the series it is
instructive to look at the Fourier transform of (2.7). To simplify the expressions one can
include only terms where € = 0 and ignore terms with ¢ # 0, that is ignore the effect of higher

order zones. Using (2.8) through (2.11) one obtains the following for the Fourier transform of

theta.
H(8,Zm+A2) = B(g,z0) ~ iwmz{fo(g,zm) @.1.1)
+ (082X} + 22) 3 808~ 8/Za) V&0)
[ 4
+ (e [+ 20+ ) 2 @) M5z
X V(g"0) V& ~-5"0)

+ 2(iaAzx;+’;“z’-)§ 2E—%) HE—€'2m) V(E.0)}

As seen from the expression above, the convergence of the series depends on the wavelength,

slice thickness, strength of the crystal potential and the maximum reciprocal wavevector (g_, )
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included in the calculation. By inserting the first order perturbation result for theta into (2.6) it
‘is possible to get a second order result for theta and obtain the equivalent of (2.1.1). However
the higher order expressions quickly become very complicated and it is difficult to obtain a use-
ful criterion for the validity of the expansion. The part of the expansion that does not involve

the potential goes as

Ng.zn+Az) = (1—ixNAzg? + 5‘-"—2""—23 8%) 6(8.2m) @.1.2)

and this corresponds to the expansion of the propagator that shows up in the formulation of the
real sp;we (RSP) method in Chapter 2. However since there is no such requirement that the

intensity of each &(h,k) remains unchanged from slice to slice, only that ¥, ;6(h,k)' 2 =1, one
hk

cannot apply the same condition as for the RSP method. Also there are terms involving the
strength of the crystal potential which complicate matters. In the limit that the interaction

parameter o or the strength of the potential go to zero the criterion of validity becomes

K = Mzg? << I/x (2.1.3)

That this is not a sufficient restriction will become evident from the results in paragraph 4.

3. Procedure

'The theory outlined in the previous paragraph was implemented in computer programs
and run on a CDC 7600. The model system is copper in the [001] orientation and the calcula-
tion was performed for an accelerating voltage of 200 kV and 1000kV. Because of the practical
problems associated with the calculation of the expression in (2.11), the only slice thickness
considered was 3.6 A, which corresponds to the specimen periodicity in the incident electron
beam direction. The difficulties associated with use of a smaller slice thickness are discussed in

paragraph 5.
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4. Results

The results consist of a series of comparisons between the conventional (FFT) multislice
method, the phasegrating method and the improved phasegrating method and are shown in
Figs. 4-1 through 4-3. In Fig. 4-1 the accelerating voltage is 200 kV while in Figs. 4-2 and 4-3
the voltage is 1 MV. As seen from the figures the amplitudes calculated by the IPG method
begin to diverge after approximately 20 - 40 A dependingon A and g__ . In Fig. 4-1 and 4-2
the slice thickness is equal to c allowing the inclusion of higher order zones into (2.11). The
contribution by terms given by € # 0 is essential for including out of the zone effects, but is
small compared to the term ¢, ¢ = 0 and was ignored in (2.11) such that amplitudes and phases
in the case of Az < ¢ could be computed. Thus Fig. 4-3 shows amplitudes calculated for three
different values of g (2.0 A™!, 2.8 A" and 4.0 A~") while varying Az (n) as to keep the value
of K constant (0.126 and 0.063). The results indicate that varying the slice thickness while

keeping the wavelength and g, constant has little effect.

5. Discussion

It is clear from Figs. 4-1 through 4-3 that the improved phasegrating method fails to give
reasonable results beyond a thickness of 20 A — 40 A for the combinations of wavelength, slice
thickness and sampling interval that were used. As expected the method works betier for
higher voltages where the wavelength gets smaller and the propagator becomes less important.
Surprisingly, reducing the slice thickness does not appear to increase the accuracy of the
method as (2.1.1) would indicate, although the results in Fig. 4-3 are slightly inaccurate since
the contribution of higher order zones were ignored in the term involving the square of the
derivatives. Apart from wavelength and slice thickness, the convergence of the expansion
depends also on sampling interval (g_,,) and on the strength of the crystal potential. The
dependence on sampling is clearly seen in the results, where extending the calculation further
into reciprocal space causes the amplitudes of diffracted beams to diverge at a decreasing thick-

ness. The Fourier coefficients of the potential are determined by choice of specimen and was
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not varied. Copper with an atomic number of 29 represents a compromise between heavy and

light elements and the results serve as a useful guide for other elements.

By neglccﬁng tﬁe terms involving the potential it is possible to set an upper limit on the
value of K for which the expansion for theta converges. This limit corresponds to K__ = 1/3,
but it is clear from the calculations that when the potential is included more severe restrictions
are imposed, restrictions that now also depends on the the crystal potential. However it is very

difficult to find a useful expression in this case.

Because the method rapidly diverges, it might only be of academic importance to considér
the extent to which upper Lgue layer effects are included in the improved phasegrating method
(IPG). Compared to commonly used multislice methods that rely on small slice thickness to
include higher order interactions, see Chapter 2, the IPG method includes higher order effects
also in the case where the slice thickness is equal to the crystal periodicity along the incident
electron beam direction. However because of the crossterms that appear in (2.11), the method
becomes impractical when n is different from 1. In the case of n # 1 the calculation of (2.11)
requires a minimum of 10° operations (convolution over 6 indices) for 32 sampling points,
and needs to be repeated n times. Even with the use of modern day super computers this is_
hardly a small calculaticn.

6. Conclusion

The results show that due the limited range of validity of the improved phasegrating
method it is not suitable for computation of scaitering amplitudes in HRTEM. Even though
the results in Fig. 4-3 show very little dependence on Az, the validity of the method depends on
the slice thickness and the calculation should improve with smaller slice thicknesses. However
computational considerations prohibits the proper use of arbitrary slice thickness and prevents
further investigation into thickness dependence. An upper limit of K = A\Azg2,. = 1/= is
necessary to give convergence to the series expansion for theta, but it is clear that the sampling

interval in combination with the strength of the crystal potential is more important in
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determining the conditions for convergence. However an exact expression for convergence was
not found.
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FIGURE CAPTIONS

Amplitude and phase (in units of r) vs. thickness for the reflections 000, 200 and 440
in copper [001]. Calculations are performed by the conventional (FFT) multislice
method (-), the phasegrating (PG) approximation (++) and the improved phasegrat-
ing (IPG) method (**). Accelerating potential is 200 kV and the crystal potential has

been sampled out to 2.0 A~!. The slice thickness is 3.6 A corresponding to n = 1.
As in Fig. 4-1 except that the accelerating potential has been set to | MV.

Amplitude vs thickness for the reflection 200 for two sets of values of K. In the first
column K = 0.126 and in the second column K = 0.063. The value of g_,_has been
set to 2.0 A~!, 2.8 A~ ! and 4.0 A™! in the first, second and third row respectively.
The slice thickness required to keep K constant is indicated by the value of n

(Az = 3.6 A/n).
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Chapter 5§
The Effect of Amorphous Surface Layers on Images of Crystalis

In High Resolution Transmission Electzon Microscopy

Abstract

The effect of a surface layer of amorphous silicon dioxide on images of crystalline silicon
has been investigated for a range of crystal thicknesses varying from zero to 2; times that of the
surface layer. It is shown that an amorphous surface produces fluctuations in image contrast
which introduces difficulties in the interpretation of defects in very thin specimens. These diffi-
culties are less pronounced but still present in thicker crystals. It is also shown that an edge
smoothly appreaching zero thickness produces an image that changes gradually from crystalline

to amorphous character.

Introduction

It is well known that most materials under investigation in the electron microscope form
a surface oxide layer or an amorphous layer which can affect the resulting image, see Fig. 5-1
and Fig. 5-2. In fact, a noisy image is pﬁen attributed to surface effects without further expla-
nation. Furthermore, very little work has been done to evaluate the extent to which an amor-

phous surface actually influences the nature of the image.

Krakow (1] calculated the image of crystalline gold showing reasonablec agreement with an
experimer;.al image when the top gold layer was substituted with a layer of randomly arranged
gold atoms. However, when the same substitution was made for the bottom layer the com-
puted image lost its crystalline appeararice completely. In another study, Anstis et. al. 2] calcu-
lated the effect of an amorphous surface layer on the images of a 30 degrees partial dislocation

in silicon. They showed that the amorphous surface makes it impossible to distinguish between
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the shuffle and glide models of the dislocation core in a 28 A thick crystal when'the surface
layer was 20 A thick. Similar results have been quoted by Bourret et al. [3].

The object of the present research program is to fully understand the contribution of such
surface layers to high resolution image contrast, examining in particular the effect of amor;
phous layer thickness relative to the thickness of the crysial on which it resides. The problem
of specifying suitable atomic coordinates in an amorphous material is addressed by choice of a
model system, amorphous silicon dioxide on silicon, for which atomic coordinate data exists {4].
Calculations are carried out which simulate high resolution electron microgrsphs of a single cry-
stal of silicon and then a T = 9 bicrystal of silicon, the latter having a fully specified periodic
defect structure [5]. Atom coordinates for the Z = 9 grain boundary were obtained by relaxation
of a coincident Site Lattice [6|. Images of crystals with different thicknesses are simulated for a

constant thickness amorphous oxide film and compared to the case where no oxide is present.

Image Calculation Procedure

The images presented in this work were simulated by a multislice computation routine [7]
written to run on a CDC 7600 such thai any number of different slices and slice thicknesses
could be used. In‘addition, any number of sampling points up to '25A6z caii be used and these
can be arranged in any square or rectangular array. All adjustable microscope parzmeters were
set to values characteristic of a JEOL JEM 200CX at Scherzer defocus ; ¢, = 1.2 mm, Af =
—660 A, delta = 50 A, alpha = 0.5 mrad.

Atomic coordinate data for the amorphous silicon dioxide layers was taken from the work
of Bell and Dean [4] who used a random network theory medel with a mean Si-O-Si bond angle
of 153 degrees. They generated the positions of 614 atoms within a vplume element of
31X23X22 cubic Angstroms; this model closely matched the experimental radia! distribution
- function to 8 A detail. These atom positions were used in the calculations by dividing the
above volume elemsnt into 7 slices of 3.14 A thickness each, and using only the middle 5 slices

for a total layer thickness of 15.7 A.
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An-oxide film was then hypothetically attached to a single crystal of silicon in [110] orien-
tation by covering an area of 5X5 crystalline unit cells (Fig. 5-3). This required the selection of
a rectangular slab of oxide with dimensions 27.1 A by 19.2 A which retained the same thickness
of 15.7 A. Oxide filnis on the top and bottom surfaces were positioned such that they did not
artificially superimpose; this was accomplished by simple translation of the bottom layer by
a/2{111] with respect to the top layer.

The potential from each layer of material in this sandwich was then calculated from its
corresponding electron scattering factors out to a maximum reciprocal space dimension of
3.0 A~!. This corresponds to an array of 182X 114 sampling points such that every fifth sam-

pling point along any direction was a Bragg reflection from the silicon matrix.

The oxide film attachment to the silicon bicrystal was accomplished in a slightly different
way. The model of the silicon bicrystal shown in Fig. 5-4 covers an area larger than the size of
the oxide such that a rectangular slab with oxide in the center had to be used. Two surface
oxide layers were created, one 15.7 A thick and another 9.4 A thick. With the 9.4 A thick sur-
face oxide, unique top and bottom surface layers were constructed from the model of the oxide
by simply using different slices for the two layers, whereas in the case of the 15.7 A thick oxide '
the top and the bottom layers were rotationally displaced 180 degrees. Calculations of the

resulting sandwiches were performed using 256X 128 sampling points.

Resuits

The results of the calculations are shown in Figs. 5-5 through 5-9. In Fig. 5-5 a set of
computed images of the amorphous silicon dioxide is shown together with the corresponding
projected potentials. Figure 5-6(a) shows a set of images calculated for perfect silicon with
thickness varying from 0. to 38.4 A and a constant total thickness of amorphous top and bot-
tom surface layers of 31.4 A. The image of perfect crystal with no surface oxide varies negligibly

with thickness in the range 8 — 38 A and is shown in Fig. 5-6(b) for comparison.
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Figure 5-7 shows the projected potential for the silicon bicrystal, while Fig. 5-8 and
Fig. 5-9 show computed images. The = = 9 grainboundary is a pure tilt-boundary with a rota-
tion angle between the two grains of 38.9 dzgrees. The boundary plane is (122). Figure 5-4
shows a schematic model of the unit cell used in the calculation. The thickness of the silicon
_varies from 8 — 38 A and the total thickness of amorphous top and bottom surface layers is
31.4 A and 18.8 A respectively. These images should be compared to the set ot; images calcu-
lated for silicon T = 9 without surface oxide shown in Fig. 5-8. The rotational displacement
used in the construction of the bottom surface oxide layer 15.7 A thick produces an artificial
mirror-symmetry when the top and bottom layer is viewed in projection, which can be noticed
when the bicrystal is very thin (7.7 A), but otherwise has no effect on the results. Because of

the smaller size of the oxide ,only the center portion of the images was considered.
Discussion

i) Perfect Crystal

It is clear from Fig. 5-6(a) that the image changes from amorphous to crystalline in a gra-
dual way. In fact, in the thin region of silicon, 8 - 16 Angstroins, parts of the image appear
amorphous, while another part appears more crystalline. Thus “islands™ of crystalline material
appearing in an apparently amorphous area near the edge of a foil could possibly be due to
variations in the surface oxide. For “thicker” areas, the surface layers produce irregularities in
the image, such as wavy lines of atoms and fluctuating contrast. As the thickness of the silicon
increases beyond the total thickness of the surface oxide, the image is very closely that of a pure
- crystal with no oxide. In the case of silicon this corresponds experimentally (8] to a thickness of

approx. 40 Angstroms, see Fig. 5-2.



ii) Silicon Bicrystal

In this case, the most interesting result is the appearance of displaced atoms at the boun-
dary plane which has significant implications for the general analysis of atomic positions near
any such defect. Various models are usually possible for any given type of defect and the goal
of HREM is to determine the correct model by matching computed images to experimental
data. Sometimes the change in the image from model to model is subtle and “noise™ in the
image can make it impossible to distinguish between two models with any confidence. Unfor-
tunately the presence of a surface layer will add to the difficulty of determining atom positions.
As can be seen from Fig. 5-8, atoms may or may not show up due to surface contamination.
The model of the T = 9 boundary has a periodicity of 11.5 Angstroms in the boundary direc-
tion, and there are two “unit cells” shown in Fig. 5-4. However, due to the presence of the sur-
face oxide, the image does not reflect this periodicity and certain atoms could easily be thought
missing, thus preventing a correct interpretation of the image. Naturally as the crysial gets
thicker, the surface becomes less important, and for thicknesses slightly greater than the total
surface-thickness, the surface effects have become negligible except at the dislocation cores

where there still are small differences in contrast.

Conclusion

Because of dynamical interaction between Bragg scattered reflections HREM images are
usually considered directly interpretable only for very thin specimens, typically less than 50
Angstroms. For thicker crystals computer matching of images are required to get detailed infor-
mation down to 2 — 4 Angstroms resolution, but inelastic scattering may make even this

approach unreliable.

In the presence of an amorphous surface layer, it is clear that the image of a very thin
specimen is adversely affected by the surface. This may not represent a severe problem in
imaging a perfectly crystalline structure, since one can always average over a number of identi-

cal unit cells to obtain a less noisy image. However the correct interpretation of a single



65

isolated defect may be rendered impossible by the presence of an amorphous surface layer.
With such surface layers of the order of 20 Angstrom thickness, the crystalline material should
be at least 40 Angstroms to provide an interpretable image. It should also be noted that a uni-
form wedge-shaped edge produces an image that gradually changes from crystalline to amor-
phous character. A sharp change from crystalline to amorphous indicates an edge that is

approaching zero thickness in a discontinuous way.
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FIGURE CAPTIONS

Fig. 5-1. High resolution electron micrograph of silicon in [001] orientation showing tran-

sition from crystalline to amorphous structure at a thin edge.

Fig. 5-2. Native oxide on 3 degrees off (111) Si surface; thickness 20 + 3 A.
Fig. 5-3. Projected unit cell of silicon in [110] orientation.
Fig. 5-4. Model of = = 9 grainboundary in silicon. The model shows the structural

periodicity along the boundary plane.
Fig. 5-5. Computed electron micrographs of amorphous silicon dioxide. The projected

potentials are shown for comparison.

Fig. 5-6(a). Computed electron micrographs of perfect silicon with native oxide. The thick-
ness of amorphous top and bottom surface oxide is 31.4 A. The thickness of the

silicon matrix varies from 0. to 38.4 A,
Fig. 5-6(b). Computed eleciron micrograph of perfect silicon,thickness 23 A.
Fig. 5-7. Computed projected potential for silicon bicrystal from model in Fig. 5-4.

Fig. 5-8. Computed electron micrographs of silicon bicrystal with native surface oxide.
The total thickness of the surface layers is held constant at 31.4 A, while the
thickness of the bicrystal varies from 8 — 38 A,

Fig. 5-9. Computed electron micrographs of silicon bicrystal with native surface oxide.
The total thickness of the surface layers is held constant at 18.8 A, while the
thickness of the bicrystal varies from 8 — 38 A.
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Chapter 6

Summary

At this point it is of some interest to look back at the work presented in this thesis and to
see where it stands with respect to other work in the area of high resolution transmission elec-
tron microscopy. I will take the time to review briefly the development of computer simulation
of electron micrographs so the reader will gain an understanding of the current staius of the
field. I will also try to point out areas that I feel need further refinement and indicate what [

believe to be the path of the future.

Because of the apparent ease with which electron microscopes are able to yield structural
information to better than 3 Angstrom resolution, high resolution transmission electron micros-
copy has gained an immense popularity during the last few years. However, it is very impor-
tant to understand clearly both the strengths and weaknesses of HRTEM to know what it can
and what it cannot do. It is not possible to take any material oriented in some arbitrary way,
thin it down, insert it in the microscope and expect to obtain useful high resolution informa-
tion. Very little three dimensional information can be obtained in HRTEM and the image is
mostly a rendition of a two dimensional projected structure where all the atoms are projected
onto a plane perpendicular to the incoming electron beam. Because 6f this, the specimen must
be oriented such that the atoms superimpose in columns spaced far enough apart such that they
can be resolved in the microscope. This eliminates all but a few low index orientations. Many
close packed materials have planar separations that cannot be resolved in current microscopes.
As an example only the [110] orientation of diamond structure materials could be resolved prior
to the emergence of the Atomic Resolution Microscope at Lawrence Berkeley laboratory.
Another difficulty is the preparation of the specimen itself. Very ofien it is not the perfect
structure that is of interest, but rather some defect in the structure and usually it is the atomic

arrangement at the core of the defect that one hopes to determine. However, both the defect
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and the matrix must now be oriented such that they can be resolved. Finding just the right
combination is often a very frustrating task. Another difficulty is obtaining the material itself
suitably grown along a specific crystal direction. Sometimes projects that required maybe a few
days to 2 week of microscope time needed years of specimen preparation time before the
correct combination of specimen thickness and orientation was achieved. On top of all this
comes the final interpretation of the image itself. Any given image might bear no resemblance
to the actual structure of the specimen. Electrons will scatter and rescatter as they propagate
through the specimen and will be acted upon by magnetic fields that eventually will focus them
on a film. The image will change its character as one adjust the various knobs on the micro-
scope and given a complicated structure it is no telling which setting results in an interpretable
image. It is only for very specific settings of the objective lens defocus (depending on spherical
astigmatism) and for specimen thickness less than 20 A to 40 A (depending on the scattering
factor of the atoms in the structure) that one is fairly sure the image resembles the projected
structure. This becomes more and more of a problem as the resolution increases and many
images taken on today’s microscopes can not be interpreted without computer matching. This
entails computing images for various values of objective lens defocus, specimen thickness and
sometimes the spatial and temporal coherence of the imaging electrons to match with the exper-
imental images. Because of the many parameters that affect the image it is not sufficient to
match just one computed image with one experimental image, but one must cbtain a match for
a set of images taken at different values of objective defocus, usuaily referred to as a through
focus series. Thus computer simulation of electron micrographs has become a valuable tool in
the field of high resolution electron microscopy. An example of how computer simulation can
tell us how an image is affected by factors that are not usually considered, in this case surface

layers of amorphous material, is shown in Chapter 5 of this thesis.

Even though the origin of present multislice calculations go back to 1957 when Cowley
[Acta Cryst. 10, (1957), p.609] first formulated a theory based on physical optics, the first practi-

cal computations did not start to appear until the early seventies when a series of irticles on
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lattice imaging called the n-beam lattice image series were published by the Australian group
consisting of Allpress, Hewat, Lynch, Moodie, O’Keefe and Sanders [Acta Cryst. A28, (1972),
p. 528 and p. 536 ; Acta Cryst. A29, (1973), p. 138 and p. 389; Acta Cryst. A31, (1975), p. 300
and p. 307, The computer programs that would grow to calculate 2-dimensional lattice images
started off as a 1-dimensional multislice routine designed to compute 1-d electron diffraction
patterns and did not deal with imaging. Imaging was introduced by O’Keefe who in his Ph.D.
work incorporated the effect of objective lens d_efocus, spherical aberration and beam diver-
gence to create the first practical algorithm for computation of 2-d lattice images based on the
multislice formulation. The first 1-d lattice image program used reflections out to 15°th order
and the first 2-d version used 31X31 beams in the calculation. At the time this was a huge cal-
culation which took up most of the memory of the available computer. As the computing
power increased over the next few years, the number of beams was also increased to get better
accuracy, but at the expense of computing time. Because it is necessary to perform many calcu-
lations over different thicknesses and defocus values to obtain a good match, the computing
time soon becarme prohibitive for many problems. It was not until Ishizuka and Uyeda in 1977
[Acta Cryst. A33, (1977), p. 740] suggested using fast Fourier transforms that a major improve-
ment in computing time was made. Together with the improvement in computers this allowed

the inclusion of many more beams and presently the larger calculations will include up to

256X 256 beams.

Today, even though much work has gone into the search of faster and more accurate
methods most programs still use the method of Ishizuka and Uyeda. The reasons are several
and many can be found in the results of my work. The real space method which I discussed in
Chapter 2 promised to reduce the calculation time and to allow the use of a larger slice thick-
ness. However as | showed in Chapter 2, the method will diverge for too large slice thicknesses
and in many cases will require more computing time for the same level of accuracy. The
method is still useful for computing images from regions containing defects, but the conven-

tional FFT method is better as an all around method. With special purpose hardware for
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performing Fourier transforms becoming available, the time it takes to calculate a 2-d FFT
might actually be less than the time required for the real space computation. The other method
proposed during the last few years, the improved pnasegrating method also does not present
itself as a viable option because of its complexity (increasing computing time) and limitations
imposed on the slice thickness as shown in Chapter 4. This is not to say that there has been no
progress in the field of computer simulation of high resolution electron micrographs. Most of
the progress has been in increasing the accuracy of the methods rather than making them faster.
In terms of the multislice calculation, I showed in Chapter 3 how to properly use slice -
thicknesses smaller than the crystal periodicity along the incident beam direction for 3 different
computational methods. I also showed how both the conventional first order and the second
order multislice methods incorporate upper Laue layer interactions and showed that the accu-

racy is increased by using potential eccentricity in the second order method.

The multislice calculation only treats the interaction between the electrons and the speci-
men and a complete simulation of an image also includes the effect of defocus, aberrations,
electron incoherence, microscope instabilities and the characteristics of the recording medium,
usually film. The major part of the work in these areas has concentrated on the importance of
temporal and spatial incoherence of the imaging electrons. Special “contrast transfer functions”
that include the effect of incoherence, aberrations and defocus have been formulated under cer-
tain assumptions. Very often these contrast transfer functions are used even when the assump-
tions are no longer valid. This is mainly because of the increase in complexity and computing
time that would go with a more accurate calculation, but also because the exact condition in the
microscope is not known. It is clear that further refinement of the theory is needed. It is desir-
able to be able to vary the degree of coherence, something that is not presently possible. The
contribution to the image by inelastically scattered electrons also needs to be better understood.
Sometimes a match between the computed and experimental image is not obtained due to lack

of proper treatment of coherence and inelastic scattering.
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As the programs grew over the years the tendency was to use larger and faster computers
such that the calculations could still be performed in a reasonable time. The ultimate goal in
computer simulation of electron micrographs is to reach a situation where one can compute
images in times of seconds, view them on a monitor and compare them to the experimental
image while working on the microscope. A change in the model could be implemented by
interactively “picking” up atoms, moving them around in the matrix and within seconds com-
pute a new image. This could be done until one reaches a model that results in a fit between
experimental and computed images. However, this goal can be achieved by going to smaller
and more specialized hardware rather than timesharing on large mainframe computers. This
trend is already starting. New systems will be built around a fairly small central processing unit
whose job mainly will be to organize the flow of data. The actual computation of the iinage is
suited for array processors that are uniquely designed to handle large vector operations such as
FFTs. Because the multislice calculation is a recursive operation involving a few vector multi-
plications and a few FFTs, the entire calculation is easily performed on the array processor.
The effect of the microscope is also easily included and the image can then be routed through
an image processor. The image processor can be set up to simulate the recording device of the
experimental image such that a straight comparison between experimental and computed image
can be carried out. The image processor can also improve the experimental image'by averaging
over time to reduce noise and perform histogram equalization to enhance features. It can also
be set up to quantify the mismatch between images. A laser filmwriter .s an ideal recording
device of computed images and can come with a scanning device for digitizing experimental
images. In this way it is possible to build a specialized system that is ideally suited for high
resolution electron microscopy. Such a system is planned for the National Center for Electron
Microscopy here at Lawrence Berkeley Laboratory. It is in its final stages of planning at the

time of writing and it is hoped that within a year it is a fully integrated and operative system.
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Appendix A

The phase that appears in the exponent of the propagator is the difference in phase associ-
ated with electrons traveling a distance Az having a wavevector kg relative to those having a

wavevector k, as shown in Fig. 3-6. This phase difference is equal to

86 = [l <2 — ko] Az = kodz(—— — 1) = dkohza? (Al)

For electrons reflected into the first order Laue zone the angle «;) is equal to, see Fig. 3-7.

ao_fg*_-sﬂ (A2)
4

while for electrons scattered into the first order zone, the angle is

This gives a phase change of
BOgg = -;-koAZ(SJ.’\)z = xhazgl = 2xAzi(g,) ' (A4)

for electrons scattered into (g ,,0), and a phase change of

Mgy = Lodalg N1 + 272 = anazgd(1 + 27 (A3)
for electrons scattered into (g ,1). The quantity £(g,) =1 /2Ag3 is the excitation error of the
reflection (g, ,0) and corresponds to the distance betwesn the reciprocal lattice point (g ,,0) and
the Ewald sphere measured along the line connecting the center of the sphere with the recipro-
cal lattice point, see Fig. 3-1. The error in the phase of the propagator by using the excitation

error of the zero order reflection instead of the the excitation of the first order reflection is thus

Ady — Adg = 2xx2A2g3 /c (A6)
As can be seen from (A6) the error depends on slice thickness and electron wavelength and goes

10 zero as Az and A goes to zero. DISCLAIMER
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