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ABSTRACT

Ths tensile properties of welds of base metals ASTM A533, Grade B, 
Class 1 steel plate and ASTM A508, Class 1 forgings were evaluated 
in irradiated (3 to 21 x 10^ n/cm?) and unirradiated conditions. 
Yield strength and ultimate strength both increased with increasing 
fluence, while small ductility losses were generally independent of 
fluence. Yield strength was found to be more sensitive to irradi­
ation than ultimate strength for all welds. The strength and duc­
tility responses to irradiation varied between the weld materials. 
These variations were attributed to differences in chemical constit­
uents of the welds.
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FOREWORD
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Energy Contract DE-AC14-76FF02170 through a technical service contract with 
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representative is L. D. Blackburn.
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TENSILE PROPERTIES OF IRRADIATED AND UNIRRADIATED

WELDS OF A533 STEEL PLATE AND A508 FORGINGS

I. SUMMARY

Tensile properties of one weld of ASTM A533, Grade B, Class 1 plate base 

metal (Weld 61W) and two welds of A508 Class 1 forging base metal (Welds 62W
1 O O

and 63W) irradiated to 3 to 21 x 10 n/cm (E>1 MeV) at temperatures between 
260°C and 371°C were evaluated. Strength properties of all three welds 

increased with higher exposures producing higher strengths after irradiation. 

Yield strength was found to be more sensitive to irradiation than ultimate 

strength. The tensile ductility was reduced slightly to a level which was 

independent of fluence. Welds 61W and 63W in general exhibited greater 

losses in strength and ductility than did Weld 62W, possibly because of dif­

ferences in chemical composition.

II. INTRODUCTION

The Heavy Section Steel Technology (HSST) program is sponsored by the 

Nuclear Regulatory Commission (NRC) with the objective of gaining better 

insight into the mechanisms that could potentially cause reactor vessel 

failure or improve the quality of reactor vessel steels. In order to assess 

material behavior, irradiations were conducted by the HSST program office at 

ORNL to produce a variety of irradiated material conditions representative 

of reactor environments. Irradiation experiments containing tensile, frac­

ture and impact specimens were conducted. The objective of the work report­

ed herein was to assess the irradiated tensile properties of three weld 

materials irradiated in the HSST "Second 4T-CT Experiment.11
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III. EXPERIMENTAL

A. MATERIALS AND SPECIMENS

One weld of base metal ASTM A533, Grade B, Class 1 plate and two welds of 

base metal ASTM A508 Class 2 forging, hereafter referred to as 61W, 62W and 

63W, respectively, were irradiated in the ORNL Bulk Shielding Reactor (BSR). 

All welds were made by the submerged-arc process. The complete irradiation 
experiment was conducted by ORNL^ and tensile specimens, both irradiated 

and unirradiated, were supplied by ORNL.

The chemical composition of Welds 61W, 62W and 63W are given in Table 1.

The analysis represents the range of compositions determined from Charpy 

specimens and from weld analysis supplied by vendors. The orientation of 

all tensile specimens was weld transverse. Two types of miniature tensile 

specimens were used in this study and are shown in Figure 1. Specimen sizes 

and designs were primarily dictated by the physical space available for 

specimen irradiation. The specimen gage diameter was 4.52 mm; both short 

(29.24 mm) and long (31.75 mm) gage length specimens were tested. Table 2 

gives the distribution of specimens by irradiation temperature and neutron 

fluence. The specimens in parentheses had irradiation temperatures in more 

than one range for a significant period of the irradiation time. Thus, some 

specimens are shown in two matrix positions or overlapping two positions.

The specimen test temperatures are shown in brackets for each specimen. The 

test temperatures were chosen to yield a range of data which can be treated 

by a rate-temperature parameter.

B. TESTING AND DATA ANALYSIS

The test setup including the test furnace, specimen grips and extensometer 

system is shown in Figure 2. The same test apparatus and setup were used 

for both unirradiated and irradiated tensile tests, all of which were con­

ducted in an air environment.
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TABLE 1

CHEMICAL COMPOSITIONS OF WELDS 61W, 62W AND 63W

l Element
Material C Mn P S Si Cr Ni Mo Cu V

Weld 61W 0.10*
0.07

1.52
1.43

0.021
0.018

0.015
0.014

0.58
0.54

0.17
0.16

0.64
0.62

0.38
0.36

0.34
0.24

0.005

Weld 62W 0.088
0.082

1.57
1.41

0.020
0.013

0.008
0.007

0.60
0.57

0.17
0.067

0.550
0.495

0.390
0.367

0.243
0.16

0.011
0.010

Weld 63W 0.109
0.088

1.67
1.618

0.0175
0.0163

0.012
0.010

0.675
0.618

0.118
0.073

0.707
0.603

0.440
0.415

0.326
0.272

0.0125
0.010

*Range of compositions, high/low



1 .0 cm
0.452 cm 
DIAMETER

0.318 cm
RADIUS

1 .0 cm

GAGE LENGTH

TOTAL LENGTH

GAGE TOTAL
LENGTH LENGTH

LONG SPECIMEN 3.175 cm 5.5 cm
SHORT SPECIMEN 2.924 cm 5.0 cm

HEDL 7912-162.1

FIGURE 1. Tensile Specimen Configurations for Both Irradiated and Unirradiated Materials.



TABLE 2

IRRADIATION FLUENCE AND TEMPERATURE DISTRIBUTION FOR TENSILE SPECIMEN
FROM SECOND 4T IRRADIATION

Fluence _______________________________ Irradiation Temperature (°C)
Specimen (n/crn^ x lO-*-®) 232-260 260-293 293-316 316-343 343-371

Capsule A, 4 51W5 [RT]
Weld 61W 61W6 [288]

7-10 61W-7 [RT]* 61W-8 [RT]
61W-9 [RT]

12 61W-3 [RT] 
61W-4 [149]

15 6TW-1 [RT] 
61W-2 [288]

Capsule B, 5 (62W-13) [149]
Weld 62W (62W-19) [288]

8-11 (62W-2)** [RT] (62W-2) (62W-1 ) [RT]
62W-3 fRT]

14-15 62W-10 [RT] 
62W-11 [288]
62W-8 [RT] 
62W-9 [149]

Capsule C, 4 63W-5 [RT]
Weld 63W

7-10

63W-9 [288]

63W-14 [RT]

(63W-13) [RT]
63W-15 [RT] (63W-15)

(63W-13)

13 63W-3 [RT] 
63W-4 [149]
63W-1 [RT] 
63W-2 [288]

♦Brackets [ ] indicate test temperatures (oc). [RT]= Room Temperature. 
♦♦Parentheses ( ) indicate specimens with multiple irradiation temperatures.



FIGURE 2. Hot Cell Test Setup for Irradiated Tensile Testing of Specimens 
from 4T Irradiations. Neg 7803376-1
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The tests were conducted at room temperature, at 149°C and at 288°C for all 

unirradiated weldments; short and long specimens were tested at each temper­

ature. Irradiated specimens, as the number available permitted, were tested 

at the same temperatures as the unirradiated specimens. However, where only 

one specimen was available for a given fluence and irradiation temperature 

condition, the specimen was tested at room temperature. Specimens were

tested on a 44.5-kN capacity Instron test machine. Specimen strain rates
-4 -3 -1calculated from extensometer data were in the range of 10 to 10 s .

An extensometer with a 12.7-mm effective gage length was attached directly 

to the gage section of the specimens; the extensometer was designed to mea­

sure strain through at least the point of maximum load (ultimate strength). 

The same effective gage length was used on both long and short specimens.

Dual LVDTs of the extensometer were algebraically summed to eliminate effects 

of bending during the initial portion of the test. A verification of the 

extensometer in actual test application was conducted by high-resolution 

recording of the elastic load-deflection curve; linearity of the recorded 

curve was better than 1%, and no hysteresis was observed on unloading. The 

elastic modulus was observed to 2.04 x 10 Mpa, which is within the known 

range for this class of material. Calibrated accuracy of the extensometer 

was better than 0.1% of range and within 0.1% linearity.

The extensometer system was developed as part of the test setup to facili­

tate direct computerization of test results. Thus, a computer-controlled 

digital data acquisition system recorded load and extension measurement sig­

nals directly; the crosshead motion and the load were also recorded on the 

test machine recorder. Upon completion of the test, specimen measurements 

of uniform final gage diameter, neck diameter and final total length were 

made. These were then placed in the computer data bank where they were ana­

lyzed by computer program, producing tables and plots of properties. The 

initial raw data and processed data were stored on a tape cartridge.
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IV. RESULTS AND DISCUSSION

The tensile properties of Welds 61W, 62W and 63W are sunmarized for both 

irradiated materials and unirradiated materials in Tables 3 and 4, respec­

tively. Preirradiation strength and ductility values are very similar for 

all three welds, with Weld 62W showing only slightly lower strength proper­

ties at the highest test temperature.

A. IRRADIATION EFFECT ON YIELD AND ULTIMATE STRENGTH

Irradiation to a fluence of 4 to 15 x 10^ n/cm^ (E > 1 MeV) at 260°C to 293°C 

produced a pronounced effect on strength properties of all three welds, as 

illustrated in Figures 3, 4 and 5. Postirradiation yield strength exceeded 

preirradiation ultimate strength for all weld materials investigated. The 

yield strength was more sensitive to irradiation than was the ultimate 
strength, with yield strength properties at 26°C increased by an average of 

30% while ultimate strength increased by about 19% after irradiation.

Results in Figure 6 demonstrate that most of the strength increase was 

already achieved at the lowest fluence levels examined, but that some fur­

ther strength increase occurs with increasing fluence. All three welds 

exhibit a similar irradiation sensitivity as measured by the general level 

of irradiation strengthening, but strength increments are about 20% larger 

for Welds 61W and 63W than for Weld 62W (Figure 6). The data also suggest 

that higher irradiation temperatures may produce slightly less strengthening 

in Weld 61W.

B. IRRADIATION EFFECT ON TENSILE DUCTILITY

The change in ductiltiy properties measured at 26°C is, with the possible 

exception of reduction of area for Weld 62W, independent of neutron exposure, 

as illustrated in Figure 7. Table 5 compares the ratios of irradiated mate­

rial ductility to unirradiated material ductility determined using average 

ductility values for all exposures at each test temperature. Both Figure 7 

and Table 5 illustrate that irradiation-induced losses in ductility are small 

(i.e.1.17% on a relative basis-).
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TABLE 3

TENSILE PROPERTIES OF UNIRRADIATED WELDS OF ASTM A533, GRADE B, 
CLASS 1 STEEL PLATE (WELD TRANSVERSE)

Te st Yield Ultimate Uniform Reduction Total
Specimen Temp Strength Strength Strain in Area Elongation

No. (°C) (MPa) (MPa) (%) (%)

61W10 26 484 601 10.4 65.7 16.5
61W12* 26 476 597 10.4 66.0 20.3
61W11 149 445 546 8.3 66.2 17.2
61W13* 149 443 549 8.3 64.7 18.2
61W14* 228 420 534 7.1 64.5 15.5
61W15 288 416 539 7.0 63.2 16.4

62 W4 26 477 594 10.1 67.0 18.1
62W12* 26 469 588 9.7 65.0 19.5
62W5 149 430 536 9.2 68.0 15.0
62W14* 149 426 531 9.5 69.3 16.7
62 W6 288 382 514 8.0 65.5 14.2
62W15* 288 388 513 8.0 61.5 15.2

63W16 26 482 600 10.5 67.9 19.4
63W6* 26 482 601 10.0 66.8 21.5
63W17 149 440 544 8.6 65.7 18.4
63W7* 149 423 546 8.6 68.7 17.6
63W18 288 414 530 8.1 63.3 17.0
63W8* 288 405 530 7.2 63.6 16.2

*Short specimens, all other are long specimens (see Figure 1).



TABLE 4

TENSILE PROPERTIES OF IRRADIATED WELDS OF ASTM A533, GRADE B, 
CLASS 1 STEEL PLATE (WELD TRANSVERSE)

Irradiation
Specimen Fluence Irrad.* Test Yield Ultimate Uniform Reduction Total

n/cm^ x 1C)18 Temp Temp Strength Strength Strain in Area Elongation
No. (E > 1 MeV) (°c) (°C) (MPa) (MPa) (%) (%) (%)

61W8 8 327/360 28 580 678 9.3 59.0 15.7
61W7 10 277 28 594 699 9.3 56.9 17.0
61W9 7 327 28 583 700 9.6 57.4 16.9
61W5** 4 304 28 605 703 8.6 56.8 17.4
61W3** 12 288 28 632 724 8.9 58.9 17.6
61W1** 15 288 28 631 724 8.9 59.7 17.5
61W4** 12 277 149 575 672 9.3 59.7 15.5
61W2** 15 277 288 544 660 8.4 50.1 17.8
61W6** 4 298 288 499 625 6.5 61.4 14.1

62W10** 14 291 26 602 697 10.0 60.8 18.9
62W8** 15 282 26 621 705 9.4 58.6 13.1
62 W3 8 303 26 576 678 9.5 67.8 18.4
62 W2 8 256/306 26 593 693 10.4 63.5 18.1
62W1 11 313 26 575 678 10.3 61.8 18.2
62W13** 5 267 149 539 627 8.3 57.8 16.3
62W9** 15 277 149 572 661 8.1 61.4 15.0
62W11** 15 274 288 520 632 8.3 53.2 15.7
62W19** 5 269 288 476 605 7.7 58.2 15.5

63W15 8 290/341 28 581 681 10.3 58.5 17.5
63W5** 4 288 28 609 701 9.4 61.9 17.1
63W1** 13 285 27 628 718 9.6 55.9 15.9
63W13 9 286/330 28 603 695 9.4 53.1 17.7
63W3** 13 285 28 625 712 9.0 59.5 17.6
63W14 7 315/290 28 598 694 10.0 63.0 17.1
63W4** 13 278 149 587 683 8.0 56.7 15.7
63W2** 13 278 288 536 636 6.8 57.5 15.6
63W9** 4 286 288 526 639 5.8 56.4 16.6

* Represents average temperatures during irradiation . Refer to Table II for temperature range.
Two values 
irrad i at ion

are given where temperature ranges were significantly different due to capsule rotation during

** Short specimen; all others are long specimens (Figure 1).
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TABLE 5

RATIO OF IRRADIATED MATERIAL DUCTILITY 
TO UNIRRADIATED MATERIAL DUCTILITY

Irradiated Property/Unirradiated Property

Weld Reduction Uniform Total Test
Material of Area (Neck) Strain Elongation Temp (°C)

61W 0.88 0.88 0.92 26
62W 0.95 1.00 0.98 26
63W 0.87 0.93 0.83 26

61W 0.87 1.06 1.00 288
62W 0.89 1.00 1.06 288
63W 0.90 0.83 0.97 288

Losses in reduction of area tend to be larger than changes in the other two 

ductility properties for Welds 61W and 62W. However, for Weld 63W, the 

largest property losses are for uniform strain or total elongation, depend­

ing on test temperature. Overall the sensitivity of ductility properties to 

irradiation was less for Weld 62W than for Welds 61W and 63W. Since the 

composition ranges for Ni, Cu, C and S are higher for Welds 61W and 63W than 

for Weld 62W, these constituents may contribute to increased sensitivity of 

tensile ductility to irradiation.

C. TEMPERATURE-STRAIN RATE CORRELATION OF YIELD AND ULTIMATE STRENGTH

(2 3)It has been demonstrated previously' ’ ' that the materials similar to those 

of this study correlate well with a rate-temperature parameter, e , to relate 

yield and ultimate strength response to test temperatures and test strain 

rates. In Figures 8, 9 and 10 the theta parameter as described by

0= T In (108/e)

where: T = Kelvin

e= Strain rate

16



is used to correlate yield and ultimate strengths of Welds 61W, 62W and 63W, 

respectively.

The yield and ultimate correlations are observed to be of sufficient quality 

to estimate properties at other test temperatures and strain rates of inter­

est. Similar correlations were attempted for ductility properties; however, 

the limited number of specimens and the relatively large degree of scatter 

precluded development of significant correlations.
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V. CONCLUSIONS

1) Irradiation of fluence levels in the range 4 to 15 x 10 n/cm (E>1 MeV) 

produced significant strengthening in all three weld materials, with yield 

strength increases being greater than ultimate strength increases. Losses in 

ductility were relatively small.

2) Weld 62W exhibited less strength increase and less reduction in ductil­

ity than did Welds 61W and 63W. These differences may be associated with 

chemical composition variations.

3) Yield and ultimate strength properties were correlated with a rate- 

temperature parameter which can be used to estimate strength properties at 

other test strain rate or temperature conditions of interest.

18 2
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