-13452
PROCEEDINGS of the gl

@ DXT [H] CONF-820201
BERKELEY WORKSHOP ... &

BE’R."(FLEY l-ABﬂF\’ATORY
FEB 2% 1982

D I STR I B UT E D DOCE'I\?EISWP%’ gggﬂON
DATA MANAGEMENT AND
COMPUTER NETWORKS

Asilomar
February 16-19, 1982

' AWRENCE BERKELEY LABORATORY For Reference
JNIVERSITY OF CALIFORNIA, BERKELEY

. Not to be taken from this room

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY UNDER CONTRACT W-7405-ENG-48

e R

n
e

LEGAL NOTICE

This book was prepared as an account of work
sponsored by an agency of the United States
Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their
employees, makes any warranty, express or im-
plied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process
disclosed, or represents that its use would not
infringe privately owned rights. Reference herein
to any specific commercial product, process, or
service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favor-
ing by the United States Government or any agency
thereof. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect
those of the United States Government or any
agency thereof.

Printed in the United States of America
Available from

National Technical Information Service

U.S. Department of Commerce

5285 Port Royal Road

Springfield, VA 22161

Price Code: A17

Lawrence Berkeley Laboratory is an equal opportunity employer.

e |

PROCEEDINGS OF THE SIXTH
BERKELEY CONFERENCE ON DISTRIBUTED DATA MANAGEMENT
AND COMPUTER NETWORK

Sponsored by

Computer Science & Mathematics Applied Mathematical Sciences
Department Research Program
Lawrence Berkeley Laboratory Office of Energy Research
University of California U.S. Department of Energy
Berkeley, California 94720 Washington, D.C. 20585

General Chairperson: Paula Hawthorn, Lawrence Berkelay Laboratory
Program Chairperson: David Dewitt, University of Wisconsin-Madison
Program Committee: D. Z. Badal, Naval Postgraduate School
Kenneth Biba, Sytek Incorporated
Greg Chesson, Bell Laboratories
Lynn A. DeNoia, Bentley College
Susan Eggers, Lawrence Berkeley Laboratory
Frank Germano, Digital Equipment Corporation
Peter Kreps, Lawrence Berkeley Laboratory
Daniel Ries, Computer Corporation of America
Lawrence A. Rowe, U.C., Berkeley
Fred Schneider, Cornell University
Robert H. Thomas, Bolt Beranek and Newman, inc.
Kevin Wilkinson, Bell Laboratories

ACKNOWLEDGMENT

We would like to thank Dr. Donald Austin of the Office of Energy Research, U.S. Department
of Energy, for his continued support of the workshop, under Contract No. W-7405-ENG-48.

S A

iii

CONTENTS

Gemini--A Reliable Local Network
Neil B. Cohen, Charles B. Haley, Scott E. Henderson,
and Chak L L] Won L] L] . * L] L] . . L] L] . L] L] L] . * L] . * .

The Resiliency of Fully Replicated Distributed Databases
Wing Kai Cheng and Geneva G. Belford « « « « o« « ¢ + &

A Robust and Efficient Protocol for Checking the.
Availability of Remote Sites
Bernd walter‘ L] * L) . * L] L[] »® L) L] L] L] L] L] L] * .

A Quorum-Based Commit Protocol
Dal e sk een L] L] . . L] [] [] L] - L] L[] * @ L] L] L] L) L] . L] [] L]

Implementation of Distributed Transactions
Deborah J. DuBourdieu .« ¢ o+ ¢ o o o ¢ o ¢ ¢ ¢ o o o o

Mutual Consistehcy of Copies of Files Based on
Request Characteristics ‘
Gautam Barua L] * L] . L] L] L] * L] L] * L) . L]

On the Use of Optimistic Methods for Concurrency
Control in Distributed Databases
Stefano Ceri and Susan Owicki « o « o ¢ & ¢ o o o o &

Performance of Two. Phase Locking '
Wen-Te Ko Lin and Jer‘r‘y Nolte L) [[[[[. 3 L] L[] . .

A Distributed File System Architecture Supporting
High Availability
D. Scott Parker and Raimundo A. Ramos . « ¢ ¢ ¢ o o &«

Site Initialization, Recovery, and Back-Up in
a Distributed Database System
Rony Attar, Philip A. Bernstein, and Nathan Goodman .

View Definition and Generalization for Database
Integration in Multibase: A System for
Heterogeneous Distributed Databases

Umeshwar Dayal and Hai-Yann Hwang .« « « ¢ o ¢ o o o &«

Selective Broadcast in Packet-Switched Networks
David w. wall L] L] . L[] * . L] L] L[] L] [L] > L] L] * ., L] L]

Performance Analysis of a Shortest-Delay Protocol
Liang Li, Herman D. Hughes, and Lewis H. Greenberg . .

The BX.25 Certification Facility
JCA. Melici . L] * . * L] . L] " L] L3 * L] L] [] L1] L[] L] . L) . L]

117

131
<161
.185
.203
.239

.259

.283

iv

The Design of the CSNET Name Server
Marvin Solomon, Lawrence H. Landweber,
and Donald Neuhengen « « « o« o o o o o « o o o s o o o » o o311

On the Correct and Efficient Schedullng of
Transactions in a Highly Parallel Database Machine
Ravindran Krishnamurthy and Umeshwar Dayal « « « + « o « . 329

Promising Approach to Distributed Query Processing
¢c.T. Yu, K. Lam, C.C. Chang, and S.K. Chang . . « « « + « .363

GEMINI - A RELIABLE LOCAL NETWORK

ABSTRACT

Syntrex has developed a local network called Gemini for
word-processing terminals. Gemini's unique redundant
architecture ensures that no single failure will keep the
system from operating. The development of a
distributed message switched operating system allowed
the network to be easily constructed and expanded.
Users can migrate to the network environment without
being forced to learn new operating procedures, since
the word-processing software that runs in a stand-
alone terminal is the same software that runs on
Gemini.

Neil B. Cohen
Charles B. Haley
Scott E Henderson
Chak L. Won
Syntrex Inc.

Industrial Way West,
Eatontown, N.J. 07724

GEMINI - A RELIABLE LOCAL NETWORK

1. INTRODUCTION

Syntrex has developed a local network called Gemini for word-processing
terminals. The system is fully redundant, so that single failures don't force the
users to stop work and wait for repairs. The network is designed to avoid
problems of "perpetually open files" that can occur if a terminal fails before
closing all its files. The developmént of a distributed message switched

operating system allowed the network to be easily constructed and expanded.

Section 2 gives an overview of the architecture of the local network.
Section 3 describes the operating system' and the features that are used
specifically for distributing the control. Section 4 describes the hardware and
software architecture of the local network. Section 5 provides details of some of
the interesting problems that were solved as the system was being built. Section

6 discusses potential plans for expanding the system.
2. SYNTREX NETWORK ARCHITECTURE

2.1. Background

One of Syntrex's major goals is to provide highly reliable, easy to use
office automation equipment. The redundancy designed into Gemini provides
reliabilify, since all the hardware is duplicated. The local network system is
easy to use because the software that runs on a stand-alone word processor is
the same software that runs on Gemini.

Our user community is extremely non-technical. Procedures such as
backing up disks are foreign to normal office operation, and are often avoided
or forgotten by users of automated systems. Gemini's automatic real-time backup
alleviates this problem, protecting users against the loss of information and at
the same time providing a measure of protection against lost work time due to a
down system. | |

It should be noted that the system is not designed to keep a fully
redundant system operating at all costs, or to connect Gemini units together to
provide load sharing or further redundancy (a la Tandem([5,7}). Rather, the
system is designed to continue operating without backup in the face of any

single failure of hardware or software. This allows the customer to continue to

do useful work until such time as a service person can get to the site to repair .

and restore the damaged half of the system.

2.2. The Terminal

4

The Aquarius is a stand-alone intelligent word processing terminal
produced and marketed by Syntrex. It provides text editing and formatting
capabilities, as well as access to printers, a spelling checker, and other
features. Data and programs are stored on two 5 1/4 inch floppy diskettes, each
of which can store up to 400 kilobytes of information. The Aquarius connects to
several standard electronic typewriters, and fits on the typing extension of a
secretary's desk. ' ‘

2.3. Network Topology

J

Figure 2-1 shows a sample Gemini configuration. This star network can
have up to 14 Aquarius workstations and printers attached. Gemini itself acts as
a completely redundant file server, allowing users to share files and printers,
send mail to one another, and have access to up to 600 megabytes of

information.

Figure 2-2 shows how Gemini units can be clustered into a larger
distributed system. This network has no central controller, and each part
(individual Gemini) will continue to operate correctly if a neighboring Gemini is

cut out of the system.

Figure 2-3 shows how Gemini clusters can communicate over a connection
to a Public Data Network.

3. Network System Software

3.1. Operating System

The Syntrex Operating System (SOS) was developed for the Aquarius.
SOS is a sophisticated message switched operating system. It was structured in
such a way that the extension to a network environment required a minimal
amount of changes. The same basic operating system that runs in the Aquarius
also runs in the disk controller of Gemini. Applications programs (text editor,
print programs, etc.) were moved to the nefwork environment with no
significant modifications. The remainder of this section will describe the
operating system, with emphasis on the elements of the kernel that allow a

networking environment to be easily created.

We assume that the reader is familiar with standard operating system
concepts such as kernels, messages, processes, tasks, etc. These will not be
defined in the text that follows. The process and interrupt structure of SOS is
similar to that of Thoth[3], where system control relies upon teams of processes
to perform specific functions. We have also relied heavily on the concept of a
link([1,8], which is used for inter-process communication, and will be described
in detail below.

Processes communicate by sending messages to one another. The messages
are routed from process to process by the SOS kernel(s). A message consists of
a message header, followed by an (optional) meséage body. The header contains
information about the link on which the messagé was sent, an (optional) reply
link (see below), the message type, and the length of the message body.
Certain pre-defined message types exist for use with well-known processes

(such as open a file, write a record, create a new process, etc.)

Messages are sent over links. A link is a capability for one-way
communication over a channel between two processes. It is important to note
that a link is unidirectional.

When the kernel is told to send a message on a link, it compares its own
machine id with the machine id of the destination process. The Aquarius
terminal is given a machine id at the time the operating system is started. In a
stand-alone configuration, the machine id is set to zero. If the Aquarius is
connected to Gemini, then the machine id is set by the Gemini during the
startup phase of operation. If the destination process is located on the same
machine, then the message is queued directly to the destination. If the machine
id is different, then the kernel places the message on the queue to Gemini. The
communication line protocol will transmit the message to Gemini, where it will be
routed to its destination machine. The kernel in the destination machine then

queues the message to the destination process.

When a process creates a new link, it is said to own the link. Ownership
of'a link may not be transferred. The owner of alink will receive any message
sent on the link. Until given away, the owner process also holds the link. The
holder of a link can send a message on the link. Subject to having the
appropriate permissions, the holder of a link may give the link away to another
process, thus allowing that process to send a message to the link owner. The
holder of a link can not determine the identity of the owner. This helps to
ensure that there are no hidden dependencies between proces‘ses which would
make networking difficult. ‘

Links have certain associated permissions, or attributes. These incIude'
the ability to duplicate a link, give away a link, destroy a link after sending a
message on it (one time use), inform the owner when the link is destroyed or

duplicated, etc.

When a message is sent to a process, provision is made for including a
reply link in the message header. This is a link held (but not necessarily
owned) by the original sender, which the receiver can now use to send a

response message back to the link owner.

At the time a process is created, it is given a link to the Process Manager
process. The process manager passes arguments and a link to the system file
manager to the newly created process. This "well-known" link to the file
manager is used to access all files in the file system. The following example (see

also figure 3-1) shows how a file on the floppy disk is accessed:

1) The process sends an "open" request to the file manager on the well-known
link (marked "a" in the diagrams). Included in the open request is a reply

‘link (marked "b"). The reply link is coded for one-time use.

2) The file manager opens the file and sends a reply to that effect to the
process. Included with the reply is a reply link (the "file" link - marked -
~"¢"). The file link is owned by the file manager, and has attributes such
that the file manager will be informed when the link is duplicated or
destroyed. All further requests for action on the newly opened file must be

- sent on the file link. If the file manager had failed to open the file
(nonexistent file, file busy, etc.), an error message would have been

returned to the user, and the file link would not be created.

3) The process sends read (or write) requests on the file link. Each request
may contain a reply link for the file manager ,to use to send back an
.ack/nack. If the process does not wish. to receive such a response, no reply
link is sent with the read/write request, and the file manager can not make
a response. If a reply link is specifi.ed by the process it is coded for one
time use.

4) When the process is through with the file, it destroys the file link (i.e.
closes the file). The file manager is notified of the destruction of the link,
and then closes the file. The well-known link between the process and the
file manager still exists, so that other files may be opened. Of course,
several files ma*y be opened simultaneously. Each open file has its own file
link.

It should be obvious that the above mechanism can be extended to multiple
machines in a straightforward manner. In particular, suppose that t.he' file
manager in a terminal has a "well-known" link to a file manager in ahofhér
terminal (see figure 3-2). Then suppose an open request arrives on-the'wel-l—'
known link from a local process. The file manager attempts to access the
indicated file and fails. Now it is a simple matter to "forward" the message to
the remote file manager, supplying as a reply link the original reply link
provided by the user process. The remote file manager accesses the file (or
fails to; it makes no difference), and sends its reply on the link provided by
the original process and forwarded by the local file manager. The message is
routed by the kernel(s) directly. The local file manager does not see the reply,
and if the file is opened successfully the local file manager will not be involved
in any further message forwarding. Furthermore, the program that asked to
" open the file remains unaware that the file has been opened on a remote
machine. It is this fact that allows SOS to extend to a network environment with
no changes in the application software. '

4. GEMINI

4,1. Overview

Gemini was designed to meet a number of different goals. Primary among

them were automatic information backup and minimal customer down-time.

Gemini is a completely redundant system, in which the user's information
is continuously backed up on the slave half of the unit (see ‘section 4.3.4 for a
more complete description of master/slave concept in Gemini). When a faﬁlure
occurs, half the system may be disabled, but the remainder can continue
processing the user's information. Information about the failure (location of the
system, the part that failed, recovery procedures, if known) is :sent
automatically via the phone network to Syntrex. In this manner, the customer
can continue working until the service person arrives to fix the broken half. of
the system. During the time that half the system is broken, no furthér backup
of the user information is done.

Seconéiary goals included an increase in available storage from 400
kilobytes on a single floppy disk, to as muth as 600 megabytes on Gemini, as
well as resource sharing, which allows users to conveniently share documents
and data base information. |

4.2, Hardware Description

The Gemini hardware consists of two major components, the Aquarius
Interface (AI) and the Disk Controller (DC). Gemini is a redundant systém. It
contains two identical halves, each with its own AI and DC, as well as
duplicated power supplies, battery backups and cables. Figure 4-1 is a block

diagram showing the major hardware components of Gemini.

The AI performs all communications between Gemini and the Aquarii. The
main features of the AI are:

1) Up to fourteen synchronous, serial, half duplex communication lines for the
connection of Aquarii.

2) One 8 bit parallel, full duplex port for communication between the two Al's.
3) Shared memory for communication with the DC.
4) An 8088 CPU and local ROM and RAM storage.

The DC provides file storage and file management for the Aquarii. The
main features of the DC are:

1) One to four disk drives, each with capacities ranging from 10 to 150
megabytes.

2) An RS232-C port for the connection of a modem and auto-dialer.

3) Shared memory for communication with the Al.

4) An 8086 CPU and local ROM and RAM storage.

4.3. Software Description

The software can be broken into two broad classifications: the disk

controller software and the Aquarius Interface software.

The DC software will not be discussed here. It contains essentially the
same kernel software that runs in a stand-alone Aquarius and manages files in
the manner that was described in section 3.1. It is possible to extend the file
manager to know about clusters of Gemini units, and to use a straight-forward

routing algorithm to access files on different nodes of the network.

The AI software subsystems will be described in some detail in the
sections that follow.

4.3.1. Al Software Architecture

The software in the AI consists of interrupt routines that handle the
clock, communication hardware, interfaces to shared memory and the other AI.
There are diagnostic routines that run at regular intervals as well as during
failure conditions. Finally, there is a "scanner" routine that continuously looks

for and processes incoming/outgoing traffic on the communication lines.

The scanner is implemented as a finite state machine. It examines each
terminal in turn, checking for events that initiate state transitions. These
events include the arrival of an HDLC frame from a terminal, a timer expiration,

or a synchronization message from the other AI.

~

10

The Al software can be fufther subdivided into the follpwing categories:
Interface to the Aquarius terminal -
Interface to the diék controller
Communications between the two Al's

- Self-testing procedures

4.3.2. Interface to Aquarius

Each Aquarius terminal is linked to the Gemini by means of a high speed
(300+ Kbps) syndhronous line. The line operates in half-duplex mode, using a
subset of the ISO HDLC[6] link protocol. HDLC was chosen because it is simple
to implement, and symmetric, so the same code could be run in both the terminal

~ and the Al.

4.3.3. Interface to Disk Controller

The AI and the DC communicate by the exchange of message buffers in

shared memory. Access to the various data structures in shared memory is

synchronized by means of semaphores. The hardware provides a read-modify-

write (or test and set) instruction, which allows either the AI or the DC to test
a semaphore, and to lock it if possible. Shared memory can be viewed as a very

high speed communications channel.

4.3.4. AI-Al Communications

'Gemini is designed so that the system will continue-to operate normally (as
far as the user is concerned) even thbugh ,paft of the system has completely
failed. To accomplish this, each independent half of the system must continually
monitor the well-being of its partner. The heart of this monitoring is the AI-AI

communications procedures.

11

When both halves of Gémini are operating normally one side is said to be
"master" and the other side is the "slave." If a serious error occurs (disk
breaks, memory parity errors, etc.) on one side, the bad side is powered off,
and the good side continues to run. If the good side was the slave, it becomes

master at the time of the switch-over.

The only difference in the work performed by the master and the slave is
that the master actually transmits data to the Aquarius terminals, and the slave
does not. Anything else done by the master is done by the slave. This includes

reading data from the Aquarius and passing it on to the disk controller,

receiving data from the disk controller and preparing it to be sent to the

Aquarius, running on-line diagnostics, logging errors, etc. If an error occurs
on the master and the slave takes over, the slave is in a position to continue

talking to the terminals without interruption, or loss of information.

The Al's communicate with one another at different times for the following

reasons:
1) Startup testing and synchronization

When Gemini is started, the Al's talk to each other to make sure the link
between them is operating. If they fail to establish communications, - then the
slave side shuts itself off, and the master runs in simplex mode. It is possible
for the slave to detect that the master is not operating (as opposed to the link
between the Al's being broken), in which case the slave will become master and

run in simplex mode.
2) Synchronization during processing of Aquarius information

Before a message from an Aquarius can be passed on to the disk, it must
be correctly received by both Al's. Tt is possible, though unlikely, for a frame
to come in correctly on one side and have a CRC error on the other. The Al's
exchange information on the status of each incoming message to ensure that

synchronization is maintained.

12

Similarly, before a frame is sent to the terminal, the AI's exchange
information to ensure that the same type of frame is being sent by both sides.

See section 5.1 for more detail on the AI-AI synchronization procedures.
| 3) Error detection and recovery

When an error occurs either the bad side informs the good side about the
fault or it stops talking to the other AI altogéther. In either case, the
information is logged on the good disk controller, the bad side is powered down,
and the system continues to run in simplex mode. The Syntrex Service Genie™
calls the nearest Syntrex service center to report the error. In the meantime,

the customer can continue working without interruption.

As long as both sides are active, the two disks contain exactly the same
information with respect to the user's documents. If the system breaks a service -
person will come out to repair it. Between the time of the failure and the arrival
of the service persqri, the customer can continue working on the simplex
system. During this time there is no further backup of information. Also, ‘the
information on the two disks is no longer the same; the broken disk is now out
of date. When the Gemini is repaired after one side has broken, the information
on the "broken" side must be brought up to date. A recovery program copies all
the data from the "good" disk to the side that needs updating. Once the disks

are identical, the customer can begin working on the system again.

4.4, Self Testing Procedures

While the system is active, it periodically runs tests on different parts of
the hardware and software. These tests include auditing the message buffers,
checking for the existence and accuracy. of the clock, running memoryv tests,
sanity checks on the DC, and testing the port between the Al's. If any test
fails, the system logs an error, informs the other AI (if possible), and forces
the other side to perform a switch to simplex mode. The good side then powers
off the side with the error, and the Service Genie reports the error to the

nearest service center.

13

5. SPECIAL PROBLEMS
A number of significant problems were encountered and solved during the
course of building Gemini. Some of the more interesting ones are described in

this section.

5.1. Synchronization

Synchronization of the master and slave presented a major challenge
during the system development. In order to guarantee that no data was lost
during any transaction, and to be sure that the slave was prepared to take
control at any time, it was decided that all incoming and outgoing frames must
be synchronized betweén the Al's prior to being processed. On input, this
meant that the AI's exchanged information about the CRC of each incoming
frame. If both sides received the frame the same way (either with a correct or
an incorrect CRC), then the message was processed. If the Al's disagreed (one
side had a CRC error while the other did not), the frame was processed as if a
CRC error had occurred on both AI's. A duplicate data frame of a frame with a
CRC error is discarded. Valid data frames are passed on to the disk controller.
Processing in this manner ensures that both Al's are strictly synchronized on

input from any one Aquarius.

No ’attempt was made to synchronize processing in the disk controller.
Tranéactions processed by the DC will take varying amounts of time due to disk
retries, physical defects on the disk, seek optimization processing, etc. As a
result, when one disk controller sends a message to the Al to be passed on to
an Aquarius there is no guarantee that the message is ready to be sent from the
other AI.

We do not allbw any frame to be sent to the terminal until both AI's agree
to send the same frame. When one AI has a frame to send to the Aquarius, it
sends a message to the other AI, describing the type of packet it wants to
send. It then waits until a similar message is received from the other AI. If they

are the same (in other words, if both sides want to send the same type of

14

frame), then the master side transmits the packet to the Aquarius. The slave
side listens for the master to complete the transmission. If the two sides don't
agree on the type of frame to send, then a "lowest common denominator" frame
is selected and sent. One common case where the two sides won't agree on the
frame to send occurs when one AI wants to send a data packet that it has
received from the disk controller, and the other wants to send only an
acknowledgement (an HDLC RR frame), perhaps because a disk error is forcing
a retry and the data has not yet been read. In this case, the lowest common
denominator would be an RR frame. The next time around, if both sides have
the data packet, it will be sent to the Aquarius. Another example occurs when
one side wants to acknowledge a frame with an RR, and the other side wants to
initiate flow control (an HDLC RNR frame). The lowest common denominator in
this case is the RNR frame. There are safeguards in the system to avoid infinite
loops (such as a disk controller that does.continuous retries without realizing
that it is broken). |

5.2, Timeouts

When a timeouf occurs in the standard implementation of HDLC, the side
that times out retransmits its most recent message. In our implementation, if the
Aquarius times out, it retransmits. If the Gemini times out, it places itself in
receive mode, and waits for the Aquarius to time out and retransmit. This was
done because the clocks on the two halves of Gemini do not run at exactly the
same speed. We found that one side of the system would occasionally time out
and try to start a re-transmission, while the other side was still expecting a
message from the terminal. Rather than attempt to untangle the states of the two
Al's, we decided that the Gemini would never retransmit a message. The‘major
consequence of this was to lengthen the Aquarius timeout value, to make sure

that both sides of Gemini time out before the terminal retransmits.

We have found that when the system is working normally there are very
few re-transmissions necessary, so the longer timeout value does not impair the
performance of the system.

15

5.3. Resource Identification

The dynamic allocation of global resources must be carefully managed in a
redundant system. Otherwise, the independent halves of the system may create
different names for the same resource. The result is then confusion if one is
lucky, and disaster otherwise. This problem occurs in Gemini with respect to

the allocation of links in the disk controller.

Links are identified by a serial number, which is assigned at the time the

link is created. The following scenario describes the problem as it could occur:

1) The Aquarius sends a file open request to Gemini (see section 3.1 for a

detailed example of the operations required to open a file).

2) Both the master and slave DC open the file, and both allocate a "file link",
as described in section 3.1. However, since the DC's are not completely
synchronized, they could assign different serial numbers to the file link.

- 3) The master Al sends the reply to the open back to the Aquarius. The file
link belongs to the "master" side of the disk controller.

4) The Aquarius sends a read (or write) request on the file link. The message
is passed through the AI to the disk controller. On the master side, there is
no problem; the operation takes place as requested. However, on the slave,

the link does not have the correct serial number, so the operation fails!

There are several ways to avoid this problem. One would be to require
that the operation of the disk controllers be completely synchronized. However,
this may adversely affect the performance of the system. Our approach is less
restrictive. We set up a link translate table in the AI, . and map all ambiguous
link serial numbers to unique serial numbers as the links pass through the AI.
Since the Al is synchronizéd on both input and output (on a per terminal
basis),- the required mapping function is easy to create and maintain, and the
performance impact is minimal.

16

Mapping names to remove ambigiiity is extensible from a single system to a
network of systems. We expect to use a similar mapping scheme to handle the
names of links in a cluster of Gemini units. The mapping may take place in a

gateway station between Geminis, or it may occur in the Gemini unit itself.

5.4. Deadlock

Gemini has a limited amount of shared memory for use by the AI and the
disk controller. Without careful management of this resource, several forms of

deadly embrace are possible.

The first type of deadlock occurs when the disk needs a shared memory
buffer to send something to a terminal, and all the buffers are currently filled
with data being sent to the disk, or waiting for messages from the terminals.
The system is effectively dead, since the disk will not process the next
transaction until the current one has been put into shared memory, and shared
memory can't be cleared because all the buffers contain information destined for
the disk. This form of deadlock can be avoided by never allowing the AI to use
the last free buffer in shared memory. In this way, the disk can always queue
information to the terminal, and the AI and disk controller won't lock up.

This solution ié not sufficiénf for Gemini. It solves the disk/Al deadlock,
but not the master disk/slave disk deadlock that can also occur. This second
form of deadlock is a generalization of the first case. Consider the following

scenario:

1) The two disk controllers receive requests from terminals A and B that
-require information to be sent back to the terminal.

2) The master processes request A and sends it to the AI. This uses its last

buffer in shared memory (which is reserved for use by the disk controller).

3) The slave processes request B and sends it to the AI, also using the last
available free buffer.

17

4) The Al now attempts to send the two requests back to the respective
terminals. However, both Al's must agree that they have the same data
before it can be sent. Unfortunately, this is not the dase. There are no free
buffers in the master to complete terminal B's request, and no free buffers
in the slave to complete terminal A's request, so the system is deadlocked.
Gemini would eventually solve this problem by shutting off the slave half of
the system, assuming that the slave disk is bad and is unable .to read the

requested data.

The problem can be avoided by extending the number of buffers that are
reserved for use by the disk controller. In general, (number of terminals/2) + 1
buffers are required to stay out of a deadlock situation. This guarantees that
regardless of the order in which transactions are processed by the two disk
controllers, there will be enough shared memory to ensure that data from the

disk controller will be sent back to the terminal.
6. CONCLUSIONS

Gemini is a real, commercially available local network. It employs state-
of-the-art hardware, and several interesting software protocols (Aquarius-Al,
AI-AI, and AI-DC). ‘

The Gemini system is "Always Up™." Its unique redundant architecture is
designed to ensure that no single failure will stop the system. The design of the
operating system allows application software to make full use of the network

environment without modification.

It is possible to connect several Gemini units together to form a larger
network . (see figureé 2-2 and 2-3). In both cases, the file manager in the disk
controller would have to be aware of the existence of other Gemini units, and
would have to be able to forward messages to the file managers in those units
(via well-known links, as.described in section 3.1)}. Provision must be made for

avoiding infinite loops in the network, as messages are forwarded from one file

18

manager to another. For an Ethernet™[4]l connection, very little would have to
change in the Gemini, aside from the level 2 software required to talk to the
Ethernet itself. In the case of a Public Data Network, an X.25 level 3 interface

would be required to get information to and from the Public Network.

Studies are underway to analyze the performance of the system. Final
results are not yet available.

7. REFERENCES

[1] Basset F., Howard J., Montague J., Task Communication in Demos,
Proceedings of the Sixth Sigops, November, 1977, pp. 23-31.

[2] CCITT Recommendation X.25, CCITT Gray Book, Geneva Switz., ITU 13879,

[3] Cheriton et. al., Thoth, A Portable Real-Time Operating System, University
of Waterloo, Department of Computer Science Report CS-77-11, Oct. 1977.

{4] Digital Equipment Corporation, Intel Corporation, and Xerox Corporation,
The Ethernet, A Local Area Network, Version 1.0, September 30, 1980.

(5] Highleyman, W., Survivable Systems, Computerworld - In Depth,
Computerworld, 1980.

[6] International Standards Organization, High Level Data Link Control Proposal
Doc. No. 1005-I1SO TC97/SC6.

[7] Non-Stop™2 Systems - Tandem 16 Introduction, Tandem Computers.

{8] Solomon M., - Finkel R., The ROSCOE Distributed Operating System,
Proceedings of the Seventh Sigops Principles, December, 1979, pp. 108-114.

——— > -t ot > ot o At . ik ot s e o e

1Ethernet is a trademark of Xerdx Corporation.

2 Non-Stop is a trademark of Tandem Computer Incorporated.

19

v GEA#T//J/

4

| FlUEE 2=/
! . GENMIAS 7
M//.s“ﬁﬁ-’E'l SLAVE CONIFT G UEST7OM
|
I
L
]]
l
APS | e e e e 4 Po/2

mimim

GEATIIN/
{ #3

/ GEMIN]
—{%7

GEMIN/ FIGUEE Z-2
#/ GEATIAS S
Q Q-—.Q / CLUSTER
GENIIAJ/
#E
GENIIA |
7+ 4
GEMIN/ ‘
#3
GEMIAY GENINI AlGURE Z2-58
/ w#Z

GEMIANSI CLUSTERS
CONSECTED 7O 5 PUBLIC
DRTA A/ETWCAK.

GENINT
#F G

#S

GENMINI

GEMIASI
=7

20

(3)

(4)

Pl - USER FPPOCESS
FV - FILE MAANAGER

B»P - ACTIVE LINK -HELD BY X, OWNED BY @
——e e~ DESTROYED Z”VK,

/ ’
@ WELL - AAJOIA LINK
REPLY 7O OPEN REPUEST (ONE TIME USE)
@ "FILE LIk’

FIGURE F-/
ACCESSING FILE USAG LINAKS

21

O——E——@

P/ - USER FPOCESS
Y = LOCRL FILE MPNRGELS
il -~ BEMOTE FILE MPAEAGER

Q) ~ wervEe cink. - HELD BY R) ,onnep By QD
———> — DESTROYED LINA

@ - ‘weer ko a ' Link

- BEPLY 70 OFEA BEQUEST (ONE JIME USE)

© - FnE timwk’ |

@ - 'were Kkanonwws’ Link BETWEEN FILE MANAGEES,

FIGUEE F-2
HECESS ING PEAIOTE F/HES USING LINKS

22

S~

AR | ——— — Alw .
-~
e AZ
e e
POWER - [Powee]

BFTTERY BRCKUP

SMm

ERTTERY BRCKUP

FIGUEELE &-/

GEMIN/I ~ HRROWVAEEL COVIPONENTS

23

The Resiliency of Fully Replicated Distributed Databases

Wing Kai Cheng¥*
ROLM Corporation
4900 01d Ironsides Dr.
Santa Clara, CA 95050

Geneva G. Belford
Department of Computer Sciemnce
University of Illinois at Urbana- Champalgn
Urbana, Illinois 61801

ABSTRACT

One of the well publicized advantages of a distributed database system
is its availability. The increased availability is obtained in part by
keeping multiple copies of data. In ‘a fully redundant distributed
database system, in which a copy of the data is kept at each node, the
probability that a read transaction can be successfully processed is

(1-(1- a))p , Where a is the probability that’ a node is availa- '
ble or "up" and P, is the probablllty that the node remains up

until the read transaciton is processed. In the case of ‘multiple-copy
distributed databases, the read resiliency is obviously better than the
read resiliency of ap_ of a single-copy database. However, the

update resiliency of a multlple copy database is not necessarily better
than a single-copy database because many of the update synchronization
algorithms require that all nodes be '"up" when an update is being
processed. The resiliency of the system to process an update request
depends on the update synchronization algorithm used since not all
algorithms require the same degree of node availability. This paper
presents an analysis of the availability of distributed database
systems in relation to their update synchronlzatlon mechanisms and node
availability.

*Part of the research was conducted when the author was with the
University of Illinois.

24

1 Introduction

Reliability of a system is a measure of the success with which the
system conforms to some authoritative specification of its behavior.
Availability of a system, on the other hand, refers to the fraction of
time that the system satisfies its specification. Reliability and
availability are two of the most commonly noted advantages of distri-
buted databases. :

For a fully replicated database, the probability that a read
request can be satisfied is (1-(1~a)N)pr, if a is the probabil-
ity that a site is available at any given time and P is the

probability that the read-site remains up until the read transaction is

processed. The probability that an wupdate can successfully be

committed, however, is dependent on the update strategy and the system

configuration. For example, an update strategy may require that all

sites be available when an update request 1is executed, some require

that only a majority of the nodes be avai}able; furthermore, the length
1" t

of time that the nodes have to be “up differs among the wupdate
strategies. This paper will analyze the issues of availability of DDB

systems in the light of update strategy and resiliency techniques. We
are interested in exploring the probability that node failure will not
cause the update to be aborted or blocked. In other words, we are

interested in how different synchronization techniques and the availa-
bility of nodes may affect the probability that an update can be
completed. We define read resiliency as the probability that a read
request will not be rejected due to the wunavailability of the nodes
that have the data items. Read resiliency is equal to the probability
that the nodes which are needed to process a read transaction are .
available ("up") when the transaction arrives multiplied by the proba-
bility that each node remains up until it completed its task as speci-
fied by the synchronization algorithm. We define update resiliency as
the probability that the update can be committed; that is, the proba-
bility that the update will not be aborted due to the failure of nodes.
Update resiliency is the probability that the nodes which are needed to
execute the synchronization algorithm are "up" when the update transac-
tion arrives multiplied by the probability that each node remains '"up"
until its task as specified by the algorithm is completed. Taking into
consideration read resiliency and update resiliency, the resiliency of
a distributed database system can be expressed as

(fraction of updates)*Ru + (fraction of read-only)*Rr

where (fraction of updates) + (fraction of read-only) =1

25

Ru is the resiliency of the system for wupdate processing, and
Rr is the resiliency of the system for read-only transaction

processing.

Throughout this paper, we will assume that the database is fully
replicated; namely, a copy of the database is stored at each node. In
the following section, the concurrency problem and resiliency problem
will be reviewed. We will then present some models that relate update
resiliency and read resiliency to node availability and the amount of
processing time required from each node. A comparison of the models
can be found in Section &.

2 Concurrency Control

The primary goal of concurrency control algorithms is the preser-
vation of consistency of data. The problems that arise when multiple
users access a shared database are of the following types: (1) If
transaction Tl is reading a portion of the database while transaction
T2 is updating it, Tl might read inconsistent or obsolete data. (2) If
transactions T3 and T4 are both updating the database, race conditions
can produce erroneous results. The objective of concurrency control is
essentially to control the sequencing of user-specified operations so
as to preserve the illusion that each transaction is a simple,
complete, atomic action. The issue is to ensure serializability
(Bernstein et al., 80) (Bernstein et al., 79); that is, even if the
transactions are running concurrently and in an interleaved manner, the
overall effect must be the same as if the transactions were run in some
sequential order. ' ‘

In a distributed database system, - the availability of data. is
increased by keeping multiple copies of data. The presence of
multiple-copies of data, the possibility of failure, the variance in
transmission delay, and the fact that a site cannot know instantane-
ously the activities at the other sites have all contributed to compli-
cating the updating process. Several algorithms have been proposed for
updating replicated databases. The majority - of them use either the
techniques of locking or timestamping.

Algorithms using locking can have either centralized control
(Bernstein and Goodman, 80b) (Bunch, 75) (Garcia-Molina, 79) (Cheng and
Belford, 80b), or distributed control (Bernstein and Goodman, 80b)
(Ellis, 77). Consistency of data is preserved by locking the data
before access. The theories behind locking as a means to control

26

concurrent access are fairly well developed (Eswaran et al., 76).

For the algorithms using timestamps, consistency is preserved
because timestamps induce 'a unique execution order for the
transactions. In a decentralized system, a timestamp typically con-
sists of a pair (c,s) generated locally at each node, where ¢ is the
physical clock time (or logical clock time--i.e., counter value) and s
is the unique identification of the node where the update request
originated. A timestamp T1=(cl,sl) is said to precede (or be older
than) T2=(c2,s2) if either (cl<c2) or (cl=c2 and sl<s2). Two general
approaches have been used to update distributed databases using
timestamps. One of them is to allow updates to be applied only when it
is sure that the read-set of the transaction in consideration is
up-to-date and is not made obsolete by another update at this or other
nodes. The other approach is to apply the updates and later undo the
updates when conflict is detected. 1In a distributed environment where
failure may occur, or messages may be delayed, it is not easy for a
site to know when it is "safe" to apply an update. Examples of synch-
ronization algorithms that wuse timestamping technique - include the
Majority Consensus Algorithm (Thomas, 79), the SDD-1 algorithm
(Bernstein, 78), and others (Cheng and Belford, 80a,c) (Bernstein and
Goodman, 80a) (Kaneko et al., 79). As we will see in the next section,
different concurrency. control schemes require different degrees of node
availability. : g

To guard against the failures of nodes and communication networks
(such as partitioning) from disrupting the consistency of data, some
additional restrictions have to be imposed. To insure that an update is
applied to every copy (or atomicity of update), some algorithms require
that an update be committed only if each node that has a copy is able
to update its copy. Preserving transaction atomicity in the single
site case is a well understood problem (Gray, 79). Basically, at some
time during its execution, a commit point is reached where the site
decides to commit or to abort the transaction. A commit is an uncondi-
tional guarantee to execute the transaction to completion, even in the
event of failures. An abort is an unconditional guarantee to back out
the transaction. The problem of guaranteeing transaction atomicity in a
distributed system is that of insuring. that - all the sites. either
unanimously abort or unanimously commit. This is accomplished by using
multi-phase update protocols. With the use of persistent communication
(i.e., storing update messages and broadcasting to the failed nodes at
a later time), the number of nodes that have to be "up" can be relaxed
a little. ‘ :

Communication failure can partition a network into a number of
disjoint sub-networks that are unable to communicate with each other.
Some algorithms only allow the majority partition to perform wupdates.

27

If one allows every group of sites in & partitioned network to perform
new updates, the databases of the groups will diverge. When the groups
are to be re-united, some updates will have to be undone. Coordinating
the undoing of updates is a very difficult task. Update activities must
therefore be restricted in order to facilitate merging of the wupdates
when the distributed system is recovering from having been partitioned.
The strategy is usually to allow only one of the sub-networks to run
update transactions. For example, one may restrict updating to the
partition with a majority of nodes in it. In some situations, differ-
ent weighting factors assigned to each site or to each copy of data and
used to compute a weighted majority may be more appropriate.
Application-specific knowledge may be used to help determine weights
for each node. For an inventory-like database, where the operations are
commutative, one can perhaps apportion a percentage of updates to each
site during partitioning (Hammer and Shipman, 79). For a system where
the primary copies of different parts of the database are at different
sites (e.g. as in distributed INGRES (Stonebraker, 79)), one may adopt
the policy of allowing an update to be executed only if the primary
copies of all the data items in the read-set and write-set are in the
partition. As one may expect, partitioning considerations also affect
the degree of node availability required when applying updates.

3 Update Synchronization Techniques

Numerous algorithms for consistently updating distributed databa-
ses have been proposed; in this paper, we consider examples of the
following types:

1) Locking'all copies,

2) Centralized Locking

3) Centralized locking with backup nodes,

4) Linear Majority Voting with Timestamps, and

5) Broadcast Majority with Timestamps;
Before our discussion of these algorithms, we shall briefly review the
architecture of the distributed database system. We assume that the
system consists of N nodes, each node with the same hardware
availability. The mean time between failure is given by the parameter

MTBF and the mean time to repair is MTTR. The availability of a node
is

28

a = MTBF/(MTBF+MTTR)
Guaranteed delivery of messages is assumed; that is, messages sent from
A to B will eventually be received by B.

In the following sections, we shall focus our attention on update
resiliency. The probability of no blocking for read-only transactions
is assumed to be the same for all of the concurrency control algorithms
discussed here. Given that the database is fully replicated, the

resiliency Rr for read processing is (1-(1-a)N)pr since the

data can be obtained from any of the nodes. The term (1-(1-a)N)

represents the probability that at least one of the nodes is up when

the transaction arrives and P, represents the probability that - the

node remains up until the read is completed. We assume the probabiiity
that a site would fail in the next r seconds is Poisson distributed;
the probability that it would not fail is P.s where

_ o"T/MIBF

Pr

(1)
The parameter r represents, for example,.the amount of time to obtain
shared locks and read the items at the read-site.

3.1 Locking All Copies

A simple distributed locking algorithm may require that all copies
be successfully locked before data are updated. That is, messages are
broadcast to lock and update the items in a tentative mode; if these
can be done at all nodes, the update is finalized. An example of such
an algorithm might work as follows:

"Algorithm LAC1

1) Update transaction T arrives at site q.
2) Issue LOCK REQUEST for the read-set to the lock manager at q.

3) When LOCK REQUEST is granted, read the read-set and compute the
update.

4) Broadcast INTEND_TO_UPDATE meésages (including the write-set
and new values) to every node,

5) Each node stores the message on stable storage, obtains the
locks and performs the updates in tentative mode, and then
sends an AGREE INTEND_TO UPDATE message to the controlling

29

module (at site q).
6) At site q,

a) when AGREE_INTEND_TO_UPDATE is received from each node,
send COMMIT and RELEASE_LOCK messages to every node;
otherwise,

b) if AGREE_INTEND_TO UPDATE is not received from some of
the nodes before the timeout, ABORT is sent to every
node to abort the update and release the locks.

The above protocol requires that all nodes be available to receive
and store the INTEND_TO UPDATE message, and to send an acknowledgment
back to the controlling process. After this point, failure of any of
the nodes (other than the controlling node) will not delay the progress
of the update. Assuming guaranteed delivery of messages to the failed
node, we can show that the database will be consistent upon.recovery.

This model requires that all N nodes in the system be up when the
update transaction arrives; i.e., '

A= aN

With this model, if any of the nodes fails before it finishes its tasks
(Step 5 for cohorts and Steps 1 to 6 for controlling module) for the
pending update, the update will be blocked or aborted. We can compute
the probability that an update will be blocked. First assume that the
occurrence of a site failure is a Poisson process. Essentially, this
means that we assume that the probability that a failure occurs in any
time interval is proportional to the length of the interval, with
constant of proportionality the failure rate, or 1/MTBF. This
assumption, which seems reasonable in the absence of detailed informa-
tion on the failure behavior of specific machines, leads to the well
known exponential distribution for time intervals between failures.
That is, the probability that a node i will not fail within g seconds
of any initial time 0 is given by

o™ 8;/MTBF

Pj

(2)

If 8 is the response time of a node to a task requested by some
transaction, P, then represents the probability that the task will
be completed. The parameter g, can be decomposed into’ the term
Wi, which represents the mean wait time, and the term Xi’ which

represents the mean processing time; that is,

gy =Wy + X

30

(3)

Xi denotes the processing at site i; the amount of processing is

mainly dependent on whether i is the site where update originated. For
the site of origin, g is essentially the time needed to complete

the update. For the cohorts, 8 is the duration from the time the

transaction arrives until the COMMIT message is processed. The resi-
liency of the system for update processing is the probability that all
N nodes are up when the transaction arrives multiplied by the probabil-
ity that each of the N nodes remains up until it finishes its respec-
tive task:

cpn N-1 _ N N-1
R=Ap P = =app

P, is obtained from Equation 2 for the site of origin and p is

computed using Equation 2 for the N-1 cohorts, assuming that they all
behave identically.

The resiliency of a system for update processing when this kind of
synchronization mechanism is used is lower than that of a centralized
database system (where the complete database is located at one central
site). The resiliency of a centralized database system for processing
updates is ap_- If the number of update requests is greater than

the number of read requests, the resiliency of the distributed database
system is no longer better than that of a centralized database system.
Higher update resiliency can be achieved with some modifications to
Algorithm LACl; we shall refer to the more resilient algorithm as LAC2.
Algorithm LAC2 improves update resiliency by allowing a partition to
apply updates when at least a majority of the nodes are "up." In
Algorithm LAC2, it is necessary to check whether at least ﬁN+l)/é]nodes
are up and record these nodes in the 1list_of available_nodes before
Step 2. 1In Step 6 of the algorithm, AGREE_INTEND TO UPDATE messages
must be received from every nodes in the list_of_ available_nodes before
an update is allowed to commit. The update resiliency of Algorithm
LAC2 should be quite similar to the algorithm in (Cheng and Belford,
80a). In brief, the update resiliency of LAC2 isg

NN N-i -1
R, =~§(;)a (1-a)" “p_p

The update protocols in this section consist essentially of two
phases (Gray, 79) (Lampson and Sturgis, 79) Algorithms with three
(Skeen, 81), four (Hammer and Shipman, 79), or more phases have also
been proposed.

31

3.2 Centralized Locking

The centralized locking algorithm is appealing because of its
conceptual simplicity. Consider a network of N nodes: a central and N-1
secondary nodes. Unlike the secondary nodes, the central has the
additional responsibility of preserving the consistency of data and
resolving conflict. Basically, locks are requested at the central
before an item is read or updated. The steps that an update transaction
has to go through may look like: : o

Algorithm CLA1l

1) Update transaction is issued at a node q.
2) Lock requests are sent to the central.

3) If the locks could be granted, a GRANT message is forwarded to
q. '

4) At q, the read-set 1is read and the update is computed.
COMMIT UPDATE request is sent to each node to update the 1local
write-set.

5) Each site applies the update and sends ACK to q.

6) When all the ACKs are received by q, it sends a RELEASE_LOCK
message to the central. '

This model requires that the central and the N-1 secondary nodes
must be up when the transaction arrives. The update resiliency of the
above algorithm is thus given by

R = aNp P pN-Z
u o'c
_ (4)
where all p, P.s and P, have the form
p=e-g/MTBF
(5)

We use the subscript o and ¢ to denote the site of origin and the
central respectively; parameters (p and g) without subscripts refer to
those of the cohorts. Although the equations for update resiliency of
CLAl and LAC1 have the same form, they are not the same because the
amount of time that each node has to be "up' are different. Since g,
8. and &, in the centralized algorithm CLAl are less ' than

32

their counterparts (g and go) in the Lock All Copies Algorithm, p
and p, are larger for CLAl, resulting in slightly higher Ru for
CLAl when compared to LACl. A more resilient algorithm is to omit the

ACK and use sequence numbers like the aglgorithm below:

Algorithm CLA2

1) Update transaction is issued at a node q.
2) Lock requests are sent to the central.

3) If the locks could be granted, a GRANT message and a sequence
number are forwarded to q.

4) Site q waits for requests with lower sequence numbers to be
completed at q. The read-set is read and the wupdate is
computed. .

5) COMMIT-UPDATE request and the sequence number are sent to each
node to update the local write-set. A RELEASE LOCK request is
sent to the central.

6) Each site applies the update according to the sequence number.

The condition. for the system to be available to process updates is that
the central and the site where the update originated must be available
for a certain period of time. The update resiliency is

Ru=a(l--(1-{=1)I\1"1)e-“"’<:/MTBF e'go/MTBF
(6)

where 8 is the time needed for the central to grant the locks
(Step 3) and & is the length of time the site of origin spends on

the update request. (This assumes that other sites will eventually get
the update message and process the update, even if they fail during

this intial processing.) The factor a(l-(l-a)N-l) represents the

probability that the central and one of the secondary nodes to which
the transaction is to be submitted are up upon the arrival of the
transaction. If the transaction can be submitted to the central, it is
not necessary for a secondary node to be up before processing of the
transaction can begin; the resiliency is simply

Ru=ae-gc/MTBF

In case of a partitioning, only the partition with the central is
allowed to process update transactions. There is only one partition
that contains the central node; thus, only one partition will perform

33

updates.

Proposed algorithms that belong to this category include those of
Garcia-Molina (Garcia-Molina, 79) and Bunch (Bunch, 75).

3.3 Centralized Locking with One Backup

The centralized locking algorithm, although quite appealing for
its conceptual simplicity, does mnot provide high resiliency. All
updating has to be halted when the central fails. Researchers in
distributed databases have suggested improving the resiliency of the
centralized locking algorithm by keeping backups for the central
(Alsberg et al., 76). Alsberg and co-workers have also shown the
sufficiency of one backup for most applications.

The centralized locking algorithm with one backup is assumed to
consist of a central node, which takes care of locking and resolving
conflicts, a backup, and N-2 secondary nodes. Essentially, the backup
is kept informed of the state of the central and, when the central
fails, the backup assumes the role of the central, and a new backup is
elected from the secondary nodes. When the backup fails, but not the
central, a new backup is likewise elected from the secondary nodes. All
failed nodes will be repaired and restored as secondary nodes. If
partitioning occurs, we assume that only the partition with the central
can make updates.

The centralized locking algorithm with one backup (CLOB) would
work as follows:

Algorithm CLOB1

1) An update transaction T arrives at a node q.

2) Node q requests from the central node locks for all the items
referenced by the update.

3) As soon as the central receives the lock request (from Step 2),
it transmits a LOCK_REQUEST COOP message to the backup to -
request cooperation. The message includes a list of the items

to be locked.

4) When the backup receives the LOCK_REQUEST COOP, it stores the
message on stable storage (Lampson and Sturgis, 79).

34

5) When the central decides that the lock request can be granted,
it assigns a sequence number to the request and sends a
GRANT COOP message along with the sequence number to the
backup. The central marks the items in the database as locked.

6) In response to the GRANT COOP message, the backup will send a
GRANT message and the sequence number to q, the node where the
lock request originated.

7) Once node q gets the GRANT message, the items are read from the
local database, and the update is computed.

8) After computing the update, q transmits an UPDATE message to
the cohort. The message contains update information, such as
the sequence number, names of items, and the new values.

9) Site q sends a message to release the locks at the central.

10) The central transmits RELEASE_LOCK COOP. to the backup and
releases the locks. ‘

Based on the centralized locking algorithm with one backup descri-
" bed above, an update transaction is blocked when one of the following
sequences of events occur before the update is completed:

1) The central c fails. The backup b is promoted to be the new
central c¢'. A new backup b' is elected, but the new central c'
fails before the new backup b' is fully installed.

2) The backup b fails, but not the central c. A new backup b' has
to be installed, but the central ¢ fails before the new backup
b' is fully installed.

The probability of update transaction not being able to be com-
mitted due to Cases (1) and (2) is equivalent to the probability that
the failures of the central and the backup occur within k seconds of
each other, where k is the mean time to install a new backup. In Case
(1), the old backup fails within k seconds after the old central
failed. In Case (2), the central fails within k seconds afte the old
backup failed. :

The probability that a site will fail within the next t seconds is
assumed to be Poisson distributed; namely,

35

-~ t/MTBF

or approximately t/MTBF.

The probability that update processing will be blocked due to Cases
(1), and (2) is therefore approximately

-gc/MTBF ~k/MTBF

)(1l-e
"8,/ MTBF

)

q2=(1'e)
e-k/MTBF

+(1)(1-)

: ' _ (7)
where MTBF is the mean time between failure of a node, k is the mean
time to install a backup, 8. is the duration for which the central

has to be up to process the update, and 8y, is the duration the

backup has to be up. The first term represents the probability that
the central fails before the update is completed, the backup becomes
the new central, but it too fails before a new backup is installed. The
second term represents the probability that the backup fails and the
central subsequently fails before a new backup can be installed.

The resiliency of the system to process updates is then equal to

= 2.0 1 N-2 .
R =a"(1-(1-a)" ©)(1 9,)P, s /
where P, is the probability that the site of origin remains availa-

ble until COMMIT messages are sent to all cohorts:

p =e-g°/MTBF
o

, (8)

The factor a2(1-(1-a)N-27 represent the probability that the

central, the backup, and one of the secondary nodes to which the
transaction is to be submitted are up when the update transaction

arrives. The factor (1-(1-a)N_2) can be removed if the transaction

is submitted to the central or backup.

The resiliency can obviously be increased if the system is allowed
to start processing update whenever the central is up (even if the
backup is not); we refer to this more resilient algorithm as Algorithm
CLOB2. The resiliency of CLOB2 can be approximated as follows:.If the
central and backup are available when the transaction arrives, the
resiliency is given by Equation 7. When the central alone is
available, the central must survive until the update is completed or a
backup is installed. The probability that the central fails before the
update is completed and before a backup is installed is approximately

-g,/MTBF -k /MTBF

)(1-e)

The update resiliency when the central alone is up is

q1=(l-e

36

(1-(1-a)N'2)a(1-a)(l-ql)po
D)

In the case when the backup alone is up, the backup immediately becomes
the central, and the resiliency is similar to that given by Equation 8.
The update resiliency of CLOB2 is therefore the sum of Equations 7 and
9: '

R =a’(1-(1-a)" %) (1-q,)p,

+ 2(1-(1-a)N'2)a(1-a)(1-q1)po

3.4 Linear Majority Voting with Timestamps

The daisy chain model of Thomas' Majority Consensus Algorithm
(Thomas, 79) is an example of a Linear Majority Algorithm. In the
" database of each node, each data item has a timestamp that reflects the
time the item was assigned its current value. Updates are accepted only
if the read-set used in computing the updates have not been made
obsolete by another transaction. To determine whether the read-set is
up to date, a vote request is passed from node to node to give each
node a chance to decide.

In the daisy chain model of the Majority Consensus Algorithm
(Thomas, 79) (in which the vote request is passed from one mnode to
another, instead of broadcast), after the first node has voted, at
least one of the remaining N-1 nodes must be available to receive the
update request. The probability that all N-1 nodes fail is

(1-a)N-1;'the probability that at least one of the N-1 is available

is 1-(1-a)N-1. After the second node has vofed, at least one of the

remaining N-2 nodes must be .available to receive the update request and
vote on it. After the third node has voted, at least one of the remain-
ing N-3 nodes must be available to receive the update request and vote
on it, and so forth. The resiliency of the system for processing
updates- is therefore

(1-(-a)Mp (1-(-a) Hpa-a-a) e, a-a-a) ™y

where m is the mean number of nodes that have to vote before a consen-
sus is reached. p and p, are given by

p = o"8/MIBF

and
- e-go/MTBF

P, .

37

For p , the probability that the node of origin doesn't fail,
o
g includes the time to read base-set, compute update, vote, and
(e}

transmit the vote message to another available site. For p, the
probability that one of the other nodes doesn't fail, g includes the
time to receive the message, read timestamps and vote, and to transmit
the vote message to another available site.

Other linear algorithms generally have lower resiliency, es-
pecially those in which the communication medium is a ring and all the
sites must participate in the synchronization in a pre-determined
order. '

3.5 Broadcast Majority with Timestamps y

One of the ways to facilitate recovery of a distributed database
from failure due to partitioning is to allow only one of the partitions
to process updates. This can be done by allowing only the partition
with the majority of nodes to process updates, as in the distributed
algorithm DM1 in (Cheng and Belford, 80a). The update resiliency (for
algorithms requiring a majority such as DM1 (Cheng and Belford, 80a)
and LAC2 referred to earlier) is the probability that an arriving
transaction finds that a majority of nodes are "up" and that each of
these survive through their critical period of duty.

i-1

NN i N-i
é—l(i) a (1-8) POP)

p and pd‘again have the form

_ o ~8/MIBF

(10)

With this type of algorithm, before the update transaction T is
processed, the concurrency control algorlthm makes sure that a majority
of nodes are available and records the names of these mnodes in the
list_of available nodes. If the update transaction T does not conflict
with any of the pendlng transactions orlglnated from any of the nodes.
in the list of available nodes, T will be committed.

An algorithm that uses a welghted maJorlty has been proposed by
Gifford (Gifford, 79). With this welghted voting algorithm, every
transaction has to collect a read quorum of R votes to read the
database, and a write quorum of W votes to write.

38

4 A Comparison of Resiliency

Queueing models have been developed for the concurrency control
models described in this paper in an effort to quantitatively compare
the resiliency of . the different models. The . analytic models are
derived in the following manner: The I/O service time requested from
the I/0 server depends on the type of request. The I/0 server is
modelled by an n-stage parallel server. By inspecting the synchroniza-
tion algorithms, one can determine the moment of the service time for
each, and their relative request frequencies. From this information on
I/0 requests, the first and second moments of the overall I/0 service
time can be computed. Knowing these moments, the mean wait time can be
computed using the well-known mean-wait-time equation for M/G/1 queues.
To compute g, 8o 8o etc., we simply determine the task each

node has to perform for the update before the update can be committed
and add up the delay (response time) incur at each step of the task.
(Note that we assume that the network consists of a set of independent
queues.) These g's are then used in the respective resiliency equation
to obtain the resiliency of the concurrency control algorithm.

The parameters for the models and the values used to obtain the
curves given in Figure 1 can be found in Table 1. The resiliency of
the different models as a function of MTBF is given in Figure 1. Table
2 summarizes the characteristics of the algorithms compared in Figure
1.

Parameters Definitions Values
Ar arrival rate per node 0.1 updates/sec
Bs read-set plus . 5 items
write-set size
I/0 I/0 time 0.025 sec

for accessing an item,
a lock, a timestamp, etc.

M number of items in 5000
the database
MTTR mean time to repair . 3480 sec
N number of nodes 5
T network delay 0.1 sec

Table 1. Parameters and their values.

‘39

Algorithms Characteristics

CLOB1

CLOB2

CLA2

MCA

LAC2

Centralized Locking with One Backup. The central,
backup, and a secondary node have to be "up" before
processing of transaction can begin; thereafter, -
processing will not - be interrupted as long as the
secondary and either the central or the backup are up.

Centralized Locking with One Backup. The central (or
backup) and. a secondary node ‘have to be up before
processing of transaction can begin; thereafter,
processing will not be interrupted as long as the
secondary and either the central or the backup are up.

Centralized Locking Algorithm. The central and a

secondary have to be up before processing of transac-
tion can begin. :

Thomas' Majority Consensus Algorithm. Processing can
begin as long as one of the nodes is up.

Lock All Copies. More than a majority of the nodes have
to be up before processing can begin.

Table 2.Asummary of algorithms compared in Figure 1.

(Please refer to preceeding sections for more detail)

40

Resiliency

CLOB2
MCA

0.999
CLA2
0.9981

0.9977 CLOB1

0.9961

0.995]

0.994]
LAC2
0.993]

]
0.992

-MTBF
(days)

CLOB1-~Centralized Locking with One Backup.
CLOBZ2--Centralized Locking with One Backup.
CLA2--Centralized Locking Algorithm.
MCA--Thomas' Majority Consensus Algorithm.
LAC2--Locking All Copies.

Figure 1: Resiliency as a function of MTBF

41

Figure 1 shows that elgorithms requiring that a majority of nodes
be "up" (such as LAC2) have relatively low resiliency. Models requir-
ing that the central, the backup, and a secondary node be "up" (CLOB1)
before an update can be started has higher resiliency than LAC2.
Models requiring only the central and a secondary node be up (CLA2) has
higher resiliency than CLOBl. The resiliency of CLOB2 and the resi-
liency of MCA are essentially identical for the range of MIBF and the
parameters chosen. CLOB2 and the daisy chain Majority Consen-
sus Algorithm appear to have the highest resiliency of all the models
considered in this paper. With CLOB2, processing of the transaction can

begin when the central or/and the backup and a secondary are ‘'up;"

furthermore, failure of the central does not disrupt the progress as
long as the backup is still alive. With the Majority Consensus
Algorithm, processing of the update transaction can begin as long as
one of the node is up; processing of the . transaction will not be
blocked as long as one of the nodes that have not voted on the update
is alive to receive the vote request and vote on the update. It 1is
interesting to note that the Thomas' Majority Consensus Algorithm,
albeit it has a relatively high response time (Garcia-Molina, 78),
appears to have very high update resiliency. The success of the
Majority Consensus Algorithm can be attributed to the fact that it only
requires a majority of the nodes for synchronization; furthermore, not
all of these nodes have to be "up" simultaneously.

The resiliency of Broadcast Majority with Timestamp algorithms is
very similar to that of LAC2. The resiliency of CLAl and LACl are not
plotted on the graph in Figure 1; their resiliency are the lowest among
the models considered in this paper. Although both CLAl1 and LAC1
require that all the nodes be up, the update resiliency of CLAl is
-better than LAC1 because CLAl runs faster. Locks have to be stored at
all nodes in the case of LACl1 whereas locks have to be stored at the
central alone for CLAl; thus, Wi and 8; for CLAl are lower,

implying that the cohorts have to be up for a shorter time.

5 Summary

In this paper, we have used read resiliency and update resiliency
to compare the resiliency of a few concurrency control algorithms and
point out changes to the algorithms that allow update resiliency to be
improved. We have only considered some aspect of reliability,
availability, and resiliency. The modelling in this paper can be
considered as modelling of the first order effect of availability,
resiliency, and reliability. The problem of communication network
failure has been temporarily ignored to make the analysis tractable.

42

Not considered in this paper is the problem of recovery. Although the
Majority Consensus Algorithm performs well in terms of resiliency as
defined in this paper, its recovery is far more complicated than that
of the Centralized Locking with One Backup Algorithm. Work is in
progress, in analyzing and comparing more carefully the behavior of the
models described in this paper, and in developing more detailed models
to allow us to better understand the relationships among availability,
resiliency, and concurrency control.

6 References

(Alsberg, Belford, et al., 76) Alsberg, P. A., Belford, G. G., Day, J.
D., and Grapa, E., "Multi-copy Resiliency Techniques,” 1976 CAC
document reprinted in Distributed Data Management (J. B.
Rothnie, Jr., P. A. Bernsteln, and D. W. Shlpman, eds.) 1IEEE,
1978, pp 128-176. ‘ -

(Bernstein et al., 78) Bernstein, P. A., Rothnie, J. B., Goodman, N.,
and Papadimitriou, C. A., "The Concurrency Control Mechanism of
'SDD-1: A System for Distributed Databases," IEEE Trans. on
Software Eng., Vol. SE-4, pp 154-168, May 1978.

(Bernstein et al., 79) Bernstein, P. A., Shipman, D. W., and Wong, W.
S., "Formal Aspects of Serializability in Database Concurrency
Control," IEEE Trans. Softw. Eng. SE-5, 3 (May 1979), pp
203-215.

(Bernstein and Goodman, 80a) Bernstein, P. A. and Goodman, N.,
"Timestamp Based Algorithms for Concurrency Control in Distri-
buted Database Systems," Proc. 6th Int. Conf. on Very Large
Data Bases, Oct. 1980. ‘

(Bernstein and Goodman, 80b) Bernstein, P. A. and Goodman, N.
"Fundamental Algorithms for Concurrency Control in Distributed
Database Systems," Tech Report CCA-80-05, Computer Corporation
of America, Feb., 15, 1980.

(Bernstein et al., 80) Bernstein, P. A., Shipman, D. W., Rothnie, J.
B., "Concurrency Control in A System for Distributed Databases
(SDD-1)," ACM Trans. on Database Systems, Vol 5, No. 1, pp
18-51, March 1980. '

(Bunch, 75) Bunch, S. R., "Automated Backup," in Preliminary Research
Study Report, CAC Doc. 162, Center for Advanced Computation,

43

Univ. of Illinois at Urhana-Champaign, May 1975.

(Cheng and Belford, 80a) Cheng, W. K. and Belford, G. ‘G., "Update
Synchronization in Distributed Databases," Proc. Sixth Int.
Conf. on Very Large Data Bases, Montreal, Oct. 1980.

(Cheng and Belford, 80b) Cheng, W. K. and Belford, G. G., "Analysis of
Update Synchronization Schemes in Distributed Database,”" Proc.
COMPCON Fall 80, Sept. 1980.

(Cheng and Belford, 80c) Cheng, W. K. and Belford, G. G., "A Clock
Synchronization Algorithms for Update Synchronization in

Distributed Databases on Local Broadcast Networks," Proc. of
the 5th Conference on Local Computer Networks, Minneapolis,
Oct. 1980.

(Ellis, 77) Ellis, C. A., "A Robust Algorithm for - Updating Duplicate
Databases," Proc. 2nd Berkeley Workshop in Distributed Databa-
ses and Computer Networks," May 1977.

(Eswaran et al., 76) Eswaran, K. P., Gray, J. N., Lorie, R. A., and
Traiger, I. L., "The Notions of Consistency and Predicate Locks
in A Database System," Comm. ACM, vol 19, No. 11, pp 624-663,
Nov. 1976. :

(Garcia-Molina, 79) Garcia-Molina, H., '"Centralized Control Update
Algorithms for Fully Redundant Distributed Databases," Proc.
First International Conf. on- Distributed Computing Systems,
IEEE, N.Y., Oct. 1979, pp 699-705.

(Garcia-Molina, 78) Garcia-Molina, H., "Performance Comparison of Two
Update Algorithms for Distributed Databases," Proc. Thrid
Berkeley Workshop on Distributed Data Management and Computer
Networks, Aug. 29-31, pp 108-199, 1978.

(Gifford, 79) Gifford, D. K., "Weighted Voting for Replicated Data," in
Proc. 7th Symposium on. Operating Systems Principles, ACM, Dec.
1979. - .

(Gray, 79) Gray, J. N., "Notes on Database Operatiing Systems," in
Operating Systems: An Advanced Course, Springer-Verlag, 1979.

(Hammer and Shipman, 79) Hammer, M. H. and Shipman, D. W., "Reliability
Mechanisms for SDD-1: A System for Distributed Databases,"
Tech. Rep. CCA-79-05, Computer Corporation of America,
Cambridge, MA, July 31,°1979)

44

(Kaneko et al., 79) Kaneko, A., Nishihara, Y., Tsuruoka, K., and
Hattori, M., "Logical Clock Synchronization Method for Dupli-
cated Database Control," Proc. 1st Int. Conf. Distributed

- Computing Systems, Oct. 1979, pp 601-611.

(Lampson and Sturgis, 79) Lampson, B. and Sturgis, H., "Crash Recovery
in Distributed Data Storage System," Comp. Sci. Lab., Xerox
Palo Alto Res. Center, Palo Alto, CA, unpubl. paper, 1979.

(Skeen, 81) Skeen, D., "Nonblocking Commit Protocols,”" Memorandum No.
UCB/ERL M81/11, March 10, 1981.

(Skeen and Stonebraker, 81) Skeen, D. and M. Stonebraker, "A Formal
Model of Crash Recovery in A Distributed System," Proc. of The
Fifth Berkeley Workshop on Distributed Data Management and
Computer Networks, Feb. 1981, pp 129-142.

(Stonebraker, 79) Stonebraker, M., "Concurrency Control and Consistency
of Multiple Copies of Data in Distributed INGRES," IEEE
Trans.on Software Engineering, vol SE-5, No. 3, pp 188-194,
May 1979. '

(Thomas, 79) Thomas, R. H., "A Majority Consensus Approach to Concur-
rency Control," ACM Trans. on Database Systems, Vol. 4, No. 2,
pp 180-209, 1979.

45

A ROBUST AND EFFICIENT PROTOCOL
FOR CHECKING THE AVAILABILITY OF REMOTE SITES

Bernd Walter

Institut fir Informatik
University of Stuttgart
Stuttgart
Fede Repe of Germany

Abstract: A robust and efficient protocol for checking the availability of
remote sites is described. A remote site is said to be available if it has
not crashed and if the communication facilities are able to transmit
messages to and from this sites. The presented protocol is robust against
any number of site crashes and communication breakdowns including network
partitionings It 1is proven that the protocol is minimal in the given
context. Some applications such as the recovery of multi-site-transactions
are givene.

Keywords: Availability, robust protocols, distributed processing, trans-
action processing, distributed databases.

1. Introduction

The protocol for checking the availability of remote sites in computer
networks can be used in the context of arbitrary applications. However,
since the original intention was to develop just a tool to support the
recovery of multi-site-transactions 1in distributed database systems
(DDBS), a DDBS context will be used in the following discussions.

Update-transactions in DDBS may be arbitrarily complex, such that several
sites of the system are involved in the processing of just one trans-
actions To ensure consistency, update-transactions must be atomic, i.e.
all its updates must be committed or none of them. Adequate recovery-
mechanisms and so-called two-phase-commit protocols /1, 6/ are needed to
guarantee this all-or-nothing property throughout normal and abnormal con-
ditionse A lot of work has been invested in the development of commit-
protocols and recovery-mechanisms for DDBS, however, only few investi-
gations were made in order to develop suitable protocols for the detection
of abnormal conditions (failures). In distributed systems those failures
are of special interest which affect the availability of remote sites.
Events which cause sites to become unavailable are called crashes, events
which cause sites to become available again are called recoveriese.

46

Assume a transaction T and two sites A and B such that some updates of T
are to be performed at A and the others at B. Assume further, that A is

waiting for some ready-message from B. Now if B crashes or becomes una-:

vailable due to communication breakdowns, two different strategies are

possible:

1 A waits until the awaited message arrives, whatever is happening. If B
eventually recovers and remembers T, then this strategy will work. How-
ever serious drawbacks are associated with this strategy:

-- Since none of the resources locked by the affected transaction may be
released, these resources are not available for other transactions,
ieee other transactions may be blocked as well until B recovers.

-- The cost of waiting increases proportional to the time a transaction
has to wait /10/.

-- There is no guaranty that B will recover within an acceptable amount
of time. Sometimes, there is even no guaranty that B will recover at
a]]o ' :

2 A backs out the affected transaction T and releases all its resources.
As soon as B recovers, a message that T has been backed out is sent to
Be This strategy avoids the drawbacks of the first strategy, however, a
protocol is needed to ensure fast and reliable detection of crashes and
recoveries. Note that such a protocol needs not to detect crashes of
single processes, since in this case the local supervisor remains intact
and will be able to detect and to handle such events locally. Remote

detection is only needed if the supervisor and thus the whole system

becomes unavailable (see also application example 1).

It would also be possible to use a mixture of the two strategies, such
that site crashes are detected whenever some site tries to send a message
to a crashed sites. However this non-systematic approach cannot guarantee
that a site crash will be detected within an acceptable period of time,
that means that the drawbacks of the first strategy are valid for this
mixture as well.

Up to now SDD/1 1is the only system which provides a facility for system-

atic detection of site failures and recoveries. However, the mechanisms of.

SDD/1's RELNET /4/ are not robust against network partitioninge Further-

more, as will be seen in the discussions at the end of this paper, the

corresponding RELNET-protocols need more messages than our proposale.

In Hhis paper a protocol will be described with the following character-

istics:

- Each site of a network is provided with a table -which presents this
site's current view of the network, i.e. the table shows which remote
sites are currently available for the owner of the table and which are
not. : .

- The application of the protocol is not limited to the use in DDBS, but
may be used in other distributed systems as well.

- Robustness is provided against any number of site crashes and communi-

cation breakdowns including network partitioning.
- During the execution of the protocol no data must be written onto stable
storage, only during site start/restart one disc access will be needed.

47

- The protocol uses distributed control.

- The protocol is minimal in the given context, i.e. a minimal number of
messages 1is needed during normal operations and a minimum of time is
needed to propagate crashes and recoveries.

In the remainder of this paper first of all the basic communication faci-
lTities of the underlying network will be defined. Then a detdiled descrip-
tion of the protocol for checking the availability of remote sites will be
given including some proofs of the protocol's characteristics. The appli-
cation of the protocol will be demonstrated in the context of transaction
recovery, maintenance of redundant data, and compile-time checks. Finally
the described protocol will be compared with the corresponding mechanisms
of SDD/1's RELNET.

2. Basic Communication Facilities

The underlying computer network, which provides the basic message trans-
mission facilities (ARPANET-like) is assumed to have the following charac-
teristics: ‘ *

- If A receives two messages from B, then they are received in the same
order in which they were sent.

- If A did not fail between the receipt of two messages from B, then A
also received any other messages sent to it by B between _these two
messages.

- It is not guaranteed that a message which is sent by one s1te, will
actually be received by the intented receiver. If the receiver fails
before the message arrives, then the message is lost. The only way for a
sender to be sure that a message has been received is to require an
acknowledgement from the receiver.

- If communication facilities fail such that A is able to commun1cate w1th
B but not with C, then also B cannot communicate with C.

- If B is unreachab]e from A, then A cannot determine whether B has
crashed or is working in 1so]at1on.

- Due to crashes of communication lines the network may be sp11t into two
or more independent subnetworkse. In reality partitions will most]y con-
sist of just one isolated site, this will be the case whenever the ‘Tocal
communication facilities fail such that no messages can be sent to re-
mote sites.

Furthermore it is assumed, that there are two constants LMAX and LMIN

where LMAX reflects the maximum transmission time of a single message be-

tween two arbitrary nodes and LMIN the minimum transmission time. Note
that for the sake of simplicity clock divergencies dur1ng LMAX and LMIN
are not treated explicitlye.

3. Avai]abi]ify of Remote Sites, Views and State Tables

A remote site B is available for a site A, only if the following" ho]ds

1 B is able to process requests from A, i.e. B has not crashed.

2 The communication facilities are able to transmit messages between A
and Be

48

3 A is aware that 1 and 2 hold, i.e. it is aware that it may send requests
to B.

In order to enable a site A to determine whether 1 and 2 hold, B has to
send messages to A. Such messages could be send on A's request or period-
ically. 1If A does not receive an awaited message within-a certain period
of time, then B is assumed to be unavailable for A.

If such messages are sent on request, then two messages (request + answer)
and one timer (A waits for a period of length 2LMAX + AMAX where AMAX is
the maximum processing time needed at site B to generate an answer to A's
request) are needed to perform a single check of 1 and 2. One message and
two timers are needed, if B periodically sends messages (HI-messages) to
A. In order to have a minimum of messages per check, the second alter-
native will be used in the remainder of this paper. Periodical checks also
assure that, whenever 1 and 2 ho1d, A will be made aware of this fact.

Periodical checks are performed as follows :

- Each time, B sends a HI-message to A, a timer TSENDER is started. When
TSENDER expires, the next HI-message is sent etce.

- Each time, A receives a HI-message from B, a timer TCONTROL is re-
starteds If TCONTROL expires without A having received a HI-message,
then B is assumed to be unavailable. As soon as a new Hl-message from B
is received, B is assumed to be ava11ab1e againe

Let SINV be the timeout period of TSENDER, then the timeout period of
TCONTROL can be determined as EINV = SINV + LMAX - LMIN. This is the maxi-
mum period which may pass between two successive HI-messages, it reflects
the worst case, i.e. a 'slow' message follows a 'fast' message.

This small protocol enables A to have a certa1n view of B. Two different

views are possible: :

- B is UP: No timeout has been reported by TCONTROL thus B 1is assumed to
be available for A.

- B is DOWN: A time-out was reported by TCONTROL and no HI-message has
been received since that time, thus B is assumed to be unavai]ab]e.

Due to several reasons a view sometimes will not reflect the actual state
of the system:

- State change (crash or recovery) since last check.

- HI-messages were loste.

- Message transmission time exceeded LMAX. '

However, since checks are performed periodically a view eventually will
reflect the true state (provided that the state will be stable (no crashes
and recoveries) for a sufficient period of time),

A state table contains the current views of all remote sites as seen from
the owner of this state tables. Such a table simp]y consists of an entry
for each site of the network. If CURRENT-STATEp is the state table of A,
then CURRENT-STATEp (BJ reflects A's view of B and thus contains one of
the values UP or DOWN.

49

It is assumed that there are physical clocks at each site of the system.
Physical clocks are needed to. implement timers and to increment Tlocal
Togical clocks /4/. Logical clocks are used for the generation of time-
stamps. A1l the clocks in the network are synchronized in a way as des-
cribed in /5/ (see also below).

4, The Protocol (RSC-Protocol)

In the following the protocol to be described will be called RSC-protocol
(RSC for Reliable State Control). The RSC-protocol consists of two sub-
protocols, CONTROL and CHANGE. CONTROL is used to detect state changes and
CHANGE is used to perform the corresponding updates in the CURRENT-STATE
tables of the various sitess. At first CONTROL and CHANGE will be described
separately and the interactions between these two subprotocols will be de-
fineds Then the behaviour of the RSC-protocol during site start/restart
and in the case of a network partitioning will be discussed. Finally some
proofs of the characteristics of CONTROL and CHANGE will be given. An
algorithmic definition of the protocols by means of a PASCAL-1ike notation
can be found in the appendix. Note that the complete RSC-protocol has also
been specified formally and verified by means of predicate-transition-nets
/3/ in combination with some temporal logic; however, due to space limita-
tions the formal specifications are omitted in this paper; the interested
reader is referred to /12/.

4.1 CONTROL

The purpose of CONTROL is to detect crashes and recoveries as well as dif-
fering views within a partition. Whenever such an event has been detected,
CHANGE will be initiated.

First of all a virtual ring is defined over all sites of the network to be
controlleds All sites are numbered along the path of the virtual ring,
starting with 1 and ending with N (N is the number of sites in the net-
work) such that site 2 follows site 1 follows site n etc. It should be
clear, that the virtual ring does not reflect the physical structure of
the networke. A protocol using a virtual ring was also presented in /7/ as
a solution to the mutual exclusion problem. However, our concept of the
virtual ring is quite different. In /7/ the ring is used as a message path
for a circulating token. In our protocol the virtual ring is used to ob-
tain well defined control structures, control messages may also be trans-
mitted along other ways.

During normal operations (each site is available for each other site) the

basic control protocol presented in the last section is performed by every

two adjacent sites along the virtual ring such that an arbitrary site K

behaves as follows:

- K periodically sends HI-messages to site (K+l)modNe. The periods are
determined by means of TSENDER. Each HI-message contains an actual time-
stamp which is used for clock synchronization.

- K periodically receives HI-messages from site (K-l)mole) and restarts

50

TCONTROL. If TCONTROL expires, subprotocol CHANGE 1is started, since
(K-1)modN's state is assumed to have changed from UP to DOWN.

0f course, HI-messages could be substituted by normal messages, provided
that actual timestamps are included in such messages as well. However, for
the sake of simplicity in the following only explicit HI-messages will be
considered.

In reality an arbitrary number of sites may have crashed and the net may

be partitioned. If (K-1)modN is DOWN in K's view, then

- K has to monitor (K-1l)modN to detect when it will be available again
(due to site recovery or recovery of the correspond1ng communication
paths).

- K has to monitor those sites which formerly had been controlled by
(K-1)modN.

A1l these sites to be monitored by K make up K's AREA-OF-CONTROL. More

exactly K's AREA-OF-CONTROL includes the following sites:
- The first site preceeding K along the virtual ring which is UP in K's
views Let this site be (K-J)modN where 0 < J < N.

- Al sites (K-I)modN which preceed K and succeed (K-J)modN along the vir-

tual-ring (0 < I < J)s All these sites are DOWN in K's view.
If K itself is the only available site in 1t s view, then K's AREA-OF-
CONTROL does only include DOWN-sites.

If (K+1)modN 1is DOWN in K's view, then K has to send HI-messages to all

potential controllers of itself (Remember that there may be some sites

which have not crashed but which are not available for K because some com-

munication lines have crashed). A1l these sites make up K's so-called

BROADCAST-AREA. K's BROADCAST-AREA exactly contains the following sites:

- The first site (K+H)modN (0 < H < N) which follows K along the virtual
ring and which is UP. in K's view.

- A1l sites (K+I)modN which follow K and preceed (K+H)modN along the vir-
tual ring, such that 0 < I < He A1l these sites are DOWN in K's view.

For an arbitrary state of the network CONTROL can be defined as follows

(for an arbitrary non-isolated site K):

- K periodically sends HI-messages to each site in its BROADCAST-AREA.
Each time TSENDER generates a timeout signal HImessages are sent to a11
these sites at once and TSENDER 1is restarted.

- K periodically receives HI-messages from site (K-J)modN which is the
only site of K's AREA-OF-CONTROL which is UP in K's view. Each time a
HI-message is received from (K-J)modN, timer TCONTROL is restarted. If a
timeout signal 1is received from TCONTROL, then subprotocol CHANGE is
starteds CHANGE is also started whenever a HI-message is received from
any ‘other site in K's AREA-OF-CONTROL (sites which are DOWN in K's
view). _

T) Tet (K-I)modN be defined as follows: If K > I then (K-I)modN = K-I;
~if k = I then (K-I)modN = N; if K < I then (K-I)modN = K-I+N.

51

Figel in the appendix shows the arrangement of the AREAs-OF-CONTROL and
the BROADCAST-AREAs in a network consisting of 5 sites, 2 of which are
down. Fige 2 shows the corresponding arrangement for the same network,
now fallen apart into 2 partitions such that partition 1 contains sites 1,
4, and 5 with site 4 being down and partition 2 contains sites 2 and 3.

So far the dynamic behaviour of CURRENT-STATE has not been considered.
However, at each point of time CURRENT-STATE may be updated by some other
site which has detected some crash or recovery and thus has started
CHANGE. In this case a new version of CURRENT-STATE is broadcast by the
updating site (see next chapter).

Since new versions may be broadcast by different sites concurrently (due
to the detection of multiple crashes/recoveries), a version number is
attached to each new version. A version number consists of an actual
timestamp and the broadcasting site's identifier. Each site accepts a new
version only if its version number is higher than that of the local occur-
rence of CURRENT-STATE. To ensure that all sites in a partition have iden-
tical views and to detect the loss of new versions, the version number of
the Tocal CURRENT-STATE table is attached to each HI-message. Now, differ-
.ing views can be detected by the receiving site.

However, due to different message delays during the distribution of a new
version of CURRENT-STATE temporary inconsistencies between the views of
different sites in the same partition may occur. Since such temporary
inconsistencies should be tolerated, CONTROL must be able to distinguish
between 1inconsistencies caused by message delays and inconsistencies
caused by failures. 4

If a new version of CURRENT-STATE is broadcast at time T, then- it will be
received by the other sites at a point of time between (T + LMIN) and
(T + LMAX). If a HI-message is received containing a version number higher
than the local table's version number, this cannot happen earlier than at
time (T + LMIN + LMIN). Whenever this is happening, a timer TCHECK (time-
out period: LMAX - LMIN - LMIN) is started at the receiving site and the
received version number is stored in a variable CHECK-VERSION. If a new
version of CURRENT-STATE with a version number at least as high as the
value of CHECK-VERSION is received, then TCHECK is reset, else, if TCHECK
expires, a failure must be assumed and CHANGE is started. If a further HI-
message is received with version number higher than the value of CHECK--
VERSION, then this new value is stored in CHECK-VERSION and TCHECK is
restarted.

This procedure has to be applied only to HI-messages received from the UP-
site in the receiver's AREA-OF-CONTROL and only if the received version
number is higher than the local one (else each inconsistency between views
will be detected twice and two CHANGE executions will be initialized in-
stead of one). '

So far five events may happen during the execution of CONTROL (as will be
seen later there are two more):

52

Receipt of a HI- -message. ’

Receipt of a new version of CURRENT-STATE (to be called STATE-TABLE-
message)e

Time-out signal from TSENDER.

Time-out signal from TCONTROL.

Time-out signal from TCHECK.

To avoid misinterpretations of a site's status, time-out signals from
TSENDER are processed at the highest priority. All other events are pro-
cessed 1n a FIFO order.

4.2 CHANGE

The purpose of CHANGE is to propagate crashes and recoveries detected by
CONTROLe The propagation should be performed within one execution of
CHANGE however complex the detected changes had been. In the following a
site initiating a CHANGE execution will be called coordinator, all other
sites participating in this execution will be called cohortse. Since CHANGE
may be executed at different sites concurrently, some sites may simulta-
neously be the coordinator 1in one incarnation of CHANGE as well as a
cohort in some other incarnations. -

Sometimes, CONTROL only detects a part of a complex change and the coordi-

nator of the subsequent CHANGE execution can be provided only with incom-

plete information on the real situation. :
Example: Assume that K's AREA-OF-CONTROL consists of (K-1)modN and that
(K-1)modN's AREA-OF-CONTROL consists of (K-2)modNe Now, if (K-1)modN
and (K-2)modN crash nearly simultaneously, then CONTROL assures that K
detects the crash of (K-1)modN. However, at this point of time CONTROL
does not enable any site to detect the crash of (K-2)modN.

Since we do not want CONTROL to use additional messages (control messages

should not decrease system throughput), it is CHANGE's task to collect the

lacking information on the characteristics of the detected change.

When CHANGE is initiated, the coordinator's physical clock can be in one

of the following states:

- The clock contains the value 0: A site has initiated CHANGE after its
restart (see 4.4) and no timestamped message has been received between
restart and initiation. _

- The clock possibly diverges from other clocks in the system: A site has
initiated CHANGE after having detected a state change from DOWN to UP
(the change might have been caused by the physical recovery of a network
part1t1on1ng)

- The clock is synchronized: A1l other cases.

S1nce the version number of the new version of CURRENT-STATE to be built

up by CHANGE must contain an actual timestamp, it is also a task of CHANGE

to synchronize the coordinator's clocke

CHANGE consists of two phases:

- Information-collection- and clock-synchronization-phase: At first the

- coordinator sends so-called REQ-STATE-messages containing the coordina-
tor's identifier -and an actual timestamp to all sites in the network and

53

then starts its Tlocal timer TCHANGE (timeout period: 2<LMAX + AMAX).
A Cohort receiving a REQ-STATE message responds by sending a STATE-
REPORT- -message back to the coordinator. A STATE-REPORT-message contains
the cohort's identifier, the timestamp of the corresponding REQ-STATE-
message and an actual timestamp. This phase ends when STATE-REPORT-
messages have been received from all cohorts; if any response is missed,
this phase Tasts until a timeout signal has been reported by TCHANGE.

- State-table-distribution-phase: Depend1ng on the received STATE-REPORT-
messages a new version of CURRENT-STATE is built upe. Sites from which a
STATE-REPORT-message was received are marked UP, non-responding sites
are marked DOWNe This new version of the state-tab]e is broadcast as
part of a STATE-TABLE-message to all sites which are marked UP. A STATE-
TABLE-message also contains an actual timestamp and the coordinator's
identifier, which together make up the new version number. A cohort
accepting a new version of CURRENT-STATE, immediately sends HI-messages
to all sites in its new AREA-OF-CONTROL and restarts its timers TSENDER
‘and TCONTROL. If no UP-site 1is contained in the new AREA-OF-CONTROL,
TCONTROL 1is stopped (this can happen if a site has been isolated due to
communication breakdowns).

As already mentioned, concurrent CHANGE-executions are synchronized by
means of the version-number of the new state-table. If clocks fail such
that a state-table is accepted which does not reflect an actual view of
the network but does contain the highest timestamp in its version number,
this failure will be detected by CONTROL. Therefore the RSC- protoco] is
also. robust against diverging and/or failing clockse

4.3 RSC = CONTROL + CHANGE

Since a CHANGE-coordinator remains a member of some other site's AREA-OF-
CONTROL, a coordinator must keep sending HI-messages during its CHANGE-
executione. The following events can occur during a CHANGE execution:

- Time-out signal from TSENDER.

Time~out signal from TCHANGE.

Receipt of a HI-message (will be ignored).

Receipt of a REQ-STATE-message.

Receipt of a STATE-REPORT-messages

- Receipt of a STATE-TABLE-message.

These events are processed depending on their priority. Timeout signals
from TSENDER possess the highest priority, REQ-STATE-messages possess the
second highest priority, all other events are processed in a FIFO order.

In addition to the events Tlisted ahove, two further events may occur

during the execution of CONTROL:

- Receipt of a REQ-STATE-message (generate response).

- Receipt of a STATE-REPORT-message, however, this can only happen due to
failures (ignore).

During a site's start/restart this site just executes the CHANGE- protoco]
and then switches over to CONTROL, all further CHANGE-executions are ini-
tiated by CONTROL (for more details see below)e. If CHANGE and CONTROL are

54

regarded as procedures then RSC can be interpreted as a procedure which
consists of a call of CHANGE and a subsequent call of CONTROL. In a real
environment, e«ge in the context of a distributed operating system kernel,
all events which can happen during RSC can be interpreted as kernel events
(interrupts) which may be processed in two modes, depending on whether
CONTROL or CHANGE is currently executed.

An algorithmic specification of all constants, variables, timers, messages
and procedures of the RSC-protocol can be found in the appendix.

4,4 Site start/restart

A site start/restart is done by executing the CHANGE protocole. The REQ-
STATE-messages sent during this CHANGE-execution contain a zero-timestamp
(assuming that during the site's down time the clock stopped too)e With
the receipt of the STATE-REPORT-messages the starting/restarting site's
clock can be resynchronized. HI-messages are sent not before CURRENT-STATE

has been reestablished; this is also the point of time at which TSENDER is

started for the first time after the site's down-time.

The only information which has to be stored on.stable storage is the des-
cription of the virtual ring, which is a simple binary relation, contain-
ing a pair of the form (physical address, position in the virtual ring)
for each-site in the networke. A1l other structures need only be kept in
volatile storage. :

It should be clear that this procedure works even if all sites of a net-
work have crashed. However, if the system-clock should be synchronized
with the 'clock' of the real world, then real world's time has to be
supplied from outside the system.

4,5 Network partitioning

If some communication lines crash such that the network is partitioned,
then this will be detected since some sites will become unavailable for
some other sites. o)
L
During the recovery of a partitioned network two requirements must be
fulfilled: v
- Resynchronization of the clocks, which may have diverged during the
period of part1t1on1ng.
- Unification of the views of sites which formerly were included in dif-
ferent partitionse.

The physical recovery of the crashed communication Tines will be detected
by means of HI-messages received from sites which are DOWN in the re-
ceivers view. The subsequent CHANGE execution fulfills both of the above
requirements. Since an actual timestamp is contained in each message used
by CHANGE, the clocks can be resynchronizede CHANGE also provides all
sites in the available part of the network with a new version of CURRENT-
STATE. Failures during a CHANGE execution will be detected by CONTROL.

.

55

Network partitioning is handled totally application-independent. The RSC-
protocol provides mechanisms, not strategies.

4,6 RSC-Characteristics

In this section it is shown, that the RSC- subprotoco]s CONTROL and CHANGE
are minimal in the sense that they use a m1n1mum of messages (CONTROL) or
a minimum of time (CHANGE).

Definition:

- A protocol is said to be message- -minimal, if the total number of mes-
sages used by this protocol is the smallest possible number of messages
in the given context.

- A protocol is said to be time-minimal if the critical message path is

the smallest possible in the given contexte A critical message path is
the Tongest path of messages in the protocol, such that the sending of
each message depends on the receipt of the preceeding message.
Example: If a protocol consists of one message to be sent to a remote
site, then the critical path has a length of 1. If an acknowledgement is
requested, then the critical path has a length of 2, since the acknowl-
edgement depends on the receipt of this message. If the message is sent
to several sites in parallel, then the length of the critical path re-
mains the same, since these messages do not depend on each other.

Assertion: o
CONTROL is message-minimal during normal operations (each site available
for each other). ‘

Proof:
The context requires that checks in the network have to be performed
periodically. Therefore it has to be proved, that the number of messages
needed to perform one complete check of the network during normal opera-
tions is minimal.

CONTROL needs N messages to perform one complete check, one HI-message
from each site. Now assume that there is another protocol which uses
less then N messages. Then there must be at least one site which does
not send a Hl-message. However, a site which does not manifest itself by
sending messages will be assumed of being not availables. Since during
normal operations all sites are available for all other sites such a
protocol provides incorrect views; thus CONTROL is message-minimal.

Assertion:
The number of messages CONTROL needs in the genera] case depends only on
the number of partitions. Let P be the number of partitions then PeN
messages are needed per complete check.

The proof is straightforward and left to the reader.

Assertion:
CHANGE is time-minimale.

56

Proof (Outline):

CHANGE has a critical message path of length 3 (a STATE-REPORT-message
is sent only after the receipt of a REQ-STATE-message, the sending of
STATE-TABLE-messages depends on the receipt of the STATE-REPORT-mes-
sages)s. In order to prove the correctness of the assertion, it will be
shown, that in CONTROL's context there can be no protocol with a path-
length Tless then 3. It should be remembered that in CONTROL's context
CHANGE has to complete the information provided by CONTROL and has also
to synchronize the coordinator's clock before the new version is distri-
buted. :

Assume a protocol with a critical path of length one. The only thing
such a protocol could do is to broadcast the information provided by
CONTROL. However, CONTROL does not provide complete information on some
kinds of multiple crashes (see example given in one of the preceeding
chapters). The construction of crashes which cannot be completely propa-
gated even in two subsequent executions of such a protocol is straight-
forward and left to the readere. Furthermore such a protocol is not able
to synchronize the coordinator's clock.

Now assume a protocol with a critical path of length two. One message is
needed to propagate the change and one message is left over to complete
the coordinator's information on the state change to be propagated and
to synchronize the coordinator's clocke. However, additonal information
is available only on request such that two messages would be needed to
complete the information. Furthermore the synchronization of the clock
would require the receipt of a timestamped message which again must be
requesteds Due to these reasons, in the given context there can be no
such protocol which synchronizes the coordinator's clock, completes the
state information and distributes a new version of CURRENT-STATE. There-
fore, CHANGE is time-minimal under the given conditions.

Only undér relaxed conditions an alternative protocol could be used in-
instead of CHANGE. Assume that clocks never fail and that no clock diver-
gences occur during network partitioning. Then the following protocol (to
be called QUICKCHANGE) would work:
- At first the coordinator sends PREPARE-messages containing the version
number of the new version of CURRENT-STATE to all sites of the network
and starts its timer TCOORD (timeout period: LMAX + LMAX).

- Each site which has received such a message broadcasts a REPORT-message
containing the new version number, starts its timer TQUICK (timeout
period: LMAX + LMAX - LMIN) and then prepares the construction of a new
version of CURRENT-STATE.

- Each site from which a REPORT-message is received, will be marked UP in
the new version, else, if a timeout is reported by TQUICK or TCOORD all
sates from which no REPORT- -message has been received will be marked
DOWN.

This protocol does not guarantee that state tables with identical version

numbers do always reflect the same view (lost messages). In order to

enable CONTROL to detect differing views even in this case, a Hl-messages
must contain a complete state table instead of a version numbers. However,

57

even if clocks do not fail, CHANGE might be the better alternative, espe-
cially in large networks, where QUICKCHANGE needs much more messages than
CHANGE «

5. Interface of the RSC-Layer

The RSC-layer contains the RSC-protocols and should be Tocated on top of
the basic network communication facilities. It could be implemented as
part of a distributed operating system kernel such that all messages to
remote sites must pass the RSC-layer. In the following a possible inter-
face to the RSC-layer will be defined by describing the various procedure
calls which must be issued to request RSC-services (this version of an
interface has been designed to fulfill the needs of a distributed data
base systems, other applications might require different services):

- SEND-MESSAGE (destination, message) RETURNS (status, ack)e

If the destination site is not available (marked DOWN in the 1local
CURRENT-STATE table) then an error code 1is returned to the calling
processe If the intented receiver is marked UP, then the message is sent
and a timer (time-out period of length 2°LMAX + AMAX) is started. If the
timer expires and no acknowledgement has been received for this message,
then CURRENT-STATE is checked again. The message will be retransmitted
if the receiver is still marked UP, else an error code is returned to
the calling process. Of course it is application-dependent whether ac-
knowledgements are required or not, therefore it might be appropriate to
have also procedures for sending unacknowledged messages; however for
the applications to be discussed in the next chapter the given interface
will be sufficient.

- RECEIVE-MESSAGE (source) RETURNS (status, timestamp, message)s

If the site of the expected sender is DOWN (becomes DOWN) then an error
code is returned to the calling process, else the message and its time-
stamp will be returned upon arrivale If a message is received from a
remote site, then CURRENT-STATE has to be checkeds The message will be
ignored, if the sender is marked DOWN (note that there can't be a pro-
cess waiting for such a message, since in this case an error code would
have been returned such that this process might have already initialized
some exception handling procedures). Of course, if there is no CURRENT-
STATE table (during recovery) then incoming messages which are not RSC-
related are ignored, too.

- SEND-ACK (destination, timestamp) RETURNS (status)e

An acknowledgement contains the timestamp of the message to be acknow]-
edged. If the destination site is down, then an error is returned to the
calling process, else an ok is returned in the statuse In the environ-
ment of distributed data base systems acknowledgements sometimes are
explicitly sent by the receiver after he has stabilized the information
received in the corresponding message (e.ge logging of some information
in stable storage).

58

- CHECK-STATE (site-number) RETURNS (state).
The state of the site identified by this site-number is checked in
CURRENT-STATE, the actual state is returned to the calling process.

- WATCH-UP (site-number) RETURNS (UP),
WATCH-DOWN (site-number) RETURNS (DOWN).
If the state of the site to be watched is already UP (DOWN) or as soon
as its state changes from DOWN to UP (UP to DOWN), then UP (DOWN) is
returned to the calling process.

- STOP-WATCH (site-number).
The correspond1ng WATCH-UP- or WATCH- DOWN formerly requested by the cal-
1ing process is deleted.

- TIMESTAMP () RETURNS (timestamp).
An actual and unique timestamp is delivered to the calling process.

To implement this interface two internal tables must be maintained, one
table to contain the messages to be acknowledged, the other one to contain
all WATCH-UP .and WATCH-DOWN requests. Note that the RSC-layer has been
given in an idealized form, in a real environment additional parameters,
such as the identification of the calling process, would be needed.

6. Application of the RSC mechanisms

In this section three examples are given to demonstrate how the RSC-mecha-
nisms can be applied to support

1 the recovery of distributed update-transactions

2 the maintenance of redundant data -

3 the compile-time-checking of -the availability of resources

Example 1: distributed update transactions

First of all the basic characteristics of transactions must be defined

(see also /11/):

- From the user's point of view TAs possess the atomic property. In the
case of update-TAs the system guarantees that either all of the updates
are performed or none of them.

- TAs are stat1c, jeee all process1ng sites. are predetermined at compile
time.

- The processing of a TA is co-ordinated by its site-of-origin.

- A TA consists a set of subtransactions (STA).

- STAs are atomic actions at a lower level of abstraction.

- Each STA is processed at just one site.

- Over the set of STAs a precedence structure is defined, which determines
the order in which the STAs must be processed. Para]]e] process1ng of
STAs is possible too. _

Updates may be arbitrarily comp]éx; such that several sites are involved
in the processing of such transactions. In principle update transactions

59

could be processed as follows (TA- and STA-states must be kept in stable

storage):

1 After the TA has been started by the user, STA-messages are sent to
those sites which co-operate in the processing of this TA (TA enters
state DO).

2 An STA enters the state DO after the STA-message has been rece1ved by
the corresponding site.

3 STAs write their updates into intention 1lists /5,10/. When a STA has
finished and its intention list has been written to disc, the STA-state
changes to READY and a READY-message is sent to the site-of-origine. If
an STA fails, then its state is converted to ERROR and an ERROR-message
is issued.

4 After the site-of-origin has received READY- and/or ERROR- messages from
all co-operating sites, the TA-state changes to COMMIT (all STAs were
successful) or to BACKOUT (at least one STA failed) and COMMIT- (BACK-
OUT-)messages are sent to all sites co-operating in the processing of
this TA. After the receipt of all acknowledgements the TA-state changes
to UNKNOWN.

5 After the receipt of a COMMIT- (BACKOUT-)message the corresponding STA-
state is changed to COMMIT (BACKOUT) and its intention 1list is executed
(backed out)e :

Assume a TA in state DO after all STA-messages have been sent to the co-
operating sites. In this case the site-of-origin is waiting for READY- or
ERROR-messages, however, it cannot determine how long it has to wait. It
even cannot determine whether there will be a response at all. In conven-
tional systems this problem is handled by means of the positive-acknowl-
edgement-or-retransmit technique, i.e. the STA-message will periodically
be retransmitted until a READY- or an ERROR-message has been received.
However, transactions may be arbitrarily complex and longlived /2/ such
that an arbitrary number of messages is needed in order to process one TA.
Furthermore this technique can only be applied if it is assured that co-
operating sites do not crash forever (in this case retransmission must be
performed forever)e. In the following it is shown how these problems can be
avoided in using the RSC-protocol.

To assure the receipt of the STA-message, an acknowledgement must be re-
quirede Then the site-of-origin calls WATCH-DOWN for all co-operating
sites during the TA is in the DO-state; each time a READY-message is
received, a STOP-WATCH for the corresponding site is issueds If a site is
reported to have crashed, then the TA can be backed out immediately (for
corresponding protocols see /10/) and a WATCH-UP is called for the crashed
sites When it is reported to be UP again, a BACKOUT-message is sent to
this site.

A co-operating site calls WATCH-DOWN for the site-of-origin after having
sent the READY-messages A STOP-WATCH is issued after the receipt of the
corresponding COMMIT- (BACKOUT-)message. If a crash of the site-of-origin
is reported, a request is sent to the other co-operating sites (for more
details see /11/) to determine whether

- at least one of them has received a COMMIT- (BACKOUT-)message: all STAs

60

may convert to the COMMIT- (BACKOUT-)state.

- at least one of them is still in state DO: all STAs may convert to the
BACKOUT-states :

- all of them are in state READY: all STAs have to wait for the recovery
of the site-of-origin, since it is impossible to decide whether it would
be correct to commit or to backoute

In each case the recovering site-of-origin will try to resume the proces-
sing of the TA. In the first case it finds the TA to be in state DO and
unknown at all other sites, thus the TA was backed out. In the second case
it finds the TA in state COMMIT (BACKOUT) and unknown on all other sites,
thus the TA has been committed (backed out). In the third case processing
can be resumed.

If only a single process fails on one of the co-operating sites, then this
will not be reported by the WATCH-DOWN primitives. However, since process
crashes do not affect the local supervisor in this case, the local system
itself will be able to detect this crash. Since all STA-related informa-
tions are stored on stable storage it will also be able to initialize
suitable recovery actionse.

Example 2: Maintenance of redundant data

Assume, that copies of data are organized in a way, such that there is one
primary copy and a collection of secondaries. Assume further that all up-
dates must be performed via the primary. Most of the read-only-transac-
tions will access secondary copies. However, some users will not be in-
terested in retrieving data items which are not at the same level of
actualization as the primary. Whenever the primary's site is not available
from a secondary's site there might be updates which can only be propa-
gated to the primary (network partitioning). To handle this problem a
WATCH-DOWN is called for the primary's site. Whenever unavailability is
reported the secondary will be marked to indicate that it may be not up-
to-date and a WATCH-UP 1is called for the primary's site. When the
primary's site is reported to be available again, then it can be checked
whether some updates have been missed (perhaps by using version numbers).

Example 3: Compile-time-checks

For each multi-site-transaction it can easily be checked whether all
needed remote sites are currently available by just calling the CHECK-
STATE primitive. If one of the sites is not available, then the affected
TA cannot enter it's processing phase.

7. Discussion

RSC keeps clocks synchronized and provides each site in the network with a
complete view of all remote sites. To maintain these services RSC needs
one message for each site and for each check. Similar services are pro-.
vided by RELNET's so-called ‘Global Time Layer'(GTL) /4/. However GTL
needs more messages than RSC without providing the same Tevel of robust-

61

ness. Each RELNET-site has associated with it a collection of guardians to
which it periodically issues so-called TIMESIGNAL messages. The mechanisms
do not tolerate the crash of a site and all it's guardians. Therefore it
would be desirable to have many guardians, however, more guardians require
more TIMESIGNAL messages to be sent per checke Additionally so-called
PROBE-messages are used to check the availability of remote sites, how-
ever, these checks are only performed on request such that two messages
are needed per single check of one site (PROBE message plus response).
Generally RELNET does not provide complete views of the network and thus
cannot support the same set of applications as the RSC-protocol can.
Although RELNET's GTL might be a very good solution for ‘command and
control' applications, we feel that RSC provides a more efficient and more
robust solution for general applications.

The concept of having state tables was also suggested by other authors.
However, the proposal in /8/ is based on centralized locking protocols and
thus is strongly embedded into the context of certain strategies and not.
useable in more general contexts. The mechanisms described in /9/ are also
embedded into a very special context, furthermore they can only be applied
in environments with only a small amount of distributed transactions.

References

/Y/ J.N. Gray, Notes on data base operating systems, in: R. Bayer, R.M.
Graham, G. Seegmiiller, eds., Lecture Notes in Computer Science 60:
Operating Systems, an Advanced Course (Springer-Verlag, Heidelberg,
1978) 393 - 481, '

/2/ J«Ne Gray, The transaction concept: virtues and limitations, in:
Proce 7th Int. Conference on Very Large Data Bases (IEEE, 1980)
144 - 154,

/3/ Hede Genrich, Ke. Lautenbach, The analysis of distributed database
systems by means of predicate/transition-nets, in: G. Kahn, ed.,
Lecture Notes in Computer Science 70: The Semantics of Concurrent
Computation (Springer-Verlag, Heidelberg, 1979) 123 - 146,

/4/ M. Hammer, De Shipman, Reliability mechanisms for SDD/1: a system
for distributed databases, ACM Transactions on Database Systems 5
(1980) 431 - 466, ‘

/5/ L. Lamport, Time, clocks and the ordering of events in distributed
system, Communications of the ACM 21 (1978) 558 - 565.

/6/ B. Lampson, He Sturgis, Crash recovery in a distributed data storage
system, Technical Report XEROX PARC, Palo Alto, Calif. (1979).

/7/ Ge LelLann, Distributed systems - towards a formal approach, in:
B. Gilchrist, ed., Information Processing 77 (North Holland Pub-
lishing Company, Amsterdam, 1977) 155 - 160,

/8/

/9/

/10/

/11/

/12/

62

DeAs Menasce, Gede Popek, ReRe Muntz, A locking protocol for re-
source co-ordination in distributed databases, ACM TODS 5 (1980)
103 - 138.

M. Stonebraker, Concurrency control and consistency of multiple
copies of data in distributed INGRES", IEEE Transactions on Soft-
ware Engineering 5 (1979) 188 - 194.

B. Walter, Strategies for handling transactions in distributed data
base systems during recovery, in: Proc. 6th Int. Conference on Very
Large Data Bases (IEEE, 1980) 384 - 389,

B. Walter, Global recovery in a distributed data base system, to be
published in: R.P. van de Riet, W. Litwin, eds., Distributed Data
Sharing Systems (North Holland Publishing Company, Amsterdam, 1982).
B. Walter, Formale Spezifikation und Analyse des RSC-Protokolls,
Technical Report, University of Stuttgart (1981).

63

Appendix 1

CONTROL ‘\
partition2

CONTROL
partition1

BROADCAST
AREAs
partition 1

64

Appendix 2: Algorithmic Description of the RSC-Protocol

In the following the algorithmic description of the complete RSC-protocol
will be given, using a PASCAL-1ike notation. The protocol is presented in
an idealized form and not embedded into a special environment like the
kernel of a distributed operating system.

CONSTANTS

const LOCID = identifier of the local site;
N = number of sites in the network;

LMAX = maximum message delay between two arbitrary sites;

LMIN = minimum message delay between two arbitrary sites;

AMAX = maximum time a site needs to generate a response;

SINV = time period between the sending two successive Hls;
DATA. TYPES |

type state = (UP,DOWN); :
~ area = array [1 .. N1 of boolean;
timestamp = to be specified system dependent;
version = record TIME: timestamp; ID: integer end;
statetable = record
VERSION: version;
TABLE: array [1 .. N1 of state
. end;
event = (TCONTROL-OUT, TSENDER-QUT, TCHANGE-OUT, TCHECK-OUT, HI-IN,
REQUEST-STATE-IN, STATE-REPORT-IN, STATETABLE-IN);

VARIABLES

var NEXTEVENT: event; CHECK-VERSION: version; EMPTY: boolean;
AREA-QF -CONTROL , BROADCAST-AREA: area;

' CURRENT-STATE, NEW-STATE: statetable;

TIMERS are defined by their name and their individual timeout period
(TX (INV) defines a timer TX with timeout period INV).

timer TCONTROL (SINV + LMAX - LMIN); TSENDER (SINV);
TCHANGE (2<LMAX + AMAX); TCHECK (LMAX - 2¢LMIN);

MESSAGES are defined by their name and the data-structure they contain.
Messages may be interpreted as variables, the values of which are trans-
ferred between sites.

message
HI = record
SENDER : integer; (Sender's identifier)
MSG-TIME : timestamp; (Actual timestamp)
ST-VERSION : version (Timestamp of sender's

end; CURRENT-STATE)

65

(Sender's identifier)
Actual timestamp)

REQUEST-STATE = record SENDER: integer; (
MSG-TIME : timestamp (
end;
STATE-REPORT = record SENDER: integer; (Sender's identifier)
REQ-TIME: timestamp; gTimestamp of request)
(
(
(

MSG-TIME: timestamp Actual timestamp)
end;
STATE-TABLE = record SENDER: integer;
MSG-TIME: timestamp;
STATE: statetable
end;

Sender's identifier)
Actual timestamp)
New state table)

SYSTEM PROCEDURES AND INTERNAL RSC-PROCEDURES

rocedure SYNCCLOCK (T: timestamp);
(Sets clock to the maximum of its current value and the value of T)

function NEWTIMESTAMP: timestamp;
(Generates an actual timestamp)
rocedure START-TIMER (T: timer);
Start timer Te. If T has already been started, then restart T)
rocedure RESET-TIMER (T: timer);
(Reset timer to its zero-position)
rocedure AWAITEVENT (NEXTEVENT);
(Returns event with highest priority)
rocedure FORGETEVENT;
Delete all events except TSENDER-OUT and REQUEST-STATE-IN and reset
TCONTROL and TCHECK to their zero-position)
rocedure SEND-MESSAGE (M: message, DEST: integer);
Send message M to site DEST)
procedure GENAREAS;
var I: integer;
(Tnitialize AREA-OF-CONTROL)
begin for I :=1 to N do AREA-OF-CONTROL [IJ := false;
I := LOCID; EMPTY := false;
while CURRENT-STATE [IJ = DOWN do begin
if I =1thenl :=Nelsel :=1~1;
AREA-OF-CONTROL [IJ := true end;
if I = LOCID then AREA-OF-CONTROL [IJ := true else EMPTY := true;
(Initialize BROADCAST-AREA) 3
for I := 1 to N do BROADCAST-AREA [I := false;
I := LOCID;
while CURRENT-STATE [I] = DOWN do begin
if I =NthenI :=1lelsel :=1+1;
BROADCAST-AREA [I] := true end;
if I = LOCID then BROADCAST-AREA [I1] := true;
(Restart TSENDER and broadcast HI)
HILSENDER := LOCID; HIMSG-TIME := NEWTIMESTAMP;
for I :=1 to N do if BROADCAST-AREA [I] then SEND-MESSAGE (HI, I);
START-TIMER (TSENDER)
(If AREA-OF-CONTROL contains an UP-site then restart TCONTROL)
if -EMPTY then START-TIMER (TCONTROL)
end;

66

CONTROL, CHANGE AND RSC

procedure CONTROL
var CHECK: boolean; I: integer;

begin CHECK := false;

while true do begin
AWAITEVENT (NEXTEVENT);

case NEXTEVENT of:

TSENDER~OUT: :
begin HI.SENDER := LOCID; HI.ST-VERSION := CURRENT-STATE.VERSION;
HI<MSG-TIME := NEWTIMESTAMP; ‘
for I :=1 to Ndo
1f BROADCAST-AREA [I] then SEND-MESSAGE (HI, I);
START (TSENDER)
end;

TCONTROL-OUT: begin RESET-TIMER (TCONTROL); FORGETEVENT; CHANGE end;

TCHECK-0UT: begin CHECK := false; FORGETEVENT; CHANGE end;

HI-IN: ‘ \
beg1 n SYNCCLOCK (HI.MSG-TIME);
if AREA-OF-CONTROL ([HI. SENDERJ
" then if STATETABLE [HI.SENDER] =
then begin if HI.ST-VERSION > CURRENT-STATE-VERSION
then begin CHECK := true; CHECK-VERSION := HI.ST-VERSION;
START-TIMER (TCHECK) nd : .
START-TIMER (TCONTROL) end :
else begin CHECK := false; FORGETEVENT CHANGE end
else ignore .
_end;

STATE-TABLE-IN: | ,
begin SYNCCLOCK (STATE-TABLE.MSG-TIME); i
if STATE-TABLE.STATE.VERSION > CURRENT-STATE.VERSION
‘then begin CURRENT-STATE := STATE-TABLE.STATE; GENAREAS;
if CHECK then if CURRENT-STATE.VERSION 2 CHECK-VERSION
then begin CHECK := false; RESET (TCHECK) end
- end end;

REQUEST-STATE-IN: :
begin SYNCCLOCK (REQUEST-STATE.MSG-TIME);
STATE-REPORT.SENDER := LOCID;
STATE-REPORT.REQ-TIME := REQUEST -STATE.MSG-TIME;
STATE-REPORT«MSG-TIME := NEWTIMESTAMP;
SEND-MESSAGE (STATE-REPORT, REQ-STATE.SENDER)
end;

STATE-REPORT-IN: begin ignore end

end end end;

67

procedure CHANGE;
var ACTIVE: boolean; COUNT: integer;

begin ACTIVE := true; COUNT := O;
REQ-STATE.SENDER := LOCID;
REQ-STATE.MSG-TIME := NEWTIMESTAMP;
for T :=1to N do

if I = LOCID then SENDMESSAGE (REQ-STATE, I)
START-TIMER (TCHANGE);
for I :=1to N do NEW-STATE [IJ := DOWN;
while ACTIVE do '
begin ‘
AWATTEVENT (NEXTEVENT);
case NEXTEVENT of:

TSENDER-OUT: see CONTROL;
REQUEST-STATE-IN: see CONTROL;
HI-IN: ignore;

STATE-TABLE-IN:
begin SYNCCLOCK (STATE-TABLE.MSG-TIME);:
if STATE-TABLE.STATE.VERSION > CURRENT-STATE.VERSION
then begin CURRENT-STATE := STATE-TABLE.STATE;
GENAREAS end .
end; 1

STATE-REPORT-IN: «
begin NEW-STATE [STATE-REPORT.SENDERI := UP;
COUNT := COUNT + 1;
if COUNT = N -1
then begin RESET-TIMER (TCHANGE);
ACTIVE := false end
end;

TCONTROL-0UT: :
begin ACTIVE := false end

end;

STATE-TABLE.TABLE := NEW-STATE;
STATE-TABLE«MSG-TIME := NEWTIMESTAMP;
for I :=1 to N do :

f NEW-STATE [TJ = UP then SEND-MESSAGE (STATE-TABLE, I);
CURRENT-STATE := NEW-STATE; CURRENT-STATE [LOCIDJ := UP;
GENAREAS :

end;

procedure RSC;
begin CHANGE; CONTROL end;

69

A QUORUM~-BASED COMMIT PROTOCOL
\l
Dale Skeen

Computer Science Department.
Cornell University
Ithaca, New York

Abstract

Herein, we propose a commit protocol and an associated recovery protocol
that is resilient to site failures, lost messages, and network partitioning.
The protocols do not require that a failure be correctly identified or even
detected. The only potential effect of undetected failures is a degradation
in performance, The protocols use a weighted voting scheme that supports an
arbitrary degree of data replication (including none) and allows unila-
terally aborts by any site. This last property facilitates the integration
of these protocols with concurrency control protocols. Both protocols are
centralized protocols with low message overhead. '

l. Introduction

A transaction is, by definition, an atomic operation on a distributed
database system., Either all changes by the transaction are permanently
installed in the database, in which case the transaction is said to be com-
mitted, or no changes persist, in which case the transaction is said to be
aborted. It is the task of a commit protocol to ensure that a transaction
is atomically executed.

In this paper we propose a commit protocol that is resilient to multi-
ple occurrences of the following classes of benevolent failures: arbitrary
site failures, lost messages, and network partitioning. It does not require
that the type of failure be correctly determined, in fact, resiliency is
guaranteed even if failures go undetected.

The protocol uses a weighted voting scheme to resolve conflicts during
failures. When failures occur, a transaction is committed only if a
minimum number of votes, called a commit quorum and denoted VC’ are cast for

committing. Similarly, in the presence of failures, a transaction will be
aborted only if a minimum number of votes, called an abort gquorum and
denoted VA' are cast for aborting. A commit gquorum does not have to equal

an abort quorums, but their sum must exceed the total number of votes.

Voting schemes have been proposed previously for transaction manage-
ment. Thomas introduced a majority voting scheme to ensure consistency in a
fully replicated database ([THOM79]). Gifford extended the scheme by
assigning weights to sites and using quorums rather than a simple majority
([GIFF79]). The proposed protocol differs from the previous work in several
important ways:

(1) It is a commit protocol, not a concurrency control scheme. It provides
atomicity at a per transaction basis. Nonetheless, it is straightfor-
ward to integrate any type of concurrency control protocol into this

70

protocol.,

(2) It allows unilateral aborts during the first phase of the transaction.
A site may decide to abort because of several reasons, for example, a
deadlock is detected locally.

(3) It is primarily intended for partially replicated distributed databases
where a transaction can read from any copy but must update all copies.

In addition, the protocol exhibits the following properties:

(1) It is a centralized protocol and, thus, benefits from the economy of
centralized protocols.

(2) 1In the absence of failures it is no more expensive than previously pro-
posed protocols that are resilient only to coordinator failures (and
not to a partitioning of the network).

(3) If all failures are eventually repaired, then the protocol.will eventu-
ally terminate,

(4) 1t is a blocking protocol -- operational sites must occasionally wait
until a failure is repaired. This is an undesirable but necessary'pro-
perty exhibited by any protocol that is resilient to network partition-
ing ([SKEE8lal). However, the protocol can be tuned so that the fre-
quency of blocking is low.

~ This paper is divided into six sections. The second section states our
assumptions and defines the terminology used in the remainder of the paper.
The third section develops a resilient quorum-based commit protocol, and the
fourth section develops a resilient quorum-based recovery protocol. The
recovery protocol is invoked whenever a group of sites can no longer commun-
icate with the original coordinator (either it has failed or the network has
partitioned). Like the commit protocol, it is a centralized protocol. The
fifth section discusses performance, and the sixth section concludes the
paper.

Although the protocols proposed are resilient to many classes of
failures, this paper will focus on the problem of network partitioning.
This class of failures is generally agreed to the most difficult class to
handle. The other two classes, site failures and lost messages, can be cast
as special cases of a partitioned network. In a site failure, a single site
is isolated (partitioned) from the remainder of the network. A lost message
can be viewed as a very short lived partitioning. In all cases, the proto-
cols work without modifications,

2. Background

We assume that an underlying communications network provides point-to-
point communication between any pair of sites. We also assume that it gen-
erates no spontaneous messages, and that garbled messages are detected and

deleted. We do pnot assume that messages arrive in order nor that it detects
lost messages.

A partitioned network occurs when there are two or more disjoint groups
of sites where no communication is possible between the groups. Each of the
disjoint groups is called a partition.

71

A distributed transaction T is decomposed into subtransactions Tl’ T2,
eses Tys where a subtransaction is executed at one of the N participating

sites. Any subtransaction can be unilaterally aborted, which results in the
abortion of the entire transaction. Hence, for transaction T to be commit~
ted, all sites must agree to commit their subtransaction. We assume that a
subtransaction can be atomically executed by a local transaction management
system ([GRAY79,LIND79]).

It is the responsibility of a commit protocol to ensure that all sub-
transactions are consistently committed or aborted. One of the simplest
commit protocols is the two-phase protocol ([GRAY79, LAMP76]) depicted in
Figure 1. The protocol uses a central site, the coordinator, to direct the
execution of the tramsaction at the other sites. Each slave has a chance to
abort the transaction by replying with a "no"™ in the first round.

A commit protocol can be conveniently described by a set of state
diagrams, one for each participating site ([SKEE8la]). The diagram for Site
i describes the processing of subtransaction Ti' A state in the diagram is

called a local transaction state.

In the two-phase commit protocol, a single state diagram (illustrated
in Figure 2,) suffices to describe processing at all sites. For both the
coordinator and the slaves, there are four distinct and easily identified
local tramsaction states: the initial state (state q in the diagram), the
wait state (w), the abort state (a), and the commit state (c). A site occu-
pies the initial state until it decides whether to unilateral abort the

COORDINATOR .~ SLAVE

(1) Transaction is received.
Subtransactions are
sent to each slave. S
' Subtransaction is received.
A reply is sent:
© yes to commit,
no to abort.

(2) If all sites respond yes
then commit is sent;
else, abort is sent.
Either commit or abort is

received and processed.

Figure 1. The two-phase commit protocol.

72

Figure 2. The state diagram for the two-phase commit protocol.

transaction. If the site decides against an abort, then the wait state is
entered., This state represents a period of uncertainty for the site, where
it has agreed to proceed with the transaction but does not yet know its out-
come (i.e, committed or aborted). The commit and abort states are self-
explanatory.

The local transaction states of any protocol form two disjoint subsets:
the committable states and the noncommittable states. A site occupies a
committable state only if all sites have agreed to proceed with the transac-
tion. - For example, the only committable state in the two-phase commit pro-
tocol is the commit state. A state that is not a committable state is a
noncommittable state.

3. A Resilient Commit Protocol
The two-phase commit protocol is not a very robust protocol. Whenever

the coordinator fails or becomes partitioned from the slaves, the slaves
must block until the failure can be repaired.

In this section we develop a very resilient commit protocol that allows
recovery from both of these types of failures. The section develops the
commit protocol in detail; the next section discusses the associated
recovery protocols for handling coordinator failures and partitioning.

Each site is assigned an integral nonnegative number of votes. (The
number can be 0, in which case the site is a passive participant.) The basic
idea is that whenever a group of communicating sites establishes a quorum,
they are allowed to proceed. There are two distinct types of quorums - a
commit quorum and an abort quorum.

73

Let V’ VC!

and VA represent the total number of votes, the number

required for a commit quorum, and the number required for an abort quorum.

A resilient quorum-based protocol must

([SKEE81c]):

(1 VetV >V where 0<VC.VA<=V

following properties

(2) When any site is in the commit state, then at least a commit quorum of

sites are in committable states.

(3) When any site is in the abort state, then at least an agbort quorum of

sites are in poncommittable states.

These requirements are sufficient to ensure that a quorum-based proto-
col terminates in a consistent state -- if it does terminate ([SKEE8lc]).

COORDINATOR

(1) Transaction is received.
Subtransactions are
sent to each slave.

(2) 1f all sites respond yes
then
prepare to commit is sent;
continue to phase (3) '
else .
abort is sent;
Stopo

(3) If the sum of the weights
of the responding sites equals
or exceeds V

C
then
send commit to all
else

block (wait until a "merge").

Figure 3. The quorum based commit protocol.

SLAVE®S RESPONSE

Yes to commit
No to abort

Ack

74

The requirements are very similar to those for k-resiliency where a protocol
can tolerate upto k arbitrary site failures (see [ALSB76] for a definition
of k-resiliency and [SKEE81b] for a set of sufficient conditions ensuring
k-resiliency in a commit protocol). In both cases a minimum number of sites
must agree before an ;xxgxgnalhlg decision is made by any site.

The second requirement can be viewed as two subrequirements:

(2.1) Before the first site commits, a commit quorum of sites in committ-
able states must be obtained, and

(2.2) After any site has committed, a commit quorum must be maintained.

As a consequence of (2.2), a site can safely move from a committable state
to a noncommittable state if and only if it can be shown that no site has
committed the tramsaction, or it can be shown that this will not destroy a
commit quorum.

The third requirement, concerning abort quorums, is analogous té (2).
Hence, there exists (3.1) and (3.2) which are the analogs of (2.1) and
(2.2). ' .

The two-phase commit protocol does not satisfy the second rule, nor can
it be simply extended to satisfy it. Moreover, any protocol which has a
single committable state (which must be the commit state) cannot satisfy the
rule. Hence, in a quorum-based commit protocol, we need to introduce a new
committable state, the prepared to commit (pc) state. This state will sub-
stantially increase the cost of the protocol, but unfortunately, it is
necessatry. '

The new protocol is described in Figure 3 and its state diagram is
given in Figure 4. It requires three phases to commit, two to abort. The
new phase is the second phase, where all sites move into the prepared to
commit state. The only explicit mention of quorums is in the third phase
where the transaction is committed only if a commit quorum of sites advance
to the prepared to commit state. Even though abort quorums are not expli-
citly mentioned, the third requirement is still satisfied. In fact, if any
site unilaterally aborts (including the coordinator), then no site ever
enters a committable state and the third rule is trivially satisfied.

The protocol is a pessimistic protocol -~ if any site fails or a parti-
tion occurs during the first phase, then the coordinator immediately aborts
the transaction.

4. Recovery

There are two aspects of recovery. When a group of sites is parti-
tioned from the rest of the sitess they will execute a protocol that
attempts to form a quorum and terminate the transaction. These protocols,
called ftermination protocols are discussed in the first part of this sec-
tion. If a quorum can not be achieved within the partltlon. then the sites
must block until communication between partitions is restored. Once this is
achieved, the sites within the new partition can execute a merge protocol
and reattempt terminating the transaction.

75

Figure 4. State diagram for the quorum based commit protocol.

Termi ion P]
As with the commit protocol, the major emphasis in the proposed proto-

col is on successful termination. Partially executed transaction will be
aborted, when necessary, to achieve this goal. .

‘ When a group of sites detect that they are partitioned from the
remainder of the network, they execute a two part termination protocol. The

first part consists of electing a surrogate coordinator and the second part
consists of an attempt to form a quorum.

There are several possible election protocols. We will not explicitly
discuss election protocols except to note that it is possible to elect a
unique coordinator at linear cost ([GARC81 ,HAMM79]). The resilency of a
quorum-based protocol is not dependent -on the uniqueness of the outcome of
the election. Even if two surrogates are chosen, resiliency is guaranteed
but performance suffers.

When the election completes the surrogate executes a protocol similar
to the commit protocol in the previous section. The termination protocol is
slightly more complex for two reasons. First, a surrogate works with less
knowledge than the original coordinator, specifically, the surrogate may not

76

know if a transaction is committable. Second, whereas there was a single
coordinator originally, there many be many surrogates each operating in dif-

ferent partitions.

For the first problem, a surrogate can attempt to form a commit proto-
col only if a site within the partition is in the committable state. For
the second problem, a surrogate must exp11c1t1y form abort quorums. A site
indicates its willingness to participate in an abort quorum by moving into a

prepared to abort state.

The termination protocol is given in Figure 5. Like the commit proto-
col, it consists of three phases, In the first phase the surrogate coordi-
nator polls the sites about their local state, and these replies determine
the action taken in the next two phases. If any site has committed

COORDINATOR
(1) Request local state.
(2) slave responses _ coordinator's actions
21 commit send commit;
terminate
zl abort send abort;
terminate
2]l prepared to commit and ' send prepare to commit
weights ot wait and continue with (3a)
prepared to commit ZVC
weights of wait and send prepare to abort
prepared to abort ZVA continue with (3b)

(3a) if 2V, ack's then send commit
else block

(3b) if 2V, ack's then send abort

else block

(Slaves respond with their local state in Phase 1 and with an acknowledge-
ment in Phase 2).

Figure 5. The quorum-based termination protocol.

Or even in the same partition if the election protocol fails to uniquely
elect a surrogate.

77

(aborted), then the transaction is immediately committed (aborted) at all
sites. Otherwise, the surrogate will attempt to establish a quorum.

A commit quorum is possible if at least one site is in the prepared to
commit state and the sum of the weights of the sites occupying the prepared
to commit state and the wait states is at least VC' If this is the case,

the surrogates will attempt to move all sites in the wait state into the
prepared to commit state. Barring additional failures, the surrogate will
then commit the transaction,

However, additional failures may prevent sites either from making the
transition or from acknowledging the transition. If an insufficient number
of acknowledgements is received, then the protocol blocks,

An abort quorum is possible if the sum of the weights of sites occupy-
ing the wait state and the prepared to abort state is at least VA’ Unlike a

commit quorum, an abort quorum does not require any sites to occupy the
prepared to abort state. Again, the surrogate attempts to move an abort

quorum of sites into the prepared to abort state -- aborting the transaction
if it is successful, blocking otherwise.

The state transition diagram is given in Figure 6. A heavy line indi-
cates the normal movement of the site into a "prepared" state and then into
the corresponding final state. A dashed line indicates a path taken when
the site is not a participant in the formation of the quorum.,

Figure 6. State diagram for the termination protocol.

78

Merging
Partition merging occurs whenever a failure is repaired and communica-
tion is established between two or more partitions. We assume that the re-

establishment of communication paths is detectable”.

The recovery strategy for merging is simple: execute the termination
protocol described in the last section. In this case the election process
can be streamlined -- the new coordinator cam be chosen from among the old
coordinators, e.g. let the coordinator with lowest site number become the
new coordinator. A The new coordinator then executes the three phases in the
second part of the termination protocol. : '

Site recovery is equally simple -- it is a special case of merging
where one partition contains a single site.

5. Performance

It is very difficult to amalyze the expected performance of quorum-
based protocols, even if very simple and independent probability distribu-
tion functions are used to describe site failures. For nonzero failure pro-
babilities, it is clear that the worst case performance is unbounded, which
is expected from the results of the Two Generals Problem (see [GRAY79] for
an description of this problem and its ramifications).

However, we argue that if all partitions are eventually resolved, then
the protocols will eventually terminate. They are acyclic, hence every
state transition moves a site closer to termination, and they are deadlock
free. This latter property is assured by the choice for the quorum sizes --
after the merging if all partitions, it must be the case that either an
abort quorum or a commit quorum can be formed.

In énviromments where failures are rare, the most important cost meas-
ure is the cost of the commit protocol in the absence of failures. The
quorum-based commit protocol requires 3 phases, 5 end-to-end message delays,
and about 5N messages (where N is the number of participants). This cost is
substantially higher than the cost of the two phase commit protocol --
higher by approximately 50%. However, the two-phase protocol is not very
resilient. A more resilient protocol, specifically one that is resilient to
a coordinator failure, requires at least three phases. While several three
phase protocols are known ([GARC79, SKEE81b]), the quorum-based protocol is
the only one resilient to network partitioning.

There are two sets of parameters that determine the performance of the
protocol in the presence of failures: the weights assigned to individual
sites, and the values for VC and VA' :

The assignment of weights is often influenced by policy considerations
external to. implementation of the system. However, some factors that are
relevant to performance are percentage downtime, failure rate, and percen-
tage of data stored at the site. The most intuitive rule is to assign
weights inversely proportional to the percentage downtime.

2 . o ' . . .
A low level protocol can periodically attempt communication with other

sites. Eventually it will detect the repair of the partition.

79

In choosing quorum sizes, it is not necessary for VC to equal VA' In
fact, there are several strong arguments for choosing VC>VA One argument

concerns protocols allowing unilateral aborts: if a significant number of

transactions are unilaterally aborted, then clearly VA should be smaller. A

stronger argument is that most site failures are expected to occur during
Phase 1 of the commit protocol since most of the transaction execution time
is spent in Phase 1. This phase is time consuming because the majority of
the data processing takes place during it; whereas, Phase 2 and Phase 3 syn-
chronize state information among the sites and require very little 1local
processing. If sites fail during Phase 1, then the transaction must be
aborted -- hence, it should be easy to abort.

An interesting heuristic for choosing VA is based on a rough estimate

of the failure distribution of the sites. This heuristic is useful in
enviromments where site failures, rather than network partitions, predom-
inate. Let P(VA) be the probability that at least an abort quorum is opera-

tional. P(VA) is a decreasing function in V,. The point is to choose the
maximum VA such that VA<=Vc and P(VA) exceeds a minimum level of desired
availability.

As mentioned before, the weight of a site can be zero, in which case’
the site contributes nothing toward forming a quorum. (However, such a site
can still unilaterally abort the transaction.) When designing a protocol, a
zero-weighted site can be eliminated from all phases requiring the formation
of a quorum. In the extreme case, where only a single site has a non-zero
weight, a quorum based commit protocol degenerates into the standard two-
phase protocol with all of its disadvantages. Specifically, all sites must
block on the failure of the only nonzero weighted site (which is normally
the coordinator).

6. Conclusion

The use of quorums is a standard recovery technique for handling net-
work partitioning (even primary site schemes, e.g. [STON79], are a degen-
erate case of using quorums). We have presented a very general quorum-based
commit protocol that can be used with both replicated and nonreplicated
data. Unlike previous schemes it allows a single site to unilaterally abort
the transaction. : ‘

Quorum-based protocols are resilient because a site is allowed to par-
ticipate in only one type of quorum. Quorum sizes are carefully chosen such
that the formation of both a commit and an abort quorum requires the parti-
cipation of a common site. In this way mutual exclusion is assured -- only
one type of quorum can be formed during the execution of a transaction.
(However, it is possible for multiple occurrences of a single type of quorum
to be formed. For example, since abort quorums are usually small, more than
one can be formed concurrently.) In such a scheme the concurrent execution
of several coordinators, even if they are within the same partitiom, does
not destroy consistency.

When a new coordinator is elected in the proposed recovery protocol, it
polls all sites about their current local state. In making a commit deci-
"sion, only the replies from the latest poll is used -- information obtained
in earlier polls is ignored. Less conservative approaches which wuses

80

-previous information can be found in [SKEE8lcl].

[ALSB76]

[GARC79]

[GARCS1]

[GIFF79]

[GRAY79] .

[HAMM79]

[LAMP76]

[LIND79]

[SKEE8la]

[SKEES1b]

[SKEES8lc]

[STON79]

[THOM7 9]

REFERENCES

Alsberg, P. and Day, J., "A Principle for Resilient Sharlng of

Distributed Resources," Proc. 2nd International Conference on
Software Engineering, San Francisco, Ca., October 1976.

Garcia-Molina, Hector, Ph.D. Thesis, Stanford University,
1979.

Garcia-Molina, Hector, "Elections in a Distributed Computing
System," TR No. 280, Princeton University, December, 1980.

Gifford, David, "Weighted Voting for Replicated Data"™ Qperat-
mﬁxﬂmkﬂm. 13’ 5’ Dec.; 1979’ PP- 150-90

Grays J. N., "Notes on Database Operating Systems," in Qperat-
ing Systems: An Advanced Course, Springer-Verlag, 1979.

Hammer, M. and Shipman, D., "Reliability Mechanisms for SDD-1l:
A System for Distributed Databases," Computer Corporation of
America, Cambridge, Mass., July 1979.

Lampson, B. and Sturgiss H., "Crash Recovery in a Distributed
Storage System," Tech. Report, Computer Science Laboratory,
Xerox Parc, Palo Alto, Califormia, 1976,

Lindsay, B.G. et al., "Notes on Distributed Databases," IBM
Research Report, no. RJ2571 (July 1979).

Skeen, D. and M. Stonebraker, "A Formal Model of Crash
Recovery in a Distributed System," JLEEE Iransactions on
Software Engineering, (to appear).

Skeen, D., "Nonblocking Commit Protocols,™ SIGMOD Interna-
Ltional Conf. on Management of Data, Ann Arbor, Michigan, 1981.

Skeen, D., "Crash Recovery in a Distributed Database System,"
Ph.D. Thesis, UnlverS1ty of California, Berkeley (in prepara-
tion).

Stonebraker, M., "Concurrency Control and Comnsistency of Mul-
tiple Copies in Distributed INGRES," IEEE TIransactions on
Software Engineering, May 1979.

Thomas, Robert, "A Majority Consensus Approach to Concurrency

Control," Iransactions on Database Systems, 4, 2, June 1979.

81

IMPLEMENTATION OF DISTRIBUTED TRANSACTIONS

Deborah J. DuBourdieu

Prime Computer, Inc,
500 01d Connecticut Path
Framingham, Mass. 01701

ABSTRACT

This paper explores some of the issues encountered in the design
and implementation of distributed transactions in an ongoing
project at Prime Computer, Inc, An important feature of the
concurrency control algorithm to be discussed is that
retrieval-only transactions never wait. Implementation details
relevant to this feature include the maintenance of a pool of
previous data images, and more complex synchronization
requirements in a distributed environment, Another important
point discussed 1is an optimization of the Two-Phase Commit
protocol in the event of coordinator failure, Finally, the
design of an IPC suitable for support of distributed transactions
is examined,

1 INTRODUCTION

A major strength of the Prime product line is Primenet (TM), which
provides complete local and remote network communication services
for all Prime systems [GORD79]. In geographically dispersed
network configurations it allows Prime computers to communicate
with other Prime computers, with computers from other vendors,
and with terminals and computers attached to packet switching
networks., 1In local network configurations, Primenet allows Prime
computers to be attached via a high-bandwidth, multi-point ring
arrangement to other Prime systems.

Another strength of the Prime product line is our
CODASYL-compliant DBMS with full recovery, interactive database
administration, and interactive query language/report writer.
Part of our strategy in Data Management is to build upon these
strengths by developing expertise in the issues of distributed
DBMS. We have concentrated first wupon remote data access and
distributed transactions, and the system which incorporates this
work is discussed below., Areas for future work include improved
distributed schema management and optimization of distributed
queries. ’

82

2 PRIME DATA MANAGEMENT ACCESS METHOD

This block-oriented access method is used by all Prime data
management products which provide the service of transaction
management, including concurrency control and data recovery. It
is composed of several internal subsystems. The Data Manager
provides I/0 to 1local and remote data files, The Resource
Request Manager is a general subsystem for the management of
arbitrary types of locks on arbitrary objects, including control
of deadlock. The Communication Manager provides a high-level
interface to Primenet, our X.25-compatible network service, The
Recovery Manager runs during system restart and makes use of log
information left by the Transaction Manager to bring all
databases into a consistent state following a system halt.
Finally, the Recovery Manager can also bring databases into a
consistent state following a disk crash by using log information
written by the Transaction Manager,

The Transaction Manager uses the services of all the other
internal subsystems to provide control of both local and global
(or distributed) transactions. This paper will concentrate on
some of the implementation problems of providing that service in
a distributed environment. By "distributed environment" is meant
one in which machines are connected by a 1local or long-haul
network, so that users can access files which reside on their own
machine or a remote machine, transparently to the application
program, A "distributed transaction" is one which accesses data
stored at more than one site, It is still an atomic unit of
work, so that it sees a globally consistent database, and its
updates are either installed in the permanent database at all
sites or at none of them., In our current implementation data
files may not be stored redundantly.

3 TRANSACTION MANAGEMENT IN LOCAL ENVIRONMENT
3.1 Synchronization Via Two-Phase Locking

The synchronization technique we use is two-phase 1locking
[ESWA76] and the unit of locking is the disk page. Each read
which is performed must be preceded by the acquisition of a
read-lock on the page, which can be shared with other read-locks.
No write may be performed on an item which is read-locked. Each
write must be preceded by the acquisition of a write-lock, which
cannot be shared with any other locks. Once a transaction has
released a 1lock, it may not acquire any further locks, which is
enforced in our implementation by the rule that 1locks must be
held until the transaction completes.

Read-only transactions do not need to obey this protocol and
never interfere with update transactions, All that is required
for the read-only transaction 1is that reads be repeatable
(computationally equivalent); seeing the output of the same write
operation each time the same read is performed. The mechanism
whereby this is accomplished is discussed in a later section,

83

s L

The recovery of data files after a soft or hard crash also
depends on the transaction mechanism., The runtime side of this
work is a variant of the DO-UNDO-REDO protocol [GRAY78], which we
implement as two separate logs. Before entering an uncommitted
update of a page into the permanent data file, the Transaction
Manager must write an image of the current version of that data
page into the UNDO log. If a soft crash occurs before the
transaction is committed or is aborted at runtime, the Recovery
Manager will use that image in the UNDO 1log to roll back the
transaction, leaving the data file in the state that it was
before the updater started, and therefore consistent, Before
executing commit, which tells the user that the transaction
definitely completed, the Transaction Manager must write an image
of all of its updates to the Redo log. If a disk crash occurs
later, the Recovery Manager uses those images to redo or roll
forward the transaction, leaving the data file in the same
(consistent) state that it was left by the original update
transaction,

3.3 Multiple Version Variant

We employ an optimization of this technique which wuses multiple
versions of data items. An early developer of this technology-
was Christopher Earnest, currently of Prime Research, Multiple -
versions in the context of timestamp-ordering is discussed in
[BERN81], and a design similar to ours is found in [BAYES80].

The "current database” at any moment of time is defined as the
database which would result if all unterminated processes were to
be aborted [ROSE78]. It is consistent because it contains only
the output of committed transactions, which were controlled by
the serializing 2PL scheduler. We distinguish between those
transactions which only . issue reads (Readers) and those
transations which also issue writes (Updaters). We introduce the
rule that for a Reader, the current database at the time the
Reader starts is the database the Reader should continue to see
throughout the 1life of the transaction. This rule is correct
(yields serializable execution histories). The important
implication of this rule is that if the current database is kept
available to the Reader throughout its 1life, the Reader will
never have any reads rejected by the concurrency control,
regardless of update activity. Notice that Readers will not see
the most current database at every point in time, which may be an

important factor in some applications.

Updaters do not participate in this optimization, If Updater U
reads the previous version of an item being updated by concurrent
Updater V, then U must precede V in the ordering generated by the
2PL' scheduler, This requires remembering all read-write

84

conflicts which have occurred, in some cases even after the
transactions have completed, adding extra complexity and overhead
which we believe would more than cancel the benefit of &he read
optimization,

Each data item can be thought of as having its complete update
history available (though in actuality this history is maintained
only as far back as is necessary to satisfy possible requests).
These previous versions are actually the same versions generated
by Updaters for the UNDO log, so no extra work is done except to
preserve the old images as long as there is a Reader who might
make use of them, Transactions receive unique monotonically
increasing transaction numbers which are interpreted as version
or generation numbers, When an update 1is performed, the new
value of the data item is stamped with the transaction number of
the transaction which wrote it. When a Reader begins it is given
a heavily encoded list of all transactions whose ocutput is legal
for it to read, namely, all those who had committed before the
Reader started. This defines the Reader's current database.

When a Reader performs a read, the transaction number in the data
block is checked to see whether it is on the Reader's 1list, If
it is not, a chain of pointers to previous versions which begins
at the data block is followed backwards in time until a version
is found whose transaction number does appear on the Reader's
list. :

3.4 Deadlock Prevention Via PAD
If an Updater U requests a write-lock on a page which is
currently read-locked by Updater V, rather than deny U and force
it to abort, we permit U to wait for V to terminate and release
the lock. Since V in turn may try to wait for another lock,
possibly one held by U, the potential for deadlock is introduced.

Deadlocks are detected by looking for cycles in a directed graph
which represents the relation "which transactions are currently
waiting for which other transactions" (WAITS-FOR). We use the
progressive acyclic digraph algorithm described by [HANS79].
Nodes represent transactions and an arc between T2 and T1
represents the state that T2 is waiting for Tl (because Tl has a
resource, in this case a lock, that T2 wants). An arc may be
added to the dgraph unless it would cause a cycle, in which case
one or more nodes must be detached (those transactions have been
pre-empted and their locks have been released). To optimize the
detection of cycles, a topologically sorted list is kept of all
nodes which have arcs, If transaction T2 wishes to wait for
transaction Tl and T2 precedes Tl in this ordering, then there is
no possibility of a cycle and no further work need be done, If
T2 follows T1 in the topologic sort, then we must determine the
hard way (by computing the transitive closure) whether T1 is
really waiting for T2, since the ordering could simply be an
artifact of the order in which the transactions arrived. This

85

offers a significant performance improvement over computing the
transitive closure for every case, :

A timestamp which is retained across restarts is used to prevent
cyclic restart (suggested by [ROSE78]). Suppose that T2 wants a
lock which is currently owned by Tl. If T2 can wait without
causing deadlock then it will wait, If for T2 to wait would
cause deadlock then either T2 must be refused (nonpreemptive) or
Tl must be aborted (preemptive). We use the timestamp to help
make the choice, selecting the transaction with the youngest
timestamp for refusal or preemption, Since every transaction
will eventually become the oldest transaction, cyclic restart and
indefinite postponement are avoided.

4 TRANSACTION MANAGEMENT IN DISTRIBUTED ENVIRONMENT

e e e e S e e e T 1 e o i R e et e D e i e i o, o2

Our design 1is oriented towards decentralization and site
autonomy., There is no central site for synchronization purposes,
restart at each site is independent, and the effect of a failure
at one point in the network is restricted as much as possible.

Each site continues to maintain its own series of transaction
numbers and its own UNDO and REDO logs, so that management of a
stricly local transaction operates in precisely the same way. A
distributed transaction is implemented as a group of local
transactions, one at each site the distributed transaction
visits, including the originating site. The Transaction Manager
at the originating site has extra responsibilities in that it
must send requests against remote data files to the correct site
using the Communications Manager, in addition to satisfying
requests against local data files, and it must coordinate events
at start and end of transaction., For this reason the orginating
site and its local transaction are referred to as the Master, and
all the other local transactions are referred to as "cohorts."

Since there is no central site dispensing transaction numbers,
there is no bottleneck. Furthermore, system restart at each node
is completely independent (except for unresolvable global
transactions), since each site has its own UNDO log.

This design works very efficiently for global Updaters, who
simply acquire a transaction number at any given local site when
they first access a data file at that site. The mapping of a
group of local transaction numbers into a single global update
transaction is not needed at runtime, when the master and cohorts
need only the information about one another which is necessary to
send messages to each other., However, the mapping is written to
the log for use by the Recovery Manager during system restart.

Global Readers, who still wuse the optimization of previous
images, face a new problem. They must acquire not just one list
of completed transactions, but a list at every site where they

86

access data, and all of these must be consistent. The problem is
that if a global Reader is in the process of acquiring these
lists while a global update transaction is in the process of
ending, the Reader may acquire a set of lists in which one cohort
of the Updater may be marked as complete while another one may
not yet have terminated and is therefore 1listed as incomplete,
The global Reader would then see inconsistent data. Therefore,
we synchronize this activity via a lock which must be obtained by
global Readers when starting and by global Updaters when ending.
It can be shared by any number of Readers or any number of
Updaters but not between Readers and Updaters. We are
investigating a more efficient alternative in which global
Readers are synchronized by timestamp ordering. '

e e R S S et

Each site has its own Resource Request Manager, and manages all
locks on data residing at that site., This has the advantage of
incurring the minimum overhead associated with acquiring 1locks,
since it does not have the bottleneck problem and communication
cost of a central lock manager site, The disadvantage is that
the local algorithm for deadlock detection becomes insufficient
because deadlock can now occur indirectly through a chain of
waiting processes which crosses nodes. ’

4,3 Deadlock prevention: via- WOUND-WAIT:
We handle deadlock via the hybrid WOUND-WAIT algorithm [ROSE78].

Deadlock handling consists of two questions: First, will letting
Tl wait for T2 cause a cycle in the graph representing waiting
processes (deadlock detection)? Second, if so, who is going to
die (restart protocol)? In the 1local case we have all the
information necessary to accurately answer the first question,
and the second is answered using the timestamp in order to
prevent cyclic restart, In the distributed case the first
question cannot be answered accurately without sending all
information about 1locks to some designated site. 1Instead a very
crude heuristic is used, which is to presume that allowing global
transaction Tl to wait for a younger global transaction T2 at one
site might cause a global cycle. This determination is made by
comparing the two transactions' timestamps, which are unique
across the network. As in the local case, the restart protocol
selects the younger transaction for restart, and does so by
sending WOUND messages to all sites where that transaction has
visited., In the stronger definition of WOUND, this message is
interpreted as an abort when received at the active site, 1if
termination has not yet started. However, such quick execution
is not necessary to prevent - deadlock. Under the alternate
definition of WOUND, wounded processes may continue processing
until they try to wait, at which point deadlock is again
possible, and the wounded process must be aborted. Since forcing
the older transaction to wait a while longer gives the wounded
transaction one chance to complete, we use this definition,

87,

We further reduce the total number of restarts by distinguishing
between local transactions (those which have not 1left their
original site) and global transactions (those which have). For
local transactions deadlock continues to be handled in the same
way as described in the previous section, using the locally
computed WAITS-FOR relation, while -global transactions -are
handled using WOUND-WAIT.

There are two costs.in this method. First, some transactions
will be aborted unnecessarily (younger ones who would not have
caused a cycle in a centrally maintained WAITS-FOR dgraph).
Second, when a transaction is wounded, extra messages (the WOUND
message) are sent to all sites which the transaction has visited,

5 RECOVERY FROM SYSTEM HALT

The goal of this mechanism is to ensure that the system contiues
to run, and to run correctly desplte component failure and
recoveries, A highly resilient network is thus more reliable in
that it can be expected to:

1. Provide continued llmlted.serv1ce at individual nodes in the
presence of other fallures, and

2.. Maintain database con51stency.

What "limited service" means is that new transactlons may be run
which are ‘directed against data which is still accessible either
locally or through the network. Of course, transactions which
were interrupted by a failure elsewhere may still have resources
(including locked data) allocated to them at the functioning
node., This 1is a concern because when a failure occurs elsewhere
in the network, there is a distinct possibility that the failing
component will be out of service for a very long time, hours or
days perhaps. We want those sites which are still functioning to
be able to continue providing the best service possible under
those conditions, '

For the purposes of this analysis an active transaction has only
two states: execution and termination, Termination 1is defined
as the process of ending a transaction, which implies that it is
either aborted or committed. "Commit" is defined as the act of
installing all of a transaction's updates in the permanent
database; "abort" is defined as undoing any updates performed by
the transaction;. both are followed by forgetting all information
about the transactlon except that it has termlnated

If a crash occurs durlng executlon there is - "doubt that . the
proper action is +to abort the transactlon at all sites, If a
crash occurs during. termination, the proper action is not
immediately evident, since some cohorts may have successfully
committed while thée failed one may have 1ost some‘-updates that
were in volat11e storage. : -

88

The Two-Phase Commit protocol, developed by Lampson and Sturgis
in [LAMP76] and by Gray in [GRAY78], addresses this problem.
Gray's "coordinator" is the Master in our implementation, and his
"participants" are cohorts in our terminology. The coordinator
sends a message to each participant, "Prepare to commit," Each
participant then enters a state in which it is capable of either
committing or rolling back the transaction, and then sends an
acknowledgement back. When the coordinator has received all the
acknowledgements it sends the message "Commit" to each
participant, which then terminates, The participants terminate
and send a final acknowledgement to the coordinator, who then
terminates,

e e e A S s S e G e . S et e e g e s e i e e

A similar optimization was independently discovered by the SIRIUS
DELTA Distributed Database System project of INRIA, and was
mentioned briefly in their presentation at the Fifth Berkeley
Workshop on Distributed Data Management. ,

In the original statement of the protocol above, an important
implication is that if the coordinator fails, then the
participants must wait for the Recovery Manager at the
coordinator's site to get started and direct the participants to
the conclusion of the transaction. Depending on what caused the
crash at the coordinator site and how long it takes to fix it,
the participants could wait for an appreciable period of time,
during which all the locks held by those participants must remain
held since it is not known whether the transaction has committed.
This wait is not necessary in the event that all the other
participants have survived and can communicate with each other.
In this case they can each exchange all the information they have
about the interrupted transaction. 1If any participants received
a commit, they will all decide to commit, If none heard a
commit, they will all decide to abort. If not all participants
survived, then the survivors will have to wait as in the original
protocol., ‘

This follows the statement of the protocol in [GRAY78]. "IF
COORDINATOR FAILS" is really a condition which is detected rather
than a conditional statement,

PARTICIPANT_2_P_C: PROCEDURE
WAIT_FOR 'PREPARE TO COMMIT'
IF COORDINATOR FAILS
THEN ABORT AND RETURN
ELSE
FORCE UNDO REDO LOG TO NONVOLATILE STORE

IF SUCCESS THEN

89

REPLY 'AGREE'
ELSE
REPLY 'ABORT'
END IF
END IF
WAIT_FOR VERDICT
IF COORDINATOR FAILS
WHILE TRANSACTION IS UNRESOLVED DO
FOR EACH PARTICIPANT IN THIS GLOBAL TRANSACTION DO
SEND (PARTICIPANT, 'DID YOU HEAR COMMIT?')
RECEIVE (PARTICIPANT, 'YES/NO')
END FOR
IF ANY PARTICIPANT REPLIED 'YES' THEN
COMMIT AND RETURN :
ELSE
IF ALL PARTICIPANTS REPLIED 'NO' THEN
ABORT AND RETURN
ELSE
WAIT FOR FAILED PARTICIPANTS OR '
COORDINATOR TO RECOVER

END IF
END IF
END WHILE
END IF
IF VERDICT = 'COMMIT' THEN
DO

RELEASE RESOURCES AND LOCKS
REPLY 'ACKNOWLEDGE'
END
ELSE
DO
UNDO PARTICIPANT
REPLY 'ACKNOWLEDGE'
END
END PARTICIPANT

The system restart logic gets a bit more complicated at the
coordinator site as well, Instead of merely examining the
coordinator's log, the Recovery Manager must consider the
possibility that in recovering from this particular crash, the
participants made a decision on their own. The Recovery Manager
can easily handle this ©possibility by querying any other site
involved in the transaction as to what it believes the state of
the transaction to Dbe, The site will reply "Committed",
"Undone", or "In doubt." At the -coordinator site, then, the
Recovery Manager will react to the first two responses by doing
likewise, and to the third response by controlling resolution = of
the transaction as outlined in the original protocol,

This optimization introduces a subtle implementation problem,
namely, that the participants and coordinator must share the same
perception of whether the coordinator has failed. Otherwise the
participants may be attempting to recover on their own while the
coordinator is still attempting to end the transaction. In

90

theory, failure of the coordinator should arise from only one
cause, failure of the node where it resides., This is easy enough
to determine since communication with = that node becomes
impossible., However, the coordinator may appear to have ceased
responding when in fact the network is so slow that messages take
much longer to arrive than .expected, when the network 1loses
messages, or when there is 'a system error at the coordinator
site, All of these ugly cases must be accounted for in a
commercial product, : S :

6 PROBLEMS WE ENCOUNTERED, THINGS WE LEARNED

R e e T e e i S ey S i S i S S e e e A e S s e e e e e e S — e S . o o, 2

When moving from local to distributed transaction design, it is
natural for the designer to continue to think of the system 1in
terms of central control of execution., The physical end-user can
only be at one site, so there is a central source of database
commands. The role of the coordinator and participants in
Two-Phase Commit 1looks very much like a master-slave
relationship. ‘

We believe now that a more accurate intuition about distributed
transactions is that they are composed of cooperating processes.
The fundamental reason for this is that exceptional events can
occur out in the boondocks which require the cohorts to take
action on their own. To the extent they can. do so, the whole
system is more robust, In this paper we have already seen an
example of one such event, failure of the coordinator site.
Under the optimization we have used, the cohorts each take charge
of attempting to resolve their part of the transaction., Other
examples are the -various system errors that can occur
asynchronously, including transaction timeout,

©.2: Desirable IPC

The factors discussed above carry implications for the underlying
communications - mechanism, In keeping with our original
philosophy of "extending" the master process to remote sites
where it acquires a slave process, our Communications Manager was
based on the network primitive of remote procedure call., We
would now prefer to use high-level network primitives composing
an IPC that facilitates peer-peer communication, The ideal IPC
for our purposes is sufficiently high-level that all details
about the physical nature of the network, such as virtual circuit
reset, are masked., It includes the following primitives:

GET_NODE_NAME (OBJECT, NODE_NAME)

For OBJECT which - is known to the naming server (file system),
return the NODE_NAME ‘at which it is £found. NODE_NAME is also
known to the network and the IPC., This primitive is used by the
Data Manager to determine the 1location of data files in the

91

network.

Strictly speaking, this primitive is not part of an IPC at all.
It is included as a reminder that the IPC must be designed to
work in cooperation with the global naming server,

CREATE PROCESS (NODE, PROCESS_NETWORK_ADDRESS, ERR:_STAT)

Create a complete process on machine NODE and return the process’
"network address," which uniquely identifies the process
throughout the network. Anybody who knows the process' network
address can’ send messages to it without further ado in the same
way that anybody who knows your street address can send you a
letter. This address 1is an attribute of the process and is
available to the network and the 0S5 in the process control block,
Some of the possible error returns are "No more processes
available at NODE," "NODE is unavailable on the network." This
primitive is used by the master to create cohorts,

TERMINATE_PROCESS (PROCESS_NETWORK_ADDRESS, ERR_STAT)

TERMINATE PROCESS tells the recipient to do all necessary
clean-up and 1log itself out. - There must be an error return
whereby the recipient can indicate that it cannot "terminate and
why. Although from the IPC user's point of view TERMINATE could
just as well be done via SEND 1like any other message it is
probably easier for the network and O0OS to handle it as an
explicit primitive, since its consequences are major, This
primitive is used by the master to log out the cohorts.,

SEND (PROCESS_NETWORK_ADDRESS, BUFFER, ERR_STAT)

SEND can handle any message of arbitrary length which is placed
in its buffer. The semantics of the message must be determined
by the recipient. Typical messages are "Execute this procedure"”,
"Here's your data record," and "I heard a Commit." The options
on SEND should reflect the underlying network in a useful way.
For example, in our network it is possible to specify whether you
wish to wait for your message to leave your machine before
proceeding, thus giving an extra degree of confirmation, This
should appear as an option on SEND. If the network provides a
high priority message type for network users (as opposed to the
network itself) this should be an option. Possible error is
"Addressee does not exist."

RECEIVE (SYNCH/ASYNCH, BUFFER, PROCESS_NETWORK_ADDRESS, ERR.STAT)

In executing this primitive, the SYNCH option is the wusual case
of procedure execution where the procedure does not return until
a message arrives in BUFFER. The ASYNCH option allows immediate
return from the procedure. The network will put the message in
BUFFER when it arrives, and it is up to the IPC user to poll the
buffer to determine that event, A value for

92

PROCESS: NETWORK_ADDRESS as an input argument is optional. When
given a value on input it means that the only message which
should be placed in BUFFER is a message from that process, aAll
other messages are to be treated as unexpected (see below). A
null value on input means receive from any process, Its value on
output is the network address of the process which sent the
message currently in BUFFER, The network can determine the
identity of the sender from its process control block and package
it with the message transparently to the sender,

BROADCAST (LIST_OF_PROCESS._ NETWORK_ADDRESSES, BUFFER, ERR_STAT)

There are several points in the Two-Phase Commit protocol where
the same message is sent to all cohorts at the same time. While
the functionality of BROADCAST can easily be built by the 1IPC
user out of SEND, BROADCAST should be included as a primitive if
the underlying network has such a facility (as does ours).

SEND_SIGNAL (PROCESS;NETWORK_ADDRESS, BUFFER, ERR_STAT)
RECEIVE_SIGNAL (PROCEDURE_NAME, BUFFER, SENDER_PNA)

The IPC must handle unsolicited messages, some of which are user
interrupts. "Unsolicited messages" are those which are not
expected by the recipient, who may not have been in previous:
communication with the sender. This is where the concept of a
process' network address becomes so useful, since Process A can
send a message to Process B even if B is unaware of A's
existence, as long as A knows B's network address. An example of
this situation is WOUND, where A wishes to wound B. Other
examples are cohort recovery from failure of the master site, and
the reporting of unexpected errors such as timeout., The other
aspect of the unsolicited message is that it 1is necessary to
interrupt or awaken the recipient in order to direct it to
examine the messsage. The IPC at the receiver site can do this
by signaling the recipient. This could probably be implemented
as a system-defined condition and handled by the recipient via a
PL/I-style on-unit.

It is also possible that the recipient does not have a receive
outstanding, in which case there is no buffer available to the
network in which to place the message. For this reason the IPC
has to implement a simple buffering mechanism, although it is
likely that if IPC users abuse this facility by failing to use
RECEIVE_SIGNAL or disabling the signal for long periods,
.performance will suffer significantly.

SEND_SIGNAL directs the 1IPC to deliver the message in BUFFER to
PROCESS_NETWORK_ADDRESS and to send a signal to that process, If
the recipient does not have a RECEIVE or RECEIVE_SIGNAL
outstanding, the signal will be trapped by the system default
on-unit which will handle it as a user error and dump the message
from the IPC buffer to the user error file, RECEIVE_SIGNAL tells
the IPC that if a message arrives, put it in BUFFER and raise the

93

predefined signal, which will cause the recipient to Jjump to
procedure PROCEDURE_NAME, The receiver must also be able to turn
off the signal while in critical code, during which time incoming
messages are buffered by the 1IPC. When the receiver turns
signaling back on, the signal should be raised once . per message
as the receiver drains them from the IPC buffer,

7 CONCLUSION

Many services familiar in the context of a single-machine
environment change character in the context of a distributed
processing environment, In this paper we have examined such a
service, distributed transactions, and its implications for
another basic service, inter-process communication, We believe
this exploration helps to lay the groundwork for the development
of a high—-quality distributed DBMS.

8 ACKNOWLEDGEMENTS

I am grateful to Gordon D. McLean, Jr., for critically reviewing
a draft of this paper, and for his many insights into concurrency
control while a colleague at Prime, _Marguerite McGuire supplied
valuable comments on the PAD algorithm, This design was refined
and implemented by Bob Gray, Kriss Kellermann, Marguerite
McGuire, Jeannie Nakano, and Howard Spilke.

REFERENCES

[BAYES80O] Bayer, R., Elhardt, K., Heller, H., and Reiser, A.,
: "Distributed Concurrency Control in Database Systems,"
in Proc, 6th Int. Conf. Very Large Data Bases, Oct.

1980.

[BERN81] Bernstein, P, A., and Goodman, N., "Concurrency Control
in Distributed Database Systems," ACM Computing: Surveys,
June 1981. : '

[ESWA76] Eswaran, K. P.,, Gray, J. N., Lorie, R, A,., and
Traiger, I. L., "The notions of consistency and
predicate locks in a database system," Communications
ACM,, Nov. 1976.

[GORD79] Gordon, R, L., Farr, W. W., and Levine, P., "Ringnet:
A Packet Switched Local Network with Decentralized
Control," Computer_ _Networks, Vol. 3, No. 6, Dec.
1979.

[GRAY78] Gray, J. N,., "Notes on database operating systems," in
Operating __Systems: __An_ _Advanced _Course, vol,. 60,
Lecture_ Notes: in. Computer:- Science, Springer-Verlag, New
York, 1978.

[HANS79] Hansen, W. J., "Progressive Acyclic Digraphs--A Tool
for Database Integrity," <Communications _ACM, Sept.

[LAMP76]

[ROSE78]

94

1979.

Lampson, B., and Sturgis, H., "Crash recovery 1in a
distributed data storage system," Tech. Rep., Computer
Science Lab., Xerox Palo Alto -‘Research Center, Palo
Alto, Calif. 1976.

Rosenkrantz, D, J., Stearns, R, E., and Lewis, P. M.,
"System level concurrency control for distributed
database systems," ACM. Transactions:on Database Systems,
June 1978, ’

95

Mutual Consistency of Copies of Files based on Request Characteristics

Gautam Barua

Department of Computer Science
University of California
Santa Barbara, CA 93106

ABSTRACT

An algorithm to maintain mutual consistency of copies of a file in
a distributed file system is presented. The number of up-to-date copies
of a file varies according to the characteristics of the requests. When
an update takes place, there is one such copy. As other nodes read, the
number of copies grow till it again shrinks to one when another update
takes place. An outline of a proof that the algorithm ensures mutual
consistency and that there is no starvation of requests is presented.
An informal discussion of the performance of the scheme 1is also
presented. ' s

Keywords and Phrases: distributed file systems, distributed data bases,
concurrency control, mutual consistency.

1. Introduction

In recent years many algorithms have been proposed that enable con-
current reading and updating of a distributed data base to take place
correctly. Typically, in a distributed data base (DDB) the data is com-
posed of a number of entities that are placed in sites that are distri-
buted geographically., In addition, to improve the read response times,
some (or all) entities are replicated and distributed over the sites, An
entity is the smallest data unit that can be "locked” for exclusive use.
The read/update control algorithm (the Concurrency Control algorithm)
has to ensure that two types of Consistencies are met during operation:

i) all the copies of an entity contain the same information (this is
the problem of ensuring Mutual Consistency).

ii) the data base as a whole has "consistent” data (variously reférré&
to as the problem of ensuring consistency or external consistency
) . | .

If the data base is fully replicated at each site, then only mutual

This research was supported in part under NSF Grant MCS80-04257.

96

consistency is of concern (consistency of data within a site still " has
to be ensured, but it is now a problem of a centralized data base and
ways of achieving this can be found in [PAPA]).

A survey of most of the algorithms proposed for concurrency control
can be found in [KOHL] and {WILM}. [WILM] attempts a classification and
a comparison of a few representative algorithms., The terms introduced
above are explained in more detail in [KOHL]. The series of articles on
the concurrency control method used in SDD-1, a DDB, is another wuseful
source ([BERN]). General notions on consistency and concurrency control
in a centralized data base can be found in [ESWA]l and [PAPA].

In this paper we propose a concurrency control algorithm to ensure
mutual consistency in a distributed file system (DFS). A DDB can be
viewed as a DFS where the entities are files, However, the algorithm
described in this paper incurs a space overhead that may be deemed unac-
ceptable in a DDB if the size of entities is small. In any case, in all
DDBs proposed, the number of copies of an entity is assumed to be con-
stant and are in fixed places. When an update to an entity occurs, all
the copies of the entity are updated. We propose a scheme where the
number of up—to—date copies of a file varies according to the charac-
teristics of the requests to the file. In the general case (see [BAR2]),
the number of copies (up—to—date or otherwise) can vary, but for the
purpose of this paper we assume that a fixed number of copies of every
file exists at predetermined sites.

In the sections to follow, the above idea is presented in greater
detail, an algorithm to ensure mutual consistency of files is presented,
a proof of correctness of the algorithm is outlined and an informal dis—
cussion of the performance of the algorithm is presented.

2. The Environment,

‘There are M computer systems (to be referred to as nodes from here
on) interconnected in some fashion by a communication network. Each node
has secondary storage units attached to it along with other devices.
Operating systems running on each node are independent of one another
except that they share a common file system, Files private to a node are
accessed in the usual way. Access to files that are shared by more than
one node have to be made via the algorithm to be described below. At
any instant of time, only a subset of the M nodes may be sharing a par-
ticular file. Thus, the directory structure maintained at a mnode will
point to private files and to files that the node is currently sharing
with others. We are not going into the details of the directory struc—
ture in this paper. It is possible that a request for a file originates
at a node where no copy of the file is present. The node may mnot even
know where a copy of the file exists. In such a case, the node obtains a
copy of the file by searching the network. Details of this procedure is
discussed elsewhere ([BAR2]). For simplicity of exposition we assume
here that requests for a file originate only in those nodes that have a
copy of the file.

97

A transaction ([PAPA]) is a read or an update of a single file,
All transactions are processed at the node where the transaction ori-
ginates. Thus a "valid" copy (what makes a copy valid will become clear
later) of a file has to be present in the node before a tramnsaction on
that file can be processed (note that there are no "writes” to files:
only reads and updates (which is a combination of reads and writes)).

No assumptions are made about the interconnection structure other
than that there exists a physical path from every node to every other
node. Thus every node is (logically) connected to every other node.

We make the following assumptions regarding the operation of the
system:

Assumptions

1) There are no failures either of nodes or links (physical intercon-—
nections).

2) All messages from one node to another reach their destination
within a finite amount of time.

3) No messages are lost, either in transit (ensured by 1) and 2)), or
inside a node (due to overflow of queues etc.).

4) Messages sent from node i to node j reach j in the order they were
sent from i.

5) All reads and updates of files take a finite amount of time,

. The Algorithm

Jw

It is a distributed algorithm in that every node in the system fol-
lows the same algorithm. Since the algorithm controls access to one file
, there has to be a separate invocation of the algorithm for each shared
file in the system,

The number of up—to—date copies of a file present in the system
varies with demand. At the end of an update exactly one up—to—date copy
exists: at the node where the update took place. As other nodes read the
file ecach gets an up—to—date copy of the file and the number of such
copies grows until the next update when it again shrinks to ome., At any
moment exactly one node is the "Master”, A file can be updated by a node
only if it is the Master, This idea of a floating Master is the same as
the "migrating primary sites” used in [MINO] to describe a concurrency
control algorithm based on "two-phased locking” wh1ch efficiently takes
care of multiple copies of a file.

For»simplicity of exposition, we assume that when a node mneeds an
up—to—-date copy of a file the whole file is transported across to it.

98

In an implementation, only portions of a file will be transported. This
can be achieved by using "version numbers” on files,

Thevcontrolling program (the controller) is driven by events, The

following events can occur: -

1)
2)

3)

4)
5)

6)

Internal Read Request (IRR).

- Read reqﬁest from node i (RR(i)).

Message "GRANT READ”from node i (GR(i)).‘A copy of the file is sent

- along with this message.
* Internal Update Request (IUR).

‘Update Request from node i (UR(i)).

Message "GO TO EXCLUDED” arrives from node j with the originator of

_the message being node i (EX(i,j)).

7

8)

Message "BECOME MASTER"” arrives along with the queue(Q) of the pre-

‘vious master (BM(Q)). The file is sent along with this message.

Update Complete (UC),

The controller in each node has the following variables to control

access to the file:

SUBSTATE: SUBSTATE e {CURRENT, PENDING,EXCLUDED}

CURRENT: A valid copy‘of the file exists in the node.

PENDING: The node is waiting for a reply to an
update/read it sent out or it is the Master servicing an
internal update request. '

EXCLUDED: The node does not have a valid copy and there
are no pending requests,

"FATHER ; Contains the name of another node in the network, All requests

that cannot be locally processed are sent to the node pointed
to by FATHER, It is not used if the node is in substate PEND-
ING or is the 'MASTER'.

MASTER: MASTER ¢ {TRUE,FALSE}

SONS:

At most one node can be the MASTER at any point in time. A
node can process an update only if it is the Master,

A list of "sons” in the present configuration, It is meaning—
ful only when the node is in substate CURRENT,

99

QUEUE: A queue of pending requests.
THIS: Number of this node. Each node has a unique number,

The structure of the processes in a node is shown in Figure 1. We
present below the algorithm followed by the controller, It waits for an
event to occur. When one does, the action taken depends on the event and
the substate of the node. After the response to the event is complete,
the queue in the controller is examined if the current substate is not
PENDING. If it is not empty, the top element in the queue is made the
next event. If it is empty (or the current substate is PENDING), a "pro—
cessing complete” signal is sent to the event handler and the controller
waits for the next event to occur., The event handler, on receiving the
above signal sends the mnext event present in its buffer. Thus events
arrive from the event handler and also from within the controller.

Internal Requests

Event Events
Handler >
Event Queuel Controller
Processing
‘ .
Complete
Incoming Message
Messages Outputter
—
Y
Network

Figure 1 Structure of processes controlling access
to a file in a node,

100

Algorithm I

Begin Program
Loop Forever
Wait(Event);
Case SUBSTATE:
SUBSTATE = CURRENT:
Case Event:

IRR
Service the request (Read); {see note 1 belowl
RR(i) .
Send message "Grant read” (GR(THIS)) to node i;
Add i to SONS;
IUR
Send message "Go to Excluded” (EX(THIS,THIS))
to all SONS;
SUBSTATE := PENDING;
If MASTER = true then
Service the request (update);
Else
Send request to FATHER (UR(THIS));
Insert request into QUEUE;
Endif
UR(i)

If MASTER = true then
Copy all "internal” requests in QUEUE
into TEMPQ; {a temporary queue}
Delete all these requests except the
first from QUEUE;
Send message "Become Master” (BM(QUEUE)) to i;
QUEUE := TEMPQ;
MASTER := false;
If QUEUE = empty then
SUBSTATE := EXCLUDED;
FATHER := i;
Else
SUBSTATE := PENDING;
Endif
If there is an update request in QUEUE then
{it must be an internal request}
Send EX(THIS,THIS) to all SONS;
Else
Send EX(i,THIS) to all SONS;
Endif { for efficiency; see mnote 2 below}
Else {MASTER = false}
SUBSTATE := EXCLUDED;
Transmit request to FATHER;
FATHER := i;
Send EX(i,THIS) to all SONS;

101

Endif
EX(i.J') H
: If FATHER # j or MASTER = true then
Ignore;
Else ‘
SUBSTATE := EXCLUDED;
FATHER := i;
Send EX(i,THIS) to all SONS;
Endif
Endcase

SUBSTATE = PENDING
.Case Event:

IRR
RR(i)
IUR
UR(1i)
Insert request into QUEUE;
{see note 4 below)
GR(i)
FATHER := i;
SUBSTATE := CURRENT;
SONS := empty;
EX(i,j):
Ignore;
BM(Q)
MASTER := true;
Merge Q into QUEUE by "timestamp” order;
{see notes 3 and 5 below]
SUBSTATE := CURRENT;
SONS := empty;
ucC
SUBSTATE := CURRENT;
SONS := empty;
Endcase

SUBSTATE = EXCLUDED

Case Event:

IRR
Transmit request (RR(THIS)) to FATHER;
Insert request into QUEUE;
SUBSTATE := PENDING;
RR(i)
Transmit request to FATHER;
IUR :
SUBSTATE := PENDING;
Insert request into QUEUE;
Send UR(THIS) to FATHER;
UR(i)

Transmit request to FATHER;

102

FATHER := i;
EX(inj)3
Ignore;
Endcase
Endcase
{termination)

If QUEUE not empty and SUBSTATE # PENDING then:
Make "top” of QUEUE the next event.
Remove "top” of QUEUE;

Else -
Send signal "processing complete’ to Event Handler;

Endif < .

Endloop

Endprogram

Notes

1)

2)

3)

4)

A request is serviced by waking up the relevant process waiting for
the request to be granted. For a read request it is assumed that a
copy of the file is made available to the process since the file
itself may be updated by other requests while this request is still
being serviced (if this is. not feasible, then the controller
should wait for the request to be complete before continuing pro-
cessing as is done for updates). :

If there is an update request in QUEUE then this node will become
Master again "soon” so it is more efficient for nodes going into
substate EXCLUDED to send their forthcoming requests to this mnode
rather than to the new Master (and hence EX(THIS, THIS) rather than
EX(i,THIS)).

To ensure fairness, each request has associated with it a "times—
tamp”. A timestamp is generated by appending the number of the node
where the request originates as the lower order bits to the current
value of the local clock. To ensure that all timestamps are unique,
we only require that the local clock be incremented at 1least once
between two wuses of it. See [LAMP] for more details on timestamps
and ways of keeping the local clocks synchronised. The timestamp is
generated at the time the request is submitted.

The insertion is dome at a place such that the requests in QUEUE
are in increasing timestamp order. However a request cannot be
inserted at the top of QUEUE since the mnode will already have
responded to the request at the top of QUEUE by sending out a mes-
sage and the reply to this message must see the same request at the
top of QUEUE for correct operation. So at any time the elements in
QUEUE are in timestamp order except possibly for the request at the
top of QUEUE.

103

5) When merging two queues by timestamp order, the top request in
QUEUE must not be disturbed since the event in question (Become
Master) is in response to this request. The situation is similar to
that discussed in note 4 above.

6) In the algorithm as presented above, if the actions for an event
are not specified for. some substate then the occurrence of that
event when the node is in that substate 'is . an error condition.
Thus, for example, the occurrence of the event GR(1) when the sub-
state is CURRENT is an error condition.

7) When a node sends a particular.message to "all sons” in response to
a message from one of its sons it is assumed that it does not send
the message to that particular son,

4. An Example

The way the above algorithm works can best be illustrated by an
example, Consider the sequence of Figures 2(a) to 2(g). They depict the
state of a typical system as time progresses starting with the state
shown in Figure 2(a).

In the Figures, each node is labelled on the outside by a number
(1,2,3,.. etc) which is the identifier of the node. The label inside a
node, C(current), E (excluded), P (pending) specifies the substate of
the particular node. A solid, directed edge points to the "Father” of a
particular node. A dashed edge from i to j labelled B indicates that
message B, sent from i, is in the communication network on its way to j.
If a node has a second label "M” on the inside, then that node is the
Master, ‘

v In Figure 2(a) néde 5 is the Master and nodes 1,2,3,5,6,7 and 8
have valid copies of the file and are hence in substate CURRENT. Node 4
is in EXCLUDED substate.

Update requests originate simultaneously at nodes 1 and 8, Both the
nodes go into substate PENDING and send the messages UR(1) and UR(8)
respectively to their Fathers. Node 8 has Sons, so it "asks” them to go
to substate EXCLUDED (message EX(8,8) is sent to both 6 and 7).

After some time the state depicted in Figure 2(b) is reached. By
this time 3 has received UR(1) and in response to it has transmitted it
to 5, has gone into substate EXCLUDED and has sent EX(1 3) to mnode 2.
UR(8) has not yet reached 5. :

UR(8) then reaches 5, Node 5§, on receiving it, goes into substate
EXCLUDED, relinquishes the Master tokem and "asks" node 8 to become the
Master (via message BM(QUEUES), note that QUEUE; is empty). The situa-—
tion at this point is depictéd in Figure 2(c¢). ihe Figure also indicates
that EX(1,3) has by now reached 2 wh1ch goes into substate EXCLUDED and
makes 1 its Father in response.

104

(a)
4
5
b
3 - URQ)
(b)
:C - Current
P - Pending
E - Excluded
M - Master

Figure 2 An Example

105

Figure 2

(d)

(contd)

106

(£)

Figure 2 (contd)

107

(g)

Figure 2 (contd)

108

UR(1) then reaches 5 which merely transmits it to 8. Meanwhile,
node 8 receives BM(QUEUE_), becomes the Master, does the update it was
waiting on and goes into substate CURRENT. As this is going omn, read
requests originate in nodes 3 and 7. These nodes go into substate PEND-
ING and send the messages RR(3) and RR(7) respectively to their Fathers,
The situation at this point is shown in Figure 2(d).

RR(3) and RR(7) reach their destinations, On receiving RR(7), mnode
8 sends a copy of the file and a grant read (GR(8)) message to 7 which
on receiving them goes into substate CURRENT and services the pending
read request., When node RR(3) reaches node 1, the request is put into
the queue in 1 (into QUEUEl). Figure 2(e) illustrates this state, The
queue at node 1 is drawn next to the node (strictly speaking, the queues
at each pending node should be shown. However to avoid cluttering up the
Figures, only queues with more than one entry are shown),

UR(1) finally reaches 8. Node 8 relinquishes the Master token in
favour of 1, goes into substate EXCLUDED and asks its only son, node 7
to do likewise. Node 1, on receiving the "Become Master"” message, ~ser—
vices the pending update request and goes into substate CURRENT. It then
finds RR(3) in its queue. So a valid copy of the file and a grant read
message is sent to 3. The state at this point is shown in Figure 2(f).

When node 1 receives the grant read message, it services the pend-
ing read request, goes into substate CURRENT and we reach the state
shown in Figure 2(g). : : ‘

The above example has not been able to capture all the aspects of
the algorithm. It only illustrates the salient features.

5. Proof of Correctness

We need to prove that the algorithm is correct with respect to the
following properties:

1) Mutual Exclusion of updates is achieved.
2) There is no starvation of any requests.

The formal proofs will not be presented here. The interested reader
should refer to [BAR1]l. We present only the outlines here,

Mutual Exclusion

Update requests can be serviced at a node only if the node is the
Master. Within a node, updates are serviced sequentially since a node
goes into substate PENDING when an update begins and does mnot service
any other request while this update is going on. Thus to prove 1), we
need to prove that more than one mnode cannot be the Master at any
instant, This is done by a simple case analysis.

109

While a node is updating a file another node could be reading the
same. file, A read need not therefore be of the most up—to—date copy of
a file, Every node with a valid copy will however be informed ultimately
of any wupdate to the file. Thus the algorithm guarantees weak mutual
consistency of the copies of a file.

Starvation

Consider an update request emanating from node i (UR(i)). If node i
is the Master and in substate CURRENT, UR(i) gets service immediately
according to the algorithm,.

Now suppose i is not the Master and is in substate CURRENT or
EXCLUDED. UR(i) is sent to the node pointed to by the variable FATHER,
node i goes into substate PENDING and UR(i) is also placed at the top of
QUEUE in i. We prove that in such a case UR(i) reaches a node other than
i which, at that time, is in substate PENDING or is the Master, after a
finite amount of time.

From the example presented above it should be clear that the
"state” of the system at any instant corresponds to a forest with the
roots of the constituent trees being nodes in substate PENDING or the
node that is the Master. We prove by a case analysis that this is indeed
the case. This result is then wused to prove that UR(i) ultimately
reaches a node in substate PENDING or with MASTER=true. If UR(i) reaches
a node which is the Master and in substate CURRENT at that moment it
gets service via a "Become Master” message that is sent to node i. Oth-
erwise UR(i) is placed in QUEUE of some node j. At this point UR(i) will
be in two queues: the one at the node of origin (i, in this case) and
the one it has just been placed into (j).

If UR(i) had emanated from a node which was at that time in sub-
state PENDING it would have been placed in QUEUE at i.

In any case UR(i) either gets service or is placed in QUEUE of some
node j that is in substate PENDING.

So we prove that once an update request is placed in QUEUE of some
node, it gets service within a finite amount of time. A distance measure
is defined, The following example shows what this is: UR(i) is distance
two if, UR(i) is in QUEUE of node j, node j is in substate PENDING, the
request at the top of QUEUE in j is an update request from j itself
which is also in QUEUE in node k and node k is the Master. A node gets
service when its distance is zero. An induction on the distance of a
request 1is used to prove that it gets service within a finite amount of
time, The key to the proof is that requests are inserted into a queue by
timestamp order and so at most a finite number of requests can "over-
take” a particular request in a queue.

That read requests are not starved out can be shown similarly.

110

6. Pexformance Evaluation

N nodes use a file over a certain period of time (NKM, the total
number of mnodes). Now, because of the nature of the algorithm, at any
point in time only n nodes have a valid copy of the file (n { N). If an
update request originates in one of these nodes, every other mnode with a
valid copy has to be informed and the Master has to send a grant message
to the node (if the node is not already the Master). Thus n or n—1 mes-—
sages have to be sent to complete an update. If on the other hand, a
node without a valid copy wishes to update, more than n messages may be
required. But in either case, at most N messages will be required. How-
ever, the price being paid is that read requests will also mneed to send
messages if a valid copy is not present at the node where the request
originates (contrast this with a scheme in which all nodes have a copy:
reads are for "free" but updates are more "expensive”). Secondly, the
read and update response times depends on the configuration. The read
response time depends on the distance a node is from a node with a valid
copy while the wupdate response time depends on the distance of a node
from the current Master,

The appeal of the algorithm lies in the fact that the configuration
is dynamic. This implies that it is not totally dependent on some static
characteristics of requests (one typically made in DDBs is that reads
predominate writes), but can react to transients fairly adequately.
Thus, for example, if within a certain period of time say 3 particular
nodes do a series of updates while the other nodes are dormant, only
these 3 nodes will participate in the operation, greatly improving per-
formance over a strategy where every update has to be posted at all
nodes, Thus, while the mean characteristic of the requests (where the
requests originate, percentage of reads over updates) will affect the
mean performance, the algorithm does not degrade from this behaviour
when variations from this mean take place, So in environments where
there is considerable fluctuation in the request characteristics over
time, the algorithm becomes particularly attractive,

In order to get a quantitative measure of the performance, the sys-—
tem has been modelled as a Markov Chain and various performance measures
have been obtained. The details of the analysis can be found in [BAR2].
Only the main results are presented here.

Let there be N nodes with a copy of a given file. We assume that
requests are uniformly distributed over these N nodes and that the
request arrival process is Poisson. Every request is a read request with
probability p and an update request with probability q (g=1-p), indepen—
dent of other requests.

If all N copies are kept up—to—date (we shall refér to any scheme.

that does this as an N-copy scheme), the number of messages required to
service an update request is a standard performance measure. In Algo-

rithm I, messages may have to be sent to service a read request also and

so we define the read cycle cost as a performance measure, This is the

111

number of messages that are sent by all nodes between two successive
updates to the file., Note that the read cycle cost is the same as the
cost to service an.update in any N-copy scheme.

The second performance measure is the response time of a request in
the absence of any other conflicting requests to the same file. Let R be
the mean read response time and U the mean update response time., Then
the mean response time T is obtained as

T = pﬁ + dﬁ

It is assumed that it takes one time unit for a message to travel from
one node to another and that all computations take time zero. ‘

The read cycle cost is plotted against p for different values of N
in Figure 3. The response time is. plotted against p for different N in
Figure 4., Also plotted in both these Figures are the corresponding quan-
tities for Ellis’ ring algorithm ([ELLI]), an algorithm that implements
the N-copy scheme. The read cycle cost of this algorithm is 2N and the
read response time is zero, while the update response time is taken to
be N. All these quantities are independent of p for this algorithm, As
the Figures indicate,' only for high values of p is the performance of
Algorithm I inferior to Ellis’ algorithm. This checks with the intuition
that it 1is better to update all N copies at the same time if it is
likely that all N nodes will read the file before the mnext update (a
high value of p makes this probable). It can be proved that the worst
case mean read cycle cost for Algorithm I is 3N-2. This shows that even
if the assumptions made about the input are not valid, the degradation
in performance of the algorithm will not be great.

The above analysis does not include the cost incurred due to relia—
bility considerations. If they are, the update response time of Ellis’
algorithm will be 2N. If one were to use a centralized controller to
maintain the mutual consistency of the N copies of a file, the read
cycle cost will be 3N-2 and the update response time 4, The high read
cycle cost is due to the need for using a two phase commit procedure
(see [GRAY]) while posting an update at all the N nodes. Algorithm I has
to be modified since it is possible that only one node has the up-to-—
date copy at a particular time, But reliability considerations do mnot
require that N copies be maintained up—to—date at all times, If three
copies are to be up—to—date at all times then the read cycle cost for
the modified form of Algorithm I will increase by about 4. This is
because the two phase commit procedure has to be invoked with respect to
only 2 nodes instead of N-1 nodes in the centralized case. The read
response time of Algorithm I will improve because of this change but the
update response time will degrade because of the need to wait for an
update to be posted.at sites other than the site where the update ori-
ginated. It was not possible to model the scheme with the reliability
features added in and so the above remarks are qualitative in mnature,
Comparing the above figures with those indicated by Figures 3 and 4, we
can conclude that the comparison of Algorithm I with N-copy schemes

112

Algorithm I
~~~~~~ — Ellis's Algorithm

75 T 1 I T

0.2 0.4 0.6 0.8 1.0

Figure 3 Mean cost per cycle (C) versus the probability
of a read (p) for different N, the number of
nodes



113

Algorithm I
~~~~~~ Ellis's Algorithm

Figure 4 = Mean response time (T) versus p, the probabil-
ity of a read, for different N, the number of
nodes

114

becomes even more favourable when the schemes “have to incorporate
features to aid in failure recovery. '

1. Conclusion

We have presented an algorithm for maintaining mutual consistency
of multiple copies of a file in a distributed system. The algorithm
keeps a variable number of up—to—date copies of a file with the number
of such copies varying with the variation in the type and origin of
requests in the system, We have proved that the algorithm guarantees
mutual consistency and avoids starvation, :

The scheme has been modelled and a fairly extensive analysis has
shown that it compares favourably with other algorithms over a large
range of request characteristics. ‘

The algorithm has been extended to enable a mnode that wishes to
access a file for the first time to do so and for a node that no longer
wishes to maintain a copy to drop out. These —aspects become important
when a node has to -destroy a copy of a file because of secondary storage
space limitations, o

The algorithm presented in this paper only guarantees mutual con-
sistency of the copies of a file, It has been extended to service
requests that have "tickets” assigned to them., Using a ticket allocation
scheme (for example see [LELA]) along with this extended algorithm will
then enable multi—file transactions to be serviced correctly. Ome of the
prime criterion in this design is to allow single file transactioms to
access a file using just Algorithm I even in the presence of multi-file
transactions, In an environment where most transactions are of the sin—
gle file type, the efficiency of the concurrency control scheme will
then be good. Finally, reliability aspects of these algorithms have
been studied. The reader is referred to [BAR2] for details.

Acknowledgement

The author would like to thank his advisor, Professor John Bruno,
for his valuable guidance. :

References

[BAR1] Barua, G., A Demand Based Algorithm to maintain Mutual Con-
') sistency in a Distributed File System, Technical Report,
Department of Computer Science, UCSB, May 1981.

[BAR2] .Barua, G., Demand Based Concurrency Control in 'Distributed
Systems, Ph.D Thesis, Dept. of Computer Science, UCSB, Sep—
tember 1981. o

[BERN]

[ESWA]

[GRAY] .

[KOHL]

[LAMP]

[LELA]

[MINO]

[PAPA]

[WILM]

115

Bernstein, P. A,, D. W, Shipman and J. B. Rothnie, Concurrency
Control in a System for Distributed Databases (SDD-1), ACM
Transactions on Database Systems, Vol., 5, No. 1, Mar. 1980.

Eswaran, K. P., J. N. Gray, R. A. Lorie and I. L. Traiger, The
Notions of Consistency and Predicate Locks in a Database Sys—
tem, CACM, Vol, 19, No. 11, Nov. 1976,

Gray, J. N., Notes on Data Base Operating Systems, Operating
Systems: An Advanced Course, Springer—Verlag, Berlin, 1978,

Kohler, W. H., A Survey of Techniques for Synchronization and
Recovery in Decentra11zed Computer Systems, ACM Computing Sur-
veys, Vol., 13, No. 2, June 1981,

Lamport,L., Time, Clocks and the Ordering of Events in a Dis-
tributed System, CACM, Vol, 21, No, 7, July 1978.

Lelann, G., Algorithms for Distributed Data—-sharing Systems
which wuse Tickets, 3rd Berkeley Workshop on Distributed Data
Management and Computer Networks, Aug. 1978.

Minoura,T., A New Concurrency Control Algorithm for Distri-
buted Database Systems, 4th Berkeley Conference on Distributed
Data Management and Computer Networks, Aug. 1979,

Papadimitriou, C. H., The Serializability of Concurrent Data-
base Updates, JACM, Vol. 26, No. 4, Oct. 1979.

Wilms, P,, Qualitative and Quantitative Comfarison of Update
Algorithms in Distributed Databases, Distributed Databases,
ed. Delobel and Litwin, North Holland, 1980.

117

ON THE USE OF OPTIMISTIC METHIODS FOR CONCURRENCY CONTROL
IN DISTRIBUTED DATABASES

Stefano Ceri Susan Owicki

Istituto di Elettrotecnica ed Elettronica Computer Systems Laboratory
Politecnico di Milano Department of Electrical Engineering
Piazza L. da Vinci, 32 Stanford University

1-20133 Milano - Italy Stanford Ca 94305

Abstract

Optimistic concurrency control methods are based on the assumption that, in most
real-life applications, conflicts between transactions are unlikely. To exploit this,
transactions are allowed to execute freely, without the overhead of complex
consistency- pleselving mechanisms. However, transactions are validated before
making their actions visible to other processes, and they are bacxed up whenever
their actions would lead to inconsistency.

In this paper, one of the optimistic concurrency control methods presented by Kung
and Robinson for single-site systems provides the framework for the development of
a concurrency control method for distributed databases. Distributed transactions
have to satisfy the requirements imposed by the local concurrency control systems,
and also (o respect global consisiency requirements. In particular, the notion of
global serializability is introdnced, and an algorithm which guarantees the global
serializability of distributed transactions is presented.

The work of Susan OWicki was partially supported by the Defense Advanced Research
Project Agency under contract MDA903-79-C-0680.

118

1. Introduction

In this paper, we extend to a distributed database the Optimistic Concurrency
Control methods for a single-site system presented by Kung and Robinson [9]. The
approach is to assume that each node of the distributed database can use a local
optimistic concurrency control algorithm and check for local consistency of
transactions; local mechanisms are modified in order to ensure the global consistency
of distributed transactions.

The main principie underlying optimistic concurrency control is the following:
instead of ensuring the consistency of transactions a priori, using algorithms based on
locking or time-stamp mechanisms, transactions are allowed to execute freely;
however, a consistency check of the transaction execution (also called vall’dazion) is
performed before making the effects of the transaction "visible" to other
transactions; if a non-consistent execution is detected, then the transaction is backed-
up and restarted

Kung and Robinson [9] and Badal [2] give arguments that support the optimistic
approach. In particular, they note that in many real-life applications the probability
of conflicts between transactions is very low, and therefore the overhead due to
backups of conflicting transactions is largely offset by avoiding more complex
consistency-preserving mechanisms. In this paper, another assumption is made
which justifies the use of optimistic methods in distributed databases, namely that
most of the transactions in the distributed system are local to oiie site, and also that
most of distributed transactions involve a limited number of sites. Thererefore the
one-site optimistic control algorithm will be adequate for most transactions, and only
in a limited number of cases will it be necessqry to use the (rather heavy) global
validation mechanism.

The paper is organized as follows. In Section 2, the optimistic approach described in
[9] is reviewed; in Seciion 3, distributed transactions are described, and consistency
criteria for distributed transactions are discussed. In particular, the notion of global
serializability as an additional consistency. requirement for distributed transactions is
introduced. Section 4 describes an algorithm and a validation technique which
provide the global serializability of distributed transactions; the method is derived
from the parallel validation method of [9] Finally, in Section 5 the correctness of the
algorithm is proved and the applo"tch is compared with other techniques presented
in the literature.

2. The optimistic approach

2.1 Fundamentals

A distributed data base is a collection of named data objects, distributed over N
different sites of a computer network. Any transaction consists of three phases: a read
phase, a validation phase and a possible write phase. During the read phase, ali writes
take place on copies of the objects; during the validation, it is verified that the
changes made by the transaction will not cause a loss of integrity. If the validation

119

succeeds, then the copies are made effectwe in the write phase; otherwise the
transaction is backed up.

The typical p11m1t1ves prov1ded to application programs allow one to create, delete,
read, and write data objects; these primitives are implemented through calls to the
concurrency- control mechamsm operating as follows:

create(o) - addsanew object to the create set CS
write(o,v) ifo € CS or o’ € WS, writes the new value v in it;
otherwise creates a copy o’ of 0, wutes vinit, and 1nserts 0’ in the
- write set WS
recad(o) adds o to the read sct RS; 1f a copy o’ of o exists in WS, the value in
that copy is read, otherwise the value of o 1s read
delete(o) adds o to the delete set DS,

The sets are 1n1t1a117cd to be empty by a begin call, and the validation phase is
requested via an end call; the write phase simply consists of making the writes
effective, by writing the values of copies 0’ € WS into the original objects, deleting
the objects in DS, and deleting the temporary copies in WS.: (It should be remarked
that producing: an output from.a transaction is considered a write action).

2.2 Validation phase

The validation. criteria used in [9] is serial reproducibility [5] or serializability [3,13].
Transactions are considered to consist of two atomic parts: the retrieval of the values
of a set of database objects (the read set), followed by the update of the values of
another set of objects (the write set) [13]. The criteria accepts those concurrent
executions of transactions which are equivalent to some serial execution of the same
transactions. : :

In [9], the criteria is enforced by verifying that the order in which transactions are
actually executed is equivalent to their serial execution in the order in which they
complete the read phase. If one of the following validation conditions holds, then the

actual execution order is eqmvalcnt to one in which Ti completes befme Tj starts
[9,13]: ,

(1) Ti completes-its write phase before Tj starts its read phase.

(2) The write set of Ti does not intersect the read set of Tj, and Ti completes its write
phase before Tj starts its write phase. _

(3) The write set of Ti does not intersect the read set or the write set of Tj and Ti
completes its read phase before Tj completes its read phase.

Note that rules (1-3) are sufficient, but not necessary, conditions for serializability.
To show that they are not necessary, consider rule (2). Let {o} =WSi N RSj in a
schedule having only transactions i and j, and assume that Ti writes o after the
beginning of read actions of Tj but before the actual read of o by Tj. Then the
ahdatlon ffuls even ifa perfectly lcgal sequence: "Ti reads o, Ti writes o, Tj reads o,
Tj writes 0" has occurred.

120

In the following, the control mechanism called parallel validatior in [9] is outlined.
The other mechanism introduced in [9], called serial validation, is unattractive for
distributed databases becauses it forces the validations to be strictly serial. This is too
restrictive for a distributed transaction, in which all the components of -the
transactions on the various sites must "agree" on either commit or abort.

In parallel validation, a global counter tnc is used for the purpose of assigning
transaction numbers. Each transaction Tj reads tnc into Stari-Tj at the beginning of
the read phase (begin call). (Note that the value of tnc is not modified at this point:
assignment of a transaction number for Tj takes place after validation.) At the end
of the read phase (end call) the transaction is validated. Within a first critical section
tnc is read into Finish-Tj and Tj is added to the set AS of transactions which are
active, 1. e. have completed the read phase but have not yet completed the write
phase; Tj also takes a copy ASj of the active set at that time. Then, outside the
critical section, validation of Tj takes place. Potential conflicts between Tj and
transactions Ti with transaction number tn(Ti) such that Start-Tj < tn(Ti) <= Finish-
Tj are checked using rule (2); potential conflicts between Tj and transactions Ti €
AS;j are checked according to tule (3). If the validation succeeds, then the write phase
takes place; finally, within a critical section, Tj is assigned a transaction number and
eliminated from the active set AS. Note that, because of this transaction number
assignment schema, transactions with tn(Ti) <= Start-Tj necessarily satisfy rule (1).

The mechanism strictly enforces the serialization of transactions in the order in which
they enter the active set. In the following, we use the fact that the order in which
transactions enter the active set is the sanie as the serial schedule which is enforced
by each local concurrency control mechanism,

3. A Model of distributed transactions

Transactions are classified as local (single-site) transactions, or global transactions,
which operate on several nodes. A global transaction originates at a master site,
which is in charge of coordinating the actions of the transaction on the other sites. In
particular, the transaction master initiates several sub-transactions which are logically
part of the transaction itself but run on different nodes. Subtransactions run
concurrently, but at the end they commit to the transaction master using a two-phase
commitment schema [8].

With respect to the concurtency model outlined in the previous section, sub-
transactions can still be considered to consist of a read and a write part; hOWLVGl
- each global transaction now consists of multiple pairs of read and write actions, one
at each site where a sub-transaction is activated, including the master site.

Global transactions have to satisfy the following consistency requircments:
(1) Sub-transactions have to be properly synchronized with local transactions on their

execution site, producing local serializable schedules; this is ensured by using the
local concurrency control mechanisms. Let the relation "¢ refer to the serialization

121

order which is enforced by the local concurrency control mechanisms.

(2) There is a global consistency requirement: global transactions should execute in
such a way as to produce a globally serializable schedule. In the following, the notion
of global serializability for this particular transaction environment is discussed.

First, as an example, consider a distributed database consisting of the nodes {1,2},
and two global transactions T1 and T2 each consisting of two sub-transactions. Let
STij indicate the sub-transaction of Ti executed at node j. Finally, let
RS1=RS2=WS1=WS2={x,y}, with x stored at site 1, y stored at site 2.

The notion of precedence between global transactions has to be formulated. A
possible definition of global precedence between T1 and T2 requires that every
action of T'1 precede every action of T2; according to this definition, the following is
a legal schedule:

"T1 reads RS1, T1 writes WS1, T2 reads RS2, T2 writes WS2".

However, this notion of serializability is rather unattractive in practice; it requires a
strict serialization of actions which refer to objects that are not stored at the same
site, and clearly this is a heavy requirement. :

A better definition of global precedence requires that the concurrent execution of T1
and T2 on several sites produces the same effects as the serial execution of T1 and
T2, without actually requiring strict serialization. The formal definition of global
precedence is based on the order of transactions at sites where they contflict,

The definition of conflict between two transactions Ti and Tj executmg at the same
site is given as in [3,13]; it is:

conflic(Ti,T]) « (RSINWSj#d) V (WSINRSj#0) V (WSINWSj=a)

The relation conflict’ takes into account the ordering of T1 and T2 in the local
serialization; it is:

conflict’(Ti, Tj) < conflict(Ti,Tj) A TiKTj

Finally, the relation "«" is the transitive closure of conflict’. Intuitively, T1<<T2
means that execution of T1 preceded and may have affected execution of T2,

Having defined the "<«<" relation between transactions at a single site it is possible to
define a globally serializable execution of the distributed transactions. Let G =<N,E>
represent a directed graph called the global serialization graph, where:

N = { Ti| Ti is a global transaction }
E = {<Ti,Tp» | 3 k € N : STik <« 5Tjk }

G reflects the serializations that are forced at each site by using the local concurrency
control mechanisms; then, the global transactions are globally serializable if the

122

graph is acyclic.

In fact, with an acyclic global serialization graph, the effect is eqqulent to the serial
execution of the transactions in any order conblstent with the "« relation. Note that
the transitive closure of conflict’ is needed in defining G, because the graph includes
only global transactions, but the propagation of the effects of one global transaction
on another can take place through local transactions,

One of the possible globally serializable exccutions of T1 and T2 in the above
example corresponds to the following local schedules at nodes 1 and 2:

"ST11 reads x, ST11 writes X, ST21‘ reads X, ST21 writes x" at site 1;
"ST12 reads y, ST12 writes y, ST22 reads y, ST22 writes y" at site 2.

In this case, we have ST11 << ST21 and ST12 « ST22; the serialization graph has
only an edge from Tl to T2, and is clearly acyclic.

Consider now a case in which the definition is violated. Let two local schedules be :

"ST11 reads x, STI11 writes x, ST21 reads x, ST21 writes x" at site 1;
"ST22 reads y, ST22 writes y, ST12 teads y, ST12 writes y" at site 2.

Here ST11 << ST 21 and ST22 << ST12; the global serialization graph has a cycle, as
there are two opposite edges between T1 and T2. This concurrent execution leads to
evident inconsistency when the constraint x=y holds, and T1 adds 10 to the
{numerical) objects to which is applied, while T2 multlplles by 10 the (numerical)
objects to which is applied. . _

4. An algorithin for global transaction validation

The' algorithm for the validation of global transactions has been designed with the
goal of keeping the activities related to the concurrency control as distributed as
possible. Therefore, algorithms involving the presence of a unique consistency
monitor that receives all information about. the local schedules and checks for
acyclicity of the global serialization graph have not been considered. This general
criterion is motivated by considerations of reliability, efficiency, and site autonomy.

In the proposed algorithm, local transactions are executed under the control of" local
concurrency control systems, with minor modifications. Global transactions are
subjected to a more complex concurrency control mechanism, described in the
following. The term sub-transactions - will refer to local portions of global
transactions, as opposed to local uansacuons Some new features are introduced w1th
respect to [9]:

(1) Transactions are assigned unique transaction identifiers (T1D); this requires the
use of counters at each -node, whose value is incremented for each new transaction;
all the sub-transactions of a particular global transaction receive the same TID from

123

the transaction master, augmented with the master site index in order to preserve
uniquenes of identifiers in the nctwork.

(2) At each local site, a list is maintained of the local transaction or sub-transaction
identifiers in the order in which they enter the active set: it is called the active set list
(ASL). Note that transaction identifiers are recorded on the list in the same order in
which their serialization is enforced; we have STi<STj whenever STi precedes STj in
the list. After the validation of the transactions, the identifiers are either removed
from the list, when the validation fails, or marked as committed, when the validation
succeeds. Active set lists are periodically examined in order to delete from them
those items which are not of interest for validation purposes; as it will become clear
in the following, all identifiers preceding the earliest global transaction which is not
marked are not of interest for the validation.

(3) Each sub-transaction collects into a happened before set HB the TIDs of the global
transactions that have effectively executed before at that site, have influenced its
execution, and have their identifier still recorded in the active set list. The happened
before set is based on the relation "< already introduced. In the evaluation of "<«",
only those local transactions and subtransactions whose TID is recorded in the ASL
are considered; the HB set is then defined as follows:

HB(STih) = { TIDj | Tj is global A Tj € ASL A STjh << STih }.

Local transactions arc validated according to the parallel validation algorithm of [9],
with the only difference that they have to insert their TID in the ASL when the
validation starts and either delete it if the validation fails or mark it if the validation
succeeds. The active set of [9] consists in this case of those transactions whose TID is
stored in the ASL and is not marked. Moreover, the read and write set of the local
transactions have to remain available until their marked identifiers are actually
deleted from the ASL, as they are used for computing the "<«" relation.

The validation of sub-transactions consists of a local and a glohal validation phase.
For the local validation, the parallel validation algorithm of [9] is used. If the
. validation fails, the sub-transaction is backed up and restarted locally, Finally, the
sub-transaction enters the global validation phase, in which global serializability is
checked. In the following, the global validation and commitment of a sub-transaction
STih is described; the validation procedure for sub-transactions is also shown in Fig.
1, as an extension to the end consistency control call of [9].

124

end = (/* validation of STih on node h */
/* local validation, as in [9] */
{Finish-Tn:=tnc;
COPYih= (make a copy of ASL);
{append TID to ASL}>;
FA:=(make a copy of active transactions not marked in COPYih);
valid:=true;
for t from Start-Tn to Finish-Tn do
if (write set of transaction number t intersects read set)
then valid:=false;
for i € FA do _
if (write set of transaction STi intersects read set or write set)
then valid:=false;
if valid then /* global validation phase */

/* build the HB */

HB(STih)={TIDi};

while (no more TID can be added to HB(STih)) do
if 3 j,k | TIDjECOPYih A TIDKEHB(STih) A conflict'(STjh,STkh)
then HB(STih) = HB(STih) U { TIDj }:

(remove TIDi and local transaction identifiers from HB(STih));

/* testing for commitment or abortion of conflicting transactions */
while (3 STjh € HB(STih)) and valid do
if (STjh € ASL and STjh is marked) or (STjh ¢ ASL)
then HB(STih)= HB(STih) - {STjh}
olse (/* time-out and second attempt */
go-to-sTeep(timeout); :
while (3 STjh - € HB(STih)) and valid do ;
if (STjh € ASL and STjh is marked) or (STjh ¢ ASL)
then HB(STih)=HB(STih) - {STjh} oo
else valid := false; ' ' ,

/* two-phase commitment */
if valid then (

sendreply("ready to commit");

if message=commit

then ((write phase);
{tnc:=tnc+l; fn:=tnc;
(mark TID 1in the ASL) >))

else (<ASL:=ASL - TID >g
(backup))

/* failure of global validation */
else (<ASL:=ASL - TID >;
send("abort");
(backup))) /* end global validation phase */

/* failure of local validation */
else (<ASL:=ASL -~ TID >;
(Tocal backup))).

Fig. 1: Extensions to end consistency control call for sub-transactions
with respect to the parallel validation method of [9].
Critical sections are enclosed by symbols "<",'>',
Communications occur between . the master site and site j; when
the primitive sendreply is used, the sender waits until it
receives the reply.

125

1) The HB set is computed; initially, it is HB(STih)={TIDi}, and then the TID of
transactions in_conflict’ relation with some transaction of the HB sct arc included in
the set itself: this construction is repeated until no more transaction can be added to
the HB set. At the end, the TID’s of local transactions and TIDi are eliminated from
the set, which therefore contains only those global transactions which are in "«"
relation with STih.

(2) The global validation phase consists of verifying that all the transactions of the
HB set have either committed or aborted before the point at which STih is validated;
as it will be proved in the next section, this condition ensures global serializability,
The commitment or aborting of conflicting transactions can be read from the ASL,
without requiring exclusive access to it. In the case where the validation fails because
there is some global transation STjh in HB(STih) which is still active, the transaction
is kept waiting for a given timeout. Then the validation is repeated, and if it fails
again Ti is aborted. In this case, a message is sent to the transaction master, which
both broadcasts the abort command to all the other sub-transactions, and issues a
new global transaction (assigning a new transaction number to it).

et us consider how the validation attempt might fail. In a simple case, say Tih << \

Tjh and Tjk << Tik, transaction Tj cannot complete validation at site h until after Ti
has committed or aborted globally, and Ti cannot complete validation at site k until
after 1j has committed or aborted globally. Thus at least one of them will time-out
and abort in its validation phase. In general, whenever committing a set of conflicting
transactions would cause a cycle in the global serialization graph, there is a
corresponding cycle in the validation phase, in which each transaction must wait for
one of the others to.commit or abort (this is proved in section 5). The wait cycle can
only be broken by one (or more) aborting, and this prevents cycles in the
serialization graph. Of course, this method can abort some transactions unnecessarily:
a transaction may time-out and abort just before the transaction it was waiting for
cominits or aborts. However, given our assumplion that conflicts are uncommon, a
proper choice of time-out interval should make such un-needed backups rare.

(3) At the end of the global validation phase, the two-phase commitment takes
place; a ready to commit message is sent to the transaction master, which collects the
messages from all the sub-transactions; if none of them aborts, then finally a commit
message is sent back. Then, just as in the parallel validation algorithm,
subtransactions can perform the write phase, are assigned a local transaction number,
and are marked in the local ASL. If instead one of the sub-transactions aborts, then
all other subtransactions have to eliminate their TID from the local ASL’s, and
repeat their execution (with a new TID).

The global concurrency control mechanism is completed by a clean-up transaction
which is issued periodically; it analyses the ASL and deletes from it all the TID’s
which precede the earliest non marked global TID. Morcover, read sets of
transactions whose TID is dcleted are also deleted, together with the write sets which
are not of interest for the local concurrency control mechanism.

126

5. Proof of correctness of the algorithm, some practical considerations, and
comparison with other approaches /
, /

. K

Proof of Correctness

The correctness of the algorithm is proved informally here, though a formal proof
based on the techniques of [12] is possible. We will show that the algorithm is safe in
the sense that it does not allow construction of local schedules which are not globally
serializable, There is no guarantee that a transaction will eventually be able to
commit; one can only say that the assumption of low conflict between transactions
makes eventual commitment very probable,

We first show that an edge between two transactions in the global serialization graph
implies that there is a site at which the first one committed before the second
completed its validation phase. (Note that the definition of the global serialization
graph implics immediately that the first transaction committed before the second
committed.)

Lemma: If there is an edge from Ti to Tj in the global serialization graph, then there
is some site h such that STih committed before STjh completed validation.

Proof: Let h be a site such that STih <K STjh; the definition of the global
serialization graph implies that such a site exists. Consider the value computed for
HB(5Tjh), assuming, for the moment, that no clean-up transaction have been run
and thus the ASL contains all transactions that have ever committed or are still active
at site h. In this case, computation of HB(STjh) captures all sub-transactions that are
in the "«" relation to STjh; in particular, TIDi is in HB(STjh). Now, the algorithm
delays validation of STih until after STih has committed, giving the required result.

Next, consider the effect of clean-up transactions. As long as TIDi is put in
HB(STjh), the lemma is satisfied. The only way that TIDi can fail to appear in
HRB(STjh) is if it has heen removed from the- ASL by a clean-up transaction before
HB(STjh) is computed. Because a transaction can only be removed after it has
committed, this implies that STih committed before STjh began its validation phase,
which is well before it ended validation. So the lemma is satisfied in this case too.

Theorem: The algorithm described above can never give rise to a cycle in the global
serialization graph of committed transactions.

Proof: The algorithm prevents a cycle in the serialization graph by requiring
conflicting global transactions to complete validation in the same order as they would
appear in the graph. In the case of a cycle, this prevents any of the transactions from
completing validation until one or morc of the transactions in the cycle has aborted.
We proceed to establish this by contradiction., Assume that a cycle of committed
“transactions cxists, consisting of T1, T2, ... , Tn, Tn-+1=TIL. The lemma above
unplies that, for each pair of transactions Ti and Ti+ 1, there is some site h where Ti
committed before Ti+1 completed validation. Since i could not commit before all
of its sub-transactions completed validation, this implies that all sub-transactions of
Ti completed validation before all sub-transactions of Ti+1 did so. Since the

127

transactions form a cycle, this is impossible, and we have the required contradiction,
Practical considerations

The following modifications to the validation mechanism can be used to improve its-
efficiency or functionality in certain cases.

(1) There is an ineffictency in the local validation algorithm which was pointed out in
[9], namely that "a transaction in ASL can invalidate another transaction, even
though the former transaction is itself invalidated”. A possible escape from this case
was also pointed out in [9], and consists of "waiting for the invalidating transaction to
either be invalidated, and hence ignored, or validated, causing the backup”. This
escape, however, holds for local transactions only, because keeping a global
transaction waiting introduces potential distributed deadlocks (but see note 2 below).

(2) The algorithm currently prevents deadlocks among cyclically conflicting
transactions by a time-out mechanism. Alternatively, one could detect such cycles,
using an algorithm like Obermarck’s [11], and abort transactions only when they are
involved in a cycle. Given the assumption that conflicts are infrequent, this situation
should seldom arise, so the extra mechanism required for cycle detcctlon might not
be used oftcn enough to justify its inclusion.

(3) The computation of transitive closure of conflict can be rather lengthy, expecially
with transactions with large read and write sets. In fact, more efficient algorithms
than the one presented in Fig. 1 can be uscd for determining transitively the conflicts
between transactions. For instance, it is clear that the local conflict history for a given
transaction is all contained in its local HB set, and therefore this information can be
used to build the transitive closure of conflicts. Note, however, that the method
presented here relies on the optimistic assumption of having a very limited number
of conflicts between transactions, and this should greatly simplify in practice the
computation of HB sets.

(4) At cach local site, the complexity of the validation process and the amount of
information that has to be stored for the validation depends on the number of
transaction which are stored in the ASL, and they ultimately depend on the eatliest
global transaction which is not validated. The size of the ASL could be controlled by
introducing a mechanism to force the abortion of the latest global transaction, based
either on time-out mechanisms or on the amount of local storage availlable for
concurrency control.

(5) The possibility that a transaction never succeeds in its validation (starvation) has
to be considered. In [9], lock-based techniques are recommended for those
transactions which are repeatedly invalidated. This also applies to a distributed
environment, with the additional problems which arise because of global deadlocks
[11}. Badal [1] suggests the use of random time intervals fot restarling transactions
that have conflicted, in order not to repeat the same conflicting sequence.

(6) Although we have not explicitly considered replicated data, it fits into the
algorithm quite easily. It is only necessary to implement a write on a replicated item

128

by writes to all copies of the item, using sub-transactions at each site where the item
is stored; a read may be implemented by reading any copy. The global consistency
mechanism will ensure serializability of these transactions, and this implies that
multiple copies remain consistent. In fact, the more general weighting schemes
described by Gifford [7] may be used to determine how many copies must be
accessed by read and write operations.

Comparison with other approaches

An algorithm for concurrency control of distributed transactions which uses an
optimistic approach is presented in [6]. However, the model of distributed transaction
which is assumed in that paper is different from the proposed model; a distributed
transaction in [6] corresponds to a sequential execution of sub-transactions at the
various sites. In this way, each sub-transaction has a global knowledge of its conflict
history, and therefore decisions on the conflicts that lead to non-serial executions can
be progressively taken during transaction evolution.- The concurrency control
information is stored together with objects; each object has a stack-based log which
stores the transaction identifiers of transactions which access the object, together with
their past conflict history. The advantage of the method is in the possibility of
anticipating decisions about conflicts; the disadvantage is in the "sequential” model
of sub-transaction execution, that doesn’t allow parallelism,

The notion of serializability used in [3, 4, 10, 13] was, in the authors’ opinion, heavily
influenced by the operational features of some distributed database system (see for
instance SDD-1 [4]); in particular, the need in those systems of collecting the non-
local information on the initiating site and executing the transaction there leads quite
naturally to mantaining one read phase and one write phase in a distributed
environment as well. ‘The model which is proposed here, which allows several
subtransactions to execute their read and write phase without requiring a strict
sequcitiality between all reads and all writes, is probably more general, and moves in
the direction of considering more distributed models of transaction execution.

6. References

[1] Badal, D. Z. Correctness of‘ Concurrency Control and implications in Distributed
Databases, Proc. COMPSAC 79, Chicago, November 1979, pp. 588-593.

[2] Badal, D. Z. Concurrency Control Overhead or Closer Look at Blocking vs.
Nonblocking Concunrency Control Mechanisms, Proc. Fifth Berkeley Workshop on
Distributed Data Management and Computer Networks, February 1981, pp. 85-103.

[3] Dernstein, P. A., Shipman, D. W., and Wong, W. S. Formal Aspects ’of
Serializability in Database Concurrency Control, [FEL Transactions on Software
Engineering, Vol. 5 No. 3, May 1979, pp. 203-214.

129

[4] Bernstein, P. A., Shipman, D. W., and Rothnie, J. B. Concurrency Control in a
System for Distributed Databases (SDD-1), ACM TODS, Vol. 5 No. 1, March 1980,
pp 18-51.

[5] Eswaran, K. P., Gray, J. N., Lorie, R. A.and Traiger, I. L. The Notion of
Consistency and Predicate Locks in a Database Systcm Comm ACM, Vol. 19 No. 11,
November 1976, pp. 624-633.

[6] Garcia-Molina, H. and Wiederhold, G. Read-only Transactions in a Distributed
Database, Stanford Department of Computer Science, Report No. STAN-CS-80-797,
April 1980.

[7] Gifford, D. K. Weighted Voting for Replicated Data, Operating System Review,
Vol 13, No. 5, December 1979, pp 150-162.

[8] Gray, J. Notes on Database Operating Systems, in Operating Systems: an
Advanced Course, R. Bayer, R. M. Graham, G. Seegmuller eds., Springer-Verlag,
1978, pp. 393-481.

[9] Kung, H. T. and Robinson, J. T. On Optimistic Methods for Concurrency
Control, ACM TODS, Vol. 6 No. 2, June 1981, pp 213-226.

[10] Minoura, T. Resilient Extended True-copy token Algorithm for Distributed
Database Systems, Dept. of EFlectrical Engineering, Ph. D. Dissertation, Stanford
University, May 1980.

[11] Obermarck, R. Global Deadlock Detection Algorlthm IBM Rep. N.
RJ2845(36131) 6/13/80, June 1980.

[12] Owicki, S. and Gries, D. An Axiomatic Proof Technique for Parallel Programs,
Acta Informatica, Vol. 6 No. 4, pp 319-340.

[13] Papadimitriou, C. H. The serializability of Concurrent Database Updates,
Journal of the ACM, Vol. 26 No 4, October 1979, pp 631 - 653.

131

Performance of Two Phase Locking

Wen-Te K. Lin
Jerry Nolte

Computer Corporation of America

Abstract

Simulation and analytical modeling of the two phase 1locking
in a DBMS is the subject of this study. It is only part of a
larger project that is studying the performances of various con-
currency control and reliability algorithms in a distributed
DBMS. In the simulation model, the application environment is
characterized by the transaction size -- the number of lockable
units requested by each transaction -- and the system environment
by the number of transactions running concurrently (multiprogram-—
ming level), total number of lockable units in the database, and
the distribution of accesses to these lockable units. These
environments are varied for different simulation runs, Output
from these simulation runs includes the probabilities of a lock
request involved in a conflict and deadlock respectively (PC and
PD), and the average waiting delay (WT) and its standard devia-
tion (DV) of a blocked lock request. The results show that the
system behaves quite similarly for different access distributions
-- PC, PD, WT, and DV all increase more than 1linearly with the
multiprogramming level and the transaction size; the increase of
PC is faster with multiprogramming level than with the transac-
tion size, and the reverse is true for PD, WT, and DV. Regres-
sion analysis on the simulation results reveals interesting rela-
tionships between the granularity of the lockable units and PC,
PD, and WT, Because of the assumption of fixed delay (excluding
blocking due to 1lock conflict) between two consecutive lock
requests by a transaction, the results apply to a centralized
DBMS with little IO delay variation, and a distributed DBMS with
little communication delay variation.,

This research is supported by the Rome Air Development Center
(TSR) of the Department of the Air Force under Contract Number
F30602-81-C-0028. The views and conclusions contained in this
document are those of the authors and should not be interpreted
as necessarily representing the official policies, either ex-
pressed or implied, of the Rome Air Development Center of the
Department of the Air Force or the U.,S. Government.

132

l. Introduction

In the two phase locking protocol as described in Gray I[11],
during the first phase tranéactions accummulate locks incremen-
tally, acquiring each lock as its need arises, and during the
second phase, release each lock as soon as its need ends. But to
spare the end users the responsibility of requegting and releas-
ing 'locks, most DBMSs implement implicit locking. The DBMSs
request and release the locks automatically when the transactions
request the data items and when the transactions end, respec-—
tively. ‘Because a DBMS, not knowing enough of the syntax and
semantics of the transactions, is ignorant of the time when each
data item is no longer needed, it can only release the locks held
by a transaction when the transaction ends., Besides, if locks
held by a transaction are released before the transaction ends,
then the abortion of the transaction causes roll-backs of éll
othér transactions that have read data released by the aborted
transaction. To avoid the problems discussed above, most DBMS
release locks held by a transaction when the transaction ends,
The performance of this modified two-phase locking is the subject

of this study.

In this study we use several measures of system performance.
We emphasize thé blocking and restart behavior of transactions,
We concentrate on the basic underlying factors of conflict,
deadlock, and wait duration, The performance variables are

listed as follows:

133

l. the average probability of a lock request conflicting with
another one;

2. the average probability of a lock request causing a deadlock;
3. the average waiting delay of a conflicting lock request;

4, and the standard deviation of this delay.

Besides locking protocol, the performance of a DBMS depends on
several system and application parameters:

1. the average number of locks requested by a transaction (tran-
saction size);

2. the maximum number of transactions running concurrently (the
multiprogramming level);

3. the size of the group that is the unit of 1locking (lockable
unit size);

4. the size of the database (total number of lockable units);
5. and the distribution of lock requests to the lockable units
of the database. '

Two distributions of lock requests to the lockable units are
simulated. The random access model assumes that all lockable
units have the same probability of being accessed by a lock
request. The 20/80 model assumes that 20% of the database is

accessed 80% of the time,

Using simulation and statistical data analysis techniques,
this paper studies the relationships between the performance of a

DBMS and those system and application parameters affecting it.

A few researchers have attempted similar studies. In Lin
[2], the same approach taken in this study was used to evaluate
two timestamping protocols, but its results could not be extended

to the two-phase locking protocol. In Naka [3]1, the result

134

confirmed that concurrent updating of the database by transac-

tions degrades the performance of a DBMS, In Spit [4], the two’

phase locking and the modified version (described above) were
found to perform equally well in --system-2000. In Mun I[51,
deadlock resolution methods were studied, and’three were found to
be superior: vrestarting the smallest, the one holding the.least
locks, and the one having consumed the least cpu time. In addi-
tion, it was found that simultaneous reduction of the sizes of
the lockable unit and'the transaction improves - the performance.
But the oversimplified definition of performande as the cpu util-
izatipn made the results less useful, In Ries [6], the scope and
the objective of its simulation were much more ambitious than the
previous three. Nevertheless, it emphasized the effects of the
size of the lockable unit on the performance of the DBMS, which
was defined as the cpu and I0 utilizations, plus in some cases
the responsé time and the system through-put. The main model
required transactions to obtain all the required 1locks before
they started, and the request-as—needed model was only briefly
studied. It had many interesting results showing how the size of
the 1lockable unit interacts with the system‘and.application
pafameters to effect the performénce. But its assumption that
the multiprogramming level has no afféct on performance is con-
tradicted by this study. Also, perforﬁance was not related to
system and application parameters as precisely and quantitatively

as in the present study.

135

This study expandé on Lin [Zl'énd Ries [4], and presents the
results in the same precise form as that.of Lin I2]. The second
section discusseé -the simulation modei; the third section
presents and analyzes the results of the random access model; the
fourth section presents and summarizes the results of the 20/80
model; and the fifth section summarizes the results 6fAthis

study.

2. Simulation Model-

A complete description of a simulation model for a DBMS must
include the database, the transactions,'the computer system, and

the output parameters.

The database consists of DZ (Database siZe) lockable units
of equal siée. The size of each lockable unit is irrelevant to
our model. The database size DZ varies among different simula-

tion runs,

We simulate two different access distributibns to the data-
base: the - random access model in which all lockable units are
equally likely to be accessed,'and the 20/80 access model in

which 20% of the database is accesséd 80% of the time,

All transactions réquest only exclusive locks. Within each
simulation run, all transactions request the same number TZ
(Transaction siZe) of lockable units, but TZ varies among dif-

ferent simulation runs. Each transaction requests its lockable

136

units sequentially, but different transactions request 1lockable
units asynchronously. When a transaction requests for a lockable
unit, a random number is drawn to select one among all the lock-
able units in the database except those held by the requesting
transaction; thus a transaction never requests the same lockable
unit more than once. If the drawn lockable unit is locked by
another transaction, the requesting transaction is queued at the
~end of a FIFO queue. Otherwise, it sets a lock on the drawn
lockable unitvand waits one time unit before requesting another
lockable wunit. Since processing a lock request is assumed to be
instantaneous, the simulation timer is advanced one unit only
after all outstanding lock requests have been processed. The
assumption that a transaction waits a unit of time (after obtain-
ing a lockable'unit) before requesting another one, implies that
it takes one time unit to rétrieve a lockable unit from the data-
base, to wait for the cpu, and to process it. Each transaction

releases all its lockable units after its completion or abortion,

We model the éomputer system at a high functional 1level.
The c¢pu, I0 devices, and other hardware components are invisible
in the simulation model; their existence is implied by the pro-
cessing time required for each lockable unit discussed prévi—
ously. The system is a closed multiprogramming system, i.e., the
number of transactions running concurrently remains at a constant
level MP (MultiProgramming level); a new transaétion starts as
soon as one completes or aborts, Nonetheless MP varies among

different simulation runs. A lock request conflicts if it

137

requests a lockable unit already held by another transaction,
The system maintains a lock with a FIFO queue for eéch lockable
unit and places conflicting 1lock requests into the queue. It
checks for deadlocks as soon as a lock request conflicts., If it
detects a deadlock, the transactioh of the conflicting lock
request aborts énd restarts immediately; it restarts with a new
randomly drawn sequence of lock requests. Checkings of conflicts

and deadlocks are instantaneous,

For each simulation run, the output includes the fraction of
conflicting lock requests (which is the same as the probability
of a lock request conflicting with another lock request PC), the
fraction of conflicting lock requests causing deadlocks (which is
the same as the probability of a lock request causing a deadlock
PD), and the average waiting of a blocked lock request (WT) and

its standard deviation (DV).

3. Simulation Results of the Random Access Model

Sixty four simulations were run for 4 values of multipro-
gramming level (MP), transaction size (TZ), and database size
(DZ) each. The results are presented and analyzed in this sec-
tion in the following order: PC, PD, WT, and DV. The analysis
consists of three steps: visual inspection, regression analysis,

and examination of the regression equations.

138

The results of PC are presented in Figure 3,1, The figure.

shows that for a fixed DZ, PC increases with both MP and TZ, and
the increase is larger with MP than with TZ. This behavior is
explained by the foliowingvhobservation during the simulation
runs: the number of transactions deadlocked increases faster with
the transaction size than wifh the multiprogramming.level. Since
a deadlocked transaction aborts and-feleases all -held . locks as
soon as the deadlock'occurs, the total number of locks outstand-
ing (not released) increases siower with the transaction size

than with the multiprogramming level.

If a diagonal line is drawn from the top ieft to the bottom
right of each table in the figure, each number below the line is
always larger than the opposite number across the line., Assuming
DZ is fixed, two elements acrose'the diagonal line. represent the
same load (L) defined as the product of MP and TZ divided by Dz.
For example,‘ a system with 16 transactions, each requesting 7
locks, imposes the same load (112‘lockable units) on the database
as a system with 7 transactions, each requesting 16 locks. This
line shows that‘with the same load,‘the system with higher mul-
tiprogrammingv ievel has higher probability of cenflict than the
system with higher transaction size. This behavior ié explained
by the following observation during the simulation runs, Assum—-
ing the load L and the database size DZ are fixed, then on the
average, a larger MP with smaller TZ implies less deadlocks and
more locks outstanding. Since each lockable unit has the same

probability of being accessed, more outstanding locks means

139

higher probability of conflict., But higher probability of con-
flict does not necessarily means longer response time, because
smaller transaction size causes conflicting requests to wait less

and to deadlock less, as will be shown,

The differences across the diagonal 1line diminish as the
database size DZ increases -- that is, the probability of con-
flict (PC) is approximately proportional to the load L when the
load on the database is light, because increasing the database
size without increasing the multiprogramming le§el or the tran-
saction size 1is equivalent to decreasing the load on the data-

base.,

We applied regression analysis to the data in Figure 3.1,
and found equation (3.1) a gbod fit, The residuals -- the
differences between the actual values and the values predicted by
the equation -- are within 2.,5% of the actual values. We did a
few simulatioh‘runs with larger values of DZ,v MP, and TZ, and
found that theA equation' is still a gbod fit for DZ of up to
12384, MP of up to 128, and TZ of up to 32; but we found that
when the trénsaction size TZ gets much larger than 32, the equa-

tion under-estimates the probability of conflict (PC) substan-

tially.
pe o 0272_(mp-1)1-0540.35L p,1.08-0.13L

= 71-08+0.28L (3.1)
L. MR x T2

140

Next, we use the regression equation to examine the rela-
tionship between the size of the lockable unit and the probabil-

ity of conflict.

If we split each lockable unit into k smaller wunits, then
the database size increases to k times its original size.
Because of the smaller lockable units, a transaction,must request
more lockable wunits; thus the transaction size increases to w
(1<w<k) times its original size. The value of w depends on how
well the database is placed before the split. If the database is
originally well placed, then all the data items contained in the
original TZ 1lockable units are wanted by the transaction -- no
frivolous data items are retrieved, In this case, when a lock-
able unit is split into k smaller ones, the transaction Size
increases to k times its original size (w=k). Otherwise, if the
database is badly placed before the split, then the lockable
units retrieved by'a transaction contain a lot of unwanted data
items. Thus, after the split, a transaction may request the same
number of lockable units and still obtain all the data items it
needs (w=l), In most cases, however, w will be larger than one

and smaller than k.

Replacing DZ and TZ by kDZ and wTZ, equation (3.1) becomes

equation (3.2),

PC' = t x PC (3.2)

[S S N .

141

where
. o Dz0:28Lr qg0.13Lr 1= (0.13Lw) /K
and

Setting w to k, equation (3.2a) becomes (3.2b).
0.41L (3.2b)

Since k is larger than one, t is smaller than one. Thus smaller
lockable wunits imply a smaller probability of conflict whenever
the database is well placed. But as we will show later, smaller
probability of «conflict with larger transaction size may result
in a higher ©probability of deadlock and longer transaction
response time. As L approaches zéro, i.e., the load is light, t
approximates one, and the difference between PC and PC' becomes

insignificant,.

Setting w to one in equation (3.2a) results in equation
(3.2¢).

DZ0.28Lr TZ0.13Lr

where
r = (k-1)/k
and

t = 1/k as L approaches zero.

142

Equation (3,2c) shows that when the load L is smaller than 100%,
which is within our simulation range and is realistic, t is less
than one. Therefore, if the database is badly placed, smaller
lockable wunits imply a smaller probability of conflict. In this
case, since the transaction size remains the same,va smaller pro-
bability of conflict does imply a smaller probability of deadlock

and shorter response time.,

To sum up, smaller lockable units always imply smaller pro-

bability of conflict.

The probabilities of deadlock (PD) are presented in Figure
3.2, Notice that PD is the conditional probability‘of a lock
request causing a deadlock, given that the request conflicts,
The unconditional probability of deadlock is the product of PC
and PD, which is presented in Figure 3.3. These data are also
analyzed in three steps: visual inspection, regression analysis,

and analysis of the regression equation,

Figure 3.3 shows that for a fixed DZ, PD increases with both
the multiprogramming level MP and the transaction size TZ. But

in contrast to PC, the increase is larger with TZ than with MP.

If the diagonal line discussed previously is drawn for each
table in Figure 3.3, the number below the line is always smaller
than the corresponding number across the line} in sharp contrast
to PC of Figure 3.1, Thus assuming equal loads L, a system with
larger trahsactions and lower multiprogramming level has a higher

probability of deadlock than a system with shorter transactions

143

and higher multiprogramming level.

Similarly, regression analysis shows equation (3,3) a good

fit for the data of Figure 3.3.

op! = ppypc o 0:012(Mp=1)1:9770.24L q43.61-3.48L ,
Dzl.99—1079L (303)
MP x TZ
L = =257-=*

We must emphasize that PD is the probability of deadlock for a
lock request, not a transaction, Equation (3.3) shows that when
the load L is larger than 80%, the coefficient ¢ is smaller than
the coefficient b, Therefore, for a fixed 1load of 80% or

greater, a system with shorter transactions and higher multipro-
gramming level has a higher probability of deadlock than a system
with longer transactions and lower multiprogramming level. This
rather surprising behavior is not immediately apparent from
inspection of Figure 3.3. This behavior occurs because when the
load is high and transactions are long, transactions deadlock and
abort frequently; and abortions of long transactions means that
more locks are freéd. Thus there is less probability of a lock

request causing a deadlock.

To analyze the relationship between PD and the lockable unit
size, we replace DZ by kDZ and TZz by wTZ, and equation (3.3)

becomes equation (3.4).

144

PD" = t x PD' ‘ (3.4)
where
¢ o (mp-1) 0:34LE mg3.TLE (3057 (370w 7k
pg2+lLr gle9-(2.1Lw)/k (3.4a)
and
r = (1-w/k)

Setting w to k, equation (3.4a) becomes (3.4b), which shows that
if and only if the load L is less than one, which is within the

range of our simulation and is realistic, t is greater than one,

- kl.G(l—L) (3.4b)

Thus, when the database is well placed, Smaller lockable units

imply a larger probability of deadlock.

Setting w to 1 for the originally badly placed system, equa~
tion (3.4a) becomes (3.4c), which shows that, within the range of
our simulation, t is less than one. Therefore smaller lockable

units reduce the probability of deadlock.

In summary, larger lockable units in a well placed system
and smaller lockable wunits in a badly placed system reduce the

probability of deadlock for lock requests and transactions,

where

145

The average waiting times of a conflicting lock request are
shown in Figure 3.4, which shows that the average waiting of a
conflicting lock request increases with the mnmultiprogramming
level and the transaction size, and the increase is larger with
the transaction size than with the multiprogramming level. The
result is consistent with our intuition, because a lock request
blocked by a long transaction must wait until the long transac-
tion completes or aborts; and it takes longer for a long transaé—
tion to complete or abort. Also, if a similar diagonal 1line is
drawn for each table, the numbet above the line is always larger

than the corresponding number across the diagonal line.

Regression analysis shows equation (3.5) a good fit for the

data of Figure 3.4.

2 2
0.19(MP-1)3'4(L+0'2) —0.3 TZ2.7(L+0.15) +0,.8
WD = e S o o o o e v i o o o o o e i o o e o (3.5)

pg4-1(1-0.04)%-0.16
Assuming the database is well placed, to reduce the granularity
of the lockable units to 1/k of its original size, we increase
the database size DZ and transactién size TZ to KkDZ and KkTZ
respectively in equation (3.,5), resulting in equation (3.6a).
Equation (3.6a) shows that when the load L is 1less than 1.4,
which is realistic and within the range of our simulations,
smaller lockable units imply longer waiting for a conflicting
lock requeét. The result is consistent with the earlier observa-

tion -- longer transactions induce longer waiting.

146

wr = 1e25-1.37(1-0.41)2 o | (3.6a)
Assuming the database is badly placed, to reduce\the granu-
larity of the 1lockable wunits to 1/k of its original size we
increase the database size DZ to KDZ, but leave the transactidn
size TZ unchanged in equation (3.5), resulting in equation
(3.6b). Equation (3.6b) shows that when the load is light and k
is.small, t is greater than one -- longer waiting for a conflict-
ing lock request. As shown earlier this is because when a data-
base 1is badly placed and the load is light, reducihé the size of
the lockable units reduces the probability 0of deadlock. With
less deadlocks, more transactions compléte and less transactions
abort. Since a transaction takes longef to complete than to

abort, a blocked lock request waits longer.

WT = 5z4+1rL(qL=0.08) o (3.6b)

———_—————————_——————.———_———_—__—————————__——————————-———

where
r = (1 - 1/k)
g = (1 + 1/k)

-In summary, whether the database is well placed or badly
placed, smaller lockable units increase waiting delay for a
blocked iock request, except when load is extremely heavy, the
database is badly placed, and the reduction in lockable unit size

is large.

g

. {
i .
O

- i‘

1

1

L

AY

b

oo St N D T L e

147

We next examined the standard deviation of waiting delays.

These results can be summarized very simply.

Regression on the data of Figure 3.5 results in equation
3.7, which shows that the waiting délay may be approximated by an

Erlangian distribution,

DV = 0.86 x WT (3.7) |
DZ = 256 DZ = 1025
MP/TZ 7 10 12 16 MP/TZ 7 10 12 16
7 .077 .104 .118 .135 7 .020 .029 .034 .045
10 .113 ,145 .159 .176 10 .030 .043 .050 .064
12,135 .169 .182 .198 12 .037 .052 .061 .076
16 .174 .210 .224 .236 16 .050 .069 .08l .098
DZ = 512 DZ = 2048
MP/TZ 7 10 12 16 MP/TZ 7 10 12 16
7 .040 .056 .066 .081 7 .010 .015 .017 .023
10 .059 .08l .094 112 10 .015 .022 .026 .034
12,072 .097 ,111 .130 12 .019 .026 .031 .041
16 .096 .127 .142 .160 16 .025 .036 .043 .055

PC : Probability of a Lock Request conflidting
With Another Lock Request

Figure 3.1

148

DZ = 256 Dz = 1024
MP/TZ 7 10 12 16 MP/TZ 7 10 12 16
7 .031 .,078 .112 ,183 7 .006 .014 .026 .050
10 .039 .102 .143 .207 10 .008 ,019 .028 .061
12 .044 ,115 ,.,156 .218 12 .007 .019 .033 .068
16 .061 .141 .179 .232 16 .007 .025 .040 .090
Dz = 512 DZ = 2048
MP/TZ 7 10 12 16 MP/Tz 7 ~ 10 12 16
7 .014 .037 ,052 ,102 7 .003 .006 .011 .024
10 .014 .041 .068 .130 10 .003 .006 .011 .024
12 .017 .049 .079 .144 12 ,003 .009 .014 .029
l6é .021 .067 .102 ,.168 16 .003 .009 .015 .034
PD : Conditional Probability of a Lock Request

DZ
MP/TZ 7
7 .0024
10 .0044
12 .0059
16 .0106
DZ
MP/TZ 7
7 .0006
10 .0008
12 .0012
l6é .0020
PCxPD :

Causing a Deadlock after Conflict

.00225
.00390
.00517
.00882

Figure 3.2

= 256 D% = 1024

10 12 16 MP/TZ 7 10 12
.0081 .0132 .0247 7 .00012 .00040 .00088
.0148 ,0227 .0364 10 .00024 .00081 .00140
.0194 .0284 .0432 12 .00026 .00099 .00201
.0296 .0401 .0548 16 .00035 .00173 .00324
= 512 | DZ = 2048

10 12 16 Mp/TZ 7 10 12
.0021 .0034 .0083 7 .000030 .00009 .00019
.0033 .0064 .0146 10 .000045 .00013 .00029
.0048 .0088 .0187 12 .000057 .00023 .00043
.0085 .0145 .0269 16 .000075 .00032

Absolute Probability of a Lock Request
Causing a Deadlock after Conflict

Figure 3.3

.00063

149

ST EA S S G0t U Gwe G G fma e G G S e fum M G o " T Wi B . B G W e G G s G S W oo -

S GO Bo. S L SR Ges GAr G e G G s gEL mA G g S S Sme B S P T e Y]

10 4.64 8.25 10.55 14.40 10 3.19 4.93 6.42 10.57
12 5.36 9.52 12,09 15.70 12 3.35 5.34 7.25 11.80
l6é 7.27 12,52 15,24 18,65 16 3.54 6.65 9.30 16.05

—_—— T . S G Gma g e Gma, P B M ma S G G S S e G = P g v Ema Smm S S S e G G B SR S U S GRS S Ser Sme S M S

l6é 4.71 9.77 13,53 19.43 l6 3.14 4.88 6.35 10:91

WT : Average Waiting Time of a Conflicting
Lock Request after the Conflict

Figure 3.4

S T G S G . G — T - - - B 00N G e G e e P G e S B Svn BSOS Smm A S e G B S

7 2.86 5.28 6,90 10.09 7 1.95 3.35 4.36 6.92
10 4.02 7.59 9.88 13.56 10 2.16 3.94 5.50 9.62
12 4.93 9.03 11.26 14.78 12 2.38 4.52 6.49 10.98
16 7.05 11.77 14.19 17.66 l6é 2.68 6.15 8.97 15,51

DZ = 512 DZ = 2048

16 4.32 9.45 12,90 18.07 l6é 2,09 3.92 5.52 10,58

DV : Standard Deviation of the Waiting Times of
Conflicting Lock Requests

Figure 3.5

150

4. Results of 20/80 Access Model

The results of simulating the 20/80 access model are shown
in Figures 4.1 through 4.5. They are similar to the results of
the random access model with heavier load. The reason is that
when 20% of the database is used 80% of the time} the same load
of the random acceés-model becomeé a heavier load. The probabil-
ity of conflict, the probability of deadlock, and the average
waiting of a conflicting lock request still increases with both
the transaction size and the}multiprogramming level. The proba-
bility of conflict increases faster with the multiprogramming
level than with the transaction'size, while the reverse is true
for the probability of deadlock and the average waiting of a con-
flicting lock request. If diagonal 1lines are drawn for the
- tables (as previously explained), the number below the 1line is
always larger than the corresponding number above the line for
the probability of conflict, énd the opposite is true for the
probability of deadlock and the average waiting of a conflicting
lock request. VBnt the differéncec diminish as the 1load becomes

lighter,

Applying regression analysis to data in Figure 4.1 results
in equation (4.1)., Similar to equation (3.1), it shows that the
coefficient b is always larger than the coefficient c. The major
difference between this equation and equation (3,1) is that the .
coefficient a of equation (4.1) is equal 3.7, much largér than

the 0.72 of equation (3.1).

151

)1.08+l.51L myl+08+0.58L

PC = §:Z£ME:; ________________________ '
B 1.13+1.39L (4,1)
DZ .
where
MP x TZ
L = =27~~~

To examine the relationship between the probability of conflict
and the lockable unit size, we replace TZ by wTZ and DZ by kDZ in

equation (4.1), and obtain equation (4.2),

PC' = t x PC I ‘ (4.2)
where
DZl.39rL 1+(0,58Lw) /k
£ o= —mmeDB T W
TZ0.58rL MP1.51rL k;+(;'39LY)/k | (4.2a)
and

If the database is well plaéed, then w is equal to k, and equa-
tion (4.2a) becomes equation (4.2b), which shows that smaller
lockable units reduce the probability of conflict, consistent

with the result of the random access case.

t = k-0-81 (4.2b)

If the database is badly placed, then w is equal to one, and.
equation (4.2a) begomes equation (4.2c). Equation (4.2c¢) shows
that if the load L is less 50%, which is within the range of our
simulations and is realistic, smaller lockable units reduce pro-

bability of conflict. In summary, whether the database is origi-

152

nally well or badly placed, reducing lockable units reduces the
probability of conflict. This result is the same as in the ran-

dom access model,

DZl.39rL
L R O i Ll £ kil e T v i
TZ0.58rL MPl.51rL kl+(l.39L)/k (4.2c)
where

Regression of the data in Figure 4.3 results in equation
(4.3), which shows that when the load L is greater than 33%, the
coefficient ¢ is smaller than the coefficient b. Therefore, for
a fixed load of 33% or higher, a system with higher multiprogram-
ming level and smaller transactions has higher probability of
deadlock than a system with lower multiprogramming level and

longer transactions., This result is similar to the random access

model.
D = ppypc o Qe8(Mp-1)1-4112.66L p;3.85-4.74L
DZ2.33-0.13L (4.3)
where
MP x TZ
L = ==p7-==

To examine the relationship between the probability of deadlock
and the lockable unit size, we replace TZ by wTZ and DZ by kDZ in

equation (4.3), and obtain equation (4.4),

153

PD" = t x PD' o (4.4)

where ‘
(MP_1)2.66Lr DZ0.13Lr k2.33-(0.l3Lw)/k (4.43)

If the database is well placed, then w is equal tb k, ~and
equation (4.4a) becomes equation (4.4b). Similar to éﬁuation
(3.4b), it shows that when the load L is less than 34%, which is
realistic and within the range of our simulations, t is greater
than one. That means larger lockable units reduce the probabil-
ity of deadlock. This result is similar to the one found in the

random access model,

For the badly placed database, setting w to one in equation
(4.4a) results in equation (4.4c), which shows that, within the
rénge of our simulations, smaller lockable units reduce the pro-
bability of deadlock. This result is also similar to the one

found in the randomvaccess model.

Regression on the data in Figure 4.4 results in equation

(4.5) L]

154

2 2
0.037 (Mp—1) 117 (L=0.1)“~0.24 ,14.8(L~0.22) “+0.25

. 2 (4.5) .
DZ13.4(L-0.2) -0.27

Replacing DZ by kDZ and TZ by kTZ, equation. (4.5) becomes

equation (4.6a), which shows, as does equation (3.6a), that t is

greater than one -- longer waiting delay for a conflicting lock
request.

0.1+1.4(L-0.4)%
WT = k~° * ’ - (4.6a)

Replacing DZ by kDZ, but 1leaving TZ unchanged, equation
(4.5) becomes equation (4.6b), which shows, as does equation
(3.6b), that when the load is light and k is small, t is greater
than one. Therefore, in general, reducing the size of lockable
units increases the waiting delay of a conflicting lock request,
except when the load is heavy, the database is badly placed, and

the reduction of lockable unit size is large.

WT = . (4.6¢c)
DZl3.4rL(qL—0.4)
ipo1) 11-TIL(GL-0.2) 1, 14.87L(qL-0.44) ,13.4(L/k=0.2)%=0.27
where
r = (1 - 1/k)
q = (1 + 1/k)

Regression on the data in Figure 4.5 results in equation
(4.7) .

DV = -0,88 + WT | | (4.7)

T Dom S Gty S (. - G WA i W P - S G 00

- G B S S T T S e S v S S g G gme M o Y

.025
.028
.032
.042

PD :

155

2 =512 DZ = 2048
10 12 16 MP/TZ 7 10 12 16
.150 ,163 .176 7 .033 .045 ,.054 .067
.198 .210 .221 10 .048 .067 ,078 .095
«225 ,237 .245 12 .059 ,080 .092 ,.110
.268 ,277 .284 16 .078 .105 .119 ,137
2 = 1024 DZ = 4096
10 12 16 MP/TZ 7 10 12 16
.085 .098 .116 7 .016 ,024 ,028 .036
122 ,135 ,151 10 .025 .035 .041 .053
.142 ,155 .173 12 ,030 .042 ,050 .064
177 .191 .207 16 .040 .057 .067 .083
Probability of a Lock Request conflicting
With Another Lock Request - :
Figure 4.1
DZ = 512 DZ = 2048
10 12 16 MP/TZ 7 10 12 16
.124 ,168 ,230 7 .011 .028 .044 .086
.149 ,189 .242 10 .012 ,032 ,050 ,104
.161 .201 .246 12 .013 .035 ,060 .113
.181 .214 ,247 16 .015 .,046 .078 .141
= 1024 DZ = 4096
10 12 16 MP/TZ 7 10 12 16
.057 .089 ,156 7 .005 .012 ,019 .037
.075 ,117 .181 10 .006 .013 .021 .046
.086 .126 .195 12 .005 .,014 ,023 .051
.109 .149 .211 16 .005 .,016 .029 ,067

Conditional Probability of a Lock Request
Causing a Deadlock after Conflict

Figure 4,2

o ma - gt g . gh W e e ot St G S e M G G . S S

. . G S S WA Gt B (g W4 v BAn e St Gy W G g -

156

o T T L Y e haa]

g v S S - g — - " -

16 .00020 .00091 .00194

PCxPD : Absolute Probability of a Lock Request
Causing a Deadlock after Conflict

4.21 6.81 9.49
5.44 8.94 10.83
6.50 10.19 11.93
8.44 12.64 14.26

3.51 5.71 "7.37
4.25 7.54 09.75
4.75 8.71 11.43
6.04 11.49 14.53

.00556

9.36

Figure 4.3
DZ = 2048
16 MP/TZ 7 10 12
11.11 7 3.22 4.81 6,11
13.08 10 3.50 5,70 7.69 12.36
14.39 12 3,65 6.32 8.99 14.55
16.32 16 4,19 8.50 11.92 18.43
DZ = 4096
16 MP/TZ 7 10 12
10.83 7 3,07 4,33 5,28
13.89 10 3.15 4.65 5.96
15.79 12 3.21 5,00 6.58 10.87
18.92 16 3.40 5,77 7.99 14.54

WT : Average Waiting Time of a Conflicting
Lock Request after the Conflict

Figure 4.4

157

DZ = 512 DZ = 2048
MP/TZ 7 10 12 16 MP/TZ 7 10 12 16
7 3.48 5.94 8.49 10.35 7 2,17 3.75 5,00 8.01
10 4.89 8.36 10.14 12.49 10 2,57 4.83 6.95 11.63
12 6.04 9.62 11,38 13.75 12 2,79 5.69 8.45 13.70
16 7.98 11,93 13.54 15.65 16 3.56 8.22 11.47 17.18
Dz = 1024 DZ = 4096
MP/TZ 7 10 12 16 MP/TZ 7 10 12 l6
7 2,60 4.78 6.41 9.72 7 1.91 3.05 3.97 6.26
10 3.59 6.96 9.24 13,02 10 2,07 3.53 4.83 8,55
12 4,21 8.18 10,72 14.92 12 2,17 4.02 5,72 10,25

16 5.73 10.98 13.72 17.68 16 2,48 5.08 7.61 14.02

STD-DEV : Standard Deviation of the Waiting Times of
Conflicting Lock Requests

Figure 4,5

5. Summary

We simulated the two-phase locking in a DBMS with fairly-
constant communication and IO delays. We collected performance
data, and regressed these data into equations relating the per-
formance of the DBMS to the multiprogramming level, the transac-
tion size, and the database size. Using these equations we exam-
ine the interaction between the performance of a DBMS and lock-

able units size.

158

We found the performance behavior of a DBMS with random
daﬁabase access distribution quite similar to that of the 20/80
access distribution -- the 20/80 system behaves as a random
access system in heavy load. In fact, the same regression models
(equations) with different coefficient values fit both access
models well'except for the standard deviation of the lock request

waiting delay.

The probabiiity of conflict of a lock request increases more
than linearly with the multiprogramming level and the transaction
size; the increase is larger with the multiprogramming level than
with the transaction., The probability of deadlock, the average
waiting, and its standard deviation of a conflicting lock request
also increase more than linearly with the multiprogramming level
and the transaction size, But the increase is smaller with the

multiprogramming level than with the transaction size.

The waiting delay of a conflicting lock request can be
approximated by an Erlangian distribution in the random access
model. This result can be extremely useful for researchers who

use queueing theory to model a DBMS.

The results of this study have been validated, and can be
extrapolated for database size of up to 12384, multiprogramming

level of up to 128, and transaction size of dp to 32.

So far we have concentrated on the basic factors of PC, PD,
WT, and DV, We will next briefly discuss the combination of

these blocking and restart variables into system throughput, a

159

measure of performance which is more directly useful to a system

designer,

In the highly fanctional model wused here, all systeﬁ
resources are represented by the time to process lock requests.
Since each request consumes the same time, we measure throughput
by number of lock requests processed by transactions which fin-

ish,

In every case, thtaughput decreases with increasing Tz, if
MP and bZ are held constant. As noted above, for longer transac-
tions there ‘afé more confliéts, more deadlocks, and lbnger
delays. The message for applications program design is clear.

Transactions should be made as small as possible,

Also, throughput increases with increasing DZ if MP and TzZ
are held constant;- This is the'“badly placedklocks" case, and'it
also can be anticipated from the analysis above, For random
access of data, Small- granules will provide better throughput
when both blocking.and-restart’behavior are considered. However,
because of the increasing communications and processing costs of
lock management, the response time will increase. The optimal

granularity can be calculated from the regression equations,

Finally, throughput first increases, and then decreases with
increased MP if TZ aaa‘ DZ are constant, Giveh a particular
granularity and transactioh‘size, for 1light 1loads, significant
gains in throughput can be attained by increasing the multipro-

gramming level. However, as the system load becomes heavier, the

160

losses to deadlock and restart more than outweigh the gains from

increased concurrency.

6. References

[1] Gray, J.N., et al., "Granularity of Locks and Degrees of Con-

sistency 1in a Shared Data Base", Proc. IFIP Working Confer-
ence on Modelling of Data Base Manadement Systems, Freuden-
stadt, Germany, January 1976.

[2] Lin, W.T.K., "Performance Evaluation of Two Concurrency Con-
trol Mechanisms in a Distributed DBMS", ACM-SIGMOD 1981

International Conference on Management of Data, Ann Arbor,
Michigan, April 1981.

{3] Nakamura, et al., ‘"A Simulation Model for a Database System

Performance Evaluation", AFIPS Proc. 1975 NCC Conference,
Volume 44, May 1975,

[4] Spitzer, J.F., "Performance Prototyping of Data Management

Applications", Proc. CAM'76 Annual Conference, Houston,
Texas, October 1976. :

[5] Munz, R., et al., "Concurrency in Database System - A Simula-

tion Study", Proc. ACM SIGMOD International Conference,
Toronto, August 1977.

[6] Ries, D., "The Effect of Concurrency Control on Database
Management System Performance", Ph.D. thesis, Electronics
Research Lab, University of California, Berkeley, 1979,

161

A DISTRIBUTED FILE SYSTEM ARCHITECTURE
SUPPORTING HIGH AVAILABILITY

D. Stott Parker
Raimundo A. Ramos

Computer Science Department
University of California
Los Angeles, CA 90024

- ABSTRACT

It is difficult to maintain redundant copies of resources such as files (in the interest of
availability) while simultaneously keeping these copies mutually consistent when the
network over which they are accessed is subject to partitioning. One approach is to
sacrifice consistency during network partitions and reconcile inconsistent data later,
when the network is repaired; this attitude has been taken in the LOCUS system at
UCLA. Here we extend the 'version vector”" mechanism originally used to implement
this approach so as to detect inconsistency when more than one file is used by a tran-
saction. We then show how the resulting general scheme may be implemented in a way
which gives the user a consistent view of system operation, even during network
changes.

This work is supported by ONR grant NOOO 14-C-79-08686.
Mr. Ramos is also supported by BNDE and CAPES, Brazil.

162

1. Iitroduction

LOCUS is a UNIX-based homogeneous distributed operating system under
development at UCLA in which the design goals of network transparency and availabili-
ty have been given particular emphasis. The user is to be able to access files
throughout the network without being aware of either his or the files’ locations. In the
design of LOCUS it was felt that software should not require knowledge of the location
of resources, since a change in network configuration could require tedious re- wr1t1ng
of code.

Redundancy is the traditional approach to increase availability of a distributed
file system. A file can be replicated at many sites making unlikely that one user will
not be able to access one of the multiple copies of the file. However, the existence of
multlple copies brings the problem of keeping the mutual consistency of the many
copies of the file. All updates made to one copy of a file should be propagated to all
copies. Updates originated at the various nodes must be performed in each copy.
Transmission delays and the order in which updates are applied must be taken into
account to maintain the mutual consistency of all the copies, as well as the internal
consistency of each copy.

One can say that availability increases with the number of copies of a file. This
statement is true in read-only situations. However, if updates are allowed, multiple
copies may provide no improvement when mutual consistency is emphasized. When a
network with redundant data becomes partitioned, independent updates may cause
inconsistencies to arise. If we adopt the obvious solution to this problem, of avoiding
updates completely during network partitions, then having redundant copies will not
increase availability at all.

Unfortunately, a file can be made inaccessible by network failures or site
crashes, so availability cannot always be attained. This is true even when files are re-
plicated to a high degree. In fact, a number of proposed systems respond to network
partitions by making all but one copy of each file inaccessible for the duration of the
network outage, in order to guarantee -consistency of the multiple copies
[AD 78,Elli 77,Thom 78,etc.]. Since one has no a priori knowledge of the kind of up-
dates to be made to a file, one prevents updates to it - except possibly in one copy - so
that independent updates of individual copies are impossible. No update scheme is
effective against partitioning in guaranteeing consistency of a file, unless the file is al-
ways kept accessible only in one partition.

A network partition occurs when two or more sites become temporarily isolated
from each other, and unable to communicate through the network, even though some
or all of them are operational. It is important to realize that network partitions are a
common occurrence in many applications. Networks can be interrupted for environ-
mental reasons (as when a submarine submerges) or simply economic ones {a cor-
poration connects its network only at night, since at that time telephone rates are
lower). Even in the Ethernet [MB 76], gateways can be inoperative for significant
lengths of time, while the Ether segments they normally connect operate correctly.
Whatever the cause of network partitions, the resulting availability vs. mutual con-
sistency tradeoffs presents serious questions to system designers.

163

In LOCUS, no assumptions are made about the frequency of network partitions
other than that they are a reality and will occur at intermittent intervals. However, an
environment is assumed in which file update rates are moderate and 'conflicts' occur
only rarely. In this setting we feel that mutual inconsistency of files will not be a seri-
ous problem, and that emphasizing the availability of copies of files over their mutual
consistency will be a workable scheme. This is not the kind of environment, for exam-
ple, characterizing a database system with high transaction rates and volat111ty, and
the results here will probably not be useful for that area.

The paper is organized as follows. Section 2 briefly reviews previous work on
version vectors and detection of mutual inconsistency. Section 3 provides an exten-
sion of this approach which we call "log filters" permitting the detection of mutual in-
consistency of sets of files, not just single files. Section 4 then describes various con-
siderations in integrating the above mechanisms into a consistent user interface.
These considerations lead us to an actual design in Section 5, which is consistent even
during periods of network change.

2. Detection of Single-file Mutual Ihconsistency

In [PPRe B81] a technique is described for detecting (and possibly resolving) mu-
tual inconsistency of multiple copies of a single file, involving ‘origin points” and 'ver-
sion vectors'. The technique works basically by encoding the partial order describing
the set of updates made at various sites into 'vectors”. Independent updates, leading
to incomparable versions in the partial order, have incomparable vectors as a result.
Version vectors thus may be used to detect independently made updates accurately;
they provide a better check for mutual inconsistency than various naive methods.

Put briefly, whereas previous mechanisms such as timestamps detected
sufficient conditions for a conflict to exist, version vectors seek to provide a mechan-
ist detecting necessary and sufficient conditions for conflict. The case is made that
version vectors detect as much about inconsistency as possible, given that one does
not know anything about the semantics of updates applied to the file. For example,
the equality of two copies of a file modified independently during a network partition
does not imply their mutual consistency. Note that when our bank account is debited
equally in two mutually inaccessible locations, we cannot assume that our current bal-
ance is the new value stored at both these locations!

Below we review the results from [PPRe 81]. The exposition is brief, and the
reader is referred to the paper for a more thorough treatment.

Define a partition to be a subset of sites in the network in which all copies of a given
file are maintained with mutual consistency. Note that this definition is not strictly
tied to the physical details of network failure. Instead, partitions are defined relative
to files and to the higher concept of consistency. Although two sites with different
versions of a file f may be communicating for some time, we do not consider the sites
to be in a common partition relative to f unless this difference in the two versions is
resolved.

164

Deﬁnztwn

An origin point OP(f) of a file f is a system-wide unique identifier which is generated
when f is created. It is an immutable attribute of f, although f’s name is not. No
matter how many times f is renamed or modified, OP(f) will not change. (Here, 'f"
refers to a specific file and is not a filename.)

An origin point for a file might be something like a {creation time, creation site
number)-pair. Origin points do not uniguely specify files, but indicate when two files
are based on a common file. They permit us to distinguish between two kinds of
"conflicts" that partitioning may cause in file systems:

Definition

After a partition, a name conflict is detected if two or more files from the various par-
titions are found, which have the same name but have different origin points. A ver-
sion conflict is detected if two or more files are found which have the same origin
point, but have different contents and/or different names, i.e., the files are different
modifications of a common original file. Generally, we say that a file conflict is detect-
ed after a partition whenever either a name- or a version conflict is detected. File
conflicts are reconciled when file names again uniquely specify a file. (Equivalently,
file conflicts are resolved when mutual consistency is restored.) Reconciliation may be
achieved by individually modifying, deleting, or renaming the various copies.

Definition

A Partition Graph G(f) for any file f is a directed acyclic graph (dag) which is labelled
as follows: The source node {and the sink node if it exists) is labelled with the names of
all sites in the network having copies of file f, and all other nodes are labelled with a
subset of this set of names. Each node can only be labelled with site names appearing
on its ancestor nodes in the graph; conversely every site name on a node must appear
on exactly one of its descendants. In addition, a node is marked with a "+" if f is
modified one or more times within the corresponding partition.

Taking into account the definition of a partition, we see each node in G(f)
corresponds Lo a point in time at which the labelled sites "synchronize' their informa-
tion about f. All sites appearing in the node label reconcile any differences that might
exist among their copies of f. Of course, all connections in G(f) between nodes indi-
cate transitions of the network under partitions or merges.

An example of a partition graph is shown in Figure 1. Here there are three
sites, A, B, C, which support f. Multiple partitions of these initially connected sites oc-
cur, so that at first sites A and B can communicate, but are isolated from site C. Later
A and B become isolated, as does C, but B and C resume communication. Ultimately all
three sites are reconnected at the final node of the graph. The file f is modified first
in the {A,B} partition, and again in the {B,C] partition. Note that this sequence of
modifications should not result in a version conflict notice since site B at all times has
the latest version of f; intelligent implementation of conflict detection should realize
this fact and avoid notifying site A that their f versions conflict with the current one.

Definition

A wersion vector for a file f is a sequence of n pairs, where n is the number of sites at
which f is stored. The i-th pair {(S;: v;) gives the index of the latest version of f made
at site S;. In other words, the i-th vector entry counts the number v; of updates to f

165

< A:0, B:0, C:0>

< A:0, B:0, C:0>

< A:2, B:0, C:1>

"CONFLICT! Version vector
becomes < A:3, B:1, C:1> after
reconciliation at site B

Figure 1. Partition graph G(f) for f with version vectors
~effective at the end of each partition

made at site S;. (Actually, any strictly monotone value will suffice for »;, such as a
timestamp from site S;.) We will use letters A,B,C,... to designate site names, and will
write vectors in notation like < A:1, B:2, C:3>.

Definition ,

A set of version vectors are compatible when one vector is at least as large as any oth-
er vector in every site component for which they each have entries. A set of vectors
conflict when they are not compatible. :

For example, the version vector < A:3, B4, C:2> dominates <A:2, B:1, C:2> so
the two are compatible; and < A:3, B:1, C:2> and < A:2, B:4, C:2> conflict, but < A:3, B:1,
C:2>, <AR, B4, C:2>, and < A:3, B:4, C:2> do not conflict, since the third vector dom-
inates the other two. In Figure 1 version vectors are given for f in every partition. The
vector <A:2, B:0, C:1> associated with the node labelled BC, indicates that f was
modified twice at site A, once at site C, and nowhere else. Note in particular that dur-
ing the {A,B] partition, the file is modified twice at site A. The final merge results in a
conflict.

166

We adopt the following usage of version vectors:

1 Each time an update to f originates at site S;, we increment the S;-th com-
p 2]
ponent of f's version vector by one. The vector is committed with the updated
file.

[2] File deletion and renaming are treated as file updates. Deletion results in a
version of the file of length zero, for example; when all versions of a file are of
length zero, information on the file may be removed from the system.

[3] When version conflicts are reconciled within a partition, the S;-th entry of the
version vector for the reconciled file is set to be the maximum of the S;-th en-
tries of all of its predecessors, and in addition the site initiating the reconcilia-
tion increments its entry. This ensures future compatibility with any old ver-
sions of the file still remaining on the network.

[4] When copies of a file are subsequently stored at new sites, the version vector is
augmented to include the new site information. The definition of compatibility
above still holds. Thus vectors are not fixed in length, and may grow. Removal
of copies from sites may be handled in an analogous manner.

Name conflicts and version conflicts are completely different in nature, and are
detected differently. Keeping the origin point of a file is sufficient to detect name
conflicts, but not version conflicts. The following result from [PPRe 81] indicates that
version vectors detect necessary and sufficient conditions for there to be a version
conflict.

Theorem. 1
A version conflict must be reconciled at a node in G(f) if and only if f's version vectors
conflict at that point.

As mentioned at the beginning of thls section, then version vectors serve to encode
the partial order defined by the partition graph: If two updates in the graph are 'in-
comparable', then the corresponding vectors are incomparable as well, and conflict.

3. Lag Filters and Multi-file Inconsistency Detection

In the previous section a mechanism has been exhibited which guarantees that
independent sets of updates to a single file f will be detected. While this will cover
most of the usage patterns likely in an operating systems environment, this mechan-
ism is not sufficient for detecting multi-file independent updates. Consider Figure 2,
with the following scenario: :

We have two files, f and g, replicated at sites A and B. A partition separates
these sites. Initially, the copies of the files are mutually consistent, and each has ver-
sion vector < A:0,B:0>. Transaction T1 at site A reads the contents of both f and g,
then meodifies file f, incrementing f's version vector to < A:1,B:0>. Similarly, transac-
tion T2 at site B reads both f and g, but decides to modify file g, incrementing g's vec-
tor to < A:0,B:1>. At this point, the partition ends. The system discovers that f and g

167

have each been modified, but only once. Using the results in §2, the system simply
propagates the indicated updates. Unfortunately, this action is not correct: if we view
f and g together as a data object (as we should in this case), we see that a conflict
should occur,

SITE A
(f)< A:0,B:0> < A:0,B:0>

Figure 2. Multiple-file conflicts are not detected by version vectors alone

3.1. Conflicts and serializability

The problem of single-file and multi-file conflicts can perhaps best be described
in terms of the traditional notion of serializability. If we consider the transactions T1
and T2 above as transactions, then by permitting them to .execute 'in parallel"in their
individual partitions we achieve a result which is not serializable, cf. [BS 78].

Let us assume for the rest of this paper that all work done is broken into tran-
sa.ctions which have the following structure:

[1] Initially a set S = {f ,:site,,f g:Siteg....f m Site,,} of files is specified, giving the sites
at which the files are stored. Each of these copies are locked for the duration
of the transaction. This set of files is the readset of the transaction.

[2] Some subset S' of these files is modified; all updates are committed simultaneous-
ly. The set 8'is called the writesef of the transaction. Note that the writeset is
always a subset of the readset.

[8] Messages are sent to all other sites holding copies of files in ', notifying them to
change their copies to reflect the new modifications.

[4] The transaction completes, and all its locks are released.
A given transaction 7; may thus be viewed as having essentially two actions: first, a

"lock” instruction I; which locks its readset, then a "commit” instruction € which
writes its writeset. '

168

Clearly more sophisticated models of transactions are possible, and knowing
more about the transaction’s structure {(both syntactic and semantic [PK 79]) will be
useful in determining when conflict situations have arisen. Many extensions follow na-
turally, and we omit their description here. (For example, permitting transactions to
create files is a straightforward extension, but requires handling of the 'name
conflicts' described above.) The assumption that the writeset is contained in the read-
set is not unguestionable, but we make it here mainly to avoid certain NP-
completeness results [Papa 79].

Note in Figure 2 readset(T1) = readset(TR) = {f,g}, writeset(T1) = {f}, and writeset(T2) =
{g}. However, more precisely, we must distinguish between the various copies of f and
g. If we use subscripts to denote site locations, then we should say readset{T1) =
¥4.843, writeset(T1) = {f4.fp}; and readset(T2) = {fg.gp}, writeset(TR) = {g .gp}. It isim-
mediate that in this case non-serializable execution is the cause of file conflicts.

This understanding is particularly important if we consider more intricate
scenarios. For example, suppose there are three transactions T1, T2, T3 executed in-
dependently in different partitions, with:

readset(T1) = {f,g} writeset(T1)
readset(T2) = {g.h] writeset(TR)
readset(T3) = {f,h] writeset(T3)

3]
ta}
{h}

Although these transactions are pairwise-serializable, as a group they are not,
and their independent execution will lead to file conflicts. Most treatments of serial-
izability are centered around the notions of histories or logs [Papa 79]. However in
this context such an approach is unsatisfying, not only because a global concept of
time is intangible in distributed systems [Lamp 78], but also because we are con-

cerned with operation of the system during network partitions. We therefore concen-
trate immediately upon graphs.

Definition
An erecution graph G = G(T,,....T,) is a directed acyclic graph with nodes
§Co.L1,CrLa, . . . Ln,CniLp s} where §4;,C; | i=1,..,n} are the lock and commit opera-

tions from the transactions, Cy initializes all files, and L, reads all files. The edges of
G are pairs (z,y) where either z = [; andy = (; or operation y reads what z writes.

Definition
For any pair of vertices x,y in a directed graph &, the relation z < ¢ vy is true if
there is a path from z to y in G.

Definition

The precedence graph G of an execution graph G contains G and all edges (z,y) such
that x < y is false and at least one of the following conditions holds:

(1) readset{z) n writeset(y) # ¢

(2) writeset{z) n readset(y) #

(3) writeset(z) N writeset(y) #

Definition
An execution graph is serializable if its precedence graph is acyclic.

Definition
A set of files 5 is put into conflict if there exist transactions 7}, ..., 7, whose execu-

169

tion graph is not serializable, and

n
S n) readset(T;) #¢.
=1

Now intuitively, the problem posed by Figure 2 can be eliminated by saving se-
quences of version vectors for each sef of files accessed by a process. With the exam-
ple above, the version vectors for {f,g} at site A are < A:1,B:0> <'A:0,B:0>, while at site B
they are < A:0,B:0> < A:0,B:1>. These sequences of two vectors, viewed as single enti-
ties, are clearly incompatible if we make obvious modifications to the definition of
compatibility.

If S is put into conflict then, after completion of T,...,7,, the version vector
sequences for the sets §,,...,S, will be (intuitively) incompatible. This is the main
insight we need to implement conflict detection in the next section. In the special
case where §; = -+ = 5, = {f}, we arrive at the previously-discussed result for single
files, which is that version vectors are sufficient for detecting conflicts.

The big difference between what is being proposed here and previous work on
serializability is that here we are concerned with accurate delecfion of serialization
errors after they happen (as they would during network partitions), rather than with
their prevention. Naturally, it is possible to extend the approach here as with times-
tamps to prevent these errors, and version vectors could be used to implement con-
currency control. However, doing so would require restricted operation during parti-
tions, in which at most one partition could modify a file, and we are more interested
here in avoiding such restrictions. Our objective is to achieve high availability.

\

3.2. An implementation for multi-file conflict detection

In this section we overview the version vector/log filter mechanism for detec-
tion of file conflicts mentioned above. Due to space limitations we keep our presenta-
tion brief; it is hoped that by analogy with previous work for the single-file case vari-
ous details of implementation will be clear. ‘ ‘

To detect file conflicts for f, we must now monitor all transaction sets of files 8
containing f for serializability errors. This may be done as follows.

Let us imagine a lag listing all process’s filesets S as they are recorded. Define,
for each file f, extent(f) to be the set of files involved with f by some filesets from the
log. Formally,

extent (f) = tg | (f.g9) e B*}
where R* is the transitive closure of the binary relation R defined by

R = {{f,.f2) | there is an S in the log such that {f ;.f 2} C S}.

170

This definition expresses the "extent" of all files involved in transactions with f.* Qur

idea here is to provide a simple means of finding extent(f) for all files f. Note that for
example we can easily show

Prop
{f} is put into conflict iff extent(f) is put into conflict.

Another consequence of the above definition is that

Prop '
g ¢ extent(f) «— ezxtent(g) = extent(f)

Thus extent divides the set of all files into equivalence classes. We store these
equivalence classes, and update them as transactions occur. In fact the stored values
of the equivalence classes and their version vector sequences are all we need to detect
conflicts -- we do not, in particular, need the log. We call this stored set of classes a
log filter because this equivalence class maintenance can be thought of as a process
which filters the log information. Also, it turns out that the term 'filter" is used in
combinatorics to describe complete sub-partial orders. The log filter provides a sim-

ple refinement of the means of saving sequences of vectors suggested in the previous
section.

Definition

A log filter LF is a family of sets, each set S ={f,,...,f] drawn from a set of files.
LF has the following two properties: '

(1) 1IfS,Tarein LF,and S# T.then Sn T = ¢.

(2) Each S in LF has associated with it a number of sequences of version vectors,
each sequence consisting of m concatenated version vectors or null vectors,
where m = cardinality of S. These sequences of version vectors (or null vec-
tors) give the state of files following some transaction.

This may seem somewhat abstract, but it is really very straightforward. We are
proposing a mechanism which is additional to version vectors for detecting multiple-
file joint inconsistency. The filter LF for our file system is used in the following way:

[1] Initially, LF = ¢.

[R] Upon commit to a set of files S = {f; site,,...,fy wife,] do the following
things:
(a) if S is contained in some set S'={f ;site;,. ... m:Sitey,] in the LF al-

ready, attach the version vector sequence

o< 'Uil> < 'Uf,a>‘...< 'U"m> ane

* Viewed differently,

extent(f)=FIXPT Uy S v U extent(g)

Sinlo & axlent
S contaings I g)

171

to S, where <wy> is the version vector for f,-,j. and the "..." indicate that
null vectors should be used as placeholders.

(b) if S is not already contained in LF, incorporate S into LF using the fast
UNION-FIND algorithm [AHU 74, Tarj 75] **:

St 1= ¢
for each f in S do
begin
Sy := FIND(f); /* get current extent of f */
if S; = ¢ then S, = {f};
/* [was newly created by transaction T
- add it to the log filter */
UNION(S; .S7.Sy); ,
/* add S, to extent of T */
end

It is assumed here that the UNION operation also incorporates ver-
sion vectors sequences in the obvious way.

[8] To check if a file is in conflict:

S := FIND(f); /* get extent in LF */
if S has incompatible version vector sequences
then return (CONFLICT)
else return (OK)

Here '"incompatible” is a straightforward extension of the term in §2. We
say one version vector sequence dominafes another sequence if it is greater on
all file entries where the two sequences are defined. A set of version vector se-
quences are compalible if there is one which dominates all the rest; otherwise,
they are incompatible, or conflict.

[4] Entries in the log filter must be maintained as long as conflict might exist. This
implies, for example, that during network partitions the filter may have to be
fully maintained. When there are no network difficulties, however, the filter can
drain as the system becomes quiescent. :

** Recall that, in the UNION-FIND algorithm, we have a collection of mutually disjoint
sets. The operation UNION(S,,Sz s) takes two of these sets, merges them, and names
the resulting union S (S; and S, are destroyed). FIND(f) returns the name of the set
containing f. '

As observed in [Tarj75] and [AHU 74]," the UNION-FIND operations can be
implemented very efficiently, so that for example a sequence of N-1 UNIONs and M= N
FINDs can be executed in time essentially linear in M. The overhead of log filter
maintenance is thus small.

172

Upon reconnection of two {or more) partitions, entries from one log filter
are added to the other(s) by using repeated application of step [2] above, where
the sets S are now equivalence classes in the different log filters. The resulting
log filter may be thought of as the union of its precursors, and is ‘less fine" in
its partitioning of the set of all files.

We thus have a simple mechanism for detecting conflicts in a multiple-file en-
vironment. In the next sections we discuss problems of implementing such a mechan-
ism in a real system environment.

4. Actual Resolution of File Conflicts

Suppose now that we are presénted with a bona-fide file conflict. That is, follow-
ing some partition we discover either two files which conflict in name, or a file which
has been modified independently at two or more sites. What can be done? As has been
noted elsewhere, there is no universal way to coalesce updates made in different parti-
tions without knowledge of the update semantics. Since in many cases the semantics
are sufficiently complicated that automated recovery is not possible, some kind of
user intervention will be necessary.

The occurrence of some file conflicts is inevitable if one accepts the philosophy
adopted here that file availability is important. Consistency and availability just ap-
+ pear to be fundamentally incompatible goals. However, the file conflict situation does
not have to be made unpleasant for the user. As long as conflicts are handled con-
sistently throughout the system, and the user's options are well-understood in any
conflict situation, occasional mutual inconsistency of files should not offset the advan-
tages obtained from increased file availability. The philosophy behind this statement
is that inconsistency may be tolerable when one is aware of its possible extent.
(Remember: we are assuming a network operating system environment, in which up-
date rates are moderate and conflicts are rare.) This section therefore discusses what
a coherent system policy on file conflicts involves, and then indicates how certain
features might be implemented.

System policy must be deﬁnéd for each of the following questions:
(1) When and how are file conflicts detected?
() Is permission to access a file altered by the 'fact that the file is in cbnﬁict?
(8) How are users informed of conflicts?

(4) What support does the system provide the user for resolving conflicts?

4.1. Detection of Conflicts :

173

There are at least three times at which one might wish to detect conflicts fol-
lowing a partition merge: -

(a) immediately after the merge, and
{(b) upon access to files,
(c) sometime after (a) but before (b).

Which is best may ultimately depend upon other policy decisions made below (for ex-
ample the means by which users are informed of conflicts). However it is easy to show
that a general system policy cannot get by with conflict detection at only one of these
three points. First, the system must cope with the case where file conflicts are detect-
ed upon access, because it is always possible that the user reference a file immediate-
ly following a partition merge {(at the earliest point where conflict detection would be
fedsible). Moreover, system policy must be defined on what to do with active processes
in different partitions which are caught independently modifying copies of a file (gen-
erating a conflict) when their partitions merge. Second, conversely, handling conflicts
upon access is not adequate in itself, since for example the system must check for file
deletions made in one partxtlon which are to be propagated after the merge. Clearly
conflicts must be detected using some kind of mixed strategy which operates at times

(a), (b). and (c).

Detecting conflicts upon file access may be undesirable for at least two reasons:
(1) File accesses will become slow following partition merges since all copies of an ac-
cessed file will have to be consulted in checking for a conflict. (2) Detection upon ac-
cess may not provide a user with sufficient warning to recover from the conflict: he
may be halfway through a long sequence of deletions and/or extensive file updates
when he finally accesses the file and the conflict is noticed. This problem will be
touched upon below in the discussion of how users are informed of conflicts.

Detecting conflicts immediately following partition merge may be undesirable
because of its high temporary expense. Merges will be followed by heavy system traffic
attempting to find name and version conflicts. Thus the system might grind to a halt
every time faulty hardware is repaired! However, as with the consistency schemes in
Section 1, it is easy to make arguments for the speed of information propagation.
Having more information faster can never be detrimental.

Detecting conflicts gradually after merges might be implemented in several
ways. One is to check all of a user’s files when he logs onto the system, and notify him
of any conflicts. Also he might be notified of repairs in network links, so that he can
check for conflicts detectable after partition merges for himself. Another scheme is
to set up detection processes which run constantly in background and, through re-
peated polling of directories, ultimately find all conflicts when the system is stable.
Exactly what 'gradually” might mean would be part of the system policy; one alterna-
tive is to assign these backgroind processes a priority which could be varied as a reli-
ability parameter; also one can parametrize the reliability levels of files, and have the
background processes concern themselves with the highest reliability files first.

4.2. Accessibility of files in conflict

174

There are basically two alternatives for system policy on restricting access to
files which are in conflict. First, one can permit all access regardless of the conflict.
Second, then, one can restrict certain kinds of access (read, write, etc.) to certain
users as soon as conflict is detected.

Our feeling is that the first alternative makes more sense. Restricting access is
obviously inconsistent with the goal of availability, but a more compelling observation
is that tasks which were not permitted to run after a partition merge because of ac-
cess restrictions would have executed perfectly normally if the merge had occurred a
few seconds later. This "discontinuous" behavior suggests real weakness in the second
approach. In those situations where consistency is more important than availability,
and version conflicts are likely, one would probably be better off prohibiting access
after nefwork partifioning instead of after file conflict detection.

4.3. Informing users of file conflicts

The first issue that must be addressed is: #ho should be informed concerning a
file conflict? Normally it might be most effective to notify the creator of a file, but
more generally one should notify all users who have created conflicting versions, or
have created different files which conflict in name. {One might even want to notify all
users who have referenced the file in conflict, if this is possible, since they may wish to
reference it again.) Whereas name conflicts are easily resolved with muitiple users -
everyone simply modifies their file name - version conflicts may require a fair amount
of arbitration and possibly even intricate merging of the different file versions. This
leads to the secondary question of what must be said to users when version conflicts
arise.

The other main issue is now: How can the system react to, and inform the user
of, conflicts when they are detected? Any policy decision here will strongly impact the
system's structure. There are several possibilities, depending on when the conflict is

"~ detected. If the conflict is discovered upon file access, the system can:

(a) roll back the user’s process (‘assuming that they can be "undone', in the sense
of undoing a transaction), and notify the user somehow of the problem,

(b) suspend the user's process temporarily and enter an interactive routine per-
mitting the user to inspect the alternative files and choose one,

(c) suspend the user’s process temporarily and enter interactive conflict resolu-
tion software,

(d) just make an automated selection from the available choices using a fixed,
well-publicized heuristic, and quietly continue the user’s process.
Approach (a) is fine in transaction-oriented environments, where transaction
processes can be re-spawned automatically to reattempt the same rolled-back task,
but is less desirable in an interactive, network operating system environment since
work can not always be recovered so easily. Approach (b) may not work for version
conflicts in some applications, since no single version of the file may be adequate
(consider an inventory file, for example). Further, approach (c) will also not generally

175

work for version conflicts if different users have generated the differing versions, since
then some arbitration may be necessary in finding a mutually agreeable resolution of
the conflict. And clearly approach {d) will not always have the desired result, though
in many situations it will make a reasonable choice. '

In all cases the system must notify the affected users, via some kind of message
. or mail, of the conflict and of its resolution if one was decided upon. (The exact na-
ture of the mail or message is yet another issue.) When the conflict is detected by the
gystem 'in background" with the users not immediately available for consultation, the
only solution seems to be to notify the users by mail of their conflict.

Note that if we are prohibiting access from files in conflict, as discussed in Sec-
tion 4.2, the situation here is somewhat clearer. Since this prohibition seems unwise,

however, we will not pursue the subject further in this paper. An analysis appears in
[Rudi 80,84.5]. ’

4.4. System support for canflict resolution

The system must provide at least three kinds of support for handling conflicts:
(a) an interactive program for inspecting and choosing among conflicting files (Sec-
tion 4.3), (b) automated detection and resolution of conflicts for files which will not be
accessed (e.g., a file whose copies in different partitions have been independently
deleted), and (c) a program for interactively editing and merging the various versions
of a file into a consistent version. These facilities are vital in that a network-
transparent system flle structure provides the user with no nice way to distinguish
between the conflicting versions (by definition, they all have the same name). Finally,
the system may wish to perform (d) automated resolution for certain fypes of files
whose structure makes reestablishment of mutual consistency routine. Directories
and mailboxes are important examples [Fais 81].

In this section we will not attempt to describe the actual recovery mechanism
used by the system in recovering from site or network failures. The actual dynamics
of recovery {whether to use a centralized or distributed algorithm, what protocols
should be employed, ete.) is a delicate problem with complex performance tradeoffs
which will have to be deferred for later study. We remark, though, that the recovery
strategy will be most effective if it handles failures of short duration differently than
those of long duration. Transient faults should not bring about the exhaustive com-
parison of directories and system information at nodes in the network that one ex-
pects from recovery after long network partitions.

The system either solves a file version conflict automatically by calling a
conflict-reconciliation software or informs the user that real conflict was found where
automated resolution is not possible. In the latter case the user has to reestablish file
consistency. This system policy puts the burden of reestablishing file consistency
squarely on the shoulders of the user, but only when there is a real conflict which
cannot be dealt with otherwise.

User file conflict reconciliation might raise a lot of problems. First, there is the
problem of deciding who is the user responsible for reconciling the conflicting files.
We could say that only the owner of the file can perform file reconciliation. However,
for some applications it would be desirable that either a superuser or a set of users
could reconcile the file. Second, there is the problem of inconsistencies kept for a

176

long time if the user responsible for doing reconciliation is not present or if he does
not want to decide right away. Finally, there is the problem of rolling back transac-
tions of users not present. They would not be aware of the reconciliation operation
and they would not know that their transactions must be redone. It would take a long
time until the user logs in and discovers a message from the system asking him to
redo some transactions.

We might have even political battles between users. Since files are shared, each
user could decide that his updates are the correct ones. Users could have the tenden-
cy to reconcile files by deleting others’ updates and keeping their own updates. Users
would prefer to maintain their transactions and would ask other transactions to be
rolled back. It seems that this procedure does not work. Users will either have heavy
discussions every time a multiple copy file is inconsistent and a conflict resolution de-
cision has to be made or they would create new files for own use destroying the advan-
tages of having multiple file copies and reducing availability.

The advantage of automatic reconciliation is that inconsistencies would be
corrected as soon as they are detected, thus, files would be as consistent as possible.
Automatic reconciliation can be performed only by furnishing the system enough se-
mantic information for each application. The system must provide to the users tools
for reconciling conflicts. Automated reconciliation procedures can be made available
using default parameters. Users can set these parameters according to the semantics
of each application. Users could get together for deciding in one user group a recon-
ciliation agreement for each fille. This agreement would create a standard reconcilia-
tion procedure avoiding group meetings over reconciliation and avoiding long-term
complex inconsistency. Another advantage is that all users will be aware in advance of
system behavior for file conflict resolution. Moreover, inconsistencies will not be kept
for a long time since the system can call the conflict-resolution procedure just after
finding a conflict or upon partition merge. As a result, automatic reconciliation is ad-
vantageous over user reconciliation achieving a system with high availability and at
the same time providing data consistency.

5. A basic system policy

In section 3 we have presented a simple multi-file conflict detection mechanism.
The proposed approach uses sequences of versions vectors and log filters. Instead of
keeping a list of sequences of version vectors for every update made in the system, log
filters are used to reduce the number of sequences of version vectors the system
needs to store as log information. In order to detect conflicts we need keep only the
‘latest” sequence, i.e., those sequences which are not dominated by any other se-
quence,

In section 4 we have discussed problems of implementing conflict detection and
problems of defining a consistent user interface. Section 4 discusses what a coherent
system policy on file conflicts involves, and then indicates how certain features might
be implemented.

177

In this section we outline a simple policy for system management of a (poten-
tially inconsistent) distributed file system having the transparency properties
described above.

Files in our system must be implemented in such a way that they permit
conflict detection as in section 3.

Our conflict resolution policy is based on the notion of a transaction. Any file
update operation must be within the boundaries of a transaction, limited by begin and
end statements. The transaction-like format would be as follows:

begin,

getfufa - ifn

end;

The idea is that the get statement tries to establish an "environment” (some-
what like the pseudo-temporal environments presented in [Reed 78]). The user is
guaranteed that this environment will exist for the duration of his transaction unless

there is a non-recoverable failure. Such a failure will lead to the transaction being
aborted.

The get statement has the following functions:

[1] The get statement informs the system the set S = {f ;.S 2. m]} of files which the
user plans to use. These files are assumed to be read subsequently, and some
of them are eventually updated. This set S of files is the readset of the transac-
tion and forms an environment where the transaction is permitted to work on.

[2] The get statement checks that each of the files f; is consistent (i.e., it does not
have a file conflict). If a file conflict is found the transaction is not executed.
The system either solves the conflict automatically by calling a conflict-
reconciliation software or informs the user that real conflict was found where
automated resolution is not possible. In the latter case the user has to reestab-
lish file consistency.

[3] Each file specified in the get statement is locally locked for the duration of the
transaction.

At the transaction’s end, that is, when the end statement is executed the follow-
ing situation occurs:

[1] The system updates the log filter.

[2] All updates are committed simultaneously. Update propagation is performed by
sending messages to all other sites holding copies of files specified in the wri-
teset of the transaction.

[3] We might wish to check for conflicts at this point. If a file conflict is found the
transaction should be rolled back. Again, this is not really necessary, since

178

conflicts will be detected later. HoWever, it may be desirable to enforce con-
sistency to this degree. This mechanism is appropriate for applications where
file inconsistencies must be detected as soon as possible.

[4] The transaction completes, and all its locks are released.

The transaction solution actually solves the problems of implementing conflict
detection and defining a consistent user interface as presented in Section 4. For ex-
ample: ’

[1] Using log filters is a nice way to handle the ‘How do we solve the after-partition

' merge?"' problem. File accesses would become slow following partition merges
since all copies of a file will have to be consulted in checking for a conflict.
However, using log filters, conflict detection can be done easily either on
demand or by a constantly-running background process.

[2] Using the get statement eliminates surprises in the middle of execution (' am sor-
ry, your file is in conflict. Please log off"). The user may be halfway through a
long sequence of deletions and/or extensive file updates when he finally
-accesses one file which is in conflict. Our policy avoids this by requiring the
user to inform the system in advance of the files he plans to use. TFile conflicts
can be checked at this time, giving the user an environment which is conflict-
free when the transaction starts to execute.

The system policy we are proposing here can be seen as a method for imple-
menting concurrency control. The difference between traditional concurrency con-
trol mechanisms and our proposed method is that here we are performing defeclion
rather than prevention of synchronization errors. In some cases prevention cannot be
attained forcing us to use detection. For example, currently we recommend against
global locking (for the needs of a distributed file system at least). Global locking is
hard to be implemented and even impossible under network partition. This still leaves
us with a consistent approach if local locking is used (i.e., only one process may use a
particular copy of a file) since non-serializable updates can simply be detected as
conflicts later on. Such an approach is not desirable where conflict reconciliation is
expected to occur a lot or where it is especially painful. :

By checking for conflicts both in the beginning and at the end of a transaction,
we avoid all update conflicts within partitions. If a conflict is detected at the end of a
transaction, then another user has updated one of the transaction’s files. The tran-
gsaction is not completed at all, but it is rolled back and the user informed of the prob-
lem (note that this process can be easily automated).

When users are processing files independently in different partitions, one user
is notified of file conflicts whenever he starts a transaction and the partitions were al-
ready merged. The transaction approach assures that once a file conflict is detected
no updates are performed at all on that file until the file is reconciled. Note that here
we are avoiding the so called "domino" effect. :

179

The described transaction approach might present the two following drawbacks:

[1] First, there is the possibility of a livelock, i.e., starvation of one or more transac-
tions. Suppose the following situation occurs. Transaction T1 starts executing
using file f, version < 1>. Upon execution of the get statement, in the begin-
ning of the transaction, the system verifies that there is no conflict for file f al-
lowing the transaction to proceed. Assume now that transaction X starts exe-
cuting using the same file f. Since transaction T1 has not finished we still have
version < 1>. While transaction X is executing, transaction T1 ends and writes
file f version < 2>. After that, when transaction X ends it will find out that a
conflict exists since file f has been updated by someone else. Therefore, tran-
saction X has to be rolled back and started again. This situation could repeat
for other transactions. Consequently, transaction X would never complete suc-
cessfully and we say that X starves to death. This situation is known as a
livelock and it is illustrated by the figure below. Note that transactions T1, T2,
and T3 complete successfully, whereas transaction X never executes up to com-
pletion.

If the degree of concurrency is high, conflicts would occur freguently
causing waste of processing power, since transactions are executed up to the
end before a conflict is detected. Moreover, processing time and effort is neces-
sary to roll back transactions.

The transaction approach presented here is suitable for systems with low
degree of concurrency and where conflicts occur only rarely. However, it has
been pointed out by [BSR 80] that in a large class of applications, most transac-
tions require little or no synchronization at all because they never interfere
with each other. In most applications the operations of transactions are known
a priori and most of them do not conflict.

[2] Second, there is the possibility of occurring unfairness. Suppose there is one long
transaction T1 updating file f version < 1>. After a substantial amount of time, -
a short transaction T2 starts, updates just one record of file f, and terminates
successfully writing file f version <2>. Later on, when transaction T1 ends, a
conflict is detected since file f has been modified by transaction T2 having a
different version. Consequently, the system has not been fair to transaction T1.

The longer the transaction, the greater the probability of occurring a file
version conflict. The system would not be fair for long transactions due to the
presence of small transactions accessing the same files. In order to solve this
problem we do not need to limit the transaction size. The system will work well
for either small or long transactions. What we need is to have transactions with
approximately the same size. However, long transactions are not desirable, be-
cause if it is necessary to roll them back more work needs to be redone.

One user might complain saying that the above transaction approach is not
suitable for him because he does not always know in advance the set of files he would
use in one transaction. He might have subroutines which require files not present in
the set of files listed in the get statement at the beginning of the transaction. There-
fore, the system must provide more flexibility by allowing the user to specify multiple
get statements. One transaction with multiple get statements looks like as the one

180

_T1 starts using f<1>

—_X starts using f< 1>

L_T1 writes f< 2>
— TR starts using f< 2>
X ends: Conflict!

r_.._X starts again now using f< 2>

| TR writes f< 3>
— T3 starts using f< 3>
X ends: Conflict! TIME

__X starts again now using f< 3>

__T3 writes f< 4>

L__X ends: Conflict!

Figure 3. Transaction X in a livelock situation.

shown below:

begin;

get fFr.fa .. . Jn
geltg,9m

end;

181

Note that transactions still have boundaries established by the begin and end
statements. Multiple get statements would request multiple checks for version
conflicts. For each issued get statement, the system might check the version vectors
looking for conflicts. The difference between the single-get and the multiple-get is
that, in the former case, the user has no surprises in the middle of the transaction
{(the transaction is not started unless there is no conflict), while in the latter case, the
user can have surprises in the middle of his transaction ("Sorry, your transaction can-
not proceed. A file version conflict was found.”). If a file version conflict is found after
the execution of a inner get statement the transaction has to be rolled back and
started again. This mechanism works similarly to the conflict checking performed by
the end statement, which may also cause transactions to be rolled back and started
again. Eventually, to roll back transactions is really not necessary if we can live with
some inconsistency. The system might just declare a conflict and inform the user who
can decide either to roll back the transaction or to proceed even though the files are
not consistent. Without knowing the semantics of each application the system cannot
take this decision. One must provide the user flexible tools to help him to take the
best solution. '

Note that the single-get statement given at the beginning of the transaction as-
sures a conflict-free environment when the transaction starts to execute but requires
the user to inform in advance of the set of files to be used. Multiple-get statements
give more flexibility to the user by allowing the specification of other files to be used
in the transaction. However, with multiple get statements the environment for the
transaction must be adjusted multiple times, and this adjustment is not guaranteed to
be successful.

8. Conclusions

We have shown that it is possible to implement a distributed file system which
supports redundant copies of files effectively, even in the face of network partitioning.
The kind of environment in which the results presented here will be useful are those
akin to a network operating system in which file availability is a greater problem than
mutual consistency among file copies. The proposed system is very simple in struc-
ture, and involves the addition of really only a few new constructs to the file system
design: file origin points, version vectors, and the log filter. These constructs were
shown to be adequate for detecting "file conflicts" (mutual inconsistencies) in an ex-
tremely straightforward way, requiring little system overhead. Strategies for resolu-
tion of detected file conflicts were then discussed. A simple conflict resolution policy
was described, based on the notion of a transaction. The resulting user interface,
although more restrictive than most interactive system interfaces, provides a con-
sistent view on the state of the network and various other benefits.

References

[AD 78]

[AHU 74]

[BS 78]

[BSR 80]

[ElL 77]

[Fais 81]

[FH 72]
[Gray 78]

[HS 78]

[KR 79]

[Lamp 78]
[LS 78]

[MPM 77]

[MB 78]

182

Alsberg, P.A. & J.D. Day, "A Principle for Resilient Sharing of Distributed
Resources,” Proc 2nd Intnl. Conf. on Software Engineering, 13-15 Oc-
tober 1976.

Aho, AV, J.Hopcroft, J.D.Ullman, 'The Design and Analysis of Computer
Algorithms", Addison-Wesley, 1974, sections 4.8-4.7.

Bernstein, P.A., Shipman, D.W., "A Formal Model of Concurrency Control

.Mechanisms for Database Systems', Proc 3rd Berkeley Workshop on Dis-

tributed Data Management & Computer Networks", August 29-31, 1978.

Bernstein, P.A., Shipman D.W., Rothnie J.B., "Concurrency Control in a Sys-

tem for Distributed Databases (SDD-1)", ACM Transactions on Database
Systems, March 1980.

Ellis, C.A., "A Robust Algorithm for Updating Duplicate Databases,"” Proc

. 2nd Berkeley Workshop on Distributed Data Management and Computer

Networks, 1977, pp. 1146-158.

Faissol, 8., "Operation of Distributed Database Systems Under Network
Partitions”, Ph.D. dissertation, UCLA Dept. of Computer Science, July
1981.

Farber, D.J. & Heinrich, F.R;, 'The Structure of a Distributed Computer
System -- The Distributed File System," Proc ICCC, 1972.

Gray, J., "Notes on Data Base Operating Systems,"” in Operating Systems:
An Advanced Course, Ed. by R. Bayer et al., NY: - Springer, 1978.

Hammer, M. & D. Shipman, "An Overview of Reliability Mechanisms for A
Distributed Data Base System,” Spring Compcon 78, Feb 28-Mar 3, San
Francisco, pp. 63-85.

Kung, H.T. & J.R. Robinson, "On Op{:imistic Methods for Concurrency
Control,” Proc. 5th VLDB Conf., October 1979, Rio de Janeiro. To appear
in ACM TODS.

Lamport, L., 'Time, Clocks, & the Ordering of Events in a Distributed
System," CACM vol. 21, 7, 558-565 (July 1978).

Lampson, B. & H. Sturgis, "Crash Recovery in a Distributed Data Storage
System," Technical Report, Xerox PARC, 1978.

Menasce, D.A,, G.J. Popek & R.R. Muntz, "A Locking Protocol for Resource
Coordination in Distributed Systems," Tech. Rept. UCLA-ENG-7808, Dept.
of Computer Science, UCLA, October 1977.

Metcalfe, RM. & D.R. Boggs, 'Ethernet: Distributed Packet Switching for
Local Computer Networks," CACM Vol 19, 7, 395-404 (July 1976).

[Papa 79]

[PK 79]

[PPRe 81]

[Reed 78]

" [RG 77]

[Rudi 80]

[SM 78]

[Ston 79]

[Tarj 75]

[Thom 78]

[TSF 78]

183

Papadimitriou, C.H., 'The Serializability of Concurrent Database Up-
dates", Journal of the ACM, v.26, no.4, 831-653 (October 1979).

Papadimitriou, C.H., Kung, H.T., "An Optimality Theory of Concurrency
Control for Databases" Proceedings 1979 ACM SIGMOD Boston, May 30-
June 1

Parker, D.S., Popek, G.P, Rudisin, G., et al.,, 'Detection of Mutual Incon-
sistency in Distributed Systems,"” Proc. 5th Berkeley Workshop on Distri-
buted Data Management and Computer Networks, February 1981.

Reéd. D.P., 'Naming and Synchronization in a Decentralized Computer
System," MIT LCS Technical Report number MIT/LCS/TR-205, 1978.

Rothnie, J.B. & N. Goodman, "A Survey of Research and Development in
Distributed Database Management" Proe. 3rd VLDB, Tokyo, October
1977, pp. 48-61.

Rudisin, G.J., “Architectural Issues in a Reliable Distributed File System,"
M.S. Thesis, Dept. of Computer Science, UCLA, Report UCLA-ENG-8014
SDPS-80-001, April 1980.

Shapiro, R.M., & R.,E. Millstein, 'Failure Recovery in a Distributed Data
Base System,” Proe. Spring COMPCON, Feb 28-Mar 3, 1978, pp. 66-70.

Stonebraker, M., "C.oncurrency Control and Consistency of Multiple
Copies of Data in Distributed INGRES," IEEE Trans on Software Engg.,
vol. SE-5, 3, 188-194 (May 1979).

Tarjan, R.E., "Efficiency of a Good But Not Linear Sel', Union Algorlthm
JACM 22:2, Aprll 1975, 215-225

Thomas, R.F., "A Solution to the Concurrency Control Problem for Multi-
ple Copy Data Bases," Proc. Spring COMPCON, Feb 28-Mar 3, 1978, pp.
56-62.

Thomas, R.F., R.H. Schantz, H.C. Forsdick, 'Network Operating Systems,"
Technical Report RADC TR-78-117, Rome Air Development Center, May
1978.

o,

185

SITE INITIALIZATION, RECOVERY, AND BACK-UP

IN A DISTRIBUTED DATABASE SYSTEM¥*

Rony Attar
Philip A. Bernstein
Nathan Goodman

Aiken Computation Laboratory
Harvard University .
Cambridge, Massachusetts 02138

August 1, 1981

*This work was supported by the National Science Foundation, grant number
MCS79~-07762, by the Office for Naval Research, contract numbex
N00014-80-C-647, by Rome Air Development Center, contract number
F30602-81-C-0028, and by the Dr. Chaim Weizmann Post-Doctoral Fellowships
for Scientific Research.

186

ABSTRACT

Site initialization is the problem of integrating a new site into a
running distributed database system (DDBS). Site recovery is the prob-
lem of integrating an old site into é DDBS when the site recovers from
failure. Site backup is the‘problem of creating a static backup copy‘of
a database for archival or query purposes. We present an algorithm that
solves the site initialization problem. By modifying the algorithm
slightly, we get solutions to the other two problems as well.

Our algorithm exploits the fact that a éorrect DDBS must run a seriali-
zable concurrency control algorithm. Our algorithm relies on the concurrency

control algorithm to handle all inter-site synchronization.

187

1. THE SITE INITIALIZATION PROBLEM

Site initialization is the problem of integrating a new site into a
distributed database system (DDBS). The goal is to make the new site look
like all other sites. In particular, transactions must be able to access
data at the new site in the same way as they access data at all other sites.
The main probleﬁ is to bring the database at the new site up-to-date relative
to the rest of the system. The problem is caused by replicated daté: if the
new site stores datum X and there are copies of X elsewhere in the system,
then the value of g at the new site must agree with its value in the rest
of the system. There is a simple brute force solution to the problem: just
turn off the DDBS, wait for all activity to subside, and then load the new
site's database in bulk. Our solution is almost as simple as this, but far
more practical.

Our algorithm exploits the fact that a correct DDBS typically runs a serializable
concurrence control algorithm (cf. [BG]). Concurrency control is the activity
of coordinating transactions that access a database concurrently. The goal is
to prevent concurrent transactions from interfering with each other. This goal
is usually formalized by the concept of serializability (e.g. [BSW, EGLT, Pa,
SLR, Th]): an execution of transactions is serializable if it is equivalent to
an execution in which transactions execute serially, one after the other with
no concurrency. Many algorithms are known for attaining this goal, e.q.
two phase locking and timestamp ordering.

As we will see, the site ipitialization problem can be neatly framed in
terms of sérializable executions. Once stated in these terms, a simple
solution will stare us in'the face. All we have to do is:

(1) turn on the concurrency control algorithm at the new site;

(2) tell all other sites to begin updating the replicated data at

the new site; and

188

(3) not let any transaction read a datum X at the new site until X
has been updated at least once.
These three steps are a sketch of ocur algorithm. The rest of the paper
fills in the details, and explains why the algorithm works. We also show

how to use the algorithm to solve site recovery and backup problems.

2. BASIC CONCEPTS

A dﬁstribﬁted database system (DDBS) is a set of sites interconﬁected by
a network. Each site runs two software modules: a transaction manager (TM),
which supervises the execution of transactions; and a data manager (DM), which
processes read and write operations on data stored at the site.

A logical database is a set of logical data items, denoted X,Y,Z. A copy
of a logical data item stored at a site is called a physical data item. We
use xl""’xm to denote the physical copies of X.

A transaction is a program that accesses the database by issuing READ and
WRITE operations on logical data items. For notational convenience we assume
that a transaction issues all of its READ's before any of its WRITE's.

Each transaction's execution is supervised by one TM. When a transaction
issues an operation READ(X), its TM selects a copy of X, say X, and issues an
operation read(xi) to the DM that manages X, . (We use upper case for logicél
operations and lower case for physical ones.) When a transaction issues an
operation WRITE(X), its TM issuesvan operation write(xi) for every copy X, ¢
of X. i

The logical data items that a transaction reads (respectively writes) are
called the transaction's readset (respectively writeset).

We mathematically model executions of transactions in a DDBS by a log.

A log describes the order in which read and write operations are processed by

189

DM's. Formally, a Zog is a partial oxder* of read and write operations.

For example,

r, [xl] —, [xl,x2]——>r3 [xl] — w3[zl]

Ly o= W lxgexy.yq.2] \\ l
' ry [yl]——>r:L [x2]—>wl [x

l’x2 1Y1]

is a 109.' Notationally, ri[xj] (resp. wi[xj]) denotes the execution of a
read (resp. write) operation by transaction 1 on data item xj. The

arrows indicate the partial order, which represents the order in which opera-
tiops were executed. So, in Ll’ wo[xl,xz,yl,zl] executed before any other
operation; rz[xl] executed before w2[xl,x2] and rl[xz], but it executed
concurrently with rl[yl]; and so forth.

We place one more constraint on the allowed form of logs: for each
physical data item x;, all eonflicting -operations on ¥, must be totally
ordered, ** where two operations on X5 conflict if (at least) one of them is
a write. That is, for each X;, we know the exact_order in which conflicting

operations occurred.

*A partial order is a binary relation, <, that is reflexive (a<a), anti-
symmetrical (a<b and a<b implies a=b), and transitive (a<b and

b <¢ implies a<c¢). Traditionally, a distributed execution is modelled
as a set of sequential logs, one per DM [BG]. We prefer using partial
orders because they allow operations from different DM's to be ordered and
they do not require ordering unrelated operations that can be executed con-
currently at the same DM.

**p total order is a partial order in which every pair of elements are related
(i.e., a<b or b<a). A total order is the same as a sequence.

190

Two logs are equivalent if they represent executions that produce
the same final database state, and if each transaction performs the same
computation in both executions. The following proposition states a
well-known, and very useful, characterization of log equivalence. We need
one more definition first. Two operations conflict if they operate on the

same physical data item and one is a write.

Propositibn I Two logs are equivalent if they contain the same operations,
and every pair of conflicting operations appear in the same

order in both logs.

3. CORRECTNESS CONCEPTS

The correctness of any system must be defined relative to users' expectations.

Intuitively, a system is correct if it does what users want it to do. We assume
that uéers expect a DDBS to behave like a serial transaction processor; that
is, users expect the DDBS to behave as if it were processing transactions one
at a time, against the logical, non-replicated database. (This assumption is
adopted almost uniformly in the literature.) A DDBS is correct if it behaves
like a serial transaction processor in this sense.

In this section we analyze DDBS correctness using the basic concepts of
Section 2.

A serial log 1is a total order of operations such that for every pair of
transactions, all operations of one transaqtion precede each operation of the

other. For example,

L2 = wo[xl,xz,yl,zl]_>r2[xl]-‘-—>w2[xl,xz]——>r3[xl]——>w3[zl])

g rl[yl]—>rl[x2]—>wl[x1,x2,yl]

is a serial log.

191

Consider any read operation in a serial log, e.g. r2[x1] above. This
operation is said to be read-from the nearest write operation before it
that writes into its argument. E.g. in L2, r2[xl] reads-from wo[xl,x2,yl,zl],
while r3[xl] and rl[xz] read-from wz[xl,le. Similarly, transaction Ti

reads-xk—from Tj if T, indeed reads X r Tj writes x, and ri[xk] reads-

T_ reads-x.,-from TO.'

from wj[xk]. E.g. in L2, 2 1

A serial log is one-copy equivalent (or simply I-serial) if for each trans-
action Ti’ and for each X that Ti reads, Ti reads-xk—from the last trans-
action before T, that writeé into any copy of X.

The reader can verify that L, is l-serial. However, if we change wz[xl,xz]

2

to w2[x2], the resulting log is not l-serial.

L3 = W, [xl,xz,yl,zl] —r, [xl]---——>w2 [x2]--—>r3 [xl]—->w3[zl]>

4 ,‘rl[y1]—>rl[x2]——>wl[xl,x2,y1]

L3 is not l-serial, because VT3 reads—xl-from To' which is not the last

transaction before T3 that wrote into any copy of X.

A l-serial log represen;s a serial execution of transactions in which the
replicated copies of each data item behave like a single logical‘data item.
Therefore, every I-serial log is correct in the sense defined at the béginning
of this section.

A log is serializable (SR) if it is equivalent to a serial log. A log is
l-gserializable (1-SR) if it is equivalent to a l-serial log. Since every
l-serial log is correct, and since every 1-SR log is equivalent to a l-serial

log, every 1-SR log is also correct.

We adopt 1-SR as our basic notion of correctness for the rest of this paper.

192

If sites are never added to a DDBS and sites never fail, attaining

1-SR is little more than a concurrency control problem. All we have to do v;f

is: L
(1) make sure that each transaction writes into all physical copies }gf
of its writeset, as described in Section 2; and ?;
(2) synchronize read and write operations using any serializable i;
concurrency control algorithm, such as two-phase locking. L
The following proposition states the correctness of these steps in terms
of logs.

Proposition 2 A log is 1-SR if every transaction in the log writes into

all copies of its writeset, and the log is SR.

4, SITE INITIALIZATION ALGORITHM

Suppose we have a DDBS that is running correctly -- i.e. its execution
is 1-SR -~ and suppose we add a new site to the system. We need to integrate
the site into the DDBS in such a way that (L) all data at the site can eventually
be read, and (2) the resulting execution remains 1-SR.

In this section we describe an algorithm that accomplishes this task. First,

we use the concepts of Sections 2 and 3 to specify the kinds of executions

permitted by our algorithm, and to argue that these executions are correct
(i.e. satisfy requirements (1) and (2)). Then, we demonstrate an algorithm
that meets the specification.

Specification and Correctness

The logs that our algorithm will allow satisfy the following properties.

Al, Each transaction writes into all copies of its writeset, except
possibly those copies at the new site.

A2, By some time t, every data item at the new site has been written

into at least once.

193

A3. No transaction reads a data item at the new site until that data
item has been written at least once.

Ad. The log is SR.

A5. Let X ew be a copy of X at the new site, and let Tx be the
first transaction that writes into X o By A1, Tx also Writes
into the other copies of ¥X. Let T; be any transaction that
writes into any copy of X after Tx wrote into that copy. Then

T' must also write into x
X new

‘Stated a bit loosely, A5 simply means that once any transaction writes

into x , all later transactions also write into x .
new new

We now argue that if a log satifies Al-A5 then it is correct.

(1) A2 and A3 ensure that all data items at the new site are eveﬁtually
readable, thereby attaining the first correctness requirement.

(2) It remains to prove that if log L satisfies Al-A5, then L is 1-SR.
By A4, L is SR; let Ls be any serial log equivalent to L. Consider any

reads~from relationship in LS, e.g. Ti reads—xk—from Tj. Ls looks like:

L = ——>wj[xk]—-—....—'>ri[xk]-—->...

and we must show that no transactions between 'I‘j and T, in L writes
into any copy of X. We will show this by proving that every transaction that
follows Tj and updates any copy of X, also writes into X -

Let Tz be any transaction that follows Tj and updates X. If X is

not a "new" data item, then T, writes into X by Al. Now suppose X is

L

new .

By Al and Proposition 1, Tz follows Tj in L, and so Tg writes

into X by A5. In either case, since Tz writes into Xy and since Ti

reads-x, ~from T, (and not from T), T cannot come between T, and T,.
*k 3 3) 3 i

Q.E.D.

194

Algorithm

Rules Al-A5 form a blueprint for a simple site initialization algorithm.
Let us see how these rules can be attained algorithmically.

Al and A3 are trivial to implement. A4 is merely concurrency control.
Any serializable concurrency control algorithm can be used. The remaining
rules can be implemented as follows:

A2, For each logical data item X stored at the new site, run a copier
transaction that reads a copy of X at an old site and writes that
value into the new copy. (I.e. there is one copier transaction
per X.) Copiers must be synchronized by the concurrency control

algorithms exactly like all other transactions.

A5. Foxr each logidal data item. X stored at the new site, designate a
guardian copy X of X at some old site. Beginning at some
(arbitrary) time t after the new site is added, the site holding
X alerté all transactions tha£ updaté xg to write into the new copy
of X also. No transaction updates a aata iﬁem at the new site
unless told to do so by its‘guérdian.‘(ln préctice, if the site holding
xg fails, a mechanism is needed to aépoint a new guardian copy for
X . We do not consider this problem here.)

These five rules constitute our proposed site initialization algorithm.

This description of our algorithm may seem too abstract, mainly because
we have not pinned down the concurrency control algorithm. For definiteness,
let us see how the algorithm works in conjunction with two-phase locking. .

We begin by reviewing the basic two-phase locking algorithm.

Associated with each physical data item is a set of Zockg. At any time,
the set of locks on a physical data iteh may contain no locks, one write lock,
or a set of read locks.

Suppose X, is stored at DMi' Before processing read(xi) on behalf of

transaction Tj,'DMi must set a read lock on X, for Tj’ Before processing

195

write(xi) on behalf of Tj' DMi must set a write lock on X, for Tj.
If DMi cannot set a lock for an operation, it delays the operation until
the lock can be set.* When a transaction terminates, all of its locks

are released.

Now let us see how to add a new site to the system. . Suppose sites 1,2,...,n~-1
are running properly and we wish to add sité n. Sité n begins the process by
sending an "I'm up" messaéefto the DM's at sites 1,2,...,n-1.

Suppose theADM at site i, DMi’ réceives an "I'm up" message from site n.

From then on, for each guardian copy xg at DMi’ when DMi processes a write(xg),
it tells the TM that issued the write to also issue a write(x), wheré x_ is the copy
of X at the new site. (An optimization is for DMi to issue the ﬁrite(xn) directly.)

The DM also instructs its local TM to execute copier transactions for each of
its guardian copies. The copier for xg must'obtain a read lock on x and a write
lock on X i i.e. it must be synchronized like any other transaction.

DMn uses the same two—phase locking algorithm as every other DM. However,
it refuses to process a read(kn) until xn has been updated at least once.

For each logical data item X, a TM issues a write(xn) on behalf of a trans-

i

action that updates X, if and only if one of its writes on xg has been acknowledged

by a message telling it to do so. The TM must not update x until this point in

time.

*Since operations can be delayed while waiting for locks, deadlock is possible.
Deadlocks can be resolved by any of the standard techniques in [BG].

196

5. SITE RECOVERY N -\

Site recovery is the problem of integrating a site into a DDBS when the
site recovers from failure. As for the site initialization problem, the
goal is to make the recovered site look like all other sites. Once again, l
the main problem is to briné the database at the recovered site up-to-date
relative to the rest of the DDBS.
Site recovefy’is obviously an important problem, but it has received
little attention in the literature. One early paper on DDBS reliability [AD],
which mainly studies reliable concurrency control algorithms, disposes of
site recovery with these few words:
How the new host is brought up to date depends on the
application. It may be done by transferring to that (
host the journal of all updates since the host went down.
It may require transferring the database. [AD, p. 568]. {
Other related work includes [HS, LS, LSP, MPM, Th, Sk, SS]. Some of these |
papers [MPM, Th] are like [AD] in that they mainly study reliable concurrency {

control. (A piece of the algorithm in [MPM] is called Single Node Recovery.

But the algorithm only recovers the concurrency control algorithm at the site,

not the database.) Other papers study atomic commitment [HS, LS, Sk, SS], site
monitoring to keep track of which sites are up [HS], and other distributed
decision problems [LSP]. Again, site recovery in our sense is not studied.

One paper that does treat site recovery is [HS]. The solution is based on
the concept of Reliable Network (Relnet), a virtual machine that guarantees
reliable message delivery despite site failures. Thé Relnet is intended to be
a very general facility suitable for many kinds of distributed systems. Because

of this generality, the mechanism is rather complex.

Our approach to site recovery is narrower (and, we hope, simpler) than the
Relnet approach. We are nol trying to attain reliability for arbitrary distri-

buted systems; nor are we trying to solve all DDBS reliability problems. Our

goal is simply to integrate the database at a recovered site into a running DDBS.

197

Evidently, site recovery and site initialization are almost identical
problems, and the algorithm of Section 4 can be directly applied here.
There is one major caveat: our algorithm says nothing about multiple failures.
We believe the algorithm can be generalized to handle multiple failures, but
offer no hard evidence in this respect. Despitevthis caveat, the algorithm
of Section 4 solves a big piece of the site recovery problem.

An Optimization

When using the initialization algorithm for site recovery, an important
optimization is possible. It is not necessary to fire up copier transactions
for all X in the logical database. Suppose we are recovering site £f.

Only those X that were updatéd after site £ failed need to be recovered.

Any X that was not updated while f was down still has the correct value at

f when the site recovers. If a spool {or journal) of all writes to.site f is
maintained while £ is down, as in SDD-1 [HS], then when f <recovers the
following processing can be done. Scan the spool to produce a list of data items
that were writﬁen while f was down. All data items not on the list can be

immediately marked as readable at DM Copiers are executed only for data items

£
on the list.

Notice that we are not proposing that spooled write operatibns be processed
in FIFO order, as in SDD-1. If X was written several times while £ was

down, only the last value should be sent to £. If earlier values are sent,

the algorithm will not work correctly.

6. SITE BACKUP

A backup database is a static copy of the database that is consistent but
potentially out-of-date. One use of backup databases is to speed up the pro-
cessing of queries. By reading the static backup, a query does not interfere

with updates, and so will not be delayed or restarted for concurrency control

198

reasons. The cost is that it may read out-of-date data. Backup databases are
also useful for.archiving data.

Creating a backup database is similar to initializing a new site or recover-
ing a failed site -- similar enough that we can use our initialization algorithm
to do most of the job.

We begin by pretending that the backup database is a new site being added to
the DDBS. We run the initialization algorithm to bring the backup database
up—-to-date, until all data items in the baékup have been written at least once.
Now we must freeze the backup, by shutting off writes to it. However, we must
shut off writes carefully, so that the backup is frozen in a consistent state.
We can do this simply by running a query that (conceptually) reads the entire
backup database, and by ensuring that no data item is written once the query
has read it. This freezes the backup copy in the state read by the query. Since

the query is synchronized by a serializable concurrency control algorithm, the

i,

frozen state is consistent. : ' h

For example, suppose we use the two-phase locking initialization algorithm
of Section 4. When all backup data items have been written at least once, we
run a query that sets a read lock on every backup data item. (The query may
deadlock while trying to obtain its locks, and so may need to be aborted and
restarted.) When all backup data items are locked, we shut off updating by
refusing to process any more writes against the backup. The resulting backup
database is consistent and can be correctly'queried without synchronization.

One problem with this algorithm is that the "shut-off" query may deadlock
repeatedly and nevef finish. This problem can be fixed as follows. Once the
query begins, the backup should refuse to grant any write lock requésts from
transactions that have not already set a lock on some backup copy. These requests
are simply blocked, and the transactions delayed, until the query manages to

get all of its locks. Then a very counterintuitive event happens -- the lock

199

requests are unblocked, but since the backup is now frozen, the transactions
no longer need the locks! (It does not work to unblock the transactions

earlier.)

7. CONCLUSION

We have presented an algorithm that can be used to initialize a database
at a new site in a DDBS, to recover a database at a formerly failed site, or
to create a consistent, static backup database. The algorithm is simple, yet
introduces little overhead beyond what is normally needed for concurrency
control; We therefore believe it_is a practical solution to all three problems.

The methodology tﬁat we used to describe our algorithm is also interesting,
we believe. First, we defined correctness, i.e. what it means for an algorithm
to correctly solve the problem; this definition was stated in terms of execu-
tions (i.e. logs). Second, we specified the kinds of logs that our algorithms
would allow, and proved that every allowable log is correct. Third, we des-
cribed an abstract algorithm that meets the specification. Finally, we gave
a concrete implementation of the abstract algorithm. These four steps,

(i) defining correct logs,
(ii) specifying an allowable subset of the correct logs,
(iii) designing an abstract algorithm that produces allowable logs,
(iv) engineering a concrete implementation of the abstract algorithm,
help structure the problem and theé search for solution,

One benefit is that we can engineer new concrete algorithms for specific
systems or problems just by redoing sfep (iv). For example, the concrete
imélementation of the backup algorithm in Section 6, may have bad performance
characteristics. By locking the entire backup database, the "shut-off" query
interferes with many updates. This performance problem is not inherent in the
abstract algorithm; it is just .an artifact of the concrete implementation we

gave. A better implementation would use a concurrency control algorithm for

200

the backup in which queries and updates interfere. less. Multiversion
concurrency control algorithms [BHR, Re, SR] are likely candidates for
this role. Engineering a backup algorithm that uses multiversion con-

currency control is by no means a trivial task. But structuring the

problem as we have done, the designer does not have to start from scratch.

o~

201

REFERENCES
[AD] Alsberg, P.A., -J.D. Day; "A Principle for Resilient Sharing of
Distributed Resources," Proc. 2nd Intl. Conf. Software FEng.,
Oct. 1976.
[BG] Bernstein, P.A., and N. Goodman, "Concurrency Control in Distributed

Database Systems," ACM Computing Surveys, Vol. 13, No. 2, (June 1981).

[BHR] Bayer, R., H. Heller, and A. Reiser, "Parallelism and Recovery in
Database Systems," ACM Trans. on Database Syst., Vol. 5, No. 2
(June 1980), pp. 139-156.

[BSW] Bernstein, P.A., D.W. Shipman, and W.S. Wong, "Formal Aspects of
Serializability in Database Concurrency Control," IEEE Trans. Softw.
Eng.,vol. SE-5, No. 3 (May 1979).

[EGLT] Eswaran, K.P., J.N. Gray, R.A. Lorie, and I.L. Traiger, "The Notions
of Consistency and Predicate Locks in a Database System." Commun. ACM
Vol. 19, No. 11, (Nov. 1976), pp. 624-633.

[HS] Hammer, M.M., and D.W. Shipman, "Reliability Mechanisms for SDD-1:
A System for Distributed Databases," ACM Trans. Database Syst. Vol. 5,
No. 4 (Dec. 1980), 431-466. '

[Ls] Lampson, B., and H. Sturgis, "Crash Recovery in a Distributed Data
Storage System," Tech. Rep., Computer Science Lab., Xerox Palo Alto
Research Center, Palo Alto, CA, 1976.

[LSP] Lamport, L., R. Shostak, and M. Pease, "The Byzantine Generals Problem,"
Tech. Rep., SRI International, March 1980.

[MPM] Menasce, D.A., G.J. Popek, and R.R. Munﬁz, "A Locking Protocol for
Resource Coordination in Distributed Databases," ACM Trans. Database
Syst. Vol. 5, No. 2, (June 1980), pp. 103-138.

[Pal Papadimitriou, C.H., "Serializability of Concurrent Updates," J. ACM
Vol. 26, No. 4 (Oct. 1979), pp. 631-653.

[Re] Reed,'D.P., "Naming and Synchronization in a Decentralized Computer
System"; Ph.D. dissertation, Dept. of Electrical Engineering, M.I.T.,
Cambridge, MA, Sept. 1978. '

[sk] Skeen, Dale, “"Nonblocking Commit Protocols," Proc. 1981 ACM-SIGMOD
Conf. on Management of Data, ACM, N.Y., pp. 133-147.

[SLR] Stearns, R.E., P.M. Lewis, II, and D.J. Rosenkrantz, "Concurrency
Controls for Database Systems," in Proe. 17th Symp. Foundations Computer
Science (IEEE), 1976, pp. 19-32.

[SR] Stearns, R.E., and D.J. Rosenkrantz, "Distributed Database Concurrency
Controls Using Before-Values," in Proe. 1981 ACM-SIGMOD Conf. on
Management of Data, ACM, N.Y., pp. 74-83.

[ss]

[Th]

202

Skeen, D., and M. Stonebraker, "A Formal Model of Crash Recovery
in a Distributed System", Proc. 5th Berkeley Conference on
Distributed Data Management and Computer Networks, 1981, .pp. 129-142.

Thomas, R.H., "A Majority Consensus Approach to Concurrency Control
for Multiple Copy Databases", ACM Trans. on Database Syst., Vol. 4,
No. 2 (June 1979), pp. 180-209.

A

o~
-7 [

203

VIEW DEFINITION AND GENERALIZATION FOR
DATABASE INTEGRATION IN MULTIBASE:
A SYSTEM FOR HETEROGENEOUS DISTRIBUTED DATABASES*

Umeshwar Dayal
Computer Corporation of America
Cambridge, Massachusetts

and

. Hai-Yann Hwang
The University of Texas at Austin
Department of Computer Sciences

ABSTRACT

Access to a heterogeneous, distributed database system can
be simplified by providing users with a logically integrated
interface or global view, There are two aspects to database
integration. Firstly, +the 1local schemas may model objects and
relationships differently and, secondly, the databases may con-
tain mutually inconsistent data. This paper identifies several
kinds of structural and data inconsistencies that might exist.
It describes a versatile view definition facility for the Func-
tional Data Model and illustrates the use of this facility for
resolving inconsistencies, In particular, the concept of gen-
eralization is extended to this model, and its importance to
database integration is emphasized. The query modification algo-
rithm for the relational model is extended to the semantically
richer functional data model with generalization.

*This research was partially supported by the Defense Advanced
Research Projects Agency of the Department of Defense and the
Naval Electronic Systems Command under Contract No., N00039-80-
C-0402. The views and conclusions contained in this document
are those of the authors and should not be interpreted as neces-
sarily representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency or the
Naval Electronic Systems Command or the U.S. Government.,

204

1. INTRODUCTION

Retrieving information from a collection of independently
designed databases is a formidable task. The component databases
typically have different schemas, expressed in different data
models, and are implemented on different database management sys-
tems, each with its own retrieval language, Formulating and
implementing queries that require data from more than one data-
base poses many problems for the user, These problems include
resolving discrepancies between the databases, such as differ-
ences in representation and naming conflicts; resolving incon-
sistencies between copies of the same information stored in dif-
ferent databases; and transforming a query from the user's
language into a set of queries expressed in the different
retrieval languages supported at the different sites,

Multibase is a system that relieves the wuser of many of
these problems [SMITH et al.8l]. It presents users with a logi-
cally integrated global view of the data stored in the local
databases, without requiring that the databases be physically
integrated., The schema architecture of Multibase is shown in
Figure 1l.1. Translating the local host schemas (LHSs) into local
schemas (LSs) in a common data model shields the users from
differences in the data models and languages. In addition, an
integration database, described by the integration schema (IS),
may be needed to record information required for integration,
For example, if the databases record the same data values in dif-
ferent scales, the IS stores the mapping between the scales, The
global schema (GS) is defined as a view of the LSs and IS. The
definition of the GS incorporates directives for resolving
discrepancies and inconsistencies between the local databases,
Therefore, the GS provides users with the illusion of a homogene-
ous and integrated database.

Users express their queries against the GS in a common data
language., However, since the global database is not physically
materialized, these queries must be modified into equivalent
queries against the local schemas, Since these queries are still
in the common data language, they finally must be translated into
programs that will execute on the local hosts.

In this paper, we are not concerned with the problem of map-
ping the LHSs into LSs in a common model, nor with the
corresponding translation of queries, Instead, we focus on the
issue of database integration: how to define the GS to resolve
discrepancies between the local databases, and how to modify a
global query into a query against the collection of LSs, Specif-
ically, we show that the concept of generalization [SS77, MBWS80,
LG78], when coupled with extensive view definition facilities,
(exceeding even those provided by typical relational systems

205

Users

Global Schema
A

View Definition Facility

LSl . e o LSn Integration Schema

Mapping into a
Common Data
Model

LHS1 * * ’ LHSn

Figure 1,1 Schema Integration Architecture

[HSW75, CGT751), is a powerful tool for database integration,
This idea was explored in [KG8l1l]. There it was assumed that the
local databases were disjoint (i.,e., contained no entities 1in
common) , and the use of generalization for schema integration was
demonstrated., For instance, consider two databases, one of U.S.
Ships and the other of Soviet Ships. The global schema can gen-
eralize these to the entity type Ship (which has all the attri-
butes common to the two specialized entity types). However, the
most interesting (and difficult) problems occur when the local
databases do overlap. It is that <class of problem which we
attack here. For instance, suppose two databases, DBl and DB2,
contain data on employees and their salaries., For employees in
DB1-DB2 (or DB2-DBl), it seems clear that the salary value in the
global view must be derived from that in DBl (or DB2, respec-
tively). However, for an employee in both databases, what should
be done if there is a conflict? The Database Administrator (DBA)

206

could decide that DBl is more credible and, hence, derive the
salary in the view from DBl. Another possibility is to include
both salaries in the view (since they might be salaries for two
different Jjobs). Other solutions might be appropriate for dif-
ferent applications. The view definition mechanism must be flex-
ible enough to accommodate these alternatives.

The problem of defining a global schema as a view (called a
"superview" by the authors) is also addressed in [MB81], Some
interesting operators (including generalization) for view defini-
tion are introduced, but these are not powerful or versatile
enough for resolving inconsistencies of the kind described here.

Multibase uses the Functional Data Model (FDM) and DAPLEX
[SHIP81] as its common model and mapping language for defining
the LSs, IS and GS, and for expressing global queries, In Sec-
tion 2, we embellish the basic Functional Data Model with ISA
relationships (generalization), For instance, we can say USShip
ISA Ship, implying that every entity of type USShip is also of
type Ship. 1In addition to the conventional ISA relationship for
entities, we introduce an ISA relationship for functions. This
enhances the semantic modelling capabilities of the FDM, and pro-
vides greater flexibility in defining global schemas. Our goal
in this paper is to discuss the concepts and view definition
capabilities required for database integration, Toward this
goal, we introduce a simple nonprocedural dquery language that
embodies these concepts and capabilities., This language is
described in Section 3. How to "smoothly" incorporate these
ideas into an existing full-blown user language such as DAPLEX is
currently under investigation. In Section 4, we catalogue vari-
ous kinds of discrepancies that might exist between databases and
we illustrate the use of our view definition mechanism in resolv-
ing them. Section 5 describes our query modification algorithm.
View definition and query modification in the relational model
have been studied in [STON75]., Our contribution is in extending
those ideas to the functional data model with generalization,
which is syntactically and semantically richer than the rela-
tional model. For views defined by generalization, the global
query 1is modified. into a collection of subqueries against the
local schemas, However, the straightforward approach of syntac-
tically substituting the view definition into the query could
lead to a proliferation of irrelevant subqueries. The algorithm
we describe generates only the essential subqueries, 1In the
Appendix, we enhance the power of the language by giving users
control over duplicate elimination. We show that this enhance-
ment has little impact on query modification,

207

2, THE FUNCTIONAL DATA MODEL WITH GENERALIZATION

In this Section we first review the basic model. Then we
extend it to include generalization and describe a query language
for use with it.

2,1 The Basic Model

The Functional Data Model uses two constructs: the entity
and the function. Entities are intended to represent real-world
objects, and functions to represent properties of these objects
or relationships among objects.

A database schema in this model is represented by a labelled
directed multigraph, G, whose nodes are labelled with entity
Lypes and edges with function names. Functions may be
singlevalued or multivalued.

In every state of G, there is a finite set E of entities.

Each element of E is of a specified entity type. The extension

in E of entity type X is the set of all entities in E of type X,

(We sometimes call this the entity set X). For each singlevalued

function name f£: X -> Y, there is a function f from entity set X

into entity set Y; for each multivalued function name f£: X ->->

Y, there is a function f from entity set X into the power set of
entity set Y. A state of G may also be represented by a directed

multigraph in the obvious way. (We <distinguish between user
defined entity types and constants, i.e., system defined entity
types such as integer, real, string, Boolean. The extensions of

“the constants are fixed and cannot be altered by users). 2an

example FDM schema is given in Figure 2,1.

2.2 Augmenting the Basic Model With Generalization

Generalization is an abstraction that groups classes of
objects with common properties into a generic class of objects
[sS771. For example, if a STUDENT entity is described by proper-
ties SSNO, NAME, ADDRESS, MAJOR, GPA, and an EMPLOYEE entity by
properties SSNO, NAME, ADDRESS, SALARY, JOBHISTORY, then a gen-
eric type PERSON can be formed with their common attributes SSNO,
NAME, ADDRESS. Applications that are not concerned with the spe-
cial properties of students or employees need not distinguish
between them, and can, instead, treat them as persons, Thus,
incorporating the concept of generalization in the data model

208

Manager

Works-in
SENO Name\ Sal Name
\ \
O O 1 O
String String Real Stringv

Note: TFor convenience, we denote the constant types by
nodes

Figure 2.1 A Schema in the FDM

provides greater flexibility in semantic modelling, This idea
has been suggested several times in the llterature (e.g., [8S577,
HM78, ROUSS79, MBW80, MB8l1, CODD79, HK81ll),

The concept of generalization assumes even dgreater impor-
tance for database integration in Multibase. The local schemas,
having been developed independently, may contain entities at dif-
ferent 1levels of generalization, For example, assume that one
schema, LS1, models people as PERSON entities, whereas another,
LS2, models them as STUDENT and EMPLOYEE entities, The
integrated global schema may be satisfactorily defined neither at
the 1level of LS2 (if it has no information available to distin-
guish between persons in LSl who are students and those who are
employees), nor at the 1level of LS1 (for then the distinction
between students and employees in LS2 would be lost to global
users), A reasonable solution is to include all three entity
types, viz., STUDENT, EMPLOYEE, and PERSON, in the GS with the
relationships STUDENT ISA PERSON, EMPLOYEE ISA PERSON explicitly
defined between them.

209

We propose another (less obvious) use of generalization for
database integration., Suppose the "same" entity type occurs in
two different schemas but with different properties. For exam-
ple, suppose EMPLOYEE entities in LS1 have properties SSNO, NAME,
SALARY, AGE, whereas EMPLOYEE entities in LS2 have properties
SSNO, NAME, SALARY, ADDRESS, Conventional data modelling would
suggest that the EMPLOYEE entity set in GS be defined as the
"outer join" of the entity sets in LS1 and LS2., (The "outer
join" operator sets SALARY values to NULL for employees not - in
the first database, and ADDRESS values to NULL for employees not
in the second database [CODD79].) Instead, using generalization
to define the GS (as in Figure 2.2), we achieve the same effect
without introducing artificial NULL values. As we shall see in
Section 5, imposing this additional structure on the view assists
in query modification,

We extend the concept of generalization to generalization
over functions, Reconsider the example of Figure 2.2, Suppose
that two additional functions HOMEPHONE and WORKPHONE were
defined for EMPLOYEE entities in LS1, and a multivalued function
PHONES for EMPLOYEE entities in LS2, Then a convenient abstrac-
tion would be to define the generic multivalued function PHONES
for the generic entity type EMPLOYEE in GS. Thus, if employee e
has workphone pl and homephone p2 in the first database, and the
set of phones {p2, p3} in the second database, then pl, p2, p3
are all included in PHONES(e) in the global view.

Proceeding formally, we extend the basic model of Section
2.1 as follows. A schema now is a triple S= (G, ISAe, ISAf)
where G is a labelled directed multigraph (as before), ISAe is a
binary relation on the nodes of G, and ISAf a binary relation on
the edges of G. A state of S is as before, except that now each
entity can be of more than one type. ISAe and ISAf obey the
axioms of Figure 2.3.

If X1 ISAe X2, then we call X1 a subtype of X2, and X2 a
supertvpe of Xl. The extensions of subtypes may overlap. The
Extensionality Constraint implies the following Inheritance Rule:
a subtype inherits all the functions of its supertype.

If F1 ISAf F2, then we call Fl a subfunction of F2, and F2 a
superfunction of Fl.

Figure 2.4 gives an example of integrating two local schemas
using the ISA relationships. In Section 3, we show how to define
this global schema as a view of the local schemas,

210

LSl Ls2

String Emp SSNO String

String

Real

Integer

GS . Elnp Nal

Empl

SSNO String

S8NO

>D String

[String

E] Integer , Address

é Denotes an ISA relationship

Figure 2.2 1Integration by Generalization of Entity Types

211

a) Axioms for ISAe

l. Intrinsic Axiom
ISAe is a partial order, i.e., it is reflexive, antisym-
metric, and transitive.

2. Exten31ona11ty Constraint
If x is an entity of type X1 and X1 ISAe X2, then x is
also of type X2.

3. Range Restriction
If X1 ISAe X2 and F: X1 =-> Y1
‘ F: X2 -> Y2,
then Y1 ISAe Y2.

4, Cotype Constraint
: If x is an entity of types X1 and X2, then there 1is a
type X3 such that X1 ISAe X3 and X2 ISAe X3,

b) Axioms for ISAf

l. Intrinsic Axiom
ISAf is a partial order.

2. Structural Constraint
If F1 ISAf F2, and Fl: X1 -> Y1
F2: X2 -> Y2,
then X1 ISAe X2 and Y1 ISAe Y2.

3. Extensionality Constraint
If F2 ISAf F2, Fl is a function from X1 to Y1, and F2 is
a function from X2 to Y2, then, for every entity x of
type X1, ’ _
Fl(x) = F2(x) 1if both Fl1 and F2 are singlevalued
F1(x) ¢ F2(x) if both Fl and F2 are multivalued
Fl(x) € F2(x) if Fl is singlevalued and F2 is multivalued

Figure 2.3 Axioms for ISAe and ISAf
2,3 A Query Language for the Model

The query language we use to illustrate our ideas is a vari-
ant of NQUEL, a nonprocedural language for the general network
model introduced in [DAYAL79, DB821, (NQUEL is based on the
relational query language QUEL [HSW75]., We use this language

212
ILS1: Ls2:

Emp ‘thone Phone _ Phones Phone

No ssNY/ N4m
Ad rg
adNary

00 0o

String String Integer Real Btring String String String Real Strlng

String String Real String

O O O g

SM;T&/ "
B Phones)»Pho
a7 R

String String Integer Real String String String String Real String

@ denotes ISAe

::> denotes ISAT

Figure 2.4 Integration by Generalization of Entity Types
and Functions

PN

213

merely as an example. The techniques can be applied to other
algebraic or calculus-based languages such as DAPLEX [SHIPS811].)

Queries are formulated using entity variables, which are
declared in range statements: RANGE OF <entity-var> IS <entity-
type>,

Queries are retrieval statements of the form

RETRIEVE INTO <result-entity-type> (<target_list>)
WHERE <qualification>

{target-ligst> is a list of assignments

<singlevalued function name> := <term> or
<multivalued function name> := <set>;

<term> is an entity variable, a constant, a singlevalued function
applied to an entity variable, or a composition of singlevalued
functions applied to an entity variable; <set> is a multivalued
function applied to an entity variable, or an expression of the
form {<entity variable> IN <entity type> WHERE <qualification>};
{qualification> 1is a Boolean combination of atomic formulas of
the form <term> <op> <term> or <entity variable> ISIN <mul=-
tivalued function applied to an entity variable>; <op> is one of
the comparison operators =, <, etc.,

We do not preclude entity variables ranging over constant
(i.e., system defined) entity types, such as integer, real,
string, Boolean. However, we do require that any such variable x
be bound to a finite range by an atomic formula x=£f(y) or x ISIN
f(y) in every disjunct when the qualification is cast into Dis-
junctive Normal Form,

The interpretation of a query RETRIEVE INTO E
(fl:=cl,...,fk:=ck) WHERE qualification is as follows: construct
the Cartesian product of the ranges of all free entity variables
appearing in ‘the query; eliminate those tuples of entities that
do not satisfy the qualification; for each of the remaining
tuples of entities, perform the target-list computations cl,...,
ck; for each unique k-tuple <tl, ..., tk> computed, create a new
entity of type E with functions fi := ti, 1 < i £ k. (How these
entities are printed or displayed to a user is irrelevant to our
discussion,) Examples of queries are given in Figure 2.,5.
Observe that the query in (i) retrieves an "unnormalized" rela-
tion,

Since Multibase is a retrieve-only .system, we ignore
updates, although they could be adapted from those in NQUEL
[DAYAL79, DB821.

214

Schema of Figure 2;1

i. Retrieve the Soc., Security Nos, and Names of all Employees
earning over 50K together with the Names of the Departments
- they work in, :
RANGE OF e IS EMP
RANGE OF d IS DEPT .
RETRIEVE INTO RESULT (SSNo := SSNo(e), Name := Name(e)

DeptNames := {n IN STRING WHERE n = Name(d) -

AND d ISIN Works—-in(e)})
WHERE Sal(e)>50000,

ii. Retrieve the Soc. Security No. and Name of every employee
and the name of each of his/her managers.

RANGE OF e,m IS EMP
RANGE OF d IS DEPT
RETRIEVE INTO WORKSFOR

(SSNo := SSNo(e), EmpName := Name(e), MgrName := Name(m))

WHERE m = Manager(d) AND d ISIN Works-in(e).

Figure 2.5 Examples of Queries

3. VIEW DEFINITION IN THE MODEL

In this Section, we describe constructs for defining the
global schema as a view of the local schemas, Facilities are
provided for including entities from the lccal databases into the
view, for defining new (virtual) entities, and for defining ISA
relationships on entity types and functions in the view.

3.1 Inclusion

INCLUDE <entity variable> AS <entity type> (<function-list>)
WHERE <qualification>. This statement causes those entities in
the range of the entity variable that satisfy the qualification -
to be included in the view. The AS clause permits renaming the
type of these entities. Only the functions in the function list
are visible in the view. These functions may be renamed thus:
<function-name> AS <new-functiori-name>, »

215

3.2 Defining Virtual Entities and Functions

i. DEFINE ENTITY TYPE <entity type> (<target_list>) WHERE <qual-
ification>, The semantics of this statement are similar to
the semantics of a query. 1

ii, DEFINE FUNCTION <function name>

FOR <entity variable> IN <entity type>
<assignment>

This statement is useful for defining new functions for pre-
viously defined entity types in the view., Depending upon
whether the right hand side of the assignment is a term or a
set, the function being defined is singlevalued or mul-
tivalued.,

3.3 Defining Supertypes and Superfunctions in a View

Defining a Supertype X in a 'view ‘involves the following

steps: i) Specify X's subtypes Xl,...,Xk. This defines the
. oo k , ‘
extension of X to be X:=_U1(extension of Xi)., 1ii) Specify a list
is , ‘
IDX of singlevalued functions that identify entities of type X.
(IDX must include the identifiers of all Xi, 1 £ i £ Kk.) This
k o o : _
partitions ‘ql (extension of Xi) based on IDX values, and merges
L:

entities in each block of the partition. Thus, after the merge,
the following constraint holds: (¥x, x'€X) (IDX(x) = IDX(x') => x
= x')., Consequently, entities of subtype Xi and Xj having the
same IDX values are treated as being the same entity. Observe
that this permits us to define overlapping subtypes. iii)
Specify how the functions on supertype X are derived from those
on Xl,...,Xk. In addition to the constructs described in Section
3.2, two additional features are necessary.

(a) A function for X may be declared to be a superfunction
of some functions fl,...,fk on X's subtypes. For the example in
Figure 2.4, the relationships Hphone ISAf phones, -Wphone ISAf
phones, phones2 ISAf phones imply the following constraint: (¥ a
€ PHONE, ¥e € EMP) [a € phones(e) iff [(e € EMP1 AND a € PHONEL
AND (a = Hphone(e) OR a = Wphone(e))) OR (e € EMP2 AND a € PHONE2
AND a € phones2(e))ll], _

(b) The value of a fuhctioh on an entity of supeftype X may
depend on the subtype(s) to which the entity belongs. For exam-
ple, in Figure 2.4, the Salary function on EMP may be defined by

216

Sal(e) =

Sall(e), if e € EMPl1 - EMP2
Sal2(e), if e € EMP2 - EMP1
Sall(e) + Sal2(e), otherwise

To define such conditional functions, a conditional assignment is
required, '

Supertype definitions are summarized below.
DEFINE SUPERTYPE <entity-type-0> BY
<entity-type-1> ISAe <entity-type-0>,...,
<entity-type-k> ISAe <entity-type-0
ID: <list of singlevalued function names>
FOR <entity variable> IN <entity-type_0>
[<list of superfunction declarations>]
[<conditional assignment list>]

A superfunction declaration is of the form
DEFINE SUPERFUNCTION <function-name-0> BY
<function-name 1> ISAf <function-name=0>,...,
<function-name-p> ISAf <function-name0>
A conditional assignment is of the form
<function name > : = CASE
<conditionl> => <terml> WHERE <qualification>|
, <set 1>
<conditionN> => <termN> WHERE <qualification>l
<set N>

A condition is: <entity variable> ISIN <range>, where <range> is
a well formed set expression over entity types l..., K. The N
ranges in the CASE statement must partition the extension of
<entity_type_0>.

Figure 3.1 illustrates the use of these statements for
defining the view of Figure 2.4. (In our examples, we shall
assume that the terms of the language are extended to include
arithmetic computations. Permitting embedded calls to arbitrary
procedures written by the DBA would provide even more flexibility
for database integration., Furthermore, it might be convenient to
extend the conditions in a conditional assignment statement to
include arbitrary formulas.)

3.4 Defining Subtypes in a View

For some applications it might be required to define spe-
cializations of entity types and functions in the view.
DEFINE SUBTYPE <entity_ type_0> BY

<entity_type_0> ISA <entity_type_l1>,...,
<entity_type_0> ISA <entity_type_k>

217

RANGE OF el IS LS1.EMP, RANGE OF e2 IS LS2,EMP

RANGE OF pl IS LS1,PHONE,
INCLUDE el AS EMP1l (SSNo,

INCLUDE pl AS PHONEl (No)
INCLUDE e2 AS EMP2 (SSNo,

INCLUDE p2 AS PHONE2 (NO)

DEFINE SUPERTYPE PHONE BY
PHONE1l ISAe PHONE,
ID : No

DEFINE SUPERTYPE EMP BY

RANGE OF p2 IS LS2.PHONE

Name AS Namel, Age, Sal AS Sall,
Hphone, Wphone)

Name AS Name2, Address, Sal AS Sal2,
Phones AS Phones2

PHONE2 ISAe PHONE

EMP1 ISAe EMP, EMP2 ISAe EMP

ID : SSNo
FOR e IN EMP

DEFINE SUPERFUNCTION Phones BY
Hphone ISAf Phones, Wphones ISAf Phones,

Phones2 ISAf
Name := CASE

Phones

e ISIN EMPl => Namel(e)
e ISIN EMP2 -~ EMPl => Name2(e)

Sal := CASE

e ISIN EMP1l - EMP2 => Sall(e)
e ISIN EMP2 - EMPl => Sal2(e)
e ISIN EMP1 N EMP2 => Sall(e) + Sal2(e)

Figure 3.1 Definition of the Global Schema of Figure 2.4

FOR <entity-variable> IN <entity_type_0>

{target_list>

The extension of a subtype

is the intersection of the extensions

of all its supertypes. Subtype definition is illustrated in Fig-

ure 3.2,

218

Suppose that we have already defined the view of Figs, 2.4 and
3.1. We now want to define a subtype EMP12 of EMP1l, EMP2,.

EMP

EMP1 EMP2

SSNo
' > |String
‘\\\\\\EETE*ﬁ:]String
DEFINE SUBTYPE EMP1l2 BY

EMP12 ISAe EMP1, EMP12 ISAe EMP2
FOR e IN EMP12 |

Sals := {s IN STRING WHERE s

S

EMP12

Sall(e) OR
Sal2 (e) } .

Figure 3.2 Example of Subtype Definition

4. DATABASE INTEGRATION USING VIEWS AND GENERALIZATION

If the LSs were identical (i.e., contained the same entity
types and functions) and there were no conflicts among data
values, then database integration would be a trivial task. We
could define the GS to be identical to each LS, and the extension
of each global entity type or function to be the wunion of the
corresponding extensions in the local databases. However, in
general, there are two sources of difficulty: the LSs might not
be identical (schema differences), and data values stored in dif-
ferent databases that represent the same information might con-
flict (data differences). It might seem that a simple solution
to these problems is to define the GS (and its extension) to be
the disjoint union of the LSs (and their extensions). This solu-
tion is unacceptable, however, for it place$s the onus of integra-
tion entirely on the user, who must then understand the semantics
of all the 1local databases to formulate queries, In this

219

Section, we show via examples how the DBA can design global user
views to resolve various kinds of schema and data differences,

The constructs described in Section 3 may be used to define
a wide variety of views that meet a wide variety of application
requirements. The approach we adopt in our examples is to
preserve all available information from the local databases. For
specific users, the DBA may wish to suppress some of the informa-
tion, Such views are easily defined, once we have shown how to
define the more exacting views that preserve all information,
The approach we suggest consists of two steps. First, resolve
schema differences so that the entity types of interest to the
user's application in all the LSs "look similar", Then, we com-
bine these entity types using generalization; data differences
are resolved by appropriately defining the functions on the
supertype.

4,1 Schema Integration

Schema integration includes the resolution of naming con-
flicts, scale differences, structural differences, and differ-
ences in abstraction, .

4.1,1 Naming Conflicts

Naming conflicts are easily handled by renaming., If entity
types (or functions) representing the same real-world object (or
relationship) have different names (synonyms) in different LSs,
then give them the same name. This is illustrated by the Ship
and Vessel entity types in Figure 4.la in the GS., If the entity
types (or functions) representing different objects (or relation-
ships) in different LSs have the same name (homonyms), then give
them different names in the GS. This is illustrated by the
Dead-Weight and Net-Weight functions in . Figure 4.,la. (Observe
how we use generalization to merge the entities in the two data-
bases.) o

4.1.2 Scale Differences

The same function values might be stored using different
scales in different databases, For example, in Figure 4.,1b,
Height is measured in inches in one database and in c¢ms in the
other; similarly, Weight is measured in lbs in one database and
is encoded on a scale of Light/Medium/Heavy in the other, These
differences are resolved by using unifying scales with the Height
and Weight functions on the supertype. For Height, since there

220

a. Naming Conflicts

L31: . Is2:
: hip ID
Ship »[] String , ViD —»[] String
Ship Vessel
Welg D Real " We D Real
an
- hlpc D)D String
T
= —»-[] String > »>[] String
Shipl
Dead w0t

D Real D Reai‘

Definition: Include Ship and Vessel in the view, with appropriately
renamed functions; then define Ship as the supertype.

b. BScale Differences

> D String

t (¢ D Real

Wt. (Code] String

148 D Integer
ode

as: D String

»D String
t in Code

Empl

ID

)D String

>D String

S‘D Real D Real

Wt in 1bs

D String

D Ihteger

Figure 4.1 Examples of Integration

221

Definition: Include LSl .Emp as Empl, LS2.Emp as Emp2 in G%ﬂ
RANGE OF ¢ IS Wtcon
DEFINE SUPERTYBE Emp BY Empl ISAe Emp, Emp2 ISAe Emp

FOR e IN Emp
Htincms := CASE
e ISIN Emp2 => Ht(e)
) e ISIN Empl- Emp2 => 2.54*Htinins(e)
Wtincode := CASE
e ISIN Emp2 => Wt(e)
e ISIN Empl-Emp2 => cod?(c) WHERE
thnlbs(e)

¢.. Structural differences

LSl: Ls2:
Supply ’ Supplier Supplies Part
—>>
SNO % SNO PNO
String SJ;!ng String String

String String String String

Figure 4.1 Examples of Integration (continued)

222

Definition: RANGE OF y, y~ is Suppl{
DEFINE ENTITY TYPE Partl (PNo := PNo(g%)(
[s)

DEFINE ENTITY TYPE Supplierl (SNo :=))
Supplierl := {p in Partl WHERE SNo?y’g = SNoéyg
AND PNo(y”) = PNo(p)})
Include LS2.Supplier as Supplier2 and LS2.Part as Part2.
Def ine Supplier as the Supertyge of,Supgllerl, Supplier2
Part as the Supertype of Partl, Part2

Supplies as the Superfunction of Suppliesl, Supplies2.

d. Entity types at different levels of generalization

LSl: L32: _ LS3:

Ship

D . USSBhip ™ Soviet Ship)

| C:D ﬁﬂ
Home E] Loca EJ

Locationl

Figure 4.1 Examples of Integration (continued)

AN

223

¢s2 (most integrated):

Othm?Shlp USShlpl ~ S8hipl USShip?2 SShip3 -

EIO-—-*EIO——»EIK C<-+D
| ~ ‘Homepo

Definition: Include LS1. Shlg w1th aggroprlate conditions on Nationality
as 0therSh1 Sh1p1 hipl.

Include LS1.Ship as 8ni
(The ISAe 11nks from OtherShip, USShlgl and SShipl to Shipl
are not needed in the definition of these types, but are

added merely as 1nte§r1ty constraints.)
Include LS2.USShip as USShipZ, and LS3. SovletShlg as SShip3.
Define USShlp to be the supertype of USShipl an

USSh1p2 SShlg
be the supertype of SShlEl and SShip3. Finally, deflne hip
to be the supertype of Shipl, USShlp and SShip.

Figure 4.1 Examples of Integration (continued)

224
e. BSet abstraction and summarization
LS. ' LsS2:

Ship Convoy ™

Loca on
O
GS: IS:
Convoy ;"

D)D Asgignment Convoy QD

AvE= _ Sh D
iu._*1:] 0

Loe™{ion

is—a—meqber—of

Ship
P ID Ny

Definition: Include LS1.,Convoy and LS2,.Ship.
Range of ¢ is Convoy, RANGE of a is ASSIGNMENT
DEFINE FUNCTION 1samemberof ,

FOR s IN Ship
isa berof 1= ¢) . .
WHERE ID ConvoyID(a) AND ID(s) = ShipID(a)

Figure 4.1 Examples of Integration (continued)

-

R

225

is a bijection between inches and cms, we can choose either func-
tion; in this example, we choose cms, and include the conversion
formula from inches to cms in the view definition., For Weight,
there is no conversion formula; instead, there 1is a table for
converting between lbs and encoded weights, This table is stored
in the Integration database and wused in the view definition.
Observe that we use the coarser scale for the supertype. (Of
course, we could have used some other unifying scale; then we
might have had to store two conversion tables in the Integration
Database.) In more complex situations, conversion might require
calling an arbitrary DBA-defined procedure (see Section 3.2),.

4,1.3 Structural'Differences

By structural differences we mean that the local schema
graphs are not isomorphic. These differences include: missing
functions and entity types (i.e., differences in aggregation
[sS771); and modelling a real-world object or relationship by an
entity type in some LSs and by a function in other LSs, Missing
functions are easily dealt with using generalization -- only the
functions common to all the subtypes are defined on the supertype
(see Figure 2.4). To integrate schemas with different entity
types and functions, first define virtual entity types and func-
tions, and then use generalization. There is considerable flexi-
bility in designing the GS. We illustrate one possibility in
Figure 4,lc.

4,1,4 Differences in Abstraction

The entity types and functions in the LSs may have been
defined at different levels of deneralization., The natural way
of integrating these schemas is via generalization. Figures 2.4
and 3.1 give an example of integration when the functions on the
entity types are at different levels. Figure 4,1d applies this
technique to LSs with entity types at different levels., Again,
several solutions are possible, and of these we show two,

~ Besides generalization, the LSs might differ in other forms
of abstraction., In Figure 4.le, the Convoy entity type in LS2 is
a set abstraction of the Ship entity type in LS1 (a ship is a
member of a convoy) [HM78]. The Average Weight function on Con-
voy is a summarization of the Weight function on Shlp. Both of
these abstractions are handled by deflnlng a virtual function
relating each ship to the convoy of which it is a member. This
function' is defined using additional 1nformat10n supplied by the
DBA via the Integratlon database.,

226

4,2 Data Integration

Once the structure of the global schema has been decided

upon, its extension must be defined in terms of the extensions of
the local schemas. But the extensions might disagree on the
value of some functions., We discuss some causes of data
discrepancy here,

1.

The local databases are mutually inconsistent, but correct.

One reason for this might be that entities that appear to be

the same are actually different. Consider two identical LSs
containing entity type EMP and functions EmpNo:EMP->INTEGER,
Sal:EMP->INTEGER. EmpNo is the local identifier in each data-
base, Suppose there 1is an entity el with EmpNo(el)=1,
Sal(el)=25 in one database, and an entity e2 with
EmpNo(e2)=1, Sal(e2)=30 in the other database. Suppose that

.although entities el and e2 have the same EmpNo value, they

represent different employees in the real world, This
implies that EmpNo is not an identifier for Emp entities in
GS. This apparent discrepancy is easily resolved by con-
catenating a Database_ID with the local entlty_ID for use . as
the global_ID,

Another reason for the apparent discrepancy might be
that although EmpNo is, in fact, an identifier for Emp in GS
(so el and e2 do represent the same employee), the two func-

tions are different; e.g., they represent salaries for two -

different jobs. This implies that the Sal functions are
homonyms., We .can resolve this discrepancy by including both
functions (appropriately renamed). for the supertype, by
treating Sal as a superfunction, or by deriving the Sal func-
tion on the supertype by some computation -on. the two Sal
functions on the subtypes. The third solution was adopted in
Figure 3.1. v _ o - :

A third reason for the discrepancy might be obsoles-
cence. Again, we can treat the two functions as homonyms,
and use both (renamed appropriately, e.g., .current_Sal and
last_year's_Sal) for the supertype. Alternatively, we can
use the more recent value (this is easily determined if data
is timestamped). For the latter solution, Sal must be
defined as a conditional function (with the conditions
extended to include tests on tlmestamps)

The local databases are mutually 1ncon81stent and incorrect.,

'In this case, we again have several options. One is to use

the more credible data. (If this can be determined a priori,
a conditional function definition. will suffice. This solu-
tion is adopted for the name function in Figure 3.1l.) Alter-
natively, we can specify how to compute a value from the con-
flicting data, or trigger some appropriate action, e.g.,
notifying the user that a conflict has been detected. This
last alternative requires the ability to embed procedure

P

227

calls in view definition statements. The procedures are
invoked if necessary during execution of the modified query.

5, QUERY MODIFICATION

We have seen how to define the GS as a view of the LSs. We
now describe algorithms for modifying queries against the GS into
queries against the LSs, (We insist that global queries request
the retrieval of only constant entities.)

For views defined using the constructs of Sections 3.1 and
3.2 (inclusion, virtual entity type and function definition), a
straightforward extension of the algorithm described in [STON75]
will work. The main steps are: given query g, for each entity
variable x in g, do the following: replace the range statement
RANGE of x IS X by a collection of range statements RANGE OF xi
Is Xi, 1 £ i £ n, where X1,..., Xn are the entity types in terms
of which X was defined; replace each occurrence of £(x) in q's
target list or qualification by its definition; finally, conjoin
the qualification of X's definition to g's qualification, o

But there are two features of queries and view definitions
in the functional model that have no relational counterparts and-
must be specially dealt with., (i) Compositions of singlevalued
functions must be unraveled before query modification. Replace
g(f(x)) where f: X->Y, g: Y->%, and x ranges over X, by gl(y)
where y 1is a new variable ranging over Y, and conjoin y=£f(x) to
the qualification, (ii) After modification, an atomic formula (x
ISIN f(y)) may become (x ISIN {x' IN X WHERE quall). This is
simplified to (qual with x' replaced by x).

. For views defined via generalization, query modification is
more complicated, It might seem at first that the only complica-
tion is the presence of variables ranging over supertypes; for
each such variable, the query must be replaced by the union of a
set of subqueries, one per subtype. However there are two other
issues to consider,

1., The query might refer to several conditional functions on X,
whose definitions involve different partitions of X. We have
to construct the coarsest common refinement T(i,e., the
greatest 'lower bound with respect to the refinement partial
order) of all these partitions, Then, the query must be

.replaced by the union of a set of subqueries, one for each

block of ., This principle is illustrated in Figure 5.la.

(Observe that the range statements in the subqueries are not

in the syntax described in Section 3. We shall show later

how to rectify this,)

228

2. The query might refer to a superfunction £, e.g.,, in a for=-
mula x=f(y). The query must then be replaced by the union of
a set of subqueries, one for each pair of subranges of x and
y for which a subfunction of £ is defined. This principle is
illustrated in Figure 5.l1lb. (Note that if two subfunctions
(e.g., homephone and workphone, have the same domains and the
same ranges, then we can combine the two corresponding
subqueries,)

Applying these two principles independently, however, would
lead to a proliferation of subqueries, many of which might be
irrelevant. For example, if we first apply Principle 1 to all
the entity variables in the query of Figure 4.1, we get 6
subqueries (3 subranges for e, viz., EMPl-EMP2, EMP2-EMP1,
EMP1l N\ EMP2; times 2 subranges for PHONE, viz., PHONEl, PHONE2),
But on subsequently applying Principle 2, we discover that only 4
of these are relevant -- the (EMP1-EMP2, PHONE2) and (EMP2-EMP1,
PHONEl) pairs are ruled out by the qualification., The algorithm
we describe below avoids generating unnecessary intermediate
subqueries. ' '

For describing the algorithm, we require the following
definitions. Let q be a query, and let x be a supertype variable
ranging over X, Let f1, ..., fn be the functions occurring in g
either in a term fi(x) or in a formula x=fi(y) or x ISIN fi(y);
For each i, let @fi be the partition of X induced by the defini-
tion of fi, (If fi is a conditional function, 7fi is the parti-
tion induced by the conditions in the CASE statement defining fi;
otherwise wfi is defined to be {YI|Y is a subtype of X}.) Let
T(x) be the coarsest common refinement of all such partitions,
The gubrange table SRT(x) for variable x has n+l columns, The
first column is labelled x, and the others are labelled x.fi, 1 £
i < n., Each row contains a block of 7(x) and the corresponding
definitions of the functions fi for that subrange of x. (If f£fi
is a conditional function, this is the right hand side of the
corresponding conditional assignment. If fi is a superfunction,
this 1is the set of subfunctions defined over the subrange. (See
Figure 5.2 for an example.,) Each row of the table tells us which
definition or subfunctions of fi to use for a given subrange of
the range of x.

In the query modification algorithm below, we assume that
the target 1list does not contain a set assignment of the form
B:=<gset> where <set> contains a reference to a supertype or a
superfunction. This is not a restrictive assumption, for a query
that violates it can be replaced by two queries, Thus, replace
g: RETRIEVE INTO RESULT (A:=f(x), B:=g(y)) WHERE qual;
where g:Y->->% is a superfunction, and range of y is Y, by
ql: RETRIEVE INTO RESULT (A :=£f(x), B:={z IN Z WHERE =z ISIN
g(y)}) WHERE qual;
ql is now a special case of the following
d: RETRIEVE INTO RESULT (A:=f(x), B:={y in Y WHERE quall}) WHERE

- Pt

229

Agsume the LSs and GS of Figures 2.4 and 3.1.

a. Conditional function
Query: RANGE OF e IS EMP
RETRIEVE INTO WEALTHY (Name := Name (e))

WHERE Sal(e) > 50K

The definition of Name induces the partition:

{EMPl1, EMPl-EMP2}

The definition of Sal induces the partition:

{EMP1-EMP2,

EMP2-EMP1, EMP1 N EMP2}

Coarsest common partition = partition induced by the
definition of Sal. .

Subrange of e Name Sal

EMP1-EMP2 Namel (e) Sall(e)

EMP2-EMP1 Name?2 (e) Sal2(e)

EMP1nEMP2 Namel(e) Sall(e)+Sal2(e)
Subqueries:

1. RANGE OF e ‘IS
RETRIEVE INTO
2. RANGE OF e IS
RETRIEVE INTO
3. RANGE OF e IS
RETRIEVE INTO

Then, WEALTHY :=

Figure 5.1

EMP1-EMP2

TEMP1 (Name:= Namel(e)) WHERE Sall(e)>50K

EMP2-EMP1 ’ -

TEMP2 (Name := Name2(e)) WHERE Sal2(e)>50K

EMP1 N EMP2 '

TEMP3 (Name := Namel(e))WHERE
(Sall(e)+Sal2(e)) >50K

TEMPl1 Vv TEMP2 4 TEMP3

Query Modification Principles

230

b. Superfunction:

Query: RANGE OF e IS EMP, RANGE OF p IS PHONE
RETRIEVE INTO Z (SSNo := SSNo(e)) WHERE
1234 = No(p) AND p ISIN Phones(e)

Phones has the subfunctions
‘HPhone EMP1 --> PHONEl
WPhone EMP1l --> PHONEl
Phones2: EMP2 ~>> PHONE2

Subqueries:

l. RANGE OF e IS EMP1
RANGE OF p IS PHONE1
RETRIEVE INTO Zl1 (SSNo := SSNo (e)) WHERE
1234 = No(p) AND (p=HPhone(e) OR p=WPhone (e)
2. RANGE OF e IS EMP2
RANGE OF p IS PHONE2 ‘
RETRIEVE INTO Z2 (SSNo := SSNo (e)) WHERE
1234 = No(p) AND p ISIN Phones2(e)

Figure 5.1 Query Modification Principles (continued)

qual; which must be replaced by the sequence

RANGE OF Y IS Y .

RETRIEVE INTO TEMP (A:=f(x), B:=y) WHERE qual AND quall

RANGE OF t,tl IS TEMP , :

RETRIEVE INTO RESULT (A:=A(t), B:= {y IN Y WHERE
y=B(tl) AND A(t)=A(tl)}),

The first query retrieves a "flat" relation; then the second con-
verts it into the unnormalized form requested by q.

Algorithm
Given query q
1. (i) Construct the natural join N 6f the following tables:
SRT(x) [x.f=y.f] SRT(y), for every pair of supertype
variables x, y, and superfunction £ that occur together

in a formula y=£(x) or y ISIN f(x) in g's qualification,

(ii) Form the product of N with SRT (x), for every
supertype variable x occurring in q and not used in (i) .

2, Let T be the table constructed in 1. For each row r of T,
construct a subquery by replacing the range of each supertype
variable with the corresponding subrange given in the x entry

231

of r; each formula x = £(y), or x ISIN f(y), where £ 1is a
: % : 3
superfunction, with the formula Vi x = fi(y), or V x ISIN
i= .
fi(y), where {fl,...,fp} is the y f entry of r; and each term
g(x), involving a conditional function g, with the
corresponding definition given in the x.g entry of r (if the
definition includes a qualification, this is conjoined with
the qualification of the subquery).
3. The ranges in the subqueries constructed in 2 may involve set
operations. These are eliminated as follows.
i. Replace a subquery having range of e is El U E2 Dby two
subqueries having range of e is El1 and range of e is E2,
ii. Replace range of e is El(\EZ by
range of el is El
range of e2 is E2 :
and conjoin ID(el) = 1ID(e2) to the qualification,
Replace e in every term f(e) in the subquery by f(el) if
f is defined on El, and by f(e2) if f is defined on E2.
Similarly, replace e in every clause e = f£(x) or e ISIN
£(x) by el if £ : x => El, and by e2 if f:X->->E2, where
X is the range of x,
iii. Replace range of e is El1 - E2 by
range of e is El
range of e2 is E2
and conjoin (¥e2) (ID(e2) # ID(e) to the qualification,
[Note: this requires augmenting the simple query language of
Section 2 with- quantlflers. This extension has no effect on
query modification.l
4, Modify the subquerles constructed in 3.

Figure 5.2 illustrates the~query modification algorithm, We
omit the proof that this algorithm is gorrect, i.e., it modifies
a query into an equivalent collection of subqueries; and pon-
redundant, i.e., none of the subqueries generated by it produces
a result that is always empty or always subsumed by the result of
some other subquery. (The proof is by induction and case
analysis, and is given in [HWANGI.) ‘

For queries over a subtype, replace the subtype by the
intersection of its supertypes, and replace its functions by
their definitions, ' '

6. CONCLUSION

Simplifying access to a heterogeneous distributed database
system requires the definition of a logically integrated global
view of the local databases. There are two aspects to the

232

Assume the LSs and GS of Figures 2.4 and 3.1.

Query
: g: RANGE OF e IS EMP, RANGE OF p IS PHONE
RETRIEVE INTO RESULT (Name := Namef(e))
WHERE Sal(e) > 50K and 1234 = No(p) AND
p ISIN Phones (e)
SRT(e) :
e €.Name e.8al £.Phones
EMP1-EMP2 Namel(e) Sall(e) {HPhone ,WPhone}
EMP2-EMP1 Name2 (e) Sal2(e) Phones2
EMP1 EMP2 Namel(e) Sall(e)+Sal2(e) {HPhone,WPhone}
EMP1 EMP2 Namel(e) Sall(e)+Sal2(e) Phones2
SRT (p) :
p . E-Bhgn.ﬂﬁ DO.NQ
PHONE1 {HPhone,WPhone}! No(p)
PHONE2 Phones2 No (p)
Subqueries

gl: RANGE OF e IS EMP1-EMP2, RANGE OF p IS PHONEL
RETRIEVE INTO Tl (Name :=Namel(e)) WHERE
Sall(e) >50K AND 1234 = No(p) AND
(p = HPhone(e) OR p = WPhone (e))

g2: RANGE OF e IS EMP2-EMPl, RANGE OF p IS PHONE2
RETRIEVE INTO T2 (Name := Name2(e)) WHERE
Sal2(e) >50K AND 1234 = No(p) AND p ISIN Phones2(e)

g3: RANGE OF e IS EMP1MEMP2, RANGE OF p IS PHONEl
RETRIEVE INTO T3 (Name := Name l(e)) WHERE
Sall(e)+Sal2(e) >50K AND 1234 = No(p) AND
(p=HPhone(e) OR p=WPhone(e))

g4: RANGE OF e IS EMP1l) EMP2, RANGE OF p IS PHONE2
RETRIEVE INTO T4 (Name := Namel(e)) WHERE
Sall(e)+Sal2(e) >50K AND 1234 = No(p) AND
p ISIN Phones2(e),

Then, RESULT = T1 U T2 U T3 U T4.

Each subquery must then be modified to eliminate the set expres-
sions in the range statements, and to replace entity types and
function names with those used in the local schemas.

Figure 5,2 Illustrating the Query Modification Algorithm

233

integration problem. First, the 1local schemas may model real
world objects and relationships differently; second, the data-
bases may be mutually inconsistent, This paper identified vari-
ous kinds of structural and data inconsistencies that might
exist. It described a versatile view definition facility and
illustrated the use of this facility for resolving inconsisten-
cies., In particular, the importance of the semantic modelling
concept of generalization was emphasized. It has been postulated
that the derivation of an integrated global schema from the local
schemas can be automated [MB8l1]l, However, as we show in this
paper, there usually are many different global views that can be
defined for a given collection of local schemas, Which one the
DBA should choose depends strongly on the semantics of the local
databases and on individual application requirements, Our
approach, therefore, is more pragmatic. We suggest a two-step
procedure as a guide to the DBA: first, resolve naming conflicts,
differences in the representation of real-world objects and rela-
tionships, etc., by renaming or defining virtual entity types and
functions; then, generalize to resolve differences in aggregation
and data inconsistencies,

Once the global view is defined, users can pose queries
against it, These queries have to be modified into equivalent
queries against the local databases., We described an algorithm
for query modification., The problem of optimally processing the
subqueries generated by this algorithm is currently under inves-
tigation, : o

Acknowledgment

We would like to thank John Smith, Terry Landers, Nat Goodman,
and the other members of the Multibase group at the Computer Cor-
poration of America, Ron Pinter of MIT, and Mohamed Gouda of the
University of Texas at Austin for their comments on the ideas
presented in this paper. Some of these ideas are currently being
implemented as part of the Multibase system at CCA,

7. REFERENCES

[CGT75] Chamberlin, D.,D., J.N., Gray and I.L. Traiger. "Views,
Authorization and Locking in a Relational Database System".
Proc. AFIPS NCC 1975, pp. 425-430,

[CODD79] Codd, E.G. "Extending the Database Relational Model to
Capture More Meaning"., ACD TODS 4:4, Dec. 1979, pp. 397-434.

[DAYAL79] Dayal, U. "Schema_Mapping Problems in Database

234

Systems". Ph.D. Dissertation, Tech., Rep. TR-11-79, Center
for Research in Computing Technology, Harvard University,
Cambridge, Massachusetts, August 1979, '

[DB82] Dayal, U. and P.A. Bernstein. "On the Updatability of Net-
work Views —-- Extending Relational Views Theory to the Net-
work Model", Information Systems, 7:1, 1982 (to appear).

[HK81] Hecht, M.,S. and L. Kerschberg. "Update Semantics for the
Functional Data Model". Database Research Rep. 4, Bell
Labs., Holmdel, NJ, January 1981.

[HM78] Hammer, M. and D, McLeod. "The Semantic Data Model =-- A
Modelling Mechanism for Database Applications", Proc, SIGMOD
COl’lf., 1978' ppo 26"'36-) .

Relational Database System"., Proc. AFIPS NCC, 1975, pp.
409-416.

[HWANG] Hwang, H.-Y., Ph.D. Dissertation, Department of Computer
Sciences, The University of Texas at Austin, (in prepara-
tion), v _

[KG81] Katz, R. and N. Goodman. "View Processing in Multibase -~
A Heterogeneous Database System"., in Epntity-Relationship
Approach to Information Modelling and Analysis (P.P. Chen,
ed.), ER Institute, Saugus, Calif., 1981, pp. 259-280.

[LG78] Lee, R.M. and R. Gerritsen., "Extended Semantics for Gen-
eralization Hierarchies". Proc., SIGMOD 1978, pp. 18-25.

[MB81] Motro, A, and P, Buneman, "Constructing Superviews". Proc.
SIGMOD, 1981, pp. 56-64,

[MBW80] Mylopoulos, J., P.A. Bernstein and H.K.T. Wong. "A
Language Facility for Designing Database-Intensive Applica-
tions". ACM TODS 5:2, June 1980, pp. 185-207.

[ROUSS79] Roussopoulos, N. "CSDL: A Conceptual Schema Definition

- Language for the Design of Database Applications", IEEE

Trans., on Software Engineering, 5:5, September 1979, pp.
481-496. '

[SHIP81] Shipman, D.W. "The Functional Data Model and the Data
Language DAPLEX", ACM TODS 6:1, March 1981, pp. 140-173,

[SMITH et al.81] Smith, J.M,, P.A, Bernstein, U. Dayal, N. Good~-
man, T, Landers, K.W.T. 'Lin and E, Wong. "Multibase --
Integrating Heterogeneous Distributed Database Systems",
Proc. AFIPS NCC 1981, pp. 487 - 499,

235

[ss77] Smith, J.M, and D.C.P. Smith., "Database Abstractions:
Aggregation and Generalization". ACM TODS 2:2, June 1977,
ppo 105—1330

[STON75] Stonebraker, M.R. "Implementation of Integrity Con-
straints and Views by Query Modification"., Proc, SIGMOD
Confo, 1975’ pp. 65—780

236

A. CONTROL OVER DUPLICATE ELIMINATION

The calculus-based language that we described in Sections 2
and 3 always eliminates duplicates from the result of a query.
The user has no control over duplicate elimination. Sometimes,
however, duplicates may be desired in the output. Consider, for
example, the schema of Figure A,l1 Suppose we want to retrieve the
names of all employees., The obvious RETRIEVE statement:

RANGE OF a IS ASSIGN
RETRIEVE INTO RESULT (Name(a))

returns each name only once, although there might be many employ-
ees with the same name. Adopting the "prime" option of QUEL
[HSW751

RANGE OF a IS ASSIGN
RETRIEVE' INTO RESULT (Name(a))

will not work either, because now the name of an employee
assigned to two projects will appear twice. Augmenting the
language with an iterative statement: FOR EACH <entity variable>
solves this problem. The query in the above example then
becomes:

RANGE OF a IS ASSIGN
RANGE OF no, na IS STRING
FOR EACH no
FOR EACH na
RETRIEVE INTO RESULT (na) WHERE (J3a) (SSNO(a)=no
AND Name (a)=na)

(We augment qualifications to include quantifiers, as in Section
5.)

An analogous problem arises in view definition, Suppose we
want to define the hierarchical view of Figure A.l(b) over the
schema of Figure A.l(a). We have to eliminate duplicates to
define the PROJECT entity type, but then retain duplicates in
defining EMP_IN_PROJ., Figure A.l(c) shows how to define this’
view using the iterative construct (for details, see [DB821]).

Query modification is not much affected by the iterative
statement if duplicates are to be eliminated in the result of the
query. However, 1f duplicates are not to be eliminated (i.e., if
the query is formulated using FOR EACH), then care must be taken
in substituting for any variable whose range was defined by
duplicate elimination., Figure A,2 illustrates query modification
with two queries, one eliminating duplicates and the other not.
Observe that for the second query, the iteration over PROJECT is
replaced by an iteration over strings in the image of the PROJNO
function, since there 1is one PROJECT entity per string in
PROJNO(ASSIGN) . :

Ce

237

Schema
ASSIGN
PROJN SSNO Name
String String String
View
PROJE i
ROJECT PIO String
>[]
Employees
SSNO »D String
EMP-IN-PRO '
Neme D String

View definition

RANGE OF a IS ASSIGN
DEFINE ENTITY TYPE PROJECT (PNO := PROJNO(a))
RANGE OF p IS PROJECT

FOR EACH P
FOR EACH
DEFING ENTITY TYPE EMP-IN-PROJ (ﬁSNo 1=
ame =

AND MAP FROM p UNDER employees
WHERE PNo(p) = PROJNO(ag.

SSNo
Name

23

Figure A,1 Using the Iterative Statement

238

a. Query: RANGE OF p IS PROJECT, RANGE OF e IS EMPINPROJ
RETRIEVE INTO RESULT (PNo := PNo(p), Name := Name(e))
WHERE e ISIN,employees?pg

Modified query: RANGE OF a, a” IS ASSIGN
RETRIEVE INTO RESULT (PNo := PROJNO(a), Name := Name(a”)
WHERE PROJNO(a)=PROJNO(a”) .

After simplification: RANGE OF a“” IS ASSIGN
RETRIEVE INTO RESULT (PNo := PROJNO(a”), game(:f))
ame\a .

b. Query: RANGE OF p IS PROJECT, RANGE OF e IS EMPINPROJ
FOR -EACH p
FOR EACH e
RETRIEVE INTO RESULT (PNo := PNo(p), Name := Name(e))
WHERE e ISIN employees(pg

Modified querzéRRgﬂgg OF a, a” IS ASSIGN, RANGE OF s IS STRING
S
FOR EACH a” ,
RETRIEVE INTO RESULT (PNo := s, Name ;= Name(a”))
WHERE s = PROJNO(a”) anda?aa) (s = PROJINO(a)).

After simplification: RANGE OF a“ IS ASSIGN, RANGE OF s IS STRING
FOR EACH s
FOR EACH a“ : _
RETRIEVE INTO RESULT (PNo := S, Name := Name(a”))
WHERE s = PROJNO(a”).

Figure A.2 Query Modification with the Iterative Construct

239

Selective Broadcast in
Packet-Switched Networks

David W. Wall
Computer Science Department
The Pennsylvania State University

Abstract

Many researchers in the area of distributed networks
have found it convenient to assume the existence of a facil-
ity for routing broadcast messages to all the nodes in a
network, or selective broadcast messages to some subset of
those nodes. However, relatively little work has been done
on the design of such a facility. This paper extends a
mechanism developed by Dalal for total broadcast to the
problem of selective broadcast, by converting an existing
sequential algorithm on graphs into a distributed algorithm
suitable for network use. Because of this approach, the
results may provide some insight to the general problem of
designing distributed algorithms.

l. Introduction

A loosely-coupled store-and-forward network 1like the
ARPANET routes a message from one node to another élong some
series of links starting at the source node and ending at
the‘ destination. The problem of selecting the best route
for a gi?en message has been considered in detail, and a
simple but effectiye‘ mechanism is provided by the ARPANET

[8,91.

This material is based upon work supported by the
National Science Foundation under Grant MCS-8102278 and the
Joint Services Electronics Project under contract N-00014-
75-C-0601. . ‘

240

Much of the recent work on the effective use of such a
network has assumed the existence of a mechanism for message
broadcast, by which a node can send an identical message £o
every other node in the network; or more generally a mechan-

ism for selective broadcast, by which the node sends an

identical message to several nodes but not necessarily to
‘the whole network. Broadcast and selective broadcast would
be wuseful in wupdating a distributed data base [4,9], in
maintaining a distributed file systém [3] and other distri-
buted resources [1,2], and in the usé of parallel systems to
speed up problem solving in artificial intelligence [6] and
elsewhere [11]. Unfortunately, not ‘enough~work has been
done on actually providing such a service; no explicit

mechanism for broadcasting is available in the ARPANET.

This paper describes one approach to the design of a
selective broadcast facility. Our aim will be to consider a
total broadcast mechanism developed by Dalal [3] and then
genefalize it .to the problem of selective broadcast. We
will do this by examining a sequential algorithm on graphs
presented by Kou, Markowsky, and Berman [7] and modifying it
for use in a distributed environment, using Dalal's algo-
rithm- - as a subroutine. This discussion may therefore be of
some relevance to the general problem of applying sequential

algorithms to distributed applications.

241

2. Selective broadcast

There are several easy techniques for selective broad-
cast (described by Wall [12], and previously by Dalal [3] in
the context of total broadcast) that do not require any spe-
cial structure to be imposed on the network beyond that
structure necessary for the single—destinatién mechanism
sﬁch networks already have. These techniques bear‘the fault
of their virtues, however - because they are general enough
to work at any time and for any destinations, without any
special preparation, they necessarily involve a «certain
amount of‘ overhead or redundancy, incurred each time a
broadcast is sent. For example, if we simply send a
separate copy of the broadcast to each destination, we may
pass several redundant copies over the same 1link, because
the routes from the source to several differént destinations

include that link.

On the other hand, if the network is fairly stable . and
broadcasting among a given group of nodes is fairly fre-
qﬁent, it may be worthwhile to impose some additional struc-
ture on the network so as to make broadcasting easier. 1In
this way-we.accept some initialization time and occasional
maintenance time so that we can avoid the redundancy or

overhead of some. simpler scheme.

A particularly useful structure to impose is a complete

or partial spanning tree. A spanning tree of the network is

242

a set of links that connects all the nodes without including
any cyclic paths. If there are n nodes in the network, a
spanning tree will‘consist of n-1 links. We can route a
broadcast from node to node along the branches of a spanning
tree: The node that initiates the broadcast sends a copy
along each incident branch, and every other node forwards
the broadcast by sending a copy along each incident branch
except the one on which the broadcast arrived. A broadcast
routed in this manner will be copied only n-1 times, which
is the minimum since there are that many destinations. 1f
we select the spanning tree carefuliy, we can arrange for it

to have other useful properties as well.

For example, Dalal [3] considers the problem of
minimum-cost total broadcast. If we assign to each link an
estimate of the cost of sending a message across that 1link,
we can build the minimum spanning tree (MST) of the network
- that is, the tree for which the sum of all these costs 1is
as small as possible. A broadcast routed along the minimum
spanning tree will incur a cost to the network as a whole

that is as small as possible.

Dalal presents a distributed algorithm for constructing
such a tree in a nefwork environment. The algorithm is
based on Prim's principle [10] that any fragment of a
minimum spanning tree; including any single vertex, is con-
nected by a branch of the tree to the nearesf vertex of the

graph that is not in the fragment; that is, the cheapest

243

edge leading away from the fragment is a branch of the MST.
In Dalai's algorithm, each vertex starts by marking the
cheapest incident edge as a brénch; ﬁhe largér fragments
that this creates proceed to join into still larger frag-
ments, until finally some vertex discovers that there 1is

only one fragment, namely the MST. This description some-
what oversimplifies the algorithm, which is performed asyn-

chronously and need not fall into such well-defined phases.

How can we generélize this to selective Dbroadcast?
Consider the small network in Figure 1. The heavy links are
the branches of a minimum spanning tree suéh as Dalal's
algorithm might find; Suppose that nodes A, B, C, and D
will be working together for a while and want to be able to
do broadcasting among themselves without bothering the rest

of the network more than necessary. We will call such a set

of nodes a broadcast group. If this group uses only the
direct links AB, BC, and CD, each broadcast will héve a cost
of 50, but if the group can convince Z to join as a passive
member, then the group can broadcast via the tree consisting
of edges AZ, BZ, CCZ, and DZ, at a cost of only 40. 1In
either case there is little resemblance between the tree
used for selective broadcast and the local portion of the
minimum spanning tree used for total broadcast. Note also
that a broadcast group might not form a connected subgréph,
in which case the addiﬁion of extra vertices would be una-

voidable.

244

O O
O<O
o] (o}

10
20
10
20
10 C

A
10
Z

o 10
10
B 10
10

10
o D

o
5

Figure 1. Network with minimum spanning tree

This leads to a generalization of the minimum spanning
tree. Given a connected weighted network, and a subset S of

the nodes in the network, a Steiner tree is a tree of net-

work 1links that spahs all the nodes in S but is not neces-

sarily restricted to them. A minimum Steiner tree for S is

one whose cost is smallest over all Steiner trees for S.
Thus if we have a set of nodes trying to form a broadcast
group, we could build the minimum Steiner tree for that set
of nodes, and broadcasts via that tree would cost as 1little
as possible. Unfortunately, the problem of finding a

minimum Steiner tree is NP-complete [5].

The next best thing would be to use an approximation to
the minimum tree. Kou, Markowsky, and Berman [7] present a

sequential algorithm that builds a tree whose cost 1is 1less

245

than twice the minimum cost. We turn to this algorithm

next.

3. The KMB algorithm

If we are given a graph G and a subset § of the ver-

tices, which we will call the set of Steiner points, the

problem is to find a good (if not necessarily minimum)

Steiner tree Ty for the set S on the graph G. The algorithm

described by Kou, Markowsky, and Berman proceeds as follows.

Step 1. Build the complete -undirected distance graph GI for
8 over G as follows. The vertices of G; are the vertices in
S. Construct an edge for G; between every pair of vertices.
Assign a cost to each such edge by finding its endpoints in
the original graph G and computing the cost of the cheapest
path in G between these vertices. Thus G; represents a sum-

mary of the costs of paths in G between the Steiner points.

For example, if we are using the network and broadcast

group of Figure 1, we obtain the graph G; ghown in Figure 2.

246

A
o
20
20
20
O,
B
20
20 \\\\\\“o D
%
(@)
c

Figure 2. The graph GI

Step 2. Find any minimum spanning tree T; 5f g;. For exam-

ple, a minimum spanning tree of the G; jn Figure 2 appears

in Figure 3. Note that there were several other choices.
A
o
o
B
///////O D
o
Cc

Figure 3. The minimum spanning tree Ty

247 -

Step 3. Build the subgraph Gg of the original graph G by
replacing each branch in T; py any corresponding cheaﬁest
path in G. If such a path includes vertices not already in
Gs, add them to Gg as well. bFor example, Figure 4 cqntains
such a subgraph obtained from the T: of Figure 3. Again,
note that other choices were possible for each of the

branches.

o D

Qo

Figure 4. The subgraph Gg

Step 4. Find any minimum spanning tree Tg of the subgraph

Gs. Figure 5 is an example.

248

A
o
Z
o] O
B
/O D
(o} o
C

Figure 5. The second minimum spanning tree Tg

Step 5. Build a Steiner tree Ty from Tg by deleting

branches from Tg jf necessary, so that all the leaves of Ty

are Steiner points. For example, in the Ty of Figure 5, the
lower right vertex is not a Steiner point and does not lie
between two Steiner points, and so we can delete it, produc-

ing the tree in Figure 6.

249

Figure 6. The good Steiner tree Ty

In this example we have constructed the minimum Steiner
tree. Kou, Markowsky, and Berman show that in general the

cost of Ty is less than twice the cost of the minimum

Steiner tree. 1In practice it seems likely to do better than
this, as is suggested by the following result, whose proof

appears elsewhere [12].

Theorem. If a minimum Steiner tree exists that spans only
the Steiner points, then the KMB Algorithm will find a

minimum tree if it uses a suitable tie-breaking rule.

Briefly, if we break ties between edges in’ favor of
those that correspond to direct edges in G as opposed to
those that represent multiple-edge paths of the same cost,

we can build a minimum-cost Steiner tree that is also res-

250

tricted to the Steiner points, if only such a tree exists.
In this case our broadcasting will incur minimum cost, and
our broadcast group wili have essentially no impact on the
rest of the network. So perhaps the KMB Algorithm is a good

algorithm to consider further.

4. Distributing the KMB Algorithm

We plainly have a head start on the problem of distri-
buting this algorithm, because a good deal of the work
involves building minimum spanning trees, a problem already
explored by Dalal. Dalal's approach must be siightly gen-
eralized, since it was originally developed to find the MST
of the graph whose topology-corresponds to the network doing
the work, which is not the case in Step 2 of the KMB Algo-
rithm. But by depending on the underlying mechanism for
single-destination message routing, we can make Dalal's
algorithm find the MST of any graph as long as there is a
correspondence between the vertices of the graph and the

nodes of the network.

We will consider the five steps of the KMB Algorithm in

turn.

Step 1 presents a bit of a problem. This' step dom-
inates the time-complexity of the sequential algorithm, sim-
ply because a cheapest path might meander through a 1lot of

vertices Dbefore finally reaching its destination. We must

251

find something like the transitive closure of the network if
we want to know what these cheapest paths are, even if our
broédcast group is very small. We can sidestep this issue
by depending on the network as a whole to maintain this
information, a decision we can justify in two ways. First,’
it 1is possible that the network may already maintain the
information for the benefit of the underlying single-
destination mechanism; the ARPANET, for example, keeps the
transitive closure of the link delays rather than the 1link
costs, but a network more interested in cheap routing than
in fast routing might maintain the costs ihstead. Second,
there will presumably be many other groups besides the one
we are currently building, and they need the transitive clo-
sure of the costs as well; thus it seems reasonable not to
charge the maintenance of this information solely to the

group now forming.

Step 2 builds a minimum spanning tree of Gy. As dis-
cussed earlier, we can use Dalal's algorithm for this, if we
‘remember that the graph under consideration is not iso-

morphic to the network.

Step 3 is a nuisance. It amounts to telling everyone,
including the nodes being added to the group, what the paths
are. This turns out to be a little messy, since a given
added node might’appear on more than one path. Fortunately,
we can absorb thisvstep into Step 2: whenever we declare an

edge of G; to be a branch of T;, we can send a message along

252

the corresponding network path, bringing in the necessary
added nodes and informing all concerned about the connec-

tions -of the path in what is to become Gg.

Step 4 is the easiest so far; since we are now working
with a portion of the network, we can simply use Dalal's

algorithm as it is, without any special considerations.

Finally, Step 5 prunes any unnecessary added nodes from
the tree. We can do this using a variation of a broadcast

that we might call a convergecast. Some node performing

Dalal's algorithm in Step 4 will decide that the MST is com-
plete; it can send a broadcast to that effect out on this
newly-built tree. When this broadcast reaches the leaves it
bouhces back as follows: if a leaf is an added node, it
prunes itself by sending back a message to that effect; if
not, it sends back a simple acknowledgement. An interior
node prunes itself if it is an added node and all but one of
its neighbors prune themselves; it sends a message to that
effect to the remaining neighbor. Eventually these
responses converge somewhere in the middle of the tree, and

everyone who should be pruned has been pruned.

Thus it is shown (at 1least informally) that we can
build a low-cost Steiner tree in a distributed environment
by modifying the KMB Algorithm and using a slightly extended
>form of Dalal's algorithm as a subroutine. A more‘detailed

discussion of the problems involved appears elsewhere [12].

253

5. Going a step further

A moment's reflection may lead one to wonder just how
much the KMB Algorithm accomplishes with its second MST con-
struction. The graph Gy is likely to be pretty sparse; in
fact it 1is not hard to show that if there are no ties then
Gs is a tree already, in which case the second MST construc-
tion is not needed. This demand is too stringent, however,
and we can state a more relaxed requirement that still 1lets

us omit that step.

We will say that a consistent tie-breaking rule has two

properties:

Edge rule. Ties between pairs of equal edges with a common
endpoint are broken consistently with respect to the other
endpoints. For example, in Figure 7 we have a pair XM and
XN of equal edges that share an endpoint X, and another pair
YM and YN that share an endpoint Y. If we are using a con-
sistent edge rule, then we must break the ties in favor of
XM and YM or else in favor of XN and Y¥YN. This 1is not a
harsh requirement; Dalal assumes a similar tie-~breaking rule
to prevent his algorithm from creating a cycle in his

minimum spanning tree.

254

o=

o]
N

Figure 7. Applying the edge rule

Path rule. The tie between a pair of equal paths whose end-
points are the same must be broken the same way if the two
paths are extended by a common edge. For exaﬁple, in Figure
8 we have a pair of equal paths between M and N.‘ If we
break that tie in favor of the upper path, we must also
.choose the upper péth from M through N to Z in favor of the

lower path through those points.

O

/

Mo

(o]
‘
(o]
\\\\\\\ ’//,/’ N
10 o 10

o Z

Figure 8. Applying the path rule

Given this definition of a consistent tie-breaking

rule, we can prove the following result [12].

255

Theorem. If we perform the KMB Algorithm using a consistent
tie-breaking rule, then the graph GS produced in Step 3 is a

tree.

This means that'Step 4 is unnecessary.

A useful easier result is the following.

Theorem. If Gg jg5 a tree, then none of its leaves are added

nodes; that is, all its leaves are in S.

This is simply because a node gets added because it is on a
path between two Steiner points. Each such added node must
therefore have a degree in Gs of at least two, and hence

cannot be a leaf. The important conséquence is that if we

can omit Step 4, we can also omit Step 5.

g. Summary

By distributing £he KMB Algorithm in a naive fashion,
we can build a low-cost Steiner tree suitable for use in
seiective broadcast. This involves using Dalal's algorithm
twice to build certain minimum spanning trees, and using the
interesting technique of the convergecast to do the pruning

at the end.

By taking a deeper look at the sequential KMB Algo-

rithm, however, we can do better. If we use a consistent

256

tie-breaking rule, we can eliminaté’the second MST construc-
tion and hence also eliminate the final pruning step. We
have already absorbed Step 3 into the main MST construction,
and have argued that the network as a whole should maintain
the transitive closure information computed in Step 1, for
the benefit of all broadcast groups. Thus we are left with
a single application of Dalal's algorithm, slightly compli-
cated by the fact that the input graph is not isomérphic to
the network and by the fact that the resulting tree must be
incrementally translated into a tree in the original net-
work. It still seems fair to say that low-cost selective
broadcast need not be much harder to provide than Dalal's

minimum-cost total broadcast.

A fairly obvious additional moral has been pointed out

by others in other cbhtexts, but may nevertheless be worth
repeating. Namely, the better you understand an existing

algorithm, the better you can fit it to your application.

Acknowledgements

I would like to thank Susan Owicki for vast amounts of
/
advice and encoup&éement, and my colleagues John Gilbert,

Brent Hailpernc/éhd Sam Bent for letting me bend their ears.
7

~

257

References

(1] J. Eugene Ball, Jerome Feldman, James R. Low, Richard
Rashid, and Paul Rovner. RIG, Rochester's intelligent gate-
way: System overview. IEEE Transactions on Software
Engineering 2, 4 (1976), pages 321-328. —_

[2] David R. Boggs, John F. Shoch, Edward A. Taft, and
Robert M. Metcalfe. Pup: An internetwork architecture.
Report CSL~79-10, Xerox Palo Alto Research Center, July
1979. :

[3] Yogen Kantilal Dalal. Broadcast Protocols ig Packet
Switched Computer Networks. PhD thesis, Stanford Univer-
sity, April 1977. (Computer Systems Lab Technical Report
128.) '

4] Jim Gray. Notes on data base operating systems. IBM
Research Report RJ2188 (30001), San Jose, California, 1978.

[5] Richard M. Karp. Reducibility among ‘combinatorial
problems. In Raymond E. Miller and James W. Thatcher, edi-
tors, Complexity of Computer Computations, pages 85-103.
Plenum Press, New vYork, 1972. ' .

[6] William A. Kornfeld. ETHER - a parallel problem solv-
ing system. Sixth International Joint Conference on Artifi-
cial Intelligence, August 1979, pages 490-492.

[71] L. Kou, G. Markowsky, and L. Berman. A fast algorithm -
for Steiner trees. Acta Informatica 15 (1981), pages 141-
145,

[8] John M. McQuillan. Adaptive Routing Algorithms for
Distributed Networks. PhD thesis, Harvard University, May
1974 (BBN Report 2831). '

[9] John M. McQuillan, Ira Richer, and Eric C. Rosen. An
overview of the new routing algorithm for the ARPANET.
Sixth Data.Communications Symposium, November 1979, pages
63-68.

[10] R. C. Prim. Shortest connection networks and some
generalizations. - Bell System Technical Journal, November
1957, pages 1389-1401.

258

[11] Reid Garfield Smith. A Framework for Problem Solving
in a Distributed Environment. PhD thesis, Stanford Univer-—
sity, December 1978. (Computer Science Department Technical
Report HPP-78-28.)

(12] David Wayne Wall. Mechanisms for Broadcast and Selec-
tive Broadcast. PhD thesis, Stanford University, June 1980
(Computer Systems Lab Technical Report 190).

259

PERFORMANCE ANALYSIS OF A SHORTEST-DELAY PROTOCOL*

Liang Li, Herman D. Hughes, Lewis H. Greenberg
Department of Computer Science

Michigan State University
East Lansing, Michigan 48824
(517) 353-5152

ABSTRACT

A generalized shortest-delay access method (SDAM) protocol
for local networks is defined and evaluated. This protocol dif-
fers from a previously reported SDAM [16] in that it accommodates
a branching-bus topology instead of a single-bus network. It is
shown that for small bus-delays, SDAM performs very close to that
of M/D/l--with perfect scheduling. In this paper, the performance
evaluation of SDAM is more pragmatic in that the effects of vari-
ous protocol overheads (e.g., decoding, turnaround time, initial-
izing packets, etc.) are taken into account. An analysis of the
tradeoffs between exhaustive and nonexhaustive transmission dis-
ciplines is also presented.

Keywords: Local network, Protocol, Virtual token, Bus propaga-
tion delay, Branching-bus topology, Protocol over-
head, Carrier-sensing, Exhaustive/non-exhaustive
transmission, Queueing delays

* Research supported in part by NSF - Grant No. PRM-8115413

260

1. Introduction

In a recent paper [16], Li and Hughes proposed an access-
level protocol for local computer networks (LCN). This protocol
employs a scheme which is analogous to the one-directional short-
est-seek-time-first (SCAN) algorithm advanced by Denning et al.
[6,7,8] and is referred to as the "shortest-delay access method"
(sDAM). Briefly, the SDAM protocol has the following properties
[16]:

works on a single-trunk bus-structured local network,

has a decentralized control,

maintains conflict-free transmissions,

uses simple algorithms and little control overheads,

* performs closely to M/D/1l with perfect scheduling in ideal
cases (taking into account the bus propagation delay). In
particular, the performance of SDAM exceeds that of the
popular CSMA/CD protocol in medium to high loads,

*+ provides adequate services to a large number of users

(nodes) (e.g., 1000 nodes).

Recognizing the inconvenience of a single-bus topology (e.g.,
reconfiguring the network or adding new nodes at certain loca-
tions), this paper generalizes the SDAM protocol to a branching-
bus network. A discussion of this generalization is presented
in Section 2 of this paper.

In Section 3, two variants of the SDAM protocol, the closed
SDAM (C~-SDAM) and the open-ended SDAM (OE-SDAM), are closely ex-
amined for their relative merits. That is, the performance of
these protocols is evaluated by both analytic and simulation mod-
els and compared to that of M/D/1 with perfect scheduling. Since
the OE-SDAM provides equal access to all nodes, the performance
evaluations throughout Section 3 will focus on this protocol.

In order to claim that the implementation of SDAM is feasi-
ble, the effects of the following three operating overheads of
SDAM are evaluated: the decoding/turnaround time, the carrier-
sensing time, and the token-initializing packet time.

The last part of Section 3 considers two transmission disci-
plines (exhaustive and non-exhaustive) which are possible for any
local network protocols. The performance differences between
these two disciplines are analyzed in terms of the distributions,
means, and variances of their respective queueing delays.

Finally, in Section 4, a summary of this paper is presented.

2. The Shortest-Delay Access Method (SDAM) Protocol
2.1 Basic Concepts of SDAM

The underlying concept of SDAM is to reduce the delay (i.e.,
the "change-over" time) between two consecutive transmissions by
different nodes. In order to do this, the nodes on the bus must
be numbered sequentially from left to right or vice-versa. We
can then draw an analogy between the virtual-token passing of

261

SDAM and the scanning action of the read/write head of the disk
(see [6]). The token may be viewed as the disk head, scanning
across the tracks (i.e., the nodes on the bus), and en route pro-
cesses requests referencing those tracks (i.e., triggers trans-
mission of packets from the nodes). To achieve distributed con-
trol and still avoid conflicts, SDAM uses a "token-direction"
code on each packet to indicate the direction of current scan.
The "virtual-token," as perceived by a node, is actually the ab-
sence of any more packets following a passing packet, thus allow-
ing the node to start its packet transmission. The packets that
missed the token will have to wait until the token passes the
node again.

2.2 Network Configuration

Before we describe the rules of the SDAM protocol, let us
first define a general configuration for which the algorithm will

apply.

1. The transmissicn medium is a single common bus (e.g.,
coaxial cable), and is assumed error-free. The end-
to-end propagation delay on the bus is a. Later we
generalize this network topology to a branchlng—bus
network.

2. There are N nodes connected to the bus via communica-
tion interface units (CIUs), which function as de-
couplers and buffers. Therefore, we may consider the
network as composed of functionally homogeneous nodes.
These nodes are numbered 1 to N from one end of the
bus to the other.

3. Each CIU has the carrier-sensing capability. In addi-
tion, it is assumed that the CIUs can identify the
source and the destination addresses as well as the
"token-direction" code on the passing packets.

4. There is a decoding/turnaround time t that is needed
for the node to change from the receiving state to the
transmitting state. This time is independent of the
time required for carrier-sensing, which is assumed
to have length d.

5. There may be either one or two end-nodes attached to
the bus. These nodes contend for the access of the
bus as normal nodes do--only they generate a control
packet (or token-initializing packet, TIP) that con-
tains a special bit pattern to initialize the token
passing. It is also possible to add this feature to
the user-nodes located on either end of the bus, so
that they serve as both user- and end-nodes.

6. The data packets are of fixed length, and each is
assumed to require one time unit to transmit. The
control packet requires ¢ time units to transmit.

262

2.3 The SDAM Protocol for a Single Bus

There are two variants of the SDAM protocol: the first uses
both end-nodes to pass the TIP back and forth and is called the
closed SDAM, or C-SDAM; the second uses only one end-node and is
referred to as the open-ended SDAM, or OE-SDAM.

Under both SDAM variants, each user-node can be represented
as having four states (refer to Figure 1l). Originally, all nodes
are in the IDLE state. When a packet is generated at a node, say
node n., the node becomes "busy and enters the WAIT state. When
an end-of-packet from node n. is sensed on the channel and the
token-direction on that packet is the same as the packet's travel-
ing direction, the node enters the READY state. After a decoding/
turnaround time t plus the cumulated carrier-sensing delays

(|n -nj |-1)d along the path, the node is ready to send a message.

But before this happens, it keeps monitoring the channel status;
and if the channel becomes busy, the node goes back to WAIT state.
Otherwise, the node enters the TRANSMIT state and stays there un-
til either its buffer is emptied (for exhaustive transmission) or
some transmission limit is reached (for non-exhaustive transmis-
sions), and then it returns to the IDLE or WAIT state. Note that
all packets transmitted carry the same token dlrectlon code as
that of the most recently passed packet.

For the end-node of the C-SDAM protocol, the state diagram
is the same as that of a user-node, except the end-node always
has at least one packet (the TIP) to send when the token arrives,
and the packet always carries an opposite token direction so as
to send the token backwards.

For the end-node of OE-SDAM, a counter of (2a + t + Nd) is
used. After generating the first TIP, the end-node activates the
counter and monitors the channel constantly. Whenever a packet
is detected, the countdown is interrupted until the packet has
passed, and a packet decodlng/turnaround time t is -added back to
the counter. When this counter expires, or if the end-of-packet
from the last node of the network is sensed from the channel, the
end-node generates a new TIP and starts another round of token
passing.

2.4 SDAM on a Branching-Bus Topology

Although it is always possible to use a single bus to con-
nect any set of nodes scattered in a local area, a branching bus
network is more desirable for its shorter propagation delay as
well as its flexibility in regards to.future expansion and recon-
figuration (refer to Figure 2). SDAM can easily be generalized
to support this topology. Since any complex branching topology
can be decomposed into simple three-~branch structures, as shown
in Figure 3, it is sufficient to show that the algorithm of SDAM
works on such a three-branch network. The reader can easily see
that the same principle applies to networks with any finite num—
ber of branches.

Because there are three end-nodes El, E2, and E3 on the three
branches for the C-SDAM protocol, we need to change the token

263

a
6]
Packet j
s > 3]
Arrival ‘o
N
ot
T
g
A o N
§ ®
B FUREs o
2 L
: L O g
j M v 840 g
G > g 1
hel B 9 (YR]
yl g 9 000
| al o A é 2 8
& 0 A
[0
g [S IR IL
[)

Bus still idle

after delay
t+(|n,-n,|-1)a
13

; Figure 1. The State-diagram for the User-nodes of the SDAM Protocols.
| . t

| = decoding/turnaround time for the passing packet
' d = carrier sensing time '
! n, = the node wishing to transmit
nj = the node that transmitted last
l" Y
=]
| o]
o (o]
’)
\ o
i ° °
[»]
; o
!
[
o o
o]
Figure 2.
(a) A set of nodes in (b) Using a single bus (c) Using a branching bus
in local area. to connect the to connect the nodes.

nodes.

264

direction code from left or right to: (F1-->E2), (E2-->E3), or
(E3-->1). Each user-node will be on precisely two of such paths
(refer to Figure 3a), and its access scheme remains unchanged,
except for the new token directions. After receiving the network
token, an end-node will now generate a TIP carrying a token direc-
tion that points toward the next end-node in sequence.

For the OE-SDAM protocol, two token directions are possible:
one is on branches 1 and 2 and the other is on branch 3. Let us
assume that the K nodes on branches 1 and 2 are sequentially num-
bered from 1 to K, and the remaining (N-K) nodes on branch 3 are
sequentially numbered from K+1 to N. Then the first K nodes on
branches 1 and 2 are treated as if they are on a single bus net-~
work. For each node n, on the third branch, however, a counter
of ((n,-1)d + t + 2a,), where a, is the propagation delay on
branchlz, is used to"determine When the token will arrive at node
n,. As soon as the node n. detects the end of a TIP, it activates
the counter and monitors the channel status. Whenever a packet
from branch 1 or 2 is heard, the countdown is temporarily inter-
rupted, and a decoding/turnaround ‘time t is added back to the
counter. If instead, a packet from a node on branch 3 is sensed,
then n. switches back to the single-bus scheme described earlier.

TS illustrate how the requests from different nodes are co-
ordinated, let us assume first that the network has been up and
running for awhile. Now, suppose node i received the token at
time x_and had just finished a packet transmission at time x.,
with tBe token direction pointing toward branch 2 from branch™1
(refer to Figures 3a and 3b). After a propagation delay, the
end~of-packet signal reaches each of the following nodes: 1i-1,
i+l, and K+1. Nodes i-1 and K+1, noticing that the packet's
traveling directions (toward branches 1 and 3, respectively) is
different from the token direction (toward branch 2), will re-
frain from any transmission attempts. On the other hand, node
i+l will be able to go through the READY state to the TRANSMIT
state and send its packet onto the channel. Nodes i+2, i+3,...,
K, although sensing the same information as node i+l, will stop
at the READY state and re-enter the WAIT state because node i+l
has already jumped ahead of them and occupied the channel. When
node i+l finally completes its transmission, the above procedure
is repeated again.

Continuing this process, the token will eventually reach the
end of branch 2. For the C-SDAM protocol, the end-node E2 simply
generates a TIP with a new token direction (E2-->E3) and sends
the token toward E3 of branch 3 (refer to Figure 3a). The OE-SDAM
protocol requires node K+1 on the third branch to wait for its
counter to expire; then it claims the token and passes it to
branch 3 (refer to Figure 3b).

2.5 Network Reliability under SDAM Protocol
As we have described earlier (in Section 2.3), each node ex-

ecutes an identical algorithm independently according to the in-
formation (e.g., channel status, token direction, etc.) provided

265

- : token passing
sequence

Branch 1 Branch 2

S B0 66-0C

(a) Token passing in C-SDAM. The token is passed
from E1 of Branch 1 to E2 of Branch 2. Then
E2 changes the token direction toward E3
instead of to El., Finally, E3 passes it back to
El and completes a cycle.

-~ : token passing
sequence

-~-3 : token passing
between branches

Branch 1 Branch 2

vvs P] ey | ———pm | e | ——r e e
00O
(b) Token passing in OE-SDAM. The end node, El,
passes the token toward the other end of
Branch 2. The first node on Branch 3 waits a
time-out period then starts the token passing

down to Branch 3. After another time-out
period, the left end node El recovers the token.

Figure 3. Token passing of SDAM in a branching bus.

266

through the common channel. Therefore, any single node-failure
will not affect the network's operation. However, network fail-
ure could still occur if (1) the end node(s) fails to generate a
control packet; (2) there is an error in transmission (e.g., a
noise on the channel, causing a later node to start transmission
prematurally); and (3) cable failure occurs, disabling a part of
the network. For contention based schemes, there does not exist
a network token. All transmission errors may be viewed as just
another data collision and can be handled as such. But for a
token-passing scheme (e.g., SDAM), some procedure must be em-
ployed to restore the proper network operation from network fail-
ures. For the case of OE-SDAM, the error recovery procedure
stipulates that: :

1. whenever a node detects an unrecognizable address or
token direction, it abandons any transmission attempts
until the next token arrives;

2. each node is preassigned a time-out value whose size
varies with the distance between the user-node and the
end node (i.e., the shorter the distance, the smaller
the time-out value); '

3. 1if the bus has been sensed idle by a node for a period
of time longer than its time-out value, then the user-
node may infer that all the nodes with smaller time-out
values have failed; therefore, it will generate a (data
or control) packet to start the token passing again.

With this procedure, any error in transmission will be han-
dled by using rule no. 1, followed by the end node generating
a new token. If the end node should fail, then the user next to
this node will resume its duty after a time-out period. Any sub-
sequent user-node failure can be handled by the same procedure.
In this fashion, even when the cable is physically cut into sev-
eral pieces, each piece of the cable can be used to form a net-
work, provided the proper cable terminators are added.

For the C-SDAM protocol, if one of the end nodes should fail,
the other end node can detect this after a prolonged time-out
period; hence it can automatically switch to the one-end-node
OE-SDAM scheme as previously described.

3. Analysis of SDAM Protocol

The performance of both C-SDAM and OE-SDAM for an ideal sin-
gle bus case have been analyzed in a previous paper by Li and
Hughes [16] using the principle of a polling system [15]. Assum-
ing nodes are uniformly located on the bus and the arrivals are
Poisson, the network's throughput-delay formula for OE-SDAM (ex-
haustive transmission) is derived as

§%a S
E(Delay) = SNT + 3(1=8)

S

Nr
+ (1 - ﬁ) (1 + I:g) | (1)

a_
2N

in terms of packet transmission time, where

267

total number of nodes on the network

end-to-end bus propagation delay

network throughput in equilibrium (i.e., packet
arrival rate X packet transmission time < 1)

0y =
i u

and

= the change-over time between two adjacent nodes

N =2}

= average token passing time between two nodes (in

units of i)
§* = variance of token passing time between two nodes.

For a single-bus network, r and §2 can be approximated as
follows. Excluding packet transmission times and their associ-
ated turnaround times, it takes the token (a+(N-1)d) time to
reach the last node of the bus from the starting end-node, then
another (a+d) time to travel back to the end-node. Therefore,
the average token passing time is

r =3 {(ctt) + [a+(N-1)d] + (a+d)}/(B)
= 2 + (c+t+Nd)/a (2)

in terms of (a/N), where (c+t) is the network overhead associated
with the initial TIP. The variance, &2, can then be determined
as

§2 = % {(N-1) [l-r]?% + l-[(c+t+a+d+%)/(%)—r]2} (3)

where the second squared term represents the token-passing delay
between user-node N and user-node 1.

For the generalized branching bus as shown in Figure 3, we
let

i=1 *
where a., is the bus propagation delay on branch i, i=1,2,3.

Then equations (1) and (2) still hold true, but the variance
of the token passing time must be modified to:

82 = § {(N=2) [1-r]? + 1 [(a,+a+d)/(3)-r)?

+ 1e[(c+t+a,+a +d+%)/(%)—r]2} (4)

3'°71
where the second squared term is the token passing delay between
the last node of branch 2 and the first node of branch 3; and the
last squared term is again the token passing delay between user-
nodes N and 1.

-For.simplicity and without loss of generality, we will still

268

assume a single-bus network for our analyses in this paper. Due
to difficulties in analytic modeling, the C-SDAM protocol will be
analyzed by simulation methods.

In the remainder of this section, we will compare the per-
formances of C-SDAM and OE-SDAM in detail. Also, the performance
degradation due to various operating overheads of OE-SDAM is ana-
lyzed. The exhaustive transmission discipline will be assumed
for a 1 our analyses unless otherwise specified.

3.1 Comparison of C-SDAM and OE-SDAM

The following parameters are used for comparisons of the
delay performance of C-SDAM and OE-SDAM.

N = 50 nodes

packet size = 1000 bits (packet time = 1)

0.01, 0.1, 0.5, 1.0 for propagation delay
0.03 (30 bits) for TIP

0.02 (20 bit-time) for turnaround time
0.002 (2 bit-time) for carrier-sensing time.

| T | I

[Qiria]e

When a is small (a = 0.01), the difference in the token pass-
ing time between these two protocols is also small. Therefore
their performances are very close to each other (see Figure 4).

As a increases to 0.1, the performance of C-SDAM begins to exceed
that of OE-SDAM. When a=0.5, the average delay of OE-SDAM is 12%
larger than that of CSDAM. This difference expands to 22% as a
increases to 1.0.

The C-SDAM protocol, however, has one serious performance
drawback. That is, it tends to discriminate against nodes lo-
cated near either end of the bus (see Figure 5). The same phe-
nomena has been observed and explained by Coffman et al. in their
analysis of the disk access schemes [7]. Therefore, although the
delay performance of CSDAM could be viewed as the "delay lower-
bound" of all token-passing schemes, it is not suited for imple-
mentation unless such discriminations can be justified for some
practical applications.

3.2 Comparison of OE-SDAM and Other Popular Schemes

The throughput-delay curve is compared to those of MSAP/
BRAM [4, 12] and CSMA/CD with various v values (v is the proba-
bility of a busy node to attempt its transmission in a given time
slot) [19] in Figure 6. It shows that, with a small bus propaga-
tion delay (a=0.01l), in light loads SDAM performs very close to
the CSMA/CD protocol with an optimal v value, and in higher loads
SDAM exceeds CSMA/CD for all values of v. For a larger propaga-
tion delay (e.g., a=0.l1l), the performance of CSMA/CD degrades
drastically, while SDAM maintains a very good performance. In
any circumstances, the performance of SDAM far exceeds other
collision~free protocols reported in the literature [4,12,20].

The throughput S versus the offered traffic load G (defined
as the total average number of packets available for transmission

269

in the network) is plotted in Figure 7. Again, it shows that
SDAM is highly efficient throughout the entire spectrum of G and
remains stable (i.e., throughput does not degrade due to SDAM's
collision-free property) for high values of G.

3.3 Effect of Decoding/Turnaround Time

Since a decoding/turnaround time t is associated with each
transmission of a packet, we can envision the packet as being
enlarged by a ratio of t (i.e., packet time t”=1+t), with the
added portion being blank-filled. The throughput-delay curve
can then be approximated using equation (1), with S modified to
S“=S(l+t). The results are plotted in Figure 8 for t = 0.0 to
0.1 (0 to 100 bit-times). This figure shows that, for light
loads the values of t do not significantly affect the network's
performance. However, for high loads, larger t values have de-
vastating effects on the average packet delay as well as the net-
work's maximum achievable throughput. Generally, the maximum
network throughput is bounded above by (l-t). So, if the turn-
around time is t=0.1, then the network can only achieve an aver-
age of 90% throughput. : ‘

3.4 Effect of Carrier-Sensing Time

In an ideal case (as most people assume for their protocols),
the time is negligible for each CIU to detect the absence (or
presence) of a carrier and generate its own packet. Under such
an assumption, SDAM's performance is independent of the number of
nodes on the network [16]. However, this is an unrealistic as-
sumption. Since all nodes on the network take turns to sense and
access the channel, each node must allow its predecessors enough
time to complete their actions before it can safely start its
own. So, the time spent in carrier-sensing by each node will
cumulate as the token is passed from node to node. Figure 9 shows
the degradation of network performance under various values of 4
and N. It is clear that in a heavily populated network (N>100),
even a subtle change in carrier-sensing time will have a profound
effect on the network's performance.

3.5 Effect of the Token-Initializing Packet (TIP)

In SDAM protocol, a TIP is required to initialize each cycle
of t ken-passing. This packet can be a special bit pattern that
all nodes recognize as being generated by a particular end-node;
or it can be a shortened data packet that contains nothing but a
source address and a token direction code. 1In any case, this
packet will occupy a fraction of the channel time, and therefore
must be considered as a network overhead. Analysis shows, how-
ever, that when the number nodes on the network is large (n>50),
the size of TIP has little effect on the network's performance.
The effect of varying TIP sizes under an extreme light load
(s=0.0) is plotted in Figure 10. In higher loads, this effect
becomes negligible.

270

3.6 Effect of Exhaustive/Nonexhaustive Transmissions

In analyzing the exhaustive/nonexhaustive transmission dis-
ciplines, it is important to specify the type of workload imposed
on the network. Here, we are mainly concerned about workloads
with uniform Poisson arrivals; no attempt is made to study the
situation where unbalanced loads are presented.

The exhaustive transmission discipline allows a node, upon
receiving the network token, to transmit all the packets in its
buffer, including the ones that arrived during the transmission
process. The nonexhaustive discipline, on the other hand, limits
the number of packets that a node may send at one time. In prac-
tice this limit may vary from node to node, but here our focus is
directed on the case where only one packet is allowed to be trans-
mitted per channel access.

Generally speaking, the exhaustive discipline provides a
better average delay and a higher throughput of the network. 1In
extreme cases, a busy node with a large file to transfer may
monopolize the entire channel for a long period of time, causing
networks throughput to temporarily reach 1, while making other -
nodes suffer long waiting times. The nonexhaustive scheme, on
the other hand, guarantees fairness among the users and elimi-
nates the above monopoly at the cost of increased token-passing
time (hence the increase of average delay). However, in light
loads (S<0.5) where the average number of waiting packets at each
node is much less than 1, these two schemes are practically the
same. Also, if the bus delay is small (a<0.l1l), then the perfor-
mance of nonexhaustive discipline remains close to that of the
exhaustive one (refer to Figure 11). When the bus delay is large,
the difference in performance becomes significant (at a=1.0,
S=0.8, the nonexhaustive scheme is 20% worse; at S=0.9, it is 66%
worse) . ,

In terms of the queueing delay distribution, the nonexhaus-
tive discipline has a larger variance than its exhaustive counter-
part. This is again due to the fact that the efficiency in con-
secutive transmissions is compromised by the requirement of fair-
ness. Therefore, the distribution curve is "flatter" and the de-
lay values are spread wider. Figure 12 shows the queueing delay
distribution of both exhaustive and nonexhaustive transmission
disciplines at a=0.1 and a=1.0. Table 1 summarizes the mean,
standard deviation, median, and the 95 percentlle of each of

_these distributions.

4. Summary and Conclusion

In this paper, we analyzed the generalized "shortest-delay
access method" (SDAM) protocol previously proposed for a single-
bus network [16]. The generalized network configuration now in-
cludes a branching-bus topology and three protocol overheads (the
decoding/turnaround time, the carrier-sensing time, and the token-
initializing packet (TIP) time), which makes SDAM more powerful
and more practical.

It is shown that the throughput- delay formula for SDAM on a

e e e et A e g - . R A e ot o T N A

271

branching-bus is identical to that of a singlée bus, except that
the total bus delay a is shorter and the variance of the token-
passing time may be larger. Therefore, it was possible to reduce
a complex branching-bus to an equivalent single bus configuration
so as to simplify our analysis.

Two variants of the SDAM protocol--the C-SDAM and OE-SDAM--
are analyzed. The C-SDAM, using back-and-forth token passing,
is the most efficient of all the token passing schemes. The OE-
SDAM, on the other hand, employs one-way token passing and pro-
vides uniform queueing delays to all nodes. When the network
propagation delay a is small and the number of users N is not
very large, these two schemes perform closely to the M/D/1 with
perfect scheduling. But their performances are most impressive
when a and/or N are large (e.g., a=1.0 and N=1000).

Of the three overheads evaluated in this paper, the TIP
time is unique to the SDAM protocol. However, analysis shows
that the size of the TIP has little effect on network's perfor-
mance. The turnaround time t, which we think should be consid-
ered in every access protocol, shows a devastating effect on net-
work performance. Given that the packet size is fixed and that
the workload is balanced, the maximum throughput of the network
is bounded above by (l1-t), and the average queueing delay of the
packets approaches infinity as the network's throughput approaches
this limit. The carrier-sensing time d, although very small, be-
comes an important factor in network's performance when the -number
of users is large. For N>100, even a subtle change in d will have
a profound effect on network's queueing delays.

The exhaustive transmission discipline provides the most
efficient use of the channel time, while permitting a busy node
to monopolize the channel access. The nonexhaustive discipline,
on the other hand, eliminates such a monopoly and thus guarantees
an upper bound to a node's waiting time. Analysis shows that the
latter scheme causes larger mean and variance in queueing delay.
But in low loads or with a small bus delay, these two schemes are
practically the same. Therefore, the nonexhaustive discipline is
recommended. However, in high loads with a large propagation de-
lay, the difference in performance could become significant, and
some form of tradeoff must be made. .

In summary, the SDAM protocol provides a very efficient ac-
cess method for a local network with a branching bus topology
and is worth considering for implementation, particularly to
large-scale networks. '

10.

11.

12.

13.

14.

15.

16.

17.

272

REFERENCES

A, Abramson, "The ALOHA System-—-Another Alternative for
Computer Communications," AFIPS 1970 Fall Joint Computer
Conference, pp. 281-285. _

I. Chlamtac, "Issues in Design and Measurement of Local
Area Networks," Proc. CMG-XI International Conference on
Computer Performance Evaluation, Dec. 1980, pp. 32-34,

I. Chlamtac, W. R. Franta, P. C. Patton, and W. Wells,
"Performance Issues in Local Computer Networks," Technical
Report 79-16, Computer Science Department, U. of Minnesota.
I. Chlamtac, W. R. Franta, and K. D. Levin, "BRAM: The
Broadcast Recognizing Access Method," IEEE Trans. Comm.,
Vol. COM-27, No. 8, Aug. 1979, pp. 1183-1190.

D. D. Clark, K. T. Pogran, and D. P. Reed, "An Introduction
to Local Area Networks," Proc. IEEE, Vol. 66, No. 11, Nov.
1978, pp. 1497-1517.

E. G. Coffman, Jr., and P. J. Denning, "Operating Systems
Theory," Prentice-Hall, Englewood Cliffs, N.J., 1973,

Chap. 5.

E. G. Coffman, Jr., L. A. Klimko, and B. Ryan, "Analysis of
Scanning Policies for Reducing Disk Seek Times," SIAM J.
Comput., Vol. 1, No. 3, Sept. 1972.

P. J. Denning, "Effects of Scheduling on File Memory Opera-
tions," AFIPS 1967 Spring Joint Computer Conf., pp. 9-21.
H, A. Freeman, "Tutorial Notes: Introduction to Local Com-
puter Networks," 5th Conference on Local Computer Networks,
Minneapolis, Oct. 6-7, .1980.

H. A. Freeman and K. J. Thurber, "Issues in Local Computer
Networks," IEEE 1979 International Communications, pp.
20.3.1-20.3.5. . _

L. Kleinrock, "Queueing Systems," Vol. 2, Computer Applica-
tions, Wiley-Interscience, 1976.

L. Kleinrock and M. Scholl, "Packet Switching in Radio
Channels: New Conflict-free Multiple Accesss Schemes for

a Small Number of Data Users," Proc. ICC., June 1977,

pp. 22.1-105-22.1-111.

L. Kleinrock and F. A. Tobagi, "Packet Switching in Radio
Channels: Part I--Carrier Sense Multiple~Access Modes and
Their Throughput-Delay Characteristics," IEEE Trans. Comm.,
Vol. COM-23, No. 12, Dec. 1975, pp. 1400-1416.

L. Kleinrock and F. A. Tobagi, "Packet Switching in Radio
Channels: Part III--Polling and (Dynamic) Split-Channel

Reservation Multiple Access," IEEE Trans. Comm., Vol. COM-24,

No. 8, Aug. 1976, pp. 832-845.

A. G. Konheim and B. Meister, "Waiting Lines and Times in a
System with Polling," JACM, Vol. 21, No. 3, July 1974, pp.
470-490. : :

L. Li and H. D. Hughes, "Definition and Analysis of a New
Protocol," Proc. 6th Conference on Local Computer Networks,
Minneapolis, October 12-14, 1981.

T. T. Liu, L. Li, and W. R. Franta, "The Analysis of a Con-
flict-Free Protocol Based on Node Clusters," Proc. 6th

1

18.

19.

20.

273

Conference on Local Computer Networks, Minneapolis, Oct.
12-14, 1981.

R. M. Metcalf and D. R. Boggs, "Ethernet: Distributed
Packet Switching for Local Computer Networks," Comm. ACM,
Vol. 19, No. 7, pp. 395-403, 1976.

F. A. Tobagi and V. B. Hunt, "Performance Analysis of
Carrier Sense Multiple Access with Collision Detection,™"
Proc. LACN Symp., May 1979, pp. 217-244.

C. Tropper, "Models of Local Computer Networks," Mitre
Corp. Report ESD-TR-80-111.

274

Delay
50 .~ — — — — Analytic OE-SDAM
(o] Simulated OE-SDAM
-+ —— Simulated C-SDAM
40. e M/D/1 perfect scheduling
. N =50
30.— t = 0.02
c = 0.03
d = 0,002

10.04

1.0) . Throughput
’ T A T T v T T ¥ ¥ T s
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4. Delay performance of closed-SDAM and open-ended SDAM.

275

belay —1 —oE-spam N = 50 t = 0.02
a = 0.1 c = 0.03

A ‘T"C"SDA“ s =0.7 d = 0.002
?l o OOT
11,555 ¢ 1l
ll?:]’f"o ?'?:':
+] t N (it

2.0+ ¢ +
Lt 6 o v 1 Qe W30 L ool Bl
e YN _I__l___'___]"____’]’_____yg_ ___t[____aeage

OX o
olllll?”tll- delay

7 oo f

:.I:H:,n,',.g;;x,g,,,:?.m?'?"u,n ::;.u:nl
Ll I l

[! g X RIS

1.&l,||”|I!l!‘h‘ul"”!fl!II!'!lfu”l”!'lt'”':'llllmiati°n

Left end Middle Right End

Figure 5. The packet delay versus node location on the bus.

276

1
so-f CSMA/CD (a=0.01) \) \ |
v = 0.15 - { \ i
v = 0.07 —rtp »\ |
40 v = 0.01 N A i
\{ \ |
I
30 A ~ (>
CSMA/CD {a=0.1) , \ I
optimal Vv - \ Wi
| u
20 | {
| '=
| [}
I
I !
| !
|
10 Y
9 ;
)
8- MSAP/BRAM /
7 a = !
a= ! 1
6 - / I
/ ,/
5 // / SDAM
/ p / t+0
/ / c=0.03
4 ~ / 7/ / d=0.002
/ /
/ G a=0.1
/ / /
3] / / 14 a=0.01
Vi / /
/ / /
/ 4 /’ M/D/1 with
s 7 .
, y/ perfect scheduling
2 7, gy
VA,
Z
/7 ,/ p
/ - P 7
A
27
/ .-
1 = 1 I | 1 1 |) | I -
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Figure 6. The throughput-delay curve of SDAM compared to MSAP/BRAM,

CSMA/CO, and M/D/1. (N=50) (v=transmission probability per
time slot for CSMA/CD.)

277

S
L0 e e o e e —

- a = 0.01

B MSAD/BRAM
0.8

SDAM
B 0
c=0.03

0'6_ d=0.002

» —— l-persistent CSMA
0.4

N Slotted ALOHA
0.2}

L
o.o_ L lllllll l‘lllll] y i ll 1 Lll!llll 1 L1 Dam

0.01 0.1 1 10 100 1000

Figure 7. Offered load G vsg. throughput S.
(Infinite population arrivals)

Throughput
1 1 1] 2. A 1 S

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 8. The effect of turnaround time ofi network's queueing delay.

278

Delay
40,4 t = 0.02
c = 0.03
a = 0.01

30.4

20 e

10.04
9.04

—_———

d=0.01

d=0.005

d=0.01

d=0.002
d=0.01

d=0.001

d=0.0005
d=0.005

Figure 9. Effect of the carrier-sensing time d versus queueing delay.

-, d=0.0
M/D/1 7
Ve
/
/7 , d=0.002
y /
/s
7
7
// -
P _~ d=0.001
22 . a=0.0
—= ——= d=0.0005
- -
d=0.0
Lt ' 1 11N
500 1,000

279

! 1 t 2 1 1 3 1 r , TIP time
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Figure 10. The token-initializing packet (TIP) time versus network's
queueing delay.

delay

50 4 N = 50 analytic exhaustive transmission
40 - c = 0.03 © simulated exhaustive transmission
t = 0.02 x simulated non-exhaustive
30 d = 0.002 transmission x

20

N W E e}
i

N 2 N 1 _Throughput
0.1 0.2 0.3 0.4 ' 0.5 0.6 0.7 0.8 .9 1.0 S

Figure 11. Differences in the queueing delays of the exhaustive and
the non-exhaustive transmission disciplines.

%

Distribution
£3
Distributio
n 8 a=1.0 N = 50
$=0.1 a=0.1 c = 0.03
t = 0.02
e —— exhaustive = 4 exhaustive d = 0.002
- --- non-exhaustive — —- non-exhaustive
40— -
30+ 4~
$=0.5 4 X ' -
20 2~
10
s=
|rrrlnlll'rulll]lslrl|||iTﬁ-x|1r:-:lrrT|‘1111[111T|_ - - - xu.ur:l.”x[Delay
1 2 3 4 5 6 7 8 9 10 32 33 34

Figure 12. Distributions of queueing delays (excluding transmission time) for the exhaustive and
the non-exhaustive transmission disciplines of the OE-SDAM protocol (simulated results).

08¢

Propagation Delay a = 0.1 Propagation Delay a = 1.0 :
— I
S 0.295 0.492 0.688 0.787 0.923 0.295 0.492 0.688 0.786 0.893
i
Mean 1.496 1.916 2.932 4.208 10.766 2.769 3.738 5.873 8.397 17.681
o
2
o S.D. 0.627 1.123 2.344 3.996 10.987 1.300 2.183 4.287 6.534 13.122
]
%
& Median 0.3 0.4 1.2 1.8 6.0 1.5 2.3 3.4 5.6 12.2
95% 1.8 3.2 6.8 11.2 33.6 4.2 7.0 13.4 20.4 ** _
" |
S 0.295 0.492 0.688 0.787 0.923 0.295 0.492 0.688 0.786 0.893
i
i
° Mean - 1.927 27977 4.354 12.850 -— 3.878 6.503 10.070 °29.407
2
e)
g S.D. - 1.160 2.522 4.587 15.618 - 2.391 5.292 9.229 31.736
%
o .
g Median -——= — 0.4 1.2 1.9 6.8 -— 2.3 4.2 6.6 18.4
= .
95% -— 3.4 6.8 11.2 41.6 -— 7.6 15.0 25.8 *k ‘
--~ : omit **: out of range

Table 1. Distributions of queueing delays (excluding transmission time) for the exhausted and the

non-exhaustive transmission disciplines of the OE-SDAM protocol (simulated results).

18¢

283

THE BX.25 CERTIFICATION FACILITY

J. A. Melici

Bell Telephone Laboratories
Piscataway, N. J. 08854
(201) 981-2597

ABSTRACT

BX.25 is a data communications protocol which has been adopted as the standard protocol for
host access to the Bell System’s Operations System Network (OSN). BX.25 is based upon the
Consultative Committee on International Telephone and Telegraph (CCITT) recommendation
X.25. This paper describes a facility to automatically test that an implementation of BX.25
conforms to the BX.25 specification. The facility, called the BX.25 Certification Facility (BCF),
consists of a data base of tests, software to execute the tests, and a microprocessor dedicated to
handling BX.25 communication. The output of the facility is a report which provides
information concerning the degree to which an implementation conforms to the BX.25
specification.

1. INTRODUCTION

BX.25 [1] is a data communications protocol which has been adopted as the standard protocol
for host access to the Bell System’s Operations System Network (OSN) [2]. BX.25 is based
upon CCITT recommendation X.25 [3]. This paper describes a facility to automatically test that
an implementation of BX.25 conforms to the BX.25 specification. ' The facility, called the BX.25
Certification Facility (BCF), consists of a data base of tests, software to execute the tests, and a
microprocessor dedicated to handling BX.25 communication. The output of the facility is a
report thch provides information concerning the degree to which an implementation conforms

to the BX.25 specification.

The remainder of this paper is divided into nine sections. Section 2 discusses certification in
general, and defines some terms. Section 3 briefly describes BX.25. Section 4 describes the
BX.25 Certification Facility. Section 5 presents a scenario for certifying BX.25
implementations. Section 6 discusses the generation of tests and reports. Section 7 suggests

some enhancements to the facility. Section 8 discusses "proving in" the facility. Section 9

284

describes related work, and section 10 presents the conclusions of this paper.

2. GENERAL DISCUSSION OF PROTOCOL CERTIFICATION

Protocol certification involves executing a particular implementation of the protocol to test
whether it complies with the protocol specification [4]. The tests are derived from the protocol
specification. Only the external behavior of the protocol implementation is tested. How that
behavior is achieved is unimportant for certification purposes. Certification of a protocol is not
a formal proof of the correctness 6f the implementation [4]. Certification does provide a high

degree of confidence that the protocol has been implemented correctly.

Certification of data ‘com.munications protocols is different from verification and validation of
protocols. Verification means demdhstrating that the protocol definition is "logicélly" correct.
Validation, a subset of the verification problem, means the protocol definition exhibits certain
general properties, e.g., freedom from deadlock. Sunshine [5] defines validation and

verification, as well as some techniques for protocol verification.

3. BRIEF DESCRIPTION OF BX.25

BX.25 is a layered data communicatiqns protocol t6] based upon CCITT recommendation X.25.
X.25 defines the ‘interface between Data Terminal Equipment (DTE) and Data Circuit-
Terminating Equipment (DCE) for terminals operating in the packet mode on public-data
networks" [3]. Levels 1, 2, and 3 of BX.25 correspond to levels 1, 2, and 3 of X.25, level 1
being the physical layer, level 2 the link layer, and level 3 the packet layer. BX.25 is
compatible with X.25 at these levels, but differences do exist. In addition, BX.25 defines an

optional multi-link layer, and a session layer.

!

Level 1 of BX.25, the physical layer, specifies the physical and electrical interface between a
DTE/DCE pair, or a DTE/DTE pair. Currently either the Electronics Industry Association
(EIA) RS-232C interface, or CCITT Recommendation V.35 is utilized. This level provides a

bit-serial, full-duplex, point-to-point, synchronous transmission path.

285

Level 2 of BX.25, the link layer, utilizes the Link Access Procedure B (LAPB) of X.25. This
level defines procedures which provide an essentially error-free, transparent link between a
DTE/DCE or a DTE/DTE. Some functions of this level are link initialization/disconnection,

link level error control, and flow control.

Level 3 of BX.25, the packet layer, defines procedures for the interchange of packets. The
major facilities of this level are Permanent Virtual Circuits (PVC) and Virtual Calls (VC). The
major functions of this level are packet-level error control and flow control, multiplexing of
packets over the single physical link, and} packet level reset and restart procedures. For

complete information about BX.25 and X.25 refer to [1], [3], and [7].

4. DESCRIPTION OF THE BX.25 CERTIFICATION FACILITY

4.1 An Abstract Model of a Protocol Certification Facility
This section presents an abstract model of a protocol certification facility. The model is

applicable to any protocol, including BX.25, and higher layer protocols.

The following description refers to figure 1. The components of this model of a certification

facility are:

o Parameterized test file - The tests necessary to certify that the protocol has been
implemented correctly. The test file is parameterized, so the same tests apply to all protocol
implementations, regardless of the values chosen for the protocol parameters. For example,

the value of the T1 timer is a parameter of BX.25 level 2.

o Parameter file - A file containing the definitions of all the parameters of the protocol, e.g.,

for BX.25 level 2, the value of the T1 timer is specified.

o Test preprocessor - The parameterized test file, and the parameter file serve as input to the
test preprocessor. The test preprocessor substitutes the values of the parameters in the
parameter file, for the parameters in the parameterized test file. The output of the

preprocessor is a test file tailored to the environment of the Implementation Under Test

STAGE 1:
TEST PREPROCESSING -

T

PARAMETERIZED
TEST FILE

—

i

PARAMETER

FILE
~—

STAGE 2:
TEST EXECUTION

PROTOCOL
CERTIFIER | HANDLER

286

TEST
PREPROCESSOR

PROTOCOL IUT | DRIVER

REPORT
FILE

Figure 1

AN ABSTRACT MODEL OF A PROTOCOL CERTIFICATION FACILITY

287

(Ium.

e Protocol certifier - The test file serves as input to the protocol certifier. The commands in

the test file direct the actions of the certifier. Based on these commands the certifier directs
the protocol handler to send a particular protocol message to the IUT, e.g., for BX.25 level 2
a DISC (disconnect) frame. The response of the IUT is forwarded to the certifier, for

analysis, by the protocol handler. The certifier automatically generates a report file.

Report file - This file provides information concerning the degree to which the IUT

conforms to the protocol specification.

Protocol handler - Handles all the processing associated with communicating the protocol.
The handler has two interfaces. The IUT is connected to one interface. It is over this
connection that the protocol is communicated. The certiﬁér is connected to the other
interface. The certifier sends commands to the handler to force the transmission of a
particular protocol message. The handler transmits only when directed to by the certifier.
This allows for the purposeful violation of the protocol, to check that the IUT responds
correctly. The handler sends to the certifier a trace of all transmitted and received protocol

messages.

Driver - To comprehensively test an implementation a driver is required. In most protocol
implementations there are certain events which must be initiated from a level above the
implementation. As an example, in BX.25 level 2, the transmission of an I frame is
initiated from the level above the BX.25 level 2 implementation. The behavfor of the IUT
when these events occur should be tested as part of a certification procedure. In this model
the driver acts as the next'layer abové the IUT. The drivér sends control signals to the IUT,

initiating events which otherwise would not occur.

Communications equipmént - The necessary equipment (e.g., modems, cables) to establish

the physical transmission path to the IUT.

288

Protocol certification is a two-stage process. Stage one, test preprocessing, transforms the
parameterized test file into a test file tailored to the environment of the IUT. Stage 2, test
execution, involves running the tests in the test file against the IUT. The output of this stage

is the report file.
4.2 Implementation of the BX.25 Certification Facility

The components of the BX.25 Certiﬁcation Facility correspond to the components of the model
presented in the previous section. The facility is used to certify BX.25 level 2, or BX.25 level 3
implementations. The need to test BX.25 implementations déveloped as paft of the Bell
Administrative Network Communications System (BANCS) [8] [9), which is the internal
switching network for the OSN, as well as BX.25 implementations which communicate on a '
point to point basis, provided the stimulus for the development of a BX.25 Certification

Facility.

The following description refers to figure 2. The test preprocessor and the BX.25 certifier are
two programs which execute in user space of a VAX-11/780 running the UNIX™ [10]

operating system.

The test file describes the expected behavior of the IUT when it is subjected to certain stimuli.
The different tests in the test file attempt to fully exercise the protocol, checking both normal

and error conditions. In particular the test file:
¢ Is divided into a number of separate and independent tests.

e Each test specifies when to transmit a particular frame, for BX.25 level 2 certification, or
packet, for BX.25 level 3 certification. The type of frame/packet to transmit is specified
mnemonically, e.g., disc means send a DISC frame. Moreover, any of the fields in a frame

or packet may be specified.

e Each test specifies the expected response of the IUT upon receipt of a particular frame or

packet.

289

T
e— 1]
PARA.
METERIZED
TEST FILE
S —— e

———

PARAMETER
FILE

S— e’

VAX-11/7808 (UNIX)

~p{ PRO/TESTER (! MODEM |2 MODEM }-—4

BX.26
CERTIFIER

TEST
PREPROCESSOR

ur

DRIVER

<
REPORT
FILE

Figure 2

IMPLEMENTATION OF THE BX.25 CERTIFICATION FACILITY

290

The Test Input Language (TIL), used to write the tests, will be defined in section 6.

The PRO/TESTER! [11], commercially available from Applied Data Communications (ADC),
is a microprocessor with software dedicated to X.25 communication. The facility utilizes the
PRO/TESTER for handling the processing associated with BX.25 communication. The major

features of the PRO/TESTER are:
¢ Simulation of a DTE or DCE.
o Tracing of all frames/packets received from the IUT.
e Communication at level 2 of X.25 (i.e., turn ievel 3 oﬂ;), or level 3 of X.25.

¢ A mnemonic command language to specify the transmission of all X.25 frames/packets,
with the capability to specify the fields in a frame/packet. Frames or packets can also be

constructed from hexadecimal.

o Fither level can operate in either the automatic or manual mode. In the automatic mode
the PRO/TESTER adheres to the X.25 protocol, and accepts commands (over its
asynchronous interface) directing its actions. In the manual mode the PRO/TESTER only
transmits frames/packets when directed to do so via commands. The PRO/TESTER
operates in the manual mode for the level being certified. This allows for the purposeful

injection of errors, to test that the IUT responds correctly.

e The capability to generate Cyclic Redundancy Check (CRC) errors, and abort the

transmission of a frame.

The PRO/TESTER has two interfaces, an asynchronous interface, and a synchronous interface.
The asynchronous interface accepts commands directing the PRO/TESTER’s actions.
Moreover, the trace of received/transmitted frames/packets is output over this interface.

Figures 3 and 4 show the trace information provided by the PRO/TESTER for level 2, and

1. PRO/TESTER is a trademark of Applied Data Communications.

291

LINK LAYER TRACE INFORMATION:

R/T - Direction of transmission. "TRN" for transmitted, "REC" for received.
ADR - The address (either A or B) of the frame.

FRAME - The type of frame.

P/F - The poll/final bit. "P" if the poll bit is sét, "F" if the final bit is set.
NS - The send sequence number of the frame.

NR - The receive seqﬁence number of the frame.

HEX - The hexadecimél representation of the frame.

EXAMPLE:

R/T __ADR _FRAME P/F NS NR__HEX

TRN A I-FRAME P 05 03 037A4444

Figure 3
BX.25 Level 2 Trace Information Provided
by the PRO/TESTER

292

PACKET LAYER TRACE INFORMATION:

RT - Direction of transmission. "T" for transmitted, "R" for received.

TYPE - The type of packet.

LCN - The logical channel number of the packet.
Q - The qualifier bit."Q" if this bit is set.
D - The delivery confirmation bit. "D" if this bit is set.

- The more data bit."M" if this bit is set.

PS - The send sequence number of the packet.

PR - The receive sequence number of the packet.

HEX - The hexadecimal representation of the packet.
EXAMPLE:

RT TYPE ILCN QDM __PS PR _HEX

T DATA 0001 4 3 10016844

Figure 4
BX.25 Level 3 Trace Information Provided
by the PRO/TESTER

293

level 3 of X.25 respectively. In general, the trace information provided for both level 2 and

level 3 is:
¢ The direction of transmission (either transmitted or received).
o The type of frame or packet.

e The contents of various fields of the frame or packet. Refer to [7] for a description of the

meaning of each of the fields.
o The hexadecimal representation of the frame or packet.
The synchronous interface is used to communicate with the IUT.

The PRO/TESTER is only used to tranémit'and receive frames/packets. The certifier directs
the PRO/TESTER as to which frame/packet to send, based on the test file. Even though the

PRO/TESTER communicates X.25, the test file defines the expected behavior of a BX.25 IUT.

A pair of dial-up Bell 208, or Bell 212 modems provides the means for establishing the physical
connection between the PRO/TESTER and the IUT. Communication takes place at 4800 bifs
per second (bps), or 1200 bps. The facility provides only one of the modems. The other

modem must be provided by the IUT.

The report file provides information concerning the degree to which the IUT conforms to the

BX.25 specification. In particular the report file:

o Indicates which tests passed or failed. If a test fails, the reason the test failed is included in

the report file.

e Provides a trace of all frames/packets exchanged between the facility and the IUT. The

trace information provided is exactly the trace information of the PRO/TESTER.
e Optional time-stamping of frames/packets.

¢ Summarizes the total number of tests which passed or failed, and lists the number of failed

tests, up to some limit.

294

The exact format of the report file is specified in section 6.

To compreliensively test an IUT a\driver is required. The driver acts as the level above the
BX.25 IUT. The level 2 and level 3 drivers interpret single-byte codes contained in I frames, or
DATA packets, respectively. The code may specify "do nothing", cause the IUT to go into a
particular state, or cause the IUT to send a particular frame/packet. The specifications of the
driver, and a prototype driver, written in the C language [12], are provided as part of the BX.25
Certification Facility. Figures 5 and 6 contain the codes recognized by the level 2 and level 3
drivers, respectively. Withoufdrivers, 52% of level 2 and 74% of level 3 can be tested. The
states which cannot be tested without a driver represent "pathological cases,” for example, the
REJ Sent & Station Busy state, which do not occﬁr very often. Thus, even though to certify an
IUT requires a driver, a fairly comprehensive test can still be performed on an IUT without a

driver.

5. SCENARIO OF OPERATIONS

This section presents a scenario for the certification of either level 2 or level 3 of BX.25. The
same scenario applies to each level. The test file and driver required to certify level 2 is

different, and independent, of the test file and driver for level 3. The scenario is:
1. The level (either 2 or 3) to be certified is determined.

2. The parameters of the BX.25 IUT are determined. The parameter file is modified

appropriately.

3. The parameterized test file (either the level 2 or level 3 test file) is preprocessed to

produce the test'file to be input to the BX.25 certifier.

4. The appropriate driver (either the level 2 or level 3 driver), if available, is installed on top

of the implementation to be tested.

5. Hardware communication is established via the dial-up Bell 208 modems or the dial-up

Bell 212 modems.

295

Code Action
0 Do nothing
1 Send a Local Start command to the IUT
2 Send a Local Stop command to the IUT
3 Create a Station Busy condition for N seconds*
4 Echo I frame back N times.

5 After waiting N seconds, createa
Station Busy condition for M seconds

* N and M are contained in the second and third bytes, respectively, of the I field of the I
frame.

Figure §
Codes Recognized by the BX.25 Level 2 Driver

296

Code Action
0 Do nothing

1 Create a Station Busy condition on logical .
channel identifier (LCI) N, for M seconds

2 Echo DATA packet over LCI N, M times
L 3

3 Transmit an INTERRUPT packet over LCI N

4 Transmit a CALL REQUEST packet

* N and M are contained in the second and third bytes, respectively, of the User Data field of
the DATA packet.

Figure 6
Codes Recognized by the BX.25 Level 3 Driver

297

6. The BX.25 certifier is executed. The appropriate flags are set for frame/packet level

testing and time-stamping of frames/packets.

7. The report file is delivered to the BX.25 implementor.

6. GENERATION OF TESTS AND REPORTS
6.1 Generation of Tests -

The BX.25 state tables, provided as part of the BX.25 specification, provide the framework for
systematically generating the tests. Tests are organized by the BX.25 states. All possible
inputs, for a particular state, are applied to the IUT. The response of the IUT, as compared
against an expected response, determines the success or failure of a particular test. The
expected response is determined from the state table, augmented where necessary by the

written description of the protocol.

Moreover, to assure the independence of tests,‘ each test contains the proper bsequence of
commands to bring the IUT from any state into the state being tested. This ensures that the

success or failure of a particular test does not affect any other test.

For level 2, approximately 1700 tests are required. For level 3, approximately 650 tests are

required. Each test consists of approximately eight lines of Test Input Language commands.
6.2 The Test Input Language

The tests are written in the Test Input Language (TIL). There are five commands in the

language. Only one command per line is allowed. The commands are:

e The TEST command marks the beginning of a test and the end of any previous test. The

syntax is:

TEST "description of test"

[

The description is required.

298

e The expected-reply command specifies which frame or packet should be received next. The

syntax is:

[frame/packet type,field1= valuel,...,fieldn= valuen]
{OR [frame/packet type field1= valuel,... fieldn= valuen]} : nnnn

Each frame/packet type is enclosed in square bra(;kets. The frame/packet type is,e'xpressed
mnemonically, e.g., DISC represents a disconnect frame. The frame/packet type should be
all upper-case letters. The value of a field is also expressed mnemonically, e.g., nr=3
means the receive sequence number of the received frame should be three. This syntax
supports alternation, specified by ORing individual frame/packets together. ({...})* is
extended Backus-Naur Form (BNF) [13] for "zero or more occurrences of.") The numerical
value after the colon specifies the number of seconds before which the frame/packet should
be received. If this is omitted, a default, which can be specified, is in effect. Receiving a
response other than one of the responses specified in the expected-reply command causes”
the failure of the current test.. In this case the BX.25 certifier flushes to the next TEST

command, or end-of-file, whichever comes first.

¢ The DEFTIMEOUT command modifies the default timeout value to use for an expected-
reply command without a time value specified. Initially the default timeout is ten seconds.

The syntax is:
DEFTIMEOUT nnnn
where nnnn is given in seconds.

"o The comment command identifies everything that follows, up to the end of the line, as a

comment. The syntax is:
! text of comment

A comment whose text begins with a "!" will appear in the report generated by the facility.

Other comments are ignored by the BX.25 Certifier.

299

e PRO/TESTER commands represent a whole class of commands. These are sent to the
PRO/TESTER, which executes them. PRO/TESTER commands are identified by being
specified in lower case letters. Most of the PRO/TESTER commands appearing in a test file
cause the transmission of a frame or packet. Any command is allowed though. Usually the
only other PRO/TESTER command appearing in a test file is "dte", used to option the
PRO/TESTER to act like a DTE. The default mode of the PRO/TESTER is DCE. Refer to

Appendix 1 for a list of the PRO/TESTER commands.

Figure 7 is a portion of a test file used to certify BX.25 level 2 implementations. The
numbering of the tests is done automatically by the test preprocessor. The numbers also appear

in the report file, and serve to allow easy reference to failed tests.
6.3 Reports Issued by the BX.25 Certification Facility

The following description refers to figure 8, a report issued by the BX.25 Certification Facility,
corresponding to the tests in figure 7. Reports for level 3 certification differ only in ‘that

packets, instead of frames are part of the trace.
Several points should be observed about this report:
e Tests are numbered for easy reference.

The data before the trace information is the time stamp, in seconds, that the frame was

received. Time is relative to the start of testing, beginning at time= zero.
e The trace information is exactly the trace information provided by the PRO/TESTER.
o A frame received during the transmission of a frame is marked "UNEXPECTED".

o A received frame different from an expected frame, in the expected-reply command, is
marked "INCORRECT". Thé frame expected also appears in the report file. This fails the

current test.

At the end of the report, a summary of the success/failure of the tests is provided.

300

The following are the level 2 parameter assignments:

!

!

!

| The address of the Implementation Under Test is B
! The value of T1 is 10

! The value of T2 is 25

!t The value of N1 is 256

{ The value of N2 1s §

! The value of K is 2

!

! Set the address of the facility
dte

{ Set the default timeout to T? = 10 seconds
DEFTIMEOUT 10

TEST 1 "Test receipt of a bad receive sequence number (n(r)) in the information transfer state (S5)"
disc,®

disc,®

[UA,addr=01,pf=1]) OR [DM,addr=01,pf=1]

sabm,*

[UA,addr=01,pf=1]

err,® ,nrz05

(FRMR,addr=01,pf=1,if1eld=B10008]

TEST 2 "Test receipt of a set asyncronous balanced mode (SABM) command in the disconnected state (S1)"
disc,®.

disc,*® . S
[UA,addr=01,pf=1] OR [DM,addr=01,pf=1]

sabm
[UA,addr=01,pf=1] P

Figure 7

PORTION OF A TEST FILE USED TO CERTIFY BX.25 LEVEL 2

301

BX.25 CERTIFICATION FACILITY (RELEASE 1.0, 10/1/81)

FORMAT OF BX.25 LEVEL 2 TRACE INFORMATION:

IIME STAMP R/T ADR FRAME P/F NS NR HEX

The value of TV is
The value of T2 1is
The value of N1 is
The value of N2 is 5
The value of K is 2
#8STEST
0000000017 TRN B DISC
0000000017 REC B DM
0000000018 TRN B DISC
0000000018 REC B DM
0000000019 TRN B SABM
0000000019 REC B Ua
0000000019 REC A RR
0000000020 TRN B RR
0000000020 REC B FRMR
SR8TEST 1 PASSED
#48TEST 2 "Test receipt
0000000021 TRN B DISC
000000002t REC B DM
0000000022 TRN B DISC
0000000022 REC B DM
0000000023 TRN B SABM
0000000023 REC A RR
#HRTEST 2 FAILED

TOTAL NBR OF TESTS: 2
TOTAL NBR OF TESTS THAT PASSED: 1
TOTAL NBR OF TESTS THAT FAILED: 1

The address of the

1 "Test receipt of a bad

P

F

P

F

4

F

P 00

P 05

F

of a set

P

F

P

F

P 00
(5
(5

TESTS WHICH FAILED (UP TO 50):

TEST 2

The following are the level 2 parameter assignments:

Inmplementation Under Test is B
10

25

256

receive sequence number (n{(r)) in the information transfer state (S5)"
0153

Q11F*8%% UNEXPECTED ##&#

0153

011F

013F

0173

0311%8%% NEXPECTED ®&##

0181

0197B10008

asyncronous balanced mode (SABM) command in the disconnected state (S1)"
0153

O11F#88% NEXPECTED #s%#

0153

011F

012F

0311%#%%& TNCORRECT ###%® EYPECTED: [(UA,addr=01,pf=1] snne

Figure 8

A REPORT ISSUED BY THE BX.25 CERTIFICATION FACILITY

302

7. POSSIBLE ENHANCEMENTS TO THE BX.25 CERTIFICATION FACILITY

Several enhancements to the BX.25 Certification Facility have been identified and are being

considered for inclusion in the facility. The enhancements are:
e Selectively suppressing portions of the report.

¢ Expanding the Test Input Language to include variables and elementary control structures

(e.g., if-then-else).
o Including "loadtesting," or stress testing, as part of the certification of an implementation.

o Certifying levels other than 2 and 3 of BX.25, i.e., the physical layer, the multi-link layer,

and the session layer.

8. PROVING IN THE BX.25 CERTIFICATION FACILITY

Assuring that the BX.25 Certification Facility is itself free from errors is of prin}e importance if
the users of the facility are to have confidence in the reports produced by the facility. The

following steps have been taken to achieve this goal:

e Many different implementations of BX.25 were tested on a "trial" basis. The Epurpose of the
trial was to verify the correctness of the reports issued by the facility. As'a result of tﬁe trial
some problems with the facility were discovered, and were subsequently corrected. In the

great majority of cases though, reports were accurate.

o Require that "certified" implementations report protocol problems discovered in the field to
the group responsible for operation of the facility. In this manner the facility can be
appropriately enhanced/modified, so that in the future the presence of such problems in

implementations can be detected and reported.

Implementors of BX.25 may disagree with the correctness of the reports issued by the facility.
This could happén, for instance, because of different interpretations of the BX.25 specification.

In such cases, arbitration will be performed by those within Bell Telephone Laboratories

303

responsible for the BX.25 specification. It should be noted that this has not yet occurred.

9. RELATED WORK

There has been other work in the area of certiﬁcatioh and testing of data communication
protocols. Bartlett and Rayner [4] discuss certification in general, and describe research
uhderway at the National Physical Laboratory (NPL). Fong [14] describes NTS, a test system
for DECnet. NTS is concerned with testing the user interface to DECnet. Weaving [15]
presents the reference and test center of Euronet. The center provides a reference
implementation, and a test and debug service for high-level protocols implemented on top of
X.25. Weir et. al. [16] describe X.25 test facilities available on Datapac. The major test facility
available is a-X.25 protocol tester, which must be operated manually. Other facilities_available
include network generation of alarms, line monitoring, and X.25 diagnostic codes. Piatkowski
[17] discusses the feasibility of testing ADCCP. Piatkowski concludes that a "complete and
rigorous" test on an ADCCP station is impractical because of the iength of time it would take to

complete the test. Piatkowski sketches an ad hoc approach to ADCCP testing.

l

10. CONCLUSIONS

The BX.25 Certification Facility, a facility to automatically test that a BX.25 implementation
conforms to the BX.25 specifications, has been described. The facility issues reports to indicate

to what degree an implementation meets the BX.25 specifications.

The facility has the following major features:

Certification is performed with minimal human intervention (i.e., the facility is automated).

The tests systematically test all normal conditions, and error conditions (i.e. purposeful

injection of errors) of BX.25.

Adding tests is easy, since tests are stored in a computer file system (UNIX).

Tests are parameterized, so the same tests can be used for all implementations.

304

o The reports issued by the facility feature tracing, time-stamping, numbering of tests for easy
reference, an indication of which tests passed/failed, and for failed tests, the reason that test
failed. A summary of the total number of tests, together with a list of the failed tests, is

also included in the report file.

The BX.25 Certification Facility is a powerful tool. In addition to certifying an implementation

of BX.25, it may be utilized by developers for testing during the development process.

11, ACKNOWLEDGMENTS

The author gratefully acknowledges the assistance of the following persons: A. Cline, B.
Dickman, M. Lee, L. Mulraney, T. Peterson and T. Ryan. The author would also like to thank
the referees for their valuable suggestions and comments. The high-level design of the BX.25

Certification Facility was influenced by a similar system developed at Bell Canada.

(1]

(2]

[3]

[4]

(5]
[6]
(7
(8l
(91
[10]
[11]
{12]
[13i

[14]

(15]

(16]

[17]

305

REFERENCES

The BX.25 Operations Network Communication Protocol Specification, Bell System
Technical Reference, pub. #54001.

Amoss, J. J., "Planning for the Bell Operation Systems Network," Proceedings of the
Fifth International Conference on Computer Communications (ICCC), Atlanta, Georgia,
October 27-30, 1980. pp. 559-563.

CCITT Recommendation X.25, CCITT Orange Book, Vol. VIIL.2, "Public Data
Networks," International Telecommunication Union (ITU), Geneva, Switzerland, 1977.

K. A. Bartlett and D. Rayner, "The Certification of Data Communication Protocols,"
Proceedings of Trends & Applications: 1980, Computer Network Protocols, National
Bureau of Standards, Gaithersburg, Md., May 29, 1980, pp. 12-17.

C. Sunshine, "Formal Techniques for Protocol Specification and Validation," Computer,
Vol. 12, No. 9, September, 1979, pp. 20-27.

P. E. Green, "An Introduction to Network Architecture and Protocols," IBM System
Journal, Vol. 18, No. 2, 1979, pp. 202-222.

M. S. Solomon, "X.25 Explained," Computer Communications, Vol. 1, No. 6, December,
1978, pp. 310-328.

D. F. Lee & J. Pasqua, "Intérnal Data Communications", Bell Laboratories Record, Jan.,
1980, pp. 21-27.

S. Leung, "The Concept and Implementation of BANCS", Computer, Jan., 1980, pp. 80-
92. .

D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System,” Comm. of the
ACM, Vol. 17, No. 7, July, 1974, pp. 365-375.

International Packet Technology, "X.25 Protocol Tester PRO/TEST, Revision B,"
Document XT.0002.0114, September, 1980.

B. W. Kernighan and D. M. Ritchie, "The C Programming Language," Prentice-Hall Inc.,
Englewood Cliffs, NJ, 1978. '

K. Jensen and N. Wirth, "PASCAL: User’s Manual and Report," Second Edition,
Springer-Verlag, New York, N.Y.,, 1978,

Ng Pin Fong, "NTS -- A Protocol Test and Development System," Proceedings of
Computer Networking Symposium, National Bureau of Standards, Gaithersburg, Md.,
December 13, 1978, pp. 124-127.

K. Weaving, "Euronet Reference and Test Center," Computer Communications, Vol. 3,
No. 5, October, 1980, pp. 221-223.

P. F. Weir, W. E. Prater, X. N. Dam, "X.25 Test Facilities on DATAPACK," Evolutions
in Computer Communications, Proceedings of the Fourth International Conference on
Computer Communication (ICCC), Kyoto, Japan, September 26-29, 1978, pp. 273-279.

T. F. Piatkowski, "Remarks on the Feasibility of Validating and Testing ADCCP
Implementations," Proceeding of Trends & Applications: 1980, Computer Network
Protocols, National Bureau of Standards, Gaithersburg, MD, May 29, 1980, pp. 94-109.

306

Appendix 1
PRO/TESTER COMMANDS

This appendix lists those PRO/T ESTER commands which cause the transmission of frames or
packets. The other PRO/TESTER commands have to do with setting up various initial
conditions in the PRO/TESTER. For complete information concerning the PRO/TESTER refer

to the PRO/TESTER manual [11].

LINK LAYER COMMANDS

Below are the PRO/TESTER commands to transmit frames. The general format is command,
followed by parameters, separated by commas. Angle brackets are nietasymbols used to
identify those parameters which are optional. The values of the fields in the transmitted frame
are automatically set by the PRO/TESTER, except when modified by a parameter. The

meaning of each parameter is:

Parameter Meaning
* Set the poll/final bit.

a=hh Set the address to hh (h
represents a hexadecimal
digit).

¢=hh Set the rejected control
field of a FRMR to hh.

d=hh ~ Set the diagnostic field of a
FRMR to hh.

nr= hh Set the receive sequence

number .to hh.

ns= hh Set the send sequence
number to hh.

h= hex Set the I field of an I frame
to the hexadecimal value
given by hex.

307

The commands are:
Command

disc<,*> < ,a= hh>

sabm<,*> <,a=hh>
ua<,*><,a=hh>

dm<.,*> <,a=hh>
frmr <,*> <,a= hh> <,c=hh>,<d=hh>
cr<,*><,a=hh><,nr=hh>

crnr<,*> <, a=hh> <,nr=hh>

crej<,*><,a=hh> <,nr=hh>
r<,*><,a=hh><,nr=hh>
rar<,*> <,a=hh> <,nr=hh>
rej<,*><,a= hh> <,nr=hh>
i<,*><,a=hh><,nr=hh>

<,ns=hh> < ,h=hex>

crc

abort

0,h=hex

Meaning

Transmit a DISC
(disconnect) frame.

Transmit a SABM (set
asynchronous balanced
mode) frame.

Transmit a UA
(unnumbered
acknowledgement) frame,

Transmit a DM (disconnect
mode) frame. '

Transmit a FRMR (frame
reject) frame.

Transmit a RR (receive
ready) command frame.

Transmit a RNR (receive
not ready) command
frame.

Transmit a REJ (reject)
command frame.

Transmit a RR response
frame.

Transmit a RNR response
frame.

Transmit a REJ response
frame.

Transmit an I
(information) frame.

Transmit a frame with a
Cyclic Redundancy Check
(CRO) error.

Transmit an aborted frame.
Transmit a frame whose

hexadecimal representation
is given by hex. '

308

For example the command:
i,*,ns= 5,h= 4444

causes the transmission of an I frame with the poll bit set, the send sequence number equal to
five, and an I field of 4444. The values of the other fields (address, receive sequence number)

would be automatically set by the PRO/TESTER according to its current state. |

PACKET LAYER COMMANDS

Below are the PRO/TESTER commands to transmit packets. The general format of the

commands is the same as that for link layer commands. The meanings of the parameters are: |

Parameter Meaning
l=hhh Set the logical channel
identifier (LCI) to hh.
c=hh Set the cause field to
hh.
q Set the qualifier bit in

the general format
identifier (GFI).

fi= hh Set the GFI and the
' first four bits of the
LCI to hh.

db Set the delivery
confirmation bit in the

GFI.
m Set the more data bit.
pr=hh . Set the packet receive
sequence number to

hh.
ps= hh Set the packet send

sequence number to
hh.

309

h= hex Set the User Data field
: of a DATA packet to
the hexadecimal value

given by hex.

The following are the PRO/TESTER commands to transmit packets:

Command

r< fi=hh> <,c=hh>

rc<,fi=hh>

¢<,fi=hh><,l=hhh>
acp<,fi=hh><,l=hh>
int< fi= hh> < ,l=hhh> < q>

intc< fi= hh> <= hhh><,q>

rst <,fi= hh> < l=hhh> <,c=hh>

rsc<,fi= hh> < ,|l=hhh>

rr< fi= hh> <,I=hhh> <,pr=h>

" mr<,fi= hh> < = hhh> <,pr=h>
d< fi=hh> <,1=hhh><,q><,m>
<,db> <,pr=h><,ps=h> < ,h=hex>

' ¢lr< fi= hh> < = hhh> < ,c=hh>

clre<,fi=hh> < l=hhh>

Meaning

Transmit a RESTART
packet.

Transmit a RESTART
CONFIRMATION
packet. :

Transmit a CALL
packet.

Transmit a CALL
ACCEPTED packet.

Transmit an
INTERRUPT packet.

Transmit an
INTERRUPT
CONFIRMATION
packet.

Transmit a RESET
packet.

Transmit a RESET
CONFIRMATION
packet.

Transmit a RECEIVE
READY packet.

Transmit a RECEIVE
NOT READY packet.

Transmit a DATA
packet.

Transmit a CLEAR
packet.

Transmit a CLEAR
CONFIRMATION
packet.

310

p,h= hex Transmit a packet
whose hexadecimal
representation is given
by hex.

For example the command:

d,l=001,ps= 4,h=44

causes the transmission of a DATA packet over LCI 001, with a packet send sequence number
of four, and a User Data field of "44". The other fields (packet receive sequence number, GFI,

the M bit) would be set according to the current state of the PRO/TESTER.

The ¢ command has additional parameters not listed here, having to do with the user facilities
selected. Moreover, there exists eacp, and eclr commands, for "extended" acp, and "extended"
clr, respectively. These commands also have additional parameters, not listed here. Refer to

{11] for more information.

311

THE DESIGN OF THE CSNET NAME SERVER

(Preliminary Report)

Marvin Solomon
Lawrence H. Landweber
Donald Neuhengen

University of Wisconsin--Madison

1. INTRODUCTION

CSNET is a new computer communications network being con-
structed . that will 1link together University Computer Science
departments and other groups doing computer science research in
the United States. An important component of CSNET will be a
directory service called the CSNET Name Server, which is imple-
mented by . a central database at the University of Wisconsin and
by software running at Wisconsin and on the computers of member
institutions. This paper describes the architecture of the name
server facility. ’

In early stages of CSNET, the principal use of the name
server will be to facilitate sending of electronic mail by pro-
viding such services as directory assistance in locating ad-
dresses of mail recipients, and aiding in forwarding mail and es~
tablishment of nicknames and aliases. It is on this aspect of
the name server that this paper focuses. 1In later stages of
CSNET, the name server will also help ' support other facilities
such as file transfer and remote access to computing resources.

In the next section, we briefly describe CSNET and explain
how 1its characteristics have influenced design of the name
server. The structure of CSNET is described in more detail
in [1,2].

We have designed the name server to be implemented in a
series of phases, progressing from facilities that already exist,
through more and more sophisticated structures, to a system that
will eventually provide all desired features. 1In doing so, we
have attempted to be conservative in early phases, using the sim-
plest structure that will fulfill the immediate needs of CSNET
users, while leaving the door open for more ambitious enhance-
ments in the future. While the services described here will be
implemented with available CSNET staff and resources, we expect
the project to identify several challenging research areas.

312

Section 2 describes CSNET and discusses project characteris-
tics which have influenced the name server design. Section 3
describes name server design requirements and implementation per-
formance goals. Section 4 includes definitions of terms and an
outline of the various phases. The four phases of the name
servéer implementation are described in Sections 5-8. Section 9
briefly addresses the issue of mailing lists, and Section 10 pro-
vides a summary and comparison to related work.

2. OVERVIEW OF CSNET

CSNET is a logical network which uses communications ser-
vices provided by ARPANET [3], the commercial value-added network
Telenet, and a telephone-based mail relay service called
PhoneNet. Member institutions access the services of CSNET by
connecting a computer ("host") to ARPANET or Telenet, or if their
budget is limited and they are willing to accept reduced service,
by arranging for their host to exchange mail periodically with a
PhoneNet relay machine which is directly connected to ARPANET and
Telenet. CSNET will provide electronic mail, file transfer, and
remote 1login (virtual terminal) services to directly-connected
hosts. PhoneNet hosts will only have access to electronic mail
services. In addition, CSNET maintains a Public Host, which is a
VAX computer connected to ARPANET and Telenet, running the UNIX
operating system, and providing mail-only accounts to individuals
who do not have access to any other CSNET member host. Although
CSNET is being subsidized in its initial stages by the National
Science Foundation, it is expected to become self-supporting in a
few years, with all members paying a fair share of the costs.

One of the challenges of CSNET is to reconcile the differ-
ences between characteristics of these communications media and
provide users with as uniform an interface as is possible. AR-
PANET provides a high-bandwidth, low-delay communications path
between computers connected to it. Telenet provides similar (but
lower bandwidth) service, but whereas the cost of an ARPANET con-
nection is fixed, Telenet charges are highly dependent on the
amount of traffic. PhoneNet charges are even more dependent on
traffic, since the only fixed charges are the cost of a modem and
a telephone line. However, a much more important difference
between PhoneNet and direct connection is delay. CSNET clients
not directly connected to ARPANET or Telenet must rely on period-
ic exchanges of mail with a PhoneNet relay machine for their con-
nection to the network. The frequency of such exchanges may be
as low as once daily. We shall see that these wide variations in
delay (from minutes or seconds to days) is an important con-
sideration in the design of the name server.

3.

313

GOALS

The name server facility is designed to satisfy the follow-

ing service requirements:

1.

7.

The system must be simple to use. While most CSNET users
will be computer science researchers, many will be theore-
ticians who have little experience with computer-based mail
systems.

A sender of mail may identify a recipient in a variety of
convenient ways. A user may refer to frequent correspon-
dents by nicknames of his own choosing. In addition, a
host may make available to 1its users aliases for other
hosts and users.

- A receiver of mail may supply the information others use to

identify him. = For example, he can supply his full name,
organization, location, title, nicknames, -common misspel-
lings of his name, etc.

Mail may be sent to any user of ahy/host in CSNET, without
prior explicit effort on the part of the receiver, although
reduced services will be available for communication with
"unregistered" users. Similarly, CSNET users must be able
to communicate with others "outside" the network, in par-
ticular wusers on hosts in the DARPA Internet address space
but not running CSNET-specific software.

The mail system will never force a user to use more than
one "mailbox" to receive mail, although a user may choose
to establish more than one mailbox to reflect differing
roles. In the latter case, each mailbox may be thought of
as representing a different "virtual user".

A user can move his mailbox to a different host computer
with a minimum amount of difficulty. Senders need not be
explicitly notified; mail will be automatically forwarded.

Support will be provided for mailing lists.

In addition to these service requirements, the implementation is
designed to satisfy the following additional performance and
utility goals: :

1.

The system should expand gracefully to include more member
sites, additional users, and even additional networks. 1In
particular, anyone able to send electronic mail to the
University of Wisconsin should be' able to gain access to at
least some of the name server services.

314

2. The system design should provide for phased implementation
so that basic services can be put into place immediately,
while more sophisticated facilities may be added incremen-
tally until all desired features are available.

3. Network traffic should be minimized. - Control messages

’ should be infrequent and user text should be sent over the

most efficient route. 1In particular, relaying of messages
should be minimized. :

4, The system should continue to function, perhaps in a de-
graded mode, if components fail. :

5. Delay between the submission of a message by a sender and
its delivery to a recipient should be minimized. 1In par-
ticular, if the sender is on a machine that is only period-
ically connected to the rest of CSNET (a PhoneNet host),
the number of interactions between that host and the rest
of CSNET which are required to dispatch the message should
be minimized.

6. The system should work with a minimum of human interven-
tion, either on the part of users or of administrative
staff. . : :

4. DEFINITIONS

Throughout this paper, we will be talking about users and
hosts. For our purposes the term "user" always refers to a human
being (and will not, for example, be used to mean a "user pro-
gram"). A host is a computer connected to a communications net-
work. Users gain access to network facilities through 'accounts
on hosts. For our purposes, hosts can be classified as CSNET
member hosts, that subscribe to CSNET defined conventions and run
CSNET provided software packages, and other hosts, which are ca-
pable of exchanging mail with CSNET member hosts, but do not
necessarily run CSNET software. There are also CSNET run hosts
including the Service Host, a computer at the University of
Wisconsin that maintains a central database and programs for ac-
cessing it, PhoneNet relays, computers (initially at the Univer-
sity of Delaware and the Rand Corporation) that periodically con-
nect to other hosts to pick up and deliver mail, and the -Public
Host, a computer at the University of Wisconsin that is run by
CSNET but otherwise is treated exactly 1like any other CSNET
member host. Hosts may also be classified as ARPANET, Telenet,
or PhoneNet hosts depending on the principal method used to ex-
change information with the rest of CSNET. The name server re-
lies, for many of its functions on a mail transport system, which
is a collection of protocols and programs that run on hosts and
provide the mechanism for transferring messages from sources to

315

destinations. Users normally interact with the mail transport
system through a user-interface program (UIP), which is a program
that interacts with wusers for composing, sending, receiving,
reading, and filing messages.

The various services and mechanisms described in this paper
comprise the name server facility.. It is provided by a combina-
tion of files and programs residing on the Service Host and on
other CSNET member hosts. The name server database is a database
which includes directory information for registered CSNET users
and hosts and which is distributed among a central directory da-
tabase that resides on the Service Host, per-host tables that re-
side on hosts that originate mail, and per-user tables maintained
by local mail systéms on behalf of individual users. The post-
master dgeneral is a collection of software that runs on the Ser-
vice Host and mediates access to and modlflcatlon of the central

directory database. ¢

\

Users may access/the name server database by sending mes-

sages directly to the postmaster general. However, users will
normally compose their queries by interacting with a name server
agent program, copies of which reside on CSNET member hosts. A
copy of the agent program will also reside on the Service Host
for the convenience of users on non-CSNET hosts who have
virtual-terminal access to the Service Host. The agent programs
communicate with the postmaster general using the best means
available, either by direct connection of by exchange of messages
through the mail transport system. In the latter case, there is
necessarlly a large delay, so users will receive a limited level
of service.

The name server facility is specified (and will be imple-
mented) in four phases. As new phases are implemented, all
features provided by earlier phases will remain available ¢to
users. Phase O prov1des basic services and is compatible with
current addressing and naming schemes employed in the DARPA In-
ternet. Phase 1 introduces a centralized directory database at
the Service Host and a directory assistance service that users
may access by exchanging mail with the postmaster general. 1In
Phase 2, user interaction with the directory assistance service
will be further automated. Phase 3 adds support for automatic
forwarding of mail and for mailing lists.

5. PHASE 0: BASIC SERVICES

Phase 0 provides services which are very «c¢lose to those
currently available in the DARPA Internet environment. Each host
in CSNET has an unambiguous name, such as "“UWISC", "“UDEL", or
"WASHINGTON". A site with a local network may choose to desig-
nate a particular computer to serve as a gateway host to CSNET
and assign it a name which designates the site. Arpanet hosts

316

already have unambiguous names. Hosts that currently exchange
mail using the Bell Laboratories "uucp" system also use unambigu-
ous names. As sites join CSNET, they will register their hosts
with the CSNET administration, which will certify that names are
not duplicated. (By "unambiguous" we mean that no two hosts will
have the same name; there is no reason to prevent a host from
having more than one name.)

Users interact with the mail system through accounts on
hosts that are assigned user names. Each host will guarantee
that a user name unambiguously identifies one mailbox on that
host. In other words, "user name" represents some name for a
mailbox that is printable, is assigned by a host administration,
and identifies a unique mailbox on that host. Hence the pair
"user-name@host", which we call a mailbox address, can be used to
uniquely identify any mailbox in CSNET. Current mail transport
systems deliver messages based on this pair. A wuser who knows
the mailbox address of a recipient may always use it to specify
the destination of a message although, as we shall see, other
more convenient methods will be available in later phases.

6. PHASE 1l: DIRECTORY ASSISTANCE

Phase 1 augments the basic facilities described in the pre-
vious section with a "directory assistance" service. A central
directory database on the Service Host contains information about
users. Each entry in this database contains the address of one
mailbox, together with information identifying the owner of that
mailbox. This information is supplied by the owner and includes,
at a minimum, his full name and the name of his organization
(e.g., university or research lab). 1In addition, it may include
other keywords such as titles, aliases, and common misspellings
of the wuser”s name, postal address, phone number, and any other
information the user wishes to provide. Registration in this da-
tabase 1is entirely voluntary and it is possible to communicate
with non-registered users even if their local site has not in-
stalled the CSNET name server software.

The database is accessed by transmitting properly formatted
queries to the postmaster general on the Service Host. Users
will not normally communicate directly with the postmaster gen-
eral but rather with an agent program that formats the request
and forwards it to the Service Host by a direct connection or by
the mail transport system. However, users of non-CSNET computers
may also query the database by mailing requests directly to the
postmaster general.

Since we intend that each user have the ability (and respon-
sibility) to maintain the database entry describing him, certain
access controls must be in place from the very beginning to main-
tain the integrity of the database.

317

6.1 Registering

The user adds or modifies entries in the database by in-
teracting * with his locadl agent using the commands "register",
"update", and "unregister". The local agent creates a message
containing the user request to insert, modify or delete a central
database entry and sends it to the postmaster general either
directly, or by mailing it to the address "REGISTRARQCSNET-SH".
The postmaster general will parse the message and perform the re-
quested operation.

6.2 Authentication

An important issue is authentication of a user requesting
insertion or modification of an entry. Each member organization
will provide a key (password) when it joins CSNET. This key will
be kept in encrypted form at the Service Host. The administra-
tion at the site will be responsible for controlllng its distri-
bution and for changing it when appropriate.

A user at a member host who wishes to register himself in
the database interacts with his local agent. This agent runs as
a privileged program that has access to the site password. The
agent engages in a dialogue with the user to authenticate his
identity (for example, by asking for a . password) and verifies
that the proposed database entry is appropriate to the user (in
particular, that the "mailbox address" field properly identifies
the user). Having satisfiea itself of the validity of the re-
quest, the agent formats it, encrypts it using the site password,
adds an unencrypted header identifying the local site, and for-
wards it to the postmaster general. - The postmaster general de-
crypts the request and installs the information in the database.

This scheme delegates authority for authenticating users to
the member sites. BEach site is held responsible for all database
entries that identify a mailbox located at that site. The agent
program (which is provided by CSNET) gives a mechanism for con-
trolling these entries. A user cannot bypass this mechanism and
send a registration request directly to the postmaster general
because he does not know the site password. A user of 'a non-
member computer may not mail a request for a new entry directly
to the postmaster general, nor may he add an entry by interacting
with the copy of the agent program that resides on the Service
Host (since the latter has no way of authenticating him). In
other words, only users of csnet member hosts can add entries to
the database, and they may only do it from their home machines.

Upon registration, a user may provide a password to be used
by him when modifying or deleting his directory database entry.
This password will only be required if the user initiates a
change request from a host other than his home machine. The pur-
pose of this feature is to allow users to modify their database

318

entries from hosts other than the one specified in their mailbox
address. It is particularly useful when an individual moves to a
new site and changes his mailbox address. The postmaster general
will inform the host specified in the original database entry
that the entry has been changed. This notification will provide
an additional check to insure that the change is authorized.

To perform housekeeping functions, particularly deleting of
defunct entries, -a site may authorize a special trusted user
named "csnet" to perform commands on behalf of other users at
that site. ‘

This authentication mechanism is not "airtight", but should
provide an adequate level of protection at modest cost. More im-
portantly, it delegates authority for security, so that if
breaches are detected, the responsible party may be identified.

An interesting example of a fraud that is not prevented by
this scheme might be called "false advertising”. The owner of
mailbox vesco@costa-rica inserts an entry addressing his mailbox
but including keywords that match some other user, with the in-
tent of fooling users into sending mail for the other user to the
perpetrator s mailbox. This ruse would be partlcularly perni-
cious when lookup is automated so that human users don”t normally
even look at the mailbox address returned (see Phase 2). The si-
tuation is comparable (in the non-electronic world) to Marvin
Solomon putting an advertisement in the newspaper saying that the
address of the First National Bank of Madison is 850 Terry Place
(solomon®s home address). The name server mechanism cannot
prevent such a fraud without understanding the semantics of all
the keywords in an entry. But the injured party, if he discovers
that mail is being misdirected, can query the central database to
find the bogus entry. Similarly, a sender might notice that cer-
tain queries identify two entries, one of which looks suspicious,
and report the fraud. Once the fraudulent entry is found, the
culprit can be traced, at least as far as his host.

Authentioation is a difficult but important area. Further
study will be required if a more elaborate scheme than that
described above is found to be necessary.

6.3 Using the Database

To access the central directory, a query is delivered to the
postmaster general or mailed to it at the address

NAMESERVER@CSNET-SH. Normally, users will use the "whois" com-

mand of the agent to compose such a request. The query will in-
clude lists of mandatory and optional keywords. Only entries
that contain all mandatory keywords will be selected. If more
than one entry matches, the optional keywords may be used to
select the entry with the most matches, or the postmaster general
may be instructed to return only entries containing at least k of

319

the optional keywords.

Keywords can be parameterized so as to allow specification
of pattern matching. Keywords may also contain "wild cards" to
allow inexact matches. For example, the keyword "landwe*er" can
be used by those not knowing whether his name is spelled as
"landweber", "landwever", or "landwebber". Upper and lower case
are considered equivalent for matching purposes, but the entries
will be displayed to the requester in the same case as they were
originally specified at registration. The requester can then
select the appropriate entry (if there is more than one match)
based on other information in the entries, \and use the mailbox
address included in the entry to send mail.

The provision of mandatory and optional keywords is primari-
ly for the benefit of the user of a PhoneNet host, to maximize
the chances of him getting the right answer on the first try.
Too few keywords will flood him with bogus matches, but too many
mandatory keywords may exclude valid matches. The ability to get
a unique match on the first try becomes particularly beneficial
in phase 2 (as we shall see).

Incidentally, directory assistance could be useful for ser-
vices outside CSNET proper, such as looking up a user”s phone
number or (U.S. Post Office) mailing address.

6.4 bExample

Here is a sample use of the name server in phase 1: To make
it easier for others to find Marvin Solomon, he issues the "re-
gister" command to the agent, which engages in a dialogue with
him to authenticate his identity and gather information about
him. It then composes and encrypts a message to REGISTRARQCSNET
containing text something like this: '

register solomon@uwisc Marvin Solomon
University of Wisconsin Madison
Computer Sciences Department
1210 w. Dayton St. Madlson Wl 53706
608-262-1204
soloman csnet contractor service host public host
computer science

A user who wishes to send mail to Solomon might issue the
command . \

whois solomon [csnet implementor]
where the keywbrd "solomon" is mandatory, but ' the keywords

"csnet" and "implementor" are optional. There may be several en-
tries containing the keyword "solomon", but the one shown above

320

is the only one containing either of the words "csnet" or "imple-
mentor". He would receive the response:

In response to <whois solomon [csnet implementor]>:

solomon@uwisc

Marvin Solomon

University of Wisconsin Madison

Computer Sciences Department

1210 W. Dayton St. Madison WI 53706

.608-262-1204

soloman c¢snet contractor service host publlc host
computer science .

(The response might be abbreviated in an interactive setting.)
He could then send mail to Solomon by addressing it to
"solomon@uwisc". Existing mail user interface programs generally
have a nickname (also called "alias") facility that allows the
user to say something like:

nickname marv=solomon@Quwisc
to avoid having to remember the address.

Solomon included "soloman" as a keyword, since he knew that
people frequently misspell his name that way. The user querying
the database can also protect himself from misspelling by using a
combination of wildcards and optional keywords. For example, he
could say '

whois s* wisconsin [soloman soloman salemon]

7. PHASE 2: AUTOMATED LOOKUP

Phase 2 adds services to decrease the amount of interaction
required between the human user and the central database. 1In
particular, the mail uip and the local agent are integrated.

7.1 Automatic Nickname Establishment

In Phase 1, responses resulting from central database lookup
queries are always returned directly to the user. In Phase 2,
facilities will be added to automate establishment of local nlck—
names.

Continuing the previous example, the interaction with the
name server and the establishment of a local nickname could be
combined by issuing the command

321

nickname marv = whois(solomon [csnet implementor])

to the mail uip, which would format a request and send it to the
postmaster general. (No authentication 1is required since no
change to the nameserver database is being requested.) If the
query matches exactly one entry, the nickname is installed in the
user”s private nickname table. If no entries or more than one
entry are returned, the response is returned to the user request-
ing more information. 1In the PhoneNet environment, the user re-
ceives notification of success or failure of nickname establish-
ment in the form of a message mailed to him. A facility will
also be provided by which a local administrator can install com-
monly used aliases in a table accessible to all users at a site,.

Finally, the user will be abie to combine query of the data-
base, establishment of a nickname, and sending of the first mes-
sage with a command such as

send to marv = whois(solomon [csnet implementor])

The ability to combine these operations will be particularly ad-
vantageous to PhoneNet users. The initial. message will be
delivered to the PhoneNet relay containing the keyword informa-
tion instead of the mailbox address in the "To" field, together
with an indication to the PhoneNet relay that a lookup is re-
quired. The relay composes the query to the postmaster general
and intercepts the reply. Assuming that a unique match is found,
the relay updates the message header to include the mailbox ad-
dress (leaving the keyword information in as a comment) and
delivers the message as usual. It also forwards the reply from
the postmaster general back to the originating host so that the
private nickname table of the sender can be updated. The advan-
tage of this scenario is that the message can be delivered after
‘only one interaction between the sending host and the relay. For
example, if the sending host is only polled once each day but the
destination host is directly connected, this scheme provides
next-day delivery, assuming that the list of keywords uniquely
identifies one mailbox. The reason for requiring each database
entry to include the user”’s full name and institution (CSNET
member organization), is to give the careful sender a reasonable
chance of constructing a query that will match uniquely on the
first try.

We are deliberately requiring the sender to specify both a
list of keywords and a nickname with the first (or only) message
to a given recipient rather than allowing a syntax such as
"send _to marvin solomon". The reason is efficiency: 1If a nick-
name is established, subsequent transmissions are much cheaper.
If it were too convenient to send using only keywords, users
would be encouraged to use keywords every time, even to send to
users they communicate with frequently. On the other hand, a
special syntax might be provided for sending to a user just once

322

(that . is, avoiding the establishment of a local nickname), pro-
vided it was sufficiently awkward as to discourage its use 1if
there 1is a reasonable chance of sending to the same user again.
An example syntax might be

send_to temporary-nickname = whois(marvin solomon)

with the nickname "temporary-nickname" given the special seman-
tics that results of the lookup are not to be returned to the
sending site unless there is an error (such as multiple matching
entries). '

8. PHASE 3: FORWARDING

Suppose an existing user is assigned a mailbox on a new
host. Under some circumstances, he may want that mailbox to be
considered different from his previous mailbox. For example, he
changed jobs. Under existing mail transport systems, a message
sent to the old mailbox (assuming it was deleted) will be re-
turned to the sender with an indication that the mailbox no
longer exists. A user who is really interested in sending to him
as a person, rather than in his official capacity at his old job,
could query the database to determine his new address and resend
the mail. This situation corresponds closely to the telephone
system (where "address" corresponds to phone number). However,
under other circumstances, the user would like the change of ad-
dress to be invisible to his correspondents. For example, sup-
pose he is moved to a different host on the basis of an adminis-
trative decision such as load-leveling, or he is temporarily
visiting another site and finds it more convenient to have mail
forwarded there (compare with the phone company”s new "call for-
warding" service).

8.1 The Forwarding Mechanism

To simplify various aspects of forwarding, each nameserver
database entry will contain a registration ID that uniquely and
unambiguously identifies the database entry. This ID is included
in database entries from the start, but only comes into play in
Phase 3. (This idea was inspired by a suggestion of Denning and
Comer [4].) The mail uip will be modified to include the regis-
tration ID in per-user nickname tables. For example, if a user
types

nickname marv = whois(solomon [csnet implementor])

the nickname table will store, under the entry "marv" not only
the mailbox address (solomon@uwisc), but also the registration ID
for the associated database entry.

323

The forwarding mechanism is best described by an example.
Suppose Pat Kane 1is at site A and has a mailbox with address
"pat@sitea". He moves to site B and is refused the name "pat" as
his mailbox name since there 1is already a pat there, so he
chooses the name "pkane". The mailbox pat@sitea is deleted from
site A. Users who Dbypass the CSNET name service entirely and
send to "pat@sitea" will have their messages returned as un-
deliverable. They must learn £from channels outside of CSNET
(such as word-of-mouth) that mail to Pat Kane must now be ad-
dressed to "pkane@siteb". However, Pat Kane may inform the post-
master general that he has moved. (Authentication of the infor-
mation will wuse a similar mechanism to that described above for
registering users.) His entry in the central database is updated
to indicate his new mailbox address, so that new correspondents
looking for him by keyword search will find his new address. 01ld
correspondents will still have mail returned, but now senders who
use the name server can have their 1local mail systems recover
without manual intervention. -

Suppose the sender has established an alias for Pat Kane by
the command :

nickname pk = whois(pat kane)

When the nickname was established, the local tables for the
sender received an entry such as R : :

pk : pat@sitea (CSNET-ID: 0012345)

When the sender tries sending to "pk" after Pat has moved, a mes-
sage addressed to "pat@sitea (CSNET-ID: 0012345)" is sent to
SITEA, refused, and returned to sender. The sender”s uip can
query the . postmaster general to find out if there have been any
changes in entry 0012345. 1In this case, the postmaster general
sends the new address “pkane@81teb" ‘the sender”s uip updates its
tables to read

pk : pkane@siteb (CSNET-ID: 0012345),

and re-sends the letter to "pkane@siteb (CSNET-ID: 0012345)".
The sending user is never bothered, all his future mail to "pk"
will be sent directly to the correct address.

One additional complication arises. Continuing the previous
example, suppose after Pat Kane leaves site A, Pat Able appears
and wants to be known locally as "pat". She might well be unhap-
py about being told that she couldn”t use the name "pat" because
there once was man named Pat Kane who already reserved that same
name. On the other hand, SITEA will have no way of knowing
whether mail addressed to "pat@sitea" was intended for ©Pat Kane
or Pat Able. Once again, senders who bypass CSNET software can
still send mail, but they receive reduced services. In this

324

case, they run the risk of a message going to the wrong person.

If SITEA is a CSNET member site, however, it will store the
registration ID of all its local users who are registered. 1If an
incoming message contains a registration ID that does not match
the registration ID of the addressee, the message will be reject-
ed. When Pat Kane changed his address to "pkane@siteb", the
postmaster general informs SITEA the the user id "pat:0012345" is
no longer wvalid.

8.2 Optimizations

The update message to SITEA could include the forwarding ad-
dress, and SITEA could cache forwarding addresses for recently
moved mailboxes. When the 1letter addressed to "pat@sitea
(CSNET-ID: 0012345)" arrives at SITEA, SITEA could then send it
directly to pkane@siteb rather than returning it to the sender.
It should still inform the sender of the change, and the sender
may well wish to check the new address with the postmaster gen-
eral rather than trusting SITEA, but the delay in delivering the
letter would still be reduced from five message-transition times
(sender to SITEA; SITEA to sender; sender to Service Host; Ser-
vice Host to sender;. sender to SITEB), to two (sender to SITEA;
SITEA to SITEB). The possibility of this sort of forwarding
raises difficult problems in billing, however (e.g., who pays for
the forwarding hop and how is he billed), which are beyond the
scope of this paper.

Another optimization is based on the observation that it is
common for several users at one site to correspond with the same
person. If they all have obsolete nicknames for him, the over-
head of a misdirected message can be moved from the first time
each of them sends to him to the first time any of them sends to
him. Instead of storing the entry "pk : pat@sitea (CSNET-ID
0012345)" in the nickname table for a user, we can store an entry
like "pk : 0012345" in the per-user table and maintain a per-host
table with the entry "0012345 : pat@sitea".

9. MAILING LISTS

All the mechanisms described thus far are techniques for
discovering the address of one mailbox. There is nothing to
prevent them from being used repeatedly and in combination to
develop multiple addresses on a single message, such as

send_to marv,
larry = whois(lawrence landweber wisconsin),
donn@uwisc

which names the three authors of this note by a nickname, a key-
word search, and a mailbox address, respectively.

325

A related facility is the mailing list which is a name for a
list of mailboxes that are often used together. Existing user
interface programs often provide a mailing 1list function using
the nickname facility to do a macro expansion of a mailing list
name. In Phase 3, the CSNET name server will allow users to re-
gister mailing lists in the central directory database. A mail-
ing list entry is similar to other entries in that it contains a.
list of keywords and a mailbox address of a user responsible for
the entry. But it also contains a list of mailbox addresses. A
request to add a mailing list to the directory contains the key-
words as well as descriptions of the members, specified by any
convenient means (i.e., keywords, nickname, or mailbox address).
On receiving such a request (which must pass the wusual access
checks), the postmaster dgeneral resolves each member to an ad-
dress and stores the list of addresses. If any member specifica-
tion fails to resolve to a unique address, the request will be
returned to the sender for correction.

When a mailing list is installed, the postmaster general
will send a message containing the names of all the members to
each member. (There might be circumstances under which this no-
tification should be suppressed.) Similarly, a change in the
mailing list will generate a notification to all parties in-
volved. 1In Phase 3, any change-of-address notice to the postmas-
ter general will also cause changes to all lists that contain the
obsolete address.

10. COMPARISON TO OTHER WORK : -

Several reports have been published on "name servers" for
computer networks [5,6,7]. A particularly interesting related
name server design is the Xerox Clearinghouse [8], which may use
mail transport services provided by the Grapevine [9] system.
While Grapevine is primarily a mail transport system, it also
provides for naming, authenticating, and 1locating people,
machines, and services in a multi-network environment. The Clear-
inghouse is a system for naming and locating objects in a distri-
buted environment. Both of these systems are designed to operate
in an inter-network environment with associated databases and
services distributed among different machines on different net-
works. Therefore, many of the complications that concern the au-
thors of these papers, such as how to find a name server, do not
arise in our context, in which there is a unique name server at a
well-known address. On the other hand, these systems are
designed for environments in which message-passing is cheap and
quick, and in which broadcast is a viable means for locating ser-
vices. It is not clear how to apply their techniques in an en-
vironment in which a single message "hop" can take more than a
day. '

326

Another difference has to do with how the sytems are to be
used. Clearinghouse objects (including mailboxes) have a three-
part "name" of the form object@domain@organization. Our strategy
for mailbox addresses is similar, unambiguous host name together
with a username that is unambiguous relative to the host. 1In the
Clearinghouse system, a three-part name is used to obtain infor-
mation about the associated object. Besides wildcard characters,
which may be used to aid in matching a name, the user is not pro-
vided with any assistance in locating the desired database entry.
In our system, the primary goal is to facilitate lookup of mail-
box addresses based on incomplete information. Hence, it is not
necessary to know any particular piece of information such as the
user”s complete name to locate his entry.

11. SUMMARY

We have presented a detailed specification of a name server
facility for CSNET and have skeétched out the algorithms for im-
plementing it. The facility is implemented by a postmaster gen-
eral program running on the Service Host and local agent programs
running on local hosts. The facility will be implemented as a
series of enhancements to existing services, each adding more
convenience for users. It assumes a mail transport system that
can deliver a message when presented with a list of destination
addresses. It also allows for 1nteract1ve database access in
cases 1in which the user or the user” s host is capable of direct
connection to the Service Host.

We have deliberately avoided discussing issues involving the
mail transport . system, such as routing, mail relays, multicast
delivery, or reply~to-sender, except as they are directly related
to the name server, but we do not believe that the name server
facility creates any new problems in these areas since address
specifications ultimately. resolve to addresses in the style al-
ready in use. We have also not tied the name server specifica-
tion to a particular mail 1nterface program.

The techniques for 1mplement1ng the algorithms described
here are well understood, and tools (such as a flexible filesys-
tem, inverted indices, and encryption programs) are already 1in
place in the operating system for the Service Host. Therefore,
we feel that the name server can be implemented quickly and begin
to provide services to users soon. Phase 1 of the name server is
currently being 1mplemented with test release scheduled for Janu-
ary 1982.

12.

327

ACKNOWLEDGMENTS

We gratefully acknowledge helpful comments from Vint Cerf,

Keith Lantz, and Jon Postel. Continuing discussions with Doug
Comer, Peter Denning, and Mike Litzkow have been have been very
valuable in crystalizing many of the ideas in this paper.

13.
(1]

[2]
[3]
[4]

[5]

16]

[7]

(8]

[9]

REFERENCES

Lawrence H. Landweber, "CSNET - A computer research net-
work," Proposal to the National Science Foundation, (Oc-
tober, 1980). C »

L. Landweber and M. Solomon, "The structure of CSNET,"
CSNET-DN-81-1, University of Wisconsin--Madison Computer
Sciences (August, 1981).

L. G. Roberts and B. D. Wessler, "Computer network develop-
ment to achieve resource sharing," Proceedings of SJCC, pp.
543-549 (1970). v

P. Denning and D. Comer, The CSNET user environment, Comput-

er Science Department, Purdue University (July, 1981) unpub-
lished note.

J. R. Pickehs, E. J. Feinlek, and J. E. Mathis, "An experi-
mental network information center name server (NICNAME),"
IEN 103, SRI International, Menlo Park, California (May
1979). : o ,

J. R. Pickens, E. J. Feinler, and J. E. Mathis, "The NIC
Name Server--A datagram based information utility," Proceed-
ings 4th Berkeley Workshop on Distributed Data Management
and Computer Networks, (August 1979 on Distributed Data
Management and Computer Networks) . . .

J. Postel, Internet Name Server, Information Sciences Insti-
tute, University of Southern California (May 1979).

D. C. Oppen and Y. K. Dalal, "The C(Clearinghouse: A decen-
tralized agent for locating named objects in a distributed
environment," Technical Report OPD-T8103, Xerox Office Pro-
ducts Division (October 1981).

A. Birrell, R. Levin, R. Needham, and G. Schroeder., "Gra-
pevine," Proceedings of the 8th ACM Symposium on Operating
Systems Principles,, (To appear, December, 1981).

329

ON THE CORRECT AND EFFICIENT SCHEDULING
OF TRANSACTIONS IN A HIGHLY PARALLEL DATABASE MACHINE*

-

Ravindran Krishnamurthy
IBM Thomas J. Watson Research Center
Yorktown Heights, New York, 10598

Umeshwar Dayal
Computer Corporation of America,
Cambridge, Mass.

Abstract

This paper proposes a two-step technique for producing correct and highly parallel
schedules for MIMD, (multiple instruction stream, multiple data stream) database machine. A
parallel program schema model for transaction systems is presented. The concept of correct
(i.e. serializable) executions existing in cocurrency control theory for the sequential model is
extended to this parallel model. The model is used to derive minimally constrained schemas for
" optimal scheduling. This constitutes the first step of the two-step technique. In the second
step, the transactions are partially interpreted to enhance_ parallelism. A high level query
language is chosen, for which a set of transaction modification rules are presented. A practical

scheduling algorithm is proposed to obtain a highly parallel schema.

1. Introduction.

Parallel (i.e. multiple instruction-stream, multiple data stream) database machines such as

DIRECT, have been proposed with the objective of enhancing processor utilization and

* Most of this work was done while the authors were associated with the Computer Science
dept. at The University of Texas at Austin, Austin, TX.

330

achieving high transaction throughput [DeW78]. Improving p’rocessbr‘ utilization requires the
efficient scheduling of tranéactions (for parallel execution) on available processors. But a
parallel execution of transactions requiring access to shared data, can lead to race conditions
and inconsistent states of the database, unless some synchronization. (concurrency control)
mechanism is used [EGLT76). This underscores the importance of both synchronization and

efficient scheduling to achieve correct (i.e. serializable) and maximally parallel executions.

The DIRECT machine uses locking in the front-end aé its synchronization mechanism.
However, this seems unduly restrictive a'nd may even be prohibitive for very high throughput
machines. No other synchronization mechanisms for parallel database machines have been
proposed in the literature. On the other hand, a wealth of concurrency control theory has
been developed for centralized and distributed data base systems, assuming a sequential model
of execution [BSW80, Papa79, BSR80]. In this paper, we extend this 'thedry to a parallel
model of execution and use it to derive the minimal set of precedence constraints for schedul-

ing.

Our model of a database system is shown in figure 1.1. Users submit transactions (each
consisting of several steps) to the system. A set of these transa_étions, called a transaction
system, is input to the scheduler, which examines the transactions for potential conflicts and
imposes a partial order on the transaction steps. The scheduler outputs a precedence graph
(called a schema) corresponding to this partial ordering; for execution on the database
machine. The transaction system is then executed by the machine using some low-level
processor allocation policy. We are concerned here with the problem of representing a
transaction system using minimal precedence constraints so that any execution satisfying these
constraints is correct. An execution is correct if and only if it is serializable, i.e. equivalent to
some serial execution. In the existing concurrency control theory for the sequential model of
’execution, both in centralizeél and distributed systems, a transaction is modelled as a sequence
of operations. The execution of a transaction system in the centralized case is also modelled
as a sequence of operations, perhaps with steps of different transactions interleaved in it. This
sequence is called a history. A given history is serializable if and only if it is computationally
equivalent to a serial history, which defines a total ordering on the transactions in the system
[BSW79, Papa79]. In the distributed case, an execution is modelled as a set of histories, one
for each site. A distributed execution is serializable if and only if the history at each site is
serializable and the equivalent serial histories at all sites impose the same total ordering of

. transactions.

331

transactions e G

—> SCHEDULER 1 DB machine
from users

result
f—————

g = {T,.T,,...T,} = Transaction system.

T, = (tn,tn,....tiki) = a sequence of transaction steps.

T = set of all transaction steps.

G = Schema output by the scheduler.

Fig. 1.1 Model of a database management system.

332

A sequential ordering of transactions steps does not exploit the full power of a parallel
machine. Gouda [Gou80] has extended this sequential model of a transaction and a transaction
system to a directed acyclic graph (DAG); The edges of the DAG impose precedence const-
raints on conflicting pairs of transaction steps. In the first part of this paper, we formalize this
model using parallel program schemata theory [Kell73] and extend the notion of serializability
to this model. We then derive a minimal set of precedence constraints for a transaction system

to satisfy this correctness criterion.

Most proposed concurrency control mechanisms use uninterpreted transactions, i.e. they
use only syntactic information such as the read and write sets of the operations in the
transaction steps. It has been shown in [KP79] that greater concurrency can be achieved if
semantic information is-utilized in addition to purely syntactic information. In the second part
of this paper we show how to exploit semantic information to modify transaction steps and
thus increase parallelism even further. For example, in an airline reservation system, if there
are five (simultaneous) requests for seats on a particular flight, most systems of today will
satisfy these requests one by one. We present an algorithm that modifies these requests so
that instead of executing sequentially, they can run in parallel. This is accomplished by
making one request to update the number of reserved seats in the database by 5 and making

all the others only read the database. Thus, all the five requests can be made to run in parallel.

Thus, this paper proposes a two-step technique for producing correct and highly parallel
schedules: first, construct a schema with minimal precedence constraints; then, modify it using

semantic information to increase parallelism.

Section 2 presents a parallel program schema model of a transaction and defines the
notion of syntacfic and semantic equivalence of schemata. Using this, the scheduler, the
schema for a transaction system, and an execution of a transaction system are.formally
defined. In section 3, correctness criteria are presented for each of these, together with a
method for syntactically constructing a correct execution schedule with minimal precedence
constraints. Section 4 extends the theory to incorporate semantics by partially interpreting the
transaction steps. Here, a high level query language like QUELO [HSW73] and a class of query
processing strategies is chosen; a set of transaction modification rules are proposed for
transforming the schema (i.e. the execution schedule) in this environment. A viable scheduling

algorithm is proposed to obtain a highly parallel schema.

2. Model of a Transaction System

333

In this section we adapt the general model of parallel program schemata developed in
[Kell73] to database transaction systems. First section reviews the terminology, followed by
the presentation of the formal model of a transaction system. We first review the terminology
and then present the formal model of a transaction system and discuss the properties of the

model.

2.1. Terminology

The database is viewed as a shared memory DB, consisting of a countably ' infinite
number of cells or data items. Transactions and transaction systems are modelled as schemata,
defined over a set of operations. Each transaction step is an operation, and henceforth, we
use these two terms synonymously. Associated with each operation tij,(jth step of the
ith transaction) are two finite sets D(tij)QDB the domain of t; and R(tij)SDB, the range of
tj- Intuitively, each operation reads the elements of its domain, performs some computation on

them, and writes into the elements of its range. Also associated with t.., is a terminator, an

ij?
atomic event (i.e., indivisible and mutually exclusive) that represents the commitment of the

operation.

The domain and range of an operation provide purely syntactic information. To express
the semantics of the operation (i.e. the actual computation performed by it), an interpretation
is required. An interpretation for an operation set defines a universe of values and an initial

assignment of values to the database DB; and, for each operation t;;, a set of functions which

ij

map D(tij) into R(tij).
2.2 Formal Model

As we are interested initially in developing a model based purely on syntactic information,
a schema is defined independent of any specific interpretation. In section 4 we extend this

concept to incorporate partially interpreted operations.

A parallel program schema, (or simply a schema) over a transactions system J, is a

directed acyclic graph G=(T,E), where T is the set of all transaction steps in &, and the edges
in E represent precedence constraints on the transaction steps in T. The schema specifies
those steps which may be executed concurrently. An operation can be enabled for execution
only after all its predecessors in G have been terminated. So we see from figure 1.1, that the
database machine executes the transaction steps in any order, consistent with the precedence

constraints of G. So a schema is to be viewed as a set of directives for the database machine.

334

Given that the database machine has executed a transaction system &, we represent that
execution as a directed acyclic graph. Intuitively, the execution grap.h depicts the order in
which the transaction steps of 4 were executed. So for every transaction step t;; that
preceded anovther transaction step t,,, there is-an edge (tij,tk/) in the execution graph X. We

observed earlier that any execution X permitted by a schema G satisfies the precedence

constraints in G. So, G must be a subgraph of X. Furthermore, note that an execution is a

partial order, because some of the transaction steps were executed in parallel.

In particular, we are interested in a special kind of non-parallel execution that imposes a
total ordering of transactions and whose graph is the transitive closure of a chain. In this
execution, only one transaction step is executed at any time and each transaction is run to
completion before the next transaction is started. Such an execution depicts a sequential
execution of transactions in a uni-processor environment and is called a serial execution. This
is defined as fdllows: For a transaction system &, and a permutation p of {1,2,3,...,n}, (where

p is viewed as a function), a serial execution corresponding to p, (denoted SXP), is an

execution in which all transaction 'steps of Tp(j) are executed before any transaction step of
Tp(k) is executed, iff p(j)<p(k). Further, if a schema G' = SXp for some permutation p, then

G is called a serial schema.

The serial execiition is a non-inter]éaved execution of transactions. Therefore, it is said
to be correct because it preserves databas’e consistency (assuming that each transaction
executed by itself, starting from a consistent state leaves the database in a consistent state)
[EGLT76]. If we can show that a given execution X is computationally equivalent to some
serial execution, then we can guarantee database consistency. First we define the notion of

computational equivalence.

2.3. Computational equivalence

To formally define the notion of computational equivalence, we must first define compu-
- taton sequences. Properties of a schema (or an execution) can be inferred from the properties
of the associated set of computation sequences. This technique was used in parallel program

schema theory and we adopt the same technique here. A computation sequence (or comp) for

a schema G (or an execution X), is a string xe HIST such that x is a total order consistent with
the partial order defined by the schema G (or the execution X). Intuitively, a comp is a
sequence of terminations representing a permissible order in which the effects of the transac-

tion steps could be committed.

e g A

B e e e

335

For an execution X (or a schema G), the set of computation sequences corresponding to
X (or to G) is denoted by COMP(X) (or COMP(G)). If X is an execution permitted by G,
then G is a sub-graph of X. Consequently, any comp of X is a comp of G, ie.
COMP(X)sCOMP(G). Therefore, COMP(G) represents all possible committing sequences of

any execution permitted by G.

2.3.1. Semantic Equivalences: Intﬁitively, we expect two computation sequences x,ye HIST to

be equivalent if for every interpretation, they behave identically; i.e. starting with the same
state of the database DB, x assigns the same sequence of values to every data item d in DB as
y does. Since this must be true for all interpretations, we can formally define this equivalence

using the notion of an Herbrand interpretation [Mann74]. Herbrand iﬁterpretation for the dth

data item, (denoted Hy(x)), is an encoding of the final value of the dth data item after the
termination of the computation sequence x, under the Herbrand interpretétion. Given two
comps: X,ye HIST, they are said to by ' -lated by the equivalence relation E(iff the sequence
of values stored in data item d in both cases are the same. This can be formalized by defining

a trace for each data item as follows:

where

Cy(¥) = { .
Hy(x) if deR(xi),

;X is that prefix of x whose length is i, x; is the ith symbol in the string x and A is the empty

string.

Informally, TRACE4(x) represents a trace of the values stored in data item d during x
under Herbrand interpretation. Two comps x,ye HIST are said to be related by the equiva-
lence relation E iff for every data item deDB, TRACE (x) = TRACE (y). This is denoted
by x=y(Ec). Thus we have a notion of computational equivalence relating any two computa-
tion sequences of HIST. We would like' to infer propert_ies of the schema based on the
properties on COMP(G), using this notion of computational equivalence. But it would be-
difficult to use this semantic definition of the equivalence relation. Aigorithmic checking

requires a syntactic characterization.

2.3.2. Syntactic equivalence: An equivalence relation Ej that corresponds to E. is adapted

from [Papa79]. Two transaction steps t; and ty, are said to be conflict free if

336

D(t;)nR(t,,) = ¢ and R(t)nD(t,,) = ¢ and R(y)nR(t,) = ¢

Intuitively, if two transaction steps are conflict-free then their order of execution relative to
each other is immaterial. We define a symmefric relation <= as follows. Let x,yeHIST .x<=y
iff y is obtained from x by switching two adjacent conflict-free operations. We define the
syntactic equivalence relation E4 to be the reflexive-transitive closure of <. (Since <= is
symmetric, E; is an equivalence relation.) It has been shown in [Kris81] that two comps are
equivalent under E. if and ohly if they are equivalent under E;. Equivalence of comps under

E,4 (and hence under E¢) can be tested in O(n2) time.

2.4 Properties of a Schema

We use the equivalence relations Ei, Ey to infer properties of a schema G from the
properties of COMP(G). This is motivated by the fact that every execution X permitted by
G, is associated with a set of computation sequences that is a subset of COMP(G). For
instance, if we can show that every computation sequence in COMP(G) is in some sense
correct, then every execution permitted by G is associated with computation sequences that
are all correct. Two properties proposed in [Kell73] are of interest. These are equivalence

and determinacy of schemata.

Given any equivalence relation E on HIST and two schemata G; and G, on a transaction
system &, G; and G, are said to be E-equivalent, (written G,=G,(E)), iff
Vxe COMP(G;) 3ye COMP(G,) [x=y(E)] and Yye COMP(G,) 3xe COMP(G,) [XEy(E)]

Intuitively, both the schemata represent sets of computations that are equivalent under E. The

equivalence of schemata also implies that their COMPs represent the same equivalence classes.

The other property of interest is the determinacy property of a schema. Given any
equivalence relation E on HIST, a schema G is said to be E-determinate if for all
x,ye COMP(G), x=y(E). In other words, COMP(G) is contained in a single E-equivalence
class of HIST. Intuitively, E--determinacy ensures that all comps produce the same result
under any interpretation of the transaction steps. In particular, if G; or G, is determinate
then G;=G,(E) implies both are determinate and are contained in the same equivalence class

of HIST.

We are particularly interested (as we shall see in the next section), in detecting whether a

schema is determinate. This problem is solved as follows. A schema G is said to be

conflict-preserving if for every pair of conflicting transaction steps t and t,,, either (tij,tk ¢) or

5,
Kl

337

(tk/’tij) is an edge of E+ (where G+ = (V, Et), is the irreflexive, transitive closure of G).
Intuitively, conflict preserving implies that all conflicting transaction steps are totally ordered;
consequently, they cannot be executed in parallel. Then, as shown in [Kris81], Schema G is
conflict preserving iff it is E-determinate. Thus, Ec-determinacy and therefore,

E(-equivalence with a determinate schema, can be checked efficiently.

3. Correctness criteria for executions, schemata, and schedulers

The concept of serializability has been used as the correctness criterion in the sequential
model of execution [EGLT76,Papa79,BSW79,PBR77]. A given history is said to be serializa-
ble iff it is computationally equivalent to some serial history. In this section, this correctness
criterion is extended to executions in the parallel model. Recall in the parallel model, the
execution of a transactions system by a database machine is represented by a DAG, X =
(T,Ex). We first define correct (i.e. serializable) executions. Then, we define éorrect schema
to be that which permits only correct executions. Finally, a correct scheduler is one which

presents the database machine (see Figure 1.1) with a correct schema.
3.1 DSR-class

An execution X is said to be DSR-serializable (or-in DSR-class)' iff there exists a serial

execution, SXp such that XESXp (Ec). Intuitively, DSR-serializable implies that there is a
serial execution SXp to which every computation sequence in COMP(X) is equivalent. So,
irrespective of the specific order of commits that may have occurred in the database, we are
guaranteed serializability. Furthermore, every execution X in DSR-class is a determinate
execution, as SXp is determinate (trivially!). Therefore, the recognition problem for DSR-class:
given an execution X, is X a member of DSR-class, is polynomially sovable. This can be seen
as follows. First check if X is determinate, (as shown in the previous section, check if X is
conflict preser?ing). If not, then X is not in DSR-class; otherwise, determine if for any

computation sequence xe COMP(X), XESXp (Ep) for some SX , using the algorithm given

p ’
in [Papa79]. Thus we have shown that there is an efficient solution to the recognition problem

for DSR-class.

+ In [Kris81], serializability has been extended to SR-class, and is shown that most schedul-
ing problems are intractable. As most schedulers in practice use a proper subset of the

DSR-class, we restrict our attention to this class.

338

3.2 Correctness criteria for a schema

A schema G is said to be DSR-serializable if every execution permitted by G is DSR-

serializable. We observed in the previous section that for any execution X permitted by a
schema G, COMP(X) must be a subset of COMP(G). Further, that a schema G can itself be
viewed as an execution that satisfies all the precedence constraints. It follows directly from
these observations that a schema G is DSR-serializable iff G (when viewed as an execution),
is a member of DSR-class. As there is an efficient solution for the recognition problem for

DSR-class, the schema recognition problem is also polynomially solvable.

3.3 Correct and efficient schedulers

We now turn to the problem Qf designing' correct and efficient schedulers. The scheduler,
as shown in figure 1.1, takes as input a transaction system &, and outputs a schema G that is
to be used by the database machine. Intuitively we would like to guarantee that every schema
produced by the scheduler is correct. If correctness were our only goal, it would be easy to
design schedulers. For example, a trivial scheduler that guarantees serializability is one that
outputs only a serial schema. This is, however, too restrictive a mechanism for practical value
and defeats the very purpose of parallel execution in the database machine. Clearly, thérefore,
in addition to correctness, there is the requirement of efficiency. We would like to design a
scheduler that, for a given transaction system, produces a schema that is the "hest" (with
respect to some performance criteria) of all the schemata in the DSR-class. In this subsection
we discuss the problem of constructing a correct schema that imposes a rﬁinimal set of

precedence constraints. Lastly we dicuss the problem of efficient scheduling.

3.3.1. Schema for a transaction system: Here we present a sytactic procedure to obtain a

serializable schema, corresponding to a given serial execution SX,. Given a serial history SX,

we define a serialization graph (abbreviated SR-graph) of SXp, Gp = (Vp,Ep),

where Vp = T and Ep = {(xi,xj) | i<jin SXp and x; and x; are not conflict free.} It follows
from the definition of G, that every comp in COMP(G,) is Ec-equivalent to SX, or in other
words that Gp is DSR-serializable. (This is formally proved in [Kris81].) Further it is also
shown in [Kris81] that none of the precedence constraints in Gp is unnecessary. That is, if
any non-transitive edge of G, is deleted, then ,Gp is not DSR-serializable. Therefore, Gp

N » . .
represents a set of necessary and sufficient constraints to assure correctness.

The reader should note that in the above discussion we assume that we are given a serial
execution, SXp to which all the scheduled executions must be equivalent, and we construct a

Gp that is both necessary and sufficient. But there are n! such serial executions. In [Kris81] it

339

is shown that the problem of choosing a p that procuces the "best" shcema, for all interesting
optimality measures is intractable. As the motivation for finding the "best" sch;ma is effi-
ciency, (but finding the "best" schema is a hard problem), we present in the next section a
method for transforming a given schema to a "better' schema, by partially ivnterpreting the
transactions. We also show that the transformed schema will have better processor utilization

characteristics.

4. Scheduler Using Partially Interpreted Transactions

In figure 1.1 we presented a model in which the sch-eduler was defined to output a schema
G for the transaction system J using only syntactic information, namely readsets and writes-
ets. Thus, the two. parameters of the model are the restriction on the output and the level of
information in the input.. The assumption that the scheduler outputs a schema G, restrlcts the
scheduler’s domain of optimization to the DSR-class and this optimization problem was shown
to be intractable in [Kris81]. It is also shown there that relaxing this assumption (by increasing
the domain of optimization to SR-class) does not simplify the problem.. In this section, we
relax the other parameter of the model namely the level of information in the input to the
scheduler. We had assumed that the scheduler uses purely syntactic information (i.e. readsets
and writesets of the transaction steps) for input to the algorithm. We now redefine the
scheduling problem by modifying the input to the scheduler. This section shows how semantic
information can be used to make the problem simpler. This approach is motivated by a result
from [KP79] that a scheduler using semantics is less restrictive than a scheduler using syntactic

information alone.

Our approach is to construct a schema that is serializable and then to optimize it using
semantic information. Semantic information is incdrporated by partially interpreting the
operations. Thus, each transaction step is assumed to be a statement in a high level query
language. We develop a set of rules for transaction modification. Each modification trans-
forms a schema (for a given transaction system) into an equivalent schema which is better
according to some performance measure. Initially, this measure is assumed to be the diameter
of the schema (i.e. the longest path in the schema). This measure is significant because it
represents the response time, assuming an unlimited number of procéssors and unit cost per
transaction step. In practice, however, the number of processors in the database machine are
limited and the transaction steps have varying costs. Hence, in section 4.5 we present an

algorithm that takes both of these factors into account.

.1 Environment

340

The database is assumed to consist of a single relation R. In a database with more than
one relation, R can be thought of as the product of all the relations. Each tuple of R has a
unique identifier (TID) and corresponds to a data item of the memory. Transaction steps are
assumed to be statements written in some high-level relational calculus based language, such as
- QUELO [HSW75]. As thé exact syntax is not of concern here, we represent each type of

statement in the following manner:

1. MODIFY: MOD(targ,, q, R)
2. INSERT: INS(targ;, q;, R)
3. DELETE: DEL(qq4, R)

In each statement the qualification q is a predicate that selects a subset of the relation R
to be the operand of the operation; the target list, targ, defines the computations to be
performed on the operand. In QUELDO, the qualification is a boolean combination of the form
<term><op><term>, where a term is an attribute, a constant, or an arithmetic function (e.g.
+,*) of other terms; and <op> is an arithmetic comparison operator (e.g. =,<). The target

list is a list of (attribute, term) pairs. Observe that we have not included a RETRIEVE
statement. A retrieval can always be treated as the insertion of new tuples into a part of the
database. This is achieved by including the user’s terminal to be part of the database -

[PBR77,BSW79].

Before we formally present t_h_e transformation, lét us consider an example that illustrates
the goal of the transformation. The original schema (figure 4.1) consists of three statements to
be executed sequentially. Our objective is to ‘transform this schema into the parallel schema of
figure 4.1. For the two schemata to be equivalent, the transformed schema must be determi-
nate. This implies that the transformed schema must be conflict preserving. The reader will
readily discern that in the form shown in figure 4.1, TS is not conflict preserving. | In the

sequel, we describe a query processing strategy under which TS is in fact conflict preserving.

Without loss of generality'we assume that a target list specifies every attribute in R. This
assumption and our earlier assumption that the database contains only one relation do not

restrict the applicability of the theory; they are made merely to simplify the formalism.

Let Q, be the set of tuples selected by qualification q,; and TARG, be a function
corresponding to target list targ,, such that, TARG,(Q,) is the set of tuples generated by
evaluating targ, on the selected tuples Q,. For a single tuple t, TARG,(t) is defined in the

obvious manner. Figure 4.2 tabulates the effect of each operation.

341

ORIGINAL SCHEMA

t;: DEL ((age=16), R)

t,: MOD ((age>=16), (salary=salary+1k), R)

t3: INS ((salary=25k), (name=name), R) t;

TRANSFORMED SCHEMA
O (& O
t;: DEL ((age=16), R)
t,: MOD ((age>16), (salary=salary+1k), R)

t3: INS ((((salary+1k>=25k) and (age>16)) or ((salary>=25k) and (age<16))),

(name=name), R)

Figure 4.1 An example of the transformation.

The following table lists the effects of each operation. R and R’ are the relations before
and after the execution. Also let Q, = {t| teR and t satisfies q,}.
TARG, is the function corresponding to targ,. Rgg and Ryg are the resulting relations after

an execution permitted by OS and TS respectively.

MOD (targ,,, q,,. R) R’ = (R-Q,,) vTARG(Q,,)
INS (targ;, q;, R) R’ = R uTARG;(Q,)
DEL (qg4 R) . R’ = R-Qq

Figure 4.2 Effects of the operations.

342

We consider a general class of query processing strategies in which each operation is
performed in two steps (as shown in figure 4.3); a qualification step q that selects the tuple
ids (TIDs) of the R-tuples satisfying the qualification q; then, an effect step e that performs
the operatibn specified by the target list on the tuples whose TID’s were selected by . For
this class of query processing strategies; the time taken to evaluate the qualification (step q) is
likely to be much greater than the time taken for step e. Also, step q does not update the
database. These two observations make it a prime candidate for execution in parallel with

other qualification steps (appropriately modified, as described below).

Consider an ordered pair of operations with the precedence constraints shown in figure
4.4 Suppose this pair can be modified to an equivalent schema (shown in figure 4.5) such that
Te;, Te,y, Tq;, and Tq, can be syntactically determined. Then, the modified operation pair

has smaller diameter and so is better according to our measure of parallelism.

In developing the transformation, we use a canonical representation of the update
operation (see figure 4.6). In this representation qd and qi are the qualifications that select
the tuples to be deleted and inserted respectively; ed and ei are the corresponding effects. It
is obvious that the insert and delete operations can be modelled by choosing appropriate g’s.
To model modify operations, we require two assumptions. (1) The terms in a target list are
constants. (2) every insert (ei) creates a new tuple for relation R. Thus, every new tuple that
is inserted into R is assigned a new TID. Under these assumptions, a modify operation is
modelled as the deletion of old tuples and the insertion of new (modified) tuples with new
TID’s. These assumptions assure the conflict preserving property of the transformed schema.
We argue in section 4.3 that an implementation can infact relax these two assumptions, and

still ensure the conflict preserving property.

With this canonical model of an operation, we define an elementary schema called an
operation pair as shown in figure 4.7 For this elementary schema, we derive in the next

subsection, an equivalent schema with greater potential for parallelism (i.e. smaller diameter).
4.2. Transformation of an Operation Pair in Series

Given a schema OS, (original schema), for an operation pair in series, shown in figure
4.7, we can find an equivalent schema TS, (transformed schema), as shown in figure 4.8 In
this transformed schema Ted;, Ted,, Tei;, Tei,, and Tei,,; are the transformed operations
whose readsets/writesets and target list functions are defined in figure 4.10. This trans-
formed schema evaluates the qualifications based on the original relaﬁon R, to get TQd,,
TQi;, TQd,/y, TQiy/;, TQiy and TQd,. (These symbols are defined in figure 4.9). Using

343

Fig 4.3 Model of an operation

Fig 4.5 Modified schema for an

ordered pair of operations.

Fig 4.4 Schema for an ordered

pair of operations.

Fig 4.6 Canonical representation
"of an operation graph.

344

these sets of TIDs, the readsets and writesets of the effect steps (as shown in 4.10) can be

determined.
(]

The algorithm for the transformation is as follows. This algorithm takes input parame-

ters from the original schema and outputs the parameters of the transformed schema.

Input: oqi;, oqi,, oqd;, oqd,, TARG;;, TARG,.

It is easy to see that each of tqi;, tqi,, tqdy, tqd,, TARG;; and TARG;, is identical to the
corresponding input parameter. To calculate tqi,,; and tqd,,;, we note the following. Each
qualification can be viewed as a predicate calculus formula. Obtain a new formula tqd,
from oqd, by substituting for each attribute the corresponding term given in TARG;; It is
straightforward to see that the set of tuples selected by this modified formula, tqd, /1 is,
infact the set, TQd,,, defined in figure 4.10. Similarly, we can obtain tqi,,; from ogi, by
substituting from TARG;;. We can also obtain TARG;, /1 by substitution; as TARG,,,, is a
composition of functions, we can substitute for every attribute in

TARG;, the corresponding term in TARG;; to get the required target list.

Thus, we have described a syntactic procedure for transforming a serial schema to a more
parallel schema. To explain the intuition behind this (seemingly complicated) transformation,
four examples are presented below. In the subsequent discussion the reader will find it helpful
to keep in mind the terminology given in figures 4.9 and 4.10, along with the observations
recapitulated below.

1. The two schemata are Ec-equivalent if the net effect in both the cases is to delete
the same set of tuples and insert the same set of tuples. _

2. The set of tuples deleted in each schema is the union of the writesets of the delete
(effect) steps.

3. The set of tuples inserted in each schema is the union of the writesets of the insert
(effgct) steps. Each tuple written by an insert. (effect) step has new a TID and
the set of all tuples written is determined by the readset.

4.2.1. Case 1:Delete-delete pair: A pair of delete operation in series is shown in figure 4.11

and the corresponding transformed schema is shown in figure 4.12 For the two schemata to be
E-equivalent, we have to guarantee that the net effect in both cases is to delete the same set
of tuples from the relation R. In the schema given in figure 4.11 the set of tuples deleted is
the union of the set of tuples deleted by the two steps (i.e. OQd; and Ode).The set of tuples

deleted by the transformed schema (given in 4.12) is the union of the tuples deleted in the two

operation pair.

Fig 4.7 Schema (OS) for an

operation pair.

Fig 4.8 Transformed schema (TS) for an

o1’ g. schema

lrans. schema

o1 g. schema

lrans. schema

stepname

Oqi,
Oqi,
Oqd,
Oqd,

Tqi,
Tgi,
Tai;
Tqd; ,
Tqd,
Tqd,

stepname

Oei,
Oei,
Oed,
Oed,

Tei,
Tei,
Teiy 4
Ted,
Ted,

346

QUALIFICATION STEPS

associated

- prediacte

ogi,
0gi,
oqd,
oqd,

tqi,
tqi,
tqiy;
tqiz -y
tqd,
tqd,

read-set

0Qj,
00Qi,
0Qd,
0Qd,

TOi,
TQi,
TQiy,
TQiy
TQd,
TQd,

EFFECT STEPS

associated
target list

TARG;,
TARG,,

TARG;,
TARG,,

TARG;; 4

read-set

OEi,

OEi,
¢
¢

TEi,
TEi,

TEi,,

write-set

G 6 6 o

G 6 6 6 o ©

write-set

OEd,
OEd,

*
*

*

TEd,
TEd,

* corresponding to the readsets there is a writeset of new TID's

Figure 4.9 List of symbols and their associated meanings.

347

Tuples selected by q’s in the original schema:

OQi; = {t | teR and t satisfies oqi, }

0Qd; = {t|teR and t satisfies oqd,}

0Qi, = {t|te(R — 0Qd,)uO0Qi, and t satisfies oqi,
0Qd, = {t[te(R — OQd;)u0Qi, and t satisfies oqd,,

Read/write sets for e's in the original schema:
OEi, = 0Qi, OEi, = 0Qi,
OEd, = 0Qd, OEd, = 0Qd,
Tuples selected by Tq’s in the transformed schema:

TQi, = {t|teR and t satisfies tqi,} k = 1,2
TQd, = {t|teR and t satisfies tqd,} k = 1,2
TQi,,; = {t|teR and TARG;,(t) satisfies tqi,}
TQd;,; = {t|teR and TARG;,(t) satisfies tqd,}

Read/write sets for Te’s in lh¢ transformed schema:
TEi, = TQi, — TQd, TEd, = TQd, - TQd,
TEiz/l =TQi; N TQiz/]

Target lists for the Tei’s in the transformed schema:

The target lists for TEi; and TEi, are the same as in the original schema.
The target list for Tei, /; is the composition of TARG;; with TARG,.

Figure 4.10 OE’s, OQ’s, TE’s, and TQ’s

348

steps Ted; and Ted,. The set of tuples deleted by Ted; (i.e. TEd,, which is the same as
TQd,) is the same as OQd;. But the set of tuples selected by Tqd, is not necessarily the
same as the set selected by Oqd,, as the step Tqd, might have selected some of the tuples in R .
that are deleted in step Oed;. So the writeset for the transformed step is TEd,=TQd,-TQd,.
All the tuples selected by oqd, will also be selected by tqd,; and hence, will also be in the set

TQd,; so the same set of tuples are deleted in both cases.

4.2.2. Case 2:Delete-Insert Pair: A pair of operations, consisting of a delete followe_d by an

insert is shown in figure 4.13 and the corresponding transformed schema is shown in figure
4.14 In thé original 'schemba, the set of tuples OQd; is deleted and the new set of tuples
TARG;, (0OQi,) is inserted. We have to guarantee that the same sets of tuples are deleted and
inserted by both schemata. It is easy to see that TQd;=0Qd; so the same set of tuples is
deleted. But tqi, selects all the tuples selected by oqi,, and some more of the tuples in R that
are deleted by the step Oed;. Hence, the writeset for Tei, is TQi,-TQd;. Thus the sets of
tuples inserted in the two schemata are the same; i.e. TARG;,(0Qi,)=TARG;,(TQi,-TQd,).

4.2.3. Case 3:Insert-Delete Pair: A pair of operations consisting of an insert followed by a

delete is shown in figure 4.15, and the corresponding transformed schema is shown in figure
4.16 We have to guarantee that the same sets of tuples are inserted and deleted in both the
schemata. First we observe that every tuple selected by the step Ogqi; is also selected by Tqi;.
But some of the tuples inserted by the step Oeij, (i.e. in the set TARG;;(OE;;)), are selected
by step Oqd, and subsequently deleted by the Oed,. This set of (deleted) tuples is TARG;,
(TQd,,,); as TQd,/; is the set of tuples, teR such that TARG;;(t) satisfies oqd,. Therefore,
the net effect of the insertion operation is to insert the set of tﬁples TARG;I(TQil-TQdZ /1)-

Thus, the two schemata insert the same set of tuples.

The set of tuples in the original relation R that is selected by oqd, (i.e. OQd,) is also
selected by tqd,; i.e.. OQd,2TQd,. The extra tuples in OQd, are those inserted by step Oei;
and these tuples are not inserted at all in the transformed schema. Thereforé, the net effect is

that the same set of tuples is deleted in both the schemata.

4.2.4. Case 4:Insert-Insert Pair: A pair of insert operations is shown in figure 4.17, and the

corresponding transformed schema is shown in figure 4.18 To show the equivalence of the two
schemata, we need to guarantee that the same set of tuples will be.inserted in both cases. We
first observe that the set of tuples selected by oqi, is also selected By tqi;; consequently the
set of tuples inserted by Oei, is inserted by Tei;. The set of tuples selected by oqiz can be

partitioned into two sets: those tuples that belong to the original relation R and those that are

SRS

TEd1 = Tle, TEdz = TQd2 - Tle

O-DDE

Figure 4.11: Delete-delete pair Figure 4.12: Transformed delete-delete pair

€

Oed,)

D@

‘TEdl == Tle, miz = TQiz - Tle

Figure 4.13: Delete-insert pair Figure 4.14: Transformed delete-insert pair

350

OO

TEdz = TQd,, TEi; = TQi; - TQd,/

Figure 4.15: Insert-delete pair _ Figure 4,16: Transformed insert-delete pair

92606020

'I'Eil L TQil' TEi2 = miz,
miz/‘ -TQil UTQiz/l

Figure 4.17: Insert-insert pair Figure 4.18: Transformed insert-insert pair

351

inserted by the step Oe;;. The former set of tuples is exactly the set TQi, and the latter is the

same as the set of tuples selected by step Tqi, ;. Therefore the set of tuples inserted by Tei,

is TARG;, (TQi,), and that inserted by Tei,/y is TARG;; (TARG;;(TQi,/;)). So, it is easy to

see that the same set of tuples is inserted by both the schemata.

4.2.5. Informal proof of the transformation: In this section we present an informal proof of

the transformation. Given a schema OS, (original schema), for an operation pair in series,
shown in figure 4.7, we can find an equivalent schema TS, (transformed schema), as shown in
figure 4.8 The validity of the transformation is proved formally in [KrisSl]. Here, we attempt
an -intuitive justification. (Tﬁe reader will find it helpful in following this explanation if
he/she refers to the example in figure 4.19) TEd; = TQd, is seen from cases 1 and 2. The
justification for TEi; = TQi;~TQd,,, is given in case 3 and is not contradicted by case 4.
TEi, = TQi,—TQd; is shown in case 2 and is not contradicted by case 4. The expression for
TEd, is due to case 1 and is not contradicted by case 3. Lastly, the validity of the expression
for TEi,/; is given in case 4. Thus the transformed schema performs the same deletions and
insertions on R as the original schema. And, significantly, the transformed schema allows
greater parallelism amongst the qualification steps, which, by our assumption, are more time

consuming than the effect steps.

4.3 Implementation considerations

The reader may have noticed that the figure 4.19 does not satisfy the two assumptions

that were made in developing the above theory. These were:
1. Only constants were allowed as terms in a target list;
2. All inserted tuples had new TID’s.

Both these assumptions were used to ensure that the schema for the transaction system 4 was
conflict preserving. We show here that we can relax these _assumptions» by adopting the
following implementation. Associated with each tﬁple are two flags: a delete flag and an
insert flag, whose use is described below. Step ed sets the delete flags of all those tuples
which ére selected for deletion but do not have their insert flags set. These tuples are then
deleted during the execution of the next transaction system. Step ei always creates new tuples
for insertion and sets their insert flags. If ei is part of a modify operation, then it reuses the
old TID; otherwise, it generates a new TID. (This implies that at any point in time, there
might be two versions of a tuple both having the same TID). In readihg an existing tuple x, in

order to compute a tuple y for insertion, ei uses that version x which does not have its insert

352

Fig. 4.19

TID AGE SALARY

1 17 10K qd, = (salary = 10K)

2 16 10K qi; =(age = 16 and salary = 30K)
3 18 30K | ' qd, =(age = 16)

4 19 30K Tuples in qi, =(age = 17)

5 17 20K the old TARG;; = (salary = 25K)

.6 17 30K - relation TARG;, = (salary = 27K)

7 16 30K

8 16 15K

9 16 25K

10 17 25K Added

11 18 " 25K Tuples

12 17 27K R =1{1,2,3,4,5,6,7, 8}

13 17 27K R, 13, 4,5, 6,10, 11, 12, 13, 14}
0Qd, ={1,2} 0Qd, = {7, 8, 9}0Qi; = {3, 6, 7}0Qi, = {5, 6, 10}
OEd; = {1,2} OEd, = {7, 8, 9}OEi, = {9,10,11}0Ei, = {12,13,14}
TQd, = {1,2} TQd, = {2,7,8,91TQi; = {3, 6, 7}TQi, = {1, 5, 6}
TQiy, = {7} TQd,, = {9}

TEd, = {1,2} TEd, = {7, 8} TEi; = {3, 6} TEi, = {5, 6}

TEi,,, = {2}

An example of the transformation of an operation pair

353

flag set. Further, the insert flag is reset in these tuples at the beginning of the next transac-

tion system.

So any step ed writes only delete flags, and therefore the writesets of ed’s are pairwise

disjoint with the read/write sets of ei’s; we already know from the transformation that the

writesets of ed’s are mutually disjoint. The insert flag ensures that the readsets of ei’s are

pairwise disjoint with the writesets of ei’s. Creating new tuples ensures that the writesets of
ei’s are mutually disjoint. Therefore, the schema is conflict preserving and the theory of

section 4-2 still holds.

Before we proceed to generalize this transformation, we present the (airline reservation)
example cited in the introduction. Two (simultaneous) requests for seats on flight TWA101 of
August 11, 1981 is made. Each request is modelled as a modify operation given in figure 4.20
As both of them are updating the no__seats, they must be executed sequentially; so this set of
two requests is modelled as a pair of operations in series. The canonical form of the modify
operation is the deletion of ‘the old tuple and the insertion of the new tuple (with no_;seats
decremented by 1). The parameters of the original and the transformed schema are shown in
figure 4.20. Intuitively, the transformed schema does the following: If t_here are two seats
available, the old tuple is deleted and a new tuple (with no__seats = no__seats-2) is inserted;
if there is only one seat available then the old tuple is deleted and a new tuple (with no__seats
decremented by 1) is inserted; lastly, if there are no seats available then no change is made.
This is achieved by computing the appropriate read/write sets dynamically. If there are two
seats available then we see that TEd; and TEi,,; are the only nonempty’ sets and the target
function for Tei, /y is to decrement no__seats by 2. If there is only one seat Or no seats at all

then appropriately the correct read/write sets are calculated.

4.4. Generalized transformation

We have shown how to transform a pair of operations into a schema having greater
parallelism. The transformed schefna is not quite in the canonical form of an operation (figure
4.6) because the set of effect steps has more than one target list. Thus, if this operation pair
is part of a bigger schema and we want it to participate in further transformation with
successor nodes, the transformation of section 4.2 cannot be directly ﬁsed. We now show how
to generalize the transformation. First we generalize the concept of an operation pair. This
geﬁeralization is shown in figure 4.21 The first stage has k insert nodes and / delete nodes.
The second stage has m-k insert nodes and n- / delete nodes. The transformation and the

associated read/write sets are given in figure 4.22 The intuitive justification for the read/write

354

Reservation request:

We hav»e two requests for reservation on flight TWA101 on the 11 August, 1981. One such

request is shown below.
Mod(((flight=TWA101)and(date=081181)and(no__seats>0)), (no__seats=no__seats-1),R)

This is modelled as two such operations in series.

Original schema:

Schema is the graph shown in 4.7. The parameters of the schema are shown below.

ogi;. = oqi, = oqd; = oqd, = - ((flight = TWA101)and(no__seats>0))

TARG;; = TARGiz (no__seats = no__seats—1)

Transformed Schema:

Schema is the graph shown in figure 4.8. The parameters of the schema are given below.

((flight = TWA101)and(no__seats>0))
TWA101)and(no__seats — 1>0))

tCIil = IQiz = Ile = tqd2

lqd2/1 = tqi2/1 = ((f]lght

Using the above predicates, we can calculate the read/write sets as follows (assuming that

there are two seats available).

TEi; = TEi, = TEd, = TEd, = ¢
TEd, = TEi,,; = The tuple for flight TWA101

TARG;,,,; = (no__seats = no__seats — 1 — 1)

The reader can easily verify that the transformation is correct for the case when there is only

one seat available.

Figure 4.20 Airline reservation example.

355

sets is the same as before. TEd,, a = 1,2..../, are the same as OEd, since both TQd, and
0Qd, select tuples from the original state of R. TEi,, a=1,2..k, is the set of tuples in TQi,
and.not in TQdy,/, for any be{l + 1,/ + 2,....n}, because the tuples in TQdy/, are to be
subsequently deleted in the step Oed, of the secbndstage of OS. Hence, those tuples which
are inserted and subsequently deleted in OS are not inserted at all in TS. Conse(juemly,
TEd,,a="?+ 1/ + 2,....n, are the sets of tuples to be deleted from R and contain only those
tuples which are not already deleted by the first stage. TEi,, a=k+1,k+2,...m, are the tuples
in R from which the steps Oeiy, ;, Oeiy,,....0€i, created new tuples. So TEi, consists of
only those tuples which were not deleted in the first stage. As before,
TEd,p,a=k + 1,...... m; b=/ 4 1,,n, is the set of tuples that were insertegi in the second
stage based on tuples that were inserted in the first stage. Thus the transformed. schema
performs the same insertions and deletions as the original schema, but has greater parallelism.

Furthermore, the transformed schema is in the generalized canonical form of figure 4.21, and

so can be used in subsequent transformation.

4.5 Algorithm for scheduling using transformation ‘

Until now we used the diameter of the schema to be the performance measure. This was
justified on the basis that we assume that there are unlimited number of processors and each

transaction step takes unit time. In this section we relax these two assumptions.

First let us relax the infinite processors assumption. Suppose that the database machine
has k processors. Once the scheduler has constructed a schema representing minimal prece-
dence constraints, it now remains to assign available processors to execute the nodes of the
DAG. To maximize processor utilization, it is important to ensure that at every boint in time,
as many of the k processors as possible are busy. We shall show how to transform the schema

to meet this objective.

We have to select k nodes to execute on the k processors. Assuming that each node takes
unit time to execute, all k nodes will complete at the same time. At some point in this
process, if there are m<k nodes ready for execution, then we can use the generalized transfor-
matjon developed above to obtain k nodes in parallel. To do this, let n be the number of
nodes that can be enabled for execution after the m nodes have been executed. From these n
nodes choose n’= minimum(n,k-m) nodes. Then we can view the DAG as shown in figure
4.23 We see that there are no edges from level 1 to level 0, and from level 2. to either level 1
or 0. To this graph, add edges between every node at level O to every node at level 1 (this is

not necessarily how the algorithm will be implemented). It is obvious that the graph is still

356

(D) () () .}

o) (50) () .)

‘.....‘ @

represents all the directed edges in the cross product.

"Fig. 4.21 Schema for generalized operation pair

357

s n _
TE1a = TQi, -%L]+1 Tde/a a=1,2,...k
TEda = TQda ‘ a =],2’9191
e T01. U = k41, k42
TEi, = TQi, ?til Tde_. a = k+l,k+2,...m
\’] |
TEd, = T0d, -\ T0d, a = 141,142,....n
CTEiL . = TQi. N TQi a = k+1,k42,....m
a/b b a/b b=1,2.....k

Fig. 4.22 Transformed schema for generalized operation pair
along with the read/write sets.

358

acyclic and the added edges do not contradict any existing precedence constraints. Now the
set of nodes at level 0 and level 1 conforms tb the generalized canonical form of figure 4.21
So we can apply the generalized transformation to get m+n’ nodes in parallel. The trans-
formed graph is shown in figure 4.21 If m+n’<k, then this process of transformation can be

repeated until k parallel nodes are available.

Thus, these transformation can be used repetitively to reduce the diameter of the schema.
Infact, the diameter can be reduced to 2 for any schema. But it is clear that reduction in the
diameter may not be without cost; the number of nodes increases and so does the complexity
of each node. It might be more appropriate to pick an optimality measure that takes into
account the processing costs of the nodes (instead of the unit cost per node that we have
assumed so far). Several cost measures for query processing have been proposed in the
literature [HY79,Ya079). These are based on physical parameters such as file sizes, attribute
selectivities, storage and access methods. Given any cost measure that imposes a total
ordering on the set of schemata, we apply the schema transformation described in this section
only if it is beneficial to do so, i.e. oniy if the estimated cost of the transformation is less than
that of the original schema, For example, let the number of disk accesses be a true estimator
of time taken by an operation. Also, let us assume that we have a technique for calculating the
number of accesses required by an operation; i.e. that, we can estimate the time required for
each operatioh. Using this estimate we can now modify the algorithm as follows: Once again

let the original DAG be viewed as shown in figure 4.23. In this figure, let

7, = time estimated for the longest operation among the m nodes.
7, = time estimated for the longest operation among the n nodes.
74 = time estimated for the rest of the schema.

So the total time estimated for the original schema is 7y + 7, + 73. We apply the transforma-
tion to get k>=m+n’>m nodes in parallel, dnly if the longést operation in the resulting set of
(n’+m) nodes (that are ready for execution), takes no more than 7, units of time. Therefore,
the total time estimated for the transformed schema to execute is 7, + 7,<7| + 7, + 75.
Hence, this algorithm transforms the schema only if it can reduce the response time of a
transaction system. Thus, it is shown that we can devise a practical algorithm to schedule the

transactions efficiently and attain high processor utilization.
5. CONCLUSION

In this paper, we developed a parallel program schema model of transaction systems for

parallel database machines. The concept of serializability, which is generally accepted as the

359

m nodes

n nodes

1

rest of the schema

Fig. 4.23 Original DAG

m+n' nodes

rest of the schema

Fig. 4.24 Transformed DAG

360

correctness criterion in the existing concurrency control theory for the sequential model, was
extended to our model. We proposed a two-step technique for producing correct and highly
paraliel schedules: first, obt'ain a schema that imposes a minimal set of precedence constraints
on correct executions; then, transform the schema using semantic information to increase
parallelism. Although the model developed in this paper is theoretical, we believe it to be of
practical utility -- the proposed scheduling technique can. be applied to any MIMD machine
such as DIRECT (DeW78).

Several interesting performance related questions may be posed here. We described the.
scheduler as a single, centralized process. Will this become a bottleneck? Alternatively, given
ample resources and the parallelism inherent in the system, will it be beneficial to partition the
system and distribute the scheduling activity over several processes. Our theory is independ-
ent of whether the scheduler is centralized or distributed. Further, we have implied a batched
mode of operation for the machine. Each transaction system can be thought of as a batch.
This has the advantage that while one transaction system is being executed, the scheduler can
be working in parallel on the next transaction system. Clearly, the selection of transactions to
comprise a transaction system is a crucial factor affecting performance. An alternative to
batching is to dynamically schedule transactions as they arrive. Will this improve perform-

-ance? Simulation studies or queueing analysis can provide the answers to these questions.

The transformation presented in section 4 produces nodes that must be capable of evaluating
arbitrarily cqmplicated set expressions. The complexity of some of these nodes may be
reduced by refining the nodes (i.e, replacing each by a more detailed subgraph) and then
detecting common subexpressions across nodes of the subgraphs. As we pointed out before, a
cost based on physical database parameters, must be attached to each node. When this is

done, it can be determined when it is beneficial to transform a given schema.

.Lastly, in section 4 we ignored the problém of eliminating duplicate tuples when an insert or
modify operation is executed. We treat this as a special case of integrity checking. Integrity
checking could be impleménted as part of the effect step of an update operation. However, a
more intriguing possibility is to use query modification (as suggested in [ston75]), together
with the schema transformation of section 4, to perform integrity checking in parallel with the
execution of the update (for example, tuples which are being duplicated can be flagged for
subsequent deletions). Working out the details of this modification is a topic of future

research.

BSR80

BSW79

DeW78

EGLT76

GOUS80

HSW75

HY79

Kris81

Kell73

KP79

Mann74

Papa79

PBR77

Ston75

Yao79

361

REFERENCES

P.A. Bernstein, D.W. Shipman, J.B. Rothnie, ""Concurrency control in a System of
Distributed Databases (SDD-1)" ACM TODS, vol. 5, no. 1, 1980.

P.A. Bernstein, D.W. Shipman, W.S. Wong, '""Formal Aspects of Serilaizability in
Database Concurrency Control", IEEE-TSE, vol. 5, no. 3, 1979, pp. 177-187.

D.J. DeWitt, "DIRECT - A Multiprocessor Organization for Supporting Relation-
al Database Management Systems" Proc. of the 5th Annual Symposium on
Computer Arch., Apr. 78, pp. 182-189.

K.P. Eswaren, J.N. Gray, R.A. Lorie, L.I. Traiger, "On the Notions of Consisten-
cy and Predicate Locks in a Relational Database System', CACM, vol. 19, no.
11, 1976 :

M.Gouda, "Simultanity in Distributes Databases', Technical Report, Dept. of
Computer Sciences, Univ. of Texas, Austin, TX, Oct. 1980.

G.D. Held, M.R. Stonebraker, E.Wong, "INGRES - A Relational Database
System", Proc. AFIPS NCC, 1975, pp. 409-416.

A.R. Hevner, S.B. Yao, "Query Processing in Distributed Database System", -
IEEE-TSE, vol. 5, no. 3, 1979, pp. 177-187.

R.Krishnamurthy, "Concurrency Control and Transaction Processing in a Highly
Parallel Database Machine",_Doctoral dissertation in Dept. of Computer Sci-
ences, Univ. of Texas (in preparation).

R.M. Keller, "Parallel Program Schemata and Maximal Parallelism. Part 1:
Fundamental Results", JACM, 1973, vol. 20, no. 4, pp. 696-710.

H.T. Kung, C.H. Papadimitriou, "An Optimality Theory of Concurrency Control
for Database", Proc. of 1979 SIGMOD conf., Boston, Mass., May 1979,

7.Manna, "Mathematical Theory of Computation', McGraw Hill,1974

C.H. Papadimitriou, "Serializability of Database Updates', JACM, vol. 26, no 4,
1979, pp. 631-653.

C.H. Papadimitriou, P.A. Bernstein, and J.B. Rothnie, ''Some Computional
Problems related to database Concurrency Control", Proc. of Theoretical Com-
puter Science, Waterloo, Aug. 77.

M.R. Stonebraker, "Implementation of Integrity Constraints and Views by Query
Modification", Proc. of ACM-SIGMOD Intl. Conf. on Management of Data, San
Jose, 1975, pp. 65-78.

S.B. Yao, "Optimization of Query Evaluation Algorithms", ACM-TODS, vol. 4,
no. 2, 1979.

363

PROMISING APPROACH TO DISTRIBUTED QUERY PROCESSING

by

C.T. Yu, K, Lam, C.C. Chang and S.K. Chang

Department of Information Engineering
University of Illinois at Chicago Circle
Chicago, Illinois 60680

U.S.‘A.

Author’s present addresses:

C.C., Chang, S.K. Chang and C.T. Yu, Department of Information
Engineering, University of Illinois at Chicago Circle, Chicago,
Il1linois 60680, U.S.A.

K. Lam, Department of Statistics, Hong Kong University, Hong Kong

G O Bt Bt Bt gt e e B B

This research was supported in part by a grant from NSERC of Canada
and in part by a grant from US Army under contract MDA 903~78~C~0293

364

I. INTRODUCTION

A distributed database management system (DBMS) allows data to be
stored at multiple locations and to be accessed as a single unified data-
base., A survey of problems related with distributed DBMS and its advan-

tages over a centralized database can be found in [ACDG,CHAK,ROGl].

An important problem in distributed DBMS is to find an efficient stra-
tegy to process queries referencing data in different sites. Algorithms
have been suggested by Wong [WONG], Hevner and Yao [HEYA], Yu, Lam and
| Ozsoyoglu [YLOZ] and Chiu and Ho [CHHO]. The.algorithm-ﬁy Wong obtains a
local optimal solution; that by Hevner and Yao obtains the optimal solution
for single domain relations and is a heuristic for more general queries,
the algorithm by Yu et. al. and that by Chiu and Ho are very similar and
obtain optimal solutions for tree-queries which is a subclass of queries,
first studied by Bernstein and Chiu [BECH]. The recognition of such
queries have been studied in [BECH,BEGO,YUOI,YUOZ]. Other algorithms have
been suggested by Goodman et. al. [GBWR], Kerschberg, Ting and Yao [KTYA]
and Epstein and Stonebraker [EPST]. The algorithm by Goodman et. al.
serves as a heuristic algorithm for general queries; the algorithm by
Epstein and Stonebraker emphasizes on joins instead of semi~joins; the

algorithm by Kerschberg is applicable on a star network configuration.

In this paper, we provide a promising approach to distributed query
processing., The approach yields optimal strategies for a subclass of com~
monly issued queries in fully connected networks and is applicable to gen—.

eral queries.

In section 2, we discuss the difficulties to answer even the simplest
type of queries optimally. This motivates us to attack the problem of dis~

tributed query processing in a specific way as outlined in section 3. 1In

365

section 4, optimal strategies to fully reduce a relation for frequently
issued queries are obtained in a fully connected network. The algorithm is
generalized to other types of queries in section 5. Finally, in section 6,
a comparison 1s done with the algorithm given in SDD~1. Experimental
results show that a significient average improvements ranging from 14% for

3 relations to 607%Z for 11 relations are achieved by our algorithm.

A relational database model [COD1,COD2,DATE] is assumed throughout

this paper.
II DIFFICULTIES OF THE PROBLEM

In this section, we will explain the difficulties in processing a dis~
tributed query optimally. This will motivate the approach we take in later

sections.,

In processing a distributed query, transmission cost is wusually very
significant. The transmission cost is the summation of all the costs in—~
volved in transferring data from one site to another. Specifically, the
cost for tranferring X amount of data from one site fo aﬁother is cotcl*},
where the total transmission cost given above is the same as the total cost
referred to in [HEYA]. An important factor that needs to be considered is:
choosing a copy of each relation referenced by the query. In a distributed
database, some relations may be duplicated for efficiency and for reliabil-
ity reasons. During the processing of a distributed query, it is necessary
to select a copy of each relation referenced by the query so as to reduce
the transmission cost. It is now shown that processing optimally the sim—
plest type of distributed queries referencing relations with multiple
copies in a distributed database is a NP-hard problem [HOSA,KARP,COOK].

Thus, it is extremely likely that any algorithm which guarantes optimal

366

processing of even the simplest type of distributed queries will run in

exponential time.
Details are specified as follows.

Let {Rl,...,Rm} be single~domain relations referenced by a query,
{Sl,...,8n} be computer sites and each Ri may have one or more copies in
the n sites. The query has the qualification t?ii(Ri.A = Ri+l.A) where A is

i=
the common joining domain between the relations and "." denotes the projec~
tion operation, i.e. the query requests all common tuples among the m rela-

tions.

The total transmission cost problem (T~T problem) can be stated as

follows: Given relations {Ri|1{im}, sites {Si]|1£i<n}, each Si containing

some vrelations, (1f a relation appears in two or more sites, identical
coples of the relation exist at the sites), the average size of a value in
the common joining domain Av, the total numbef of possible distinct values
in domain A, |A], aﬁd.the transmission parameters c0 and ci; find a stra-

tegy which minimizes the expected total transmission cost.

The above problem can be reduced to the Minimum~subset—problem (M-S

problem) which is known to be NP~complete [AHUL].

Lemma 2.1: The total transmission cost problem is NP-hard.

Proof: We now show that for any given instance of the M-S problem, there is

a correSpohding instance of the T-T problem such that a solution for the

latter problem provides a solution to the former.,

For any given m elements {el,e2, ...,em} and n subsets {Tl, ...,Tn} in
the M-S problem, the following instance of the T~T problem is constructed:

m relations {Rl, ...,Rm}, n sites {Sl, ...,Sn} such that there is a 1-1

367

correspondence between ei and Ri, 1<{i{m and Ti and Si, 1<£i<n and set Ti
contains element ej iff site Si contains a copy of relation Rj. Further—-
more, c0 and cl are chosen such that c0 > m*cl*Av*|A}, i.e., the start-up

cost dominates the transmission cost. The selectivity of each relation is

arbitrary.

Let g be the minimum number of sites that contain all fhe relations
and h beA the number of sites in an obtimal strategy for the T-T problem.
Then, we claim g=h. Suppose not, then g<h. Consider the following stra—
tegy: find the common tuples of the relatiohs in one of the g sites before
transmitting the resulting relétion to the next site and repeat this pro~
cess until all the g sites are visited. (Note: the data at the iast site is
not transmitted.) This strategy has texpected total transmission cost <

-1
(g~1)*c0O + cl*IAI*lza:;.(Av) < g*c0.
The optimal strategy has expected total transmission cost > (h~1)%*c0

- g*c0, a contradiction.

Thus; an optimal strategy for the instance of the T-T problem must
visit the minimum number of sites containing at least omne copy for each
relation; Since a site and a relation in the T-T problem corresponds to a

set and an element in the M-S problem, an optimal solution for the T-T

problem yields the minimum number of sets for the M~S problem. [J

In general, a query has two components: the output component and the
qualification component. The qualification component.selects the tuples of
the referenced relations that satisfy the qualification, while the output
component specifies the attributes of the selected’tuples to be outputted
to -the user. Specifically, queries discussed in this paper are of the form

similar to those in [BECH,HEYA,etc.].

368

{(R1.AL1,RIA31, e00 o) | {) (Rk.AkI=Rt.At1)}

whefe the qualification component is a conjunction of equality clauses of
the form (" (Rk.Akl=Rt.Atl) and the output component is (Ri.Ail, Rj.Ajl,
o.o)o

It has been shown [HEVN] that even if each relation referenced by the
query has a single copy in‘the distributed database and the attributes of
the relations referenced in the qualification of the query are the same
‘ attfibute (i.e., when restricted to the qualification of the query, the
relations are single~domain relations), the problem of finding an optimal

strategy under this restriction is still NP-hard.
III OBJECTIVE

In view of the difficulties discussed in the last section in process—~
ing a distributed query optimally, the following restrictions are imposed
on tbe remaining part of this paper:

(1) It 1is assumed that some algorithm pre~selects one copy of each rela—
tion referenced by a query before our algorithm (to be described) is in-
voked to produce a query processing strategy. The rationale for making
this assumption is due to Lemma 2.1.

(2) The processing of eéch query is divided into two stages: The first
stage is to concentrate on the qualification component of the 'query. Spe~
cially, we eliminate data from the referenced relations by making use of
semi-joins (Ri semi~join Rj is the result of joining Ri with Rj and then
- projected back on the attributes of Ri) [BECH,BEGO]. The second stage is
to decide which relations, that are referenced in the qualification, are
really needed to be sent to an assembly site to produce the answer speci-

fied in the output component of the query. The reasons to separate the

369

processing 1nto two stages are: (1) the ideas to be presented will be
easier to understand and the separation is matural sinqe one stage deals
with the qualification while the other deals with the output, (ii) if the
stages are not separated, then the problem is NP~hard, even if the qualifi-
cation part involves simple queries only [HEVN]. On the other hand, the
qualification part can be performed optimally in polynimial time for many
common queries, as demonstrated in the next section.

(3) pifferent relations referenced by a query reside in different sites.
If two or more relations reside in one site and if these relations have
common joining attributes, then they will be joined together wusing local
processing. Since local processing cost is likely to be small compared to
transmission cost, it is usually cost—-effective to merge the relatious
together, If the relations in a site do not have common joining attri-
butes, they wili be treated as if they are in different sites., Clearly,

the cost estimate for such a situation will not be higher than that as if

the relations are in the same site. It is further assumed that attributes

of relations which do not appear in the query are eliminated by local pro-

cessing before the strategies to be described in later sections act on the

relations.

We believe that most users, in particular the casual users, will not
submit highly complicated queries as it may be beyond their means to formu~

late such queries. As a result, we prbpose an optimal strategy to fully

reduce a relation (a relation is fully reduced with respect to a query if

all the tuples that do not satisfy the qualification of the query are elim—
inated) for a simplified type of queries in a fully connected network in

Section 4,

The approach we suggest is applicable to more general queries. It is

370

hoped that the approach will yield optimal or close-to optimal query pro-
cessing strategles for many common queries. We believe that an exhaustive
enumeration algorithm to yield optimal strategies will not be feasible as
the number of possible configurations is much more than 2n for n relations

[cHIU].
1V OPTIMAL STRATEGIES FOR COMMON QUERIES ON FULLY CONNECTED NETWORK

In this section, a fully connected network is assumed. We seek an
optimal strategy to fully reduce a relation which appears in the qualifica—-
tion of a query. 1In other words, the first stage of query processing dis~
cussed in (2) of section 3 is given in this section. The qualificétion of

the query under consideration is

m-i n-i
L(D (AL.A=A1+1.) 1A (V(Bj B=Bi+1.B)] N (I.A=Am.A)N\(I.B=Bn.B)
[H) j=1

J

i.e. there are m+nt+l relations, m single~domain relations have a common
joining domain A, n single~domain relations have a common joining domain B
and I is a 2-domain relation whose A domain joins with the m A-relations

and whose B domain joins with the n B-relations.

A strategy which fully reduces one of the mtntl relations and which
incurs minimum communication cost 1s sought: the cost of transmitting X
amount of data from one site to another is cQ+cl#*X where c0O and cl are con~
stants [HEYA] and the total communication cost of a strategy is the summa-
tion of the costs of transmitting data in the strategy. Let OPTS(m,n,I,Y)
denote an optimal strategy where m is the number of A-relations, n is the
number of B-relations, I is the 2~domain relation and Y is one of ;he rela~
tions to be fully reduced. Each strategy, including an optimal strategy,
can be considered as a directed graph, where the vertices of the graph are

the relations, and each edge of the graph, say (Ri,Rj) denotes the

371

4

transmission of the relation Ri to the site containing relation Rj. When
Ri reaches the siﬁe, the relations Ri and Rj are joined according to the
qualification. If some relation, say Rk, is sent to the site containing Ri
before Ri is transmitted, then only the part of Ri which joins with Rk is
transmitted to Rj;
2

Example 4.1: Consider the qualification of a query:.f] (Ai.A=Ai+1.A). The
following strategy A1~w>A2~~>A3,.which sends Al to t;;lsite containing A2,
eliminates tuples from A2 which do not satisfy Al.A=A2.A to obtain a small—~
er relation A2, sends the reduced A2 to the site containing A3 and elim-
inates tuples from A3 which do not satisfy AZ.A=A3.A to obtain A3. This A3
is a fully reduced relation as any tuple in A3 which does not satisfy the
qualification of the query will not appear in A3.

The cost of Al—->A2 is cO+cl*|Al|*a where |Al| is the number of tuples in
Al and a is the size of a tuple. |Al] can also be written as al*|A| where
al, the selectivity of Al is defined to be |Al|/|A| and |A| is the number
of possible distinct tuples in domain A. IKEI is estimated to be
al*a2*%|A|, where a2 is the selectivity of A2. It is assumed in the estima~
tion that distinct values of Al and A2 are distributed independently.
Thué, the cost of A2—DA3 is c0+§1*a1*a2*|A|*a, Tﬁé total communication
cost of the strategy is (cO+cl*|Al|*a) + (cO+cl*al*a2*|A|*a). The estima-

tion of costs given here is consistent to those given in [HEYA,YLOZ]. E]

An exhaustive “search to find an optimal strategy among all possible
Strategies can be very expensive as the number of strategies 1is .highly
@xponential, As a first step, we find same inherent properties of an
Optimal stfategy so that any strategy which does not satisfy these proper-
ties cannot be an optimal strategy and can therefore be eliminated from

Consideration,

372

Some inherent properties of an optimal strategies are (Proofs of these

properfies can be found in {YLOZ]):

Property 4.;; All A’s and B’s appear exactly once, while I may appear once

O more.

Suppose Y is the first relation to be fully reduced in a strategy. In
order to fully reduce Y, each relation appearing in the qualification mnust
be sent to the site contéining Y directly or indirectly via sites and merg-
ing with relations contained in these siteé. Thus, for each relation,

there is a directed path from that relation to Y.

Property 4.2: All A-relations and the I-relation must lie in a single path
leading to Y; similarly, all B-relations and the I-relation must lie in a
single path leading to Y. The path containing the A’s and the path con~

taining the B’s may intersect at I or they may be the same path.

Example 4.2:
(a) In A2-->Al-~D>I~~>B2-~>B3-->Y,
Bl
there are 2 paths A2—-~DAl=~>I~~>B2~—>B3~~>Y and Bl~~>I-~>B2~->B3—>Y,
They intersect at I, then merged into one path.
(b) In A1~~>A2~*>I*~>Bi~~>32~w>B3~~>I*~>Y, the two paths containing the A’s
and the B’s are actually only omne path. |

(c) 1~~>A2~~>I~~>Y cannot be an optimal strategy,
because the B’s are in 2 paths, violating Property 4.2. 0

Property 4.3: The A’s must appear in ascending order of their sizes in the

path leading to the first fully reduced relation Y; Similarly, the B’s must

373

appear in ascending order of their sizes also. Starting frbm this point, we
;

order the A’s and the B’s such that [Al[|<JA2]|< ... <]Am] and [Bl{<|B2|< e

<|Bn| .

Example 4.3: The strategy in Example 4.2(a) violates Property 4.3, because

Al and A2 are in descending order of size; the strategy in Example 4.2(b)

satisfies Property 4.3. 0

Property 4.4: Every vertex has out-degree of one (one edge leading away

from the vertex) except Y whose out~degree is 0.

Property 4.5: Only the vertex representing the first occurrence of I may

have in-degree (the number of edges going into the vertex) greater than

one.

Example 4.4:
Al-DI~wD>A2~~>1~~>B2~~>Y 1is a possible optimal strategy
Bl
while
A1~~>I—~>A2~~>I~~>B2~~>Y is not possiblé to be an optimal
Bl strafegy since there are two
edges (one due to Bl, the other due to A2)bgoing into the second

occurrence of I. CJ

By Property 4.3, the first fully reduced relation in an optimal stra—

tegy is Am or‘Bn or I. Thus, an optimal strategy is one of the following 3

forms:

OPTS (m,n,I,Am)
OPTS (m,n,I,Bn)

OPTS (m,n,I,I).

374

Consider OPTS(m,n,I,Am), The vertex immediately preceding Am cannot
be a B-relation since a B-relation cannot merge with Am directly. 1In fact,

this vertex must be either I or Am-1, by Property 4.3.

Subcase 1: If the vertex is Am~1, then the set of relations preceding Am-1,

together with Am~1, form a substrategy involving the m—~1 A-relations

{A1,A2, ...,Am~1}, the n B-relations {B1,B2, ...,Bn} and the I-relation.

This substrategy is optimal among all substrategies ending at Am~1 and
involving the same subset of relations (otherwise a better substrategy fol-
lowed by the data transfer to Am will produce a better strategy) by dynamic

programming principle and is denoted by OPTS(m~1,n,I,Am—1).

Subcase 2: If the vertex is I, then again we have an optimal substrategy

involving the same subset of relations. This substrategy is denoted by

opPTS(m~1,n,I,I), since the last vertex in the substrategy is I.

Both substrategies process the same set of relations and the relation

immediately following eéch of these substrategies is Am. Thus, the amount
of data transmitted from each of those substratégies to Am is identical and
can be denoted by X. Thus, 0PTS£m,n,I,Am) isl either Am preceded by
OPTS(m~1,n,I,I) or Am preceded by OPTS(m~1,n,I,Am-1). Let C(strategy) be

the cost of the strategy. Then,

C(oPTS(m,n,I,Am)) = (cO+cl*X) +

min {C(OPTS(m-1,n,I,Am-1)),C(OPTS(m~1,n,I,I))}
Pictorially, OPTS(m,n,I,Am) is

Am <= min {OPTS(m~1,n,I,I),0PTS(m1,n,I,Am~1)} (4.1)

.~ where the <cost functions are not explicitly written. Similarly,

OPTS(m,n,I,Bn) is

375
Bn {~~== min {OPTS(m,n~1,I,I),0PTS(m,n~1,I,Bn~1)} (4.2)

Consider OPTS(m,n,I,I). If the first fully reduced relation I has in~
degree 1, then the relation immediately preceding I can be either Am or Bn.

The two subcases are respeétively

I & Am < min {OPTS(m~1,n,I,I),0PTS(m~1,n,I,Am~1)} (4.3)

I < Bn < min {OPTS(m,n-1,1,I),0PTS(m,n~1,I,Bn~1)} (4.4)

If the first fuily reduced relation I has in~degree 2, then by Property 4.2

the optimal strategy is

OPTS(m,0,0,Am)

I (4.5)

‘K\\\‘OPTS(O,n,O,Bn)

" From (4.1)~(4.5), OPTS(m,n,I,Y) can be computed in constant time if
0PTS(m-1,n,1,I), OPTS(m~1,n,I,An-1), OPTS(m,n~1,I,I), OPTS(m,n~1,I,Bn~1),
orTS(m,0,0,Am) and OPTS(0,n,0,Bn). This suggests the following method to

obtain the optimal strategy.

Consider the 2-dimensional figure in Figure 4~1, where the point (i,3)
denotes 3 optimal strategies involving {Al,...Ai,Bl,...Bj,I} ending in Ai,
Bj and I. From equation (4.1)-(4.5), the optimal strategies at (m,n) are
obtainable from those at (m~1l,n), (m,n~1), (m,0) and (O,n). Thus, 1{f we
compute all optimal strategies at (x1,x2), xl+x2=t, and at the boundary
points (4,0), (O,j), 1<i<n, 1<j<m, (the optimal strategies af the boundary
points involving essentially single~domain relations are easily computable
[HEYA]), then the strategies at (yl,y2), yl+y2=t+l are easily computable.
Starting from t=1, we progress to. t=mtn when the optimal strategy for the

query is obtained. This can be shown to take O(mn) time [YLOZ].

376

The algorithm can be generalized to obtain optimal strategies to
reduce relations for tree queries (see [CHHO, YULO]). However, the algo-
rithm generalized in that direction is not as easy as the one‘given as fol-
lows to program ~and. does not take into consideration the cost of sending

relations to the assembly site.
v GENERAL ALGORITHM

Before an algorithm to process a general query 1s presented, a query

graph will be defined to facilitate the description of the algorithm,

A set of relations are of the same kind if the set of relations have
the same set of joining attributes in the qualification of the query. For
example, relations Al, A2, ..., An are of the same kind, because they have
the same joining attribute A in the qualificaton of the query discussed in

the last two sections. Vertices of a query graph denote relations of the

same kind while edges of the graph denote the joining of the relations

appearing in the qualification of the query.

A query graph G=(V,E) defined here is similar to that defined in
[BECH], except that each vertex consists of the set of relations of the
same kind., In other words, the edges between relations of the same kind in
the [BECH] definition of a query graph are not shown in the present query

graph and all relations of the same kind are merged into a single vertex.
Example 5.1: A query graph as defined in [BECH] can be

T s Al i A2
Bl

B2 —~w B3

According to the present definition, the query graph is

377

where A represents the set of relations of the same kind having

the same joining attribute A, i.e., Al and A2 and

B represents Bl, B2 and B3. E]

Notation: A vertex, if underlined, represents a set of relations of the
same kind, while a vertex which is not underlined represents a single rela-

tion.

Sectlon 4 gives optimal algoritms to fully reduce a relation for query

graphs of the form

The same method is applicable to query graphs of the form

J
///ijjjiy \\\\\\ where J is a relation having
2B ¢ .. s

attributes A,B,C, occ,Sa

Let query graphs of this form be called tree of height 1 (where J is the

root and each vertex in the tree is one edge away from J). We now describe
a query processing method making use of the optimal strategies to process

subqueries whose tree-query graphs are trees of height 1 as substrategies.

The method consists of 2 key steps.

In the first step, a relation, say R, is reduced as much as possible
by semi-joins. If the query is a tree~query [BECH,BEGO,YUO1l,YUO2]}, then

the relation will be fully reduced otherwise it is only partially reduced,

378

In the second step, a set of relations which are needed to construct the

answer as defined in the output component are identified. Then, this set of

relations are possibly reduced by R and used to produce the answer at the

result site., Details of the steps are given as follows.

Step 1: To reduce a relation as much as possible.

1.1 Construct a query graph G=(V,E) from the qualification part of the

query. /* each vertex is a set of relations of the same kind */

1.2 If G is cyclic, choose a spanning tree T=(Vt,Et), otherwise G is a

tree, set T=G /* see for example [YUO1l,YUO2,BEGO] */. Designate a
vertex R whose joining attributes are not subset of the joining attri-

butes of any other vertex in Vt as the root of T,

lgg_Decomposé T into a number of subtrees of height 1, plus a set of

relations of the same kind.

Example 5.2: Suppose we have the following query graph,

/N A

suppose the root of T is J, then T can be decomposed into

379

subtree 1 4 Il where Il is the smallest

relation in L

A B <
subtree 2 K1 where K1 is the smallest
relation in X
D L
subtree 3 J1 where J1 is the smallest
relation in J
I X L

and relations of the same kind in J, namely {J1,J2,...,Js}. [

1.4 Starting from fhe bottom'of tree T foward roof R,
For each sub tree,
a) for every leaf f of the chosen subtree,
if ;;ﬁas a joining attribute outside the joining attributes

of its father rl, assume the smallest relation in f is fl,

then (1) if the cost of fl-~>other relation 1s greater than

- the cost of ri~~>fl~~>other relation
then do rl-->fl first,
(11) send the relations in f in ascending order of sizes.
(in step b, whenever f is referenced, only the last
reduced relation in f is used)

b) apply the optimal strategy given in section 4 to the chosen

\

subtree.

When root R is reached, all relations of the same kind in the root are
sent 1in ascending order of sizes /* as given in [HEYA], sending rela-

tions of the same kind in ascending order of sizes is optimal */

380

Example 5.3: Using Example 5.2, assume that only the joining attributes of
J1 of subtree 3 do not contain that of some of its sons, say, the joining
attributes of Jl 1is ABCDG; of I is ABC; of K is DE; of L is EG, we apply
the\optimal strategy to subtree 1 to reduce Il; then to subtree 2‘to reduce
Kl; as for subtree 3, we consider whether (Jl-~>the smallest relation in
K-->other relation) has lower cost than (the smallest relation in K-~>other
relation), 1if yes, (Jl-->the smallest relation in K) is done first. Then,
Hevner~Yao’s algorithm is applied to reduce K to one relation. The same
process 1is done for L. And then, we apply the optimal strategy to subtree
3; finally, Hevner-Yao’s algorithm is applied to reduce the relation in I,

namely Js. At the end of the reduction, Js is the smallest relation in J. 0

Step 2: Identify the éet of relations needed to be sent to assembly or
result site to produce the answer, and use the relation which is reduced as
much as possible in Step 1 (Js in Examples 5.2 and 5.3), to reduce the set

of identified relations, then produce the answer at result site..

2.1 All output relations are identified (a relation is an output
relation if it contains one or more output attributes). Then, all
vertices that contain output relations and those vértices that appear
in cycles /* only if the query is cyclic */ are identified. A minimum
connected graph Gl=(V1,El), which is a subgraph of the spanning tree
T, connecting the identified vertices and R is formed. Designate R as
the root of Gl. Finally, the smallest relation in each vertex of Gl
/* except root vertex */ is identified. /* only the output relations
and the smallest relation in every vertex of Gl are needed to produce

the answer, see Example 5.5 */

2.2 For the identified relations of the same kind as the first rela~

tion which has been reduced as much as possible (say Js),

381

if no relations are identified, Js 1s sent directly
to assembly site or result site.
else (1) for every identified relation, say Ji, has an
output attribute (or attributes) outside the joining
attributes of Js,
if Js——->Ji-~>some site has a lower cost than
N >some site,
then Ji is reduced by Js befqre being sent to
assembly site or result site.

(2) if no sending of Js is involved for all Ji’s,

then send Js to the largest Ji.

Example 5.4: Using the same query graph as Example 5.2, suppose the
output relations are B2 and Jl, then the minimal connected graph Gl
can be

Gl: J

/

kK L

and the set of identiflied relations is the output relations Jl, B2,
and the smallest relation of I, say I3; of B, say B4; of K, say K4; of
L, say L2. Suppose Js is the relation that has been reduced as much

as possible in step 1, since there 1is only one identified relation Jl

in J, J1 is reduced by Js (check Step 2.2).

2.3 Consider the subtree of height 1 with the root of the tree as Js
and the leaves as I, K, ... etc..
For each identified relation 1I1,I12,... of I,

K1,R2,... of K, etc..

382 -

if - Js~-DIli~-~D>some site has a lower cost than
i >some site,

then Il is reduced by Js before being sent to

assembly site.

2.4 Repeat Step 2.3 for subtrees of height 1 with roots being the
smallest relation of I, the smallest relation of K, etc.. and the
leaves of the subtrees are the immediate descendants of I, K, etc.. in
tree Gl of the query graph, until all identified relations in V1 has
been considered. /* in effect, the identified relations are reduced

from root Js towards the leaves of tree Gl */

2.5 /* decide whether an assembly site other than the result site is
worth having */ Let X be the largest identified relation after the
reduction up to and including Step 2.4, and Ml, M2, ..., Mt are the

other identified relations

if Ml -=~> X =-~=> result site has a lower cost
Mt
than
M1 msrmsmsnit e > result site
ME X

then the former strategy is used with the site containing
X being the assembly site,
otherwise the latter strategy is used with the result site

as the assembly site.

Example 5.5: Using Example 5.4, suppose the output relations (those con~

taining one or more output attributes) are B2, I2 and Jl, we find the

383

minimal connected graph Gl is the same as in Example 5.4. Suppose B4, 13,
K4 and L2 are the other identified relations.

First, ithe strategy (Js——=>J1-~->some site) is chosen. Then the strategy
with the lower cost among (Js~-~>I3--~>some site) and (I3~~~>some site) and
among (Jg===D>I2~~~>gsome site) and (I2-~~>some site) are choosen. And the
strategy with lower cost among (Js~-~>K4~-~D>gome site) and (Ki4—~>some
site) and among (Js~=-DL2-~~>some site) and (L2~~~>some site) are chosen.
Let Ii be the smallest I-relation, which can be either I2 or I3. Then the
strategy with smaller cost among (Ii~--->B2~~->some site) and (B2:~->some
site) aﬁd among (Ii~~~>B4~~->gome site) and (B4—~-D>some site) are chosen.
We will not reduce any of the relations in A, C, D and E, because at the
time Js was reduced, relation I3 already satisfied the part of qualifica—
tion involving‘é,;g, C and I and relation K4 already satisfied the part of
qualification involving D, E and‘g_(pléase refer to the algorithm given in
[BECH] which sends the relation from the leaves to the rdot such that in-
termediate results satisfy the subqueries of the given query). Suppose the
result site is different from that containing J1, I2, I3, B2, B4, K4 and L2

and B2 is now the largest relation. Then the strategy with the lower cost

among
J1
IZT::::E‘BZ ~~~~~ > result site
13 '\
B4 K4 L2
and J1
T2 cemvemesisomies > resulf site

57N\

B2 B4 K4 L2

is chosen.

384

In effect, our algorithm is similar to that given in [BECH] where
reductions are performed from the leaves to the root and backwards, except
thaf we perform optimization for subtrees of height 1 and only some rela-
tions (the identified relations in Step 2.1) are reduced and then sent to

the assembly or result site.
VI COMPARISON WITH SDD-1

SDD~1 1is a distributed database system [TODS]. We now compare the
performance of our algorithm with the query processing algorithm giVen in

[p. 34, GBWR].

Our algorithm and theirs are not entirely compatible. As a result,

the following conditions are added to make the comparison meaningful:

(1) When a multiple domain relation, say I, is reduced by a single~domain
relation, say A, the projection of I on another domain, say B, can be es-
timated by a number of methods [GBWR,HEYA,YLOZ]. We make use of the esti-

mation method given by SDD-1.

(2) In SDD~1 all relations referenced by the query are sent to an assembly
site and the result site 1s not mentioned, while our algorithm sends only
some of the relations to the result site. In the comparison, it is assumed

that all relations are sent to a site containing one of the relations.

This will usually incur higher transmission costs to strategies produced by

our algorithm,

Only queries whose qualifications of the form given in section 4 are
consldered, because we believe most users, especially casual users, do not
usually submit queries involving relations of more than three kinds (or

queries having height greater than 1). Different number of A-relations and

385

"B-relations are tried, where for each set of the same number of A & B-
relations and a single I-relation, 50 different combinations of relation
sizes (which are randomly generated) are experimented. It is found that
(1) the average improvements of our algorithm over that of SDD~-1 vary from
14% to 607%, and (2) when the number of relations increased, the improvement
also increases. Figure 6-1 plots the improvements against the relations
used. Improvement is defined to be
(total amount of data transferred by SDD-1)
- =~ (total amount of data transferred by our algorithm)

hae * 100"“
(total amount of data transferred by our algorithm)

VII CONCLUSION

We héve shown that the process of selecting one copy for each relation
for the simplest type of queries in order to minimize the cost of transmis-
sion is NP~hard. We have presented an approach to distributed query pro—~
gessing, making use of dynamic programming. The processing of queries is
broken down into two stages. (1) eliminate useless data from a relation as
much as possible by semi-joins, then, (2) the relation obtained from the
first stage is used to réduce relations that are really needed to produce

the answer to the query.

We believe our approach is rather promising, because the reduction of
a relation using semi~joins for common queries (trees of height 1) is per—
formed optimally by our algorithm, which is applicable to general queries.
. Thus, optimal strategies are prévided for stage 1 for many common queries.
Although the algorithm may not yield optimal strategies for all tree
queries, the algorithm is easy to program. In stage 2, our algorithm
avoids sending unnecessary relations to the assembly site or the result

site. As a result, transmission cost is cut down. Rather significient

386

improvement of our algorithm over SDD-1 is provided experimentally, even
when the benefit of our algorithm in stage 2 is not considered in the ex-

periments.,

387
REFERENCES

[ACDG] Adiba, M., Chupin, J.C., Demolombe, R., Gardarin, G. and Bihan,
J.L., "Issues in distributed database management systems: a technical over—
view," International Coference on Very Large Databases, Berlin, pp. 89~110,
1977.

[AHUL] Aho, A., Hoperoft, J. and Ullman, J.D., "The Design and Analysis of

Computer Algorithms," Addison-Wesley, 1974.

[BABB] Babb, E., "Implementing a relational database by means of special~-
ized hardware," ACM TODS, Vol. 4, March 1979, pp. 1-29.

[BECH] Bernstein, P.A., and Chiu, D-M.W., "Using semi~joins to solve rela-
tional queries,'" JACM.

[BEGO] Bernstein, P.A. and Goodman, N., "Full reducgrs for relational
queries using multt*altitute semi-joins," Centre for R&search in Computing
Technology, Harvard University, July 1979.

[CHAK] Chandy, K.M., "Models of distributed systems," International Confer-—
ence on Very Large Databases, Tokyo, pp. 105-120, 1977.

[CHEU] Cheung, T.Y. "Two methods of resolution for general equi-~join
queries in distributed relational database," Tech. Report, University of
Ottawa, Department of Computer Science, 1981.

[CcHHO] Chiu, D.M., and Ho, Y.C., "A methodology for interpreting tree
queries into optimal semi-~join expressions," Harvard University, Dec. 1979.

[CHIU] Chiu, D.M., "Optimal query interpretation for distributed data-
bases," Ph.D. Thesis, Division of Applied Sciences, Harvard University,
1980, '

{copl]l Codd, E. F.; "A relational model for large shared databases," CACM
pp. 377-389, 1970.

[coD2] Codd, E.F., "Further normalization of the database relational
model," in Database Systems, Prentice Hall, Englewood Cliffs, N.J. pp.
33-64, 1972,

[COOK] Cook, S.A., "The Complexity of theorem-proving procedure," Proc. of
third ACM Symposium on Theory of Computing, 1971, pp.l151-158.

[DATE] Date, C.J., "An Introduction to Database Systems," Addison Wesley,
Reading, MA, 1977. '

[EPST] Epstein, R. and Stonebraker M., "Analysis of distributed database
processing strategies," IEEE, 1980, pp. 92-101.

[GBWR] Goodman, N., Bernstein, P.A., Wong, E., Reeve, C. and Rothnie, J.B.,
"Query processing in SDD-1: A System for Distributed Databases,”" Computer
Corporation of America, 575 Technology Square, Cambridge, MA, Oct. 1979,

[HEVN] Henver, A.R., "The optimization of query processing on distributed

388

database systems," Ph.D. Dissertation, Department of Computer Science, Pur-
due University, Lafayette, Indiana, 1980,

[HEYA] Hevner, A.R. and Yao, S.B., "Query processing in distributed data-

base system," IEEE Transactions on Software Engineering, May 1979, pp.
177-187.

[HOSA] Horowitz, E. .and Sahni, S., "Fundamentals of Computer Algorithms,"
Computer Scilences Press, 1979,

[KARP] Karp, R., "Reducibility among combinatorial problems," Complexity of
Computer Computations, Plenum Press, N.Y., 1972, pp. 85-104,

[KTYA] Kerschberg, L., Ting, P.D. and Yao, S.B., "Optimal distributed query
processing," Bell Laboratories, Holmdel, N.J..

[KULE] Kung, H.T. and Lehman, P.L., "Systolic (VLSI) arrays for relational
database operations, Department of Computer Science, Carnegie~Mellon
Univ., Pittsburgh,® ‘%ennsylvenia 15213.

[LULU] Luk, W.S. and Luk, Lydia, "Optimal query processing strategies in a
distributed database system," Department of Computer Science, Simm Traser
Uni., Burneby B.C., Canada.

[ROG1] Rothnie, J.B. and Goodman, N., "A survey of research and development
in distributed database management," International Conference on Very Large

Database, Tokyo, pp. 48-62, 1977.

[ROGZ] Rothnie, J.B. and Goodman, N., "An overview of the preliminary
design of SDD~1: A system for Distributed Databases," Berkeley Workshop on
Distributed Data Management and Computer Networks, Berkeley, 1977.

[TODS] ACM, TODS, March 1980, pp. 1-68.

[WwoNG] WOng, E., "Retrieving dispersed data from SDD-~1: A System for Dis~
tributed Databases," Berkeley Workshop on Distributed Data Management and
Computer Networks, Berkeley, 1977. :

[YLoz] Yu, C.T., Lam, K. and Ozsoyoglu, M., "Distributed query optimization
for tree queries,” Dept. of Information Engineering, University of Illinois
at Chicago Circle, Oct. 1979, revised July 1980,

[Yuol]l Yu, C.T. and Ozsoyoglu, M.Z.,, "An algorithm for tree~query member-
ship of a distributed query," IEEE Compsac, Chicago, Nov. 1979, pp.
306-312.

[YU02] Yu, C.T. and Ozsoyoglu, M., "On determining tree-query membership of
a distributed query," Department of Computing Science, University of Alber-
ta, Nov. 1979.

B's in

ascending |

order of

sizes

389

b(m”l)n)

\\—/..-—'. = o)

* (m,n-1)

A's in
ascending
order of
sizes

Figure 4.1 Illustrates how the optimal strategy
. is obtained

IMPROVEMENT
4

06¢

60
50
40
30
@
1
0
@
I 20
L 10) 14 00
0- . - . ‘ ' — . ,
(The I-relation (1A,1B) (2A,1B) (2A,2B) (3A,2B) (3A,3B) (4A,3B) (4A,4B) (5A,4B) (5A,5B)

1s understood) % OF IMPROVEMENT OF OUR METHOD OVER SDD-1

~ Amount of data transferred by SDD-1 - Amount of data transferred by our algorithm
Improvement =

Amount of data transferred by our algorithm

Figure 6.1

o T SR

e e

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

