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Abstract

A boundary layer theory for the flow of power-law fluids in a converging pla-
nar channel has been developed. This theory suggests a Reynolds number for
such flows, and following numerical integration, a boundary layer thickness. This
boundary layer thickness has been used in the generation of a finite element mesh
for the finite element code FIDAP. FIDAP was then used to simulate the flow of
power-law fluids through a converging channel. Comparison of the analytic and
finite element results shows the two to be in very good agreement in regions where
entrance and exit effects (not considered in the boundary layer theory) can be
neglected.

*This work was performed at Sandia National Laboratories, supported by the U.S.
Department of Energy under Contract DE-AC04-76DP00789.
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1 Introduction

The design of propulsion systems that use gelled propellants requires an un-
derstanding of gel rheology and its effect on high-speed flows in complex
geometries. The current design strategy to maintain optimum fuel/oxidizer
mixing ratio is based on the assumption that flow behavior of both the fuel
and oxidizer gels is identical. TRW is measuring the viscosity function of hy-
pergolic gelled propellants developed by MICOM (Allan, 1987). The gelled
fuel, MICOM GEL, contains monomethylhydrazine (MMH), aluminum filler
particles, and a polymeric gellant. The gelled oxidizer, IRFNA GEL, contains
inhibited red fuming nitric acid (IRFNA), suspended lithium nitrate parti-
cles, and fumed silica. The TRW measurements have not been completed but
indicate that these fluids are highly shear thinning with power-law exponents
n &~ 0.3. Furthermore, the existing data do not show evidence of wall slip.

The current TRW engine design for gels uses a cavitating venturi valve in
each propellant stream (Figure 1). These valves are major engine components
that provide pressure isolation as well as flow rate control. The desired
operating characteristics of cavitating venturis depend on dominant inertial
effects associated with axial flow through axisymmetric annular regions of
continuously varying gap. Current design methods are based on Newtonian
fluid mechanics, so it is important to undertake numerical simulations of
non-Newtonian flows in complex geometries to design for gels.

We have developed a boundary layer theory for the flow of power-law
fluids in converging planar channels. This analysis provides estimates of
boundary layer thickness, which can be used to optimize mesh generation for
finite element numerical simulations. The numerical computations can then
be compared with the similarity solutions. This analysis extends the classical
Newtonian solution of Pohlhausen, which is discussed by Schlichting (1979).



2 .Boﬁndary Layer Theory

In a power-law fluid, the relation between shear rate, 4, and shear stress, 7,
is given by the relation:

r = mii|" 4,
where n is the power-law index and m is the power-law coefficient, analogous

to the Newtonian viscosity. The boundary layer equation for a power-law
fluid is then:

du

By

Ou Ou d_U+2£_
Oz 8y dz ' p Oy

"1 8u
5;} : (1)

For flow in a converging planar channel, the potential flow velocity U =
—K/z, where K is a flow rate parameter; p is the fluid density. The coordi-
nate system origin is at the sink point. Choosing

u=Uf(n) and n=yz 'R/,

where Re, = pz™|U|* " /m, the continuity equation and (1) are transformed
into the ordinary differential equation

:li_n (fflllfll‘n-l) + 1-— fl2 + 2(‘:’-:11)ffll = 0’ (2)

with boundary conditions:

f0)=£(0)=0 and f(c0)=1.
For a Newtonian fluid, n = 1, and Equation (2) becomes

f+1-f%=0, (3)
where 5 = yz'lRe;l./ ?and Re, = K p/p . Pohlhausen’s solution for the
velocity is:
f' =u/U = 3tanh? (2% + tanh~(2/3)'/?) - 2,

and the corresponding boundary layer thickness is given by

§ ~ zRe;Y? ~ g K12,
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The boundary layer thickness for a power-law fluid is evident from the
similarity variables and is given by

§= F(n)z Re;l/(1+n) ~ z(3—n)/(1+n) K(n—?)/(l-*-n).

The function F(n) is determined by solving Equation (2). For a highly shear
thinning power-law fluid, § ~ z3K~? for n — 0. The scaling with distance
and flow rate is much stronger than the Newtonian scaling.

It was necessary to integrate Equation (2) numerically for n # 1. We used
the program SUPORQ from the SLATEC Library (Haskell, 1986). Follow-
ing established procedure for the Newtonian problem, the far-field boundary
condition was replaced by /() = 1, for some large 7., €.9. e = 10. This
appeared to be satisfactory for n not too different than 1, but led to severe
“kinks” in the solution for f' at 7, when n was small. These discontinuities
in slope could be reduced by increasing 7o, for small n, but this required such
large values of 7o for n < 0.2 that numerical instabilities developed.

The solution behavior for small n is important because gelled propellants
and other non-Newtonian materials under consideration in weapon appli-
cations are highly shear thinning. The numerical difficulties stem from the
asymptotic behavior of f’ for large 7. The analytical solution for a Newtonian
fluid gives

f’~1—Ce"/§" as 7 — oo,

where C is a known constant. With the assistance of Romero (1989), we
obtained the asymptotics for n # 1, which are very different:

f'~1-a(n)2"" [log(z) + - /07", (4)
where a(n) = n/C-")N¥ and N = (1 +n)/(1 - n).

The slow algebraic approach to free stream conditions for a highly shear
thinning fluid is in sharp contrast with the exponential behavior for New-
tonian fluids. We have obtained higher order corrections to Equation (4).
Knowing the asymptotics, it seemed reasonable to solve our problem by us-
ing the program D02HBF from the NAG (Numerical Algorithms Group,
1981) library. This code integrates a system of differential equations subject
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to given boundary conditions and given asymptotic forms. The code did not
prove useful because of numerical convergence problems associated with the
slow decay indicated by Equation (4).

We were able to obtain accurate solutions by using the mixed boundary
condition capability of SUPORQ. The asymptotic solution (4) is consistent
with )

"'l — —n "
f 14+n nf

Instead of forcing f' to 1, this equation is used for the boundary condition
at 7. Solution accuracy was demonstrated by varying 7.,. Representative
solutions for f'(n;n) are shown in Figure 2. We have used these results to
compute the boundary layer thickness function F(n) and have also computed
f"(0;n), which determines the wall shear stress and is shown in Figure 3.

3 Numerical Simulation

To test the use of the power-law boundary layer solution in mesh generation, a
two-dimensional channel (similar to the converging channel flow for which the
analytic solution was derived) is used. This channel consists of an entrance
region with constant thickness followed by a converging section. The channel
is illustrated in Figure 4 with the flow from left to right. The upper wall
is a no-slip surface, the lower boundary defines a plane of symmetry, and
the entrance and exit are tractionless. The flow at the entrance is steady,
unidirectional flow with velocity U;n;.

One result of the boundary layer analysis is a definition of a Reynolds
number for power law fluids in this type of flow given by Re, = pz™|U}* " /m.
Re. is evaluated using parameters corresponding to the MICOM GEL, p =
1.0 gm/cm? is the fluid density, n is the power-law index for the fluid, and
m = 0.01 is the power-law coeflicient. The distance along the upper surface
from the point of intersection of the upper wall and the plane of symmetry
in the converging channel is given by . The boundary layer analysis also

defines a similarity variable n = (y/ z)Rey (14n) where y is the distance from
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a point in the fluid to the plane of the sloping upper surface. Thus, as the
Reynolds number of the flow or n increases, the thickness of the boundary
layer decreases.

Using the results of the numerical integration of Equation (2), a value of
n = 4 was chosen to define the end of the boundary layer for the purpose of
mesh generation. Given values for 3, p, and m, the distance from the upper
plate to the outer edge of the boundary layer can be calculated. Using n = 4
the thickness of the boundary layer is § = 4z Re, 11+n The boundary layer
thickness was calculated for both the entrance and exit end of the converging
region. With this information, a mesh was generated which concentrates
nodes parallel to the sloping wall in a domain equal to 36 (as defined by
n = 4) from the upper surface while using a relatively coarse mesh in the
outer region. The factor of three was chosen to correct for the choice of 5 = 4
as the end of the boundary layer. An example of such a mesh is shown in
Figure 5 for the case n = 0.35. The extremely fine grid can be seen near the
upper surface, and the contraction of the boundary layer as z decreases along
the plate length is reflected in a narrowing of the fine grid region. The grid
used in the outer domain allows a significant saving of computer resources,
though in order to be compatible with the mesh in the boundary layer, the
grid is not as coarse as it could be. Figure 6 shows an expanded view of the
grid at the entrance to the converging section. This illustrates the alignment
of the grid with the converging wall.

Although basing the boundary layer thickness on a large value of 7 is
reasonable for moderate values of n, as n becomes small, the velocity in the
boundary layer approaches the free stream velocity extremely slowly. The
behavior of the solution for n = 0.1 in Figure 2 illustrates this. The velocity
for this case rapidly approaches the outer velocity in the region 0 < 7 < 1.0
but changes less than 10% for 1.0 < 5 < 5.0. For this case, rather than being
a conservative choice, choosing 7 = 12 as the outer edge of the boundary
layer might not extend the fine grid far enough. In fact, to model fluids
with these extremely small power-law indices, three levels of grid refinement
might be necessary: a very fine grid for low values of 7 in the narrow region in
which the flow reaches a value of dimensionless velocity f' ~ 0.8, this region
would have thickness O(f”(0)~1). This region would be followed by a larger
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intermediate region which captures the slow approach of the boundary layer
velocity to the outer flow, and finally, the coarse outer region. As additional
flows for fluids with n = 0.3 are modeled, convergence problems may develop.
If this occurs, a likely reason may be that the choice of = 4 was not able to
capture the full boundary layer in these flows. If this problem does arise, it
will be necessary to re-examine our definition of the boundary layer thickness.

Using meshes generated to concentrate nodes in the boundary layer, n <
4, calculations were carried out with the finite element code FIDAP (Fluid
Dynamics International, 1987) for several values of U;ny and n. Table 1
shows the power-law indices, velocities, and Reynolds numbers for which
calculations were performed. The smallest power law index used was n =
0.3 (equal to that which describes the actual gelled propellants) yielding a
Reynolds number based on the length of the converging region of 2100. The
maximum Reynolds number for which we have generated a solution is 10, 000.
Figure 7 shows the streamlines for the flow of a power-law fluid with n = 0.6
and Uiy = 7.5 cm/s for which Re = 6700. The narrowing of the boundary
layer along the sloping upper surface can be seen in the streamline lying
nearest the upper boundary.



n/U] 100 7.5 4.0
1.0 [ 10,000 - 4000
0.8 {10,000 7000 3300
06 | - 6700 2800
0.5 | - 6500 2500
045| - 6400 2400
04 | - - 2300
035 - - 2200
03 | - - 2100

Table 1: Reynolds number as a function of power-law index and entrance
velocity

4 Conclusions

The results from the finite element calculation are compared with the analytic
solution for the flow in the boundary layer in Figure 8. The variable you:
represents the distance from the symmetry plane of a node at the channel
exit. Lines of constant y,,. are those following the mesh from this point (i.e.,
lines parallel to the down-sloping wall in Figure 6). The plot shows that
except for points lying near the entrance or exit of the converging region
(for which the boundary layer solution does not apply) the numerical and
analytic results are in very good agreement. Having demonstrated that the
use of the boundary layer theory for power-law fluids allows us to optimize
the mesh in converging flows, we will now begin to apply this method to
calculation of flows in actual cavitating venturi geometries.
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Figure 1: Schematic of cavitating venturi
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Figure 2: Boundary layer solution for flow through a contraction
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Figure 3: Wall shear stress
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Figure 4: Schematic of two-dimensional channel
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Figure 7: Streamlines for flow through converging channel
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