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A i r  c o n d i t i o n e r s  a r e  t h e  c a u s e  of peak e l e c t r i c a l  demand f o r  'many 

p a r t s , o f  t h e  United. S t a t e s .  (1) I n  d ry  a r e a s  evapora t ive  coo l ing  can 
. . . .  . 

r e l i e v e  t h i s  demand. convent iona l '  evapora t ive  c o o l e r s  ('lswamp coolers" )  ' . 

absorb the. a i r ' s ' h e a t  t o  evapora te  water , '  t hus  lowering t h e  a i r  .temp- 
. . 

e r a t u r e .   his i n c r e a s e s ,  t h e  humidity which can reduce t h e  occupan.ts ' ; '. . . 

f e e l i n g s  of comfort.  

I n d i r e c t  evapora t ive  cool ing  e l i m i n a t e s  t he  humidity problem by 

. us ing  an in te rmediary  hea t  exchanger between t h e ' w a t e r  sou rce . and  t h e  

condi t ioned  a i r .  I n t e r i o r  a i r  can be c i r c u l a t e d  'through h e a t  exchanger .. 

p ipes  l oca t ed  w i t h i n  an evapora t ive  c o o l e r  as 'shown i n  f i g u r e  1. 

. . . .  . 
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Figure 1. I n d i r e c t  Evaporat ive Cooler 



or ,  a n  evapora t ing  roof pond can be used t o  - c o o l  a '  b u i l d i n g  c e i l i n g  

which absorbs  h e a t  f r o m  t h e  l i v i n g  space  by , convec t ion  and r a d i a t i o n .  
. . 

(See f i g u r e  2)  

EVAPORATION 

Figure  2. Roof Pond . 

1 

The Cool Pool  is  a  v a r i a t i o n  of t h e  evapora t ing  roof pond i d e a .  The 

pool i s  i s o l a t e d  from t h e  l i v i n g  space a n d . t h e  cooled pond water  

thermosiphons i n t o  t h e  water columns loca ted  w i t h i n  t h e  bu i ld ing .  

(See f i g u r e  3) ' 



This  r e p o r t  w i l l  d i s c u s s  a computer model..of t h e  "Cool Pool" and '. 

t h e  va r ious  h e a t  and mass. t r a n s f e r  mechanism's involved i n  t h e  s y s  tem. 
. . 

Theory w i l l  be compared t o  experimental  d a t a  c o l l e c t e d  from a Cool 

Pool t e s t  bu i ld ing .  

Figure 3 ,  Con1 Pnnl. 



HOW IT  WORKS 
. . 

~ i ~ u r e  3.shows a  schematic  of t h e  Cool Pool  which c o n s i s t s '  of a  
. . 

shaded,  evapora t ing  roof pond connected t o  a  column of 'wate'r l o c a t e d  

w i t h i n  t h e  b u i l d i n g .  The top  connect ing p ipe  ( t h e  r i s e r )  d e l i v e r s  
. . 

warm water from t h e  column. t o  t h e  'pool .  The lower connec t ing .  

( t h e  downcomer) r u n s  from.' the pool  bottom, t o  t h e  bottom of water  

column.   he downcomer i s  p1,aced w i t h i n  t h e  water  column t o  reduce  
. . . . 

t h e  v i s i b l e  plumbing and improve t h e  appearance of t h e  system. 

. Evaporat ion keeps t h e  roof pond cool .  I n  t h e  Cen t r a l  Val ley  of 

C a l i f o r n i a  whcrc t hc 'wca thc r  'is dry and ho t  t h e  pool  w i l l  u s u a l l y  

. . remain between 60-70°F (15-21 '~) .  ' . 

. . 

~ h ' e  water 'eaimn which. i s  hedt  from t h e  b u i l d i n g  

i n t e r i o r  w i l l  b e  warmer t h a n . t h e  .pool..   his s e t s  up a  d e n s i t y  
. . 

d i f f e r e n c e  betwe-en t h e  wa.ter column a n d  t h e  pool and downcomer. This  

d e n s i t y  d i f f e r e n c e ,  between two columns of water  c r e a t e s  a  p r e s s u r e  

d i f f  eke i ce  .which causes  t h e  c o o l ,  dense water  from t h e  pool  t o  flow ' 

through t h e  downcomer, i n t o  t h e  bottom of t h e  water column. The warmed 

water  i n  t h e  column rises and flows ou t  t h e  r i s e r  i n t o  t h e  pool .  

The g r e a t e r  t h e  p re s su re  d i f f e r e n c e  t h e  f a s t e r  t h e  water  c i r c u -  

l a t e s .  This  p r e s su re  d i f f e r e n c e  is a  f u n c t i o n  of temperature  ( t h e  

warmer t h e  water  column i s  compared to ,  t h e  pool  and downcomer t h e  

f a s t e r  t he  f l ow) .  The p re s su re  d i f f e r e n c e  i s  a l s o  dependent on 

he igh t  s o  t h a t  t h e  Longer t h e  downcomer i s  (provided it s t i l l  c o n t a i n s  

c o o l e r  water)  t h e  f a s t e r  .the flow w i l l  be .  

The water  column remains coo le r  than t h e  i n s i d e  a i r  due t o  t h e .  

c i r c u l a t i o n  df water from t h e  roof pond. 1.t a c t s  t o  coo l  t h e  l i v i n g  

. space' by convect ion t o  . t h e  a i r  and r a d i a t i o n  t o  t h e  i n t e r i o r  o b j e c t s  

and wa l l s .  I n  t h i s  model, conduct ion t o  t h e  f l o o r  w a s . n e g l i g i b l e  



. . 

a l though  i t  might be d e s i r a b l e  t o  des ign  the  column t o  maximize 

. coriduc t i o n .  : . . 
, . . . 

The p r e s e n c e  of t h e  co ld  . water . .  column w i t h i n  t h e  l i v i n g  space  not  '.. ' 

. . 

only coo l s  t h e  environment bit provides  a  h e a t  s i n k  t o  which people :  . . 

. . 

can  r a d i a t e .  . . . Since . . r a d i a t i o n  is  a  s ign i f . i c=n t  h e a t  r e j e c t i o n  mechan- . . 

ism f o r  peop.le t h i s  ' a i d s  i n  . t h e i r  f e e l i n g s  of thermal  comfort.  (3 )  



. . .  

6 
. . 

. . . . 

EXPERIMENTAL SET-UP . . 

A Cool Pool bu i ld ing  has  monitqred t o  v e r i f y  t h e  a'ccuracy of t h e  

hea t  t r a n s f e r  r e l a t i o n s h i p s  and t h e  computer program. . . , .  . 

The Cool Pool is  . i n s t a l l e d  on a 12 '  x 1 2 '  (3.66 m x 3;66 m) 

bu i ld ing  wi th  R-19. wal ls ' ,  R-30 roof and R-5 i n s u l a t i o n  around t h e  . 

perimeter  of t h e  conc re t e  s l a b  f l o o r .  (See Appendix 1 f o r  t h e  p l a n s ) .  

The c e i l i n g  i s  91" (2 .31  m) h igh  under t h e  roof pond and s l o p e s  up t o  

2 147" (3.73111) a t  t he  h ighes t  po in t .   he' 2 4 ' s q .  f t .  (2.2rn ) of sou th  windows . 

a r e  ' i n su l a t ed  wi th  R-5 wood s h u t t e r s . . '  A 60 .&par& f o o t  (3.57' m2).  
. . 

roof pond i s  loca t ed .  on .  t h e  no r th  s i d e  of t he  roo'f under b l ack  louvered '  
. . 

3L8" plywood Bhades which . b l o c k . d i r e c t  sun bu t  a l low f r e e  a i r  movement' 
. . 

over t h e  pool .  The roof pond i s  a  ga lvanized  s t e e l  pan, i n s u l a t e d  on 
. . 

t h e  s i d e s  and bottom. 

The w a t i r  columns a r e  f a b r i c a t e d  from 16  gaug,e cor ruga ted  ga lvanized .  
' 

. . 
s t e e l  c u l v e r t s  wi th  meta l  p l a t e s  welded t o  t h e  bottom. ' The top  end 

i s  s e a l e d  w i th  opaque polyethy'lene .taped . t o  prevent .  a i r  l eakage .  Four . . 

. colhmns, 8 '  (2.44 m )  t a l l  a n d  1 112' (.'457m) d iameter  a r e  placed on 

plywood over  c inderblocks.  in .  t h e  bu i ld ing .  The two columns f a r t h e s t .  

" 

e a s t  were emptied and n o t  used ' i n  t h e s e  experiments .  

Each column - is  .connected t o  t h e  roof pool by 1 112" (3.8 cm) 

.I .D. piies. Af t e r  t h e  downcomer e n t e r s '  t h e  column a  90'' 

ABS eiboY coknects  i t  t o .  t h e  65" (.1.65 m) t a l l  .l '  112" d iameter ,  1 14 

' inch t h i c k ,  ABS 'descending pipe.  
. . . . 

Temperatures were measured w i t h ' 3 0  gauge Omega Copper-Constantan 

thermocouple w i r e s  which were welded toge the r  and coated w i th  epoxy 

t o  guaran tee  a c c u r a t e  read ings  under water .  S ince  temperature  .changes . . 

were slow, s e n s ~ r  response t ime was no t  an  important  f a c t o r .  The 



. . 
' 

thermocouples 'were cons t ruc t ed  f ram a s i n g l e  'spool of w i r e  and 

c a l i b r ~ t e d w i t h a n H P d i g ~ i t a l v o i t m e t e r  i n a  Rosemount c o n t r o l l e d .  . 

?ce ba th  and ho t  o i l  ba th .  The thermocouples showed uniform read-  

i n g s  (k.001 mV a t  most) .  They agreed wi th  t h e  platinum r e s i s t a n c e  

thermometer t o  w e l l  w i t h i n  0.05OC a t  10°C and 20°C. They were uni- 

formly b iased  a t  30°C by +O.l°C and a t  40°C by +0.2OC. 

Net r a d i a t i o n  i n t o  t h e  roof  pond was monitored wi th  a  one year  

. . old Weathe.r ,Measure ,It422 Net Radiometer. The f a c t o r y  c a l i b r a t i o n  

cons t an t  was used. Outside wet .bulb,  temperature ,was monitored w i t h .  , 

au aspirated, plat inum r e s i s t a n r c -  w e t  bulb thcrm&ctcr  and double- 
. . 

checked wi th  a  r eco rd ing  hygrothermograph. 
. .  . 

~ e d s o r  read ings  were processed and recorded wi th  a  Fluke 2200B 

.. . d a t a  logger .  
. . 

Figure  4 shows t h e  thermocouple placement. ~ k m b e r a t u r e s  were 

measured a t  5 h e i g h t s  withi-n t he  water column, 3 h r i g h t s  w i t h i n  t h e  

cluwncmer, 8 h e i g h t s  i n  t h e  i n t e r i o r  a i r .  A thermocouple was t a p e d -  

t o  each w a l l ,  two p l a c e s  on t h e  rocsf, and on t h e  f l o o r .  

The. thermosiphoning r a t e  was measured by i n j e c t i n g  dye i n t o  a  

rubber  s leeve ,  whi,ch connected a  4  f o o t  ('1.22 m) long 1 1 /2" ( 3 . 8  c i )  

I . D .  c l c a r  tube  t o  t h e  r i s e r  u u r l e r .  The ~ o u s s u n e s q  r e l a t i o n  g ives :  

l e n g t h  f o r  f u l l y  
' developed flow = .03  Re-D 

where : R e  = Reynolds number 

D = pipe  diameter  

For t h e  - v e l o c i t i e s  measured t h i s  l e n g t h  was between 2 and 3 '  f e e t .  

T h e r e f o r e ' t h e  i n j e c t e d  .dye was timed between t h e  3 f t .  and 4 f t .  

marks on t h e  =].ear , tube. Flow was always 1arnina.r s o  t h e  c e n t e r l i n e  

v e l o c i t y  was timed and d iv ided  by. 2  t o '  ~ i e l d  t h e  average v e l o c i t y .  



F'igure 4 .  Thermocouple Placement  

. Measurements were n o t  t a k e n  u n t i l  t h e  s y s t e m  was se t .  up fo ' r  

a t .  i i a s t  t h r e e  days .  



Before  t h e  Cool. P o o l  computer model was developed t h e  v a r i o u s .  

h e a t  and mass t r a n s f e r  p r o c e s s e s  were  s t u d i e d  i n d i v i d u a l l y .  F i g u r e  
. . 

5 shows t h e  u k i n  h e a t  and. mass t r a n s f e r  p a t h s  f o r  t h e  ~ o ' o l  .Poo l  sys tem.  

. . 

. F i g u r e  5 .  , Heat a i d  Mass ~ r a n s f e r  
. . 

Heat is t r a n s f e r e d  i n t o  t h e  w a t e r  c(11urrin by ' convec t io 'n  f r m , t h e  .. 

a i r  and r a d i a t i o n  from t h e  w a l l s ,  p e o p l e ,  f u r n i t u r e ,  windows,, e t c .  

. I n  t h i s  system the .  windows were  s h u e c e r r d  and no i n s o l a t i o n  f e l l  on 

t h e  columns. 



Mass i s  t r a n s p o r t e d  f r k t h e  pool ,  th rough  t h e  downcomer and 
. . 

cdlumn and o u t  ' i n t o  t h e  pool  v i a  t h e  r i s e r .  ~ k a t  is conducted. and 

.. convected i n t o  t h e  dawncomer from t h e  column wa te r .  

/ .  . 
The pool  wa t e r  is  p r i m a r i l y  cooled by .evaporat ion.  Depending 

on o u t s i d e  c o n d i t i o n s ,  i t  i s .  e i t h e r  cooled o r  hea ted  by convec t ion ,  

r a d i a t i o n  and conduct ion.  
. .  . 



.Thermosiphoning ho t  w a t e r  . sys tems  have ,  been s t u d i e d  by Baughn, 
, . , . 

: .  . . 
Dougherty and Crowther ( 2 , 3 , 4 )  as 'we.11 a s  o t h e r s .  

. The p r e s s u r e  d i f f e r e n c e  caused by t h e  d e n s i t y  v a r i a t i o n  between 

two columns of w a t e r  c a n  b e  r e l a t e d  t o ' t h e  f low v e l o c i t y  by t h e  

f o l l o w i n g  e q u a t i o n :  
. . 

2 . . 
v -  L  . . 

' (eq ' ydhCOld -, jydhwarm = y - ( f 7 + K )  2g . d .  

' where 

IYdhcold = t h e  w a t e r  d e n s i t y  t i m e s  d i f f e r e n t i a l  . .  . h e i g h i  integrated 
over  t h e  h e i g h t  of t h e  column of c o o l e r  w a t e r  

jldhwab = t h e  dens ' i iy-height  p r c d u c t  i n t e g r a t e d  o v e r  f h e  .he ighf  ' . . . . . 

of t h e  column of warm w a t e r -  

y  = w a t e r  ' d e n s i t y  

h  = h e i g h t  

v  = v e l o c i t y  , 

.. g  = g r a v i t y  

f '  = f  r i c t i o ' n  , f a c t o r  f o r  p i p e  l o s s e s  

L/d = l e n g t h  t o  d i a m e t e r  r a t i o  f o r  p i p e  . 

.K = expa'n.sion f a c t o r  used i n  f  i g d r i n g  p i p e  f r i c t i o n a l  l o s s e s  

The r i g h t  s i d e  of t h i s  e q u a t i o n  i s  t h e  c a n v e n t i o n a l  e x p r e s s i o n '  

t o r  t h e  p r e s s u r e .  d r o p  due L u  ,110; w i t h i n  a pipe, 

For  l aminar  f low t h e  f r i c t i o n  f a c t o r ,  f  , ' c a n  b e  found from t h e  . 

. ' fo l lowing r e . l a t i o n s h i p  

(eq .  3 ) f  = 64/Re 

where Re is t h e  Reynolds '  number ,based on t h e  p i p e  d i a m e t e r .  



~ l b  through t h e  .l 112" . ( .3.8 . cmj diameter  column was found t o  

c r e a t e  ve ry  l i t t l e  f r i c t i o n  c q p a r e d  t o  t h e  flow through t h e  downcomer 

and riser. The L/d r a t i o  was 120 and t h e  expansion f a c t o r ,  K ,  was 
. . 

4.0. A se'cond order  curve  f i t  relates t h e . v i s c o s i t y  and d e n s i t y  of 

water  t o  its temperature .  

- ' 1 , 0 1 6 ~ 1 0 - ~ ~ *  [GOOF < ' T  39^F] 

The expected flow r a t e  was ca lc i l l a ted  from eq. 9 and t h e  mcasured 

column, downcome2 and pool  t empera tures .    he curve f i t  r e l a t i o n  was 

used f o r  v i s c o s i t y  and d e n s i t y .  This  flow r a t e  was compared t ,o  t h a t  

a c t u a l l y  measured. Table  I shows - t h a t  t h e  c a l c u l a t e d  v e l o c i t y  ag rees  

very w e l l  wi th  t h e  measured v e l o c i t y .  Appendtx 5 c o n t a i n s  t h e  com- 

pu te r  program used t o  gene ra t e  Table  I. 

The thennosiphoning mass flow r a t e ,  and ingoing and outgoing 

water  temperatures  were measured t o  c a l c u l a t e  t h e  hea t  leaving:  

Equat ions 2 a n d ' 6  were used t o  c a l c u l a t e  t h e  thermosipnoning r a t e  
;' . . 

i n  t h e  computer model. 



. . .  

TABLE I 

READING U.G H 
1 - 0 , 0 9 1  

. . 2 0.067 
3 0 , 0 7 6 .  

. . u o;ose 
5 '0.. 1 0 9  

. 6  0.110 
7 0 .109  
8 0.105 
9 .  0 , 0 9 1  

1 0  0 ; 0 7 5  
1 1 .  ' 0.07.7 
12 'o.oes 
1 3  o .'o 95 
1 4  . . 0 . 1 0 0  
15 OmIU2 

. . . . 1 6  . .  0.100 
1 7  0.097 

. . 18 .: 0.100 
1 9 .  0.097.. 
2 0  0.090 
2 1. 0'. 0 8 6  
2 2 .  0 , 0 7 8  
23 .. 0 , 0 7 2  
2 4  0 , 0 6 5  
2 5  0.0.65 
2 6  0 .063  

. 27 0.070 
28 0.071 
2 9  0.0.70 
3 0  0.074 
3 1 0 . 0 7 i .  

'VCALC'  ' 

0 . 0 5 9 8  
0 .0460  
0,05'19 
0 .0639  
0 .0699  
O., 07.1 0 
0 .0702  
0 .0684  
0 , ,0608 
0 ,0514 '  
0. o S z 9  
0 .0572  
0 .0627  ' 

0.0650 
0 , 0 6 5 9  
,0.0648 
.O . 0 6 3.0 
0.0639. 
0 .0622  
0.05BZ 
0.. 0 5 6  0 
0,OSlZ 
0.0480 
0 ,0438  
0 , 0 4 4 0  
0.0431 
0 , 0 4 7 5  
0 .0482 .  
0 .0475  
0 , 0 4 6 7 ,  
0 .0449  

VEXP O I F F  R A T I O  
0 . 0 5 3 5  11.8 0 .895  
0 .0472  1.026 
0 , 0 4 7 1  10.2 0.908 
0 .0654  -2 2 1 .023  
0 , 0 7 0 2  1 .004  
0,067'3 - O o 4  5.5 0 , 9 4 8  
0 .0678  3.5 0.966 
0.060 1 13.7 0 .879  
O . U S T O  6.7 0 .937 
0 , 0 5 2 2  1 .016  
0.0487 6.6 0.921 
0 , 0 5 8 5  -2  , 2 1 . 022  
0 .0625  0 • 4 0 , 9 9 6  
0.0637 2.1 0 .980  
o . o s 4 s  a , z  0 , 9 7 8  
0 .0631  Za7 0.974 
0 .0625  0.8 0.992 
0 , 0 6 1 7  3.5 0.966 
0.0617 0.8 0 . 9 9 3  
0 . 0 5 8 8  1.010 
0 , 0 5 6 0  - O o 9  0.1 0.999 
0 , 0 S 3 6  -4.5 1.047 
0 , 0 5 3 9  -11.0 1 .124  
0 , 0 4 4 7  -2 . 0 1 , 0 2 1  
0 .0449  -1.9 1 .019  
0 .0484  -11.0 1 .123  
0 . 0 4 5 5  4 .5  0 ,957  
0 .0482  0.1 0.999 
0 , 0 4 7 9  -0.7 1.007 
O.OSZ1 -10.4 1 , 1 1 6  
0 .0534  -15.9 1 .189  



RADIATION INTO THE WATER COLUMN . . ' 

Net r a d i a t i o n ' i n t o  t h e  water  column can be c a l c u l a t e d  from t h e  
. . . . 

set of equa t ions :  

where F; = view f a c t o r  from s u r f a c e  i t o  s u r f a c e  j . ' 
1- j 

= a r e a  of s u r f a c e  i A i  . . . 

. E = emmissiviry of s u r f a c e  i '  
. . . i 

Q.'- = ~ i e t  hea t  f l u x  f rom. su r f ace  i . , 

1 

n = number o1 s u r f a c e s  

I f  t h e  s u r f a c e  a b s o r b t i v i t y  i s  equa l  t o  i t s  emmissivity t h e s e  equa t ions  

g i v e  t h e  ,exact r a d i a t i v e  hea t  t r a n s f e r .  

D i f f i c u l t i e s  c r eep  i n  when t h e s e  equa t ions  a r e  app l i ed  t o  a  r e a l  

enc losu re .  View f a c t o r s  a r e  o f t e n  d i f f i c u l t  t o  determine.  E m i s s i v i t i e s  

of w a l l  p a i n t s  a t  about  78°F (25OC)  hav.e no t  been e x a c t l y  determined.  

Dark p a i n r , c a n  range between .85 and .96. White p a i n t  ranges between 

.80 and . 92 .  (6) 

ASHRAE ( 7 )  sugges t s  approximating w a l l  temperatures  a t  t h e  a i r  

temperature  s o  t h a t  r a d i a t i v e  t r a n s f e r  i n t o  t h e  water  column can  be . 

exp~esscd  aat 
. . . . 

where a = column absorb t iv i ' ty  

A = column s u r f a c e  a r e a  

u - - Stef  an-Eoltzmann cons thn t  

T = average  a - i r  temperature  

- 
T = column temperature  

C . . . 



T h i s  works w e l l  f o r  some c o n d i t i o n s .  However, w a l l .  c a p a c i t a n c e ,  w a l l  

' t h e r m a l  ronductance ' ,  i n f i l t r a t i o n ,  i ' r i so la t ion ,  t h e  o u t s i d e  tempera- 

. . 
t u r e  h i s t o r y ,  and t h e  p r e s e n c e  of  t h e r m a l  s t o r a g e  mass c a n  a l l  e f f e c t  

t h e  r e l a t i o n s h i p  between . w a l l  t empera tu re ,  'and a i r  temperat 'ure .  S i n c e  . . 

r a d i a t i v e  t r a n s f e r  i s  dependent  on t h e  f o r t h  power of  t e m p e r a t u r e  the .  . ... 

u s e  of a n  a v e r a g e  t e m p e r a t u r e  £'or i t s  c a l c u l a t . i o n  wi.11 n o t  a lways  

. . 
y i e l d  a n  a c c u r a t e  answer .  

F i g u r e  6.. E a r l y  Morning 'T,emperatures 



~ i g u r e  6 shows t h e  measured a i r  and wa l l  temperatures  of t h e  

t e s t  bu i ld ing  a t  5 a.m. i n  t h e  morning. In t h i s  c a s e  t h e r e  is  very  
. . 

l i t t l e d i f  f  e rence  between w a l l  teniperature a n d  the  a i r  temperature .  . . 
. . . . 

. . 
~ a d i a t i o n '  c a l c u l a t e d  ' from t h e  .ave,rage a i r  temcerature  w i l l  y i e l d  

s i m i l a r  r e s u l t s  t o  t h e  enc losure  a n a l y s i s .  

F igure  7 shows t h i s  same b u i l d i n g  a t  3:00 .p.m. i n  t h e  a f t e rnoon .  
. . 

The wa l l  temperatures  :a re  very  d i f f e r e n t  from t h e  average  a i r  tempera- . 
. . 

. 
ture.  The r a d i a t i v e  h e a t  t ransfe ' r  t o  t h e  column c a l c u l a t e d  from t h e  

. .. a'verage a i r  temperature  w i l l  be' g r e a t e r  than t h e  e n c l o s ~ l r e  a n a l y s i s .  . 

i n d i c a t e s .  . 

Figure  7 .  Afternoon A i r  Temperatures 



. . 
. . 
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The a c c u r a c y  of u s i n g  a i r  t e m p e r a t u r e  a s  a n  .approxinia t ion f o r  

r a d i a t i o n  was t e s t e d  by comparing t h e  t r a n s f e r  r a t e  t o  t h a t  o b t a i n e d  

by u s i n g  a n  e n c l o s u r e  a n a l y s i s . .  

, 

. . S i n c e  t h e  column t - e m p e r a h r e  v a r i e d  by l e s s  t h a n  3 O F  ( 2 " C ) . i t  

was 'modeled a t  one a v e r a g e  t empera tu re .  Each of  t h e  4 w a l l s  were  
. . 

assumed t o  b e  a t  a  c o n s t a n t  t e m p e r a t u r e  e q u a l  t o  ' t h a t  measured 4 f t .  

frbm t h e  f l o o r .  The c e i l i n g  w a s  d i v i d e d  i n t o  two i s o t h e r m a l '  a r e a s ,  

one exposed t o  t h e  sky  and one under  t h e  roof  pond. The f l o o r . w a s  

modeled a t  one t e m p e r a t u r e .  S i n c e ,  presumably,  t h e  s u r f a c e s  were  n o t  

i s o t h e r m a l  some e r r o r  w i l l  b e  i n t r o d u c e d  by t h e s e  a s s u m p t i o n s .  

F i g u r  

r a n s f  e r  . 
. . 

, e  8 shows hour-by-hour c a l c u l a t i o n s  of r a d  

The w a l l  and column e m m i s s i v i t i e s  were  .9 

i a t i v e  h e a t  

1. and . 9 3 .  

TIME 

F i g u r e  8. R a d i a t i o n :  Enc losure  and A i r  Temperature  C a l c u l a t i o n s  



This  g r a p h  shows t h a t  u s i n g  t h e  a v e r a g e  a i r  . t empera tu re  f o r  

r a d i a t i o n  c a l c u l a t i o n  o v e r e s t i m a t e s  t h e  h e a t  t r a n s f e r  i n t o  t h e  

. . 
the rmal  mass f o r  t h i s  p a r t i c u l a r  b u i l d i n g .  . T h i s  e r r o r  . . is  less d u r i n g  : ' ' 

. . 

t h e  n i g h t  when w a l l  t e m p e r a t u r e s  a r e  more uniform.  



19 
. . 

' CONVECTION INTO WATER COLUMN 
. . 

Heat i s  t r a n s f e r r e d  from t h e  indoor  a i r  t o  t h e  w a t e r  column by . , 

c o n v e c t i o n ,  ' t h r o u g h  t h e  c o r r u g a t e d  m e t a l  .column w a l l  by c o n d u c t i o n  

and t o  t h e  .water  by convec t ion .  The f r e e  c o n v e c t i o n  h e a t  t r a n s f e r  

c o e f f i c i e n t  from a i r  to.  a  v e r t i c a l  c y l i n d e r  c.an be found from ( 4 ) :  

. . 
9 ' 

S i n c e  t h e  wa te r  column i s  8 f e e t  (2 .4  m) t a i l ,  GrPr 10 and t h e  . . 

f r e e  convec, t ion is  i n  t h e  t u r b u l e n t  r e g - i o n .  The c o r r u g a t i o n s  may - , '  . 

i n c r e a s e  t h e  h e a t  t r a n s f e r  s l i g h t l y .  ( 5 )  This  r e l a t i o n  h a s  been 

s i m p l i f i e d  f o r  ai ;  . a t  70°F (.2.1°c) ( 4  ).: 

- .  

e q .  10) h a = 0 . 1 9  (Ta - Tc)  . 3 3  

where : 

0 
h  Heat t r a n s f e r  c o e f f i c i e n t  ( ~ t u / f  t2-hr-  F )  

a  

T  a i r  t empera tu re  
.a  

Tc  .column tempera tu re  

Equa t ion  9 i s  o f t e n  used i n  p i a c e  o f  e q u a t i o n  8. N o t i c e  t h e r e  is  no 

dependence on t h e  s u r  fac'e geometry i n  ' e q u a t i o n  9 .  S i n c e  c o n d i t i o n s  
. . 

0 
a r e  e v a l u a t e d  a t  70 F ,  e q u a t i o n  9 y i e l d s  a  s l i g h t l y  lower h e a t  

t r a n s f e r  c o e f f i c i e n t :  than  e q u a t i o n  8. 

S i n c e  .the water  column i s  w i t h i n  an e n c l o s u r e ,  c o n v e c t i v e  a i r  

loops may be s e t  up between t h e  c o o l  column and t h e  warmer . w a l l s .  ' 

This  w i l l  i n c r e a s e  . t h e  v e l o c i t y  of  t h e  a i r  moving p a s t  t h e  column and 

thus  i n c r e a s e  t h e  c o n v e c t i v e  h e a t  t r a n s f e r  r a t e .  Thus, e q u a t i o n  9 
. . 

probably  u n d e r e s t i m a t e s  c o n v e c t i v e  h e a t  t r a n ' s f e r .  Th i s  h y p o t h e s i s  

w i l l  be d i s c u s s e d  ' f u r t h e r . .  



The thermal r e s i s t a n c e  per  u n i t ' a r e a  bet'ween the  a i r  and t h e  
. . 

column su r f ace  i s  t he  inverse  of .the h e a t  t r a n s f e r  c o e f f i c i e n t  : 

where R . i s  the  thermal r e s i s t a n c e  between the  i n t e r i o r  a i r  and t h e  
a  

. . . . 

column su r f ace .  Since the  temperature d i f f e r e n c e  i s  usua l ly  l e s s '  

than lo°F ( .~OC)  t h i s  r e s i s t a n c e  is about: 

. . .  . . 
'2 

(eq. 12) Ra s 2 .4  ( f t  . ~ ~ . O F ) / B T U  

Conduction through t h e  ,064" ( . I6  cm) th i ck  m e t a l  column s k i n  is  

4 orde r s  of magnitude f a s t e r  than convection from the  a i r  t o  the  
. . . , 

su r f ace  qf the column. The conduc t iv i ty  of s t e e i  is 26.2 BTU/% f t .  . 

h r  so t h a t  the  r e s i s t a n c e :  

, where Rc i s  the  thermal r e s i s t a n c e  o i  the-column wal l .  . 

The hea t  t r a n s f e r  c o e f f i c i e n t  from the  column sk in  t o  the  water 

can. be found from t h e  f r e e  convection r e l a t i o n s h i p  of equat ion ' 9 .  A t  

a  10' d i f f e r e n c e  between column and water temperature and a  water 

temperature of 7 3 ' ~  (23Oc) t h e  r e s i s t a n c e ,  R i s  1.9 x 1.0 
-4 

2 

( f t 2 ;  ~ ~ ~ O F ) / B T U .  Again, t h i s  r e s i s t a n c e  i s  four  orders  of 

magnitude l e s s  than the  a i r  t o  column su r f ace  r e s i s t a n c e .  

~. 
Because the a i r  td column' r e s i s t a n c e  dominates convect ive hea t  

t r a n s f e r  i n t o  the water column, conduction and convection t o  the  

water can be neglected. 

The water column was placed on 112" th i ck  plywood on hollow 

c inder  blocks. Thus, conduction i n t o  the base of the  column i s  



" n e g l i g i b l e .  Heat t r a n s f e r  i n t o .  t h e  , c y l i n d e r  top  was n e g l e c t e d  s , ince  
. . 

t h e  1 inch  a i r  'gap between t h e  p l a s t i c  cap  and t h e  water' s u r f a c e  was . . . . . . 

assumed t o  a c t  a s '  an  i n s u l a t i n g  . space .  . . 

I f  a h e a t  b a l a n c e  i s  done on t h e  wa te r  column i t  i s  foLnd t h a t  

t h e  h e a t  e n t e r i n g  t h e  column from r a d i a t i o n  and c o n v e c t i o n  must e q u a l  

t h e  change i n  t h e  column h e a t  c o n t e n t  p l u s  t h e  h e a t  l e a v i n g  by 

thermos iphoning.  

The change i n  h e a t '  c o n t e a t  was determined ' from - t h e  h o u r l y  change 
. . 

, i n  t empera tu res  of  t h e . c s l u m n  

where: m = mass o f .  water'  i n  column 
C 

c  = s p e c i f i c  h e a t  of  wa te r  
P  - 

. . T2 = new average  wa te r  t empera tu re  

- . . 
T1 = o l d  average  wa te r  t empera tu re .  

From th i s . ,  t h e  h o u r l y  h e a t  t r a n s f e r  r a t e  i n t o  t h e  wa te r  column, c a n  b e  
. . 

ca ' l cu la ted .  

F i g u r e  10 shows c a l c u l a t e d  h e a t  t r a n s f e r  r a t e s  (based  on measured 
. . 

a i r ,  w a l l  and column t e m p e r a t u r e s )  and t h e  e x p e r i m e n t a l l y  de, termined 

. - 

h e a t  t r a n s f e r  r a t e s .  The lowest  c u r v e  ' r e s u l t s  f r o ?  add ing  t h e  

convec t i y e  t r a n s f e r  ' ( h = .19 t o  t h e  e n c l o s u r e  a n a l y s i s  
. . 

r a d i a t i o n .  The o t h e r  curve  r e s u l t s  from adding t h i s  c o n v e c t i v e  

t r a n s f e r  t o  r a d i a t i o n  c a l c u l a t e d  .from t h e  a v e r a g e  a i r  t empera tu re .  

The ' s o l i d  l i n e  r e p r e s e n t s  t,he expei- imenta l  h e a t  t r a n s f e r .  r a t e .  



- Experi rnenta l . a 

. . A Air 
0 wall 

r r r m f i r l r r r l .  l r l m r m f i f i l r n  

12 M 12 

'TIME. 

Figure 10.. ' Total    eat' I n t o  Column 

The, accura te  enc losure  ana lys i s  r a d i a t i o n  added t o  the  

convent ional  convect ive hea t  t r a n s f e r  underest imates  the t o t a l  hea t  

t r a n s f e r .  ' When the  ( i n c o r r e c t )  a i r  temperature rad iae ion  , i s  added to 

t he  convent ional  convect ive t r a n s f e r ,  the ca l cu la t ed  r e s u l t  . agrees  

very well w i t h  the experiment. This , i s  because r a d i a t i o n  i s  

overestimated t o  compensate ' f o r  the  underest imation of  convection. 

~ h u s ,  t h i s  method' gives a  c o r r e c t  answer fo r  the wrong reasons. 



This  d i s c r e p a n c y  is  g r e a t e s t  when t h e  w a l l  t e m p e r a t u r e  i s  much 

h i g h e r  than  t h e  mass t empera tu rh .  Th i s  l e n d s  s u p p o r t  t o  t h e  ; 

. h y p o t h e s i s  t h a t  c o n v e c t i o n  l o o p s ' w i t h i n  ' t h e  e n c l o s u r e  a r e  i n c r e a s i n g  
. .  . 

t h e  .heat  t r a n s f e r  r a t e . ,  

Th i s  a n a l y s i s  i m p l i e s  t h a t  t h e  h e a t  t r a n s f e r  c o e f f i c i e n t  is  

c o n s i s t a n t l y  h i g h e r  t h a n  t h a t  p r e d i c t e d  by e q u a t i o n  4 .  However, t h i s  

i s  on ly  an i n d i c a t i o n  t h a t  more work shou ld  be  done on t h i s  q u e s t i o n  

s i n c e  t h e r e  a r e  many u n c e r t a i n t i e s  invo lved  i n  t h i s  a n a l y s i s .  A 

d e t a i l e d  e r r o r  a n a l y s i s  appears  i n  Appendix 3 .  The wa te r  column 
. , 0 

c o n t a i n s  so  much mass. t h a t  a  0 . 1  F change i n  t empera tu re  'can mean a  

change o f  86 BTU's. S i n c e  temperatur ,es  were read  t o  t h e  n e a r e s t  

0 0 . 1  F and t h e  t o t a l  h o u r l y  'change ' in  column ' e n e t g y  c o n t e n t  av'eraged 

130 BTU/hr t h i s  i n t r o d u c e s  a  p o s s i b l e  66% e r r o r .  The thermosiphoning 

r a t e  was much h i g h e r  (300 - 600 B T U / ~ ~ ) '  s o  t h a t  t h e  impact o f  t h i s  

er;or on the .  c a l c u l a t e d  c o n v e c t i o n  r a t e  i s  about. 20%. The f a c t  t h a t  

t h e  t r e n d  is c o n s i s t a n t  a r g u e s  t h a t  t h e  a c t u a l  e r r o r  was l e s s  t h a n  . . : 

t h i s .  . . 

C a l c u l a t e d  e n c l o s u r e  r a d i a t i o n  cou ld  add a d d i t i o n a l  e r r o r  t o  t h e  

c o n v e c t i o n .  E m i s s i v i t  i e s  .were u n v e r i f i e d  and t h e  view f a c t o r s  'were 

. , 

approximate .  Modeling t h e  columns' and -enc losure  a s  10 i s o t h e r m a l  
. . 

s u r f a c e s  i n t r o d u c e s  an unknown e r r o r .  I n  any c a s e ,  . i t  i s  c l e a r  t h a t  
, . 

u s i n g  a i r  t empera tu re  i n s t e a d  o f  s u r f a c e  t e m p e r a t u r e s  f o r  r a d i a t i o n  

c a l c u l a t i o n s  w i l 1 " o v e r e s t i m a t e  r a d i a t i v e  t r a n s f e r  iri t h i s  s i t u a t i o n .  

The =omputer model u s e s  average  a i r  t empera tu re  f o r  t h e  c a l c u l a t i o n  

o f  r a d i a t i o n  and convect'ion i n t o  t h e  wa te r  column. 



. . EVAPORATION 

. . ~ h &  Reynolds ani logy fo r  hea t  t r a n s f e r  c a r i b e  extended t o  

convect ive mass t r a n s f e r :  . 

Sh Nu f  (eq. 14)' - = - = - 
Re-Sc . R e - P r ,  2 

. . 

where: Sh =  herw wood number . . , 

Sc .= Scranton number 

Re = Reynolds number 

Pr . = Prand t 1 nu,mber 

Nu = Nussel t  number ' 

f  = f r i c t i o n  f a c t o r  

This i s  adequate fo r  Pr 1 ,  and small temperature g rad ien t s .  

Ch i l t on  and ~ o l b u r n  modified the  above r e l a t i o n s h i p :  

. . 

For water vapor i n  a i r  t h i s  reduces to: , 

where h  = convect ive heat  t r a n s f e r  c o e f f i c i e n t  

g  = mass t r a n s f e r  coef f  ic ' i en t  

Although the  hea t  t r a n s f e r  c o r r e l a t i o n  t o  f r i c t i o n  i sd  not  

accura te  f o r  Reynolds numbers l e s s  than 10,000 i.t i.s f e l t  t h a t  

e q u a t i o n  14 w i l l  g ive  a  good es t imate  a t  lower Reynolds numbers i f  

t he  hea t  t r a n s f e r  c o e f f i c i e n t  can he determined from some o the r  

r e l a t i o n s h i p .  (2)  Equation 16 - i s  used i n  the computer s imulat ion.  

The energy t r a n s f e r  r a t e  from evaporat ion i s  



where: g  = mass t r a n s f e r  c o e f f i c i e n t  

. .. 
i = h e a t .  of v a p o r - i z a t i o n  of w a t e r  
f g 

w = o u t s i d e ' a b s ' o l u t e  humid i ty  
0 

w = a b s o l u t e  humidi ty ,  .of s a t u r a t e d  a i r  a t '  p o o l  t e m p e r a t u r e  
P  

A cu,rve f i t  f o r  i was used.  
. f g  

. . 
. . . .  . 

. . . . -4 2  
,. (eq .  28) i = 1091..40 - .495T - 5 . 0 0 ~ 1 0  T B T U / I . ~ .  . 

.f s . . 
m 

The a b s o l u t e  humidi ty  .(w) was :f ound from t h e  r e l a t i o n . s h i p s :  

. . 
- 5 2  . ,  (eq .  19)  p i s  = exp[-3.078 + 4 . 5 2 7 ~ ? - ~ ~  - ' 8 . 0 1 0 1 ~ 1 0  T  I , . 

'where P  i s  t h e  s a t u r a t e d , v a p o r  p r e s s u r e  i~ i n c h e s  of .'H a t  T(OF) , 

V S  '. . . g 
. . 

and 35OF 2 T L 74.97OF . . 

(eq .  21) w = ..622 P  / ( P  - P  ) l b  jcu.. f t  d r y  a i r  ' . 
S V S  ' VS m .. 

where P = t o t a l  p r e s s u r e  

(eq .  22) w  = .622 
1 ] lbm/cul f  t . . 

S 

where RH = R e l a t i v e  Humidity. 

Equat ion 2 1  was used t o  f i n d  t h e  s a t u r a t e d .  a b s o l u t e  humid i ty  over  t h e  

poo l .  , E q u a t i o n  22 could  b e  used t o  c a l c L l a t e  t h e  o u t s i d e  a b s o l u t e  

humid i ty  f r a n  t h e '  r e l a t i v e  humid i ty .  I n  t h i s  program t h e  o u t s i d e  

a.b'solute humidi ty  c a l c u l a t e d  from wet and d ry  b u l b  t e m p e r a t u r e s  and . 

used a s  a n  -input. 



CONVECTION INTO ROOF POND 

The roof pond c a n ' b e  modeled a s  a n  i so the rma l  f l a t  p l a t e .  I t  is  

d i f f i c u l t  . t o  dec ide  whether t h e  convect ion 'is f r e e  or  ' f o r ced  s i n c e  .wind 

speed v a r i e s  and t h e .  shades may slow t h e  a i r  movement ,over t h e  pool .  
' 

I t  is  c l e a r  t h a t  t h e  h e a t . . t r a n k f e r  w i l l  be , equa l  t o  or  g r e a t e r  than  

t h a t  which t h e  f 'ree. convec t ion  r e l a t i o n s h i p  y ~ e l d s .  

During t h e  day when t h e  p o o l ' i s  warmer t han  t h e  o u t s i d e  a i r  t h e  

f  ollowing r e l a t i o n s h i p  would apply f o r  turbulen't  f r e e  convec t ion  h e a t  

t r a n s f e r .  (7 )  

(eq.  . 2 4 )  ' h  = 0.19 (.AT) 0.33 

where: ' h '  = t h e  hea t  t r a n s f e r  cbeff  iciear: ~ T U / " ~ - f . t ~ - h r .  

AT = t h e  d i f f e r e n c e  between a i r  temperature  and pool  temperature  

During the  n i g h t  when a i r  temperatures  drop .below t h e  pool temperatures  

, t h e  fo l lowing  t u r b u l a n t  f r e e  convecti0.n r e l a t i o n  would apply:  (7.) 

0.33 h  = 0.22 (AT) 

The average  summer wind speed i n  t h e  Sacramento a r e a  is  12.5 

f t /sec (3.8 m/s). (8) Measurements taken by prev ious  r e s e a r c h e r s  
. ' 

. . 

i n d i c a t e . t h a t  t h e  shade used on the  t e s t  b u i l d i n g  roof pond reduces 

. t h e  wind v e l o c i t y  over  t h e  water  t o  a n  .average of about  2  f  t / see .  (9)  

The fo rced  c o n v e c t i o i  c o r r e f a r i o n  f u r  air over a  1lo.rizontal i s o . -  

' thermal  sur face :  is: (11) 

(Laminar Re < l o 6 )  

o r :  



. . 

where' k '  = 

' ' (Turbu'lent Re > l o 6 )  
. . 

the rmal  c o n d u c t i v i t y , .  of a i r  . . . 
. . 

L = p l a t e  l e n g t h  

I f  t h e .  l aminar  e q u a t i o n  is  eva lGa ted  f o r .  a  68OF ( 2 0 ' ~ )  and 80°F ( 2 7 ' ~ )  

a i r  t h i s  y i e l d s .  ' , . . . . 
. , 

(eq .  28 3 . BTU . 
.69 = .28  6 0~ hr 

. . 

w h e r e , v  i s  t h e  v e l o c i t y  ' i n  f e e t  p e r  second, F o r  a ' v e l ' & i t y  of  2  f t / s e c  

h  = .'4 BTUIOF h r  f t 2 .  1 f  t h e  , o u t s i d e  ' t e m p e r a t u r e  is. more than  g°F 

(5OC) d i f f e r e n t  from t h e  p o o l  t e m p e r a t u r e  t h e  f r e e  c o n v e c t i o n  w i l l  

be  g r e a t e r  than  t h e  f o r c e d  c o n v e c t i o n .  I n  t h i s  c a s e  t h e  computer pro- 

gram chooses  t h e  g r e a t e r  of t h e  two h e a t  t r a n s f e r  c o e ' f f i c i e n t s .  



I n t o  Pool 

CONDUCTION 

. . 

. . 
The p o o l ,  edges a r e  i n su la t ed  wi th  .R19 f i b e r g l a s s  b a c t s  and w i l l  

g a in  (o r  l o s e )  h e a t  from. the  o u t s i d e  a i r .  

whprp  R = 20 ( o F - ~ ~ - ~ ~ ~ I / B T u  
. . 

.A = 32 f t 2 . ' a r ea  

T = ou t s ide  temperature 
3 '  . . 

. .. . , . 8 

Ti = p o o l  temperature 

 he pool  bottom is  in su la t ed  from the  l i v i n g  space '  by R-19 f i b e r g l a s s  

b a t t s  a n d ' w i l l  t r a n s f e r  hea t  according t o  t h e  above r e l a t i o n .  I n  t h i s  

case :  t h e  a r e a  is  60 f  t 2  (2.2~1) and T represent ;  t h e  i n s i d e  temperature.  

.The top edges of t h e  s h e e t  meta l  pool' con ta ine r  extend i n t o  the  

a i r  and may a c t  a s  f i n s  by conducting hea t  i n t o  the  pool.    his e f f e c t  

was neglec ted .  . 

I n t o  Downc omer : 

Since t h e  ABS downcomer i s  immersed wi th in  the column h e a t  w i l l  

conduct ac ros s  t he  p l a s t i c  t'o hea t  i t  according t o  t h e  equat ion:  

where R = conduct ive and convect ive r e s i s t a n c e  of t he  ABS p l a s t i c  and 
water 

TC = column water temperature 
Ti = downcoaier water temperature 
A = su r f  ace  a r e a  of dowricm~er 

This  r e l a t i o n  was used i n  t he  computer. s imula t ion .  I t  was assumed 

t h a t  convection Ioops s e t . u p  wi th in  the column between the  warm column 

and the  cooler  downcomer would r e s u l t  i n  the conducted "coolth" from ' 



. .  . . . 

. ,  ' t h e  downc'omer f a l l i n g  down t o  t h e  lowest  column node; Thus,  t h e  

c o n d u c t i o n  wa? c a l c u l a t e d  nbde by node b u t  t h e  t o t a l  h e a t  ;as removed ' ' .  . 

only  from t h e  bot tom column' node. 

. . . . 



NET RADIATION INTO POOL 

A 1  though the  shades block d i r e c t  sun from. t h e  pool ,  d i f f u s e  

r a d i a t i o n  e n t e r s  i t  dur ing  t h e  day..  The shades hea t  up and r a d i a t e  
' 

i n t o ' t h e  podl. .  A t  n i g h t  the  pool  can lose'  hea t  by radoia t ion  t o  t h e  
. . 

. . 
cooled shades and the  small  amount of  v i s ib l e ' ,  sky.  he ne t  r a d i a t i o n  

. . 

i n t q  the  pool was measured and t h i s . c o n s t . i t u t e d  one of t he  computer . . . 

i npu t s .  
. " 

BUILDING .HEAT LOAD 

. The t e s t  b u i l d i n g  hea t  load was c a l c u l a t e d  according t o  ASHRAE 

0 
s t anda rds  t o  y i e l d  an e f f e c t i v e  U x A va lue  of 74 BTU/ F-hr. The 

hea t  e n t e r i n g  t h e  t e s t  bu i ld ing  a i r  was c a l c u l a t e d  by 

This,. t reatment  . . does not  t ake  i n t o  account t he  l ag  induced by wa.11 

. capac i tance  nor t he  e f f e c t  df i n s u l a t i o n  on the  wa l l s  and roof .  . I t  

was no t  the  i n t e n t  of t h i s  work t o  model t h e ,  b u i l d i n g  i t g e l f .  



The computer s i m u l a t i o n  i s  l i s t e d  i n  Appendix 2.  The Cool Poo l  

. . .  system was. d i v i d e d  i n t o  t e n  .nodes ( s e e  .F igure  11) .  The column was 

d i v i d e d  i n t o  . 5 .  s l i c e s ; '  t h e  downcomer i n t o  3 s l i c e s ; .  t h e  i n t e r i o r  a i r  

was modeled a s  one node and t h e  roof  pond makes t h e  t e n t h  node. Each 

node was assumed t o  be  a t  .a  uniform tempera tu re .  A h e a t  b a l a n c e  was 

done f o r  each node t o  g e n e r a t e  a  sys tem of  t e n  n o n l i n e a r  f i r s t  o r d e r  

d i f f e r e n t i a l  e q u a t i o n s .  These e q u a t i o n s  were s o l v e d  'by a  l i b r a r y  

program. ' A  l i s t  of  t h e  nodes and t h e i r  .heat '  and mass t r a n s ' f e r  

p r o c e s s e s  fo l lows :  

F i g u r e  11. computer Nodes 

POOL 

Node 1 The Roof Pond 

..... 
8 

7 
..... 

6 

A) mass flow f r o & v o l u m n  top  (cq .  ? , 6 )  

B) mass f low t o  downcomer top  (eq .  2 , 6 )  

........... 
3 
.- 
4 

............ 

C) e v a p o r a t i o n .  t o  o u t s i d e  a i r  ( eq .  1 7 )  

. . D) convec t ion  t o  o u t s i d e  a i r  (eq. 24-26) 

E) n e t  r a d i a t i o n  i n t o  poo l  ( e x p e r i m e n t a l )  

.... 

.... 
10 = INSIDE AIR 



: F) c o n d u c t i o n  to :  l i v i n g  s p a c e  ( e q .  '29) 

G )  c o n d u c t i o n  t o  o u t s i d e  ('eq.. 29) 

Node 2-4 , The ~owhcomer  

A) mass f l o w  i n  (eq .  2 ,6 )  

B) mass f low o u t  ( eq .  2 $ 6 )  

C) c o n d u c t i o n  from w a t e r  column (eq.  30)  

Node 5-9 The Column . 
. . 

A )  mass f low . i n  (eq. 2 16) 

. . B) . mass f l o w  o u t  (eq .  2 ,6 )  . .  

C )  r a d i a t i o n  f o  b u i l d i n g  i n t e r i o r  ( eq .  8 )  

D) c o n v e c t i o n  t o  i n t e r i o r  a i r  ( eq .  10)  

E) c o n d u c t i o n  t o  downcomer f ynm 1 mr.s l: node ~ n l y  (eq . 30 ) 
Node 1 0  The ' ~ n t e r i o r  A i r ,  

A) r a d i a t i o n  from column ( e q . - 8 )  

B) c o n v e c t i o n  from column (eq .  10) 

C) , b u i l d f n g  l o a d  (eq .  31). 

C(2) o u t s i d e  t e m p e r a t u r e s  

C(3) a b s o l u t e  humid i ty  

C(4) n e t  r a d i a t i o n  i n t o  poo l  

C(5) b u i l d i n g  h e a t  load 

The s p e c i f i a b l e  pa ramete r s  s u c h - a s  c o o l  poo l  geometry a r e  l i s t e d  i n  

. Appendix 2 .  These pa ramete r s  c a n  be  read.  i n  so cha t  Cvul P o o l  sys tems  

of v a r y i n g  s i z e s  c a n  b e . s i m u l a t e d .  Appendix 2 a l s o  l i s t s  t h e  v a r i a b l e  . 
. $  ' 

val.11es suc'h a s  y i s c o s ' i t y  and d e n s i t y  which a r e  c a l c u l a t e d  each hour  

o r  each t ime  s t e p  depending on t h e i r  impor tance  a n d  impact .  



The model was v e r i f i e d  by i n i t i a l i z i n g  t h e  t e n .  n0d.e temperatur 'es  

t o  match t h e  exper . imen ta l ly  measured t e m p e r a t u r e s .  .Th.e program was 
. .. . . .  

. . 
. . , . 

a l l o w e d . t o  s imula te .  24 h r s .  of performance u s i n g  h o u r l y  i n p u t s  (ou t -  

s i d e '  t e m p e r a t u r e ,  humid i ty ,  n e t  r a d i a t i o n  i n t o  p o o l ,  and b u i l d i n g  
. . 

. . .  l o a d )  which were.  t h e  same a s  t h o s e  measured du ' r ing  t h e  experiment' .  

 he node t e m p e r a t u r e s  and t h e  t h e r m o s i p h o n i n g ' r a t e  were  t h e n  compared 

t o .  t h e  e x p e r i m e n t a l  v a l u e s  w i t h  v e r y  good agreement .  . . . . 

Heat t r a n s f e r  f r a n  t h e  a i r  t o  t h e  column i s  c a l c u l a t e d  u s i n g  
. . 

' a v e r a g e  a i r  and column tem.pera tures .  ' T h i s  g i v e s ,  good r e s u l t s .  and 

e l i m i n a t e s  t h e  n e c e s s i t y  o f  model ing s t r a t i f i c a t i o n  i n  t h e  a i r .  Fr'om 

f i g u r e s  6 and 7 i t  c a n  b e  s e e n  t h a t  a i r  s t r a t i f i c a t i o n  i s  d e p e n d e n t .  . . 

on t h e  o u t s i d e  t e m p e r a t u r e  h i s t o r y , .  b u i l d i n g  d e s i g n  and c a p a c i t a n c e  

( t o  name, a  

m e n t a l  a i r  

few fzic t o r s ) .  ' ~ i ~ u r e  12 shows t h e  a v e r a g e  of t h e  

t e m p e r a t u r e s  c m p a r e d  t o  t h e  computer s i m u l a t i o n .  

I I I 

exper  i- 

1 2 .  M 12 

. . TIME 
F i g u r e  1 2 . .  Avcrage A i r  Temperatures  
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4 

Due t o  i n s t r u m e n t  d i f f i c u l t i e s  no  d a t a  w a s , r e c o r d e d  a t  1 0  p.m. 

and 11 p.m. The a i r  t empera tu re  w a s  ex t remely  s e n s i t i v e  t o  t h e  b u i l d -  

i n g  load e s t i m a t e  s i n c e  i t  had . l i t t l e  capac i - t ance  and.- f a c t o r s  such  a s '  

i n f i l t r a t i o n  cou ld  on ly  b e  c r u d e l y  e s t i m a t e d .  . However t h e  g r e a t e s t '  

d e v i a t i o n  i n  t e m p e r a t u r e  was 2.7OF ( 1  , s O c )  

Conduction frcrn' t h e  column t o  t h e  downcomer was c a l c u l a t e d  f o r  . 
. . 

a d j a c e n t  nodes  b u t  . t h e  n e t  h e a t  t r a n s f  e red  i n t o  t h e  t h r e e  downcomer 

nodes was o n l y  s u b t r a c t e d  from t h e .  lowes t  column node. T h i s  s i m u l a t e s  

c o n v e c t i v e  l o o p s  w i t h i n  t h e  column which enhance w a t e r  s t r a t i f i c b t i q n .  

.Mass  l e a v e s  t h e  node a t  t h e  node t empera tu re  and e n t e r s  t h e  node of 

t h e . p r e v i o u s  node ' s  t empera tu re .  Then t h e  new i s o t h e r m a l  node tempera- 

t u r e .  i s  de te rmined .  T h i s  method y i e l d s  c l o s e  ig reement  t o  ' t h e  

measured column t e m p e r a t u r e s  as shown i n  f i g u r e  13. 

0 Experimental 
65'. ,,,,,, , 1 1 , 1 , ~ ~ , , 1  1,,1 

F i g u r e  13.  Column ~ e m p e r a  t u r e s  



F i g u r e  14 shows e x p e r i m e n t a l  and poo l  t e m p e r a t u r e s .  'Aga in ,  t h e r e  

is e x c e l l e n t  agreement. .  I n  ' t h i s  c a s e  t h e  pool- was p robab ly  l a r g e r  

t h a n  r e q u i r e d  f o r  t h e  h e a t  load from thermosiphoning.  - ~ h u s ,  t h e  r e s t  .. 

o f  t h e  sys tem had l i t t l e  impact on i t .  The r e v e r s e  is n o t  . t rue .  

M 

TIME 

F i g u r e  14. Pool Temperature 

- The pool  tempera ' ture "as c r i t i c a l  i n  d e t e r m i n i n g  t h e  thermo- 

s i p h o n i n g  r a t e ,  s i n c e  t h e  c o l d e r  downcomer d a t e r  was g r e a t e r '  t h a n  t h e  

p r e s s u r e  d i f f e r e n c e ,  was. Fi g~lrr l  14  show^ t h e  e a l c u l a t e r l  vs .  

exper imenta l  theirnosiphoning t a  t e .  Near midn igh t ,  t h c  e a l c u l a  t r d  

r a t e  was 15% .lower than t h e  measured r a t e .  ' The ' r e s t  of  t h e  t ime 

t h e r e  was much b e t t e r  agreement.  

F i g u r e  15 shows t h e  downcomer t e m p e r a t u r e s  which agreed c l .ose ly .  
' 



TIME 
F i g u r e  15. Thermos iphon ing  

. . 

F i g u r e  16 shows t h e  most  impor tan t  c a l c u l a t i o n ,  h e a t  a b s o r b e d  by 

t h e  column. Th i s  i s  t h e  f a c t o r  which de te rmines  s i z i n g .  A s  

d i s c u s s e d  e a r l i e r ,  t h e  e x p e r i m e n t a l  c a l c u l a t i o n  cou ld  be  o f f  by 20% 

o r  more. . The agreement wi th  s i m u l a t e d  v a l u e s  i s  w e l l  w i t h i n  20%. 
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Figure 16. ?owncomer Temperatures. ' 



Experimental 
Q calculated 

M 
. TIME 

F i ~ l r e  1 7 ,  Tnt~l. Mrat In'to 'Column Wall 



. . 
CONCLUSION 

This  work has increased  the  experimental  da t a  a v a i l a b l e  on the  

' thermosiphoning roof pond. Although convent iona l  methods, ' for ca lcu-  
. - 

, l a t i n g  t h e  thermdsiphonirig r a t e ,  h e a t  t r a n s f e r  and evapora t ion  d o  a  

. good job modeling t h i s  system, i t  i s  c l e a r  t h a t  convec t ive  h e a t  
. . 

t r a n s f  e r  ' r e l a t i o ' n ~ h i ~ s  f o r  enclosed spaces  need t o  be developed. 

Now t.hat a  godd computer s imula t ion  i s  a v a i l a b l e  f o r .  t h i s  system 

' i t  w i l l  be easy t o  input  o the r  c l i m a t e  va lues  and system parameters  . . 

. . 
i n  order  t o  s i z e  the. Cool Pool  f o r  d i f f e r e n t  reg ions .  



A P P E N D I X  I 

TEST B U I L D I N G  ' 








