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Abstract 

Computer simulation of electron micrographs is an invaluable aid in their proper interpre­

tation and in defining optimum conditions for obtaining images experimentally. Since modem 

instruments are capable of atomic resolution, simulation techniques employing high precision 

are required. This thesis makes contributions to four specific areas of this field. 

First, the validity of a new method for simulating high resolution electron microscope 

images has been critically examined. This method, which has been termed the real space 

method (RSP) since the entire calculation is performed without any Fourier transforms, offers a 

considerable reduction in computing time over the conventional multislice approach when 

identical sampling conditions are employed. However, for the same level of accuracy the real 

space method requires more sampling points and more computing time than the conventional 

multislice method. These characteristics are illustrated with calculated results using both 

methods to identify practical limitations. 

Second, three different methods for computing scattering amplitudes in High Resolution 

Transmission Electron Microscopy (HRTEM) have been investigated as to their ability to 

include upper Laue layer (ULL) interaction. The conventional first order multislice method 

using fast Fourier transform (FFT) and the second order multisMce (SOM) method are shown to 

yield calculated intensities of first order Laue reflections with the use of slice thicknesses 

smaller than the crystal periodicity along the incident electron beam direction. It is argued that 
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the calculated intensities of ULL reflections approach the correct values in the limiting case of 

vanishing slice thickness and electron wavelength. The third method, the improved phasegrat-

ing method (IPG) does also in principle include ULL effects, but is severely limited as to choice 

of slice thickness and sampling interval. A practical way to use slice thicknesses less than the 

crystal periodicity along the incident beam direction is shown for both the conventional FFT 

method and the second order multislice method and tested on a spinel structure. It is also 

shown that the IPG method does not easily allow for a slice thickness different from the crystal 

periodicity in the beam direction. 

Third, a new method for computing scattering amplitudes in high resolution transmission 

electron microscopy has been examined. The method which is called the Improved Phasegrat-

ing (IPG) method is shown to produce reasonable results only for very small specimen 

thicknesses and diverges for thicknesses larger than 20 A in [001] copper for accelerating vol­

tages between 200kV and 1MV. The validity of the method is discussed and is shown to 

depend on electron wavelength, slice thickness, the number of reflections that are included in 

the calculation and the choice of specimen. It is also shown that the method does not readily 

allow for slice thicknesses smaller than the specimen periodicity along the incident electron 

beam direction. 

Fourth, the effect of a surface layer of amorphous silicon dioxide on images of crystalline 

silicon has been investigated for a range of crystal thicknesses varying from zero to 2\ times 

that of the surface layer. It is shown that an amorphous surface produces fluctuations in image 

contrast which introduces difficulties in the interpretation of defects in very thin specimens. 

These difficulties are less pronounced but still present in thicker crystals. It is also shown that 

an edge smoothly approaching zero thickness produces an image that changes gradually from 

crystalline to amorphous character. 
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Chapter 1 

Introduction 

The current generation of electron microscopes makes possible the attainment of near 

atomic resolution in images of crystals [1]. However as the resolution of transmission electron 

microscope increases so does the need for reliable computer simulation of electron micrographs 

[2]. The image contrast in high resolution electron micrographs varies rapidly with objective 

lens defocus and specimen thickness. Only for very thin specimens, typically less than 30-40 A 

and for selective settings of defocus does the image contrast bear a one to one correspondence 

to the specimen structure [3-6]. To provide proper interpretation of the image it is usually 

necessary to match experimental images to computed images for a range of defocus values. 

Only then can one assume that the different parameters that enter the calculation, in particular 

the specimen thickness, are correct 

At lower resolution (typically greater than 20 A), the observed image contrast is well 

understood and specific rules apply to the interpretation of these images. Thus there are rules 

that determine whether a stacking fault is intrinsic or extrinsic [7] and rules that allow the deter­

mination of dislocation Burgers vectors [8]. The image contrast in this regime is usually 

referred to as "amplitude contrast," and the image is formed by ONE beam of electrons, that 

being either the forward scattered beam or one scattered through a specific angle, normally a 

Bragg scattering angle in the specimen. Thus the variation of contrast in the image arises due 

to local variation of scattering amplitudes across the area of the specimen under observation. 

In high resolution microscopy the image contrast is referred to as "phase contrast," that 

is, two or more dim-acted beams recombine in the image plane to give essentially an interfer­

ence pattern. The periodicities that are present in the image are determined by the total 

number of reflections that combine to form the image and to what degree the magnetic lenses 

in the microscope are able to preserve the phase relationships among scattered electrons. The 
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highest resolution microscope presently available, the Atomic Resolution Microscope at 

Lawrence Berkeley Laboratory can be tuned to introduce approximately a constant phase shift 

to scattered electrons associated with a shift in wave vectors of magnitude less than 0.63 A - ' , 

corresponding to a point to point resolution of 1.6 A. It is possible to get information beyond 

this limit [9], usually referred to as the Scherzer limit [10] or the structure image resolution limit, 

by proper adjustment of the defocus of the objective lens to reach the linear image resolution 

limit [11] or the information retrieval limit which is set by the objective lens chromatic aberra­

tion and voltage and current instabilities [12]. 

The simulation of an image can be considered to consist of three parts. The first is the 

calculation of the effective potential seen by the electron as it moves through the specimen. In 

principle the potential should include all scattering processes, both elastic and inelastic. How­

ever, in practice only elastic scattering is usually included. Complex lattice potentials account­

ing for certain inelastic scattering mechanisms, notably plasmon, phonon and core excitations, 

have been calculated [13-14], but in the rare cases that inelastic scattering is considered, the 

complex part of the potential is varied to provide the best match. The elastic part of the poten­

tial is computed from electron scattering factors which are calculated using either relativistic 

Hatree-Fock atomic wave functions [IS] or relativistic Dirac-Slater wave functions [16], the 

former being the most common. The electron scattering factors can also be computed from 

experimental x-ray structure factors. 

The second part of the calculation involves the actual propagation of the electron through 

the specimen. This means finding the electron distribution as a function of specimen thickness. 

The imaging electrons are assumed to be incoherent, the final image is a sum of one-electron 

images, and the calculation involves solving the one-electron Schrodinger equation where the 

relativistic nature of the electrons at accelerating voltages of several hundred thousand volts is 

incorporated in the relativistic mass. Because of the difficulty in solving Schrodinger's equa­

tion, several approximate solutions exist, each with its own regime of validity and advantages 

and disadvantages. 
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The third part of the calculation treats the interaction between the electrons and the imag­

ing system of the microscope. The most important lens determining the resolution of the 

microscope is the objective lens, and the parameters that are considered at this stage include: 

Spherical abberation in the objective lens. 

Chromatic abberation in the objective lens. 

Any objective lens aperture. 

Objective lens defocus. 

Temporal and spatial incoherence of the imaging electrons. 

Any current and voltage instability of the microscope. 

The part of computation that treats the interaction between the specimen and the electron 

beam are mostly based upon a dynamical multislice formulation proposed by Cowley and 

Moodie using physical optics [17]. The connection to quantum mechanics, notably the 

Schrodinger equation was provided by Van Dyck [18] and independently by Jap and Glaeser 

[19]. These methods are referred to as multislice methods because the specimen is divided into 

thin slices each normally having the same slice thickness Az. The electron wave function is cal­

culated at each slice from the wave function at the previous slice; beginning with the known 

electron distribution at the top of the specimen. 

This thesis consists of four independent research projects, each designed to further 

knowledge in the field of computer simulation of high resolution electron micrographs. 

Chapter 2, 3 and 4 discuss different multislice methods for computing scattering amplitudes in 

High Resolution Transmission Electron Microscopy (HRTEM), while Chapter S shows how 

computer simulation can be applied to answer important questions regarding the interpretation 

of high resolution images. 
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In some sense the work presented in this thesis can be regarded as experiments carried out 

on an experimental system that took several years to build. Before any of this work could be 

undertaken, it was necessary to write a few thousands of line of computer code to implement 

the latest in the theory of image simulation. With no resident expert on image simulation in 

HRTEM and no previous existing software at LBL this was a long and often frustrating task. 

However, it all paid off and there are now programs residing on discs under PSS library 

MSLICE at LBL that will compute scattering factors, perform multislicing, simulate the effect 

of the microscope lenses, plot images as gray level plots, plot projected slice potentials, compute 

and plot diffraction patterns, plot amplitudes and phases of selected beams as a function of 

thickness and plot contrast transfer functions. These programs and some that have not been 

mentioned were all necessary in order to carry out the work that is presented in the following 

chapters. 
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Chapter 2 

Real Space Image Simulation in High Resolution Electron Microscopy 

Abstract 

The validity of a new method for simulating high resolution electron microscope images 

has been critically examined. This method, which has been termed the real space method 

(RSP) since the entire calculation is performed without any Fourier transforms, offers a consid­

erable reduction in computing time over the conventional multislice approach when identical 

sampling conditions are employed. However, for the same level of accuracy the real space 

method requires more sampling points and more computing time than the conventional mul­

tislice method. These characteristics are illustrated with calculated results using both methods 

to identify practical limitations. 

1. Introduction 

The current generation of electron microscopes makes possible the attainment of near-

atomic resolution [1] in images of crystals; nevertheless there is still an urgent need for reliable 

computer simulation of these images in order that they might be correctly interpreted [2]. From 

a pragmatic point of view the full potential of computer simulation is realized only in an on-

site, real-time system which affords immediate comparison between computed and experimen­

tal results. This in turn requires the development of more rapid and more accurate algorithms. 

Most image calculation programs are based upon a dynamical multislice formulation ori­

ginally proposed by Cowley and Moodie [3] using physical optics. Quantum mechanical argu­

ments were later provided by Van Dyck [4] and independently by Jap and Glaeser [5]. The ori­

ginal calculation time of these early programs is proportional to N2, N being the number of 

dynamical reflections included in the calculation. However, using fast Fourier transforms 

(FFT). Ishiznka and Uyeda [6] demonstrated that the time becomes proportional to N LogN. 
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More recently, a method derived by Van Dyck [7] promises to further reduce the calculation 

time such that it is directly proportional to N alone. This method, which treats the interaction 

between the electron beam and the specimen, will be referred to as the real space method since 

the entire calculation is done in real space without the use of Fourier transforms. 

This paper examines the domain of validity of the real space method and presents a com­

parison between the real space method and the conventional multislice method. Specific 

emphasis is placed on the number of dynamical reflections that must be included, maximum 

slice thickness and calculation time. 

2. Theory 

2.1 General theory 

The geometry of the problem is outlined in Fig. 2-1. An electron with wave-vector ko is 

incident upon a thin region described by a potential U(r) and for simplicity the electron is 

assumed to be traveling in the z-direction. In the actual computation the specimen is 

represented by a sandwich of successive slices, each slice having a thickness e. 

The electron wave function *(r) is a solution to Schrddinger's equation 

[ - j£^ V 2 - eU(r) ] *(r) - ^ *(r) . (2.1.1) 

h2k£ 
For high energy electrons eU(r) « ——, therefore the potential U can be considered a pertur-

2m 
bation and the total wave function can be written as a modulated wave function of the form 

*(r) - *(r) e2**" - «(r)e 2 , a* . (2.1.2) 

By inserting the above expression into (2.1.1), one has 

[V 2 + 4H1C0 -A- + J ^ S . U ( r ) ] #r) - 0 . (2.1.3) 

By involving the definition 



V(r) 8x2me 
h 2 U(r) 

equation (2.1.3) becomes 

[V2 + 4»iko-^- + V<r)j*(r)-0 

(2.1.4) 

(2.1.5) 

At this point it is customary to ignore the second derivative with respect to z in (2.1.5) by mak­

ing the assumption that 4(r) is a slowly varyirg function with respect to z, such that 

£& 
dz2 « k o d<p 

dz (2.1.6) 

This amounts to ignoring backscattered electrons and a slight change in the electron wavevector 

as the electron traverses the potential. A more complete discussion has been given by Van 

Dyck [8]. 

Ignoring the second order derivative transforms (2.1.3) into a first order differential equa­

tion in z, 

dz 
_i 

4xko ~t «(') - T T " 1 vx 2 + V(r) 1 «(r) (2.1.7) 

Formally the solution to (2.1.7) can be written 

tfx,y,«) - e4**- i #x,y,0) . 

Note that e A ^ is defined through the power series 

00 AD 

n-0 n : 
(2.1.8) 

Defining A 

it follows that 

4 ^ V J" W and V„ - -1 i 
* 4*k„4 

fV(r)dz 

«(x,y,€)-e«lA+v'l«(x,y,0) (2.1.9) 
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2.2 Analytical Solutions to (2.13) 

Unfortunately there are no closed analytical solutions to (2.1.9), requiring the use of vari­

ous approximate solutions. 

i) General Multislice 

In the formation of the general multislice method one writes 

«(x,y,e) - e<A + v-i *(x,y,0) « e«Vv» *(x,y,0) . (2.2.1) 

Since A and V p do not commute, (2.2.1) is correct to first order in t, A and V p with a resulting 

error of the order of |[A, Vpjc2 where [ ] denotes commutation. The advantage to using equation 

(2.1.1) is that it becomes possible to write down analytical solutions to the expressions 

f I(x,y, e)-e« v 'f,(x,y,0) (2.2.2) 

f2(x,y,«) - e* f2 (x,y,0) (2.2.3) 

of the form 

« 
f,(x,y,«) - exp { ^ - f V (x,y,zOdz'}f1 (x,y,0) (2.2.4) 

f2(x,y,«) - § J / dx'dy-ftfx'.y-.O) exp { ^ [(x-xO2 + (y-yO2]} . (2-2-5) 

Defining the functions h and g through the expressions 

f,(e) - h-f, (0) 

f 2W-g^f2(0) 

equation (2.2.1) can be written in alternative form: 

*(«) - g*(h-*(0)] . (2.2.6) 

Since the specimen possesses a periodic potential of period c in the z-direction over its total 

thickness Nc, it is necessary to use N successive applications of (2.2.6). The quickest way to 

numerically solve the equation 

*N«> « g • [h-[g*|h-[g4 #0)] • • • ] (2.2.7) 
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is to use Fourier transforms as shown by Ishizuka and Uyeda [6] who utilized the algorithm 

shown in Fig. 2-1. In the remaining part of this paper the general multislice method will be 

referred to as the FFT method. 

ii) Real Space Method 

A different approach to finding an approximate solution to (2.1.9) is to expand the 

exponential in powers of A and Vp (Van Dyck [7p, and construct a solution that can be written 

as a product of functions fi,,(A) s /V p ) that when expanded in powers of A and Vp corresponds 

to the expansion of (2.1.9) to any desired order of A and Vp. A unique solution correct to 

second order in A and V p was found to be 

«(e) - exp {ie (1 +5)VP} exp {eA} exp{±e (1 -S)V P} *(0) (2.2.8) 

where 

, ZTX.VW2 _ J ^ ^ (2.2.9),(2.2.10) 
S «/2 ' Z _ eVp 

The parameter 6{x,y) is a measure of potential eccentricity and is zero for Y = «/2. The major 

difference between the real space (RSP) method and the FFT method is that the RSP method 

uses an expansion of the propagator, exp {eA}, keeping only terms up to second order in «. The 

argument is that (2.2.8) itself is correct only to second order in e, and no accuracy should be 

lost by using an expansion of the propagator. The expression for the propagator thus becomes 

e,p(.A}...+.A + l « t t - 1 + £[£ + 4 rl 

Numerically one solves the equation 

f(x,y,e) - exp {eA} fi>,y,0) » (1 + eA + 1 e^ 2) f(x,y,0) (2.2.12) 

by dividing up the x and y axes in intervals of 5 and y respectively. Thus 
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f(x,y,<) « «x,y,0) + ^ {j [«x+«,y,0) + f(x-S,y,0) - 2f(x,y,0)] 

+-jj- [«x,y+7,,0) + flx.y-7,,0) - 2flx,y,0)]} 

- - ^ {-£" [«x+25,y,0) + «x-2S,y,0) 

- 4f(x+S,y,0) - 4f(x-5,y,0) - 6f(x,y,0)]} + 

+ "T [«x,y+2n,0) + n%y-2i,,0) - 4f(x,y+„,0) 

- 4f(x,y-ij,0) - 6f(x,y,0)] 

+ - | j [fl[x+3,y+i;,0) + f{x+5,y-T,,0) + f(x-8,y+r,,0) 

+ f(x-5,y-Tj,0) 

- 2f(x+5,y,0) - 2f(x-a,y,0) - 2flx,y+u,0) - 2«x,y-j;,0) 

- 4f(x,y,0)] . (2.2.13) 

The computation time for the RSP method becomes proportional to N, the number of sam­

pling points, while it is proportional to NLogN for the FFT method. Another advantage to a 

real space approach is that it can eliminate the need to use periodic extension when simulating 

images from faulted crystals. 

In the case of a potential having a mirror plane at z — e/2, one obtains 

4«v. 
4> (N«) - e 2 (1 +€A+I€2A2)e<v• (1 +sA+£e 2AV v'.... 

. . . (1 +*+ifW"' *(0) . (2.2.14) 

Thus the general multislice calculation becomes accurate to second order for this particular case 

by simply beginning and ending with half a phasegrating. 
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23 The validity of the Real Space Method 

Compared to the FFT method, the usefulness of the RSP method depends on the effect of 

throwing away terms of order (e3, A3) in (2.2.11). The error depends on the slice thickness« as 

well as the magnitude of the derivatives. Dy studying the effect of the operator exp {«A} on the 

function 4(x,y,0), one notices that in reciprocal space the effect is that of a pure phase-operator. 

*(g,0) - / / dxdy*(p,0)e-2"*' (2.3.1) 

*(g,«) • / / d x d y i e ^ O l e - 2 * * ' - M&Oye-"**1 (2.3.2) 

The expansion of the propagator to second order in * and A is equivalent to writing 

*(8,«) - (1 - ixXtg2 + ±irWg 4 ) *(g,0) (2.3.3) 

such that the intensity of the corresponding reflection after the electron has traveled the dis­

tance e, is 

1(8,0 • I *(g.012 " U + #*Wf] Kg.0} . (2.3.4) 

To make sure that high order reflections (large g-vector) are not significantly amplified through 

the action of the propagator, it is necessary to use a slice thickness « and an effective g m a x such 

that 

^7F g!« « 1 or XegLx « " ^ - 0.45 . (2.3.5) 

For a periodic potential, period a, of cubic symmetry, the only g-vectors flowed are of the type 

h k gx «• — , gy =- —; h,k integers. For a numerical calculation with N sampling points in the x-a a 

and y-direction, 6 - a/N and 17 - a/N. The equivalent expression to (2.3.4) is obtained by 

inserting (2.2.13) into the expression 

*(u,v,«) - 2*(x,y,£)e- 2" u x- 2 ' i v* 
my 

and letting n - h/a and v - k/a. 

This gives 
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I(h,k,e) = I(h,k,0)-{1 + ( - J ^ T ) 4 [COS 4*-h/N + cos 4*-k/N -

8 cos 2irh/N - 8 cos 2*k/N + 2 cos 2*(h+k)/N + 

2 cos 2x(h-k)/N + 10]2} . (2.3.6) 

For the special case of h - k, 

I(h,h,«) - l(h,h,0) • {1 + ( ^ T ) 4 [cos 4xh/N - 16 cos 2*h/N 

+ 12]2} . (2.3.7) 

By dividing the a-axis up to N intervals, one is limited to g , ^ - - ^ 2 - = —. This gives 

I ( lW,lw<) - I f l w l w O ) • {1 + ( - ^ ^ g2,,)4} (2.3.8) 

and correspondingly one must impose 

Xegiax « ~ ^ = 0.56 . (2.3.9) 

Equations (2.3.5) and (2.3.9) set an upper limit on the slice thickness and the number of reflec­

tions that can be included in the calculation. The slice thickness t and the number cf sampling 

points in each direction x and y must be chosen so as to satisfy 

K M » = X « g L « | • (2.3.10) 

3. Results of Computer Calculations 

In order to compare the real space method with the conventional multislice method using 

fast Fourier transforms, programs were written that could be run in either FFT or RSP mode. 

To make it possible to use different values for the slice thickness, a three dimensional potential 

was calculated through a 3 dimensional Fourier transform. The specimen is copper (lattice 

const 3.6 A) and the c-axis (z-dir.) was divided into 16 intervals such that a slice thickness of 

either 3.6 A, 1.8 A, 0.9 A, or 0.45 A could be used. To be able to compare the results of the 

two methods under various conditions, amplitudes and phases of selected reflections were plot-
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ted as a function of thickness. 

Figure 2-3 shows what happens when K s \tg£„ increases beyond the critical value of 

1/2. The reflections are 000, 200, 220,and 440 and the solid line is the result of the FFT 

method while the broken line represents the RSP method. Only amplitude vs. thickness is plot­

ted and the slice thickness is kept constant at 3.6 A. The maximum reciprocal lattice vector 

gnu, takes on the values of 1.4 A"1, 1.9 A"\ and 2.5 A"1 to give a value for K of 0.18, 0.33, 

and 0.S7 respectively. 

As K increases the discrepancy between the two methods decreases, and significantly, 

when K increases beyond its critical value the RSP method starts to diverge. For this particular 

value of K the divergence sets in at about 100 A and the intensity of the reflection 400 is seen 

to start growing almost exponentially. At about 100 A there is enough intensity in the 440 

reflection for it to be affected by the action of the propagator. The low order reflections are not 

affected directly by the propagator, although they are influenced by the interaction with higher 

order reflections through the crystal potential. 

Figure 2-4 shows the amplitudes and phases of various reflections for 3 different values of 

t and gnuu keeping K constant at 0.25. Notice that while in Figure 2-1 the accelerating voltage 

is 200 kV, it is now set at 1 MV. The FFT calculation is almost unaffected by changes in * and 

8max (the results for t - 3.6 A and g ^ = 2.8 A are shown here) indicating that for 

gmu > 2.8 A - 1 , no appreciable aliasing effects are introduced. However, the results of the RSP 

calculation vary significantly as gnu increases (« decreases), but the results of the RSP method 

approach that of the FFT method as the number of reflections included in the calculation 

increases. 

Figure 2-5 shows the result of the RSP calculation for three different values of the slice 

thickness, at constant gnu, equal to 2.8 A - 1 . Although the results vary somewhat depending on 

the slice thickness, reducing the slice thickness does not have a major effect; i.e., it does not 

cause the result of the RSP method to approach that of the FFT calculation. 
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Finally, Table 1 shows some computation times for the FFT and RSP methods. The 

times that are given are the computational times per slice for a slice thickness of 3.6 A at three 

different numbers of sampling points. Using e - 3.6 A obviously results in the fastest calcula­

tion since it is only necessary to calculate one Vp(x,y). The programs were all run on a CDC 

7600 computer. 

4. Discussion 

The primary motive behind the formulation of the real space method as an alternative 

way to do computer simulation of electron microscope images is that the RSP method appears 

to offer the following advantages: 

1) There is no error due to aliasing which might occur when using Fourier transforms. 

2) There is a possibility of eliminating the need to use periodic extension in faulted cry­

stals. 

3) The method might allow using a larger slice thickness, being correct to second order 

inc. 

4) A reduction in computer time is possible for the RSP method, the time per slice 

being proportional to N, the number of sampling points, rather than NLogN as for 

the FFT method. 

As to the first claim, it is true that there is no aliasing associated with the RSP method. How­

ever, when all the physically relevant reflections are taken into account in an FFT calculation, 

aliasing should not be a problem. Rather one can argue that if aliasing ever does affect the 

result, not enough reflections have been included to give a meaningful result anyway. Although 

there has been no attention given here to determining when aliasing begins to affect the FFT 

calculation, the above results indicate that for an accelerating voltage of 1 MV, no such effect 

occur* as long as gmu > 2.8 A - 1 . 
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In most cases it will be possible to avoid using a period unit cell in an RSP calculation 

and thus avoid the need to use a periodic continuation when simulating images of defective 

crystals. The choice to use periodic continuation or not depends on how one decides to calcu­

late the derivatives at the boundary of the x-y plane. 

With respect to the third possible advantage, it is instructive to examine the asymptotic 

behavior of the RSP method as the slice thickness is decreased and the number of sampling 

points is increased. The first condition imposed on the RSP method is that 

K. — Xcgmu « 1/2. Similarly, a limit on K is also imposed in the conventional multislice 

method. For example, Ishizuka and Uyeda [6] using a stationary phase method in deriving the 

multislice formula arrive at the condition K « 1. Lynch and O'Keefe [9] argue that to avoid 

upper layer line reinforcement, the parameter for the pseudo-layer interaction a(g) = -jXeg2 

should be less than O.S. This again corresponds to K < 1, however for safety, a value of 

Kam — 0.2 was used. Thus the major difference between the RSP method and the FFT 

method in this respect is that while an RSP calculation for K ^ > 1/2 beings to diverge, the 

corresponding FFT calculation does not In either case, care should be taken with respect to 

the size of the slice thickness and the number of reflections needed to satisfy the condition 

K < 1/2. 

However, in spite of similar conditions imposed on the two methods, it is seen from the 

results of the computer calculations that there are important differences between the RSP and 

FFT methods. Only as the slice thickness decreases and the number of reflections increases, 

does the result of the RSP calculation approach that of the FFT calculation. Furthermore while 

the FFT method is barely affected by changes in«and g„m (as long as e < 3.6 A and 

gnu > 2.8 A - 1 for V 0 — 1 MV), the RSP calculation is strongly affected. Reducing the slice 

thickness gives only minor changes in the result of the RSP calculation, which means that the 

number of reflections included in the calculation has the strongest influence on the result. 

Although the need to incorporate reflections beyond 2.8 A - 1 is not indicated for the FFT 
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approach, this may be necessary in the RSP approach to ensure that none of the relevant reflec­

tions become artificially amplified through the action of the expanded propagator. Thus 

instead of being able to use a larger slice thickness in the RSP method compared to the FFT 

method, it seems more likely that a smaller slice thickness is essential in order to accommodate 

the inclusion of a larger number of reflections. 

Finally, under identical conditions the RSP method offers a significant reduction in com­

puter time. For the range of commonly used N (number of sampling points), the reduction in 

computer time per slice amounts to a factor of 3-5. This represents a significant savings in 

computer time and could prove to be a great value when using smaller and slower computers. 

It must however be acted that the saving is in calculation time per slice for the same N and is 

only effective if the same slice thickness and the same number of reflections can be used in the 

two methods. 

S. Conclusion 

The RSP method gives results similar to the conventional multislice calculation when care 

is taken to include enough reflections. To keep within the domain of validity of the RSP 

method, it might be necessary to reduce the slice thickness as the number of reflections 

increases, as needed to maintain Xegmu < 1/2- If this condition is not satisfied, the RSP 

method will begin to diverge due to a near-exponential growth of higher order reflections. The 

divergence is due to the amplification effect of the expanded propagator and does not set in 

until a nominally low intensity has been scattered into those reflections having g-vectors with 

magnitude close to gnu- Although a similar boundary condition is imposed on the validity of 

the FFT method, going beyond the domain of validity does not cause any divergence. In order 

to obtain reliable results from the RSP method it might be necessary to include more reflections 

than required with the FFT method which consequently also requires smaller slice thicknesses 

and therefore increased computational time. Investigations into further improvements of, and 

extended applications of the real space method are currently under way. 



18 

6. References 

[1] R. Gronsky, in 38th Ann. Proc. Electron Microscopy Soc. Amer., San Francisco, CA., 

1980, G.W. Bailey (ed.), p.2. 

[2] W.O. Saxton, Advances in Electronics and Electron Physics, Suppl. 10, Academic Press 

Inc., New York, L. Marton (ed.), p. XI. 

[3] J.M. Cowley and A.F. Moodie, Acta Cryst. 10, (1957), p. 609. 

(4] D. Van Dyck, Acta Cryst. A34, (1978), p. 94. 

[5] B. Jap and R. Glaeser, Acta Cryst. A34, (1978), p. 112. 

(6) K. Ishizuka and N. Uyeda, Acta Cryst. A33, (1977), p. 740. 

(7] D. Van Dyck, Journal of Microscopy, 119, (1980), p. 141. 

[8] D. Van Dyck, Phys. Stat. Sol., B72, (1976), p. 321. 

[9] D.F. Lynch and M.A. O'Keefe, Acta Cryst. A28, (1972), p. 536. 



19 

Nx,Ny N - Nx-Ny tRSp[sec] tm-isec] 

20 400 0.017 0.063 
28 784 0.034 0.12 

40 1600 0.066 0.23 

Table 1. Computational times per slice, slice 
thickness, 3.6 A, for the FFT method and the RSP 
method at three different values of the number of 
sampling points N. 
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FIGURE CAPTIONS 

Fig. 2-1. Schematic representation of the scattering problem. The specimen is depicted as a 

potential distribution of U(r) which may be divided into a series of slices having 

thickness & 

Fig. 2-2. Schematic representation of the fast Fourier transform (FFT) algorithm used by Ish-

izuka and Uyeda [6]. 

Fig. 2-3. Amplitude vs. thickness for the reflections 000, 200, 220, and 440 for copper [001]. 

Accelerating voltage is 200 kV and the slice thickness is 3.6 A. The result from the 

FFT calculation is shown by the solid line, and the broken line represents the RSP 

calculation. In the first column gnu, = 1.4 A - 1 (K - 0.18), in the second column 

goax - 1.9 A - 1 (K - 0.33) and in the third column g,»» = 2.5 A"1 (K - 0.57). 

Fig. 2-4. Amplitude and phase (in units of*) VS. thickness for 3 sets of values of the slice 

thickness « and gn„. The values are (1) t - 3.6 A, gmm, = 2.8 A ~'; (2) * - 1.8 A, 

gnu, - 3.9 A - l ; (3) t - 0.9 A, g ^ =» 5.5 A "• labeled separately for the RSP 

method. These values gave essentially the same results for the FFT method, plotted 

as the single FFT curve. 

Fig. 2-5. Amplitude and phase (in units of r) vs. thickness for 3 different values of the slice 

thickness e; gnux is kept constant at 2.8 A~\e takes the values 3.6 A (-), 1.8 A (—) 

and 0.9 A (++). Calculation is by the RSP method. 
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Chapter 3 

On the Inclusion of Upper Lane Layers in Computational Methods 

In High Resolution Transmission Electron Microscopy 

Abstract 

Three different methods for computing scattering amplitudes in High Resolution 

Transmission Electron Microscopy (HRTEM) have been investigated as to their ability to 

include upper Laue layer (ULL) interaction. The conventional first order multislice method 

using fast Fourier transform (FFT) and the second order multislice method (SOM method) are 

shown to yield calculated intensities of first order Laue reflections with the use of slice 

thicknesses smaller than the crystal periodicity along the incident electron beam direction. It is 

argued that the calculated intensities of ULL reflections approach the correct values in the lim­

iting case of vanishing slice thickness and electron wavelength. The third method, the 

improved phasegrating method (IPG) does also in principle include ULL effects, but is severely 

limited as to choice of slice thickness and sampling interval. 

A practical way to use slice thicknesses less than the crystal periodicity along the incident 

beam direction is shown for both the conventional FFT method and the second order mul­

tislice method and tested on a spinel structure. It is also shown that the IPG method does not 

easily allow for a slice thickness different from the crystal periodicity in the beam direction. 

1. Introduction 

Because of the small curvature of the Ewald sphere most electrons scatter into directions 

given by the reciprocal lattice points lying in the zero order Laue zone [ZOLZ], see Fig. 3-1. 

Diffraction into upper Laue layers is a small effect, but is easily observed in Convergent Beam 

Electron Diffraction and High Resolution Transmission Electron Microscopy. The ULL reflec-
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tions do not contribute directly to the image in HRTEM since the objective aperture, whether a 

real aperture or a virtual aperture defined by the Envelope Function [1], exclude the contribu­

tion to the image from the ULL beams. However, because of dynamical scattering the ULL 

reflections will modify the intensity of the zero order Laue reflections and consequently affect . 

the image. Where ULL interactions are no longer negligible they must be included in the com­

putation of electron micrographs to give correct results. 

For practical reasons most image simulations in HRTEM employ a method based on 

multislicing. The specimen is sectioned into slices perpendicular to the electron beam and the 

electron wave function is calculated at every slice in a recursive way starting from the known 

electron distribution at the beginning of the first slice. Again for practical reasons, the crystal 

periodicity parallel to the electron beam is invariably chosen as the slice thickness provided it 

does not violate the criteria of validity for these multislice methods, see Chapter 2. 

Various methods to include the effect of the ULL have been suggested. These are: 

1. The use of slices smaller than the crystal periodicity parallel to the direction of the 

incoming electron beam [2j,[3j. 

2. Second order multislice, using potential eccentricity within the slice [4]. 

3. Improved phase grating method [5]. 

So far the success of these methods in including ULL interactions has not been proven. It 

is generally believed that as the variation of the crystal potential along the incident electron 

beam direction is taken into account, the ULL reflections are automatically included. The 

degree to which this is correct is the topic of this paper. 

The 200 reflections in MgAl 20 4 [001] are not allowed by the structure (spinel). However 

Steeds [6] has shown that they appear in experimental diffraction patterns and accredit their 

presence to scattering from the first order Laue layer (FOLZ). This being the case, the ability to 

account for their presence would serve as a test as to the inclusion of ULL effects in present 

multislice calculations. 
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Additionally, with the use of small slice thicknesses it is of utmost importance that one 

correctly takes into account the potential for each slice in each of the three multislice calcula­

tions. Different authors approach this pro' sm in different ways, not all equivalent and unfor­

tunately not all correct, and this paper will address this question. 

2. Theory 

The three multislice formulations that will be discussed are all approximations to the 

solution of the modified Schrodinger equation below [4] 

where 

2xmeX 

and 

(2.2) 

V is the crystal potential in volts. 

2.1 Conventional Multislice with Small Slice Thicknesses 

The conventional multislice formulation involves a recursive application of the following 

equation: 

#x,y,zm + £a) - P(x,y,Az) * [CHx,y,zm,Az) • *(x,y,zm)] (2.1.1) 

where P(x,y,z) is the free space propagator, and Q(x,y,z,Az) is called the phasegrating. The 

expressions for P and Q are: 

Q(x,y,zm,Az) - exp' 
Z.+AZ 

(2.1.2) iff J" V(x,y,z)dz 
Za 

P(x,y,Az) - - ^ e x p { ^ (x> + y>)} (2.1.3) 
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All information about the scattering potential is contained in Q and only reflections 

allowed by the Fourier transform of Q are possible. Similarly all the information about the cur­

vature of the Ewald sphere is contained in the propagator which keep track of the excitation 

errors of each reflection (in the zero order Laue zone), see Appendix A. 

If the crystal periodicity (c) parallel to the electron beam is used as a slice thickness i.e. 

Az - c, then only reciprocal lattice points in the ZOLZ together with the corresponding struc­

ture factors determine the allowed reflections, as shown below. 

It is customary to define a "projected" potential as follows : 

Z.+4Z 

\^x,y,zaM) s TT J" V(x,y,z)dz (2.1.4) 
Za 

- 7 7 / 2 V(h,k/)e • b c dz 

where V has been expressed as a Fourier series. The V(h,k/)'s are calculated by performing a 

sum over all atoms within the unit cell 

h 2 _ 2 l r i ( J » i + j 2 L + < * ) 

V(h,k/) - 2 j r m e V e SmicOe " b c dz (2.1.5) 

where (x̂ ŷ Zj) is the position of atom no. i with an electron scattering factor 9~f V c is the 

volume of the unit cell. Performing the integral gives ,as also pointed out by Self et al. [7]: 

V^y âz) - -J- 2 V W ^ ' + ^ ^ (2.1.6) 
az ig^ « y c 

where Zmo a z + Az/2 

Setting Az - c/n gives the following expression for the projected potential 

Vp(zm,Az-c/n) - S V ( h , k , ^ ) e 2 ' r , < T + b > ^ £ Z n e 2 ' i f t - / c (2.1.8) 
hxt « y n 

With n - 1, (2.1.8) reduces to 

V„(zm,Az-c) - S V(h,k,o)e » b (2.1.9) 
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As can be seen from the expression above, only the components of the potential with a 

reciprocal vector lying in the ZOLZ contribute to the scattering. Thus no ULL effects can enter 

in the calculation. If, however n is not 1, the expression for the projected potential is a sum 

over all reciprocal vectors with a weighting factor proportional to the Fourier coefficient of the 

crystal potential. In principle this should allow for dynamical scattering between all (hkl) 

reflections and thus automatically account for ULL effects. Whether this is accurate or not will 

be addressed later in paragraph S. 

Previously the projected potential has been calculated in several ways: 

i) Calculate the projected potential for a slice of thickness c. If a slice thickness of c/n 

is to be used, then simply divide the previously calculated potential by n and use 

this as the projected potential for each slice. 

ii) Divide the unit cell into n volume elements which may include atom section-it; 

The projected potential for each slice is calculated from the projection of the atoms 

contained within the slice according to (2.1.S). The sum is carried out over the 

atoms contained within the slice. 

iii) Calculate a three dimensional crystal potential by summing over V(hkl) and using a 

3 d. Fourier transform to find V(x,y,z). With modern computers the integral over V 

from z to z + Az can easily be performed. 

The first approach is obviously incorrect. The second method would be correct if it where 

not for the fact that the crystal potential is periodic in c and not in c/n. The third method is 

correct, but is impractical in cases where large unit cells are considered because of the huge 

amount of computer memory (1283 - 8Mbytes) that is needed to store a three dimensional 

potential. 

A practical method to calculate the projected potential for each slice is based on (2.1.6) 

and thus doesn't require additional memory. Starting from (2.1.6) one calculates the projected 

potential by first summing over £. One can write 
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Vp(x,y,zm,n) - 2 V'^„(h,k)e a b (2.1.10) 
h,k 

where 

V^n(h,k) = S Vth . l c .O-^fS .e 2 "'^ (2.1.11) 

This amounts to modifying all V(h,k,0) by adding in a contribution from the ULL, as shown in 

Fig. 3-1. Thus reflections that were forbidden by V(h,k,0) may now be allowed by V'(h,k,0). 

The intensity of forbidden reflections will be zero for thicknesses corresponding to a multiple of 

unit cell distances c, only if there is a complete cancellation from the contents of the unit cell. 

This yields an effective algorithm for dividing the specimen up into slices smaller than c. 

First, the coefficients V(h,k,l) should be formed by summing over all atoms within a bona fide 

unit cell with a periodicity c along the incident beam direction. Secondly, if there are n "sub-

slices", it is necessary to calculate n separate phasegratings or projected potentials according to 

(2.1.8), where for a given n, only Z m o will change from sub-slice to sub-slice. The most efficient 

way to generate the n phasegratings depends on available computer memory. 

2.2 Second Order Multislice 

This method goes one step further and aspires to include ULL effects within the slice. 

Developed by Van Dyck [5] it introduces the concept of potential eccentricity within each slice. 

The equivalent to (2.1.1) is the recursive operation (see Chapter 2, equation 2.2.8): 

««*.+*) - ^l+i)\^^-t)y'^y,za) (2-2.1) 

where the potential eccentricity 5 is given as 

5 - Mx,y) * **%** (2-2.2) 

The average quantity z is defined as 

Im + iX 

z"ni(x,y) s J (z - z m ) V(x,y,z)dz (2.2.3) 
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In the evaluation of the real space method (Chapter 2), the above recursive operation was 

used to calculate both projected potentials and potential eccentricities from the 3-dim. crystal 

potential as outlined in 2.1 iii). However, the expressions l/2(l+5)Vp and 1/2(1 —5)Vp can be 

calculated in a way similar to the procedure described in 2.1 for calculating the projected poten­

tial as shown below: 

It is useful to first calculate the quantity 

z.+Az 
—VpZ m a -^ j (z-Zm) V(x,y,z)dz 

-^ J 2<z-*m) V(h,k,/)e • b c dz (2.2.4) 

Setting Az - c/n gives 

- ^ - 2 e ^ ^ S V O U t f l ^ e * * ^ (*-*•* - ^ ° - ) (2.2.5) 

= SV!(h,k)e • b 

u 
One can now write: 

1(1 +«)VP - ^ « 2 V^(h,k)e 2 " < T + b ' (2.2.6) 

zV„ 2"<¥+£> I(l-«)Vp-Vp--^-S[V'(h,k)-V?(h,k)]e • b (2.2.7) 

13 Improved Phasegrating Method 

This method, again suggested by Van Dyck [5], is based upon a modulated phasegrating. 

The effect of the potential is considered larger than the effect of the propagator which is treated 

as a perturbation. In this case the wavefunction is written 

#x,y,z) - exp |i<r/V(x,y,zOdz' J <Kx,y,z) (2.3.1) 
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Substituting the above expression into the equation for (ft (2.1) gives 

0(x,y,z) = 0(x,y,o) + |^Jdz'{vL

20(z') + *6f7£V#fy&) (2.3.2) 

+ 2wAzV1Vp(z') • VL9(Z0 + (wAz)2 6(ztyVxVp(zOp } 

which yields a first order perturbation result for theta 

fl(z) w 9(o) + - ^ | Vi9(o) + i<rAzfl(o)J'dz' (2.3.3) 

l^Vj?V p + iffAz-^-(VxVp)2] + ^ A z V ^ o ) • Jdz- £ VjVp J 

A practical application of (2.3.3) can be formulated as follows: One considers a multislice 

approach where the specimen is divided into N slices perpendicular to the incident electron 

beam. The wavefunction after the first slice of thickness Az is written 

<tfx,y,Az) - exp{iaAzVptAz)}0(Az) (2.3.4) 

For N slices of thickness Az (2.3.4) becomes 

«(x,y,NAz) - exp j i* / V(x,y^) U N A Z ) (2.3.5) 

where 0 (NAz) is a recursive amplication of (2.3.3). 

The major problem using (2.3.3) above comes from solving for the integrals over Vp(z). 

However, proceeding as before, one gets 
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Z.+AZ * V P ^ , * V 
The expression for J [(-r-2-)2 + (~zr) 2 l d z *s 8 i v e n ^ 

h.k a o* hjc 
hMf 

_ Jn«-/c siny/'/n _ w-zwc sin *<7n . , I 
(2.3.9) 

Equation 2.3.9 is complicated by the crossterms contained within the [ ]. In the limiting case 

Az/c goes to zero (2.3.9) simplifies to 

+ | 2 ^ V ( h , k , 0 ) e 2 * , ( T + b ) J J (2.3.10) 

The other simplifying case is Az - c. In this case one obtains as follows 

l'JW.-^.-M'^ + g) (2.3,„ 

x [ ( i + T ) V < h - t 0 ) - S 0

v < h * ' > 2 f e ] 

7["£"-**£* ' b (H (*+^ )'^^"-S v a ,* / >^?J ( 2 3 1 2 ) 

{ T ^ - 2xi2e2^^,(^[(l+̂ )V(h,k)0) - W f l i ] (2.3.13) 

7[<1**" " [ ' + ^ L ( 1 + T L ) , [ | 2«(^)V(h ,k ,0)e 2 ' i ^ + J g ' ) ] 2 (2.3.14) 

+ 2 | S 2«(|)V(h,k,0)e2"i<T+ b ' J | S 2«(£)e 2* i (^+ b ' 2 (^J^mU) 
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( i + ^ ) [ | 2«(^)V(h,k,0)e2* i (^+J§L)] 

r h 2«(^+^L) j "I 

3V 
The expression for the integral J"(—^dz follows from (2.3.14). 

3. Procedure 

Computer programs to implement the various methods were written according to the 

theory outlined in paragraph 2. and applied to the test case of a crystal of MgAl204. In the case 

of the improved phasegrating method only Az - c was considered since this was the only case 

that allowed the expression given by (2.3.9) to be calculated in a reasonable time. As with the 

conventional multislice method and the second order multislice method, slice thicknesses of 

8.08 A, 4.04 A, 2.02 A and 1.01 A were used, corresponding to n - 1,2,4 and 8 respectively. 

4. Results 

The results of the computations are given in Figs. 3-2 through 3-5. Figure 3-2 shows 

amplitudes for the central beam and the reflections 110, 200, 220 and 400 for a slice thickness 

of 8.08 A, 2.02 A and 1.01 A calculated by the conventional multislice (FFT) method, while 

Fig. 3-3 shows the corresponding results calculated by the second order multislice method. The 

accelerating voltage is 200 kV and all reflections out to 4.0 A' 1 were included in the calcula­

tions. The improved phasegrating method railed to produce reasonable results for this structure 

in the case of Az - c and g,^ - 4.0 A - 1 (see Discussion). 

The 110 reflection is forbidden in the classical sense by the FCC structure and has zero 

amplitude for any thickness when Az - c. The 200 is forbidden by reflections within the ZOLZ, 

but is claimed to be allowed through scattering from the first oider Laue layer [6J. The calcula­

tions however do not show any significant amount of scattering into the 200 reflection 
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(compared to the 110 reflection). Within the unit cell both the amplitudes of the 110 and the 

200 reflection deviates from zero, (n - 4,8) and only at thicknesses corresponding to multiples 

of c, do they become negligibly small. The reflections are "forbidden" because scattering from 

one part of the unit cell interferes destructively with scattering from another part of the unit 

cell. Only if the cancellation is complete, which would require that the electron wavefunction 

for all scattering purposes remains the same throughout the cell, does the amplitude go to zero. 

Figures 3-4 and 3-5 show four diffraction patterns calculated from a 300 A thick crystal of 

MgAl204. In a) the slice thickness is c, while in b), c) and d) the slice thickness is c/2, c/4 and 

c/8 respectively. The result in Fig. 3-4 are for the FFT method while the results in Fig. 3-5 are 

for the SOM method. 

5. Discussion 

The failure to give reasonable results by the improved phasegrating method is caused by 

the large slice thickness required to perform the calculation and is discussed in Chapter 4. 

Because of the necessary large gma that must be used, the computation cannot be performed 

within the domain of validity for this method. The results show in Chapter 4 that the criteria 

for validity of the IPG are more severe than that of the real space method. 

Both the first order FFT method and the second order multislice method fail to indicate 

any scattering into the 200 reflections from out of the ZOLZ. This does not mean that the FFT 

or the SOM methods do not include upper Laue layer effects, only that they fail to account for 

the experimentally observed intensities of the 200 reflections. It is not clear whether these 

intensities are due to multiple scattering off the first order zone (i.e. [1,25,1] + [1,25,1]) or due to 

the effect of the higher order zones directly through the modified Fourier coefficient V'(200) of 

the crystal potential. A systematic study of the behavior of the diffracted beams with beam tilt 

is under way and should hopefully clarify this. 

The circle of excited reflections showing up in Figs. 3-4a and 3-5a are not first order Laue 

reflections as their location in reciprocal space would indicate, but ZOLZ that aie excited 
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because the excitation error associated with these reflections become equal to 1/c corresponding 

to the Ewald sphere cutting through the first order Laue zone. At this point the phase in the 

propagator becomes 2x, equivalent to an excitation error of 0. This occurs whenever £(h,k,0) -

1/Az. In the case of n - 2,4,and 8 the "pseudo" ULL reflections correspond to scattering vec­

tors larger than the maximum reciprocal vector included in the calculations and are no longer 

visible. However a new set of reflections located on the same circle in reciprocal space now 

start to appear and this time they correspond to actual first order Laue reflections, Figs. 3-4c,d, 

and 3-5b,c,d. Figure 3~4b does not show any ULL reflections, indicating that in the case of the 

FFT method a slice thickness of half a unit cell is insufficient to give ULL effects. This is not 

true for the SOM method which show ULL reflections even for n - 2 (Fig. 3-5b). This can 

only be attributed to the use of potential eccentricity which allow for modulations within the 

slice. Thus even in the case of n - 4 and n - 8, where both methods show the presence of ULL 

reflections, it must be concluded that the SOM method is the more accurate of the two. 

The degree of accuracy to which the intensities of higher order reflections have been cal­

culated still remains to be discussed. Only as the wavelength and the slice thickness approach 

zero do the first order and the second order method accurately include the interactions of upper 

Laue layers. As pointed out in paragraph 2 the information about the scattering potential is 

contained in the phasegrating while the propagator keeps track of the excitation errors. Physi­

cally, ULL scattering occurs when the Ewald sphere approaches the first order Laue layer as 

shown in Fig. 3-1, that is when the excitation error for the corresponding reflection becomes 

small. From (2.1.11) and (2.2.5) it is clear that the contribution of a particular (hkl) reflection 

is proportional to V(hkl)» the Fourier coefficient of the potential, and does not depend upon its 

excitation error.In the case where the Ewald sphere passes through an ULL reflection, say 

(1,25,1), V( 1,25,1) would be summed into V'( 1,25,0) with a weighting factor which does not 

depend on #(1,25,1). Additionally the remaining V( 1,25,1) are all summed into V'( 1,25,0) 

regardless of their excitation error. In effect the phasegrating "sees" a flat Ewald sphere cutting 

through eveiry section of the reciprocal space. When the phasegrating is convoluted with the 
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.propagator the contribution of V'( 1,25,0) depends on {(1,25,0) and not on {(1,25,1). The error 

in the phase of the propagator for a first order Laue reflection depends on the slice thickness 

and the electron wavelength and is shown in Appendix A to be 2x\2Azg.2/c. As the wavelength 

and slice thickness decreases the propagator approaches its correct value and the accuracy to 

which the ULL are included in the FFT method and the SOM method increases. 

The improved phasegrating method does not separate the effect of the potential and the 

Ewald sphere (through the wavelength) and should thus better allow for the inclusion of ULL 

interactions. However, the restriction on wavelength, slice thickness and sampling interval 

associated with the IPG, see Chapter 4, excludes the use of this method on the given problem. 

The Ewald sphere cuts through the first ULL at approx. 3.1 A - 1 which sets a lower limit on 

gnax, the maximum reciprocal scattering vector that must be included in the calculations. In 

order to produce reasonable results, it is necessary to use a slice thickness less than 1 A, but the 

complexity of the method does not readily allow for a slice thickness less than c (8.08 A). 

6. Conclusion 

Of the three methods that are discussed in this paper, the second order multislice method 

is the most suited for inclusion of ULL reflections. The use of potential eccentricity permits 

the use of larger slice thicknesses without sacrificing the inclusion of ULL effects. The accuracy 

of the calculation of higher order reflections depends on both slice thickness and electron 

wavelength and increases as the thickness of the slice and the wavelength approach zero. This 

is true for both the FFT method and the SOM method. The IPG method contains 3 dimen­

sional information even when the slice thickness equals the crystal periodicity in the electron 

beam direction, but the method is impractical under most conditions because of severe restric­

tions on sampling interval and slice thickness. 
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FIGURE CAPTIONS 

Fig. 3-1. Schematic drawing showing a segment of the Ewald sphere and its relation to the 

reciprocal lattice. The zero and the first order Laue zones art indicated in the figure. 

Large open circles represent reflections lying in the zero order zone, while small open 

circles indicate the "column" of reciprocal points whose Fourier coefficients of the 

potential are summed into the Fourier coefficient of the corresponding zero order 

reflection to give a new effective potential. 

Fig. 3-2. Amplitude vs. thickness for the reflections 000, 110, 200, 220, and 400 for MgAl204 

[001]. Accelerating voltage is 200 kV and the slice thickness is 8.08 A, 2.02 A and 

1.01 A corresponding to n - 1, 4, and 8 respectively. Calculation is by the FFT 

method. 

Fig. 3-3. Same as for Fig. 3-2 except that the calculation is by the SOM method. 

Fig. 3-4. Computed diffraction patterns for a 300 A thick specimen of MgAl204. The calcula­

tion is by the FFT method and the slice thickness is indicated by the value of n 

(Az - 8.08 A/n). 

Fig. 3-5. The same as for Fig. 3-4 except that the calculation is by the SOM method. 

Fig. 3-6. Schematic drawing illustrating the central beam (kg) and a scattered beam (k,) 

traversing a slice of thickness Az. 

Fig. 3-7. Schematic drawing showing two scattered beams; one corresponding to scattering in 

the zero order zone and one corresponding to scattering into the first order zone. 
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Chapter 4 

On The Improved Phasegrating Method 

Abstract 

A new method for computing scattering amplitudes in High Resolution Transmission 

Electron Microscopy has been examined. The method which is called the Improved Phasegrat­

ing (IPG) method is shown to produce reasonable results only for very small specimen 

thicknesses and diverges for thicknesses larger than 20 A - 40 A in copper [001] for accelerating 

voltages between 200kV - 1MV. The validity of the method is discussed and is shown to 

depend on electron wavelength, slice thickness, the number of reflections that are included in 

the calculation and the choice of specimen. It is also shown that the method does not readily 

allow for slice thicknesses smaller than the specimen periodicity along the incident electron 

beam direction. 

1. Introduction 

The ability of present multislice calculations to include upper Laue layer interactions were 

studied in chapter 3 and it was shown that the Second Order Multislice (SOM) method allows 

for a larger slice thickness than the conventional first order multislice method employing fast 

Fourit • transforms (the FFT method) while still including ULL effects. In order to include 

ULL eiiects into the SOM method and the FFT method it is necessary to use slice thicknesses 

smaller than the crystal periodicity (c) in the electron beam direction. The improved phasegrat­

ing method proposed by Van Dyck [1] allows for the inclusion of higher order zones even when 

the slice thickness is equal to c. However, no results using this method have been published 

and it is not clear that the IPG method presents an alternative to existing methods. This work 

was undertaken in a hope to shed light on the applicability of the method. The model system 

is a specimen of Cu [001], and the formulation presented in Chapter 3 is used. In order to facili-
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tate the reading, some of the theory in Chapter 3 is repeated below. 

2. Theory 

The improved phasegrating method is an approximate solution of the following modified 

Schrodinger equation [2]: 

4 £ - ioV* + -£- Vj.2* - i<rV* + A* (2.1) 

where 

_ 2«neX ._ -

and 

and the wave function ty has been written as a modulated plane wave of the form: 

W) - Hi) e*" (2.4) 

V is the crystal potential in volts. If the effect of the potential is larger than that of A, it is 

appropriate to start from an exact solution in V and treat A as a perturbation. Van Dyck [1] 

suggests writing the wave function as a modulated phasegrating of the form: 

#x,y,z) - exp | w/V(x,y,z')dz' \ 0(x,y,z) (2.5) 

which, after substitution into (2.1) yields: 

*(x,y,z) - *x,y,o) + £ j d z ' | v J ? * ( z ' ) + w A z ^ V p ^ z O (2.6) 

+ 2iffAzVxVp(zO • Vj.flz') + (kAz)2 ^ T L V t f t f \ 

The first order perturbation result for theta becomes 

fl(z) *» d(o) + ̂  { Vx

2<Ko) + urAz*(o) Jdz' (2.7) 
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[ ^ V i V p + iaAz^CTLVpfl + 2iffAzVx<Ko) • JoV ^ V X V P J 

It was shown in Chapter 3 that the integrals appearing in (2.7) can be expressed as follows: 

£ / ViVpoV - - O r f g e ' b ( j f + ̂  J (2-8) 

i T ^ « - «J.M ,* +* ,(|) JVOU f̂e ( e ^ ^ - l] (2-9) 

^ T ^ <* - « j . ^ ^ y v O * ^ (e—*^ - l] (2-10) 

/o 2̂ •»> / hh' , kk\ _ W2(-r + "^")e 

hi a °^ 
h'.k' 

_ -2«*z-/c sinW/n _ r,irz-/c sin y/'/n , . 
r «//n */7n J (2-11) 

where the slice thickness Az is equal to c/n. Equation (2.11) simplifies in two cases : 

i) the limit Az -• 0 

+ [Sfvth.k.Oie « b J J (2.12) 

ii) n - 1 

*. - ay 

hh' kk7 2«(i±^«+4±Sly) 

hi 
h'.k' 



51 

+ 2 

+ (: 

i T ^ ^ " ti+T { 1 + ^ ) l [ | 2xi(|)V(h,k,0)e 2* i (^ +^ )] 2 (2.13) 

S2xi(|)V(h,k,0)e « b J|S2*i(7)e a I^^W 

(^^)[s2« (f )V (h ) k,0)e2^+^ ,] 

x|j 2* i (7 ) e M^^^J 

The equivalent expression for the derivative with respect to y follows from (2.13). 

2.1 Validity of the Improved Phasegrating Method 

Equation (2.7) represents the second term in & aeries expansion for theta, the first being 

6Q - 0(o). In order to get a feeling for the error introduced by the truncation of the series it is 

instructive to look at the Fourier transform of (2.7). To simplify the expressions one can 

include only terms where € «• 0 and ignore terms with € * 0, that is ignore the effect of higher 

order zones. Using (2.8) through (2.11) one obtains the following for the Fourier transform of 

theta. 

tf(g,zm+Az) - tf(g)zm) - i*AAz{g20(g,zm) (2.1.1) 

+ (iffAzXi + -^)2g' 2tf(g-g',z n i) V(g,0) 

+ (urAz)2 [ 1 + ^ ( 1 + ^ ) ] J g"-(g--g") tfg-g'.zn,) 

X V(g",0) V(g-"g",0) 

+ 2(i f fAzKi+- 2g)Sg'(g-g0 flg-g'.Zm) V(g-,0)} 

As seen from the expression above, the convergence of the series depends on the wavelength, 

slice thickness, strength of the crystal potential and the maximum reciprocal wavevector ( g ^ ) 
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included in the calculation. By inserting the first order perturbation result for theta into (2.6) it 

is possible to get a second order result for theta and obtain the equivalent of (2.1.1). However 

the higher order expressions quickly become very complicated and it is difficult to obtain a use­

ful criterion for the validity of the expansion. The part of the expansion that does not involve 

the potential goes as 

flgAn+Az) - (1 -ixXAzg2 + !SMS£ g 4 } a ^ ) ( 2 1 2 ) 

and this corresponds to the expansion of the propagator that shows up in the formulation of the 

real space (RSP) method in Chapter 2. However since there is no such requirement that the 

intensity of each 0(h,k) remains unchanged from slice to slice, only that 2 i #(h,k)!2 = 1. one 
h,k 

cannot apply the same condition as for the RSP method. Also there are terms involving the 

strength of the crystal potential which complicate matters. In the limit that the interaction 

parameter a or the strength of the potential go to zero the criterion of validity becomes 

K • AAzg2 « 1/T (2.1.3) 

That this is not a sufficient restriction will become evident from the results in paragraph 4. 

3. Procedure 

The theory outlined in the previous paragraph was implemented in computer programs 

and run on a CDC 7600. The model system is copper in the [001] orientation and the calcula­

tion was performed for an accelerating voltage of 200 kV and lOOOkV. Because of the practical 

problems associated with the calculation of the expression in (2.11), the only slice thickness 

considered was 3.6 A, which corresponds to the specimen periodicity in the incident electron 

beam direction. The difficulties associated with use of a smaller slice thickness are discussed in 

paragraphs. 
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4. Results 

The results consist of a series of comparisons between the conventional (FFT) multislice 

method, the phasegrating method and the improved phasegrating method and are shown in 

Figs. 4-1 through 4-3. In Fig. 4-1 the accelerating voltage is 200 kV while in Figs. 4-2 and 4-3 

the voltage is 1 MV. As seen from the figures the amplitudes calculated by the IPG method 

begin to diverge after approximately 20 - 40 A depending on X and g n u x . In Fig. 4-1 and 4-2 

the slice thickness is equal to c allowing the inclusion of higher order zones into (2.11). The 

contribution by terms given by € # 0 is essential for including out of the zone effects, but is 

small compared to the term t, (' - 0 and was ignored in (2.11) such that amplitudes and phases 

in the case of Az < c could be computed. Thus Fig. 4-3 shows amplitudes calculated for three 

different values of g m i x (2.0 A - 1 , 2.8 A"1 and 4.0 A"1) while varying Az (n) as to keep the value 

of K constant (0.126 and 0.063). The results indicate that varying the slice thickness while 

keeping the wavelength and g,^ constant has little effect. 

5. Discussion 

It is clear from Figs. 4-1 through 4-3 that the improved phasegrating method fails to give 

reasonable results beyond a thickness of 20 A - 40 A for the combinations of wavelength, slice 

thickness and sampling interval that were used. As expected the method works better for 

higher voltages where the wavelength gets smaller and the propagator becomes less important. 

Surprisingly, reducing the slice thickness does not appear to increase the accuracy of the 

method as (2.1.1) would indicate, although the results in Fig. 4-3 are slightly inaccurate since 

the contribution of higher order zones were ignored in the term involving the square of the 

derivatives. Apart from wavelength and slice thickness, the convergence of the expansion 

depends also on sampling interval (g^) and on the strength of the crystal potential. The 

dependence on sampling is clearly seen in the results, where extending the calculation further 

into reciprocal space causes the amplitudes of diffracted beams to diverge at a decreasing thick­

ness. The Fourier coefficients of the potential are determined by choice of specimen and was 
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not varied. Copper with an atomic number of 29 represents a compromise between heavy and 

light elements and the results serve as a useful guide for other elements. 

By neglecting the terms involving the potential it is possible to set an upper limit on the 

value of K for which the expansion for theta converges. This limit corresponds to K ^ - 1/3, 

but it is clear from the calculations that when the potential is included more severe restrictions 

are imposed, restrictions that now also depends on the the crystal potential. However it is very 

difficult to find a useful expression in this case. 

Because the method rapidly diverges, it might only be of academic importance to consider 

the extent to which upper Laue layer effects are included in the improved phasegrating method 

(IPG). Compared to commonly used multislice methods that rely on small slice thickness to 

include higher order interactions, see Chapter 2, the IPG method includes higher order effects 

also in the case where the slice thickness is equal to the crystal periodicity along the incident 

electron beam direction. However because of the crossterms that appear in (2.11), the method 

becomes impractical when n is different from 1. In the case of n =£ 1 the calculation of (2.11) 

requires a minimum of 109 operations (convolution over 6 indices) for 323 sampling points, 

and needs to be repeated n times. Even with the use of modern day super computers this is 

hardly a small calculation. 

6. Conclusion 

The results show that due the limited range of validity of the improved phasegrating 

method it is not suitable for computation of scattering amplitudes in HRTEM. Even though 

the results in Fig. 4-3 show very little dependence on Az, the validity of the method depends on 

the slice thickness and the calculation should improve with smaller slice thicknesses. However 

computational considerations prohibits the proper use of arbitrary slice thickness and prevents 

further investigation into ihickness dependence. An upper limit of K - AAzĝ u = 1/T is 

necessary to give convergence to the series expansion for theta, but it is clear that the sampling 

interval in combination with the strength of the crystal potential is more important in 
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determining the conditions for convergence. However an exact expression for convergence was 

not found. 
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FIGURE CAPTIONS 

Fig. 4-1. Amplitude and phase (in units of x) vs. thickness for the reflections 000, 200 and 440 

in copper [001]. Calculations are performed by the conventional (FFT) multislice 

method (-), the phasegrating (PG) approximation (++) and the improved phasegrat-

ing (IPG) method (**). Accelerating potential is 200 kV and the crystal potential has 

been sampled out to 2.0 A - 1 . The slice thickness is 3.6 A corresponding to n - 1. 

Fig. 4-2. As in Fig. 4-1 except that the accelerating potential has been set to 1 MV. 

Fig. 4-3. Amplitude vs thickness for the reflection 200 for two sets of values of K. In the first 

column K - 0.126 and in the second column K. - 0.063. The value of g m M has been 

set to 2.0 A"1, 2.8 A - 1 and 4.0 A - 1 in the first, second and third row respectively. 

The slice thickness required to keep K constant is indicated by the value of n 

(Az - 3.6 A/n). 
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Chapter 5 

The Effect of Amorphous Surface Layers on Images of Crystals 

In High Resolution Transmission Electron Microscopy 

Abstract 

The effect of a surface layer of amorphous silicon dioxide on images of crystalline silicon 

has been investigated for a range of crystal thicknesses varying from zero to 2\ times that of the 

surface layer. It is shown that an amorphous surface produces fluctuations in image contrast 

which introduces difficulties in the interpretation of defects in very thin specimens. These diffi­

culties are less pronounced but still present in thicker crystals. It is also shown that an edge 

smoothly approaching zero thickness produces an image that changes gradually from crystalline 

to amorphous character. 

Introduction 

It is well known that most materials under investigation in the electron microscope form 

a surface oxide layer or an amorphous layer which can affect the resulting image, see Fig. 5-1 

and Fig. 5-2. In fact, a noisy image is often attributed to surface effects without further expla­

nation. Furthermore, very little work has been done to evaluate the extent to which an amor­

phous surface actually influences the nature of the image. 

Krakow [1] calculated the image of crystalline gold showing reasonable agreement with an 

experiment image when the top gold layer was substituted with a layer of randomly arranged 

gold atoms. However, when the same substitution was made for the bottom layer the com­

puted image lost its crystalline appearance completely. In another study, Anstis et. al. [2] calcu­

lated the effect of an amorphous surface layer on the images of a 30 degrees partial dislocation 

in silicon. They showed that the amorphous surface makes it impossible to distinguish between 
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the shuffle and glide models of the dislocation core in a 28 A thick crystal when the surface 

layer was 20 A thick. Similar results have been quoted by Bourret et al. [3]. 

The object of the present research program is to fully understand the contribution of such 

surface layers to high resolution image contrast, examining in particular the effect of amor­

phous layer thickness relative to the thickness of the crystal on which it resides. The problem 

of specifying suitable atomic coordinates in an amorphous material is addressed by choice of a 

model system, amorphous silicon dioxide on silicon, for which atomic coordinate data exist, [4]. 

Calculations are carried out which simulate high resolution electron micrographs of a single cry­

stal of silicon and then a 2 - 9 bicrystal of silicon, the latter having a fully specified periodic 

defect structure [5]. Atom coordinates for the 2 - 9 grain boundary were obtained by relaxation 

of a coincident Site Lattice [6]. Images of crystals with different thicknesses are simulated for a 

constant thickness amorphous oxide film and compared to the case where no oxide is present 

Image Calculation Procedure 

The images presented in this work were simulated by a multislice computation routine [7] 

written to run on a CDC 7600 such that any number of different slices and slice thicknesses 

could be used. In addition, any number of sampling points up to 2562 can be used and these 

can be arranged in any square or rectangular array. All adjustable microscope paruneters were 

set to values characteristic of a JEOL JEM 200CX at Scherzer defocus; c, - 1.2 mm, Af-

-660 A, delta - SO A, alpha - 0.S mrad. 

Atomic coordinate data for the amorphous silicon dioxide layers was taken from the work 

of Bell and Dean [4] who used a random network theory model with a mean Si-O-Si bond angle 

of 153 degrees. They generated the positions of 614 atoms within a volume element of 

31X 23X22 cubic Angstroms; this model closely matched the experimental radial distribution 

function to 8 A detail. These atom positions were used in the calculations by dividing the 

above volume element into 7 slices of 3.14 A thickness each, and using only the middle S slices 

for a total layer thickness of 15.7 A. 
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An oxide film was then hypothetically attached to a single crystal of silicon in [110] orien­

tation by covering an area of SXS crystalline unit cells (Fig. S-3). This required the selection of 

a rectangular slab of oxide with dimensions 27.1 A by 19.2 A which retained the same thickness 

of 1S.7 A. Oxide films on the top and bottom surfaces were positioned such that they did not 

artificially superimpose; this was accomplished by simple translation of the bottom layer by 

a/2[l 11] with respect to the top layer. 

The potential from each layer of material in this sandwich was then calculated from its 

corresponding electron scattering factors out to a maximum reciprocal space dimension of 

3.0 A - 1 . This corresponds to an array of 182X114 sampling points such that every fifth sam­

pling point along any direction was a Bragg reflection from the silicon matrix. 

The oxide film attachment to the silicon bicrystal was accomplished in a slightly different 

way. The model of the silicon bicrystal shown in Fig. 5-4 covers an area larger than the size of 

the oxide such that a rectangular slab with oxide in the center had to be used. Two surface 

oxide layers were created, one 1S.7 A thick and another 9.4 A thick. With the 9.4 A thick sur­

face oxide, unique top and bottom surface layers were constructed from the model of the oxide 

by simply using different slices for the two layers, whereas in the case of the 1S.7 A thick oxide 

the top and the bottom layers were rotationally displaced 180 degrees. Calculations of the 

resulting sandwiches were performed using 25oX 128 sampling points. 

Results 

The results of the calculations are shown in Figs. 5-5 through 5-9. In Fig. S-S a set of 

computed images of the amorphous silicon dioxide is shown together with the corresponding 

projected potentials. Figure 5-6(a) shows a set of images calculated for perfect silicon with 

thickness varying from 0. to 38.4 A and a constant total thickness of amorphous top and bot­

tom surface layers of 31.4 A. The image of perfect crystal with no surface oxide varies negligibly 

with thickness in the range 8 - 38 A and is shown in Fig. 5-6(b) for comparison. 
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Figure 5-7 shows the projected potential for the silicon bicrystal, while Fig. 5-8 and 

Fig. 5-9 show computed images. The 2 - 9 grainboundary is a pure tilt-boundary with a rota­

tion angle between the two grains of 38.9 degrees. The boundary plane is (122). Figure 5-4 

shows a schematic model of the unit cell used in the calculation. The thickness of the silicon 

.varies from 8 - 38 A and the total thickness of amorphous top and bottom surface layers is 

31.4 A and 18.8 A respectively. These images should be compared to the set of images calcu­

lated for silicon 2 - 9 without surface oxide shown in Fig. 5-8. The rotational displacement 

used in the construction of the bottom surface oxide layer 15.7 A thick produces an artificial 

mirror-symmetry when the top and bottom layer is viewed in projection, which can be noticed 

when the bicrystal is very thin (7.7 A), but otherwise has no effect on the results. Because of 

the smaller size of the oxide ,only the center portion of the images was considered. 

Discussion 

i) Perfect Crystal 

It is clear from Fig. 5-6(a) that the image changes from amorphous to crystalline in a gra­

dual way. In fact, in the thin region of silicon, 8 - 1 6 Angstroms, parts of the image appear 

amorphous, while another part appears more crystalline. Thus "islands" of crystalline material 

appearing in an apparently amorphous area near the edge of a foil could possibly be due to 

variations in the surface oxide. For "thicker" areas, the surface layers produce irregularities in 

the image, such as wavy lines of atoms and fluctuating contrast As the thickness of the silicon 

increases beyond the total thickness of the surface oxide, the image is very closely that of a pure 

crystal with no oxide. In the case of silicon this corresponds experimentally [8] to a thickness of 

approx. 40 Angstroms, see Fig. 5-2. 
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ii) Silicon Bicrystal 

In this case, the most interesting result is the appearance of displaced atoms at the boun­

dary plane which has significant implications for the general analysis of atomic positions near 

any such defect Various models are usually possible for any given type of defect and the goal 

of HREM is to determine the correct model by matching computed images to experimental 

data. Sometimes the change in the image from model to model is subtle and "noise" in the 

image can make it impossible to distinguish between two models with any confidence. Unfor­

tunately the presence of a surface layer will add -to the difficulty of determining atom positions. 

As can be seen from Fig. 5-8, atoms may or may not show up due to surface contamination. 

The model of the 2 - 9 boundary has a periodicity of 11.5 Angstroms in the boundary direc­

tion, and there are two "unit cells" shown in Fig. 5-4. However, due to the presence of the sur­

face oxide, the image does not reflect this periodicity and certain atoms could easily be thought 

missing, thus preventing a correct interpretation of the image. Naturally as the crystal gets 

thicker, the surface becomes less important, and for thicknesses slightly greater than the total 

surface-thickness, the surface effects have become negligible except at the dislocation cores 

where there still are small differences in contrast. 

Conclusion 

Because of dynamical interaction between Bragg scattered reflections HREM images are 

usually considered directly interpretable only for very thin specimens, typically less than 50 

Angstroms. For thicker crystals computer matching of images are required to get detailed infor­

mation down to 2 - 4 Angstroms resolution, but inelastic scattering may make even this 

approach unreliable. 

In the presence of an amorphous surface layer, it is clear that the image of a very thin 

specimen is adversely affected by the surface. This may not represent a severe problem in 

imaging a perfectly crystalline structure, since one can always average over a number of identi­

cal unit cells to obtain a less noisy image. However the correct interpretation of a single 
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isolated defect may be rendered impossible by the presence of an amorphous surface layer. 

With such surface layers of the order of 20 Angstrom thickness, the crystalline material should 

be at least 40 Angstroms to provide an interpretable image. It should also be noted that a uni­

form wedge-shaped edge produces an image that gradually changes from crystalline to amor­

phous character. A sharp change from crystalline to amorphous indicates an edge that is 

approaching zero thickness in a discontinuous way. 
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FIGURE CAPTIONS 

Fig. 5-1. High resolution electron micrograph of silicon in [001] orientation showing tran­

sition from crystalline to amorphous structure at a thin edge. 

Fig. 5-2. Native oxide on 3 degrees off (111) Si surface; thickness 20 ± 3 A. 

Fig. 5-3. Projected unit cell of silicon in [110] orientation. 

Fig. 5-4. Model of 2 - 9 grainboundary in silicon. The model shows the structural 

periodicity along the boundary plane. 

Fig. 5-5. Computed electron micrographs of amorphous silicon dioxide. The projected 

potentials are shown for comparison. 

Fig. 5-6(a). Computed electron micrographs of perfect silicon with native oxide. The thick­

ness of amorphous top and bottom surface oxide is 31.4 A. The thickness of the 

silicon matrix varies from 0. to 38.4 A. 

Fig. 5-6(b). Computed electron micrograph of perfect silicon,thickness 23 A. 

Fig. 5-7. Computed projected potential for silicon bicrystal from model in Fig. 5-4. 

Fig. 5-8. Computed electron micrographs of silicon bicrystal with native surface oxide. 

The total thickness of the surface layers is held constant at 31.4 A, while the 

thickness of the bicrystal varies from 8 - 38 A. 

Fig. 5-9. Computed electron micrographs of silicon bicrystal with native surface oxide. 

The total thickness of the surface layers is held constant at 18.8 A, while the 

thickness of the bicrystal varies from 8 - 38 A. 
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Chapter 6 

Summary 

At this point it is of some interest to look back at the work presented in this thesis and to 

see where it stands with respect to other work in the area of high resolution transmission elec­

tron microscopy. I will take the time to review briefly the development of computer simulation 

of electron micrographs so the reader will gain an understanding of the current status of the 

field. I will also try to point out areas that I feel need further refinement and indicate what I 

believe to be the path of the future. 

Because of the apparent ease with which electron microscopes are able to yield structural 

information to better than 3 Angstrom resolution, high resolution transmission electron micros­

copy has gained an immense popularity during the last few years. However, it is very impor­

tant to understand clearly both the strengths and weaknesses of HRTEM to know what it can 

and what it cannot do. It is not possible to take any material oriented in some arbitrary way, 

thin it down, insert it in the microscope and expect to obtain useful high resolution informa­

tion. Very little three dimensional information can be obtained in HRTEM and the image is 

mostly a rendition of a two dimensional projected structure where all the atoms are projected 

onto a plane perpendicular to the incoming electron beam. Because of this, the specimen must 

be oriented such that the atoms superimpose in columns spaced far enough apart such that they 

can be resolved in the microscope. This eliminates all but a few low index orientations. Many 

close packed materials have planar separations that cannot be resolved in current microscopes. 

As an example only the [110) orientation of diamond structure materials could be resolved prior 

to the emergence of the Atomic Resolution Microscope at Lawrence Berkeley laboratory. 

Another difficulty is the preparation of the specimen itself. Very often it is not the perfect 

structure that is of interest, but rather some defect in the structure and usually it is the atomic 

arrangement at the core of the defect that one hopes to determine. However, both the defect 
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and the matrix must now be oriented such that they can be resolved. Finding just the right 

combination is often a very frustrating task. Another difficulty is obtaining the material itself 

suitably grown along a specific crystal direction. Sometimes projects that required maybe a few 

days to a week of microscope time needed years of specimen preparation time before the 

correct combination of specimen thickness and orientation was achieved. On top of all this 

comes the final interpretation of the image itself. Any given image might bear no resemblance 

to the actual structure of the specimen. Electrons will scatter and rescatter as they propagate 

through the specimen and will be acted upon by magnetic fields that eventually will focus them 

on a film. The image will change its character as one adjust the various knobs on the micro­

scope and given a complicated structure it is no telling which setting results in an interpretable 

image. It is only for very specific settings of the objective lens defocus (depending on spherical 

astigmatism) and for specimen thickness less than 20 A to 40 A (depending on the scattering 

factor of the atoms in the structure) that one is fairly sure the image resembles the projected 

structure. This becomes more and more of a problem as the resolution increases and many 

images taken on today's microscopes can not be interpreted without computer matching. This 

entails computing images for various values of objective lens defocus, specimen thickness and 

sometimes the spatial and temporal coherence of the imaging electrons to match with the exper­

imental images. Because of the many parameters that affect the image it is not sufficient to 

match just one computed image with one experimental image, but one must obtain a match for 

a set of images taken at different values of objective defocus, usually referred to as a through 

focus series. Thus computer simulation of electron micrographs has become a valuable tool in 

the field of high resolution electron microscopy. An example of how computer simulation can 

tell us how an image is affected by factors that are not usually considered, in this case surface 

layers of amorphous material, is shown in Chapter S of this thesis. 

Even though the origin of present multislice calculations go back to 1957 when Cowley 

[Acta Cryst. 10, (1957), p.609] first formulated a theory based on physical optics, the first practi­

cal computations did not start to appear until the early seventies when a series of irticles on 
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lattice imaging called the n-beam lattice image series were published by the Australian group 

consisting of Allpress, Hewat, Lynch, Moodie, O'Keefe and Sanders [Acta Cryst. A28, (1972), 

p. 528 and p. 536 ; Acta Cryst. A29, (1973), p. 138 and p. 389; Acta Cryst. A31, (1975), p. 300 

and p. 307]. The computer programs that would grow to calculate 2-dimensional lattice images 

started off as a 1-dimensional multislice routine designed to compute 1-d electron diffraction 

patterns and did not deal with imaging. Imaging was introduced by O'Keefe who in his Ph.D. 

work incorporated the effect of objective lens defocus, spherical aberration and beam diver­

gence to create the first practical algorithm for computation of 2-d lattice images based on the 

multislice formulation. The first 1-d lattice image program used reflections out to 15'th order 

and the first 2-d version used 31X31 beams in the calculation. At the time this was a huge cal­

culation which took up most of the memory of the available computer. As the computing 

power increased over the next few years, the number of beams was also increased to get better 

accuracy, but at the expense of computing time. Because it is necessary to perform many calcu­

lations over different thicknesses and defocus values to obtain a good match, the computing 

time soon became prohibitive for many problems. It was not until Ishizuka and Uyeda in 1977 

[Acta Cryst. A33, (1977), p. 740] suggested using fast Fourier transforms that a major improve­

ment in computing time was made. Together with the improvement in computers this allowed 

the inclusion of many more beams and presently the larger calculations will include up to 

256X256 beams. 

Today, even though much work has gone into the search of faster and more accurate 

methods most programs still use the method of Ishizuka and Uyeda. The reasons are several 

and many can be found in the results of my work. The real space method which I discussed in 

Chapter 2 promised to reduce the calculation time and to allow the use of a larger slice thick­

ness. However as I showed in Chapter 2, the method will diverge for too large slice thicknesses 

and in many cases will require more computing time for the same level of accuracy. The 

method is still useful for computing images from regions containing defects, but the conven­

tional FFT method is better as an all around method. With special purpose hardware for 



80 

performing Fourier transforms becoming available, the time it takes to calculate a 2-d FFT 

might actually be less than the time required for the real space computation. The other method 

proposed during the last few years, the improved phasegrating method also does not present 

itself as a viable option because of its complexity (increasing computing time) and limitations 

imposed on the slice thickness as shown in Chapter 4. This is not to say that there has been no 

progress in the field of computer simulation of high resolution electron micrographs. Most of 

the progress has been in increasing the accuracy of the methods rather than making them faster. 

In terms of the multislice calculation, I showed in Chapter 3 how to properly use slice 

thicknesses smaller than the crystal periodicity along the incident beam direction for 3 different 

computational methods. I also showed how both the conventional first order and the second 

order multislice methods incorporate upper Laue layer interactions and showed that the accu­

racy is increased by using potential eccentricity in the second order method. 

The multislice calculation only treats the interaction between the electrons and the speci­

men and a complete simulation of an image also includes the effect of defocus, aberrations, 

electron incoherence, microscope instabilities and the characteristics of the recording medium, 

usually film. The major part of the work in these areas has concentrated on the importance of 

temporal and spatial incoherence of the imaging electrons. Special "contrast transfer functions" 

that include the effect of incoherence, aberrations and defocus have been formulated under cer­

tain assumptions. Very often these contrast transfer functions are used even when the assump­

tions are no longer valid. This is mainly because of the increase in complexity and computing 

time that would go with a more accurate calculation, but also because the exact condition in the 

microscope is not known. It is clear that further refinement of the theory is needed. It is desir­

able to be able to vary the degree of coherence, something that is not presently possible. The 

contribution to the image by inelastically scattered electrons also needs to be better understood. 

Sometimes a match between the computed and experimental image is not obtained due to lack 

of proper treatment of coherence and inelastic scattering. 



As the programs grew over the years the tendency was to use larger and faster computers 

such that the calculations could still be performed in a reasonable time. The ultimate goal in 

computer simulation of electron micrographs is to reach a situation where one can compute 

images in times of seconds, view them on a monitor and compare them to the experimental 

image while working on the microscope. A change in the model could be implemented by 

interactively "picking" up atoms, moving them around in the matrix and within seconds com­

pute a new image. This could be done until one reaches a model that results in a fit between 

experimental and computed images. However, this goal can be achieved by going to smaller 

and more specialized hardware rather than timesharing on large mainframe computers. This 

trend is already starting. New systems will be built around a fairly small central processing unit 

whose job mainly will be to organize the flow of data. The actual computation of the image is 

suited for array processors that are uniquely designed to handle large vector operations such as 

FFTs. Because the multislice calculation is a recursive operation involving a few vector multi­

plications and a few FFTs, the entire calculation is easily performed on the array processor. 

The effect of the microscope is also easily included and the image can then be routed through 

an image processor. The image processor can be set up to simulate the recording device of the 

experimental image such that a straight comparison between experimental and computed image 

can be carried out The image processor can also improve the experimental image by averaging 

over time to reduce noise and perform histogram equalization to enhance features. It can also 

be set up to quantify the mismatch between images. A laser filmwriter .s an ideal recording 

device of computed images and can come with a scanning device for digitizing experimental 

images. In this way it is possible to build a specialized system that is ideally suited for high 

resolution electron microscopy. Such a system is planned for the National Center for Electron 

Microscopy here at Lawrence Berkeley Laboratory. It is in its final stages of planning at the 

time of writing and it is hoped that within a year it is a fully integrated and operative system. 



82 

Acknowledgements 

Tins thesis would not exist if it were not for the help of many people to whom I owe gra­

titude. I wish to thank the foUowing people that in one way or another contributed to the suc­

cess of my stay here at Berkeley: 

— B.J. Slagsvold without whom this thesis would never exist. Without his encouragement I 

never would have attempted to pursue a Ph.D. here at Berkeley. 

— Ron Gronsky who has been my project supervisor for the last 4-1/2 years and whose gui­

dance and helpful assistance I could not have done without. Thank you Ron for all the 

help you've given me. 

— M.L. Cohen who I am sure will draw a sigh of relief now that my thesis is finally com­

pleted. I know it hasn't been easy being a liason for someone working outside the depart­

ment Thank you Marvin for not giving up on me. 

— Alan Portis who cared enough to take the time to assist me in my preparations for my 

Qualifying Fxam and who has been of tremendous help both academically and emotion­

ally. The world would be a better place if there were more people like him. 

— The entire group of friends in the trailers of 77F and 77G. In particular I would like to 

thank Eduardo, Jamie, Roseann and Mike for invaluable friendship and a lot of fun (you 

too Eileen). Thanks for all the good parties. 

— M.A. O'Keefe who has been a good friend and a much needed source of knowledge and 

information. Thanks Mike for all the useful discussions we have had. By the way, where 

were you when I really needed you? 

— Kathy and Madeline who have always been ready to assist me and who gave me a home 

down in building 72 when no one else wanted me. In particular I would like to thank 

Madeline for all the stimulating non-academic discussions. 



83 

— I also would like to thank Karla who put in a lot of time and effort in preparing this 

thesis. 

— Finally I would like to thank Charlene who stood by me all this time and who made sure 

I never gave up along the way. Thank you Char for all the love you have given me. 

Maybe now I can make enough money to take YOU out to dinner for a change. 

— This work was supported by the Director, Office of Energy Research, Office of Basic 

Energy Sciences, Materials Science Division of the U.S. Department of Energy under 

Contract No. DE-AC03-76SF00O98. 



Appendix A 

84 

The phase that appears in the exponent of the propagator is the difference in phase associ­

ated with electrons traveling a distance Az having a wavevector ko relative to those having a 

wavevector k, as shown in Fig. 3-6. This phase difference is equal to 

— ko Az-koAz(— 
X » a '^" ^ ^ CO! 

For electrons reflected into the first order Laue zone the angle a 0 is equal to, see Fig. 3-7 

A * - lie, 1 - ^ - - |lto| Az-koAz(—l— - 1) » ikoAza2 (Al) 
cos a cosa * 

while for electrons scattered into the first order zone, the angle is 

"'" 17x^7* ~ « ^ 1 + 7> ( A 3 ) 

This gives a phase change of 

Afc, - {koAz(gxX)2 - *XAzgi - 2*Azi(g±) (A4) 

for electrons scattered into (gx,0), and a phase change of 

A*, - ikoAz(gj.X)2(l + - ) 2 = T\Azgi(l + £ ) 2 (A5) 

for electrons scattered into (g x,l). The quantity £(g x) - l/2Xgl is the excitation error of the 

reflection (gx,0) and corresponds to the distance between the reciprocal lattice point (gx,0) and 

the Ewald sphere measured along the line connecting the center of the sphere with the recipro­

cal lattice point, see Fig. 3-1. The error in the phase of the propagator by using the excitation 

error of the zero order reflection instead of the the excitation of the first order reflection is thus 

Atf>, - &to - 2*x2Azgi/c (A6) 

As can be seen from (A6) the error depends on slice tHckness and electron wavelength and goes 

to zero as Az and X goes to zero. DISCLAIMER 
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