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| INTRODUCTION

Two-dimensional electrophoresis (2DE) of proteins has been used in several studies to de-
tect genetic mutations [1-4]. Mutations are generally observable in 2DE patterns as spots
which appear out of context, either in position or amount (quantitative variants). Most
studies to this point have screened only for positional variants, as these are detectable by
eye and do not require computer analysis. Screening for quantitative variants in addition to
the positional ones widens the class of detectable events. We have been using 2DE to de-
tect heritable mutations expressed as quantitative alterations in liver protein expression in
inbred mice with the goal of extending these studies to analysis of mutation expression in
human populations [1], The purpose of this paper is to describe the computerized screening
techniques which have been developed and to summarize their performance.

2 METHODS

The data used in these studies came from the Argonne National Laboratory 2DE database of
mouse liver proteins. All data used in this paper came from data sets N89 and M20. N89
consists of 749 distinct patterns from offspring of BALB/cJANL females bred with
C57BL/6JANL males. Of these offspring, 582 were sired by males exposed to 60 cGy of
fission-spectrum neutrons and 167 were sired by unexposed males. Data set M20 [1], ac-
quired several years prior to N89, consisted of 797 patterns from offspring of the same hy-
brid cross sampled at age 7 weeks. Of these, 105 were sired by untreated males, 323 by
males treated with 150 mg/kg ethylnitrosourea (ENU), and 369 by males treated with 3 Gy
of *Co gamma radiation. Male and female offspring were analyzed for both N89 and M20.

Biopsies were performed at age 12 weeks for the N89 set and 7 weeks for M20.

Digital images were produced by scanning each gel in a tray of water using a flat-bed scan-
ner. These images were converted to 8-bit optical density values during the scanning and
the data were stored on disk. Images were processed to remove background and modeled
with sets of two-dimensional Gaussian distributions with zero correlation between x and vy,
each distribution representing one spot. The integral of each distribution is called its vol-
ume and is a measure of the total integrated density for that spot. The ensemble of Gauss-
ian distributions from a single image is herein called a pattern. Each pattern was matched to
a single master pattern in order to establish the correspondence of each spot (represented by
a Gaussian distribution) to a spot on other patterns. The master pattern is essentially a tem-
plate of spot positions originally generated from one of the early patterns and to which any
additional spots can be added as encountered. Matching was done in groups of 20 to 40



patterns and used both interactive and automatic procedures. The mean number of matched
spots was 496+ 44 for N89 and 400+ 54 for M20.

Several characteristics of the data must be considered in the design of quantitative mutation
screening systems:

Quantitative variants are evidence for mutations in regulatory systems or for events
where one of two homozygous alleles is no longer capable of expression. In the former
case one might observe many proteins altered in amount In the latter case, the expected
effect is a decrease in the amount of one or more proteins by 50% (assuming measure-
ment linearity and no compensation). Positional variants are often also detectable by
means of a quantitative decrease at the electrophoretic position of the original allele.

Because mutation events are relatively rare, one must analyze many patterns and utilize
as many spots as possible. Experiments with more than 500 gels are typical. Fewer
than 10 mutations were confirmed out of more than 1500 samples for the current data.

Mutation experiments are generally carried out over an extended period of time since
laboratories are currently unequipped to run and analyze the necessary number of sam-
ples in a short time. The experimenter must control long-term drifts that change the
electrophoresis patterns and make comparison difficult. Because of this long time pe-
riod it is advantageous to separate the screening process into a training phase and a test
phase, with data being processed soon after the samples are taken.

Even the best 2DE patterns contain artifacts which are often confused with mutation
events. Only a very small fraction of the outliers are later confirmed to be actual muta-
tions, and most of them can be eliminated by inspection using an interactive analysis
system. A key feature of the analysis program is its ability to display many patterns si-
multaneously on a display screen, thus providing a context by which an event can be
viewed.

Most (if not all) of the sample types are composed of subpattems which vary in propor-
tion. Components may come from multiple cell types, organelles, inadvertent contami-
nation, etc. At least three cell types are known to be present in the liver samples dis-
cussed here.

There are many possible ways to implement mutation screening systems to detect quantita-
tive differences in individual spot amounts. All of them involve the examination of the ob-
served values as compared with a prediction. Values that differ significantly from the pre-

diction are flagged for review. Two methods which we have implemented are summarized
below:

Predictions based on a mean of the values for the control set An average pattern is
formed using the means of the spots in the controls. Control data are scaled using the
sums of amounts over a predetermined set of spots, and the standard deviations are com-
puted. A scale factor is similarly computed for each object pattern being screened. The
predicted values to which the observed values are compared are taken to be values from
the control pattern divided by the scale factor. A deviation value is computed by divid-



ing the difference of the observed and predicted values by the standard deviation. Large
absolute values for this deviation are considered as possible events. This method is es-
sentially a univariate procedure on scaled data. Our first screening studies used this
technique.

» Predictions based on a Principal Components Analysis (PGA). Here the control data are
analyzed by PCA, producing a set of eigenvectors. The first few eigenvectors (corre-
sponding to the largest eigenvalues) are kept and used as a basis for a prediction system.
Predictions for an individual spot in a pattern are predicted using the reduced set of ei-
genvectors and the vector of observed amounts for that pattern. Thus .information for
many spots in a pattern is used to predict the amount for any single spot. Standard de-
viations of observed amounts from the predictions are computed for the control data in
the training phase. A deviation value is calculated for every spot by dividing the differ-
ence of the observed and predicted values by the standard deviation. Spots in individual
object patterns are screened for large absolute values of this deviation. This screening
method accounts for variation in protein loading as well as shifts in proportions between
different components and has the advantage that it is based on a standard statistical
package (SAS) [5].

3 RESULTS AND DISCUSSION

Performance of the two detection methods was assessed using the N89 data set. Data were
randomly split into a training set (500 patterns) and a test set (249 patterns). The training
set was used both for calculating the statistics required for the univariate method and as the
object of a PCA analysis. Data included 276 spots from each pattern. For the PCA analysis
we considered using up to the 40 largest eigenvalues and their associated eigenvectors.
Seventy percent of the variation was explained by the first 23 eigenvectors and 77% by the
first 40.

We used simulation to help decide how many eigenvectors to retain. Simulation was re-
quired because thousands of events are necessary for performance assessment, and the num-
ber of actual mutations expected in a data set the size 0of N89 was expected to be low (only
two were confirmed). As we were particularly interested in detecting mutations that result
in a 50% decrease in protein abundance, we simulated these events by taking 61 patterns
from control animals in the test set, halving the value of a single spot in each pattern, and
computing the deviation. For comparison with the univariate method, we computed its de-
viation by subtracting the scaled value for the spot from the average (by sex) over the train-
ing set and dividing by the standard deviation. This process was repeated for every spot
under consideration, yielding approximately 16,000 simulation trials.

Figure | plots the detection efficiency vs. the false positive rate for the univariate and PCA
methods. Examination of these and similar curves is essential for optimizing the detection
efficiency. Because the entire set of principal component axes will exactly reproduce the
data, care must be taken not to choose too many, as that would decrease the efficiency.
Also, we wish to avoid excessive overtraining, that is, a vastly different performance be-



tween the training and test sets. With these considerations in mind, we chose to use 30 ei-
genvectors. Examination of curves similar to those in Figure | showed little advantage in
using more than thirty. Some overtraining was evident by the false positive rate being sig-
nificantly smaller for the training set than for the test set when more then 30 principal com-
ponent axes were used. As measured with the simulation runs, the overall efficiencies in
detecting 50% reductions was 51% for the univariate method and 76% for the PCA method.
Other experimental strategies (analyzing duplicate samples, for example) would allow the
use of a higher efficiency range.
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Figure 1. Detection characteristics of the various detection methods for spots which are
decreased by 50%. The curves from bottom to top are the univariate method and the PCA
method using 5, 10, 20, and 30 eigenvectors, respectively.

To compare the performances, we combined the N89 and M20 data sets, thereby adding
considerable diversity to the data. Five hundred of the 1546 patterns (including all of the
controls and none of the known mutants) were selected for training. Detection thresholds
for the two methods were set by choosing an overall false positive rate 0f 0.3%. The thresh-
olds were -1.9 for the univariate case and -3.5 for the PCA method. Table I summarizes the
results on the set of confirmed mutations. With these diverse data, the univariate method
detected two of eight events and the PCA detected six.



Mutation  Sex ID of Mutated

Event Protein
ENU1 F
ENU2 M OAT
ENU4 F CEH
ENU6 M APOAI1
ENUS M HSP70 fam.
NEUTI M

F
NEUT2 F

Table I. Comparison of the two detection methods on the confirmed mutation events
with the training performed on pooled data from data sets N89 and M20. The * signi-
fies the quantitative detection of'the event. A “‘yes™ in the ““New Spot” column signi-
fies that the pattern contained a qualitative mutation event

It was concluded from these comparisons that the PCA method was superior to the univari-
ate method, especially for studies in which the data are diverse. We have therefore adopted

New
Spot

yes
yes
yes
yes
yes
no
no
no

Spot #s
Affected

121
99
39
150
5
188
188
94
95
113
188
337

the PCA technique as our primary screening method.
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Deviations
Univariate PCA

-1.24
-1.51
-1.42
-3.31*
-2.07*
-1.69
-1.52
-1.81
-0.07
-0.75
-0.08
-0.37

-3.90%*
-1.65
-2.89
-5.82%
-7.08%*
-13.7*
-14.6*
-3.21
-4.39*
-2.72
-2.46
-3.36



