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This dissertation discusses several software and hardware aspects of program execution on
large-scale, high-performance parallel processor system;. The issues covered are program restruc-
turing, partitioning, scheduling and interprocessor communication, synchronization, and
hardware design issues of specialized units. All this work was performed focusing on a single
4goal: to maximize program speedup, or equivalently, to minimize parallel execution time.
Parafrase, a Fortran restructuring compiler was used to transform pro/grams in a parallel form
and conduct experimen;;s. Two new program restructuring techniques are presented, loop
coalescing and su'bscript blocking. Compile-time and run-time scheduling schemes are covered
extensively. Depending on the program. construct, these algoritbms generate optimal or near-
| optimal schedules. For the case of arbitrarily nested hybrid loops, two optimal scheduling algo-
rithms for dynamic and static scheduling are presented. Simulation results are given for a new
dynamic schednling algorithm. The performance of this algorithm is compared to that of self-
scheduliné. Techﬂiques for program partitioning and minimization of interprocessor communicé—
tion for idealized program models and for real Fortran programs are 'also discussed. The close
relationship between scheduling, interprocessor communication, and synchronization becomes

apparent at several points in this work. Finally, the impact of various types of overhead on pro-

gram speedup and experimental results are presented.
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CHAPTER 1

INTRODUCTION

As techgblogy approaches certain physical limitations, parallelism seems to be the most
promising alternative for sa;tisfying the ever-increasing demand for computational speed. The
main ciriving force behind the development of parallel processor systems is the ability to exploit
the parallelism in algorithms and programs, and solve problems whose computational complexity
makes them impossible to tackle on conventional systems. Recently it has become clear that the
shared memory para,lllel processor mc;del will be one of the dominant architectures f;ar the near
future supercomputers. The flexibility, scalability, and high potential performance offered by
parallel processor machines are simply necessary ‘“‘ingredients” for 4any high performance syétem._

The flexibility of these machines is indeed greater than that of single array processor computers

[Kuck84], and they can execute more efficiently a larger spectrum of programs.

But there are divided opinions when the question comes to the number of proceésors ‘needed
for an efficient and cost-effective, yet very fast polyprocessor system. A number of pessimistic
and optimistic reports have come out on this topic. One side uses Amdahl’s law and intuition to
argue against large systems [Mins70], [Amda67]. The other side cites simulations and real exam-
ples to support the b!,elief that l;ighly parallel systems with large numbers of processors are prac-
tical, and could be efficiently utilized to give substantial speedups [PoBa86], [Cytr84], [Krus84],
[Kuck84], [Bane8l), [FIHc80]. However, we have little experience in efficiently using a-large
number of processors. This inexperience i;l turn is reflected in the small number of ‘processors

used i|n modern commercially available supercomputers such as the CRAY X-MP, CRAY 2, and

Alliant FX/8 systems.



Truly parallel languages, parallel algorithms, and ways of defining and exploiting program
parallelism are still in their infancy. Only recently the appropriate attention has been focused
on research for parallel algorithms, languages, and software. Several factors should be con-
sidered when designing high performance supercomputers [Kuck84]. Parallel algorithms, carefully
designed parallel architectures and powerful progra,mr-ning environments ihéluding sophisticated
restructuring compilers, all play equally important roles on proéram performance. In addition
several ¢ricial problems in scheduling, synchroniza'tion,'a.ndl mmmunic;\tion must be udoﬁuatcly
solved in order to take full advantage of the inherent ﬂexibilifj‘yh of pdmllol proccaasr systerﬁs.
The investment in traditional (serial) software however is so en;rmous, that it will l;e maﬂy
years before parallel sof'tware domrina,tes. It is then natural to ask: « How can we efficiently run
existing software on parallel processor systems?”’ The answer to ;his questiog is Weil-knoﬁn: by
using powerful restructuring compilers. One such powerful restructurer is tl;e Parafrz;,se compiler

developed over the last fifteen years at the University.of Ilinois ((KKLW80], {Wolf82]).

The work in this thesis involves several aspects of parallel processing. The primary chal-
lenge with parallel processor systems is to speed up.the execution of a Sipgle program at a time,
or maximize program speedup (as oppo§ed té minimizing response tirhe, or maximizing
throughput). One of the most critical issues in parallel processing is the design of proceséor allo-
cation and scheduling schemes that minimize executién time and interpfoceséor.communication
for a given program. A significant amount of theoretical work Ahas been done on the subject of
scheduling, .but because of thé complexity of these problems, only a ‘few simple cases have been
solved optimally in polynomial time. Mdreéver, a,lmost‘none of these cases is of practical use.
Another important issue is progfam partitioning. Given a parallel program, we need té) partition
it into a set of independent or communicatin'gs processes or tasks. Each procesé can then be allo-

cated (scheduled on) one or more processors. Program partitioning aflects and can be affected by



several factors. It is a multidimensional optimization problem where the variables to be optim-

ized are not compatible.

Although loops are the largest potential source of program parallelism, the problem of using
several processors for the fast execution of complex parallel loops had not been given enough
attention untii recently [PoKP86), [PaKL80), [Cytr8‘4]. A key problem in .designing and using
large parallel processor systems is determining how to schedule independent processors to execute
a parallel program as fast as possible. We know little about coordinating large numbers of pro-
cessors to execute mult':iply nested parallel loops, and no significant work has been done thus far

to adequately solve this problem.

1.1. Thesis Overview and Related Work

This thesis discusses and proposes solutions to some important problems that arise in paral-
lel processing. Speedup models, scheduling, program restructuring, and program partitioning are
the topics involved. More specifically, Chapter 2 considers three models of program execution
and their associated speedup bounds. A generalization of the Doacross model [Cytr84] is alsb
presented in Chapter 2. Chapter 3 discusses the issue of program partitioning and minimization
of interprocessor communication. An idealized model for interprocessor communic_a,tiori is
developed and then is applied to Fortran programs. Chapter 4 covers the topic of static proces-

‘sor allocation to multiply nested parallel loops. Optimal a,lgorithms' for simple and complex
loops are presented. Chapter 5 presents a compiler transformation that is beneficial to both
static aﬁd dynainic scheduling. This transformation can also be used in certain cases to improve
memory management. The general problem of scheduling independent tasks on a parallel proces-
sor sf;tem and proposed solutions are covered in Chapter 6. Dynamic scheduling of complex
loops and independent tasks is discussed in Chapter 7. A powerful dynamic scheduling algo-

rithm for arbitrarily nested loops is presented. Simulation results for this algorithm and for self-



scheduling are also presented in Chapter 7. A new scheme for parallelizing loops with subscripted

subscripts is presented in Chapter 8. Finally Chapter 9 gives the conclusion of this thesis.

Our work on scheduling differs from the previous work in several aspects. Instead of con-
sidering simplified abstract models [CoGJ78] [Coff76] [KaNa84], we focus on the aspects of
scheduling of real programs. The centra;l issue in this thesis is to develop static and dynamic
sclreduling schemes for arbitrarily nested Fortran loops. Little work has been reported on this

=toplc so far |Cytr84), [PoKP86|, [I'aYe86|, although it becomes an area of great theoretical and

practical interest [Bohk85], [GGKMS83|. This thesis presents optimal static and dynamic solu-
tions for the general problem. The most significant work on scheduling parallel loops has so.far
been conducted at industrial laboratories. Microtasking [Rein86] for example is used At;o schedule
parallel loops on the CRAY machines. However most of these e;forts consider the simp'le case of
singly nested parallel loops. No signiﬁcaht work has been reported for the case 6f multiply
nested loops until recently [PoKP86] [TaYe86]. This is partially justified by the small nilmber of
processors used in real supercomputers; one level of pamllclisrﬁ would be adequate to utilize all
processuis.

A few dynamic scheduling schemes have been proposed in the past few ycars [KrWe85),
[Mann84), [Baiu78]. Most of these schemes are based o'n specialized scheduling hardware or
operating system functions. In the case of hardw;,re schemes the drawbacks are cost and gen-
erality. The majority of these schemes are designed-for special purpose machines [Bain78]; or for
scheduling special types of tasks, e.g. atomic operations. On the other hand, the disadvantage of
dynamic scheduling by the operating system is the high overhead involved. Especially when the
granularity of tasks is small, the overhead involved with the invocz‘Ltioﬁ of the‘ operating system
is likely to outweigh the benefit of parallelism. It is m(;re appropriate to implement dynamic

scheduling without involving the operating system, by using low level primitives inside the pro-



. gram. The most appropriate primitives are naturally various kinds of synchronization instruc-
tions. More recently a lot of attention has been focused on dynamic scheduling through the use
of synchronization [TaYe86] [GGKMS83|. These schemes however involve high run-time overhead
and are not efficient for parallel loops with a complex nest pattern. An algorithm that is

présgnted in Chapter 7 deals with such cases efficiently and involves minimal overhead.

Extensive work has been done on the problem of scheduling independent tasks on parallel -
processors [Sahn84|, [Liu81], [CoGJ78], [Grah72], [CoGr72]. Most of the instances of this prob- |
lem have been proved .to be NP-Complete problems. Optimal algorithms have been discovered
for special cases of the problem that restrict the tasks to be of unit-execution time and/or the
number of processors to be 2. These theoretical results however are of little help to practical
cases. Heuristic algorithms for approximate solutions [CoGJ78], [Codr72], also use simplifying
assumptions that make them difficult to use in practice. 'In Chapter 6 of this thesis we consider
the general scheduling problem. By considering the nature of tasks that occur in Fortran pro-
grams we were able to design optimal algorithms and approximation heuristics that can be used

efficiently in practice.

As mentioned earlier, a vast amount ofl existing software has been coded either in a serial
language (e.g. Fortran, Pascal, Lisp, C), or for a serial machinﬁe. The need to run serial software
on array or parallel machines without reprogramming gave rise to a new research field: program
restructuring. During program restructuring, a compiler or preprocessér identifies the parts of a
program that can take advantage of the architectural characteristics of a machine. Two equally
important reasons for program restructuring are ease of programming and complexity. Coding a
particular problem to take full advantage of the machine characteristics is a complex and tedious
task. For non-trivial programs and on the average, a compiler can perform better than a skillful

programmer. As is the case with traditional code optimization, restructuring can be automated.

-
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Figure 1.1. The shared memory parallel processor model.

A very significant amount of work has been performed on program restructuring primarily in the
case of Fortran [KLPL81], [Kuck80|, [Kenn80]. However more remains to be done in this area.
Chapters 5 and 8 of this thesis present two restructuring schemes that can be used to extract

more. parallelism out of serial Fortran programs and obtain better schedules.

The next section introduces the basic assumptions, notation, and definitions that are used
throughout this thesis. Notation and definitions that are relevant only to a particular section
are given wherever appropriate. A brief overview of the Parafrase compiler that was used for

experiments is also given. Most of the experimental work discussed in this thesis was performed

“and designed in the context of Parafrase (Figure 1.2).



1.2. Basic Concepts and Definitions

The architecture model used throughout this thesis is a shared memory parallel processor
system as shown in Figure 1.1. The machine consists of p processors (numbered 1,2,...,p) that
are connected ‘to a shared memory M through a multistage interconnection network N. The
memory can be interleaved and each processor can access any memory module, or can communi-
cate with any other processor thréugh the memory. Each processor has its own private memory
that can be organized as a cache, register file or RAM. Each processor is a stand-alone unit. It
has its own control unit and can opérate independently and asynchronously from the other pro-
cessors. Our machine model therefore is multiple-instruction, multiple-data or MIMD. We also
assume that each of the processors is a vector or array processor and thus it can operate in
single-instruction, multiple-data or SIMD mode. It is apparent that this taxonomy [Flyn80| can-
- not uniquely characterize our machine model. Another taxonomy proposed in [Kuck78] is used

later to describe the machine model of Figure 1.1.

In this thesis we consider parallel Fortran programs. By parallel, we mean programs that
have been written using language extensions or programs that have been restructured by an
optimizing compiler. For our purposes we use output generated by the Parafrase restructurer
[Kuck80], (Wolf82]. Parafrase is a restructuring compiler vyhich receives as input Fortran pro-
grams and applies to‘; them a series of ma,chine"indepéndent ‘aind machine dependent transforma-
tions. The structure of Parafrase appears in Figure 1.2. The first part of the compiler consists of
a set of machine independent transformations (passes). The second part consists of a series pf
machine dependent optimizations that can be applied on a given program. Depending on the
architecture of the machine we intend to use, we choose the appropriate set of passes to perform

transformations targeted to the underlying architecture. Currently Parafrase can be used to

transform programs for execution on four types of machines: Single Ezecution Scalar or SES
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Figure 1.2, The st-ructurc of PARAI'RASE

(uniprocessor), Single Ezecution Array or SEA (array/pipeline), Multiple Ezecution Scalar or

MES (multiprocessor), and Multiple Ezecution Array or MEA (multiprocessor with vector



processors) architectures {Kuck78]. SES is a uniprocessor machine and optimizations for serial
architectures include the traditional code optimizations used in most compilers [AhU177]. SEA
architectures include all single instruction multiple data models such as vector or pipeline and
array machines. The MES model includes parallel processor systems with serial processors, or
more commonfy referred to as MIMD. In other words MES systems are composed of a set of
independent SES machincs (that may operate out of a shared memory). In case of a parallel pro-
cessor system where each processor has an SEA or SIMD organization, the corresponding‘
machine is called MEA. The machine models used for this thesis are MES and MEA. The
front-end passes or transformations used in Parafrase are applicable to all machine organizations
defined above. In addition Parafrase has a set of back-end transformations for each different

architecture.

~The most important aspect of the restructurer is its ability to perform sophisticated depen-
dence analysis and build the data dependence graph (DDG) of a Fortran program. The DDG is
an internal representation of the program that is used by most subsequent passes to carry out a
variety of transformations and optimizations without viola,tin‘g the semantics of th_e' source pro-
gram. The DDG is a directed graph, where nodes correspond to program statements and arcs
represent dependences. Dependences in turn enforce a partial orde‘r of execution on thé program
statements. For most of our work we make an implicit assumption t-hat Parafrase can supply us
with any compact data dependence graph or CDDG. A CDDG is a directed graph that can be
built from the DDG by condensing se\)eral nodes into a single composite node. A set of consecu-
tive program staterﬁents for example can define a composite node. The ares in DDG’s reprecsent
collections of dependences. Clearly several different CDDG’s can be construcbéd from the same

DDG. As we see later, Parafrase builds CDDG’s that are used by certain transformations.
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There are four different types of arcs or dependences in a DDG. Let s; and 8; be two pro--
gram statements, and suppose that during serial execution s; is executed before s;. If s; and 8;
are involved in a wuse-definition chain [AhUI77], where a variable defined in s; is used in s; (and
is not rea.ssign‘ed in between), then we say that 8; is data or ﬂoiv dependent on s;. If a variable
assigned in s; is used in s;, then there is an anti-dependence from s; to s;. If the same variable
is assigned in both s; and s; (and not in between), then s; is oufput dependent on s;. Finally
the fourth type of dependences are control dependences thal originate from decision (condi-
tional) nodes and point to the statemcnts of the target code. More about dependence analysis

can be found in [Bane79], [Bane76]. We often use the term ‘‘data dependence” to refer to any

type of dependence.

In a restructured Fortran program we observe several types of parallelism and all of them
can be potentially utilized by an MES machinc. We can roughly classify the different types of
parallelism into two categories: Fine grain parallelism and "coarse grain parallelism. Fine grain
parallelism includes the parallel execution of different. statements of the program on differeut pro-
cessors, or even different operations of the same statement 6n different processors or functional
units. Coarse grain parallelism arises from the parallel execution of independent disjoint modules

of the program, or from parallel loops.

Through a series of transformations, Parafrase is able to restructure Fortran loops into a
parallel form. There are three major types of loops in a typical restruéﬂurcd program. Duserial
(or DOSERIAL) are loops that must execute serially on any machine due to dependence cycles.
An important transformation in the restructurer is the do-to-doall pass, that recognizes and
marks Doall (or DOALL) loops. In a Doall loép cross-iteration dependences do not exist and
thus all iterations can execute inv parallel and in any order. A restricted case of a Doall is the

Forall loop. In a Forall loop cross-iteration dependences of constant distance (usually greater
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than one) may exist, but strip mining can be used to execute such loops as Doalls. Another pass
in Parafrase is the do-to-doacross that recognizes and marks Doacross (or DOACR) loops. A
DOACR is a loop that contains a dependence cycle in its loop body. If the cycle involves all
statements in the loop a DOACR is then equivalent to a DOSERIAL loop. Otherwise partial
overlapping of successive iterations may be possible during execution. A DOALL loop can also

be thought of as a special case of a DOACR without dependence cycle in its body.

In addition to restructuring Fortran programs Parafrase supplies the user with program
statistics that include speedup of execution for different numbers of processors, parallel and serial
execution times, and efficiency and utilization measures. For a Fortran program, T, denotes
its serial execution time. Tp denotes the parallel execution time of a program on a p processor

machine. For a given p, the program speedup SpAis then defined as

Tl
s, =—
P

TP

and 0 <E, <1. Often in this thesis the terms parallel execution time and schedule length are

used interchangeably.

The overlapped execution of disjoint modules of a parallel program is referred to as spread-
ing. If spreading is performed for fine grain paralleliism it is called low-level spreading. If high
level or coarse grain para.llel'ism (e.g. disjuint loops) is ueed it is called high-level spreading
[Veid85]. A block of assignment statements (or BAS) is a program module consisting exclusively
of consecutive assignment stateﬁents. A BAS is also referred to as a basic block [AhUl76]. Basic

blocks have a single entry and a single exit statement which are the first and last statements in
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the BAS. A program task graph is any compact DDG. Nodes in a program task graph
correspond to program modules and are called tasks. Arcs represent dependences and are
labeled with weights reflecting the amount of data that need to be transmitted between tasks.
The arcs of a CDDG define a partial order on its nodes. The p;redecessors' of a task are the
nodes pointing to that task. The tasks pointed to by the arcs originating from a given node are
successors of that node. Tasks may be serial or parallel depending on whether they ean exe-
cute on one or more processors. A parallel task may fork or spawn several processes with
each process executing on a different processor. Serial tasks are composed of a single process. A
task i1s said to be active if it can spawn more processes, or if some of its processes have not
completed execution. A task is ready when it does not have predecessor tasks, and it is com-

plete when all of its processes have completéd execution.

A processor allocation is the assignment of a number of processors to each task of the pro-
gram task graph. A schedule is the assignment of tasks to processors under time constraints.
Note -that processor allocation specifies the number of processors assigned to each task but not
the actual binding of tasks to physical processors. Scheduling on the other hand binds a specific
task to one or more physical processors at a specific time interval. Processor allocation takes into
account the timing constraints implicitly. A schedule may be st;ztz'c or dynamz'c.’. A static
schedule specifies the assignment of tasks to processors deterministicall& before execution.
Dynamic séheduliqg performs the binding dynamically at runv~tim‘e‘ in a nondét;errﬁinistic
approach. A variation of dynamic scheduliﬁg is selj-scheduling. During self—échedulirig idle pro-

«

cessors fetch their next process from a shared pool of ready tasks.

A schedule-length is the time it takes to execute a given program (graph) under a specific
scheduling scheme. If a program starts executing at time 1, the execution time is determined by

the moment the last processor working on that program finishes. For the same program graph
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different scheduling schemes have (in general) different schedule lengths. Finish time and com-

pletion time are synonyms to schedule length.

A program variable is shared if it is used in more than one process (and is not a read-only
variable). A barrier is a shared variable that assumes integer values in a fixed range [N, Mj,
where N, M are integers and N < M. A barrier synchronization is a synchronization primitive

that tests and performs increment/decrement operations on a barrier.
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CHAPTER 2

SPEEDUP BOUNDS FOR PARALLEL PROGRAMS

In this chapter we start with a parallel program that is the result of restructuring a serial
program for execution on a parallel processor machine. We discuss different types of parallelism
thot can be observed in such a program, the kinds of overhead involved d‘ur‘ing‘ parallel program
execution, and the effect of task size and scheduling overhead on speedup. We then address the
problem of allocating available processors to different parts of the program and estimating the
possible speedup. Program task graphs have been chosen to provide concrete representations of
parallel programs. These are directed graphs where a node represents a DOACR loop and arcs

represent precedence constraints.

We have restructured LINPACK using Parafrase and computed the fraction of parallel code
for all subroutines. Our results contradict the originnl Amdahl conjeclure that most programs
have at least 10% serial code, and hence can achievo o maximum speedup of 10. The experiments
strongly support the view that there is enough inherent parallelism in real programs so that large

numbers of processors can be efficiently utilized.

2.1. Basic Concepts

A basic sequential machine is n single CPU somputcr that can ca,r-ry out operations serially,
taking one unit of time for each. A p-unit multiple execution scalar (MES) machine is composed
of p identical basic sequential machines, and each processor is driven by its own control unit.
Because of its flexibility, we will consider only the MES machine. It is variously referred to as a

multiprocessor, a parallel machine with p-processors, or simply a p-processor machine.



156

An assignment statement is a statement of the form z = E, where z is a variable and E

an expression. A do across or DOACR loop [Cytr84] with delay d has the form

L:DOACR [ = 1,N
" B
END

where d, N are integer constants, / an integer variable with the range {1, 2,..,N}, Ba
sequence of assi_gnment statements and DOACR loops, and it is understood that the iterations of"
L can be partially overlapped as long as there is a delay of at least d units of time from the
start of iteration ¢ to the start of iteration ¢ + 1, ({ =. 1,2,..., N — 1). For L, the index

variable is I, the number of iterations is NV, and the loop-body is B.

Consider now the two extreme cases of overlapping. If d = 0, there is complete bveﬂap-
ping, i.e. all the iterations of L can be executed simultaneously. In this case the DOACR loop is
called a DOALL loop. If d ‘= b, where b is the execution time (assumed go be independeﬁt of
I) of the loop-body B, then there is no overlapping, ‘i.e. the iterations of L must be executed
serially, one after another. In this case the DOACR loop is a standard serial loop, and we write
DOSERIAL for DOACR. A BAS or a block of assignment statementg is a special kind of ';érial
loop, namely a loop with a single iteration. (A BAS may also be regarded as a special case of a

do all loop.)

A program is a sequence of steps where each step consists of one or more operations that
can be executed simultaneously. A program is serial if each step h.as exactly one operation;
otherwise it is parullel. Two programs are semantically equivalent if they always generate the
same output on the same input. Parallel programs are conveniently represented in terms of do

across loops (Section 2.5).

Let PROG,, PROG, be two eyuivalent programs and let their execution times on a p-

processor ‘machine be T,(PROG)) and TP(PROGZ) respectively. Then the speedup obtained
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(on this machine) by executing PROG, instead of PROG), is denoted by Sp'(PROG’I, PROG,)

and is defined by

T,(PROG,)
S,(PROG,, PROG,) = —————
T,(PROG,)

An immediate consequence of this definition is the following lemma.

Lemma 2.1. If PROG,, PROG,, ..., PROG, isa sequence of programs any two of which are
equivalent, then
n-1

S,(PROG,, PROG,) = TIS,(PROG;, PROG,,,).

=1

We usually write Sp for the speedup when the two programs involved are understood. Of
special intgrest to us is the case' where PROC;'L 1s. a serial program and PROG, is an equivalent
parallel program obtained by restructuring PROG,. In this chapter we assume that the execu-
tion time of a program is determined solely by the time taken to perform its operations, and
that thc total number of operatinns in a program is ncver affected by any restructuring. These
assumptions are not very far from the truth; they help to keep the formulas simple, and yct let
us derive important conclusions. If T, is the number of opcrations in the serial program PROG,,
then I') is also the execution time of PROG, on the basic sequential machine, or on any parallel
machine (i.e., T) = T,(PROG,)). The equivalent parallel program PROG, also has T, opera-
tions, but now these operations are arranged in fewer than T, steps. We call T, the serial exe-
cution time of PROG, and it can be dbtained simply by counting the operations in- PROG,,.
The execution time T, = T, (PROG,) of PROG, on the p-processor machine will depend on tile
structure of the program, the magnitude of p, and the way the p processors are allocated to
different parts of PROG,. To dis@inguish it from T, Tp is referred to as the parallel execution

time of PROG,. The speedup of a program is then the ratio of its serial execution time to its
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parallel execution time.

For a given program, we have the unlimited processor case when p is large enough so that
we can always allocate as many processors as we please. Otherwise, we have the limited pro-

cessor case. These two cases will be often discussed separately.

“There are several factors affecting the speedup of a given program. For example, different
compiler implementations or different compiler algorithms used on the same problem may result
in different speedups. Given a particular parallel machi.ne M.€ M, where M is the universal set
of machine architectures, and a set A of equivalent algorithms (all of which receive the same

input and produce the same output), we can define a mapping:

E,: A — Ry

+

where Ro+ is the set of the nonnegative real numbers and EM.(A,-) = T; is the execution time

of algorithm -AJ- on machine M., Let. A€ A be the algorithm for which

13

Ey(Ay) = mih{EM_(Aj)} and A, be the algorithm we currently have available. Then the
j ]

speedup we can achieve by selecting' A, (the most appropriate algorithm for the specific archi-

tecture) would be:
EM‘(Ac)

Ey(4,)

The selection of the fastest algorithm is the user’s responsibility and it seems unlikely that this
g

S =

[

process will be automated at least in the foreseeable future.

2.2. Restructuring, Program Partitioning and Critical Task Size

In our program model we assume that parallelism is explicitly specified in the form of tasks
(disjoint code segmeuts) which are parallel loops (DOALL or DOACR). This can be done for any

Fortran program written in a serial form by employing restructuring -compilers. In our case
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PAara.fra.se was used to transform programs into parallel form and compute some experimental
values presented in the following eection. Each branch of an IF or GOTO statement is assigned a
branching probability by the user, or automatically by Parafrase [Kuck84]. We can therefore view
any program as a sequence of assignment statements, where each statement.has an accumulated
weight associated with 1t. All loops in a program are automatically normalized, ' Le., loop
indeces assume values in [1,‘ N] for some integer N. As in the case of branehing statements, unk-
nown loop upper bounds are either defined by the user, or_auton‘l‘at,ic:'a,lly by the compiler (using a
default valuc). During parallel execution of the restructured program, data and control depen-
dencies must be observed to assure that program semantics is preserved. For this reason, the

data dependence graph of the program is used by most transformations as a guide.

If we consider a‘block of assignment statements as a loop with a single iteration, a restruc-
tured program can be viewed as a series of outermost DOACR loops with each such loop being
arbitrarily complex. This defines a "natural” partition of a restrectured program into a series of
code segments or tasks. Dependencies may exist between any pair of segx;xents in the peogram.
We can thus define the program task graph as a directed graph G(V, E), where the nodes in V
are the outermost loops L; in the program, and there is an arc from a node L; to a node Lj if
and only if loop Lj depends on loop L;. Sipee backward dependencies are not allowed, G(V, E)

is acyclic.

In a yestructured program we may ohserve two types of parallelism: heriwnlul and vert:-
cal. Horizontal parallelism results by executing a DOAC;{ ]oep on two or more processors, or
equivalently, by simultaneously executing different iterations of the same loop. Vertical parallei-
ism in turn, is the result of the simultaneous execution of two or more different loops (tasks).
Two or more loops can execute simultaneously only if there exists no control or data dependen-

cies between any two of the loops. In the general case the program task graph exposes both
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types of parallelism. When we execute such a task graph on an MES machine, we must decide
how to allocate the available processors to the program tasks so that program speedup is maxim-

1zed.

A serious problem arises when while executing a restructured program on an MES machine,
we attempt to minimize the overheads of communication, synchronization and scheduling. This
is a non-trivial optimization problem, and attempts to minimize such overheads usually results
in reducing the degree of program parallelism. Most instances of this optir;lization problem have
been proven to be NP-Co;nplete [GaJo78]. A heuristic algorithm would attempt to minimize the
communication cost;‘ by‘merging nodes of the graph together to avoid the overhead involved in
communicating data from one processor to another. This héwever often reduces the degree of

available vertical parallelism (Chapter 3).

As an example of node merging, consider two loops L, and L, in our restructured program
model, with data dependencies going from L, to L,. The dependencies restrict the twb loops to
execute in this order since data computed in L, are used by L.2. In this case only horizontal
parallelism inside each loop can be exploited. If we do not coordinate the processo.rs chosen for
thc cxceution of L, and [.,, then data computed inside L, will have to be stored in a shared
memory upon completion of L,, and then fetc;hed from that memory to the proceséors executing

\ .
L,. If on the other hand we consider the two loops as a single task, then we can bind iterations
of L, and corresponding iterations of L, to specific processors. In this rhanner data computed by
a particular iteration of L, and used by the corresponding iteration of L, need only be stored in

fast registers of the processor, thus avoiding the overhead of redundant store and fetch opera-

tions. For relatively small loops the savings by such "task merging" can be very significant.

Task merging can also be used to decrease scheduling overhead that is involved when we

distribute different program nodes across different processors. This scheduling overhead is in
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addition to the synchroni/za.tion overhead and may become disastrous especially for very small
tasks. For the CRAY X-MP for example, the overhead involved with scheduling two parallel
tasks can be Several msecs [Cray85). This overhead imposes a minimum size on parallel tasks,
below which the speedup becomes rathe£ a slowdown (i.e, S, < 1). We call this the critical

task size.

If during the execution of a program we schedule a set of parallel tasks, the parallel cxecu-
tion time is augmented by O, where Oy is the scheduling overhead. The maximum expected

speedup Lhierefore is glven by

T,
S, =

o —_—
’ T./p + Op
In order to have a speedup of at least 1, we must have T, > T,/p + Or, ie,
T, > p*Oy; / p-1 which gives the critical task size as a function of the overhead and the

number of processors. More generally, the minimum program size T, required to obtain a given

*
speedup S on p processors should satisfy:

Tmin * P*OT*S’
>SS, o T, = E—
Tmin/p + OT p -5

Program partitioning for minimizing data communication and scheduling overhcads is a

complicated optimization problem and it is the subject of the next chapter.

2.3. General Ronunds on Speedup

In this section we consider an arbitrary parallel program, and think of it simply as a
sequence of steps where each step consists of a set of operations that can execute in parallel.
The total number of operations (and hence the serial execution time) is denoted by T,. Let p,

denote the maximum number of operations in any step.
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Suppose first we are using a p-processor system with p > p,. (This is the unlimited proces-

sor case). Let ¢, T, denote the number of operations that belong to steps containing exactly i

operations, (¢ = 1,2,..., pg). Then ¢; is the fraction of the program that can utilize exactly 1
po Po
processors, and we have Y ¢, = 1. We call f = Y] ¢, the parallel part of the program or

the fraction of parallel code, and 1 — f = ¢, the serial part of the program or the fraction of

sertal code. (At least p — p, processors will always remain unused.)

Consider now a limited processor situation with a p-processor machine where p < po- The
steps with more than p operations have to be folded over and replaced with a larger number of
steps with p operations. (For simplicity, we are assuming that each new step has exactly p

operations, although one of them may actually have fewer than p). Let f, = f.,(p) denote the

fraction of the modified program that can utilize exactly ¢ processors, (¢ = 1, 2,..., p). Then we
have

Po

fi= ¢, (i = 1,2,..,p - 1), and [, = Y 4.
i=p
p
As long as p > 2, the paralle] part f is given by 3] f. and the serial part 1 — f by f,.
§=2

An arbitrary p-processor machine is assumed in the folfowing. The first two results are

well-known [Bane81], [Lee77).

1
SI’

~

Theorem 2.1. =

1

* T
i=1

Proof: When executing on a p-processor machine, the fraction of the program that uses exactly
i processors is f; T, (1 = 1,A2,..., p). Hence, the number of steps where ¢ processors are

5T,

:

active is . The total number of steps is then given by
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P LT,
Tp= Y, = le—_.

i=1 ! i=1 ¢

Since T, is the serial and Tp the parallel execution time of the program, we get

L _ Lk, -
Sy T, i=1 !
Corollary 2.1. 1X5, <p.
oL .
Proof: We have f;, > — > — (¢ =1,2,., p). Hence
0 P
r »f, r T,
- Xhiz2 Y — 2 X
i=1 i= * i=1 P
r 1
o, 1239 = > —
im ! p
: 1 1
so that 1 > — > —,
Sn P
ie. 1 <5 < p.®
Corollary 2.2. S, <1v/f;

Corollary 2.3. The speedup S,, the number of processors p and the fraction of parallel code

f satisfy (forp > 1)

)4
s, < : 2.1)
P S+ = )y (
5 -1 4
[z ———t (2.2)
Sp p -1
15, 4
and p > . - (2.3)
1-(1-/)S,

Proof: These three inequalities are equivalent; from any one the other two can be derived easily.

Note that
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~ P f’, P f‘_ p f’, i '
Y =h+YX —2h+X —=l-f+7
i=1 ® i=g ° i=2 P p
since f = Y,f;, and f;,=1 — f. Then by Theorem 2.1, — > 1 — f + “—, so that
§=2 Sp p
s, < 4 -
f+ @ =7

Now, assume we have a program that can use a maximum number of p, processors. If the

fraction ¢, of ‘serial code in it is very small, we can choose p (> 1) processors such that

Po \
fp = Y, ¢; =1. Then, since
i=p
— = ) — + T we get
S, iz ¢ P
Ak, \
1P Sl DIl D 3T F i P
i S, P li=1 * | i=1 :

or equivalently, Sp ~op /fp & p. Thus, if for some p > 1, }; ¢, = 1, then the program

i=p
runs very efficiently on a p-processor system giving an almost linear speedup. In this case, given

the coefficients @, for the particular program, we can always determine the maximum number of

processors that would get a linear speedup.

Because of Corollary 2.2, Amdahl and some other researchers thereafter questioned the use-
fulness of very large MES systems, since, according to their argument, the majority of programs
ha'Ve. an average of more than 10% serial code and therefore their speedup on any MES machine

is bounded above by 10.

We conducted some cxperiments to measure the fraction of parallel code f in LINPACK, a

widely used numerical package for solving systems of linear equations. Knowing the serial
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Sub. Name f Sub. Name f Sub. Name f
SPOFA 0.9997 | SSIFA 0.9862 | SPBFA 0.9257
SQRDC 0.9988 | SPODI2 0.9853 | SGBFA 0.9189
SPBDI1 0.9975 | SGESL1 0.9807 | SGBSL2 0.9164
SGBDI1 0.9974 | SSISL 0.9806 | SGBCO 0.8561
SGEDI2 0.9961 | STRSLO 0.9773 | SPBCO 0.8314
SQRDC1 0.9961 STRSL1 0.9773 SSIDI3 0.7353
SSIDI2 0.9961 SPOSL " 0.9767 SGBSL1 0.6545
SSVDC1 0.9954 | SGESL2 0.9762 | STRCO 0.6113
SPODI1 0.9950 | STRSL2 "~ 0.9753 SPBSL 0.5659
SSICO 0.9905 | STRSL3 0.9753 | SGTSL 0.5295
SQRSL1 0.9900 | SPOCO 0.9751 | SPPDI © 0.5064
SQRSL2 0.9900 | SPPCO 0.9746 | SSPSL 0.4010
SQRSL4 0.9900 | SSIDI1 0.9746 | SPTSL 0.3799
SQRSL5 0.9900 | SGEDI1 - 0.9745 SSPDI 0.3615
SSPCO 0.9896 SGECO 0.9664 | SSPFA 0.1348
SQRSL3 0.9868 | SPPSL 0.9629

SGEFA 0.9862 | SPPFA 0.9350

Table 2.1. Values of f for LINPACK subroutines.

execution time T, the parallel execution time T, and the number ol processors p that were used
during the execution of a subroutine, we can easily compute a lower bound for f from (2.2). All
ﬁthe above parameters are supplied by Parafrase. On the other hand, if the value of f for a par-
ticular subfoutine 1s known and we want to achieve a specific speedup Sp for this subroutine,

then (2.3) gives us a lower bound on the number of processors that we must use.

The sorted lower bounds of f are shown in Table 2.1. The measurements were done on
LINPACK subroutines after they had been restructured by Parafrase. From Table 2.1 we
observe that the majority of subroutines have a very high fraction of parallgl code. For the ﬁr.ét
37 subroutines (out of 49), the average fraction of éarallel code was f > 0.9784. Almost 76%:

of the subroutines have f > 0.9 and only 18% have f < 0.8.
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Considering that LINPACK is a typical numerical package not very amenable to restruc-
turing, the results of Table 2.1 are ‘.lery encouraging. EISPACK for example (another numerical
package), should be expected to have a much higher value of f than LINPACK [Kuck84]. Since
several numerical packages are more amenable to restructuring than LINPACK, we should be
more optimistic when designing large multiprocessor systems. The claim for the non-
effectiveness of systems with large numbers of processors is mostly based on programs that exhi-
bit an f < 0.9. As mentioned in Section 2.2, the real performance threat for large MES sys-

tems lies in scheduling and interprocessor communication overheads.

7

Secondly, we should consider all possible operating modes of a multiprocessor. There is no
question that there exist numerical programs that could fully exploit hundreds or thousands of
processors. For programs that utilize only a few processors, MES systems can be operated in a
multiprogramm/ing mode to keep system utilizatior; high. The question then breaks down to
whether we caﬁ have sites with e;nough' users (workload) to keep system utilization at acceptable

levels. The answer to this question is rather obvious.

2.4. Speedup and Processor Allocation for Task Graphs

We consider here an arbitrary parallel program represented by a task gr@ph G =G(V,E).
Recall from Section 2.2 that this graph is defined on a restructured program with nodes
pepresenting outermost DOACR loops, and arcs representing data and control dependencies
among loops. Let there be n nodes in V: v, v,, ..., v,. These nodes can be partitioned into
disjoint layers V,, V,, ..., V,, such that (1) all nodes in a given layer can execute in parallel,
and (2) the nodes in a layer V,,; can start executing as soon as all the nodes in layer V; have
finished, (i = 1,2,..., k — 1). To construct this layered graph of G, we use a modified

Breadth First Search scheme for labeling the nodes of the graph. Initially, the first node of the
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PROGRAM TASK GRAPH

LAYERED TASK GRAPH

Figure 2.1. A example of a program task graph and its corresponding layered graph.

graph (corresponding to the lexically first loop of the program), is labeled 1 and queued in a
FIFO queue @. At each following step, v;, the node at the front of @ is removed, and if ¢ is its

label, all nodes adjacent to v; are labeled ¢ + 1, and are queued in @. Note that a node may
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be relabeled several times but its final label is the largest assigned to it. When @ becomes
empty, the labeling process teurminates and we get the layered graph by grouping all nodes with
label z into layer V, An example of a prbgram task graph and its corresponding lz;yéred task
gréph is shown in Figure 2.1. We consider below three execution models of a layered ‘tésk graph

on a p-processor MES machine. The most general and the two extreme cases are discussed,

‘As usual T, denotes the total number of operations in the whole program. For a node v,

let g;T, denote the number of operations in the node and ij its parallel execution time,

n - o
(/ = 1,2,...,n). Then }; g; = 1. The absolute speedup S’;:- of v; is the speedup obtained
i=1

by considering the node separately as a program and is given by S:,- = 9; T,/ ij.

Case 1. (Horizontal parallelism). Let k¥ = n and each layer V; consist of a single node v,
(¢ = 1,2,.,n). To get the maximum speedup for the whole program on p processors, we

need to get the maximum: speedup for each node. Detailed formulas are given below.

- . : R . .
The relative speedup S'p,. of v; is the speedup of the whole program when only v; is exe-

cuted in parallel and all other nodes are executed serially. Thus

T
R 1
Sy =

Ty- 6Ty + Ty

Lemma 2.2. The absolute and relative speedups of a node v; are connected by the equation

9; 1 )
— = ——=1+4 g (¢t = 1,2,.,n)
SA SR

pi ps

Proof: It follows directly from the above definitions. @

Theorem 2.2. The speedup Sp of the whole program (when all nodes are executed in parallel) is

related to the absolute and relative speedups of the individual nodes by the following equations:
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1 " "
b b

Corollary 2.4. If all n nodes give the same absolute speedup S: , then S’: = Sp. If all n nodes

give the same relative speedup Sf, then

np n
<—

sk :
np —p +1 n — 1

4

IA

n
Proof: The first assertion follows immediately from the above theorem, since Y3 g, = 1. For

i=1

the second, we see that when the relative speedups are all oqual

n
1 1 n
———=E—R—=n+l———R'—n+l.
Sy i=1 S5, S,
Since S, < p, this implies

n

"—’;—n—|=12—or

S, p

st —— - — — 2 —"—n
np = p + 1 1 n -1

n — 14+ —

Y
Each node of the graph can be an arbitrarily complex nested loop containing DOSERIAL,
DOALL, and DOACR loops. The problem of optimal static processor allocation:to such nodes has

been solved optimally and is discussed in Chapter 4.

Corollary 2.4.1. A program can not be partitioned into n disjoint segments so that the rcla-
tive speedups are 1, 2, ..., n respectively, for n > 3.
Proof

If there was a program with the above property, then from Theorem 2.2 we would have,
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1 "1
— = YXT-M-1)=4H - -1
Sy i=1?

where H_ is the n-th harmonic number and therefore,

1
Sy= <0
H - (n -1)

because forn > 3wehave H, < (n - 1). 8

Corollary 2.4.2. If a program is partitioned into n disjoint segments with all segments having

1 .
a relative speedup s = —S,,and if n < p - 1, then
n
1
Sp = n + 1 and therefore SR = 2+l (2.4)
n
Proof: By substituting S® in Theorem 2.2 we get,
R ? 1)S
1 n —(n -~ 1)§ . n" ~- (n - 1)5,
== - =
, Sy S S
and after simplification we have n? - (n - l)S'p — 1 = 0. Solving for S,, we finally get
Sp = n + 1.8

Case 2. (Vertical parallelism). Let the task graph be flat, ie. let there be a single layer V
consisting of n nodes. This is the case when no dependencies exist between é.ny pair of nodes.
Here we may exploit vertical parallelism by executing all program nodes simultaneously. We con-
§ider the extreme case where each node requests-exactly one processor. Since each node is allo-
cated one processor, if n < p the execution time is dominated by the largest task. In the gen-
eral case bin-packing can be used to evenly distribute the » nodes into p bins. In Chaptei 6 we
discuss D&F, a heuristic algorithm for this case. This algorithm performs better than Multifit,
the best known heuristic so far [CoGJ78). Then, if b;,, 1 < ¢ < p denotes the largest bin, we

have the following theorem.
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Theorem 2.3. The total speedup resulting from the parallel execution of an n-node flat graph

on p processors, where each node is allocated one processor, is given by

1
29,’

UJE b;

Sp =
Proof: The proof follows directly from the definition of speedup and the assumptions stated

above. B

Corollary 2.5. If n < p then
1
Sp = .
ma'x(glx g2) rgn)

Proof: This follows from the previous theorem since each bin contains one node. ®

Case 3. (Horizontal and vertical pa.réllelism). In the most general case we have a program that
exhibits both types of parallelism, horizontal and vertical. In other words, the task graph con-
sists of k (> 1) disjoint layers V|, V,, ..., V. with at least one layer containing two or more
nodes (Figure 2.1). If |V, | is the cardinality of the i-th layer, we assume that |V, | <p,
(¢ = 1,2,., k). (In thg case of |V, | > p we fold and fuse nodes such that |V; | <»p
(Chapter 6).) Our aim in this case is to exploit horizontal and vertical parallelism in the besl;
possible way. Maximizing speedup is equivalent to minimizing parallel execution time. For each
node of the task graph v;, We define r; to be the maximum number of processors that the node
could use. When r; = 1, (7 = 1,2,..., n) our problem is reduced ‘to the classical multipro-
cessor scheduling problem, which has been proved NP-Complete [GaJo78]. Our general problem
can be reduced to the latter one by decomposing each node v into r; independent sub-nodes of

equal size. This trivially proves that our problem is also NP-Complete. Heuristic solutions are

therefore the only acceptable approach to solving the problem suboptimally in polynomial time.
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In Chapter 6 we discuss an efficient linear-time heuristic algorithm for allocating processors
to general task graphs. The total program speedup on p processors that results from the applica-

tion of this heuristic is given by the following theorem (Chapter 6).

Theorem 2.4. The total program speedup that results from the parallel (vertical and horizon-

tal) execution of a k-layer task graph on p processors is given by

s here L
S, = - where ;= fl::/(. 4 (2.5)
2N U
i=1

where S:} is the absolute speedup of node v; when p; Processors are allocated to it.
Note that Theorems 2.2 and 2.3 are special cases of Theorem 2.4. If the graph is reduced

to a flat graph, then k=1 and Corollary 2.5 holds. On the other hand, if each layer contains

one node (linearized) then ¢; = 11in (2.5), ({ = 1,2, ..., k), and thus Theorem 2.2 holds true.

2.5. Speedup and Processor Allocation for DOACR Loops

In this section we focus on a single node of the task flow graph representing the given pro-
gram, i.e. a DOACR loop. We extend and generalize the do across xﬁodel, to allow for idle procés—
sor time caused by do across delays. In [Cytr84| it is assumed that no processor may become
idle unless it completes all iterations assigned to it. This is true only in certain special cases. As
we shall see later by means of an cxample, each processor may have t';o idle between successive
iterations. The following theorem generalizes the do across model and accounts for idle processor
time.

Theorem 2.5. Consider a DOACR loop with IV iterations anfi delay d, and let b denote the exe-
cution time of the loop-body. Then p processors can be allocated to the iterations of the loop in

such a way that the speedup is given by 5, = Nb/Tp, where
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DOACRI = 1,8 {d=4}

}10
END
Procl Proc2 Proc3
2¢
49 i1 —
6¢
8¢ i —
109 —
T 12
P i3
I 14¢ —
169 i4 -—‘
M 8 —
22¢ —
24. m— .
16
269 . —
28¢ 7 — .
309 —
32¢ i8
34¢ —
369
38 |
Figure 2.2. An example of the application of Theorem 2.5 forp = 3.
T, = [[N/p] - I]max(b,pd) + d{(N - 1)mod p) + b (2.6)

Proof: Let us number the iterations 1, 2,..., N in their natural order and the processors
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1,2,...,, p in any order. The processors are allocated to the iterations as follows. Assume first
that N > p. Iteration 1 goes to processor 1, iteration 2 goes to processor 2, ..., iteration p goes
to processor p. Then' iteration (p + 1) goes to processor 1, etc., and this scheme is repeated as
many times as necessary until all the iterations are completed. We can now think of the itera-
tions arranged in a [N/p] X p matrix, where the columns represent processors. If N < p, we

employ the same scheme, but now we end up with a 1 X N matrix instead.

Let t, denote the starting time of iteration k, (k = 1,2,., N), and assume that
t, = 0. Let us find an expression for‘tN. First, assume that N > p. For any iteration j in
the first row, the time t; is easily found:
t;, = (7 - 1d (7 = 1,2,.,p)
Now iteration (p + 1) must wait until its processor (i.e., processor 1) has finished executing
iteration 1, and d units of time have eia,psed since L, the starting time of iteration p on proces-

sor p. Hence

¢

o1 = max (b, ¢t

, + d) = max(b, pd)

The process is now clear. If we move right horizontally (in the matrix of iterations), each step
amounts to a time delay of d units. And if we move down vertically to the next row, each step
adds a delay of max(b, pd) units, Thus the starting time ¢, for an iteration‘that lies on row
and column j will be given by |

t, = ({ — )max(b,pd) + (j — 1)d
For the last iteration, we have i = [N /p]and

{Nmodp if Nmodp > 0
] =

p otherwise

Since j — 1 can be written as (N — 1) mod p, we get
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ty = [fN/P] - l)ma.x (b, pd) + d((N = 1) mod p).
Now let N < p. It is easily seen that

ty =(N - 1)d
= [[N/P] - l]max (b, pd) + d((N — 1) mod p).-
Finally, since the parallel execution time Tp is given by Tp = t5 + b, the proof of the
theorem 1s complete. B
Figure 2.2 shows an example of the application of Theorem 2.5. The DOACR loop of Figure 2.2
hias 8 iterations, a delay d = 4, and a loop-body size of 10. The total parallel execution time
onp = 3 processors is 38 units, as predicted by Theorem 2.5. We can maximize the speedup of

an arbitrarily nested DOACR loop which executes on p processors by using an optimal processor

allocation algorithm described in Chapter 4.

Corollary 2.8. Consider a sequence of m perfectly nested DOALL loops numbered 1, 2,..., m

from the outermost loop to the innermost. Let S, denote the speedup of the construet on a p;-
. ]

processor machine when only the ¢th loop executes in parallel and all other loops serially,

m
(! = 1,2,.., m). Then the speedup S, on a p-processor machine, where p = I1p; and p;
' i=1
m
processors are allocated to the 7th loop, is given by S, = ITS, .
i=1

2.8. Multiprocessors vs. Vector/Array Machines

In this section we consider an application of Lemma 2.1. Generally in a restructured pro-
gram we have vector constructs that can execute in parallel on an SEA system. Let S, denote
the speedup that results by executing a program PROG, on an SEA machine. Obviously vector

statements can be executed in parallel on any MES system as well (perhaps with a significantly
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higher overhead). Do across loops with d > 0 can execute in parallel only on MES systems.
Leﬁ; S,, denote the additional speedup we achieve by executing the DOACR loops of PROG with
d > O0in parallel. Finally, let S, denote the additional speedup that results by overlapping dis-
joint code modules during execution (vertical parallelism or high level spreading). If Sp is the
total speedup we obtain by executing PROG on an MES machine, then froh Lemma 2.1 we have
Sp = S,*S,*8,
It is clear that for SEA systems we always have S, =1 and S, = 1, while for MES systems all
three éomponents may be greater than one. If Sgp, (PROG) and Sy;ps(PROG) denote the overall

speedups of PROG for SEA and MES systems respectively, then

Sues = Su* Sp* S5,
Assuming no overhead of any type or the same overhead for both systems, the S, term should
have a value that depends on the program characteristics (and is independent of the machine

architecture). For each program we can therefore measure the additional speedup offered by MES

systems. Let us define «(PROG), the MES superiority indez as follows.

o(PROG) — SuesPROG) _ o o g
Segga(PROG) " °

where 1 SA o(PROG) < P. « is computed on a program basis and can be used as a relative

performance index for MES architectures (PROG can execute o times faster on an MES system

than on an SEA machine).
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CHAPTER 3

PROGRAM PARTITIONING AND INTERPROCESSOR COMMUNICATION

In this chapter we consider two closely related problems: Program partitioning and inter-
processor communication. These are two popular terms in parallel processing, but there is no
precise definition as to what their meaning and use are [GGKMBS83|, [Ston77], [Veid85]. Intuitively
these two terms are self-explanatory: Program partitioning refers to the process of breaking a
program down to smaller components, but this can be done by using several different approaches
and for different objectives. Questions like how we partition a program, what are the boundaries
between partitions or parts, how we define a “part”, what are the trade-offs and the precise goals
of program partitioning remain largely unanswered. The term “interprocessor communication’
is also self-explanatory. But similar questions about the precise meaning of interprocessor com-
munication and its impact on program execution have no unique answera. Also, we do not have

available a methodology for quantitatively characterizing these terms.

Here we attempt to define more precisely the problems of program partitioning and inter-
processor communication, to model them, identify the variables involved and quantify them. We
see below thal program partitioning, interprocessor communication, parallelism, and data depen-
dences are all closely related. Recall that our machine model is a shared memory parallel pro-
cessor system as sﬁown in‘Figure 1.1. The processor-memory interconnection network can he a
multistage interconnection network or a bus. In Figure 1.1 we also have a dedicated processor-
to-processor interconnection network. As usual we consider the case of the dedicated execution

of a single parallel program. Data dependences were also defined in Chapter 1.
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Let us consider initially the problem of interprocessor communication for the case of a 2-
processor system. During the parallel execution of a program, different program modules will
execute on different processors. Since both processors work on the same program there should be
some coordination among them. One processor must “inform” the other at certain instances
about specific events. The process of information exchange between two or more processors exe-
cuting the same program is called interprocessor communication. We can distinguish two
types of interprocessor communication: Data communication, during which one processor
receives data that it needs from other processors, and control communication, where processors
exchange control information, for example to announce an event or to coordinate exe;,cution. Data
communication is mostly program dependent. Control communication depends highly on. the
architecture of the machine and is necessary only because it is needed to impose an order under
which specific events must take place (e.g. order of execution). Both types of interprocessor com-
munication are significant because both are reflected as overhead in the total execution time of a

program.

Control communication is involved in activities such as barrier synchronization, semaphore
updates, or invocations of the operating system. Control communication is usually involved in
data communication as well, as shown later. For the most partv in this chapﬁer, we ignore con-
trol communication or assume that it takes a constant amount of' time to check/update a sema-

phore, set a flag, or activate a process.

As mentioned in Chapter 1 from the DDG of a program we can derive different compact
DDG’s or CDDG’s with nodes representing blocks of code (instead of statements) and arcs
representing collections of dependences between nodes. Each different CDDG defines a different
program partition. Later in the chapter wbe see how to construct the appropriate CDDG .or pro-

gram partition. Let G(V, E) be a compact data dependence graph of a given program. This
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directed graph G(V,FE) is called the program task graph or simply the task graph. The nodes
V of G are the tasks of the program and arcs E represent data dependences among tasks. Each
node v; € V makes a request for r; processors (i.e., task v; can use at most r; processors). We
have serial and parallel tasks when r; = 1 and r; >1 respectively. During program execution a
parallel task spawns two or more processes. A parallel loop for example can be considered a
parallel task with one or more iterations forming a process. A task graph may bhe cemneoted or
disconnected. The cardinality of G is the number of connected subgraphs in G. If |G|=|V]
theu any parallel execution of 7 will involve an interprocessor communication of zero. The
indegree of a node of G is the number of dependence arcs pointing to it, or equivalently, the
number of immediate predecessors of that node. Similarly we define the outdegree of a node to
be the number of immediate successors or the number of arcs originating from that node. The
indegree of a subgraph G" of G is the number of arcs u —w of the form u does not belong to G,
and 'UGG,. The outdegree of G" is the number of arcs of G such that u—w, uGG" and v does
not belong to G A node or subgraph of G is said to be ready if its indegree is zero. Note that
if we execute data independent program modules (i.e., with zero indegree) in parallel, data com-
munication does not occur. All nodes of a subgraph with zero indegree can be executed in paral-
lel. Consider the two loops of Figure 3.1. The second loop is data dependent on the first loop.

However we can still execute them in parallel, each on a different processor assuming synchron-

ized write/read access to array A by each processor.

3.1. Goals and Trade-offs

The goal of this chapter is to study the problem of minimizing overhead due to interproces-
sor communication. Communication overhead obviously occurs at run-time, but we want to deal
with the problem at compile-time (the reason being that any extra run-time activity will incur

additional overhead)” We will develop techniques that will be applicd to the source program at
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DO i=1,n
S1: .l.\(i).= B(i) * C(1)

ENDO

DO i=1,n
S2: 6(i)'= A(i) + E(1)

ENDO

Figure 3.1. Example of data communication.

compile-time and will result in the reduction of cqmmunication at run-time. Our main criterion
is to design thAese schemes such that when applied to a given program, they do not reduce the
degree of potential parallelism in that program. In other words, if PROG, and PROG, denote a
parallel program before and after these schemes are applied, the execution time of PROG, on a
p-processor machine under any scheduling policy will be less than or equal to the execution time

of PROG, under the same scheduling policy.

Now let us see how communication takes place between two tasks u and v where v is data
dependent on u. If during exccution u and v run concurrently on different processors, data com-
puted in u m.ust be sent to v and the overhead involved is explicitly taken into account.
Another alternative is to execute u to completion and thereafter execute v on the same
processor(s). Thus data computed in # and used by v can reside in the corresponding
processor(s), and therefore no explicit communication through the interconnection network is

needed. In such a case the communication overhead would be zero. Yet another alternative is to
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execute v after u has completed, and possibly on a diﬁeren£ set of processors. In this case we
assume the existence of prefe'tch-z'ng- capabilities in the system (e.g., Cedar machine), i.e., the
data computed in u and used by v are written into the shared memory (upon completion of u)
and prefetched (for example to registers) before v starts executing. The communication overhead
in this case will also be zero. Note that this latter approa;:h allows other tasks to execute
between the time u completes and the time v starts. It also takes care of local memory limita-
tions, e.g. when the processor(s) éxecuting u is unable (due to memory limitations) to keep the
data needed by » until v starts executing. In summary, we can not avoid overheads due to ‘“real
time”’ comrﬁunication that occurs when tasks execute concurrently, but by using appropriate
techniques we can eliminate or reduce this overhead when the tasks involved execute on different

time intervals.

From the above discussion it becomes apparent that the approach we will use is to reduce
interprocessor .communication by disallowing high level spreading whenever appropriate. It is
clear that by prohibiting high level spreading we reduce the degree of potential program parallel-
ism. As shown later however, this is done only When it can be guaranteed that the savings in
interprocessor communication outweight the potential loss of parallelism irrespectively of the

scheduling scheme used.

In what follows when we explicitly prohibit two or more (data dependent) tasks from exe-
cuting concurrently, we say that these tasks are merged. Thus task merging doca not lexically
merge tasks but it implies that the merged tasks can execute on the same or different sets of pro-
cessors, but on different time intervals. This restriction can be relaxed for certain cases as shown
later. For the purpose of this work we assume that merged tasks execute on adjacent time inter-
vals (one after the other), é,nd the data computed by one task .reside in local memory until the

successor task can use them. During execution each task is assigned a set of processors which
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remains fixed throughout execution of that task, or varies dynamically during execution.

1

The procéss of merging defines a partition of the program into disjoint code modules or
tasks. Program partitioning is the end-product of minimizing communication overhead. We wish
to have a structure that represents a program without ‘“hiding” any of its parallelism. This
structure should be a low-level representation of the program, and in our case the best one is the
data dependence graph (DDG). Any other higher level program graph can be derived ffom the
DDG lby merging together some of its nodes. Merging however may hide some of the parallelism
inherent in the DDG. The extreme case is considering the entire program (DDG) as a single node
(task). (It should be emphasized that we are not concerned about how to schedule 2 program
graph at this point; and the material of this chapter is applicable to any scheduling scheme.)
Since merging reduces the degree of parallelism, it should be done only when it can be proved
that the (resulting) reduced graph will have a shorter execution time than that of the previous
graph, under any scheduling scheme. Clearly independent tasi(s can never be merged, unless

scheduling overhead is taken into account and that is the subject of Chapter 7.

In the following sections we propose optimal and near-optimal solutions to the problems of
program partitioning and minimization of interprocessor communication. First we consider an
idcalized program model consisting of atomic operations, and without céarse grain constructs.
All atomic operations have equal execution times. Even though this is not a very realistic pro-
gram model, a few functional programs fall into this category. We propose a model for quantify-
ing interprocessor communication for such programs, and present an algorithm that generates
optimal partitions for chains of tasks. This algorithm also generates optimé,l

time/communication schedules for this particular case.

Then we consider the case of real Fortran programs and show how some of the above ideas

can be applied to real programs. The algorithm mentioned above can be used to obtain optimal

'
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partitions of straight-line code in Fortran programs, chains of serial loops, and some types of
parallel loops. However the idiosyncrasies of Fortran do not permit a direct mapping to the
idealized model. Furthermore, these idiosyncrasies can be used to our advantage to obtain fast,
efficient partitions of real programs heuristically. These partitions are locally optimal and are

appropriate for efficient execution on real parallel machines.

3.2. More on Communication and Partitioning

For the rest of this chapter interprocessor communication refers to data communication
alone, unless stated otherwise. Let u; denote the task (program module) assigned to processor 1,
in a parallel processor system with p processors. Then interprocessor communication, or data
communication from processor ¢ to processor j, takes place if and only if U is data or flow
dependent on u;, or when data computed in u; are used by u;. Note that anti-dependences and
output dependences are satisfied through control ;:ommunica.tion only. Therefore data communi-
cation refers t;) interprocessor communication that involves explicit transmission of data between
processors. We use S5;(¢) to denote the amount of data sent by processor ¢ to processor j.

Similarly Rj(z') denotes the amount of data received by processor j from processor . For each

task, B;(7)=5;(i). If {i},..., 4} is a set of tasks that execute in parallel, then

k
R(iy,ig. %) = S;(iyig.niy) = 33 S;(i,)
m=1

Let us define the unit of data to be the value of a scalar, and the communication unit 7
to be the time it takes to transmit a unit of data between two processors. Then the time spent
for communication during the concurrent execution of the two loops of Figure 3.1 on two proces-

sors would be T*n.
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Interprocessor communication takes place only during the parallel execution of data depen-
dent tasks. By executing such tasks in parallel we may reduce the execution time if the amount
of communication is not too high. Clearly there is a tradeoff between parallelism and communi-
cation. Communication is minimized when all tasks execute on the same processor; parallelism
however is also minimized in such a case. Parallelism on the other hand tends to be maximized
(or equivalently execution time tends to be minimized) when each task executes on a different
processor. This however maximizes int;erprocessor. communigation. The problem of simultane-
ously maximizing parallelism and minimizing communication is a hard optimization problem
that has been proved NP-Complete [Ston77], [GaJo79]. Communication takes place to satisfy

.data dependences. Another way of viewing this relation is the following: communication

quantifies the notion of flow dependence between different tasks.

We can intuitively define the degree of pa;-allelism as the number of ready tasks at any
given moment. Obviously in a system with p processors we Want the degree of parallelism to
always be at least p. In general, the degree of parallelism and interprocessor communication are
incompatible. The goal during program partitioning is to decompose the program as much as
possible to keep the degree of parallelism close to p, and at t?he same time to have as many
independent tasks as possiblé to keep interprocessor communication low. Uéually it is impossible
to optimize both objectives since optimizing one counteroptimizes the otiler. For certain cases

however there is an “‘equilibrium” point that minimizes the parallel execution time.

In the following sections we develop a formal model for interprocessor communication and
study the impact of data communication on execution time. For special types of program grapﬁs
we can obtain optimal partitions for an unlimited number of processors, and optimal processor
allocations for a limited number of processors, where execution time is minimized also taking

into account interprocessor communication. Then we consider program partitioning for the
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specific case of Fortran programs and show how the above model can be applied to minimize

data communication between certain types of Fortran tasks.

3.3. Methods for Program-Partitioning

There are two approaches for partitioning a program. The top-down approach starts with
a single task which is the eﬁtire program. Then following some rules it decomposes the program
into smaller tasks in a recursive way. The second is a bottom-up approach. Starting with the
lowest le\(el graph representation of the program, it tries to merge nodes together to form larger
tasks. The best low level representation of a program is the DDG. In both cases we have to
split or merge nodes repeatedly until 1) we have enough tasks to assign to p processors at each
moment during exeéution, and 2) the splitting/merging creates tasks that are ‘‘as independent as
possible”. Heuristic algorithms could be used to obtain a suitable partition. In terms of avail-
able information, the bottom-up composition is superior to the top-down decomposition. This is
true since during decomposition of the entire program we do not have information about its
internal structure, and extensive searching must take place. During composition however, we
have information about the global structure of the program (that can be easily maintained by
the compiler) as well as about its basic components. We can therefore perform local optimiza-
tions that may be impossible or very expensive to do in the top-down approach, For wha.ﬁ fal-
lows we assume that pfogram partitioning is performed through composition starting from the

X

data dependence graph of the program.

Let G; = G;(V,,E;) be a directed graph. Our approach to program partitioning is to start
from G, the DDG of the program, and through a series of transformations that create a
sequence of CDDGs G,,Gj,...,G,_,, construct G, which gives the program task graph and there-

fore the final partition. Since the construction of the program graph is done through composition



45

we have |V I<IV,I<--- <V, | and |E||< - - <]E,}. G, will have enough tasks to keep all
p processors busy while minimizing interprocessor communication. Our approach to program

partitioning involves the désign of exact and approximation algorithms that accomplish the fol-

lowing goals.

o Tasks are merged together if and only if the resulting graph is better
(in terms of execution time) under any circumstances, i.e., under any
scheduling scheme and for any number of processors.

o Optimal partitions for special types of graphs with serial nodes.

e Optimal partitions for special types of graphs with serial and parallel
nodes and for an unlimited number of processors.

e Near-optimal partitions for general task graphs.
e Efficient near-optimal partitions for task graphs of real Fortran programs.
Nodes are merged only if data communication is very high. In this way we reduce only the

necessary degree of 'parallelism to keep communication at tolerable levels. The next section

describes the model that can be used to construct Gk.

3.4. A Model for Quantifying Communication

Consider a machine with p processors that are connected through a bus to a shared
~memory. The model starts with a representation of the program as a directed task graph as
defined in the previous section. Candidates for merging are nodes whose possible parallel execu-

tion involves a large amount of data communication.

Let G, be the DDG of a program. The first composition of tasks finds all strongly con-
nected components of G,. Each strongly connected component forms a task and let G, be the
resulting task graph. The arcs of G| and G, are labeled with weights called the communication

traffic or weight such that the weight w; of arc ¢; =‘(v,-‘,vj) is given by
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w; =T*m
where m is the number of data items that need to be transmitted from task v; to task v;, and 7
is the communication constant. For example the communication traffic between the two loops of

Figure 3.1 is 7*n. During the reduction of G, to G, the composition of new tasks is performed

~ as follows:
Let V,={u;u,,...,u,} be the tasks of G, and by (¢=1, - - - ,n) be their serial execution

times. Suppose now that subgraph H;CG|, is a strongly connected component of G,. Then H; is

replaced by a node u'” with execution time

t’:_ E tv-

vEH

1

Arcs are merged using the following procedure: For each task v not in H,, replace all arcs
e:,e;,...,e; originating from v and such that e,-v=(v,uk), and u, &ff;, (1=1,2,...,5) with an arc
v H . . v . .
e =(v,u" ) which has a weight w  given by
j
w“ = E w,-".
i=1
After the first reduction the resulting graph G, is a connected or disconnected graph without

nontrivial strongly connected components. Therefore G, is a directed acyclic graph or DAG.

During parallel execution of G,, two (or more) independent, or data dependent nodes may
execute simultaneously. Let u; —> U, be two data dependent tasks. If u; and u; execute simul-
taneously on two processors, the total execution time T will be

| T=ma.x(Ti,T{)-}-w‘.j
This is a reasonable assumption since the processors are connected through a bus and bus tran-
sactions are serial. The communication time w;; is reflected in the total execution time since the
processor executing u; incurs an overhead to transmit the data, and the processor e#ecuting u;

must wait until the data arrives.
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Let us assume that the total overhead is equal to the time it takes to transmit the data.
Therefore if tasks u; and u; execute on the same processor, the communication can be aone
through the local memory inside each processor and it is ignored. The execution time in that
case will be

T =T +1°.
We also assume that tasks are collections of atomic operations, and if u is a parallel task

and T;‘ is its serial execution time, then the parallel execution time T; of u on pST: processors

will be

Ty
T:= . ‘ (3.1)
p
Consider a set of two tasks {u,v}. We use the notation (set -z /task-z) to describe the execution

‘of u and v, where z can be serial or parallel. .Task-serz'al ‘(or t-s) means that both u and v
execute serially. Task-parallel (or t-p) indicates that at least one of u and v executes on more
than one processor. Set-serial (or s-s) means that both u and v execute on the same set of pro-
cessors (perhaps in parallel). If both execute on p processors, thén u will complete execution
before v starts. If u executes on p and v on i)l processors and p <p’, then p, processors are
given to the set and » and v start simultaneous execution with u executing on the'ﬁ;st p pro-

ro . . '
-p processors. When u finishes executing, all p pro-

céssors and v execui:i:ng on the remaining p
cessors are taken over by v. Set-parallel (or s-p) means that u and v are executed concurrently
on disjoint sets of processors. Thercfore there are four possible ways of executing v and vA.
(s-s/t-s) describes the case where both w and v execute serially on the same processor.
(s-s/t-p) when each of u and v executes in parallel but on the same set of proceésors.

(s-p/t-s) is the case of u and v executing serially but each on a different processor. Finally

(s-p/t-p) denotes the case where each of u and v executes in parallel and both execute con-
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currently on disjoint sets of processors. The above notation can also describe the execution

mode for sets with an arbitrary number of tasks.

As mentioned above, interprocessor communication is ignored for the case of (s-s/t-s) or
(s-s/t-p) when all tasks execute on the same number of processors. For the case of two tasks

u and v the total execution time is defined as follows:

(s-s/t-s) — T, +T, (3.2)
(s-s/t-p) — T:+T: (3-3)

(if both execute on the same p processors)
(s-p/t-s) — max(T),T))+w, (R.4)

(s-p/t-p) — max(T},T’)+w, (3.5)

! .
where w, is the weight of the arc e =(wu,v) (if any) and p, p are disjoint sets of processors uscd

by « and v, respectively.

Note that for the (s-s/t-p) case, if v and v execute on a different number (but the same
' i
common subset) of processors, say p and p respectively, then the total cxccution time is defined
1
as follows: Suppose p <p, i.e., both tasks will execute on a common set of p processors but task

1
v will use an extra p - p processors. Suppose also that task v will finish execution after task u

' '
has completed. Both tasks start executing concurrently, ¥ on p processors and v on p —-p pro-

cessors. When u lerminates, task v takes over the remaining p proccasors and execules on p'
processors until it completes. Since the overlap (i.e. set serialization) is not perfect some inter-
processor communication will‘occur in this case. We assume that the data éommunication is
proportional to p'—p/p,. In other words if the total amount of' data communication from u to v
is w, the amount of data that must be explicitly transmitted will be inversely proportional to
the the number of common processors. In the above case the data communication that must be

transmitted through the bus will be (p,—p/p’)w. When p,=p (total set serialization), the

»



49

. , .
communication is zero. When p and p are disjoint sets of processors (set parallel), then p =0
and therefore the data communication is w as would be expected based on the previous
definitions. Therefore the total execution time for the case of (s-s/t-p) where u and v execute

1]
on p and p processors respectively is

Ty ~(p -p)T, [p —p]

+ — (w. (3.6)
Since this case is not truly set-serial let us denote it with (s-s/t-p). Again the above can be
easily extended for any set of tasks. We can say that the above notation describes four basic
schédules. We can compare basic schedules, i.e., the corresponding schedule lengths (or execu-
tion times) using the following notétién.

(s-2/t-2) o(s-2/t-7)

where ¢ € {serial, parallel} and e €{ <, < >, > =, #. We can augment the basic schedule
notation with a tuple that specifies the number of processors assigned to each task. For the case
of the previous example (s—s/t-p) (p,p), indicates that u will execute on p processors followed

by the execution of v on the same p processors. The schedule corresponding to (3.6) can be

" !
uniquely characterized by (s-s/t-p) (p,p ). We can now state the following lemma.

Lemma 3.1 If © and v are two adjacent tasks connected by e =(u,v) with a communication
weight of w,, and

(s-s/t-8) <(s-p/t-s) or Ty+T; <max( T:,T;’ )tw, (3.7)

then it is also true that
u v u v .
(s-s/t-p) <(s-p/t-p) or T,+T,<max(T,,T,)+w,. (3.8)
Equivalently if the execution time of u and v when they execute serially on the same processor is
smaller than when they execute simultaneously on two different processors, then the combined

parallel execution time when they execute on the same set of p processors is smaller than when
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each executes on its own set of p processors and their execution is concurrent.

Proof Since (3.7) is true, it follows directly that

w,>min(T,,T}).
Since by definition T:ST: and T:ST: we have

w, > min( Tp", T:) (3.9)

and by adding the same term to both sides of (3.9) we get

w, + max( T;, T;) > min( Tpu, T:) + max( T:, T:). (3 10)

But the right handside of (3.10) is by definition equal to T:+T:, therefore (3.8) is also truc. ®

Theorem 3.1 For a set of tasks { u,v } and an unlimited number of processors, the following is

a generalization of Lemma 3.1.

if  (s-8/t-s) g(s—p/t~s)

then  (s-s/t-p)p, p') <(s-p/t-p)p, p)
or equivalently (from (3.2), (3.4), (3.5), and (3.6))

if T, +7T, <max(Ty, T|) +w, (3.11)
T, -(p' - p)T, | -
then T; + 2 Smax(T:, T:,) +.Llwe. ‘ (3.12)
! T :

p .D
Proof We have two cases depending on which of » and v is larger.

Case1: T| > T;, (i.e., task u is greater than or equal to task v). Then from (3.’11) we have

T, <w,. (3.13)
From (3.12) and (3.1) we have,

which is true due to (3.13).

Case 2: T| < T, (i.e., task u_is smaller than v). Therefore from (3.11) we have
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~

T) <w,. (3.14)

Here there are two subcases.
Subcase 2.1: T, > T, (3.15)
Then after we carry out the calculations in (3.12) we have

pT;Spwe or T:gwe-

which is (3.15) and therefore true.
Subcase 2.2: T, < T (3.16)
Again from (3.12) we have

Ty - (' -p)T, <p, o1, pT; -(p'-p)T; <p’w,

and finally
T'l) ' '
p —-p
~<pw, + : (3.17)
: ' T, p ’
But from (3.16) we have
T, T, T, pf
1 1 1 _p . .
- < or, ST (3.18)
' p T, r
and therefore to show (3.17) it is enough to show that
! '
- 1
p p p

which is true since w, > T' >1/p.®

N

Lemma 3.1 and Theorem 3.1 can be used to partition a progra,mAin a bottom-up approach,
starting from its DDG representation and composing larger tasks by merging nodes of the DDG
together whenever appropriate. But task merging reduces the possibilities for hig}; level spread-
ing and therefor;a the degree of parallelism. However by using Lemma 3;.1 and Theorem 3.1 we

can merge only those tasks that do not affect the degree of parallelism.
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More precisely if G is a program task graph and u, v are tasks in G, then let G” be the
graph derived from G by merging nodes u and v into a single node w. The merging of © and v
takes place if and only if the execution time of G’ is less than or equal to the execution time of
G under any scheduling scheme and any number of processors. In other words we merge tasks
together only when it is ‘“safe’” under any circumstanqes. More elaborate parﬁitions may follow

if necessary as described in the following sections. .

We can merge tasks of a graph G in any order by checking repeatedly pairs of tasks in G.
If a pair of tasks satisfies the conditions of Lemma 3.1 or Theorem 3.1, the two nodes in the pair
are merged and form a single task. If for a given task there is more than one adjacent task for
which the conditions are met, the order of merging becomes significant. Only in specia,l-cases we
can find the optimal order and thus the optimal partition as explained below. However any
merging that is based on the above tests is bound to reduce G into a task graph G that will
have an execution time less than or equal to that of G, irrespectively of the scheduling scheme
used. For example an initial partition of the graph in Figure 3.2a will be formed by merging the
first three nodes labeled 5, 10, and 15 into a single node labeled 30. This will be accomplished in

two steps. The same partition will be obtained if we start from the leftmost or rightmost node.

For special types of graphs the optimal merging can be found; In addition the optimal
schedule that minimizes execution time (taking into account interprocessor communicatioh) can

also be obtained for a limited number of processors.

3.5. Optimal Task Composition for Task Chains

In this section we present the task composition or TACOM algorithm that finds the
optimal task composition for chains with data dependent serial tasks. For a limited number of

processors, the algorithm also finds the optimal processor allocation for task chains that minim-
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ize overall execution time including interprocessor communication. Lemma 3.1 and Theorem 3.1
. are implicitly used to drive the algorithm. As shown by Theorem 3.1, if two tasks involve a
large amount of data communication when they execute concurrently (but each serially), then
they are combined to form larger tasks. The components inside these tasks can execute in paral-
lel, ‘but on the same p(hysical processors. For this case we assume an idealized model where inter-
task communication is constant and thus independent of the way we partition and schedule a
chain of tasks. We also assume that the data can be sent from one task to another at any time
after the tasks/ start executing. This simplification is not very realistic but it makes it easier to
describe the model and the algorithm. As it will be shown later, intertask (or interprocessor)
communication changes depending on how. tasks are grouped together and how they are
scheduled. Assuming that the compiler can be used to evaluate intertask communication for each
given cor;ﬁguration during the application of TACOM, precisely the same algorithm can be used
to perform optimal partitioning and scheduling o}f real Fortran programs. Before we describe the

algorithm let us define the necessary terms. \

A chain graph is a directed graph of the type shown in Figure 3.2a, with V={1,2,....k}
and E ={e;,=(i,i+1)}i=1,...,k-1}. Each node ¢ is associated with a weight ¢, which is its serial
execution time. Each arc e;=(i,i+l) is labeled with a ngi‘g‘ht W, which gfves the amount of
communication tra,fﬁ'c from node ¢ to node i+H. A fork-join or FJ-graph is a graph of the type
shown in Figure 3.2b consisting of a single source (node with indegree of zero), a single sink
(node with outdegree of zero), and an arbitrary set of source-to-sink disjoint paths. Tﬁe

TACOM algorithm can perform optimal task composition for chain and FG-graphs. In what fol-

lows we consider the case of chains and the extension to FG-graphs is straightforward.

Consider a chain graph G, and let v, and v, be its first (source) and last (sink) node respec-

tively. We can use the results of Lemma 3.1 and Theorem 3.1 to merge tasks that involve heavy
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(a)

(b)

Figure 3.2. Example of chain and FJ-graphs.

data communication. However Lemma 3.1 gives us the necessary condition for merging two
tasks but it does not give us any insight as to how the optimal merging can he achieved, in case
of an arbitrarily long chain of tasks. The TACQM algorithm of which a similar version is given
in [Poly84] and [Bokh85] uses Lemma 3.1 to choose pairs of tasks that-are candidates for merg-

ing, and finds the optima,l merging pattern as described below.

Let V, = {1, 2,..., k} be the tasks in chain G. We construct a layered graph L consist-
ing of k layers L, L,, ..., L,. Nodes in L are represented by oi‘dered pairs (¢, 7) such that
1<i,j <kandi<j.Anode (i, j) denotes the merging of nodes i through j (inclusive) into a

single node. Each node (¢, j) in L is labeled with ti; defined by
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i
i = Y tm (3.19)
m=i
where ¢, is the label (serial execution time) of node m in G. The layers of L, are constructed
as follows. L, = {(1, j) | j =1, 2,.., k}, i.e., L, contains the nodes corresponding to all com-

binations of merging tasks 1 through j, for ( =1, 2,..., k). There are k such nodes. Then for

(¢ =23, k) we construct k - 1 layers L; which are defined as follows.

L, = {(;', 0), (i, i41), (5, i42),..., (i, k), G4, i-A),..., (i H, k),...,(k-1, k), (k, k) }

The leftmost and rightmost nodes of L; (with the exception of L) are (¢, ¢) and (k, k) respec-
tively. The L, for the example of Figure 3.2a is shown in Figure 3.3. The ordered pair (7,5) at
the left hand side §f each node in Figure 3.3 denotes the tasks included (merged) into that node
(i-e., tasks 7 through j inclusive).

Arcs in L exist only between successive layers and only connect nodes (7,5) and (m,!) such
that 1<j, m<l and m=j-+. In layer L; the first node is (,4) and the number of different
merging combinations that start from node % is k~7-+: Similarly all merging combinations-that
start from node (¢+) are k—{7+1)+l. In general, the number of nodes in layer L;, (1 =2,3,...,k)
is

IL.| = (kt-:i+l) +(k(iH)H) +(k(i42)H) +- - - +(k(k-1)+H) +(k-k+H)

1

or

(k- H)Hk - +2)
2 N
For the first layer of L, we have {L,}=Fk, since the first layer consists of all nodes (1,¢), for

Ll =
(1=1,2,...,k). The outdegree of node (1,1) is k-1, of node (2,2) k-2, and in general the outdegree
of node (7,i) is k-i. Note that in each layer L, the node with the largest outdegree is (¢,7). In

fact if the nodes inside each L; are in order as shown in Figure 3.3, then the outdegree of each
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(M)@ (3,5) (4.4)

T
NS

SOER® (s,s)@ (44)(50) (4,5)‘ (s,s)

(4.5) (5.5)@

otr

(4,4) (4,5)O (5,5)O
(S.S)O

Figure 3.3. The application of the TACOM algorithm on the example of Figure 2a.

node from left to right is ((£-¢),(k~i-1),(k-i-2),...,1,0], [(k -1-1),(k-i-2),...,1,0], ..., [1,0],[0].
'The nodes of the first layer L, are labeled accordiﬁg to (3.19). The arcs originating from

the tasks of L, are labeled as follows: Fro¥n each node (1,7) we have (k-i) arcs originating from

it and pointing to nodes of L, of the form (¢+,7), for i < 7. All these arcs are labeled with

w, , i.e., the communication weight of arc e;=(i,4H) in G. This is repeated for (¢ =1,2,...,k) of

.}
el

L,
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Then the algorithm relabels all nodes and arcs of L startin'g from L, In general, if the
nodesi of and arcs originating from layers L,,...,.L _, have been labeled, the nodes of layer L_,
(r <k) a‘re labeled as follows. Let (m, i) be a node of L, connected to a number of nodes of
the form (h,,m-1)of L, ; (for h, <m-1 < m <i¢andall h ). Let z; be the label of (h,, m-1)
and w: be the weight of arc (h,, m-1) —(m, ¢). Also let ¢, be defined by (3.19). The label z_,

. of node (m, ¢) is chosen from the labels of all nodes (k,, m-1) of L,_, pointing to (m, ¢) as fol-

lows.

r

z, = min {wh' +max(z,,’, tpi) } (3.20)
The arc from which the node (m, i) was labeled is marked.

The arcs are labeled with the corresponding accumulated data communication weights as
follows. Let (m, i) €L, and e, be the arc (h,, m-1) — (m, ¢) from which node (m, i) was
labeled in the previous paragraph. Now let e, be the arc connecting (m, ¢) to a node (¢H, g) of
L, (for r < g). Also let w; be the weight of arc e; = (¢, {-H) in the original chain G. Then

the weight of e, is W, and given by

w, =w, +w,. ‘ (3.21)

€2 1

A global pointer ptr is maintained which at any given moment points to a node with the

minimum label. The algorithm terminates when one of the following two conditions is met.

e All nodes of L are labeled, or

e All nodes at a given layer L, have labels greater than the node
pointed to by ptr, and ptr points to a node (7,k) of a previous layer.

After the algorithm terminates, the optimal merging of the tasks in G is given by following
backwards the marked arcs starting from the node pointed to by ptr. The nodes in this path are

of the type (1, %), (3,4, 1y),-.., (§,,H, k) where 1 <i; <y <3 <--- < i, <k, and they
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Input: A chain graph G(V, E), with V = {1, 2,..., k}, E ='{e‘- =(i,iH) ) i =1, 2,...,k-1}, task
execution times ¢, (=1, 2,..., k) and communication (arc) weights w,, (=1, 2,...,k-1).

Output: The optimal task composition (partition), or the optimal schedule of G on p <k processors.

Method: '
e From G construct a layered graph L, with k layers (L,, L,, . . ., L;). Nodes
in layers are ordered pairs (4, 7) such that ¢ < 7 representing the merging of nodes
{1 through j of G. Layers are defined by the following sets:
Ly={(1,4)} i =1,2,..,k }

L, ={(m, i)} such that m <i, m =1, IH,.,k, and ¢ =1, IH,., k}

oFOR (all nodes (7, j), ¢ <j, z",fj =1,2,.,kof L;)DO
— label (7, j) with z; = 3 ¢,

m =1

ENDFOR

¢ FOR (all nodes (1, i) of L,) DO
— label all arcs originating from (1, ¢) with w, .

— ptr points to node (1, ¢) with minimum =;.
ENDFOR.

eIFOR (r =2, to (k - 1)) DO
FOR (every node (m, ¢) in L ) DO
— By searching all nodes (h, m-1) of L, ; connected to (m, )
through e, compute the label z, of (m, i):

z, = min { w,, +max(x,, t,;) }

A
— Mark the arc e, corresponding to the minimum value,
and label all arcs originating from (m, ¢) with
' woh +u,¢£+x
where W, it the weight of e, ,; = (¢, j)in G
— If ptr > z_ then pir «z
"ENDFOR
ENDFOR
e label node (k, k) of L, with ¢t,.
e Reconstruct the optimal solution from ptr.

Figure 3.4. The task composition algorithm (TACOM).
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uniquely define an optimal solution. A procedural description of the TACOM algorithm is given

in Figure 3.4.

The application of this algorithm for the example of Figure 3.2a is shown in Figure 3.3.
Note that the algorithm terminated when all labels of the third layer were found to be greater
than that of ptr. The optimal solution for this example is (1,3)(4,5), i.e., tasks 1, 2, and 3 form

a new task and tasks 4 and 5 form another composite task. -

The construction of the layered graph L, and the application of TACOM can be performed
simultaneously. Each layer in L, has at most O(Ic2) nodes and each node has an outdegree of at
most O(k). Since there are k layers in L‘G the worst case performance of the algorithm is O(lc4)

and the average complexity is O(ks) where k is the number of tasks in the original chain G.

This algorithm can also be used to find the optimal schedule of a set of k& data dependent
tasks on p processors. In such a case the layered graph will consist of p layers and the path
starting from ptr will give us the schedule that minimizes parallel execution time taking into

account interprocessor communication cost.

3.5.1. Task Chains with Serial and Parallel Tasks

The same basic algorithm can be used to generate optimal partitions for the case of chain
graphs with parallel and serial tasks that are to be executed on a system with an unlimited
number of processors. In this case the test of Theorem 3.1 must be used to decide whether two
tasks should execute simultaneously or not based on the amount of data that must be exchanged
between them. A modification of the TACOM algorithm can be used in this case to compute the
optimal partitioning and the optimal schedule when it.is guaranteed that if needed, each task
can be allocated as many processors as it requests. In what follows we use exactly the same nqta-

tion as in the previous section.
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As mentioned earlier r; is the number of. processors requested by task v; of G. When we
consider a composite task v,.c that contains more than one task of G, we define r: and r,.f to be
the number of processors requested by the first and last task-components of v,-c respectively. The
order is taken to be tha§ which is implied by the direction of the data dependence arcs. For
example, the composite task corresponding to node v; = (2, 5) in the graph of Figure 3.3, has
r; =r,and ré = r.. The execution times of the composite tasks of L are given hy

j-1
i = Yt n (3.22)
m=i

where ¢, ., is given by (3.6). In this case (3.22) replaces (3.19) in the TACOM algorithm. The

analogous modification of (3.20) for labeling the nodes of L is given by (3.23).

Zp, = min |, +max(z; , tn) | (3.23)
r ma.x(r,l y i)

Similarly the arcs of L are labeled in this case using

1,/ 2
: Tmi ~ Tid,g )
wez - wel + / 8 i (3‘24)
max(rm,i, r‘ﬂ,y)

instead of (3.21) of the previous section. TACOM can then be applied in exactly the same way as
shown in Figure 3.4. The output of the algorithm will be the optimal partition of a chain graph
that minimizes communication for the unlimited processor case without reducing the amount of

available parallelism.

3.6. Reducing Communication in Triangles

As mentioned earlier the problem of minimizing communication in general DAGs without
reducing potential parallelism is NP-Complete. However we can solve the problem optimally for

chains and other simple graphs that are often the building blocks of general DAGs. We can then
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process DAGs by solving the communication problem optimally for each of their building blocks.
Local optimality however does not guarantee global optimality, but this approach can be used to

design near-optimal heuristics.

One of the most frequently observed basic subgraphs in general DAGs are triangles, that
arise. from transitive depende'nces. Figure 3.5 depicté a triangle with tasks a, b, and c. Weights
w,, w,, and w, denote as usual the amount of communication between pairs of tasks. We can
have an arbitrary number of tasks between nodes a and b for example, but since t‘hey would
form a chain they can be partitioned using TACOM. Therefore in this case we are only
interested in finding the conditions for the best merging of tasks in a triangle. Exhaustive search
is appropriate in this case. There are five possibilities: To leave the triangle unchanged: to
merge tasks ¢ and b, or a and ¢, or b and ¢, or all a, b, and c. The best solution will be dic-
tated based on the amount of data communication and the relative size of the tasks. This is
trivial to determine. Let T:, T;, and T; be the serial execution times of tasks a, b, and ¢
respectively. Without loss in generality assume also that T: > T'l’ > T]c Consider the following

enequalities.

Figure 3.5. A basic subgraph.




T, -T; <w,-wy (X1)
T} - T Swy-w, - (X2)
T; <w, - v, (X3)
1 -1 <uy -, (x4
T; <wy - w, (X5)
T <w, +w, (X6)
Tf Sw, +w, (X7)
Iy Swytwy (X8)

then we have the following proposition.

*

Proposition 3.1 If the tasks of a triangle must be merged to reduce communication, then the

best merging is specified in the following table.

Condition Best Merging _
X6 ¢ X7 ¢ X8 merge all @, b, and ¢

(X1 ¢X2) +(X1eX3) mergea andh
(ﬁoX4) +(X1 ¢X5) merge a and ¢

(ﬁoﬁ +(Eo)?5_) merge b and ¢

where e and + denote AND and OR operations respectively.
- Proof For each case we compare the corresponding execution times. For example merging all
three gasks together gives the best solution, if the resulting execution time is less than or equal
to the execution time corresponding to merging any pair of tasks only, e.g. merging tasks .a and
b. In other words,

TS +T) + T <max(T} + T3, T) +w, +w,.
By simplifying this enequality we get (X6). Similarly we can derive (X7) and (X8). All other cases

are similar. ®
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The tests of the above proposition can be used to determine the optimal or near-optimal
merging patterns for other basic subgraphs as well. As an example consider the case of four
tasks with data interdependences that form a square. By adding a zero communication link
between a pair of nonadjacent tasks, we can form two triangles that can now be processed
separa.t;ely using the previous proposition. Note that by definition independent tasks can never be

merged.

3.7. Constructing the Task Graph of Fortran Programs

The assumption about éonstant communication weights used previously is not very realistic
when we consider real Fortran programs. Communication per se, i.e., the number of data items
that must be transmitted between two given tasks is indeed constant. However in multiprocessor
systems the time it takes to transmit the same amount of data at two different instances‘ may
vary. In our case we want to .measure the effect of communication on program speedup, that is,
in terms of pfocessor latencies, or execution time. Consider for example two tasks v and v,
where v is data dependent on ¥. The number of data items that will be sent {rom u to v is con-
stant for each such pair of taéks. In order to measure communication overhead precisely using a
deterministic model, we must assume that the time it takes to transmit a unit of data between
twé processors is constant. Delays in processor initiation caused by communicating these data

however vary and depend on several factors. One such factor is the relative position of the source

of a dependence in the code of task u, and its sink in the code of task v.

Consider for example the parallel execution of tasks u and v of the previous paragraph,
when both tasks start executing at the same moment each on a different processor. Let 7 be the
‘time it takes to transmit a unit of data between two processors. Assume that each statement in
u and v takes a unit of time to execute. Consider now a data dependence {rom u to v caused by

a variable X which is defined in u and used in v. Let d, be the execution time of the segment of
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u between its first statement and the statement defining X, inclusive. Correspondingly d,
denotes the execution time of the code of task v between its first statement and the statement
using X, exclusive. Depending on the relative positions of the use and the definition statements

of X in v and u respectively, we have the four cases described below and shown in Figure 3.6.

Case 1: X is computed in u before it is used in v. Figure 3.6a shows the case where d, > d, +7.

The communication overhead in this case is zero, that is, no extra delays will occur in the

U v u v
- - \ - -
d, d d
\d, 1 2
T |  Mage-=-=-=-=-=d4y |  Nhgeoecemaco--Jd .
\.}T
1
M 1 1 -
a b
u ( ) v U ( ) v
E - - T -
dl >d9 d]

(c) @ -

Figure 3.6. Four different cases of interprocessor communication.




856

processor executing v, since the value of X will be available when needed.

Qase_z'_ Figure 3.6b shows the case where X is computed in u when it is needed in v. That is,
d, = d; and in this case the communication overhead is 7, the time it takes to transmit X

between the two processors.

Case 3: In Figure 3.6c X is used after it is computed but d, - d; < 7, and the overhead in this

case is (d, - dy) +7.

Case 4: In this case (Figure 3.6d) X needs to be used before it is computed. This case involves

the largest overhead, and the processor latency is given by (dy, - dy) +1

It is clear that the communication overhead in all four cases is given by

= max(0, d; - d, +71),

and the execution time of u and v when they execute concurrently on two processors is given by

max(T}, T] +9).

The two tasks v and v should therefore be merged if and only if
; T';+T: Smax(T:,T: +6)

or equivalently if and only if T'l‘ < 6. The same analysis can be done when each of u and v exe-
cute on several procéssors, and both start executing concurrently. In this case we assume that
each task is distributed equally among p processors, and each processor executes [T:/P] and
[T:/p] part of u or v respectively. The corresponding timing in this case would use [dl/p] aﬁd
[dz/p] in place of d, and d, respectively.

This model which is realistic satisfies Lemma 3.1, Theorem 3.1, and most of the assump-

tions nsed by the simple model employed in the previous sections. The TACOM algorithm is also

valid here as well. However, intertask communication should be estimated by the compiler for
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each different merging pattern that appears in the layered graph of Figure 3.3.

The data communication overhead caused by several dependences can be determined in a
similar way. Consider again the tasks 4 and v of Figqre 3.6. Only “parallel’’ dependences, that
is dependences that lexically do not intersect need to be considered. This implicitly assumes that
in the worst case we can transmit [7/€] data items simultaneously through an interconnection
network without conflicts (where ¢ is the execution time nf a single statement). Cloarly this is a
realistic assumption for a parallel processor system. When two or more dependence arcs cross
each other, the arc whose sink precedes all other (sinks) is preserved and all of,her dependences
are ignored (as far as processor initiation delays are concerned, but are accounted for in the
arﬂount of communication). An example with two dependence arcs is shown in Figure 3.7a. A
communication overhead may be caused by e, but not by e, and therefore €, is discarded as far

as overhead is concerncd.

o,
L -
au
e
\

dy< >,

.
\

(2) ®)

Figure 3.7. (a) A cross dependence exa,rnple.‘(b) Parallel tasks with several dependences.




87

Thus in the general case we have nonintersecting dependences from u to v that may pro-
long the execution time of v as shown in Figure 3.7b. (Since strongly connected components are
always merged{ as discussed below, tvhe case with dependences going both directions never arises.)
If d,-1 and d,.2 denote the execution times for the segments of 4 and v defined by the ¢-th depen-

dence arc, as shown in Figure 3.7b, then we have the following proposition.

Proposition 3.2 If there are n dependences from u to v and the two tasks execute concurrently

on two different processors, the total communication overhead will be

6, —max (0, (d} - d2) +7+5,_,)
where § = 0.
Proof The formula can be easily proved using induction on mn. (For example,
6, = max(0, dll - d12 + 1) is obviously true as it was shown above for the case of Figure 3.6.) B
The execution time is then given by

max(T}, T, +§,)
and the two tasks are merged if and only if T;‘ <§é,.

We have seen how interprocessor communication can be measured for Fortran programs.
Assuming that the compiler is used to measure interprocessor gommunication as described above,
the task composition algorithm can be applied to find the optimal partitions for certain types of
Fortran code. For long chunks of straight-line code, optimal partitions can be obtained by
TACOM easily. The same is true for chains of serial loops, assuming loop bounds and branch

probabilities of conditional statements are known. In the case where all loops have bounds that

are expressions of the same variable, optimality can also be achieved.

Even though partitioning of Fortran programs can be performed using the bottom-up

approach described earlier, we choose to partition programs using the following heuristic guide-
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lines for reasons that are stated later.
Partitioning Heuristic
R1: Outermost loops form a single task (that can possibly generate several processes dur-

ing execution).

R2: Conditional and unconditional branching statements form individual tasks (that are
given the highest priority during execution). '

R3: Bach one of the remaining statements form individual tasks.
R4: Strongly connected components of taske of type R3 are merged into siugle Lasks.

R5: The TACOM algorithm is applied to chains of serial loops, or chains of tasks of type
R3 or R4.

Any chains in the resulting program graph cannot be further reduced. Next we look for tasks of
type R3 or R4 with transitive interdependences and for trees of tasks of t,)"pe; R3 or R4. In the
case of trees, the root-to-leaf path that involves the highest total communication is determined
and treated as a chain. TACOM can then be a.pplied to that chain adjusting the appropriate
dependences during merging. The same procedure is repeated until the entire tree is reduced to a

single task, or the root-to-leaf path of a reduced tree cannot be reduced further.

Theorem 3.1 and thus TACOM can be applied to only special cases of chains of parallel
loops. These include cases of pairs of loops with interdependences such that all the dependences

from each iteration of the first loop point to a single iteration of the second loop.

As mentioned ;above, outermost loops are considered to be special tasks, and no partitioning
is attempted inside an outermost loop. There are two reasons for this approach: First interﬁro—
cessor communication for parallel loops (usually) has a ‘“regular’ pattern, and therefore is easier
to deal with. Secondly, we have developed algorithms (discussed in following chapters) that pro-

cess complex loops efficiently or optimally in a separate way.



If the number of processors p, that will be used during execution is known in advance, pro-
gram partitioning can be carried out further so that the resulting task graph G has enough
“parallelism” and “balanced’ tasks that involve very little communication. As explained earlier
there is no universal definition of ‘‘parallelism” or “degree of parallelism” but it intuitively
means that G should have enough tasks to assign to all p processors at any moment during exe-
cution. Since G is a directed acyclic graph it can be transformed into a layered graph as
exbl'ained in Chapter 2. If the i-th layer has n; tasks and there are k layers in total, a possible

definition of the degree of parallelism &, (useful only to deterministic approaches) can be

k
1
6ﬂ=_2 n‘-.
ki—l

In summary, the techniques of this chapter can be used to obtain the partitioning of a For-
tran program into tasks that are parallel or serial outermost loops, or scalar tasks. The resulting
partitioning involves minimum communication between a series of scalar tasks and a seriés of
serial loops, for any scheduling algorithm. This partitioning in effect defines a program task
graph that can be scheduled on a parallel machine using techniques that are described in ié,ter

chapters.
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CHAPTER 4

OPTIMAL LIMITED PROCESSOR
ALLOCATION TO PARALLEL LOOPS

4.1. Optimal Processor Assignment to Paralle] Loops

It has been shown that in most programs paralle] loops are the source of the greatest pers
centage of parallelism [Kuck84]. In this chapter we v-vil] investigate the problem of processor
assignment to parallel loops. This problem becomes especially important when we deal with
nested parallel loops where inefficient assignment algorithms may result in an execution time far
worse than the optimal. In programs with several nested parallel loops the efficiency may then
drop down to unaccei)table levels. We can informa,lly define the limited processor assignment
préblem as follpws: Given an arbitrary multiply nested loop which contains serial and parallel
(DOACR, DOALL) loops and a-number of P processors, find the best way of assigning the P pro-
cessors to the loops so that the parallel execution time of the entire module is minimized. For
loops with very few nest levels and systems with a small number of processors exhaustive search
might be affordable at compile time. But as the number of processors increases, the number of
processor-loop combinations grows exponentially. Moreover, loops with large nest levels are not
very uncommon in scientific computations. As an example, 10 to 17 deeply nested parallel loops
were observed in several subroutines of the restructured (by P;ara,frase) IEEE Digital Signal Pro-
cessing Package (IEEE79]. In this chapter we define the static processor allocation problem for
parallel loops, and discuss an optimal algorithm based on dynamic programming that handles
loops of arbitrary complexity. The algorithm described here may also be used to determine
locally optimal assignments of loops of different programs when throughput is to be maximized

in a multiprogrammed parallel processor system.
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4.1.1. Optimal Simple Processur Assignment to DOALLs

A metric called the efficiency indez is used throughout this chapter. The usefulness of this
metric is twofold. First it makes it easier to formulate the processor assignment problem, and
secondly it allows us to observe several interesting properties of the problem that are otherwise

hidden in modular arithmetic.

A processor assignment algorithm (OPTAL) is proposed that solves the general problem
optimally. The optimal processor assignment is guided by the use of a function called the
asstgnment function. The assignment function (;an easily be defined to measure efficiency or
parallel execution time. Proceséor assignment in an arbitrarily nested parallel loop is performed
by allocating (possibly) different numbers of processors to different loops in the nest. The t"é;:h-‘
niques described below partition a p-processor machine hierarchically and assign different parti-
tions of processors to different loops in the nest. To simplify our terminology we invariably refer
to partitions of any size as processors. Consider for example two nested DOALL loops N , and N,
and a 6 procegéor system. ‘One possible allocation to these loops would be one that assigns 2 bro—
cessors to the outer loop and 3 processors to the inner loop. More precisely, this means that the
machine is partitioned into two halfs, each half consisting of 3 physical processors. Then each
iteration of the outer loop NV, is assigned a one half partition aﬁd the corresponding iterations of
the inner loop are allocated 3 physical processors. Therefore, ‘“‘processor’” is used as a generic

term in this chapter and refers to clusters of physical processors of different sizes.

Before we discuss processor assignment issnes we need to introduce some notation and
definitions. To simplify the notation, each loop is. assumed to be normalized (i.e., its iteration
space is of the form 1,...,N) and denoted by the upper bound of its iteration space. Thus, N
denotes a DO whose loop body is executed N; times, and L =(N;, N,, ... , N_) denotes an

m level nested DO where JV, is surrounded by N;_; and surrounds Ny (=2, ... ,m-1). N,
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and N,, are the outermost and innermost loops respectively.

In what follows the number of available processors P is always assumed to be ‘‘useful”,
that is, less than or equal to the maximum number of processors that a loop L can fully utilize.
Here we assume that a fixed number of processors has been allocated to each outermost loop of a
given program. Our aim is to optimally distribute the allocated processors to the different loops
.jn the (arbitrarily complex) nest for each such outermost lnnp, in order to minimizo tho p&rmilcl
execution time. How processors are allocated to different outermost loops of a given program is

the subject of Chapter 6.

Definition 4.1. For a DOALL with N, iterations that has been assigned p; processors we define

€;, the efficiency index or EI of N; as follows:

»; N; /[ p;

€i = I
N, / 5 |

The efficiency index is an indicator of how efficiently a loop runs on a given number of proces-

(4.1)

sors. 'I'he higher the El the higher the efficiency (as defined in Chapter 1). Some other properties
of the efficiency index that will be used directly or indirectly in the following sections are:

P1: For any DOALL N, and any number of processors p we have: 0 < ef < 1L

P2: For any IV, e: = 1.

P3:For N; > p, €/ > 1.2

If should also be noted that p # ¢ 'does not necessarily imply ef # € ,.q. It is always true that
P; .> 1. If during allocation a loop NV, is not assigned processors explicitly, it is implied that

p; = landthuse; = 1.

Definition 4.2: For a nested DOALL L=(N,, N, ..., N, ), a number of processors

P = p,p, ... p, and a particular assignment of P to L we define the efficiency index vector
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P, ? r, Py, .
w= (g ' €, : . €, ) of L, where €, is the EI for loop V; using p; processors.

In what follows, the terms ‘“‘assignment of P”’ and ‘‘decomposition of P are used inter-
changeably. Any assignment of P to L defines implicitly a decomposition of P into factors
P=p,p, ... p,, where each of the m different loops receives p;, (¢=1,2,...,m) processors. A
processor assignment profile (p,, p,, ..., p,,) (where loop N; receives p; processors) can also'be

described by its efficiency index vector as defined above.

Definition 4.3: For an assignment w= (¢, A €,)of P= p,p, ... p, processors to L,
we define E,, the compound efficiency index ( CEI) of L as

m ’,
= JIe; - (4.2)

i=1
For any L we also have 0< E; < 1. Let T, be the serial execution time of a perfectly
» !
nested DOALL .L. Next suppose that L is executed on P processors and let Tp and T, denote
the parallel execution times for two different assignments w= (€¢;, €, ..., €,) and
! ! ' ! ! '

w= (€, € ..., €,)of PtoL, where P=p,...p = p;...p,. We can express the paral-

lel execution time Tp of L in terms of its CEI as follows:

IIN; / p;

T, = H[N/P,]B or 'T1—= (1/B)'i=I—HP.'/'N.- —_
a ’ I, /pl "
i=1
IT»; ]
(l/B)[ " N /p! ] 1 =1 1’_} ?, P ELP
= € = or
t—l /pt] §=1 NB NB

i
i=1
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T NB :
P . (4.3
B | (4.3)
. m
where B is the execution time of one iteration of the loop, and N = T[] N,. B is assumed to
i=1

be a constant for all loop iterations. The following lemma is a direct application of (4.3).

Lemma 4.1: T, < Tp ifandonlyif E, > E,.

In the next few sections we show how the efliciency index can be used to direct the efficient

assignment of processors to perfectly nested parallel loops.
Given a nested loop L and a number of processors P we call a simple processor assignment

one that assigns all P processors to a single loop IV; of L. A complexr processor assignment is

one that assigns two or more factors of P to two or more loops of L.

Theorem 4.1. The optimal simple processor assignment over all simple assignments of P to L,

is achieved by assigning P to the loop with € = max {e,-P}.
' i=1m

Proof: Without loss in generality assume that ¢ = €,. Then €¢,=1 for 1=23,..,m and

E; = ¢,. For any other simple allocation of P to N;,. j #1, with a CEI of Ell', we have

€ E, > E,: = ¢;. The optimality follows from Lemma 4.1.%

The following two lemmas are indirectly used in subsequent discussion.

Lemma 4.2. I =z I
i=1 ! Pi i=1 Pi

Proof: By definition we have that
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m N RN, ‘
II ’ > JI (4.4)
i=1!Pi i=1 Pi

and since the left hand side of (4.4) is an integer it follows directly that

RN LN
I =z |II—|=
i=11P; i =1 Pi

The next lemma follows directly from Lemma 4.2.
: ) N N
Lemma 4.3. For any integer n, we have n|— | > |1
o pn p

For the next lemma and most of what follows we assume that processors are assigned in units
that are equal to products of the prime factors of P unless explicitly stated otherwise. Therefore

each loop is assigned a divisor of P including one.

Lemma 4.4. If N is a (single) DOALL loop, P = p,p, ... p,, and €;, (§=1,2,...,m) are
the efficiency indeces for assigning p,, p,p,, PPoP3 --» P1Pg - - - P,, Processors to N respec-
tively, then

£, 2 € 2 € > ... = €. : (4.5)

Proof: We sketch the proof for m =2 and the general case follows exactly the same reasoning.

N /p, N/pp, N N
1 Z 62 - Z = Py 2 -
[N/p,] [N/ p,p,l PPy P,

But the last relation is Lemma 4.3 and is therefore true. ®

From Lemma 4.1 we conclude that the optimal processor assignment of P to L is the one that
_maximizes E;. Each assignment defines indirectly a decomposition of P into a number of factors
less than or equal to the number of loops in L. As P grows, the number of different decomposi-

tions of P' into factors érows very rapidly. From number theory we know that each integer is
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uniquely represented as a product of prime factors. Theorem 4.2 below can be used to prune
(eliminate from consideration) several decompositions of P, or equivalently several assignment
profiles of P to L tha,t‘are not close to optimal. From several hand generated tests we observed
that the use of Theorem 4.2 in a branch and bound algorithm for determining the optimal
ass'ignment of processors eliminated more than QO% percent of all possible assignments. In some

instances all but the optimal assignments were pruned by the test of Theorem 4.2.

Again, let L = (N,, ..., IV,,) be a perfectly nested DOALL that executes on P proces-
surs, aud P = p,p,...p, be any decomposition of P where £ < m. Now let
€ = max {e,-P} be the maximum efficiency index over all simple assignments of P to L,

1 €:¢ < m
p.
and €, = max {ej'}, (¢=1, 2,..., k) be the maximum efficiency indeces (over all loops of
17 m
i . . P,
L) for the factors p,, py, ..., py of P respectively (ie., €¢; = (N,/p,)/([NJ / p;1)). Note

that here we do not perform any actual assignment of processors to loops, but simply compute
the maximum efficiency index for each factor p; of P over ali loops of L excluding the loop that
corresponds to €. If T, and T, are the parallel execution time_s for L corresponding to the
optimal simple assignment of P, and the optimal complex assignment of the specific factors of P
respectively, and S, and S, thei‘r respective speedups, we have the following theorem (using the

notation of this paragraph).

Theorem 4.2. If there exists ¢ €{1,2,...,k} for which ¢ > ¢, then T, < T, and thus
S, = S, Or equivalently if one of the factors of P has a maximum efficiency index equal to or
less than the maximum efficiency index of P, then we gain more speedup by assigning the entire

P to a single loop than from any complex assignmentb of the factors of P (including the optimal).

Proof: Without loss of generality we can assume that the optimal complex allocation assigns
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DOALL 1 I1=1,63
DOALL 2 I2=1,7
DOALL 3 I3=1,31
DOALL 4 I4=1, 20

4 CONTINUE
3 CONTINUE

2 CONTINUE

1 CONTINUE

If P=32 the optimal assignment is that which assigns
all 32 processors to the outermost loop.

Figure 4.1. An application of Theorem 4.2.

more than one processor to the first k& loops (¢ < m), and implicitly one processor to the

remaining m — k loops. Therefore the corresponding efficiency index vector for the optimal
. Py Py | . . .

complex allocation is w, = (¢, , ..., €, , 1,..,1) and for the optimal simple allocation of

Pisw = (1,.,1,¢ 1,.,1), where ¢ corresponds to the j-th position. Then the parallel exe-

cution times of the optimal simple and complex allocations are:

T, = NN,.N, A

Suppose now that for some 1€ {1,2,...,k} we have € > ¢, or equivalently,

J J
—_ 2

N; /P N; / p; N; [N.-l N; [N;
>
[N; /P1 — IN; / p] pl--~p;---p,,|l’s

p; P

N; N, N,
— V. N, and T, = |/ |... Ny --
p Py Pi

|

N, (4.6)

(4.7)

Again without loss in generality we may assume j > ¢ and by multiplying both sides of (4.7)

By NN yNiy o Nj-lell-»l""Nm we have

141
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Ny Ny [N [Niw Ny

N;
7 i1 Ny - (4.8)

If we denote the left and right hand sides of (4.8) by M1 and M2 respectively, we have

| I ...IVm2]\/1...1\/}-_1
131 Piy 1P; 1Py Py :

T, 2 M1 > M2 = T, or finally,

T, 2 T, and S, < S,. ]
Thus, given any decomposition of P into factors P = p,...p,, a necessary (but not sufficient)

condition for a complex assignment to be better than the best simple assignment is ¢ < ¢, for
all ¢=1,2,....k (where €, is the maximum efficiency index for factor p; over all loops of L). Obvi-
ously if € = 1 the optimal simple assignment is the overall optimal as well. An example of the
application of Theorem 4.2 is shown in Figure 4.1. The next theorem is a generalization of

Theorem 4.2 when only factors of P are considered.

'I'heorem 4.3. If in Theorem 4.2 P=p,p,...p, is the prime factor decomposition of P and
there exists 1€ {1,...,k} for which ¢ > ¢, then the simple allocation of P to L (corresponding to
¢) 1s Llie overall optimal.

Proof: Suppose that for some 1€{l,...,k} we have ¢ > ¢,. Suppose further that ¢; corresponds

to loop NN;. We therefore have that

€, 2 €; for all N;#N; for the same p;. (4.9)

)
’ t

Any other allocation of P to L defines another decomposition P =.p;p2...pr, r < k and

"

., for some

! !
since p; is a prime factor of P there exists some p; that includes p; (that is, p; = p;p;

n
integer p; ). We consider the following two scenarios:
!
Case 1. Suppose that in this new allocation p; is assigned to the same loop NV; as p; in the prime
! ! [} " .
factor allocation. Then if ¢, is the efficiency index of p; and since p; = p;p; it follows directly

! !
from Lemma 4.4 that.€; > ¢; and therefore € > €, > ¢,.



79

. ! ’
Case 2: Suppose now that p, is assigned to a loop different than IV, say NJ.. If €; and e;. are the
, .
efficiency indeces for allocating p, and p; processors to N; respectively, then from Lemma 4.4,

the initial hypothesis, and relation (4.9) we have

€ > € 2 € 2> €. (4.10)

Therefore in any complex allocation of P to L, there is at least one loop of L' that has a max-

imum efficiency index less than or equal to €, the efficiency index of the optimal simple allocation

(OSA) of P to L. Thus the OSA is the overall optimal. ®

m
Corollary 4.1. If N = ][N, e is the efficiency index of the optimal simple assignment, ¢;

i=1
is the efficiency index for the i-th loop in a complex optimal assignment (i =1, 2,..., m), and E;
the corresponding compound efficiency index, then any optimal complex assignment must satisfy,

e < ¢ <1, (1=1,2,..,m) and € < E;, < 1L
Let

N /P .
E, = N/P where N = T[N,
[N/P] . =1

Then any optimal assignment of P to L satisfies

E, < E, - (4.11)
where E; is the CEI of an optimal assignment. Only in special cases would there be an optimal
assignment of P to L for which the equality in (4.11) holds. A compiler transformation called
loop coalescing, that is discussed in the next chapter, can be applied to certain ﬁypes of loops and

always achieves E;, = E,.

Corollary 4.1 can be used to check whether a given complex assignment is better than an
optimal simplc assignment. It would be useful however to be able to answer the question of the

existence of such assignments. That is, given a loop L and a number of P processors, is there an
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optimal complex assignment better than the optimal simple assignment? If for a particular loop
the answer is negative, the optimal simple assignment is chosen and therefore the problem for
that loop is solved in constant time, assuming the efficiency indeces have been computed. Propo-

sition 4.1 below provides the test for the existence of an optimal complex assignment.

For each loop N; €L, we define the critical capacity g; of N, as the maximum number of
processors that can be assigned to N, with its efficiency index remaining strictly greater than ¢
(the maximum efficiency index of P). In other words, for each N;, g;1s chosen to satisfy,

9. g.

€. > € and ¢ < €

3 1
for any.r > 1. Then we have the following proposition.
Proposition 4.1. A necessary condition for the existence of a complex assignment of P to L

which is better than the corresponding optimal simple assignment, is

it

IIg; = P.
i=1
m .
Proof: If we had J]g; < P, then in any complex allocation there would be at least one loop
i=1

N; with ¢, < € (assuming that all P processors are useful). From Theorem 4.2 then it follows

that the optimal simple allocation is also the overall optimal.®

The obvious approach for optimally solving the general instance of the static processor assign-
ment problem is exhaustive sgarch. For small nested loops and a very small numbe}' of processors
exhaustive search would probably be tolerable at compile time. For medium size loops and a few
tens of processors however, the cost of exhaustive search becomes intolerable even at compile
time. For example the number of different assignments of 50 processors to 15 nested loops is

4.8x10", If it takes 1000ns (on a fast machine) to process each different assignment it would
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take more than 555 days CPU time to find the optimal assignment of 50 processors to 15 loops.

Using the results of this section however, we can design a branch and bound algorithm that
greatly reduces the number of candidate optimal assignments. In several cases the tests of this
section can prune all possible assignments but the optimal and in practice such a branch and
bound algorithm would have polynomial complexity for most cases. The problem remains
unsolved though since we can never guarantee polynomial complexity and we can always come
up with an exémple loop which can make even the branch and bound algorithm run in exponen-
tial time.

In the next section we present an optimal processor assignment algorithm that has a low

polynomial complexity and finds the optimal assignment for all types of loops and any number of

processors.

4.1.2. Optimal Complex Processor Assignment to Parallel Loops

In order to better illustrate the ideas of this section we start by considering perfectly nested
DOALLs and a number of P =2F processors. As we proceed the concepts are generalized to
include more complex loop structures such as nonperfectly nested combinations of serial,

DOALL, and DOACR loops.

Let us consider an m-level‘nested DOALL L =(N,, N,, ..., N, ) and a number of p=2F
processors. The optimal allocation algorithm or OPTAL which is analytically described below
will give us the optimal a’ssignment profile of the P processors to the m loops of L. For each
loop L we compute the efficiency tab(e M as shown in Figure 4.2. Each column j; of M
corresponds to a loop Nj of L and each row ¢ corresponds to a number of 2i, (i=0,1,...,k) pro-
CessorIs. Aﬁ entry (%,7) of taBle M contains the efficiency index for assigning 9! processors to loop

a

N;. This (m X k) efficiency table will be used repeatedly by OPTAL to obtain the optimal
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assignment of P to L.

From Lemma 4.4 we observe that each column of M is ordered in nonincreasing order. If
the loops are ordered by size then each row of M is also ordered in nonincreasing order. There-

fore if € is the element of M in the ¢-th row and j-th column,

€;; > €. for w > J.

iy w

It is clear that in any assignment of P to L there can be at most one entry of the lower half of

M involved in that assignment. Let us give an outline of the basic steps of the algorithm. The

process starts by assigning the P processors to the innermost or outermost loop, and let us

always start from the innermost in our case. 'The second stt;p finds the optimal aséignment of P

to the two innermost loops. In the process we also ne-ed to compute the optimal assignment of
2

1,2,2°, ..., 2F processors respectively to the two innermost loops. These assignments how-

ever are computed only once for each loop and stored for later use by successive steps.

In general, after the (m — i)-th step OPTAL has found the optimal a.ssigﬁment of

1, 2, 22, ..., P processors to loops L,=(N;, N, ..., N,). The next (m — ¢ -+ 1)-th step
N, | N, | N, N, |
1 € | 10 | €3 €1m |
22 €o1 | €99 | €93 €om |
2 €x1 | Caw | €y tam |
—F .
3 €y | €40 b €5a | - ] o | Chm |

Figure 4.2. The efficiency table for P=2* and m nested loops.
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considers loop NV, and finds the optimal assignment of 1, 2, 22, ..., P protessors to loop
(N;.;, L;), possibly by reassigning processors from L; to NN, ;. All possible assignments for N;_,
are considered. Note that all possible assignments for L; have already been computed. At the
end of the m-th step OPTAL outputs the profile of the optimal assignment of P = 2¥ to loop

L=(N,, N, ..,N,) Based on Lemma 4.1 the optimal assignment of P to L would be the

mone that maximizes E; . This is precisely what OPTAL does.

4.1.2.1. The Perfectly-Nested Loop Case

In this section we describe in detail processor assignment for perfectly nested DOALLs and
P = 2 We use tilis case as an example of the applica,tionl of the general algorithm which is
described in the next section. It is followed by a simple example that illustrates the details of
computing the optimal'assign;nent. The heart of OPTAL is a recursive function G, that is
deﬁne;i as follows: Given P=2* and L an m-way nested loob as previously; we define G;(q) as
the product of efficiency indeces of the optimal assignment of g processors to loops
(N;, Ny - N,). More specifically a closed form expression of function G;(q) is given by,

Gi(g) = max {He;j}

1 <pj <q

j=i
m
and such that ¢ = Hpj < P. The recursive definition of G;(¢) and the one that we will be
i=i '
using from now on is given by (4.12)
¥ 2' r ' 12
G,(P) = max {6,. G, 4(P/2") } or : (4.12)
0<r <k

G,(P) = max {GH,(P), €1G(P/2), €] Giy(P/D), € Ca(P/B), ., & G,.+1(1)}
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where e,.q is the efficiency index for assigning ¢ processors to loop N, (available from table M).
Relation (4.12) tells us that the optimal assignment of P to (NN, N,,, ..., N,,) can be found by

selecting from all assignments of 2' processors to loop N; and ok~ processors to

m
(Nigp -+ Np)y (r = 0, 1,.., k), the one that maximizes J]¢;.

j=i
The function in (4.12) is computed for :=m, m-1, ..., 1 and for each ¢ we also compute
G,(1), G;(2), G‘.(‘z*),..., G,(P =2k). The optimal assignment of P to L will be given at the end
of the m-th step by G’l(2k). Initially (first step) for i=m we have G, (q) = €. For each
G,(gq) the corresponding processor assignment profile is stored and when G1(2k) is computed the

profile for the optimal assignment is available.

The -algorithm completes in m steps. In each of the m steps, k= log ,P function evalua-

tions are performed and each of the (r=1,2,...,k) function evaluations involves the computation
. 2

of the maximum of r values. The overall complexity of the algorithm is therefore O(m log 2P).

Using the results of the previous sections, we can easily avoid unnecessary computations and

further reduce the complexity of OPTAL.

The explicit processor assignment vector (with the exact number of processors assigned to
each loop) is computed as a side effect of the computation of G;. When a particular G; is chosen
as optimal, the corresponding assignment vector can be trivially recoﬁstructed. In order to illus-
trate the computational details of the algorithm let us consider a simple example involving four
DOALLs and 25 processors. It should be noted that this approach not only finds the optimal
assignment of the given P processors to a particular loop nest, but it also finds the optimal
assignments of P/2, P /4, P/8, P /16,..., 1 processors to the same loop. We can therefore deter-
mine the minimum number of useful processors with little extra cost.

Example 4.1.1: Consider the loop L =(N, = 15, N, = 17, Ny = 17, N,=25) of Figure 4.3
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DOALL 1 I1=1,15
DOALL 2 I2=1,17
DOALL 3 I3=1,17
DOALL 4 I4=1,25

CONTINUE

4

3 CONTINUE
2 CONTINUE

1 CONTINUE

Figure 4.3. The nested loop of example 4.1.1.

1] 2 4 8 16 39
25 25 25 25 25
|G 1] — — — — —
26 28 32 32 32
25 | 25 17 25 17 25 25
G3() 1 — — A . — A e — er——
26 | 26 18 28 18 32 32
25 | 25 17 | 25 172 | 25 177 25
GO |1 | — | —*— | ) | —*(—) —
9 | 26 18 | 26 18 28 18 32,
25 15 15 15 15 25
GO 1| — — — — —r—
26 16 6 16 16 26

Figure 4.4. The table for example 4.1.1.

and let P =2°. The optimal assignment of P to'L is computed as follows: First the 5x4 efficiency

matrix M is computed. At the first step for 1 =4 wc have G4(2r) = 642 for r=0, 1,..., 5. The

computations for the remaining three steps are shown analytically below. In each case the
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maximum element appears in bold letters. For each of the four steps the optimal assignments are
tabulated in table T shown in Figure 4.4. Each row of T corresponds to each of the four steps.

Step 2
Gy2) = max{ G ((2), G (1) }
Cy4) — ma,x{G4(4), €e2G (2), 6;04(1)}
Gy(8) = m{ G,8), €26 (8), 46,2, 26,1 }
G4(16) = max{ G ((16), €3G (8), €5G ,(4), €5G 4(2), €5°G ((1) }

G4(32) = max{G4(32), €2G(16), €5G (8), €5 G4(4), €3 G ,(2), 6332G4(1)}

Step 3
Gy2) = max{cs(m, eé’Gs(i)}
G,(4) = max{G3(4), €2G4(2), e;G3(1)}
Gy(8) = max.{ Gy(8), €3G 4(4), € G42), €3G4(1) }

G,(16) = ma.x{ G4(16), €2G 4(8), €1 G4(4), €5G5(2), 621603(1)}

G,(32) = max{G3(32), €2G4(16), €5 G4(8), €3G5(4), €5°C4(2), 63203(1)}

Step 4
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G,2) = max{G2(2), e302(1)}
Gy(4) = max{ Gy4), €]Go(2), €/G (1) }
Gy(8) = max{ Gy(8), €, G4(4), €, Go(2), €, G 4(1) }
G,(16) = max{cz(w), €1 Gy(8), €, G,(4), €, Gy(2), €, G (1) } |

G,(32) = max{ G,(32), €2G,(16), €, G,4(8), €1 G4(4), €;°G 5(2), 61326'2(1)}

The optimal assignment in this example is therefore the one that assigns 16 processors to loop
N, and 2 processors to loop N,. The processor assignment profile is reconstructed as follows.
First we look at the maximum element of G(32). This element is 61602(2) which indicates that
loop N, receives 16 processors, and the remaining processors are allocated to G,(2). The max-
imum element of entry G,(2) in Step 3 is G4(2) which indicates that loop N, recleives 1 proces-
sor. Continuing in the same way, the maximum element of entry G4(2) is G ,(2) which again
indicates that loop Nj is a,ssi‘gned 1 processor, and therefore loop N, is assigned the remaininé 2

pProcessors.

4.1.2.2. The General Algorithm

Although most real polyprocessor systems have P = 2¥ for some integer £, OPTAL can be
used to generate optimal processor assignments for any integer P. It also handles arbitrarily
nested parallel loops. Before we describe ‘the details of the general algorithm however, we need

to define the concepts of DOACR and loop nesting more precisely.



As mentioned in Chapter 1, a DOACR is a parallel loop in which data dependences allow for
partial overlap of successive iterations during exe.cution on an MES system. In other words, if
iteration 7 starts at time ¢ on a given processor, iteration (i-+1) can start at time ¢ + d, where d
is (idealy) a constant. Constant d is called delay and represents the execution time of a subset
of loop statements whose data dependence graph forms a cycle. If B is the (serial) execution
time of the loop body, then d/B gives the percentage éf overlap, (or doacross percentage).
When d =B the loop is serial‘ while if d =0 the loop is a DOALL. DOALL and serial loops aré
therefore special cases of DOACR loops. The parallel execution time of a DOACR loop with N;
iterations, a delay of d; and a body size of B; that executes on P processors is given by the fol-

lowing [PoBa86].

N;

P

Th(B;) = [ - l]*max B, Pd) + d, *[(N ~ 1) mod P] + B, (413)

In order’ to simplify the notation in the following discussion, we assume that a block of assign-

ment statements (BAS) can be considered as a DOACR loop with N, = 1, and d; = 0.

An arbitrarily complex nested loop can be uniquely represented as a k- level tre'e where k is
the maximum .nest depth. The leaves of the tree correspond to BASs and intermediate nodes
correspond to (DOACR) loops. The total number of nodes in a ioop tree is A + 4, where X is the
number of individual loops in the structure and p the number of BASs.{ An example of a nested
loop and its tree representation are shown in Figure 4.5. Intermediate tree nodes at level m
correspond to loops at nest depth m. We assume that individual loops in an arbitrarily nested

loop are numbered increasingly in lexicographic order (Figure 4.5).

In the general case loops are not perfectly nested and therefore the efficiency index as
defined in Section 4 is not useful. We can redefine the efficiency index for the general case but it

is more convenient to define the assignment function to measure directly parallel execution time.
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Figure 4.5. A nested loop and its tree representation. Squares and leaves denote BASs.

The max term of the assignment function in the previous section becomes min in this case since

our objective is to minimize execution time and thus maximize speedu .
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The steps of the general algorithm are almost identical to the case of perfectly nested loops. -
The example of Figure 4.5 is used whenever it helps illustrate the computa.ﬁions involved. A
AX P table can be used to store intermediate values.. (A, P are the numbers of loops and pro-
cessors respectively.) During the first step we compute the parallel execution time of the DOACR

loops at level £ on the tree, where k is again the maximum nest level. This is done as follows:

Giq) = T,(B), (¢ = 1,2, ..,P) | (4.14)

and for all leaves 1.

where T; is given by (4.13). The general step is defined recursively as in the perfectly nested loop
case. The optimal assignment of P processors to loops in levels 7 through k (¢ < k), (assuming

the optimal assignment of P to loops at level 7+l is known), is then generated by:

Gl¢) = min {T,’[ Y G:o-l(l.‘l/’.l)]} | (4.15)

1srxy n child of j

and for (¢=1, 2,3, ..., P)
where (4.15) is computed for all nodes (loops) j at level ¢, and T(*) is given by (4.13). The

summation in (4.15) accounts for all nodes at level ¢ + 1 that are descendants of node j, that is,
all loops nested inside loop Nj. The optimal assignment of P processors to a given loop is given
by G11 (P). Recall from the example of the previous section that the detailed processor assign-
ment vector is automatically constructed during the evaluation. of (4.15). For each loop the
number of processors'a.ssigned to it corresponds to the minimum tefm in (4.15). It should be
hoted that all optimal assignments of 1, 2,..., P-1 processors to L are computed as intermediate

results of the computation of G’f(P). We therefore have the following.

Lemma 4.5 The maximum number of useful processors given P for a loop L is the minimum

@, such that 1 < Q < P and G;(Q)=G(P).
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OPTAL

Input:
Aloop L =(N,, N,, ..., N,),of nest depth nest k and P processors.

Output:
An optimal processor allocation profile of P to L.

Method:

e 1. For all loops j at level k of the loop tree, and
Forall¢ = 1,2, 3, ...,P, compute the allocation function:

Gi(q) = TiB;)

® 2. Fori=(k — 1)to1l Compute:
For all loops 7 in nest depth ¢ compute:

¢l = Ti'[ > G;‘(l)]

n child of j

Gl2) = min{[Ti[ ) G,-"+,(2>]], [T; S Gla() ]]}

n child of j n child of j

Gi(P) = min {[Tj N G,."+1([P/rj)]],: for r=1,2,3, ...,P}

n child of j§

and store the results in the 7-th row of table T'.
¢ 3. Output the processor allocation profile corresponding to G,(F).

Figure 4.6. The processor allocation (OPTAL) algorithm. .

A procedural description of OPTAL is given in Figure 4.6.

Theorem 4.4 For any ioop L of maximum nest depth m, and any integer P, OPTAL ter-
minates after m iterations and generates the optimal assignment of P processors to L.
Proof: The proof is by induction on ¢. Since ¢ is decreasing in successive steps, we apply induc-

tion backwards. For i =m (the innermost loop) we have by definition an optimal allocation given
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by G, (P). Suppose that for 1 =k + 1, G,fﬂ(q), (¢=1, 2, ..., P) is optimal, for all loops j at
nest level k+1. We will show that for : =k, G,{(q), (¢=1, 2,..., P) is also optimal. For every
q, G, is defined by (4.15) and without loss of generality we can assume that

¢i) = T = efalerh)

4.16
n child of j ( )

Since G’,:'_H([q/rj) is optimal for all 7 by the induction hypothesis, and since (4.16) is the
minimum term in (4.15), it follows that G’;;i(q) is aptimal for ¢ and thus G,Z(P) is oplunal. We

thus conclude that Gll (P) gives the optimal allocation of P processors to loop . ®

The complexity of the algorithm can be easily determined. The assignment function G,-j is
computed P times for each node (loop) in the tree, or a total of AP times. Each evaluation of
the assignment function also involves finding the minimum of an average of P/2 terms. The
complexity therefore (without counting additions) is 0()\P2 / 2). The complexity can be reduced
to ()-(AP log P), and OPTAL can be used to implement a systolic array control unit that con-
sists of I log P nodes and determines t.h.e optimal assignment of P processors (o a given loop in

M steps, as discussed later in this chapter.

Note that the (maximum) speedup resulting from the optimal assignment of P processors
to a loop L i3 given by,

0]

ar(P)

An interesting point of this approach is thay although loops at the same nest level are allo-
cated the same total number of processors, each loop manages (assigns) its own processors to its

own iterations in an independent way. For example, suppose that loops 3 and 6 of Figure 4.5 are

allocated 8 processors each. A possible assignment then may assign 1 processor to loops 3 and 4,
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Subroutine Name | S, Sose S 9048

ELMBAK 31.9 242.0 668.0
ELMHES 31.7 33.6 33.6
ELTRAN 29.3 71.3 84.5
HQR2 180 | 26.0 28.0
TRED1 31.0 | 235.0 240.0
MINFIT 28.0 130.0 181.0
TRED2 18.3 36.5 39.5
CBABK?2 30.0 53.5 57.4
CH 25.0 66.9 85.0
COMBAK 31.9 248.5 721.0
CORTB 32.0 | 254.0 | 1250.0
CORTH 32.0 252.0 501.0
BANDV 31.0 98.0 98.0

Table 4.1: Speedup values for 32, 256, and 2048 processors for EISPACK subroutines.

Subroutine Name S3o Sos6 So04s
INISHL 32.0 255.8 1021.0
WFTA 32.0 255.8 2036.9
TRBIZE . 30.8 128.6 128.6
PCORP 31.9 246.3 537.0
POWER 26.4 68.2 79.6
COSYFP 222 | 544 65.7
FREDIC 31.9 162.0 190.0
FLLPWI. 30.9 169.4 363.0
DIINIT 28.0 89.5 119.4
SRINIT 21.3 18.6 56.8
SMINVD 31.9 120.6 186.0
DEFIN4 19.2 37.6 37.6
FFT 308 | 191.0 | 505.0 ||
LOAD 22.0 36.3 36.3
COVAR1 31.5 68.0 76.5
CLHARM 27.7 91.8 120.0
FLCHAR 31.0 188.3 458.8
| REMEZ 100 | 121 12.3
D - 31.3 210.0 670.0

LPTRN 11.0 | 139 | 148

Table 4.2: Speedup values for 32, 256, and 2048 processors for IEEE DSP subroutines.
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and 8 processors to loop 5, while in the second case we may have 2 processors assigned to loop 6,
and 4 processors to each of the loops 7 and 8. It is clear that loops on the same nest level must
be assigned the same total number of processors when executing on a parallel processor system.

Otherwise we have suboptimal parallel execution times since some processors will be forced to

remain idle.

4.2. Experiments

We implemented this processor assignment algorithm in the Parafrase compiler. Proccasor
assignment is performed after DOALL and DOACR loops are recognized and delays computed. In
our experiments we measured spcedup values for some subroutines of the EISPACK and IEEE

DSP packages.

In our ca;se Tp, the parallel execution time, was measured for P =32, P=256, and
P =2048 processor;s, and for loap bounﬁs set to 10. In some LIS'ACK subroutines where loop
bounds correspond to the Bandwidth of band-matrices, we used lnop hounds of 1 or 4. The
speedup values measurgd for the three different numbers of prn.npssr,\rs are shown in Tables 4.1
and 4.2. The subroutines from the two packages used in these experiments were randomly

selected.

From the speedup values we observe that for 32 processors Lhe average spcedup is almost
linear for both EISPACK and IEEE subroutines. For 256 processors the average speedup for
EISPACK subroutines is about 137, or more than P /2. That is, we have an efficiency of more
than 50% for P =256. For the IEEE subroutines we observe an even higher average efﬁciéncy for
the same number of processors. The third column in each table corresponds to an unlimited
number of processors. Since most of the EISPACK subroutines deal with square matrices, for 40

X 40 arrays the maximum expected speedup is 1600. Taking into account several loops with
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Figures 4.7 and 4.8. New and previous speedups for EISPACK for 32 and 2048 processors.

bounds of 1 or 4 and the number of one-dimensional loops, the average maximum speedup should
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be expected to be considerably lower than 1600. The average speedup of the third column of
Table 4.1 is about 310, which corresponds to an average efficiency of about 15%. Since at most
1600 processors'would be useful for most of the EISPACK routines, in reallity we would have an
efficiency of about 20%. The corresponding values for the third column of Table 4.2 are quite
higher than those of EISPACK. Generally, supercomputers deliver a wide range of performances
from program to program. This is true of real machines [DoHi85], and has been observed in our -
earlier experimental work |Kuck84]. It appears, from the experiments wc have conducted su [ar,
that when OPTAL is used there is very little variation when programs are run with limited

number of processors.

Considering the fact that efficiencies in the range of 20% are characterized very satisfactory
in modern supercomputers, we can claim that optimal processor assignments to parallel loops
result in high speedups for most cases. Processor- allocations to independent codc segments can

increase the average speedup at least by a factor of two [Veid85).

Figures 4.7, 4.8, 4.9, and 4.10 show the improvement in speedup [or the same set of
EISPACK and IEEE/DSP subroutines. The horizontal axis in the plots correspond to subrontines
arranged in order of increasing speedup. The vertical axis display actual speedups. The solid lines
plot the speedup spectrum obtained by using OPTAL. The dotted lines plot speedups obtained

by the previous method [Cytr84].

We compared the performance improvenr!.ent using the two ﬁethods for p=32 and
p =2048. As mentioned above, the problem size was chosen so that p =2048 approaches the
unlimited processor case. We observe that for p =:32 the speedup improvement is very significant
for both EISPACK and IEEE/DSP routines. This is the case when the number of processors is
small relative to the problem sizé, nonoptimal allocations have a significant negative impact on

performance. In other words when the number of processors is relatively small we can not afford
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Figure 4.9 and 4.10. New and previous speedups for IEEE/DSP for 32 and 2048 processors.

to underutilize even a few processors. When the number of processors is large, the inefficiency
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intgroduced by poor utilization of a few processors is amortized and has less impact on overall
perforﬁlance. This becomes evident in the plots of Figurés 4.8 an(i 4.10 where‘ the number of i)ro-
cessors is 2048. In this case the improvement in performance is significantly less than in the case
of p=32 (Figures 4.7 and 4.9). The relative performance improvement for p =256 lies in

between.

4.3. Implementing OPTAL with Systolic Array

As mentioned earlier OPTAL generates aptimal static processor assignmento if the loup
bounds are known at cbmpile-time. This vis frequently t;he case in numerical software where loop
bounds usually reflect the problem size. Howevef there are many cases where the loop bounds
are not known at compile-time and default values are used by Parafrase instead. In such cases it
is impossible to assure optimality. For example, loops with unknown loop bounds at compile-
time are triangular loops whose bounds are a.cf.ua‘ily indeces \of outer loops. By unrolling loups

: v
that surround triangular loops we obtain a sequence of loops ‘with constant upper bounds that
can Be handled optimally. This unrolling does not need to lexically take place but processar
assignment can be performed assuming an implicit loop unrolling at compile-time. Loop upper
bounds that cannot be estimated at compile-time are also those that are determined by a func-
tion call c;r by the value of an array element, for example. This problem is alleviated at run-
time héwever, where loop bounds must be known before the loop is entered. It would thus be
appropriate in such cases to perform processor assignment at run-time, just before we start exe-
cuting each loop. Of course mofe information is available at run-time but the overhcad of run-
time assignment would also be more significant. Although run-time assignment and scheduling is
the subject of Chapter 7, in this sec‘tion we discuss a hardware implementation of OPTAL in the

form of a systolic array that can be used for run-time processor assignment. Let us again con-

sider the perfectly nested loop case where the number of processors is a power of two. The
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Local Memory FO
LM !

FO2 .
CMPR
- Pd \ RPI .%__
AC])
RO,

AC, BC, CC': Registers that hold operands for the functional unit.
CMPR : Comparator, finds the MAX of two reals.

FO,, FO, Output latches.

RO,, RO, Input latches.

RPI, RPO: Input and output latches for propagating data.

Figure 4.11. The structure of the systolic array cell.

general case is also discussed.

Consider the quadraply nested loop in Figure 4.3 and the computation of the allocation
function G in Example 4.1.1. Since the computation of the different steps involves computing

the max of a set of elements, the algorithm is naturally offered for a parallel hardware
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implementation that uses a tree-structure to fan-in the partial max terms. By looking at Exam-
ple 4.1.1 we observe that the main operations are an initial multiplication and subsequent com-
parisons. We can easily implement OPTAL using a systolic array that is a triangle of cells of

the type shown in Figure 4.12.

The basic cell, shown in Figure 4.11, has a small local xhemory LM whosé size should be at
. least m words, (where m is the nest depth of the loop under consideration). A functional unit
that is used to multiply efficiency indeces of tWo loops at the beginning of each phase, where a
pliase 'couslsts of all the computation involved for each nest level. CMPR is a comparator and
the remaining elements are latches used to receive and forward partial results. Going back to
Es(ample 4.1.1 it is eaé.y to see how the computation is performed within each cell of the systolic
array. For simplicity let us assume that each multiplication takes one full clock cycle and each

of the other operations take half a clock cycle to complete (low and high).

The systolic  array for P =16 is shown in Figure 4.12. Cells in the array are numbered (¢,5)
where ¢ is the row number and 7 is the position of that cell in the ¢-th row counting from left to

right. The initialization of each phase involves a multiplication which is performed as follows.

[CC+LM(z)] (innermost loop only)
BC«LM(y)
RO,+BC*AC

where z and y are local memory addresses. In general, at the beginning of the k-th phase cell
(7,7) will execute:

gi=iH
BC—e, 14
For the innermost loop the computation of the efficiency indeces is done separately and the

appropriate values are broadcast to the corresponding cells. For example, cell (i,5) will receive

-1
63: . After the multiplication step for a given phase has been completed, the following two steps



101

Figure 4.12. The systolic array implementation for P =16.

are repeated log P times.

Step 1 (High clock)
FOL(i,1), FOi,j) «max (RO\(i.f), BOyi,5)}

Step 2 (Low clock)

RO\(i,j) «+FO,(i1,5)

RO(i,5) +=FO,(i,jH)

RPI(i,j) «RPO(i-1,7).
In Step 1 the op.era.nds in registers RO, and RO, within each cell are read by the COMPR and
the result (max element) is latched into registers FO, and FO, of each cell. During the second
step, each cell in the systolic array forwards the contents of its FO, and FO, registers to its two

neighboring cells. Simultaneously, the contents of the RPO register within each cell are for-

warded to the RPI and AC registers of their lower left neighbors.
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As shown in Figure 4.12 each row ¢ of cells in the array holds the elements of the set
corresponding to G’k(2i-1), (k=m, m-1,..., 1). For the k-th loop, lthe computation of G,(P=2")
is completed after log P steps. The intermediate allocation functions G,(1), G,(2),
G’k(22),...,Gk(2"_1) are also produced, one per clock, during that phase. Each result G’k(2r) is
written into the AC registers of all cells numbered (¥, r+1). Clearly it takes O(mlogP) steps to

complete the optimal assignment of P processors to m nested loops.

Since the elements of the efficiency table M must be read into the cells of the systolic array
(one row per cell), the computation time for M, which is mP would dominate the complexity of
the entire computation. ’I‘his problem however can be eliminated by overlapping the computa-
tion of M with the operation of the systolic array. Since each phase of computation in the array
requires only one row of M, each row of M but the first, can be computed (and broadcast to the
corresponding cells) during the computation of the previous phase. A linear systolic array can be

used to implement OPTAL in a similar way.

The general case is similar but now wec have to compute a time table instead of the
efficiency table M. Ea.c:h entry of the time table gives the execution time for the corresponding
loop for a specific number of processors. Synchronization of the operations in the systolic array is
an additional concern here. The number of clock cycles needed to complete one step varies with
the number of additions needed in (4.15). Therefore, in order to synchronize the computation
some of the cells may need to idle for a few clocks. As shown in (4.15) the number of additions in

each phase depends on the number of loops at the same nest level.
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CHAPTER 5

SCHEDULING WITH LOOP COALESCING

In the previous chapter we discussed compile-time scheduling, and presented an optimal
deterministic processor assignment algorithm for arbitrarily complex parallel loops. Compile-time
scheduling is a simple problem when we deal with singly nested loops where all loop iterations
have equal execution times. In that case, the obvious one-step processor assignment is also the
optimal one: the optimal distribution of N iterations to P processors is clearly the one that
assigns [N /P] iterations to each processor. It would be therefore desirable to have, if possible,

parallel programs with singly nested parallel loops.

In this section we introduce a compiler transformation called loop coalescing that restruc-
tures certain types of multiply nested loops into single parallel loops. Thus, for those loops that
can be restructured, the optimal processor assignment problem becomes simple. I'n addition, the
processor assignments for the transformed loops are generally better than the optimal assign:
ments to the original loops generated by OPTAL. This is t:,nie assuming all iterations of a,.loop
have equal execution times. When this last condition is not satisfied the optimal processor
assignment becomes a complex problem even for singly nested ioops. In Chapter 7 we show how
loop coalescing can be used to achieve optimal or near—optifnal dynamic schedules for general
parallel loops. This transformation is also used in Chapter 7 to reduce (and minimize in certain-
cases) the number of synchronization points needed during the execution of hybrid loops. Again
we start from the perfectly nested loop case and generalize the concepts and results as we

proceed. Some more definitions are in order.

Let L=(N,,, N, 4,---» N}) be a ‘perfectly nested DOALL and P the number of available

m
processors. Let N = [ N, B is the execution time of the innermost loop body, and

i=1
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0 \
where T ;, represents the minimum execution time of loop L on P processors. Consider now any

allocation w of the P processors to the component loops of L, and let w) be the optimal such

w .
allocation. If T I‘: and 7, Po denote the parallel execution time of L for the allocations wand «

respectively, then

DOALL 1 I=1,15
DOALL 2 J=1,7

2 ENDOALL
1 ENDOALL

For P=27 the optimal processor allocation (OPTAL) assigns 3 processors
to outer loop and 7 processors to inner loop which results in 5 iterations.
The corresponding superoptimal allocation assigns 27 processors to 105
iterations which results in a total of only 4 parallel iterations."

Figure 5.1. Scheduling with coalescing.

DO 1 I=1,N
DO 2 J=1,M DO 1 J=1,N*M
A(I,J)=B(I,J) — A(J,1)=B(J,1)
2 ENDOALL 1 ENDOALL
1 ENDOALL

Figure 5.2. Example of loop collapsing.
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T L
T, =11 [—
=1 9

for some distribution of ¢;, (f =1,2,..., m) processors to the component-loops N],

m

(f =1,2,.., m)of L such that J]¢; <P. From Lemma 4.2 it then follows that

1=1

W
Tp < Tp < Tp.
Definition 5.1 An allocation w of P processors to‘a multiply nested loop L is said to be
superoptimal if and only if
TY = T}, )
Obviously (5.2) holds true for all singly nested loops, but in general, is not true for multiply

nested loops. It becomes evident therefore that transforming arbitrarily complex loops into single

loops, not only simplifies the processor assignment problem, but it also improves the resulting

DOALL 1 J=

1.N
DOALL 2 K=1

N
AW K)= ....

2 ENDOALL
.1 ENDOALL

becomes
: 2
DOALL 1 I=1,N

AfIN], 1 - NlT - ON) = ....

1 ENDOALL

Figure 5.3. Loop coalescing in two dimensions.
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schedules.

By applying loop coalescing we can achieve superoptimal limited allocations for the major-
ity of DOALL loops. Loop coalescing transforms a series of nested DOALLs to a single DOALL
with an iteration space equal to the product of the iteration spaces of the original loop. Then the
superoptimal allocation is accomplished in a single step by allocating all P processors to the
transformed loop. In order to apply loop coalescing to a nest of DOALLs, all dependence direc-
tions must be "="[Wolf82]. In Chapter 7 we show how loop coalescing can be used with unequal
* direction vectors. Consider for example the loop of Figure 5.1 that is to be execqted on a P=27
processor system. The optimal deterministic assignment to the original loop allocates 3 (clusters
of) processors to the outer loop and 7 processors to the inner loop. This results in a total of 5
iterations per processor. If the original loop is coalesced into a single DOALL with 105 (=15*7)

iterations, all processors are assigned to that single loop which results in 4 iterations per proces-

SOr.

Loop coalescing resembles loop collapsing, another transformation that already exists in
Parafrase. Loop collapsing though is different than coalescing in both its purpose and mechan-
ism. The former is a memory related ‘transformation that collapses doubly nested loops only, to
single loops by transforming two dimensional arrays into vectors. Figure 5.2 shov&-'s an example of
loop collapsing. The purpose of this transformation is to create long vectors for efficient execu-
tion on memory-to-memory SEA systems (e.g., CDC Cyber 205). No anhseript maunipulation is
attempted by loop co]la,psing,‘ which by the way, is applicable only to double perfectly nested

DOALLs.

Loop coalescing should be applied so that the original and the transformed loops are
semantically equivalent. This méans that the transformation should manipulate loop subscripts

so that there always exists a one-to-one mapping between the array subscripts of the original and
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J K I

1 1 1

1 2 2

1 3 3

1 N N

2 1 N+1

2 2 N+2

2 N 2N

N 1 (N-1)N+1
N 2 (N-1)N+2 ' \
N N NN

Figure 5.4. Index values for original and coalesced loop - two dimensions.

thé transformed loop. Moreover, the resultiﬁg loop should be scheduled such that each processor
kn<:;ws exactly ‘which iterations of the original loop it has beeﬁ assign.ed. Since the resulting loop
has a single index, we must find mappings that correctly map subscript expressions of the origi-
nal loop (which are multivariable intcger functions) to expressions involvi‘ng.a single subscript

(corresponding to the index of the restructured loop).

Before we describe the general transformation let us look at two examples of loop coalesc-
ing. Figures 5.3 and 5.5 show the cases of coalescing perfectly nested DOALLs of nest depth two
and fhree. Consider first the loop of Figurg 5.3fa.na its coalesced equivalent. Figure 5.4 shows the
index values for the two cases in phe order they are assumed. Clearly the first subscript J of

A(J,K) should be transformed into an expression ixivolvi'ng I, e,
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A(J,K,L)=
3 ENDOALL
2  ENDOALL
1 ENDOALL

becomes
DOALL 1 I=1,N° e .
. ‘
ATIA, [IA] - NlE-OAT) 1 - Nl@E - DAD=. ...

1 ENDOALL

Figure 5.5. Loop coalescing in three dimensions.

J o= I

where f is an integer-value function and such that the value of f(I) is incremented hy one each
time I assumes a value of the form wN-H, for w€ Z". Similarly we must determine a mapping g
such that

K — g¢(I)
and such that g(I) assumes the successive values 1, 2,..., N, but its values wrap around each
time f (/) becomes wN+1, as it becomes evident from Figure 5.4. For the-case of the loop of Fig-

ure 5.3 it can be seen that

J = f()— %l | | (5.3)

K — g(I)=1 —Nlu‘l
N
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The mappings in (5.3) satisfy the properties mentioned above. In the case of the triply nested-

DOALLs of Figure 5.5 the corresponding mappings are defined by,

- f(1)=[%]
d .

[Il [[—I"

K — g(I)=|—|-N

) N N |

L — h(I)=I-NII;1].
N |

It is clear that the mappings f, g, and ~ follow a regular pattern. As it is shown below, loop
qoalescing can be applied to a much wider range of nested loops with unequal loop bounds. The
follqwing theorem defines the general array subscript transforma,tiqn f"or loop coalescing. Let
L=(N,, N, 4., N;) be any m-way (non-perfectly) nested loop, and L'=(N=N";Nm_l...N1)
be the corresponding coalesced (single) loop. Let alsé s Jm‘_l,v..., Jy denote the _ix;deces of the

loops in L, and I the index of the transformed loop L’. ‘Then we have the following.

Theorem 5.1 Any array reference of the form A(J, J_ ..., J;) in L ‘can be uniquely

expressed by an equivalent array reference
A(f (D), foD)yeoy FIN=AT, Ty v s 1)) in L | where

I I-1
Ilc =fk(1) = E-1 _Nlc k ) (k=m,m_—1,...,1)

N I
i=1 =l

or for the case of equal loop bounds,

I "I
k = . .
Nlc -1

I-1
]—N[f‘— .. (k=m,m-1,...,1).
N* .

. ; ' . .
Proof: Consider an m-level nested loop L that is transformed into a single loop L with index I,
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as é,bove. Any array reference of the form A(J,,..., J;, ..., J;) will be transformed into
Al,,...I, ..., 1)), where I, (i=m,...,1) are functions of I. We will derive the mapping for

J; = I, and prove that it is given by (5.4).

A step is defined to be one execution of the loop-body of the innermost (1st) loop. It is clear -
that the 1st index /I, is incremented by one at each step. The second index I, is incremented at
steps of size Nl’ I, at steps of size N|N,, ..., I is incremented at steps of size NNy - - - N._,
and so on. At each moment the total number of steps (iterations) that have been completed is

given by I. It is clear therefore that the expression

[ I ]
|N1N2 N, (5'5)‘
is incremented by one at steps of size N|N,...N; ;. However, all indeces (but the outermost)
wrap around and assume repeatedly the same values for each itera;tion of their outermost loops.
Each index assumes a maximum value which is its corresponding loop upper bound. This value -
is reached after /V, steps for /|, after N\ N, steps for I,, ..., after N;N, - - - N; steps for ; and
so on. Therefore the mapping defined by (5.5) for I, is correct as long as I <N |N,...N; but not
for later steps. Thus we have to ‘“‘compensate” (5.5) for the wrap around of the values of I;. This

can be done by subtracting from (5.5) the multiples of N; at the steps at which I, repeats its

values. In other words we should subtract from (5.5) the multiples of N, which are given by,
Ir-1 . .
N; — | (5.6)
.N,;N,...N;
From (5.5) and (5.6) it follows that the correct mapping for I; is given by,

I I-1
S Vv L
NyNy...N;_, N,N,...N,
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For the last iteration, index I, (k = m, m-1,..., 1) should more precisely be defined by

I, = min(N,, f(I)).
. m-1
From (5.4) we also observe that for the outermost index I, the transformation is [1/T] N;]

=1

since the second term in (5.4) is always zero.

5.1. Processor Assignment and Subscript Calculation

From a first observation, it seems that loop éoalescing introduces expensive operations in
the subscript expressions. Thus, one may question the practicality of such a transformation. The
rather complicated subscript expressions do not pose any sefious performance problem because,
as it will be shown in this section, these expressions need only be evaluated once per processor,
and ez;ch processor is assigned blocks of consecutive iterations. Each subscript calculation con-
sists of two division operations, one multiplica.tionA and one subtraction.

. . i

Considering again a loop of the form L = (N,_,..., N,) all partial products TN,

‘ i=1

(7 =1, 2,..., m) are obtained (and stored for later use) at no extra cost during the evaluation of

m
TI N; which involves m multiplications.

i=l

Now let us see what happens when the coalesced loop L, is scheduled on P processors. Each
pracessor will be assigned to execute r = [N /P] successive iterationé of L More specifically,
processor p, (p =1, 2,..., P) will ¢xccute iterations (p - 1)r +1 through pr of the coalesced
loop.

Suppose next thatan array reference of the form A(x,....%, f;(I), %-., *) gxist;s in the code of
Ll. 'i‘hen from the previous paragraphs it follows that processor p willlaccess those elements in

the i-th dimension of A that are included in
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DOALL 1 J=1,2
DOALL 2 K=1,3
DOALL 3 L=1,6

A(J.K.L)= ....
ENDOALL

3
2 ENDOALL
1 ENDOALL

(2)
becomes
. [

DOALL 1 I=1, 36

S ey Kl
18 6 18 6

1 ENDOALL

(b)

becomes

DOALL 1 p=1,56

A[Pn-ﬂr+l ' FEJ’RP—HT+1
18 sl 6

B A e

18 6 18

1 ENDOALL
(c) :
Figure 5.6. Coalescing for block scheduling.

Ak %, (0 -1)r41) < 1i(pr), % )

(where the notation 7:j denotes all increments of 1 from ¢ to j inclusive). In general, from (5.4)

it follows that the subscripts in the k-th dimension referenced by processor p are in the following

j=1 j=l1 =1

interval,
-1)r+H -1)r rpr r-1
Ik e Lp_)__—Nk p o v p “Nk p
k-1 k k-1 k
HNJ- ]__[NJ. HNJ. Nj
j=1 ]
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In order to see in more detail how the subscript computation is performed after processors have
been assigned, consider the following example. Let us suppose that we have the loop of Figure
5.6(a) that is coalesced into the single DOALL of Figure 5.6(b), which is to be executed on P =5

processors. In this case N3=2, N,=3, N1%6 and therefore r‘=[N3N2.N‘1/P'| = [36/5] = 8.-

Since the coalesced loop is executed on 5 processors, as far as array A is concerned, it is
equivalent to the pseudo-vector loop of Figure 5.6(c). Thus, for each processor we only need to
compute the value range for each subscript. Since each subscript depends only on p, all subscript

ranges can be evaluated in parallel. For p =3 for example, the range of A that is referenced by

the 3rd processor is given by,

Processor 1

Processor 2

Processor 3

~ Processor 4

Processor 5

A(l,2,3)

A(1,1,1) A(1,3,5) A(2,2,1) A(2,3,3)
A(1,1,2) A(1,2,4) A(1,3.6) A(2,2,2) A(2.3,4)
A(1,1,3) A(1,2,5) A(2,1,1) A(2,2,3) A(2.3,5)
A(1,1,4) A(1,2,6) A(2,1,2) A(2,2,4) A(2.3,6)
A(1,1,5) A(1,3,1) A(2,1,3) A(2,2,5)

A(1,1,6) A(1,3,2) A(2,1,4) A(2,2,6)

A(1,2,1) A(1,3,3) A(2,1,5) A(2,3,1)

A(1,2,2) A(1,3,4) A(2.1,6) A(2,3,2)

Figure 5.7. Distribution of array elements (and iterations) among 5 processors.
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2 bl o] 2

or  A(1:2, 31, 5:6) (5.7)

Since we know the upper bounds for each index, (5.7) uniquely determines the elements of A
that will be accessed by the 3rd processor (A(1,3,5), A(1,3,6), A(2,1,1), A(2,1,2), A(2,1,3),
A(2,1,4), A(2,1,5), A(2,1,6)). The detailed access pattern of the elements of A by each processor

in our example is shown in Figure 5.7.

Therefore the subscript expressions that are superficially introduced by loop coalescing

should not degrade performance, especially when P is small compared to the number of itera-

DOALL 1 J=1,N
DOSERIAL 2 K=1,N
DOALL 3 L=1,N°

A(J.K, L) = ...

3 ENDOAT.L,
2 ENDOSERIAL
1 ENDOALL

(a)’

becomes

DOSERIAL 1 K=1,§
DOALL 2 I=1,N

A(IANT &, 1 - NE-DA) = ...

2 ENDOALL
1 ENDOSERIAL

(b)

Figure 5.8. Coalescing of a hybrid loop.
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tions of the coalesced loop.

Even though we have considered the most simple subscript expressions so far, it is easy to
observe that loop coalescing can be applied in the same way fqr any polynomial subscript exprés—
sion. In the following sections we generalize the transformation and show how it can be applied
to hybrid and non-perfectly nested loops. In principle, loop coalescing can be used with any arbi-

trarily nested loop.

5.2. Hybrid Loops

Loop-coalescing may be app‘lied selectively on hybrid loops. A loop is hybrid when it con-
tains combinations of DOALLs, DOACRs, and serial loops. An example of a hybrid loop is shown
in Figure 5.8(a). In such cases loop coalescing can be applied to transform only the DOALLSs of
the hybrid loop. Only the subscripts of array references t;hat correspond to the DOALLSs are
transformed in this case. The indeces (subscrii)ts) of any serial or DOACR loop are left

unchanged. The coalesced version of the loop in Figure 5.8(a) is shown in Figure 5.8(b).

5.3. Non-Perfectly Nested Loops, One Way Nesting

Coaleséing can also be applied to hon-perfectly nested loops. The subscript transformations
remain the same, but care must be taken to assure correct exectxtioﬁ of code segments that
appéar in different nest levels. Such code segments must be executed éonditionally in the
transformed loop. Let us consider for the moment only one-dimensional nesting as in the exam-
ple of Figure 5.9(a), where S, and S, denote straight line code segments. Obviously if the
DOALLs of the example are coalesced, segment S, should be executed conditionally in the
transformed loop. The compiler must insert a conditional statement before the first stat;ement of

S,. Fortunately this is an easy task for the compiler to do and the conditionals are always
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DOALL 1 J=1.,N
35
DOALL 2 K=1,N
1S,
2 ENDOALL
1 ENDOALL

(a)

becomes

£=0
DOALL 1 I=1,N’
IF ([IN] .NE. t) THEN
Sy
t = [IN]
ENDIF
S2
1 ENDOALL
(b)

Figure 5.9. Coalescing of a non-perfectly nested loop.

straight forward to compute.

The coalesced version of the example loop of Figure 5.9(a) is shown in Figure 5.9(b). Scalar
t is a compiler generated temporary variable that is used to test the value of I and is reset each
time code segment S, is executed. The extension to multiple nonperfectly nested loops is also

straightforward.

5.4. Multiway Necsted Loops

A loop is multiway nested if there are two or more loops at the same nest level. The loop in
Figure 5.10(a) is a multiway (2-way) nested loop. Figure 5.10(b) shows the corresponding

coalesced loop. However, extra care should be taken with multiway nested loops. As it can be
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DOALL 1 J=

1,N
DOALL 2 K=1

N
A(J.K)= ....
2  ENDOALL
DOALL 3 L=1,N
B(J,L)= ....

3 ENDOALL
1 ENDOALL

(a)
becomes

DOALL 1 I=1,N’

A([IN], 1 - N|(T - DA
B(JinNl, 1 - NI - DA) =

1 ENDOALL
(b)

Figure 5.10. Coalescing of a 2-way nested loop.

observed from Figure 5.10, in this case coalescing alters the execution order of the two state-
ments in the example. In the loop of 10(a) all elements A(J,*) are computed before any element
of B(J,%) is computed. In the coalesced loop the order of execution changes and ordered pairs
'(A(J,.z'), B(J,z'))' are computed for each J instead. Thus, coalescing in this case can be applied as
long a.s'the second compbnent of the direction vector of (any) flow dependences from DOALL 2 to

DOALL 3 is ">"
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CHAPTER 6

OPTIMAL AND APPROXIMATION ALGORITHMS
FOR HIGH LEVEL SPREADING

As mentioned in Chapter 2, there are several types of parallelism in a restructured Fortran
program, but all can be characterized as vertical or horizontal. In Chapter 4 we cxplared lanp
(horizontal) parallelism, and solved the problem of compile-time processor assignment optima,l.ly.
In this chapter we will concentrate on vertical parallelism and i)resent‘algorithms for determinis-
tic scheduling of vertical objects. Recall that vertical parallelism arises i‘rom the‘ concurrent exe-

cution of lexically disjoint parts of a program.

Scheduling for vertical parallelism is also referred to as v spreading. Depending on the granu-
larity of the different parts of a program we have low and high level spreading for fine and
coarse grain program modules respectively [Veid85]. Most instances of the spreading problem
belong to the NP-Complete family of problems. In this chapter we discuss optimal solutions for

some instances of high level spreading, and efficient heuristics for the intractable cases.

In Chapter 1 we discussed how Parafrase builds the data dependence graph for a given For-
tran program. Recall that the data dependence graph is a directed graph with nodes represent-
ing statements of the program and arcs representing data and control dependences. The com-
piler can build a similar graph called the task graph with nodes represenvting higher level blocks
of code such as BASs and loops, and arcs representing collections of dependences Between these
higher blocks. Chapter 3 discussed how basic program statements can be grouped together to
form higher level blocks called tasks. For the purposes of this chapter we can assume that the
task graph is supplied by the compiler and need not be concerned about the details of construct-

ing such a graph.
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1 2 3 13
DOALL DOALL DOALL DOALL
1D 1D 1D U 1D

Figure 6.1. Task graph for subroutine SETDT.

Ideally, high level spreading should be applied to a set of program modules tha.t:, are free of
control or data interdependences. In such a case any a#signment of modules to processors would
be “legal” and no extra p.recé,utions need to be taken to assure correct execution. There . are
several such instances of independent program modules in real numerical programs. As an exam-
ple Figures 6.1, 6.2, and 6.3 show the task graphs of three numerical subroutix;es (Denelcor
benchmarks) that are commonly ﬁsed in different application areas. Subroutix‘le SETDT in Figure
6.1 consists of thirteen independent DOALL loops. The notation nD shows the dimensionality of
each loop, i.e., the number of nest levels. Figure 6.2 shows a type of task gr:aph that occurs. fre-'
quently in numerical programs. The entire graph is surrounded by tyvo serial loops. If we unroll
these serial loops we get a series of uniform task graphs. Since this type of graph characterizes
a large percentage of numerical subroutines we will consider them separately at the end of this
chapter. Their regularity makes it easier to schedule them. Finally Figufe 6.3 shows a more
éomplex task gréph (DAG) for subroutine THREEDH. Performing high level spreading for such
arbitrary graphs is much more complex than for uniform graphs of the type of NOLI’s. Of
course we can still use simple heuristics to optimize high level spreading for réndom graphs
locally. For example the optimal algorithm of the next section could be used to perform high

level spreading for the first two levels of tasks in the graph of Figure 6.3. As we shall later see
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however, optimizing schedules locally may result in non-efficient global schedules. Spreading can
also be applied to lexically disjoint program modules that are ‘“‘connected” with any type of
dependences. For example, we can still execute concurrently the two last modules of Figure 6.3.

In such a case though synchronization instructions should be used to coordinate the execution of

these modules such that interdependences are satisfied in the correct order.

SERIAL 1D

SERIAL SERIAL SERIAL

SERIAL
iD

SERIAL

DOALL
1D

1D 1D . 1D

© © ©

1D

Figure 6.2. Task graph for subroutine NOLI .
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In this chapter we focus on both instances of spreading, i.e., spreading of independent pro-
gram- modules, and spreading of program xﬁodules with interdependences. Both cases arise fre-
quently in numerical software. First we look at the problem of spreading a set of independent
tasks where the number of processors is larger than l-;he number of tasks, each task may request
any number of processors up. to the maximum available, and all tasks are to be executed simul-
taneously. Several instaﬁces of spreading in real programs belong to this category. We solve this
instance optimally in polynomial time. A fast heuristic algorithm is also presented for the case of
independent tasks where the_ number of processors is smaller than the number of tasks and each
task requests exactly one processor. This algorithm is also useful for scheduling a set of ready
jobs in a multiprogramming er-xvironment where load balancing in the processors is our objective.
Finally we discuss spreading of dependent tasks and .scheduling of complete program task graphs.

An efficient heuristic is also presented for the latter case.

6.1. -OptimallAllocations for High Level Spreading

In this section we consider the instance of spreading where the nﬁmber of processors is
larger than the number of tasks, all tasks are to be executed concurrently, and each task may
request any number of processors up to the maximum available. All tasks are independent, i.e,
intertask depéndences of any kind are not allowed. Let us suppose that .weA are given a set

S ={M,, M,,.., M,} of m disjoint program modules (tasks) from a given program PROG.

Then M; MM, = &, for i #4, and | J M; CPROG. Since no dependences exist between any

i=1
pair (M;, MJ.) of tasks, all elements of § may be executed simultaneouély. Let us also suppos;a
that PROG is to be executed on a parallel processor system with P précessorsz and that each
program module M; requests p; lSP, (i=1, 2,...,m) processors (the maximum it can use). In

order. to simplify the following discussion we always assume that p; > P. The results that we
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derive below can be trivially extended for the general case where p, <P.

As shown below, algorithm OPTAL from Chapter 4 can be used to solve this instance of
high level spreading optimally. Let T: denote the parallel execution time of module M; on r pro-
cessors. We can now define the allocation function G of OPTAL for this case, and show how

OPTAL computes optimal processor allocations for high level spreading. Starting from the last
task M in S we define:
m
G,(¢g)=T,, for g¢=1,2 ..., P
‘Then for 1 <3 < m the allocation function (which in this case measures parallel execution time)

is defined as

G;(¢) = min {max (T:, Giylg-r))/ r=1,2.,¢ } (6.1)

and (¢ =1,2,..,P)
Following the same approach as in Chapter 4, it can be proved that G,(P) will compute the

optimal allocation of P processors to the indepe‘ndent. program modules M,, M,, ..., M,. The
processor allocation vector giving the optimal assignment of processors to tasks is computed
similarly to Example 4.1.1 of Chapter 4. In this case however the subscripts of T%’s are used in

place of the exponents of the € terms in Example 4.1.1.

A point that has not been clarified yet is how we compute T; for a given M; and for
different values of ¢. There are two alternatives for computing the parallel exeention time of a
task. The most precise one would be to have the compiler recompute T;for each different value
of q. This however may be an expensive process. A less accurate but very close (and inexpen-
sive) approximation, would be to compute T; from T; ) the serial execution time of M;, as shown

in (6.2).
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DOALL
2D

DOALL
3D

DOALL
2D

Figure 6.3. Task graph for subroutine THREEDH.
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for ¢ =1,2,.., min(P, p,). (6.2)

The parallel execution time defined by (6.2) is very accurate .when M; is a loop for example,
which is often the case. Each step of the algorithm involves an average of P /2 comparisons.
There are m phases and therefore the compléxity of OPTAL for high level spreading is
0(1,/2mP?),

When P < m and p; =1, (¢ =1, 2,..,, m.), i.e.,.\-vhen each task is allowed to execute on
exactly one processor and there are r;lore tasks than procéssofs, the problem becomes
NP -Complete [GaJo79)]. Although this case does not occur very often during parallel processing
of a single program, especially when the granularity of the tasks is fairly coarse, it arises fre-
quently in multiprogramming environments Where a set of serial jobs are to be scheduled on the
processors of a system, such that processor loads are kept balanced. Since this is a special case
of high level spreading at the program level we discuss it in the following section. Because of the

intractability of this problem only heuristic algorithms that work in polynomial time are possi-

ble.

6.2. Scheduling Independent Serial Tasks

In this section we consider the problem of spreading a set of independent serial tasks across
a number of processors in order .to minimize the total execution time. Since each task may use
exactly one processor, and if the number of processors is larger than thAe number of tasks the
problem becomes trivial. We examine the c:;se where the number of processors is smaller than
the number of tasks. This problem is a classical NPlComplete problem [GaJo79] and the best
known approximation algorithm so far is Multifit [CoGJ79] which uses bin-packing as its core
routine. In this section we present a new 'heurist;ic algorithm for this problem that has essentially

the same complexity as Multifit. Experimental results show that our algorithm outperforms
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Multifit in most cases. Even though this algorithm is primarily designed for spreading a set of
independent serial tasks on a parallel processor system, it can also be used for load balancing on

a multiprogrammed parallel processor system where individual jobs are the unit of workload.

The Divide-and-Fold or D&F algorithm which is discussed below opérate.s in two phases.
Before we describe D&F in detail let us introduce the necessary definitions and- nomenclature.
Let us suppose that we have a set of n tasks that are ordered by execution time:
S = {t1 >ty > - 2>t }. We use the execution time ¢; to represent the ¢-th task. Our prob-
lem here is to spread the tasks in S across p processors, so that the total execution time of S is
minimized. Let 7represent the execution (completion) time of S for a given distribution of tasks,
l.e, the time it takes the processor with the heaviest load to process its workload. If preemptioil
is allowed we can easily spread for the optimal 7in polynomial time. Therefore we assume that S
contains nonpreémptive ta.sks. This is a practical restriction since, in most real cases, S consists
of a set of relatively small BASs, and the overhead involved with process swapping during

preemptive execution of BASs would more than eliminate the benefits of spreading.

A list of tasks from S is an ordered subset of tasks that are assigned to the same proces-

sor. A list of size m is represented as an m-tnple, (¢,,, & .p,..., £;,.,). Let

n .
T = Eti’ Tcp = max {ti}':tl
i—1 1S5 <

1]

and w be the optimal execution time or schedule length. Then it is easy to prove the following

lemma.

Lemma 6.1 r>w> max {[T/p], T} = LB.
The motivation here is to generate a schedule with a length 7 as close to was possible, by spread-
ing the tasks of S so that the load in each procéssor is balanced around LB. D&F consists of two

phases. During Phase I the set of tasks is partitioned into subsets of tasks and subsets are
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READY (SORTED) TASKS - P=3

GHOHEEHEEHOHOOOO

FOLD
:1 :: 4 :: 5 :: 8 ::17::19:
— -~ —r ¢\_/ S ~—”
REORDERNR

388858

FOLD

28)32)20

REORDER

:

006

Figure 6.4: Example of the first phase of D&F.

mergéd together until the number of subsets is equal to p. Thus generating a set of p lists. By'

assigning one list to each processor we have the first “first-cut’’ assignment of tasks to proces-
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sors. Subsequently, Phase II moves tasks between processors according to a specific procedure to
obtain a finer degree of balancing. The two phases of the D&F algorithm are described below in .

detail.

Phase 1

During this phase the set of tasks S is partitioned into ¢ =[n/p] subsets .S'll, S;, e Sq1

with each subset but (possibly) the last containing p tasks. If ¢ is odd, we add a “dummy”’ sub-

set S1

I+ that consists of p tasks of zero execution time at the end of the list, and set ¢ +—q-+1.

After the initial partitioning, Phase I proceeds with a series of folding steps. During the first

folding we concatenate subsets .S',-1 and Sql_,.ﬂ, (:=12.,q/2) such that, = if
) . ) ) ) o o ‘ _

:S,- = {t;, t;, ce e, t;} and § ;4 =§; = {t’;, t;, Ce t;}, the resulting subset S,.2 consists of

p lists of size two, i.e.,

sE= (8580 = {6, ) (6, 1) (8, 6 )}
for i=1,2,.. q/2.
After the first folding step we have ¢ /2 subsets 5'12, 522,..., Sq2/2 with each consisting of p lists
of size two. Between successive folding steps we reorder the subsets by list (accumulated) execu-
tion time. At the end of each folding step an empty subset is appended if the resulting number of
subsets is odd. We proceed in the same way until, aftér f = [logznj steps, the configuration is
reduced to a single subset S{ ESI which consists of p lists. Each list contains [n/p] tasks from
the original set. Figure 6.4 illustrates the steps of Phase I@for p =3 and for the set of tasks
shown at the top of Figure 6.4. The tasks inside each list are sorted at the end of Phase I in
order of decreasing execution time. In each of the p lists we add an empty task of zero execution

time needed for the tests of Phase II.
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Phase II

Phase II of D&F reassigns tasks to processors selectively in order to further balance the
load inside each processor, and thus reduce the overall completion time. The previous phase con-
structed ST = (PP P lp} where each list I, contains [n /p] tasks and has been assigned to
the i-th processor (i =1, 2,..., p). Phase II performs a single pass through the loads of the p
processors considering a pair of processors (¢, p—t+) at a time for (i =1, 2,.‘.., lp /2] ) For
each pair of processors it performs three tests and, based on the outcome of these tests, makes
one reassignrpent. For the list I; or processor i let T; be the total execution time of the tasks in
I, (i =1,2,.., p). Then for each pair (3, j%p -i+l) of processors perform the following: Let

n, = max{T;, T;}.

INPUT FROM 1st. PHASE, TO
BALANCING (2nd) PHASE

8? 82 | 79 Schedule Lengths

SN

Processor 1 Processor 2 Processor 3

Figure 6.5: Example of the balancing (2nd) phase of D&F.




129

Test 1: Find the smallest task t,: of I, for which T; - t: < LB. If such task does not exist let t,:

be the largest (topmost) task of [,. Let t,:_l be the next smallest task and compute
M1 = max [T,- - t,:, TJ- +t,:]

M2 = max (T, - &, T; +1;_,)

' 7, = min(M1, M2).
Test 2: Find the smallest sum W,: of the first k smallest tasks in [; for which T, - W,: <LB,

and let Wi_ — W) - {t!}. Then perform the following computations.
k-1 = Tk k
N1 = max[Ti - W,:, T; +W,:]

N2 = max [Ti - WI:-V T; +W’:-l]

7, = min(N1, N2).
Test 3: This test finds the optimal single exchange of tasks between the two processors. Let

D, = l——T‘ ~ L
2

be the difference in loads between processors ¢ and j=p-i+l. For ¢ = [n/p], compute

T, = min{:[D,- - (t,:1 - t’f?)i/ for 1<k, k, Sq}.
From the three tests we find the smallest value between 7,, 7,, 7, and 7, (that corresponds to no
_action) and perform the reassignment of tasks that is implied by the test for that 7. For example,
if 7, is the minimum then if 7, = M, task t,: is dequeuned from processor ¢ and queued in proces-
sor j =.p -141; otherwise t,:_l is reassigned to the j-th processor. If 7, is the minimum ana
7, = N,, the first k smallest tasks from processor ¢ are tra,nsfeArred to processor j; otherwise the
first k-1 tasks ;re transferrcd. Finally if A is the minimum among the three, a mutual exchange

of tasks between processors ¢ and j takes place. This exchange is the one that best balances the
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loads in the two processors. This rebalancing procedure is performed once for each pair of pro-

cessors (¢, p—iH), (i =1, 2,..., ¢). Figure 6.5 shows a trivial case of rebalancing for the exam-

ple of Figure 6.4.

Since the tasks are ordered inside each /;, test 3 takes an average of ¢ comparisons for each
pair of processors. The most expensive activity in Phase Il is the 3rd test. Assuming that tasks
are initially ordered by execution time, Phase I takes O(log,(n /p)) steps to complete. Phase II of

D&F is performed once but it is the bottleneck since it?s average complexity is O(n2/p2). If the
balancing phase 1s restricted to use only the first of the three tests, the complexity of Phase' Il is
O(p).

In order to test the performance of D&F against Multifit, the best known heuristic for this
problem, we implemented D&F aﬂd Multifit and performed the same experiments for the two
cases. The implemen'tation of D&F has a balancing phase (IT) that uses only the first of the
three tests described above. Thqs a full implementation of D&F.as described in this chapter
should perform at least as well as the current implementation. In order to compare our experi-
ments with those for Multifit reported in [C;)GJ78], the same approach was used to generate our
tests. The execution times of tasks were randomly generated using normal distribution and the

same size of tests as in [CoGJ78| were used. v

More specifically we conducted two types of experiments. For Experiment 1 we performed
20 runs. Each run consisted of 128 tasks randomly generated with task éxecutién times follow-
ing the normal distribution with values in the range [1...100]. The 20 runs used different
numbers of processors ranging from 2 to 21. Table 6.1 summarizes the results of the first experi-
ment. D&F and W denote the average schedule lengths over all 20 runs. In the second
experiment the number of processors was kept constant to p =10 and again 20 runs were per-

formed each with a different number of tasks. The task execution timc- were also generated
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Wins | Losses | Ties | Optimal Sch'edules:

D&F 19 0 1 19
Multifit 0 19 1 0
&F Multifit

= 1.0005, — = —1.013
opt. opt.

Table 6.1. Results of 1st experiment.

Wins | Losses | Ties | Optimal Schedules

D&F 18 1 1 14
Multifit 1 18 1 0
D&F ‘Multif it

= 1.012, — = —1.022
opt. opt.

Table 6.2. Results of 2nd experiment.

randomly in the range [1...100]. The number of tasks in each of the twenty sets was 20, 30, 40,

50,..., 210 respectively. Table 6.2 summarizes the results of the second experiment.

So far we have discussed and presented algorithms for spreading independent serial or
parallel tasks. High level spreading however can be applied to sets of tasks that exhibit inter-
task dependences and thus form, in the general case, a direct graph. Such directed task graphs
can be generated for a given program by the compiler. \Performing spreading for a directed
graph is the most difficult case of spreading, and all instances of this problem for p > 2 and
task execution times of greater than 1 are NP-Hard [(:.1079]. In the following sections we con-

sider high level spreading for directed task graphs ..nd present efficient heuristics for assigning
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processors to minimize execution time and maximize efficiency.
6.3. High Level Spreading for Complete Task Graphs

6.3.1. Processor Allocation for p-Wide Task Graphs

We consider here an arbitrary parallel program represented b;' a task graph G=G(V, E),
where the set of nodes V represents the tasks (modules of the program) and the set of arcs E
represents intertask dependences. For each such graph G we can construct its corresponding lay-
ered graph. The mechanism for deriving the layered graph of a DAG is described in Section 2.4
of Chapter 2. Since each node of the layered ¢ may be a coniplex module of code it may be exe-

cutable on one or more processors.

Below we present a simple linear time heuristic algorithm for allocating processors to gen-
eral task graphs. We call this Proportional Allocation heuristic since it allocates to each node a
number of processors which is proportional to the size of the node. The idea behind proportional
allocation is to allocate processors to the task graph on a layer-by-layer basis, so that the load in
each layer is evenly distributed across the available processors, fesulting in a suboptimal execu-

tion time.

Let V;, (f =1,2,.,k) be the layers in G and vj,(j =1,2,..,n) the nodes of

k -
V = (JV;. Let also ¢; be the cardinality (number of tasks) of layer V;. We define the width

i=1
of G to be the maximum number of nodes in any of its £ layers. If p is the number of ava;ilable
brdcessors a p-wide graph is thus a graph in which each layer contains at most p nodes. In this '
section we discuss high level spreading for p-wide graphs. A generalization of this algorithm that
handles graphs of any Width is given later in this chapter. Each node v; of G may request

r; <p, (1 =12, n) processors. For each layer V,, (i =1, 2,..., k) of G we carry out the
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following steps. (The notation z + a used below indicates the assignment of an expression a

to variable z.)

Step 1. Each node v; € V; is allocated one processor. If |V} = ¢;, then the number of remain-

DOALL 1 I1 =1, 7

} 1
1 ENDOALL

DOALL 2 I2 = 1, 14

18
2 ENDOALL ,

DOALL 3 I3 =1, 5

} 5
3 ENDOALL

DOALL 4 I4 = 1, 20

| > 4
4 ENDOALL

DOALL 5 I5 = 1, 24

} 6
5 ENDOALL

Number of processors allocated to each loop
Loop Number No. of Processors
1 1
2 9
3 3
4 7
5 12
Total 32

Figure 6.6. A simple program with DOALLs and the processor allocation profile.
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ing processors is pp = p - ¢;. The tasks in V; are arranged in order of decreasing size.

, .
Step 2. The remaining p = pp processors are allocated to the nodes of V; with r; > lso that
each node receives a number of processors proportional to its size. For a node v; in V; with

r; > 1, the serial execution time is ¢;. Let 7, = 3] ¢; denote the total execution time of all
v,EV;

nodes v; € V, with r, > 1L Then, for all such nodes perform:

! tj .
P, — F*—l - (6.3)
| il

p; + min(r; -1, p;) (6.4)

Pp < .Pp —P; (6.5)
where p; is the number of processors allocated to node v;. Steps (6.3), (6.4), and (6.5) are

repeated until all processors are allocated (p, = 0), or a,l‘1 nodes in V; are processed. It should be
noted that if at the end p, > 0, then p; +1 =r,, (1=12,..,¢) A procedural description
of thé proportional allocation heuristic is éiven in Figure 6.8. A simple example o&' the applica-
tion of this algorithm to a single layer with DOALL loops, is shown in Figures 6.6 and 6.7. The
number of processors allocated to each loop by our algorithm is shown in the table of Figure 6.6.
Figure 6.7(a) shows the processor/time diagram when loops are exec;lted one by one on an unlim-
ited (in this case) number of processors, with a total execution time of 24 units. Figurc 6.7(b)
shows the processor/time diagram for the allocation performed by proportional allocation heurie-
" tic. Processors were allocated so that both horizontal and vertical parallelism are utilized; 16

units is the total execution time in this case. The total program speedup on p processors that

results from the application of the above heuristic is given by Theorem 2.4 of Chapter 2.
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PROCESSORS

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
1 ]

(a)

SRR
=

: PROCESSORS
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

(b) 10

RSN
=

Figure 6.7. (a): The processor/time diagram for the program of Figure 2 (Case 1).
(b): The processor/time diagram after the application of the algorithm (Case 3).
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P-ALLOCATION HEURISTIC

INPUT: The layered task graph G(V, E) of a transformed
program and the number of available processors p.

OUTPUT: A processor assignment profile for the nodes of G(V, E).

FOR (All layers V; of G(V, E)) DO

e Allocate one processor to each node v; of layer V;.

1
o If ¢ =!V,!thenset p =p, <+ p - g;, and compute 7 =2tj

for all v; €V, with r; > 1. tj is the serial execution time of v; and

pp the number of remaining processors. .

e Sort tasks of V; in decreasing size.

FOR (All v; € V; with r; > 1) AND WHILE (p, > 0) DO

e For node v;: compute:

o
%

p; = min(r; -1, p;)

e Allocate p; processors to node v;.

* pp =Py - P;.
ENDFOR
o Task v, € V; is allocated p; +1 processors, (7 =1,2,., ¢)

3

ENDFOR

Figure 6.8. The Proportional Allocation Heuristic. '
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6.4. List Scheduling Heuristics

The only parallel processor scheduling problem for DAGs that has been solved optimally in
polynomial time is the case where p =2 and all tasks in the graph have unit execution time.
Ha,rdly any practical cases fall into this category. In most real cases we have p >2 and tasks
that have varying execution times. A family of heuristic algorithms that have been'developed
for more general cases are the list scﬁeduling algorithms [Coff76]. The most popular of them is |
the critical path heuristic. The basic idea behind list scheduling is tc; arrange the tasks of a
.given graph in a priority list and assign tasks with highest priority each time a processor
becomes idle. The critical path heuristic finds the critical path of the graph, and gives priority to
those tasks that compose the critical path. To find the critical path of a graph we label tﬁw
nodes starting from the topmost node. Each node is labeled with the accumulated execution time

of the longest path (in terms of execution time) to the first node of G.

The CP/IMS heuristic in [KaNa84| is acclaimed to be the best heuristic yet for scheduling
general DAGs. This scheme is identical to the Critical Path heuristic with the following
enhancement: tasks that do not belong to the critical path a;'e given priority based also on the
number of their successors i.e., the more the successor nodes of a task, the higher the priority it
is assigned. As is the case with all scheduling heuristiés, CP/IMS handles only-graphs with serial
nodes, the point being that parallel nodes can be broken down to a set of serial nodes. However
this assumption is not practical. Usually program task grapils supplied by the com.piler consist
of a few tens of nodes. Decomposing parallel tasks even for small program graphs could create

thousands of nodes that even fast heuristics could not process in a reasonable amount of time.

In the following section we discuss a scheduling heuristic that processes program graphs
with parallel nodes without dccomposing them. This heuristic is more general than both the

critical path and the CP/IMS heuristics. Later we see how this heuristic can be coupled with



138

the proportional allocation heuristic to form an efficient algorithm for scheduling task graphs of

any width with parallel nodes.

6.5. The Weighted Priority Heuristic Algorithm

The unique characteristic of this algorithm that distinguishes it from the CP or CP/IMS
heuristics is that it covers a continuous spectrum of scheduling algorithms. In other words the
weighted priority (WP) heuristic is a parameterized scheduling algorithm whose performance can
be tuned by choosing values for a set of parameters or weights. Before we describe the WP

heuristic let us see how we can construct the critical path for a task graph with parallel nodes.

Let G be a task graph with n nodes that is to be scheduled on p processors, and r; the
number of processors requested by the ¢-th task, (=1, 2,..., n). An initial node in the graph is
a task that has no predecessors and a final node one wi_thout successors. If a task graph has
more than one initial or final node we can always change it so that it has a single initial and a
single final node.‘ This can be done by adding an empty task at the top of the graph and con-
necting it to all nodes without predecessors. Similarly we can add an empty final node and con-
nect it from all nodes without successors. Starting from the initial node then we labgl the nodes
in G visiting them in a Breadth First manner. Let ¢; be the execution time of the i-th task,
(:=1, 2,..., n). The initial node receives a label 0. All nodes immediately reachable from the
initial node are labeled with their execution times. In general if node v, lS visited from node v,
and z; is the label of v; then v, is labeled with z; +|'ti/r,-]. If v; had been already labeled‘by
an earlier visit and =z; is its old label, then the visit from v; will relabel it with
max(z;, z; + [t,/r.]). We continue in the same way until the final node is labeled.

To find the critical path of G we start from the bottom of the graph constructing the criti-

cal path (CP) as a set of nodes. The final node v; is added to CP. Next we add to CP the
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immediate predecessor of v; with the largest label. We proceed in the same way until the initial

node of the graph is added to the critical path. Obviously if w is the optimal completion time

til
r; '

The WP algorithm considers a subset of the tasks in G at a time. It computes priorities for

of G on an unlimited number of processors then

u; € CP

these tésks and then allocates processors to the tasks with the highest priorities. In fact in WP
“highest prior‘ity” means lowest numeric priority.

Let L; be the set of executable tasks of G, i.e., the set of tasks that have no predecessor
nodes. The algorithm schedules the tasks in L, until all tasks of G have completed. There are
k discrete steps in WP and each step processes the tasks of list L, (¢=1,...,k). The tasks of
L;,, cannot start executing until all tasks of L; have completed. We want to schedule tasks so
that those that constitute a bottleneck are given preference over less critical tasks. We also
wan!{ to maintain a fairness criterion. In other words more processors should be allocated to
tasks that are time consuming and demand many processors. The criteria are listed below and

we see later how they are embedded in the WP a,lgorith.m.

.Qur scheme assumes nonpreemptive schedules where each task is assigned a priority,'and
tasks execute in ascending priority (lowest priority tasks first). The heuristic computes priorities

using the following three rules of thumb:

e Give priority to tasks that belong to the critical path.

¢ Give priority to those tasks that have the longest
execution times.

o Give priority to those tasks that have the Iargeét
number of immediate successors (i.e., break as many
dependences as possible and as soon as possible).
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e Give priority to those tasks that have successors
with long execution times.

Below we show how to compute these three individual priorities, and from them the composite

priority for each task.

At each moment during program execution, we have a set L C V of runnable or executable
tasks i.e., those that have no predecessors (not including the ones currently running). Suppose

that the m tasks in L have execution times t,, t,, - - - , ¢, respectively. Let a;, (i=1,2,...,m)

be the number of successor tasks for each ¢;, ({=1,2,...,m) and t;, t;, t,

_ be the execution times

of the a; successors of task t;. Then we define the following:

A=Ya, (66) T=X¢t (6.7)

s =1 t =1
n:gg(m) T,=YT, (6.9)

and using (6.6), (6.7), (6.8), and (6.9) we define the three individual priorities in the following
way (low numbers correspond to high priorities):

e Tasks with longest execution times first:

i T ) . '
pl:'::‘l (1=1,2,...,m) (P1)

o Tasks with largest number of successors first:

(if—l,.fl,...,m) (P2)

e Tasks with largest successor-tasks first:

T

a

T.

t

i

P3 =

l (i=1,2,...,m) o (P3)

The composite priority P(i) of task #; is then computed from (P1), (P2), and (P3) as,
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P(i)=(\p) +%p, +Xp5) (P4)
where 0 <N, N, )3 <1 and N +y-Hy=1. We call parameters N, \, and )\; the priority weights
since they reflect the weight (significance) we give.to each of these three individual priorities.
Tasks on the critical path are given the highest absolute priority i.e., if L contains a task on the
critical path, that task will be given priority over all other tasks in L. It is trivial to prove that
‘a,t each time the set of executable tasks L contains at most one task of the critical path. This is
true since, by definition, there is always a dependence between any two successive tasks (t;, f;,,)

of the critical path.
After all tasks of L have been assigned a priority P(37), ({=1,2,...,m) for some predeﬁnea

values of N, A, and ), the processor allocation is performed as follows.

The tasks of L are ordered in increasing priority and let L ={t, t,,..., t,} be the new

order. Each t; requests r; processors. We choose the first k tasks from L such that

k k+1
Yrn<p<yr.
§ =1 s =1

Processor allocation will now be performed for the k selected tasks of L. It should be noted that
if a task of the critical path belongs to L it is selected for allocation automatically no matter
what its composite priority P(7) is. Each of the % tasks receives one processor and the remain-

[}
ing pp =p =p -k processors are allocated as shown below. Let

k , t. .
T, =Yt and p;, = F*_l
k T,

i=1

Then task ¢, (i=1,2,.,k) receives min(r; -1, p;) processors and we reset
pp +pg —min(r; -1, p;), ({ =1,2,..., k). The assignment of processors is repeated for all k
tasks that were selected. If k=m then we delete the nodes of L from the task graph G together

with the dependences (arcs) originating from them. Those tasks that had predecessors only in L
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become now the new executable tasks and are added to L. This process is repeated until all n
tasks of G are assigned processors. If ¥ <m then only the first k tasks of L are deleted from G
as described above. The remaining m -k tasks together with any new executable tasks compose

the new set L of executable tasks.

Another version of the WP heuristic is when only one priority is used to order tasks within
each list as follows. Let Ti be the serial execution time of the ¢-th task in list Lj, and r; the
number of requested processors (maximum number of processors it can use). Then the priority
for each task is defined as P(i) = [T; /min(r;, p)}, where p is the number of processors in the
system. Tasks are ordered inside each L i in order of decreasing priority and processor allocation
is performed in exactly the same way as above. Note that this version orders the tasks in order
of decreasing minimum parallel execution time. The priorities as defined above measure the
minimum possible time it takes to execute each task on p processors. This approach accom-
plishes two desirable goals: It gives priority to large tasks, and simultaneously, groups together

tasks whose parallel execution time after proportional allocation is approximately the same

(minimizing therefore idle processor time).

We can use many combinations of boundary values (0’s and 1’s) for the Ns to derive
different heuristics. For example, if we set A\,=0 then oﬁly task execution time and number of
successo.rs contribute to the composite priority. Another special-case of this heuristic (for
A\ =0, A =1/2, \;=0) is the CP/IMS heuristic [KaNa84] which is the best known so far. Since
CP/IMS is a special case of the WP algorithm, WP performs at least as well as CP/IMS.

In the wbrst case where r. > p, (1=12,...,n) the complexity of WP is O(ng) where ¢ is
the width of the task graph. If in addition r;=cp, (i=1,2,...,n) for some integer.c, it can be
shown that the WP heuristic generates the opt‘ima,l proceésor allocati.n for G. In general, when

the processors requested by each node are uniformly distributed the c.inplexity of WP is O(n).
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6.6. Bounds for Deterministic Scheduling

In the previous sections we presented algorithms for allocating processc;r's at compile-time
to highvlevel program mod’ules. Only one of the algorithms is provably optimal even though the
heuristics which handle the general problem generaté schedules which can be very close to
optimal. In thié section we derive a worst case bound for any random scheduling heuristic.
Coffman has shown that when dealing with serial task graphs (where nodes are serial tasks) any
randém heuristic can generate sched‘uies which are at most less than twice as long as the optimal
ones. In deterministic scheduling of parallel task graphs however, this worst case bound is much
larger. The reason is that wloxen'we allocate several processors to several different parallel nodes,
all processors should become idie before we may reassign them. (Since we process nodes in
groups and in order to satisfy dependences an implicit type of barrier synchronization must be
used between successive groups of nodes that are scheduled.) This may result in several idle pro-
cessors in successive steps when a ‘“‘purposely bad’’ heuristic is used. Of course intelligent heuris-
tics should have a y}v;)réc case per.formance which is always close to the optimal. Although the
worst case bound tha£ we prove bglow should not characterize any reasonable heuristic we

include it for the sake of completeness.

An atomic operation is an indivisible operation that takes one unit of time to execute. Let
PROG be a program that consists of n atomic operations and w, and wbe the optimal comple-
tion time, and the completion time of PROG for a specific scheduling algorithm and for p pro-

cessors. Then we have the following theorem.

w
Theorem 6.1 — < p.
wo

Proof Consider the extreme case where PROG consists of n independent v+ omic operations and
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Figure 6.9. Example of a scheduling anomaly.

it is to be executed on a parallel processor system with p processors. Then it is clear that

n
w > —

[

(6.10)
p .

Now consider how we can achieve the worst case schedule for PROG on p processors. Since all p
processors must be utilized at least once, the worst case schedule wonld he the one that assigns a
single atomic operation to each of the first p -1 processors, and the remaining of the program to

the last p-th processor. The completion time of such an assignment would thus be

: w<n-(p-1) ' (6.11)
From (6.10) and (6.11) we have
1
wo 2 p - i—_l_ n
w n-p+1 w p n-p+1
and for n —cowe have
wo 1 w ‘
>— o ~—<Xp. (6.12)
w P w

0

Therefore the worst case schedule can be asymptotically p times longer than the optimal. B
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[ p1 [1] P

Figure 6.10. The optimal and the worst case allocation for the graph of Figure 6.10.

In fact the worst case bound of Theorem 6.1 can be asympt'fotically reached for non-trivial
programs. Consider for example the task graph of Figure 6.9, which is surrounded by a serial
loop with k iterations. Nodes ¢ and b are parallél consisting of p-1 and np atomic operations
respectively, a,n'd node ¢ is a single atomic operation. Figure 6.10a shows the execution profile for
the‘ optimal allocation of G on p processors. Figure 6.10b illustrates the worst case schedulg of
G on p processors. From Figure 6.10 it is easy to see that w, = k(n +1) while w= k(np +1).

Therefore for n — cowe have

L _mil

w n +1

0

Thus static scheduling heuristics that are based on local information to obtain locally optimal
solutions may fail in certain cases. In the next chapter we investigate dynamic scheduling which

is less sensitive in that respect.
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CHAPTER 7

RUN-TIME SCHEDULING SCHEMES AND THEIR PERFORMANCE

In this :cha,pter we concentrate on run-time environments that efficiently support scheduling
and synchronization. We discuss compiler, operating system, an'd hard@are issues. It is clear that
some decisions such as resource allocation in a shared environment, memory management, tran-
sient and hard deadlock detection, should be performed dynamically at run-time (for example by
the operating systém or b)_" the hardware). In this chapter we discuss run-time issues for proces-
sor allocation and synchronization that arise from different -situations. We first concentrate on
dynamic and self-scheduling of proéessors in a parallel machine during the par@llel execution of a
single program. Hardware and compiler support schemes are presented. The issue here as usual is
performance, that is, the maximum speedup that can be achieved fér a given program and for a

specific parallel processor system.

7.1. Dynamic or Self-Scheduling of Processors

As discussed in the previous chapters static or compile-time scheduling is performed deter-
ministically by the compiler at compile-time, or by the operating system at load-time before the
actual execution of the program is initiated. Static scheduling is “fixed” (in terms of number of
Processors al’locéted to specitic program modules) for a virtual machine with or without the same
number of processors as the physical machine. The mapping of a virtual static schedule to a real
schedule can be done by the operating system. Otherwise statié schedules can be ‘“‘fixed” for the

real machine if it is known in advance that the program will execute in a dedicated environment.

In the first part of this chapter we will concentrate on non-deterministic or dynamic

scheduling. A scheduling scheme is called dynamic when the actual processor allocation is
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performed by a hardware or software emulated control unit during program execution. Therefore
during dynamic scheduling decisions for allocating processors are taken ‘“on-the-fly’”’ for different
parts of the program, as the program executes. Another form of non-deterministic scheduling
scheme is self-scheduling. As implied by the term, there is no single contrql unit that makes
global decisions for allocating processors, but rather the processors themselves are responsible for

determining what task to execute next.

There are several factdrs (such as communication and task granularity) that must be taken
into account during scheéduling. Implementations of pure dynamic or self-scheduling could be
very ineflicient énd involve enormous overhead. Because pure versions of these schemes will look
at the instruction level for parallelism, the previous claim is substantiated. There is no method
that allows us to have some knowledge about the topology of the program at run-time unless
compiler support of some form is provided. Hybrid forms of dynamic or self-scheduling are pos-
sible by having the compiler “help’ the control unit or the processors on making a scheduling

decision. Guided self-scheduling is such a hybrid scheme that we discuss later in this chapter.

Another reason that can be used to argue against pure dynamic scheduling, is that the user
may want to explicitly specify the concurrent modules of a given program and-keep the task
granularity within certain limits. The run-time system should support user directives as well as

fully automated scheduling.

7.2. Parallcl Processing with Centralized versus Distributed Control

When static (or deterministic) scheduling is used, the run-time overhead is minimal. With
dynamic scheduling however, the run-time overhead becomes a critical factor and may account
for a significant portion of the total execution time of a program. This is a logical consequence of

dynamic or non-deterministic scheduling. While at compile-time the compiler or an intelligent
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preprocessor 1s responsible for making the scheduling decisions, at run-time this decision must be
made in a case-by-case fashion, and the time spent for this decision-making process is reflected in

the program’s execution time.

One way to alleviate this problem is to have the scheduler make scheduling decisions for a
chunk of the program while other parts of the program are already executing on the computa-
tional processors. This however implies advanced knowledge about the structure of the program
which can not be available at run-time. For example, we must know how to partition the pro-
gram into a series of task sets so that during execution of a task set decisions for the scheduling
of the next task set can be made ‘“for-free’”’. The execution time of the tasks in each task set
should thus be long enough to allqw the scheduler the necessary time to make the next decision.
Moreover if the scheduler is the operating system the above scheduling ‘“for free” is impossible,
since one or more processors must be ‘‘wasted” to execute the operating system itself, If the
schedu‘ler is a control unit (CU), scheduling for free implies that the CU is a stand-alone unit (a
superprocessor) and therefore more costly than a traditional control unit which is essentially a

sequencer.

Many have argued against global control units in a parallel processor machine, stating as
an argument that a single control unit will constitute a bottleneck. We do not necessarily share
this view point at least from the scheduling (or concurrency control) point of view. If bottleneck
is the issue rather than cost, we can argue that a sophisticated global control unit (GCU) can he
designed such that it never becomes the scheduling bottleneck. The rationale behind this argu-
ment is the nature of the dynamic scheduling problem itself: No matter how many control units
we have, there is always a bottleneck. Even in a fully distributed-control parallel processor sys-
tem, where each processor makes its own scheduling decisions, processors must access a common

pool of ready tasks...That common pool becomes the bottleneck, since it is a critical region, and
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each processor has to lock and unlock semaphores to enter the critical section and grasp a task.
Worse yet, there is little hope that this bottleneck can be overlapped with execution, which is
possible with centralized control. One can argue that instead of a common pool of ready tasks,
we can use multiple pools of ready tasks. Even in this case (unless each processor has its own
pool of ready tasks) someone must make the decision on which processors access which pool at
run-time. Moreover since thevtasks are spawned from the same program, we should have a way
of distributing them to the common pools. This argument can go on recursively but the conclu-
sion is that due to the nature of the/a parallel execution of a single program, there is always some

kind of bottleneck with run-time scheduling.

We will consider both powerful stand-alone GCUs and cases of distributed control. In our
view the most serious drawback of a centralized control unit is its lack of fault tolerance. How-
ever there is the following soft solution to this.problem as well. In any asynchronous shared
memory parallel processor machine, each processor has its own control unit and can function
independently of the other processors in the system. Therefore, the operating system can be
designed to support hard failures of the global control unit: upon a failure of the GCU the
operating system can choose one of the ordinary processors to become the new control unit. This
(user transparent) transition will thus be graceful without hard failures and (perhaps) with a loss
in performance. (Of course the same could happen in a fully distributed-control system, where
each processor can function as a GCU.) In the case of centralized control the CU is presumably
a special unit of ‘the system with hardware modules that are not available in the computa,tional’
processors. Therefore, any hard failure that can be solved by the operating system as discussed
above should result in a performance degradation. This however is not a serious drawback unless
the system is used for real time critical tasks where any performance degradation is untolerable;

in such a case a distributed control system is necessary (unless replicated GCUs are used where
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cost is not an issue compared to performance).

7.3. Design Rules for Run-Time Scheduling Schemes

It has been shown [Grah72} that in many cases of random task graphs optimal sphedules
can be achieved by deliberately keeping one OF MOTe Processors idle in order to better utilize
them at a later point. This and other scheduling “anc;malies” are reported ig [Grah72]. Detecting
such anomalies however requires processing of the entire task graph iﬁ advance. Since this is not
possible at run-time the luxury of deliberately keeping processors idle (with the hope that we
may better utilize them later) should not be permitted. Even if we had a way of processing the
task graph in its entirety at run-time, the scileduling overhead of an intelligent heuristic could be

enormous in many cases.

The following guideline for any run-time scheduling scheme should always be applied: Make
simple and fast scheduling decisions at run-time. 'i‘his principle implicitly forbids asking (and
answering) quest:ons of the form: “How many processors should we allocate t§ this task?” Obvi-
ously answering such a question means, in general, that we are willing to hold up idle processors
until they become as many as the number of processors requgsted by that task. This is exactly

what we want to avoid.

Since we want (o avoid deliberate idling of processors as much as possible, any run-time
scheduling scheme should rather be designed to ask (and answer) questions of the following type:
“How much work should we give to this processor?”’ In other words, when a processor becomes
idle try to assign it a new task as soon as possible, making the best possible selection. As shown
later this policy is guaranteed to generate a schedule length which is always by at most twice (in

the worst case) as long as the optimal.
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There is only one exception to the above rule. If a global control unit (G‘CU) is used and if
the compiler is used to generate a substantial amount of scheduling information, we can decide
on the number of processors for each specific task at run-time. This can be done in most cases
without additional overhead assuming the GCU can make decisions about a subset of tasks while
the computational processors are working on another subset. We discuss this case later in this
chapter. First however we look at the more traditional dynamic scheduling where individual pro-

cessors are the focus of attention instead of individual tasks.

7.4. Deciding the Minimum Unit of Allocation

Chapter 2 mentioned scheduling overhead and its impact on the granularity of parallélism
that we can exploit. The scheduling overhead depends greatly on the machine characteristics
(o;gapization). So far most of the existing parallel processor systems have not addressed this
issue adequately nor have they taken it into account either in the compiler or the hardware. On
the CRAY X—MP for example multitasking can be applied at any level, although it has been
shéwn that below a given degree of granularity multitasking results in a slowdown. The responsi-
bility of multitasking a program is in addition left entirely to the user. This is also a disadvan-
tage since the average user must know the details of the machine and the code to determine the
best granularity. If the code is complex enough, e.g., containing several nested branching state-
ments, finding the minimum size of code ‘for multifasking would be a difficult procedure even for
the most skillful programmer. In real systems where scheduling is done by the cuwpiler or the
hardware (e.g., Alliant FX/8) the critical task size is also ignored. So we may have Lhe case
where a novice programmer or the compiler schedule a single statement parallel I;)Op on several
processors with successive iterations executing on different processors. This would most likely

result in a performance degradation.
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Another bad, in our view, practice that has been widely adopted by users and system
designers is exploiting the parallelism in DOALL loops by allocating successive iterations to
different processors. Thus in a system with p processors it is common to execute a DOALL loop
with N > p .iterations in the following way: Iteration 1 is assigned to processor 1, iteration 2
to processor 2, ..., iteration p to processor p, iteration p + 1 to processor 1 and so on. There-
fore processor 7 will execute iterations ¢, ¢ + p, ¢ + 2p, ... However it is more efficient to
make the assignment so that a block of successive iterations would be allocated to the same pro-
cessor. For example in the above case it would he more wise to assign iterations 1, 2,..., [N/p] to
the first processor, iterations [N/pl-H, [N/p42,..., 2[N/p] to the second processor and so on.
Memory interleaving can not be brought up as an argument against the latter approach since

memory allocation can be done to best facilitate scheduling in either case.

There are several advantages that favor the second approach of assigning iterations to pro-
cessors. When iterations of a parallel loop are assigned to processors by blocks of successive
iterations, each processor does not have to check the value of the loop index each time it exe-
cutes an iteration. Recall that the loop index is a shared va,ria,ble.and each processor must lock
and unlock a semaphore in order to be granted access to it and get the next iteration. In case all
processors finish simultaneously they will all access the loop index serially goiné through a time
consuming process. In the worst case N accesses to a shared variable will'take place. If the
assignment of blocks of iterations is performed instead, only p accesses to the shared loop index
will be done in the worst case. For a large N and a small p this will result in a éubsta.ntial sav-
ings, considering the fact that each access to the loop index will have to go through the
processor-to-memory network. Note that f.he number of accesses to the loop index is indepen-
dent of N in our case. Another advantagé of this scheme is that when we execute FORALL loops

in parallel, the block assignment can be done so that the cross-iteration dependences are con-
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tained within one block and the dependences are therefore satisfied by virtue of the assignment.
In what follows the second method is used, that is, whenever a parallel loop (excluding DOACRs)
is executed on several processors, the allocation will be done so that each processor is assigned a

block of successive iterations.

Another point of interest here is the diﬁ"ere‘nce in scheduling ﬂ;:xibility between DOALL and
DOACR -loops. By definition, the iterations of a DOALL loop can be scheduled and executed in
any order. For example a DOALL may be scheduled vertically (in which case blocks of consecu-
tive iterations are assigned to the same processor); or horizontally (where consecutive iterations
are assigned to different processors). Any permutation of the index space is legal in the case of
DOALLs. By contrast, a DOACR loop can be scheduled only horizontally. In a DOACR loop there
are cross-iteration dependences between any pair of consecutive iterations. Thus vertical schedul-
ing of a DOACR amounts to essentially ‘executing. that loop serially. This fundamental difference
between DOALLs and DOACRs should be taken carefully into consideration during implementa-

tion of scheduling on parallel machines that support both types of loops.

Let us return to the main subject of this section, namely critical task size. As mentioned
earlier in this chapter our philosophy about run-time scheduling is to put the emphasis on the
amount of work that we assign to an idle processér, rather than on the number of processors
assigned to a particular loop. It should be clear by now that the former approach is more
appropriate and-pra,ctical fo; run-time scheduling, while the latter is more appropriate for
compile-time scheduling. The obvious problem however is that at run-time we can not afford cal-
culations to estimate the projected execution time of a task, and then decide how it should be
partitioned so that the basic partitioﬁs are ‘“‘large enough”. The obvious answer to this problem
is the compiler. The compiler can accomplish the same with no less accuracy. Estimating the

projected execution time of a piece of code (on a single processor) can be done by the compiler or
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1: Bl
if Cl then B2
else B3

if C, then goto 1
else if C3 then B,

else B5
exit
By
if €, then B6
else B7

Figure 7.1. An example of conditional code.

the run-time system with the same precision.

Let us take for example the case of a DOALL loop without conditional statements. All that
needs to be done is estimate the execution time of the loop body, and let it be B. The exact
number of loop iteratioﬁs need not be knov?n at compile-time. Usually the scheduling overhead is

constant for a particular machine and it may only depend on the code qha.ra.ct.erist.ics. For eyam-
ple, if instruction fetching is considered to be part of the overhead, loops would have different
overhead than high level spreading. With loops each processor receives the same set of instruc-
tions which is broadcast to all processors; with high level spreading each processor will receive a
different set of instructions and the network traffic would thus be highef. In any case, the esti-
mate for the execution time of a piece of straight line code can be done as precisely by the com-
piler as by the run-time system (operating system of.hardware). Since we know the overhead for .
the particular machine and the particular case we can find the critical block size for that DOALL
that is, the minimum number X of iterations for which T, < T,. We see how X can be deter-

mined in the next section. This number X can-be “attached” to that DOALL loop as an attri-
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bute at compile-time. All the run-time system must do during execution, is to assign to an idle
" processor X or more iterations of that particular loop (but no less). In case where X < N the

loop is treated as serial.

The same technique can be used with high level spreading in the absence of conditional
statements. When high level spreading involves only basic blocks (Chapter 1) and no loops, any
conditional statement can be executed in the GCU, thus following the correct execution path
without significant overhead. A more difficult problem is determining the critical task size of
parallel loops with conditional statements at run-time. Again we have the same limited choices
(in the compiler or in the run-time system) to determine accurately the critical task size. Again

the compiler can solve the problem by applying a more conservative approach.

Let us consider the code inside a DOALL loqp excluding the loop statements. The control-
flow graph of a code module with coﬁditional statements can be uniquely represented by a
pseudo-tree. Consider for example the code module of Figure 7.1 which constitutes the loop body
of some DOALL. The corresponding control-flow graph is shown in Figure 7.2. Since there™is no
hope of accurately estimating the execution time either in the compiler or at run-time in this
case, we choose to follow a conservative path. The execution time of each basic block B, .. b'.,.
can be estimated precisely. We take the execution time of ghe 106p bod& to bé equal to the execu-

tion time of the shortest path in the tree.

The shortesi‘, path can be found by starting from the root of the tree and progeeding down-
wards la,beling: the nodes with the following procedure. Let ¢, be the execution time of node
(basic block) v;, and ; be its label. The root v, is labeled ¢;. Then a node v; with parent node
v; is labeled with J; = [, + ¢;. As we proceed we mark the node with the minimum (so far)

label. In case we reach a node that has already been labeled (cycle) we ignore it. Otherwise we
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B,=20

Figure 7.2. The control flow tree for the example of Figure 7.1.

proceed until We reach the leaves of the tree. Note thap the labeling process does not have to be
completed: If at some stage of the algorithm the node that has the minimum labél happens to be
a leaf, or it leads to an already labeled node (cycle) the labeling process terminates. The path 7
that consists of the marked nodes is the shortest execution path in that code. The number of
iterations required (conservatively) to form the ‘“critical mass” is a function of the number of
processors as shown in the following section..B, the execution time of m, is given by the label of
the last node of path 7. A less conservative approach would be to take the sum of the execution
times of all paths in the tree and divide it by the number of leaves and cycles. In the example of

Figure 7.2 the above:procedure gives us B = 15 and B = 33.33 respectively. All the above
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can be easily implemented in the compiler.

To summarize the above we assume th#t the critical task size ‘is always supplied by the
compiler and is observed (from below) by the run-time system during egecution_. For the case of a
loop which is the most important case, the critical task size is specified to the run-time system as
a loop attribute which is constant and specifies the minimum number of iterations that can be
allocated each time. In the case of high level spreading the compiler can easily group basic blocks

together to form tasks that always meet or exceed the critical task size.

7.5. Run-Time Scheduling Overhead and Its Impact on Parallelism

During the last few years the field of parallel processing has undergone an enormous
growth. Parallel processor machines with thousands and millions of processors, have often been
the subject of research and development projects in industrial a.'nd academic laboratories. Look-
ing at what has happened and what is planned for the next few years we see that general pur-
pose parallel processor systems have béen restricted to a few processors only. Cost, or the
absence of applications that can use thousands of processors is clearly not the reason. The over-
head involved with the simultaneous application of many processors to the same task can be
enormous. Moreover we have not yet developed algorithms and methods to ¢coordinate efficiently
many processors that work on the same problem. The only exception is special purpose
machines that have been built for specific applications, and can utilize' large numbers of special
purpose processoré by using a fixed task assignment policy.

In order to make it feasible to build very large-scale parallel processor systems we musl
solve first the scheduling and the run-time overhead problems. In this section we study analyti-
cally two widely accepted models of overhead and their impact 611 the degree of paré,llelism that

we can exploit. When a parallel task is distributed to several processors at ;un—time, it incurs a
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penalty or overhead that limits the degree of task granularity. Consider for example the parallel
execution of a DOALL loop whose iterations are spread acrosé processors at run-time. Self-
scheduling for example or any other dynamic scheduling scheme falls into this category. Run-
time overhead may include several activities that dp not occur during the serial execution of a
loop. All processors involved for example will have to access the ready task queue in a serial
mode since it is a critical section. Different processors will get different iterations of the same
loop. At the end of the loop all processors involved must ‘“‘pass through a barrier” serially to
determine that the loop has been executed and that they are allowed to proceed with the next
task. Even during execution the processors may have to access several shared variables as is the
case for example, with DOACR loops. The fetching of instructions at run-time can also be con-
sidered part of the overhead. Eséecially with self-scheduling, instructions fetches cannot he
overlapped with execution since by definition, 1t is impossible to predict what f)a,rt of the pro-
gram or which iteration of a loop a given processor will execute next. All these activities prolong
the parallel execution time of a program. None of the above occurs during serial execution.
This overhead, as would be expected, makes it inefficient to execute in pz;rallel small tasks or to
use a very large number of processors on even large parallel tasks. If the task is not large
enough to amortize the overhead, we may end up with a parallel execution time which is larger

than the serial execution time.

In this section we study the overhead involved with parallel tasks and its impact on the
. maximum degree of ‘‘usable” parallelism. In our case a parallel task is a parallel loop or a set
of independent serial modules of a progré.m. We analyze the case of parallel loops and the same
is applicable to high level spreading. The tasks involved in an instance of high level spreading
can be thought of as iterations of a DOALL loop whose loop-body contains conditional state-

ments, and therefore different iterations have different execution times. Therefore high level



169

spreading can be reduced to the parallel loop case where the number of iterations equals the
number of independent tasks in that set. Since it is impossible to precisely estimate the execution
time of a loop body with conditional statements, either ;a.t compile-time or at run-time, we
assumeAan average or a worst case value as mentioned in the previous section. For the moment

let us assume that the loop-body for a given parallel loop has a constant execution time.

To analyze the run-time overhead we use two different widely accepted conjectures that
have been backed by empirical results. The first conjecture states that during the parallel execu-
tion of a parallel task the run-time overhead is linearly proportional to the number of processors
involved. The second conjecture states that advanced techniques and special hardware modules
can be used to make the run-time overhead logarithmically proportional to the number of proces-
sors. We therefore have O(p) and O(log,p) overhead respectively. In what follows we analyze
each position and derive practical results for each case. We develop the two models and derive
the optimal number of processors that can be used for a given parallel task. The two models
were implemented and quantitative results are presented in .section 7.5.3 for a few randomly

selected parallel loops.

The results presented in this section are practical since they can be used by the compiler to
draw exact or approximate conclusions for each task in a program, and used at run-time to avoid
inefficient allocations. The analytical results are also applicable to other cases, for instance to
study the overhead involved when several processors access a shared v#riable, or study the effect

of combining memory requests in network switches.

7.5.1. Run-time Overhead is O(p)

As mentioned above we can always identify a parallel task with a DOALL without loss of

generality. Let as usual T and T, denote the serial' and parallel execution time of a given task.
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Let N be the number of iterations of a loop and B the execution time of the loop-body. If the
loop-body has a varying execution time the procedure of section 7.4 can be used to derive a

worst case or average value for B.

In this section we consider the case where the run-time overhead is linearly proportional to
the number of processors assigned to that loop. Let o, be the run-time overhead constant which
in general depends on the characteristics of the code. The compiler can supply the valuo of o,
for each loop (parallel task) in the program. Obviously the serial execution time of a loop with
N iterations and a loop-body execution time of B would be T, = NB The parallel executic:;n

time then on p-processors would be

‘ N
T, = [—]B + o,p. (7.1)
P

"Consider (7.1) as a function of p. If overhead was zero, (7.1) would be an integer valued mono-
tonically decreasing function. Since (7.1) is not a continuous function it is not amenable to
analytical study. We can easily approximate the function in (7.1) by a continuous function, by
elimninabing the ceiling. We thus get

T(p) = NB/p + o,p. (7.2)
(7.2) is a continuous real function in the interval (0, + o), with continuous first and second
derivatives. We can thus study its shape and determine the point where overhead becomes
minimal. In other words we want to find the value of p for which (7.1) becomes minimum and

therefore the speedup of that task is maximized. The result is given by the following theorem.

Theorem 7.1 The parallellexecution time of a task that consists of IV serial processes, each tak-
ing B units of time to execute, is minimized when the task is executed on a number of processors

given by
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p, = VINB [ o, | (7.3)

Prgof First we show how (7.3) is derived and then prove that it is indeed the optimal value for
that task (loop). Consider (7.2) which is an approximation to the parallel execution time defined

by (7.1). T(p) is continuous in the interval (0, + o and has a first derivative

—iﬂ=T(p)= - — + o, (7.4)
dp . p2 °

The local extreme points of (7.2) are at the roots of its first derivative.
po,l = *VNB / %, : (7'5)
and since we are only interested for values in the interval (0, 4 od, we discard the negative root

p,- The second derivative of T'(p) is

d°T(p) " 2NB ,
2p =T = —, >0 (7.6)

dp P
(7.6) is always greater than zero and therefore the extreme at (p,, T(p,)) is 2 minimum, where

P, ie given by (7.5). If p, is an integer, then the parallel execution time T, is also minimized as

we prove later, and it is

NB |
T, = —/—— + o, \NNB [ o, = \/NBao + \/NBao = 2V/NBo,. (7.7)
’ \/.NB/aa :

Indeed if T, is the parallel execution time for any other p = ¢ \V/NB /o, where ¢ can be of the

type m, or 1/m where m is a positive integer, then T, < Tp, or equivalently,

o\/NBs, < VINBYo, / c*(NB) + Vc'o,(NB) / o, - (1.8)

and if we substitute = NBo, in (7.8) we have

9Vg <\/a:7/02+\/c2;r‘ — 0 < z(1+c4—202)

and since z > 0, we finally get (1 — c2)2 > 0 which is always true. ®

Corollary 7.1 The parallel execution time ﬁ‘p is also minimized when the number of processors

is v, = VNB/O'o .



162

v

Proof Let us suppose that there is another p = p, + k, where k is a positive or negative

integer, for which T, < T, . Then from (7.1) we have, ’

N [N
—_— + o,(p, + k) < |— + o,p,
p, + k P,

or B[ - [ > o,k 7.9
pnl lp, + & ’ (79)
But from Theorem 7.1 we know that '
NB | Nig
—— + o,(p, + k) > — + o,p,
p, + k P,
N N
or B[_ - """'—_] < 0o,k (7.10)
P, p, + k

By dividing the two sides of (7.9) and (7.10) we get

B[’Nl_[ N

P, p, + k
>
BrNB _ _NB ] g,k
p, p, + k

and after the simplifications we finally have

N
- 7.11
p, + k ( )

—_ s

-

N]_ N [ N
P, lp‘,+'lc

b,

and since, by definition, [z] — z < 1 for any real z, (7.11) gives us 1 > 1. Therefare the ini-

tial hypothesis can never be true for any integer £ and thus p, is optimal for (7.1) also. @

NB
Corollary 7.2 For 5, > — the approximation function T'(*) defined in (7.2) satisfies
4 .

T(p) > NB (7.12)
for any integer p #0.
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Proof By substituting T'(p) from (7.2) in (7.12) we have

NB . 4
— 4+ o0,p > NB or 00p2 + p(NB) + NB > 0. (7.13)

p
(7.13) is a quadratic equation of p and since 0, > 0, the inequality in (7.13) is always true if

the determinant D of the equation in (7.13) is negative, ie.,

D = (NBY - 40,(NB) < O which givesus o, > —.m

NB
Corollary 7.3 If 6, > — then the parallel execution time for p > k is greater than the
k .

serial execution time, i.e., Tp > T,

Proof The proof here is trivial. Suppose that for some positive p > k we have Tp < T,

Then [N/p]B + o,p < NB, and from the statement of the corollary we have

N NB I~ P
—IB + p—— < NB o 0< |[—| < N1-7)
“lp k P k

and since N is always positive it should be p < k& which contradicts the statement. ®

In the next section we analyze the case of logarithmic overhead in a similar way.

7.5.2. Run-Time Overhead is O(log,p)

Let us assume that the run-time overhead is logarithmically proportional to the number of
processors assigned to a parallel task. Again the task consists of N independent serial processes

where each process takes B units of time to execute. In this case therefore, the parallel execution

time is given by

N : .
T, = [—|B + o, logp. (7.14)
p o :

To determine the optimal number of processors that can be assigned to a given parallel task in
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this case, we follow the same approach as in the previous section. Again since (7.14) is not a con-

tinuous function we approximate it with

NB
T(p) = — + o,logp (7.15)
p B
where T(p) is now a continuous function in the interval (0, + od, with continuous first and

second derivatives. The corresponding theorem follows.

Theorem 7.2. The approximate parallel execution time defined by (7.15) is minimized when

NB .
po = .

%,

Proof The first derivative of (7.15) is given by

dT(p) ' ~ NB %,

- — + (7.16)
dp p? p
T(p) hasroots p = 0, which is discarded, and
ND
P, = : 7.17
| T (7.17)
The second dérivative of (7.15) at p, 1s
A 3
" 2NB - 0'0p " o,
T(p) = - and T (NB/o,) = ; > 0
p (NB)
Therefore T'(p) has a minimum at p = p, . ®
If p, is an integer, then we have the following corollary.
Corollary 7.4. Forany p = p, + k, where k is any integer, we have Tp < Tp.

Proof The proof is similar to the proof of Corollary 7.2. Again we assume that there is a k for

whichp = p, + k and Tp > Tp,i.e.,
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N N po + k i
Bl - [—|| > o, log |7} (7.18)
“A|p, p, + k| - P, :

But from Theorem 7.2 we have that

N N (P, + K
B/ - — '] < o, log /™| (7.19)
P, p, + k P,

Dividing (7.18) and (7.19) and using again the fact that [z] — z < 1, we reach a contradiction
to the initial hypothesis. Therefore the statement of the corollary is true. ®
If p, is not an integer, then we have the following theorem.

!

Theorem 7.3. Let ¢ = [p,] — p, where 0 < € < 1. Then the number of processors P,

that minimizes the parallel execution time T :in (7.14) is given by

' {lPoJ ife < 05

= (7.20)
N Po = [p,] ife > 05
where p, = NB /o,.
Proof Let us suppose that the optimal execution time T, is achieved for p = p, + k, where
k is some nonzero integer and |k | #1. Then
T, < T, (7.21)

But in Theorem 7.2, we proved that T(p) is a parabola and reaches its minimum value at
p, = NB /o,. From calculus we know then that for 1€, 1 < 1€,] wehave

and since ¢ < kandl — € < k we have

T(p, +¢) < T(p, :Ek) “and T('p; +(1°= €) < T(p, +k)

or equivalently,

() > T,). | (7.22)
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Using the same approach as in the previous corollary and substituting the T ,sand T (p)s in

(7.21) and (7.22) we contradict the initial hypothesis. Therefore the statement of the theorem is

true. B

NB(p — 1) :
Corollary 7.5. If o0, > £ then T, > T,.
P

Proof Suppose that T, < T,. Then

N N :
—B + o,logp < [—IB + o,logp < NB. (7.23)
P p

By taking the first and last terms in (7.23) we have

NBp — NB - g, logp > O. (7.24)
Let NB = logy. Then NBp = p log'y- = log y’ and (7.24) becomes

» (14
logy" = logy — logp > 0, or

v’ yw !
log[ ]>0‘ or log[~ ]>0

00[7

yr

and finally,

p -1 po, NB(p-1 PO,
y > p or ¢ (p-1)

and since p > e we finally have that

NB(p - 1)
NB(p — 1) > po, or o, > (b
: p
which contradicts the basis of the corollary and thus (7.23) is not true. ®

7.6.3. Measurements

We used the above models to study the effect of run-time overhead on the degree of usable
parallelism and thus on execution time. We used (7.1) and (7.2) to compute the actual execution

time of a program, and (7.2) to compute its approximation function for the linear overhead case.
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Similarly (7.14) and (7.15) were used for the logarithmic overhead case.

Figure 7.3 illustrates the execution time for a DOALL with N =200 and B =8 under (a)
linear overhead, and (b) under logarithmic overhead. Figures 7.4, 7.5, and 7.6 illustrate the same
data for three different DOALLs. The solid lines plot the values ofh;T;,, the actual parallel execu-
tion time. Dashed lines give the approximate execution time defined by the continuous functions.
For these measurements a value of 0= 4 was used. The overhead constant although optimisti-
cg,lly low, is not unrealistically small for (hypothetical) systems with fast synchronization
hardware. In all cases we observe that as long as p < 'V, the diﬁ"grenqe. between the values of

the approximation function T'(p) and the actual parallel execution time T, is negligible.

. Looking at Figures 7.3a and 7.5a we observe that when the loop body is small, the associ-
ated overhead limits severly the number of processors that can be used on that loop. For these
two éases for example, only 1/10 and 1/40 of the ideal speedup can be achieved. When B is large
however the overhead has a less limiting impact on speedup. For the case of Figure 7.4a for
example, 1/2 of the maximum speedup can be obtained in the presense of linear overhead. The
same is trueAfor Figure 7.6a. In all cases the logarithmic overhead had practically no significant

negative impact on speedup.

7.6. Problems and Trade-offs in Dynamic Scheduling

For our discussion in this section we need to define more precisely what are the components
of a program tha.t;, we want to schedule, namely tasks and processes. We defined earlier the co’n-
cept of basic block [AhUI77]. A straight line code (SLC) module is a piece of code that consists
of a set of basic blocks with conditional statements embedded between basic blocks. The only
other type of executable code are outermost loops. Outer loops can be arbitrarily complex and

are treated separately. A task is an SLC module or an outermost loop. A task may consist of
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several iterations or processes in which case we have a parallel task. Processes and straight line
code modules are always executed on a single physical processor. Each process may have scalar
or vector statements but never parallel components. Therefore the parallelism within a process

is always of SIMD type. Parallelism in tasks is always of MIMD type.

In defining the above terms we considered the following aspects of Fortran programs and
real parallel processor systems. Recall that our machine model is a general purpose parallel pro
cessor syétem with powerful processors whose utilization should be kept as high as possible. The
processors may be multifunctional or pipelifled and low level parallelism should be exclusively
utilized within a processér. In other words we do not allow low level spreading across processors
(where low level refers to stateumentf or instruction level granularity). We therefore exclude from
our definition of parallelism low level spreading and vector statements. Note that this assump-
tion still allows for very long vector statements to be distributed across several processors. This
can be done by breaking the vector statement into smaller segments at compile-time and creat-
ing an artificial parallel loop around the reduced size vector statement. This is known as strip

mining.

If we adopt the above assumptions, there can be only two types of parallelism in a Fortran
program: Parallelisn; due to high level spreading (vertical) and parallelism due to (possibly
nested) paralle]l loops. Using the earlier results of this chapter we serialize (either at compile or at
run-time) all those parallel loops whose parallel execution would potentially result in a slow-
down, or no speedup due to the overhead involved. We can now consider the tradeoffs involved .

with scheduling these types of constructs.

All ready-to-execute tasks will be queued in a common pool @ that may be implemented to

support parallel deletions and insertions. Each ready task in @ will be represented by a tem-
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Figure 7.7. A multiply nested hybrid loop.

plate. Tasks in @ may be serial (serial loops or SLC) or parallel. When a processor dispatchezs a
task from @ it may execute the entire task or part of it. The type of parallelism discussed
above is explicitly represented in @: All tasks in @ may be executed simultaneously (high level
spreading). On the other hand parallel tasks in @ may be executed on several processors (loop

parallelism).

Let us suppose that @ has parallel access capabilities and thus each processor can dispatch
a task (or part of a task) from anywhere in @. Therefore there is no complication with high
level spreading. If @ for example contains serial tasks only, each incoming processor will
dispatch a single task until all tasks in @ are dispatched. Some groups of processors may have
to perform a barrier synchronization, but we aré not concerned of how this can be done until

later. The only problem left is how to dispatch a parallel task, that is, a parallel loop. Let us
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look at the problems involved with distributing a parallel loop. We assume that each incoming
processor dispatches a set of consecutive iterations (process) from a parallel loop. If we have a
single level of parallelism the procedure is trivial. If however we have multiply nested parallel
loops the dispatching process becomes more complicated. Consider the example loop of Figure
7.7 and let us consider the following scenarios.

All loops are DOALLs. Then if NV, is the number of iterations of L; the first j loops for

7
which TN, = p will be executed in parallel. All remaining loops will be serialized. Since we
i =1 )

are not interested in the optimal allocation (since it is impossible in this case), our objective is to

utilize enough parallelism to keep the processors busy. Because all loops are parallel the above

selection will give us enough iterations (processes) to keep all p processors in the system busy. If
42

there is no dependence from L, to L; ; and in addition JTN; < p, we should be able to per-

j=1
form high level spreading inside L; by overlapping the execution of L;,; and L; q. If all surround-
ing loops are DOALLs the compiler can distribute them around L; ., and therefore L; s will
appear in Q as a separate parallel task. High level spreading is then automatic. If one of the sur-
rounding loops e.g., L; is serial, loop distribution 1s not allowed and we should take provisions in
our design to enforce or allow spreading within a parallel task. In this case overlapped execution
of L;,, and L; 5 can be achieved by using a barrier synchronization at the end of L;. Incoming
processors can dispatch iterations of L;,, and L; 5 in any order, for the same value of the index
of L;, and as long as the barrier is cleared. Exactly the same could be done if the serial loop was -

Ljforl < j < 1.

If there is a dependency from L., to L, 5, each processor that executes an instance of L;

i+l

for a given index value of L, will also execute the corresponding instance of L, 5. Therefore, since
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dependences remain. “within a processor’” they are preserved automatically. No barrier syn-
chronization between the two loops is needed in this case. - The self-scheduling scheme proposed
in [TaPe86] uses synchronization for.each single loop in the construct. This approach involves a
large overhead especially for small loops with many iterations. Moreover this method does not
allow high level spreading within the scope of a loop. Later in this chapf.er we. present a different
self-scheduling scheme that uses far less synchronization and also allows for spreading inside a

loop.

Our next goal is to design a dynamic scheduling scheme that is efficient, realistic, and
involves as low an overhead as possible. Since scheduling is done in a non deterministic way in
this case, we should design our scheme such that processors are scheduled automatically and
select the “‘best’ task to execute next by going through a simple and fast procedure. To achieve

this we design our scheme around the following two objectives:

@ Keep all processors as busy as possible.
¢ Run-time overhead should be kept minimal.

The following theorem clarifies our intention for using these two rules. Assuming zero overhead,
and that we can keep all processors busy, we see from the next theorem that we can get very

close to an optimal schedule by using any simple self-scheduling scheme.

Theorem 7.4 Let L be a DOALL loop with N iterations and a loop-body that takes a max-

imum of B units of time to execute. Then the execution time w, using any self-scheduling

B
w < [—IB (7.25)
p .

Proof Let us assume that N > p. During self-scheduling iterations are scheduled on demand.

scheme is bounded by
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When a processor becomes free it dispatches a new iteration or a block of iterations. (Since the
latter case can be reduced to the case where iterations are assigned one by one, we consider the
former case.) In a DOALL there are no cross-iteration dependences. Therefore new processes are
always available until L is completely dispatched. In other words there are no “gaps” in the exe-

cution profile.

Assume that all p processors start at time 1. Let ¢ be the time the first of the p processors
timishes completely {1.e., 1t tinds an empty ). 'I'hen no new iteration (process) can start execu-
tion at time greater than or equal to ¢{. 'L'herefore all other processors will compleﬁe before time
t + B and thus

w, <t + B ‘ | (7.26)
There is at least one (out of the p) processor that by time ¢ has been assigned at most
[N/p] — 1 iterations. This is true because otherwise (i.e., if each processor has been assigned at
least [N /p] iterations by time ¢) the total number of iterations z assigned up to time ¢ would
be z > p[N/p]l > N which is impossible (unless p divides N which again proves the

theorem). It follows therefore that

t < ”']X] - I]B or t + B < [‘N“B : | (7.27)
: p ‘ p

and if we substitute ¢ in (7.26) we tinally have

w < [ﬂe .

Consider again a DOALL loop L with NV iterations, or equivalently a set of N independent serial -
tasks. Let B and b be the execution times of the longest and shortest iterations of L respec-
tively. Then if w, is the optimal schedule length of L on p processors and w, the schedule lenght

of L on p processors under any dynamic (demand-driven) scheduling scheme (assuming no over-
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head of any kind), we have the following.
Corollary 7.6« can never be B /b times worse than the optimal, that is
“L B.

Proof From the previous theorem it follows that

N
[—lb Sw Ly < [ﬁ‘B, or
p p

Y < [N/p1B < NGB B
W, w, [N/plb b

For example if all iterations of L have equal execution times w; = w,, i.e., any demand-driven

scheme is optimal, excluding again overhead. ®
Another upper bound which in general is closer than that of Corollary 7.6 is given by the follow-

ing.

- “L B
Corollary 7.7 — <1 + L.*—.
w, '

- N b

Proof Since ¢ is the time the first processor completes execution on L (Theorem 7.4), it is obvi-

ous that
N o .
w >t > [—h (7.28)
p .
From the previous theorem we also have,
W, = Tp <t + B ' (7.29)

From (7.28) and (7.29) it follows that



178

“ t + B t + B B : B
— < < =1+ =<1+ —— <1+ 2= (1.30)
, w, t t IN/p b N b

which proves the corollary. ®

From Corollary 7.7 we pbserve that if /N is very large compared to p, any dynamic schedul-
ing heuristic converges to the optimal. The case of high level spreading is also included in the
above theorem. In the case of general program graphs (DAG’s) the above theorem holds true if
we replace |IV/p|B by c'uo‘ where w, is the length (execution Lime) of the optimal schedule ‘for a
particular program graph., Therefore in the worst case dynamic scheduling will reoult in a paral-
lel execution time which is by at most £, units of time longer than the optimal (where ¢, is the
execution time of the longest serial task in fhe graph). By using the compiler to guide dynamic
scheduling, we can reduce ¢, to be the execution time of a particular serial i;ask. This is as good
a performance as we can get given the nondgterminisﬁic nature of the problem. Since any
dynamic scheduling algorithm is bounded by (7.25), we should use the simplest possible: for
example processors pick random tasks from @ to execute next. This will work (theoretically) as
well as any other more complicated scheduling pracednre  The anly problem (:mdAin foot the
dominant one in reality) is overhead. 'The overhead varies with different schemes. The execution
time given by Theorem 7.4 can never be realized in real systems. Overhead is never zero but
instead, it may be several times longer than the exeecution time of a task. When a task ¢, is
scheduled there is always an overhead factor o; associated with it that prolongs its execution
time. This ovefhead is paid by a processor each time that processor dispatches a new task.
Therefore in reality, if a given program graph is scheduled on p processors w>ith each processor -
executing an average of [N /p] tasks, with an average task execution time of ¢; the schedule
length would be of the order O( [N/p¢t; + o;)) instead of O([N/plt;) as implied by

Theorem 7.4, where o; is the overhead factor. If o; > ¢f; which is often the case, then dynamic
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scheduling may give an execution time several times longer than the best possible.

Our next design goal therefore is to implement dynamic scheduling such that o; is minim-
ize(i for each processor. Note also that if o; was a constant it would be rather easy to optimize
the schedule even at run-time. ﬁ However the overhead o; depends dynamically on several factors
and may vary vastly from task to task and processor to processor. For example, o, depends on
the size of the task, the type of the task, the total number of processors that attempt a dispatch
at the same moment, and so on. 'This becomes clear if we see what run-time activities ‘‘contri-
bute” to o;. Such activities for example include time spent in @ during dispatching. Obviously
the fewer the processors that try to dispatch a task at a given moment, the shorter the time'a
processor will wait in @. Since dynamic and in particular self-scheduling makes it by natlilre
impossible to predict wh‘a.t task a processor will execute next, instruction and data fetching will
have to be done after a processor dispatches a task. Although we discuss later ways of prefetch-
ing instructions and data, in a pure implementation of self-scheduling these activities cannot be
overlapped with execution and they are agtrisuted to o,. Several processors may have to syn-

. 2.
chronize after executing a parallel task by performing a join operation which can be imple-
mented with barrier synchroni_z‘a,tion. This overhead is also accounted for in o;. If all the pro-
CCSSOTS involv;d in a parallel task attempt a join simultaneously; the overhead for each processor
would obviously be higher than if ‘each processor performs the join at a different moment, or if
the arrival of processors to the barrier follows some prob';bilistic distribﬁtion. Since a systematic.
analysis is impossible for the real problem, we should design a run-time scheduling scheme that,
in a pure form, limits the overhead to be within reasonable bounds. Compiler generated infof-

mation can then be used to enhance performance by forcing the processors to make more intelli-

gent selection of tasks without extra overhead.

AN
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7.7. Self-Scheduling Through Implicit Coalescing

In this section we'discuss a new self-scheduling sgheme that requires minimal synchroniza-
tion. In this case the concurrency control is fully distributed i.e., our machine model consists of
p processors that operate independently and autonomously - no global control unit of any type
exists. For simplicity we can assume that the machine has a fixed address space in global
memory where the program graph (in some representz;,tion) is stored. There is also a common
pool @ of ready-to-execute tasks. ¢ may support parallel task diséatch/insert operations. A
possible implementation would be to maintain @ as a hash table. A processor then may access
any entry of @ by computing the address using a hash function. In addition a processor may be
forced to use the last hash address .instead of recomputing a new one. This for instance may be
useful when a processor executes part of a parallel loop. If the processor is forced in this c;cwse to
dispatch another part of the same loop next we save instruction and fetches of read-only data.
Another possible implementation of ¢ is a table where an idle processor dispatches its task from
a random entry. There are several other ways of organizing @ but this is another subject on its

OWN.

Another concern here is how to insert (enqueue) ready-to-execute tasks in @, and how to
determine whether a task is ready-to-execute. Since there is no gl;)bal control unit in our system
this should be the responsibility'of the operating system or the program itself. The operating
system however is activated only when it receives a specific request. This means that only
periodic checking for ready-to-execute tasks is possible, clearly the least desirable approach. The
best approach is to enqueue tasks in @ as soon as they become executable. This means that as ‘
soon as all their predecessors complete execution, one of the processors should be able to detect
this event and “fire’’ the corresponding tasks. The best candidate for this, in terms of efficiency,

is the processor that completes the barrier associated with each task (if any), or the processor
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that dispatches the last part of a,.task. We can view this activity as service to the “community”
of processors. In general the responsibility for this service should be evenly distributed among
the p processors. Therefore for what follows we assume that @ always contains the ready-to-
execute tasks and remains updated through program execufion‘ The details of how this is done
are of no concern to the following discussion. Again high level spreading is automatic. There-

fore we present our self-scheduling scheme only in the context of arbitrarily nested hybrid loops.

Most of the schemes that have been propdsed so far [GGKMS83|, [TaPe86], implement self-
scheduling by making extensive use of synchronization instructions. For example in [TaPe86] a
barrier synchronization is associated with each loop in the construct. In addition, all accesses to
loop indeces are, by necessity, synchronized. Another common characteristic of these schemes is
that they assign only one loop iteration to each incoming (free) processor. Our scheme differs in
all aspects discussed above. Only one barrier per serial loop is used. Furthermore, indepen-
dently of the nest pattern and the number of loops involved, we need synchronized access to only
a single loop index. In contrast the above schemes need synchroniied access to a number of

indeces which is equal to the number of loops in the construct.

Self-scheduling can be achieved through loop coalescing. This compiler transformation was
described in Chapter 4 and was used to enhance the performance of static-écﬁeduling. The key
characteristic of this'transforma,tion which is useful here, is its ability to express all indeces in a
loop nest as a function of a single index. This makes it clear why syrchronized access to each
loop index is wasteful. We can always use a single index. If the loop bounds are known at run-
time just before we enter the loop, we may decide exactly how many iterations each processoi'
will receive. Thus when a processor accesses the single loop index to dispatch a range of con-
secutive iterations it goes through a single synchronization point. Since the range of iterations is

determined before-hand, each processor will dispatch all the work it is responsible for, the very
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first time it accesses the corresponding loop index. Therefore only a total of p synchronization
instructions will be executed. For a matter of comparison, in the schemes mentioned above each
processor executes a synchronization instruction for each loop in the nest, and each time it

dispatches a new iteration. In a nested loop that consists of m separate loops we would then

m
have a total of m]] NV, synchronization instructions that will execute before the loop completes.
i=1
w

The difference between p and m[] N, can obviously be tremendous. In theoretical terms we can

T =l
thus state that the scheme in [TaPe86] or [GGKMS83]| for example, involves an overhead which is

unbounded on p.

—DOALL I=1, 10

7 ——DOSERIAL J=1, 5

DOALL K=1, 4

Figure 7.8. Example loop for the application of GSS.
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7.7.1. The Guided Self-Scheduling (GSS(k)) Algorithm

In this section we present a simple, yet powerful algorithm for dynamic scheduling. The
idea is to implement Guided Self-Scheduling with bound k, (GSS(k)) by ‘“‘guiding” the proces-
sors on the amount of work they choose. The bound is defined to be the minimum number of
loop iterations assigned to a given processor by GSS. The algorithm is discussed below in great
detail and is summarized for k=1 in Figure 7.10. First we present the case of k=1, GSS(1) or
GSS for short, and later discuss the general case for k& > 1. The GSS algorithm achieves
optimal executiqn times in most cases. Let us describe in more detail how self-scheduling

through implicit laop coalescing works. For the beginning assume that we have a perfectly
!

(one-way) nested lobp L = (N, .., N,). As discussed in Chapter 4, loop coalescing coalesces
m
1
all m loops into a single loop L = (N = TJ][N;) through a transformation f that maps the
i=1

indeces [;, (i =1,2,.., m) of the original loop L to index I of L' such that
I, = f{I) (f ="1;2,..., m). This index transformation is universal, i.e., it is the same for all
loops, perfectly nested or not. Therefore each processor can .compute locally f; for ; given I.
Better yet, each processor can compute locally a range of values f(z:y). for a range of
¢z < I < y. This mapping f 'as defined in (4.4) (Chapter 4) may be _implémented in micro-
code, or a fast hardware device may be used inside each processor to realize f. The global index
I is then kept in the shared memory as a shared variable. Each processor accesses I in a syn-
chronized way and dispatches the next set of consecutive iterations of L along with a pointer to
its code. Then inside each processor, mappings f; are used to compute the corresponding range
for each index I; of the oriéinal loop. After the index ranges are computed for each processor,
execution proceeds.in the normal mode. In case all loops in L are parallel no processor will ever

go back to dispatch another range of iterations of I. This is obviously the minimum possible
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amount of synchronization that is needed with any self-scheduling scheme.

The process is more complicated with self-scheduling of hybrid loops. Let us look at the
case of hybrid loops that consist of DOALLs and DOSERIAL loops, and in particular consider.
the example of Figure 7.8. In the example the innermost and outermost loops are DOALLs and
the second is a serial loop. Let us denote this loop with L = (N,, N, N,) = (10, 5, 4).
We have a total of N = 200 iterations. On a machine with an unlimited number of processors
(200 in this case) each processor would execute 5 iterations of L, and this is the best possible
that We can achieve. OUn a system with p processors self-scheduling should be done such that
iterations of L are evenly distributed among the p processors (assuming an equal execution time
for all iterations). The presence of the serial loop in L however limits our ability to do this. It
is profound that the approach of assigning consecutive iterations of I to each processor would
fail here. (This is true because after coalescing we have a single iteration space and assignments
are done in blocks of consecutive iterations.) At most 4 successive iterations may be assigned at
once. If all 4 are given to the same processor, the loop is executed serially. If each processor

receives one iteration on the other hand, we can use only up to 4 processors.

This problem can be eliminated by permuting the indeces of - the original loop, or
equivalently, by applying implicit loop interchange [Wolf82]. Our goal is to permute the indeces
so that the longest possible set of parallel iterations corresponds to successive values of the index
I of L’. This can be done by permuting the indeces I and J so that the serial loop becomes the
outermost loop or by permuting J and K so that the serial becomes the innermost loop - which
would violate dependences in this case. In general a serial loop can be interchanged with any
DOALL that surrounds it, but it may never be interchanged by a loop surrounded by 1t There-

fore in the case of our example we implicitly interchange loops I and J. -
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The interchange can be implemented trivially nsing implicit coalescing as follows. The
mappings of I and J are permuted such that I is defined by the ma,ppin\g of J and vice versa.
No physical loop interchange takes place (neither physical coalescing). More specifically, if I, is
the global index of the coalesced loop for phe example loop of Figure 7.8, then the original

indeces I, J and K are mapped to I, as follows:

o
J = |—|-5|— (7.31a)

After implicit loop coalescing the mappings are:

. I, L -1
I = |—|- 10—
4 40
I, I -1
J= |—|-s5]—— (7.31b)
40 200 <
I -1
K=1 - |—]|
4‘

The result is that the first 40 successive values of I, correspond now to 40 parallel iterations
(instead of 4 iterations previously). Tnerefore up to 40 processors can be used in parallel. Extra
synchronization is still needed however. As mentioned earlier in this section, each serial loop in
L needs a barrier Synchronization to enforce its seriality. The following lemma tells us when it
is legal to apply loop interchange in order to maximize the number of consecutive parallel itera-

tions.
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Proposition 7.1. In a hybrid perfectly nested loop, any DOALL can be interchanged with any
serial or DOACR loop that is in a higher nest level. This loop interchange can be applied repeat-

edly and independently for any pair of (DOALL, DOSERIAL / DOACR) loops.

Proof The proof is trivial for the case of two loops. The general case follows by induction on the

number of loops interchanged. ®

The only case that remains to be discussed is nonperfectly (multi-way) nested loops. This
is identical to the one-way nested loop case, unless one of the following two conditions is met. 1)
Loops at the same nest-level have different loop bounds. 2) High level spreading should be

applied with loops at the same nest-level. In the first case if & loops IV, Niyg -y Ny

)

happen to be at the i-th level, the global index I, is computed with a number of NN, iterations

for the i-th level, which is given by

N;, = max {N;,.}
1<j <k
Then during execution, loop NV,,; at the ¢-th level will have N; — N,; null iterations:(which

are not actually computed). ‘L'herefore some of the processors execute only part of the code at
level . This corresponds to computing ‘‘slices’’ of each loop on the same processor. Consider for
example the loop of F_iguré 7.7.1f L, , and L; 4 are independent, then only one mapping function
Jia(?) can be used for both L;,, and L; 5 Thus slices of the two loops corresponding to the
same index values will be assigried to each idle processor. In general if loops at the same nest
level are indepenfient, outer loops c‘an be distributed around them and each loop is considered
separately (i.e., we coalesce each of them and consider them as separate tasks). When there are -
dependences among loops, either loop distribution or barrier synchronization can be used as men-
tioned above. If for example there is a dependence from L;,, to L; 4, a barrier can be inserted

between the two loops to insure completion of L; , before L, ;5 starts executing.
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If high level spreading is to be applied, then implicit loop coalescing and a global index I,
will . be computed for each loop that. is spread. Consider Figure 7.7 of the previous section. If
loops L;,; and L, are to be overlapped, two implicit coalescings will be performed for loops

L, ..., L, Liyand L,, ..., L; L, that will produce two different global indeces Ic1

0
and I 02 respectively. A separate task for each of the Icl and Ic2 will then be created and queued in
Q.

So far we saw how GSS coalesces the loops and assigns blocks of iterations to incoming
(idle) processors. We have not mentioned however how the algorithm decides the number of
iterations to be assigned to each idle processor. The schemes that have been proposed so far
[KrWe85], [TaPe86] assign a single iteration at a time. This approach involves a tremen(i;us
amount of overhea,cli since several critical regions must be accessed each time a single iteration is
dispatched. The GSS algorithm follows another approach by assigning several (bloqks of) itera-
tions to each processor. The size of each block varies and is determined by using a simple but
powerful rule that is described below. Before we describe how block sizes are computed let us

state our constraints.

Suppose that a parallel loop L (e.g.,, a DOALL) is to be executed on p processors. We
assume that each of the p processors starts executing some iteration(s) of L .at different times
(i.e., not all p processors start computing L simultaneously). This is clearly a valid and practical
assumption. If L for example is not the ﬁrsf loop in the program, the processors will be busy exe-
cuting other parts of the program before they start on L. Therefore they will start executing L
at different times which may vary significantly. (Of course one could force all p processors té
start on L at the same time,‘by enforcing a join (or barrier) operation before L; ‘this would
clearly be very inefficient.) Given‘now the assumption that the p processors will start executing

L at arbitrary times , our constraint is to dispatch a block of consecutive iterations of L to each
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incoming processor, such that all processors terminate at approximatély' the same time. This is a
very desirable property. If L for example is nested inside a seri'al loop L,, then a barrier syn-
chronization must be performed each time L completes (i.e., for each iteration of L,). If the pro-
cessors working on L do not terminate at the same time, a very significant amount of idle pro-

cessor time (overhead) may be accumulated by the time L, completes.

Actually the best possible solution is that which guarantees that all p processors will ter-
minate with at most B units of time difference from each other; where B is the execution time of
the loop body of L. This goal can be achieved if blocks of iterations are assigned to idle proces-

sors following the next principle. An incoming processor P, will dispatch a number of iterations

z considering that the remaining p-1 processors will also be scheduled at this (same) time. In

other words P, should leave enough iterations to keep the remaining p-1 processors busy (in

case they all decide to start simultaneously) while it will be executing its z iterations. If N is

the total number of iterations, this can be easily done as follows:

N
1st processor receives [—I iterations,
p

N - [N/p]

4

2Zud processor receives [ ]iteratiuus,

[N = IV = [N/p1)/p]

3d processor receives | iterations,
p

and so on. Since GSS coalesces loops, there will be a single index I, = 1...V, from which idle
processors will dispatch blocks of iterations. Therefore the assignment of iteration blocks is done

by having each idle processor perform the following operations:
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Figure 7.9. An example of the application of the GSS algorithm
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4
vw = [; T =

N -1
— | I, «—I + 2
p

The range of iterations assigned to that processor is then given by [w,..., w + z-1]. The same

operations can also be described for the ¢-th idle processor as follows:

R,
z, = [—|; Ri+l 4-—R’. -z, (7.32)
p
and the range of iterations for the i-th processor is given by [z; ;, + 1,..., z;], where 2z, = 1

and B, = N.

Time | No. of unused iterations | Next processor to No. of iterations assigned
(0 be scheduled to this processor

t) 100 P, 20
ty 80 P, 16
ts ‘ 64 P, 12
t, 52 P, 11
t, 11 Py 9
te 32 P 7
t, 25 P, 5
tg 20 P, 4
tg 16 P4 4
th . 12 Pl 3
tll . 9 P3 : 2
t12 7 P5 2
t13 5 P4 1
ta 4 P, 1
tis 3 P, 1
t16 2 P3 1
¢, 1 P 1

TOTAL= 100

Table 7.1. The detailed scheduling events of the example of Figure 7.9 ordered by time.
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As an example, consider the case of a DOALL L with N =100 iterations that executes on
five processors. All five processors start on L at different times. Each idle processor is assigned a
block of consecutive iterations using the rule described above. The resulting execution profile is
shown in Figure 7.9. Even though the results presented in this section hold for the general case
where different iterations of the same loop have different execution times, for this exa.nllple we
assume that all 100 iterations have equal execution times. Each line segment in Figure 7.9
represents the execution time of a loop iteration. Thg thick lines represent the execution of previ-
ous (unrelated to L) tasks on processors P,, P, P, and P;. The wider horizontal line seg-
ments mark the time when iteration blocks are actually aispa.tched by idle processors. For exam-
ple, aﬁ time ¢, processor P, dispatches [100/5]=20 iteratioﬁs. The next processor to becqme
available is P, which at time ¢, dispatches [(100-20)/5]=16 iterations. i’rocessor P, will receive
its next assignment at time {g. The detailed assignment of itera.ti§ns to processors for this exam-
ple is shown _in Table 7.1. The events in the table are ordered by virtual time. We observe that
although the five processors started executing L at different times, they all terminated within B
units of time difference from each other. In general if p procéssors are assigned to a (coalesced)

DOALL with N iterations using the above scheme, we have the following.

Lemma 7.1 Each of the last p-1 processors to be scheduled under the GSS algorithm is

assigned exactly one iteration of L.

Proof Let r be the number of remaining iterations before the last p -1 processors are scheduled.
Suppose that the statement of the lemma is not true. Then at least the first (of the last p-1
processors to be scheduled) is assigned 2 or more iterations. Equivalently [r/p] > 2, or
r > p. We distinguish here two cases:

Q&Lr=p+1.
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In this case the (p -1)-th processor receives 2 iterations and there are b—l iterations left. However
each of the remaining p -2 processors will receive exactly one itération (since the assignment is
now computed from [z/p] where z < p-1) and we are thus left with 1 unassigned iteration.
This contradicts the initial hypothesis that the p -1 processors are the last to compute L.
Case2:r > p + 1 |

Using the same reasoning as in Case 1, we conclude that there are at least two unassigned itera-
tions in this case, which again contradicts the initial hypothesis. The statement of the lemma is

therefore true. B

Theorem 7.5 Independently of the initial configuration (start-up time) of the p processors that
are scheduled under GSS, all processors finish executing L within B units of time difference from

each other.

Proof We will prove the theorem for the case where all p processors start executing L simul-
taneously. The proof for the general case is similar. By Lemma 7.1, at least the lla,st. p — 1, and
at most the last p assignments will involve single iterations. Let us consider the latter case. The
are two possible scenarios during the scheduling of L under GSS. In the first case each of the last
p iterations is assigngd to a different processor. Then by virtue of GSS it is easy to see that if
3

;» t; are the termination times for processors p;, p;, ¢, J €[1..p] respectively, we have

e, - ¢t 1 < B.

The second case is when the last p iterations of L are assigned to at most p — 1 different
processors. Let p° denote a processor whose last assignment was an iteration block of size z, and
p1 a processor that is assigned one or more of the last p iterations. Using the same argument as
above we can ;how that all processors that received one of the last p iterations, finish within B

' . 1 . -
units of time apart from each other. It remains to show that any p” and any p~ terminate within
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B units of time from each ‘other. We consider the case for z =2. The general case is similar. We
will prove that for any pz and any pl, |p® - pl | < B.

Case 1- p° > pl, and suppose that p° - pl > B or equivalently, p° - 2B > p1 - B.
Tﬁe last inequality implies that plr was assigned a single iteration before the iteration block of
size é:=2 'was assigned to p”. Clearly this contradicts the basic steps of the GSS algorithm.
Therefore p* — p1 < B.

Qa.s.e_2;.pz < p1 and suppose p1 -~ p° < Bor, p1 — B > p°. But the last inequality can
never be true since p° would have been assigned the last iteration instead of pl.ATherefore

pl ~ p° < B and thus the statement of the theorem is true.

Note that if the p processors start executing L at different times ¢, < ¢, g..Stp, the
theorem still holds true under the following condition:
» ,
1
N > — 3, - %) m
B :

In reality B varies for different iterations and B €{b, b,, ..., b}, where b;, (i=1,..., k)
are all possible values of B. Suppose that B can assume any of its possible values with the same
probability, ie., P[B=b,]=1/k, (i=1, 2,..., k). Then Lemma 7.1 and Theorem 7.5 are still

valid. Undecr the above assumptions we also have the following.

Theorem 7.8 The GSS algorithm obtains the optimal schedule under any initial processor
configuration. Because of this optimal schedule, GSS also uses the minimum possiblé number of

synchronization points.

By synchronization points we mean the number of times processors enter critical regions
(i.e.,' loop indexing). An implementation of GSS can be done so that when ¢ (out of the p) pro-

cessors become simultaneously available at time ¢, the first ¢-1 receive [N, / p] iterations and



194

the g-th processor receives min([(N,(q-1)[N,/p1)/pl, [N, / p)) iterations, where N, is the

number of unassinged iterations at time ¢.

Theorem 7.7 The number of synchronization points required by GSS is p in the best ‘case, and
O(pH[y,) in the worst case, where H, denotes the n-th harmonic number and

H =In(n) + v + 1/2n (vis Euler’s constant).

n

Proof The best case is obvious from the above discussion. In general 1t is ¢lear that the number

of iterations assigned to each processor will be (possibly multiple) occurrences of the integers

e -

in this order. Obviously there will be at least p-1 and at most p assignments of exactly one
iteration. It can also be observed that the number of different assignments of iteration blocks of
size [N/p] — k, (k=1, 2,..., [N/p] — 2) depends on the relative values of p and [N/p] — k.

More.precisely, we can have at most

—P2 | % = 1,2.. [Nple
[[N/p]— kl ( ' i

different assignments of iteration blocks of size [N/p] — k. Therefore the total number of
different assignments and thus the total number & of synchronization points in the worst case is
given by
IN/] p N/} P ‘
oy + X {_,IE Y [_]
i=g 1t j=1 | '

For computing the order of magnitude we can ignore the ceiling and finally have

TN/ﬂp fN/p]l
N DT =N T = g
i=1 ¢ i=1 ®

Therefore the number of synchronization points in the worst case is 0 = O(pH[N/”). u
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The GSS Algorithm
Input An arbitrarily nested loop L, and p processors.
Output The optimal dynamic schedule of L on the p processors. The schedule
is reproducible if the execution time of the loop bodies and the
initial processor configuration (of the p processors) are known.

o Distribute the loops in L wherever possible.

e For each ordered pair of (DOALL, DOSERIAL/DOACR) loops, (where the DOALL is the outer loop)
perform loop interchange. '

e Apply implicit loop coalescing, and let I, be the index of the coalesced iteration space.
e For each index ¢, of the original loop define the index mapping,
ik = fik(Ic)

oIf N, is the number of remaining iterations at time t, then set N, = N and for
each idle processor do.

REPEAT

e Each idle processor (scheduled at time ¢) receives
N,
z = |
p
iterations.
oN, = N, — z
e The range of each original loop index for that processor is given by

iy €U0, o 1) + TN, /9] = 1)

UNTIL (N, = 0)

Figure 7.10. The GSS Algorithm
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Note that if barriers are used, GSS can coalesce all loops serial and parallel. The transfor-
mation as presented in Chapter 5 coalesces together only DOALL loops and leaves serial loops

unchanged. This does not have to be the case in GSS however. Consider for example a DOALL

m

loop with J A, iterations which is the result of coalescing m DOALLs. Suppose now that this

i=1

DOALf_. is nested inside a serial loop with M iterations. GSS works fine on this doubly nested
loop but'it still must access two shared variables (loop indeces) for each assignment. The other
alternative is to implicitly coalesce the serial and parallel loops into a single blocl.c-pavrallcl loop
or BDOALL with MN iterations. To do this a barrier synchronization must be executed every N
iterations. If I, = 1...MN, the number of remaining iterations R, (in 7.32) still assumes 'an ini-
tial value N. The difference here ié that each time /, mod N = 0 a barrier synchrohization Is
executed and R is reinitialized to N. This ha,ppen_s M times before the entire loop completes
execution.

In the last section we discuss a centralized scheduling approach that snpparts prefetching of

iusbructious and daba.

7.7.2. Further Reduction of Synchronization Operations

Another.interesting feature of the GSS algorithm is that it can be tuned to further reduce
the number of synchronization operations that are required during scheduling. As mentioned
above, the last p — 1 allocations performed by GSS, assigned exactly one iteration to each pro-
cessor. The synchronization overhead involved in these p — 1 allocations may still be very high,

especially when p is very large and the loop body is small.

We shall see now how to eliminate the last p — 1 assignments of single iterations of GSS.
In fact we can eliminafe all assignments of iteration blocks of size k (< [N/p]) or less. Let us

discﬁss first the problem of eliminating assignments of single iterations from GSS. We show how
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this can be done by means of an example. Consider the application of GSS to a DOALL with

N =14 iterations on p =4 processors. The assignment of iterations to processors is shown below

in detail:

1st assignment gives [14 / 4]

2nd

3rd

4th

5th

6th

7th

LU L I 1

[10 / 4]
7/ 4]
[5 /4]
[3/ 4]
[2 /4]
[1/4]

I

Il

4 iterations

3 LU L N | I 1

2 H o o ow

The seven successive assignments were done with iteration blocks of size 4, 3, 2, 2, 1, 1, 1. In this

case the single iteration assignments account for almost half of the total assignments. We can

eliminate the single iteration assignments by increasing the block size of the first p — 1 assign-

ments by 1. The successive assignments in that case would be 5, 4, 3, and 2. Therefore the total

" number of scheduling decisions (and thus synchronizationA operations) is reduced by p — 1. This

technique can be applied automatically by setting R, = N +. p in (7.32). Thus the first

assignment will dispatch z; = [(N-+p)/p]iterations. GSS is applied in precisely the same way.

However now it terminates not when the iterations are exhausted, but when for some ¢,

z; < 2. For the above example the application of GSS will generate the following assignments

(R, = [(N+p)/p]).

1st assignment gives [18 / 4]

2nd

3rd

4th

13/ 4)

mrmr g /4]

AN (I

f

5 iterations

X 4 "o oo
3 Hwononon
2 "o oo
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When the ratio /N /p is rather small, GSS(k) for k =2 may result in considerable savings. There
is still a drawback however, since the rule of making all the assignments of iteration blocks of
size two or more is not always accurate. Consider again the previous example but now let

N =15. The assignments generated by GSS(2) will now be:
flo/4l =5 [14/4] =4 J10/4 =3 [7/4 =2 "[6/4 = 2.

Dut 6 + 4 + 3 + 2 + 2 — 16 > N — 16, i.c., thc numbcr of itcrations aasigned by
GSS(2) is more than the iterations of the loop. Fortunately the number of superflows iterations
in such cases cannot be more than one, and the termination problem can be easily corrected. The

solution is given by the following theorem.

Theorem 7.8 Let k be the step in (7.32) such that z, = 2and 2,,, = 1. f R, , = p

then
k
Xz, = N
1 =1
else, if B, ,;, = p ~ 1 then
k-1
1 + EZ‘ = N.
. i=1

Proof: The algorithm starts with a total of N + p iterations, and it must assign a total of N
iterations in blocks of .size ranging from [(N+4p)/p] to 2. Since (for p > 2) at least one itera-
tion block will be of size 2, and all assignments of iteration blocks of size 2 must be performed, it
follows that the last assignment of GSS(2) will involve R, = p + lor R, = p + 2. In
the latter case the last assignment will dispatch 2 iterations and the algorithm will terminate
assigning therelfore a total of N + p — R,,, = N iterations. If B, = p + i, the last

assignment will also dispatch 2 iterations. In that case however the total number of iterations

k-1
assigned wilbe N + p — (p — 1) = N + 1. Thusl + J'z; = N. ®

i=1
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Theorem 7.8 supplies the test for detecting and correcting superflows assignments. The

assignment and termination condition for GSS(2) is now given by

R,
= [ Ba+B -z
p
if (R;,; < p) then
{ stop:

if (R;,; < p) thenz =

(7.33)

1}

Using (7.33) now, the last assignment of GSS(2) for the last example will dispatch a single itera-

tion. The same process can be applied to derive GSS(k) for any 2 < k < [N/p] The best

value of k is machine and application dependent.

DOALL 1 I ='1, N

ENDOALL

(a)

DOSERIAL 1 I = i, K
DOALL 2 J = S(I),

ENDOALL
ENDOSERIAL

(b)

S(I)+B(i)

Figure 7.11. Example of the application of GSS at the program level.
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It should be emphasized that the GSS scheme can be implemeﬁted in hardware, it can be
incorporé.ted in the compiler, or it can be explicitly coded by the 4programmer. In the latter case
the programmer may compute the iteration block size for each assignment, and force the assign-
ment of such blocks by coding the corresponding lodp appropriately. Consider for example the
loop of Figure 7.11(a). If array B holds the block size and S holds the starting iteration for each
assignment, the loop of Figure 7.11(a) can be coded as in Figure 7.11(b). Assuming that self-
scheduling (SS) is implemented in the target machine, the above loop will be executed as if GSS
was supported by the machine (with some additional overhead involved with the manipulation of

the bookkeeping arrays).

7.7.3. Simulation Results

A simulator was implemented to study the performance of self-scheduling (SS) and GSS
(GSS(1)). The simulator was designed to accept program traces generated by Parafrase, and it
can be extended easily to implement other scheduling strategies. The experiments conducted for

this work however, used four representative loops which are shown in Figure 7.12.

7.7.3.1. The Simulator

The simulator input consists of a set of tuples, where each tuple represents‘a single loop or
a block of straight-line code. Each tuple includes information such as number of iterations, exe-
cut;ion time of basic blocks inside the loop, branching frequencies for the branches oi; each condi-
tional statement inside a loop, dependence information, type of loop ete. In the presence of con-
ditional statements the conditions are ‘“‘evaluated’ separately for each iteration of the loop and
the appropriate branch is selected. The user supplies the expected frequency with which each
branch is selected. Otherwise the simulator considers each branch equally probable. For this pur-

pose a random number generator is used with a period of 2 _ 1 [Knut81], [Koba81|. Random
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numbers are generated using .uniform distribution and are normalized (in [0..1]). For each condi-
tional statement in the loop, the interval [0..1] is partitioned into a number of subintervals equal
to the number of branches in that statement. The size of each subinterval is proportional to the
expected frequency of that branch. For each iteration of the loop, a random number is generated
and the subinterval to which it belongs is determined. Then the branch corresponding to that

subinterval is taken.

The execution of arbitrary loops on systems with 2 to 4096 processors can be simulated.
Processors can start on a loop at random times. The simulator takes also into account overhead
incurred with operations on shared variables. For our purposes shared variables are considered to
be only loop indeces. Although the current veréion of the simulator assumes a fixed execution
time for each BAS, it can be easily extended to operate on a program trace and take .into
account random delays (due to network contention in shared memory systems). For each
memory access, a random delay may be computed to fall within given upper and lower bounds.
These bounds may be readjusted each time the number of processors (and thus the number of

stages of the network) grows.

7.7.3.2. Experiments

The four loops L1, L2, L3, and L4 of Figure 7.12 were used to conduct the experimen‘ts for
this work. These loops are representative of those found in production numerical software. Serial
and parallel loops' are specified by the programmer, or are created by a restructuring compiler
(e.g., Parafrase). The loops of Figure 7.12 cover most cases since they include loops that are i) all
parallel and perfectly nested (L1), ii) hybrid and perfectly nested (L 3), iii) all parallel and non-
perfectly nested (L2), iv) hybrid nonperfectly nested (L4), v) and finally one-way (L2), and
mull;.i-way nested (L4). The arrows in L4 indicate flow dependences between adjacent loops. The

numbers enclosed in angle brackets give the execution times of BASs in the corresponding
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DOALL 1 Il =

1, 100

DOALL 2 12 =1, 50

DOALL 3 I3 =1, 4
L1: {20}
[Lf C then {10}]

ENDOALL

ENDOALL

ENDOALL

(a)

DOALL 1 I1 =1, 50
{5}
[if C then {10}]
DOALL 2 I2 =1, 40

{5}
DOALL 3 I3 =1, 4
L2: {10}
[1f C then {20}]
ENDOALL
ENDOALL
ENDOALL

(b)

DOSERIAL 1 I1 = 1, 40
DOALL 2 I2 = 1, 500

L3: {100}
[if C then {50}]

ENDOALL

ENDOSERIAL

(c)

CONTINUED (Figure 7.12)
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(CONTINUED)

DOSERIAL 1 Il

1, 50

DOALL 2 I2 = 1, 10
DOALL 3 I3 =1, 10
DOALL 4 I4 =1, 4
{10}
[if C then {50}]
ENDOALL
ENDOALL
ENDOALL

|
v
DOALL 5 IS5 = 1, 100
L4: ‘ {50} ‘
DOALL 6 I6 = 1, 5
{100}
[Lf C then {30}] .

ENDOALL
ENDOALL

|
v

DOALL 7 17 =
DOALL 8 I8
{30}
ENDOALL
ENDOALL

1, 20
=1, 4

ENDOSERIAL

Q)

Figure 7.12. Loops L1, L2, L3, and L4 used for the experiments.
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positions.

Two sets of experiments were conducted, E, and E,. The first set used the four loops of
Figure 7.12 ignoring the conditional st;ztements which are enclosed in square brackets. Therefore
for E, all iterations of a particular loop had equal execution times. For £, the conditional state-
ments were taken into account as well. Thus in E, different iterations of a given loop had

different execution times. The next step will be to consider loops with multiple and nested condi-

tionals which were not included in these experiments.

Earlier in this chapter we discussed extensively the various types of overhead that incur
during dynamic scheduling. One type of overhead is the time spent accessing and operating on a
shared variable; in our case loop indeces. This time is not constant in practice and it depends on
several factors such as network traffic, number of simultaneous requests for a particular index
and so on. For our experiments we chose this overhead to be constant and independent of the
loop size or the number of processors. Since the purpose of our experiments is to study the rela-
tive (rather than the absolute) pérformance of GSS(1) and SS, the above assumption is r;ot very
restricting. For each scheduling decision the overhead is assumed to be a constant which
represents, for instance, the number of clock cycles spent operating on a shared variable. Let o
denote the overhead constant. We conducted the simulations for a best case (ob); and a ‘“worst”
case (o,) overhead. For the best case o, =2 since at least two clock cycles are needed to obera‘t;e
on a shared variable. For the worst case we chose o, = 10. In real parailel processor machines
0, and o, can be much greater, but we are more interested in the difference o, — o, rather
than in their absolute values. E’; and E': denote the set of experiments that ignored if state-

ments for o, =2 and o, = 10 respectively. Similarly, E; and E';’ denote the set of experiments

using L1, L2, L3, and L4 with if statements, for o, =2 and o, = 10 respectively.
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The plots of Figures 7.13 and 7.14 show the speedup of the four loops L1 — L4 for
different numbers of processors, for E, (E: and E'lu) There are four curves in each plot. Solid
lines plot the speedup curves for GSS(1), and dashed lines the speedup curves for SS. More
specifically the plot of Figure 7.13(a) corresponds to loop L1. The upper and lower solid lines are
the speedup curves resulting from the schedule of L1 under GSS(1) and for. 0, =2, 0, =10
respectively. The upper and lower dashed lines are the sp.eedup curves of L1 under SS for
0, =-— 2, and o, =10. The plot of Figure 7.13(b) shows the performance ofAGSS.(l) and SS for L2
in E,. Similarly Figures 7.14(a) and 7.14(b) correspond to L3 and L4 for E,. In all plots the
upper solid aﬁd dashed lines correspond to GSS(1) and SS for o, =2 respectively. The lower solid

and dashed lines correspond to GSS(1) and SS for o, =10.

In the same way Figures 7.15 and 7.16 correspond to L1, L2, and L3, L4 respectively, for
the E, experiments, i.e., with the if statements taken into account. Therefore in each plot we
can see the relative performance of GSS(1), o, =2 versus GSS(1), o, =10; SS, o, =2 versus SS,

o, =10; GSS(1), o; =2 versus S8, o, =2; ‘a,nd GSS(1) o, = 10 versus SS, o, =10, for £, and.E,,
Except in the case of L3 where both GSS(1) and SS perform almost identical, we observe
that in all other cases GSS(1) is better than SS by almost a factor of two in E| and E,. It is also
clear from the pléts that the difference in performance between GSS(1) and SS grows as the over-
head grows. As it should be expected GSS(1) is less sensitive to scﬁeduling overhead than SS.
The plots in Figures 7.17, 7.18, 7.19, and 7.20 correspond to Figures 7.13, 7.14, 7.15, and
7.16 respectively, and illustrate the speedup ratio GSS(1)/SS for each case for E, and E,. The
horizontal axis éhows the log of the number of processors. In each plot there are.two curves. The
upper curve plots the spgedup ratio GSS/SS for 0, =2. The lower curve plots the same ratio for
0,=10. The common chara(';teristic of all ratio plots is that as the number of processors grows

very large, the performance difference between GSS and SS becomes less significant. The large
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Figure 7.13. GSS and SS speedups for (a) L1, and (b) L2 without ifs.
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: Overhead=2 Overhead=10
Processors GSS SS GSS SS
2 2.00 1.54 2.00 " 0.80
4 4.00 3.08 4.00 1.60
8 8.00 6.15 7.98 3.20
16 15.99 12.31 15.94 6.40
32 31.96 24.62 31.80 12.80
63 63.76 49.15 63.19 25.56
128 12/.90 Q97 99 125 NN AN AR
256 251.89 194.74 246.91 101.27
512 496.28 384.62 481.93 200.00
1024 975.61 769.23 909.09 400.00
2048 1923.08 | 1538.46 | 1666.67 800.00
4096 3773.58 | 3076.92 | 3076.92- | 1600.00

Table 7.2. GSS(1) and SS speedup values for L1 without i fs.

QOverhead=2 Overhead=10

Processors GSS - S8 GSS S8
2 2.00 1.61 1.99 0.91
4 4.00 3.23 4.00 1.82
8 7.99 6.45 7.99 3.64
16 15.98 12.90 15.95 7.27
32 31.94 25.79 31.82 14.54
63 63.75 51.52 63.30 29.04
128 127.03 102.83 125.50 58.03
256 246.93 204.80 245.96 115.31
512 483.84 405.95 480.12 229.05
1024 905.00 789.02 892.07 450.05
2048 1657.38 1564.16 1614.61 878.12
4096 3289.08 | 2940.82 | 2940.82 1723.93

Table 7.3. GSS(1) and SS speedup values for L1 with ifs.
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Overhead=2 Overhead=10

Processors GSS SS __GSS SS
2 2.00 1.20 1.99 0.46
4 3.99 2.40 3.97 0.92
8 - 7.97 4.80° 7.89 1.84
16 15.91 9.59 15.59 3.69
32 31.67 19.16 30.59 7.37
63 62.85 38.26 59.57 14.71
128 123.63 "76.22 112.81 29.35
256 242 .61 151.68 209.88 58.23
512 465.21 | 299.83 376.04 114.97
1024 884.80 582.26 644.64 | 228.48
2048 1702.83 1128.13 1061.76 | 451.25
4096 2911.29 1880.21 1805.00 | 752.08

Table 7.4. GSS(1) and SS speedup values for L2 without i fs.

Overhead=2 Overhead=10

Processors GSS SS GSS SS
2 2.00 1.48 - 2.00 0.72
4 4.00 2.96 3.98 1.45
8 7.99 5.91 7.92 2.89
16 15.98 11.80 15.76 5.78
32 31.94 23.57 30.42 11.54
63 . 63.75 46.90 61.14 22.91
128 127.03 93.42 115.78 45.88
256 246.93 184.68 211.29 80.91
512 483.84 360.23 366.02 178.04
1024 905.00 688.39 681.48 344.89
2048 1657.38 | 1265.04 | 1182.62 656.85
4096 3289.08 | 2157.59 1895.78 1099.68

Table 7.5. GSS(1) and SS speedup values for L2 with 1 fs.
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Overhead=2 Overhead=10
Processors GSS SS GSS SS

2 2.00 1.92 1.99 1.67
4 3.99 3.85 3.95 3.33
8 7.91 7.63 |- 7.80 6.61
16 15.54 15.02 15.20 12.99
32 30.90 30.01 29.59 25.91
63 61.12 59.95 56.18 51.55
128 120.77 110.62 106.38 102.04
256 238.10 | 238.10 | 200.00 | 200.00
512 471.70 | 471.70 | 384.62 384.62
1024 471.70 | 471,70 | 384.62 | 384.02
2048 471.70 | 471.70 | 384.62 384.62
4096 471.10 | 471.70 | 384.62 | 384.62

Table 7.6. GSS(1) and SS speedup values for L3 without i fs.

Overhead=2 Overhead=10 |
m&%ﬂg;% s

2 1.99 1.94 1.99 1.72

4 3.96 3.86 3.95 3.44

. 8 7.85 7.69 7.79 6.83
16 15.51 15.22 15,29 13.52
32 29.71 29.75 29.13 26.42
63 56.48 57.38 54.60 50.77
128 104.52 108.56 99.51 95.27
256 201.79 | 201.79 | 178.73 | 178.73
512 400.69 | 400.69 | 347.26 | 347.26
1024 400.08 400.08 | 346.74 | 346.74
2048 400.61 400.61 | 347.19 | 347.19
4096 399.96 | 399.96 | 346.63 | 346.63

Table 7.7. GSS(1) and SS speedup values for L3 with i fs.
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Overhead=2 Overhead=10
Processors GSS SS GSS SS

2 1.99 1.79 1.97 1.25

4 3.97 3.56 3.89 2.50

8 7.89 7.12 7.60 4.99

16 15.50 14.07 14.62 9.87

32 30.34 | 27.68 27.53 19.13

63 56.85 52.75 48.35 36.12
128 110.83 95.34 88.99 65.32 -

256 186.06 155.05 136.44 105.86

512 289.62 | 225.74 | 204.67 153.50

1024 388.61 | 369.88 | 266.96 | 227.41

2048 388.61 369.88 266.96 227.41

4096 388.61 369.88 266.96 227.41

Table 7.8. GSS(1) and SS speedup values for L4 without i fs.

Overhead=—2 Overhead=10
'| Processors GSS SS GSS SS

2 1.98 1.83 1.97 1.37
4 3.95 3.65 3.90 2.72
8 7.83 7.26 7.64 5.42

16 15.28 14.36 14.69 10.71
32 29.15 27.91 27.53 20.73
63 53.78 52.91 | 48.92 39.01
128 97.82 97.76 85.52 71.25
256 162.46 159.98 133.83 111.46
512 270.09 | 229.12 | 207.54 | 167.01
1024 331.28 | 320.46 | 254.33 | 225.24
2048 331.72 | 321.01 254.67 | 225.63
4096 331.12 | 320.54 | 254.22 | 225.29

Table 7.9. GSS(1) and SS speedup values for L4 with i fs.

N -

perturbations in the ratio curves can be explained by the fact that GSS is “logarithmically sensi-

[ -

: ™ o
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tive’’ while SS is “linearly sensitive’’ to scheduling overhead. Thus the performance of SS tends
to saturate much earlier (as the number of processors grows) than that of GSS. As the overhead

grows the improvement offered by GSS becomes more significant.

Finally Tables 7.2 - 7.9 give the detailed speedup values for the four loops of Figure 7.12

and for £ and E,.

7.8. Hardware Synchronization Support for Dynamic Scheduling

The type of synchronization that is of primary importance to this work is barrier synchron-
ization. As explained in Chapter 1 a barrier can be viewed as a program defined variable that is
used as a counter. In fact many implementations of barrier synchronization use this approach
[TaPe86]. Any synchronization prirﬁitive can be used to implement barrier synchronization. This
approach however is costly especially when used in the context of GSS or other dynamic schedul-

ing schemes.

Figure 7.21. An example of hybrid loop with barriers.

e
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In this section we propose a different implementation of barriers through the use of special
bit addressable registers. Instead of full words we use single bit barriers that are set (1), or
cleared (0). For example in the GSS algorithm, bit. barriers can be associated with particular
loops or can be inserted between lodps. When a barrier associated with a loop is set, no incoming
processor is allowed to dispatch new iteratiqns. Consider for example the loop of Figure 7.21 gnd
suppose that L, is serial and the other two loops are parallel. For each iteration of L, all itera-
tions of L, and L, must be completed before the next iteration of L, can be fired. This sequenc-
ing can be achieved by associating a barrier BR, with L,. The first processor to dispatch the
next iteration of L, will set BR, tq 1. Any incoming processors will not be allowed to proceed
with L, until all iterations of L, are completed a.nc} BR, is cleared. We explain below how: this
can be done in hardware, but before we do so let us explain the disadvantages with barriers as
they are implemented through the use of P & V primitives, the Fetch & Add synchronization

primitives [GGKMS83], or the Cedar synchronization instructions [ZhPe83].

A barrier is obviously a shared’variable (counter). and thus a critical region. When several
processors try to update a barrier simultaneously, all but one \.Nill be denied access to the barrier
and they will be forced into busy waiting. The busy wait generates several unnecessary requests
which, in the case of shared memory machines, clog up the .netw'érk. 'phis .pheﬁomenon is known
as the “hot-spot” [PfNo85]. Alternatively, instéad of keei)ing the proce;sors busy waiting we
could suspend them for a fixed amount of time and let thgm retry at a later moment. This can
- be a very inefficient solution since the entire program may wait on a single processor that has
been suspended. A third more efficient solution would be to assign the processors (that are
blocked on a barrier) to a new task. When that task is completed the corresponding processors
will attempt to update the barrier with a much higher probability of succeeding this time. This

approach would need sophisticated compile-time analysis of the program, and we plan to further
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study this scheme in the future.

Here we propose another solution to the barrier synchronization problem that avoids both,
hot-spots (since there is no busy waiting), and unnecessary processor latencies. The notion of
barriers as shared variables is in effect eliminated. We discuss this scheme in the context of loop
barriers although the solution is general. A detailed description of this approach is given in
[Poly86]. In our case a barrier is not a shared variable but instead a single bit register that is
writable (set) by a single processor which is determined dynamically during execution. The bit -
barriers are also cleared automatically by the special hardware without the intervention of the
processors, or the operating system. The hardware module that implements barrier synchroniza-
tion is shown in Figure 7.22. Each barrier in an active task is associated with such a hardware

unit. Therefore at most p such units are needed in a machine with p processors. The module

S
Enable All O’s BR.
Switch Condition
Barrier

Figure 7.22. The hardware module for the implementation of barrier synchronization.

L129
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consists of a bit addressable regist.er R, an enable swz't(.:h, a box that checks for the all 0’s con-
dition in log ,p §ime, and a one-bit barrier register BR. The R register is p bits wide and the
i-th bit R(7), can be set/cleared only by the i-th processor in the machine (i = 1, 2,..., p).
(This can be done in software by associating an ¢d number with each processor, or by directly
connecting the i-th bit of each R register to the i-th processor.) The user program can access
only the BR registers and the remaining configuration is transparent to the user. BR registers
are associated with loop indeces and accessing a barrier is now part of accessing a loop index (an
operation that must be done anyway). Any conflicts that may occur now will occur during
accesses to loop indeces but not to barrier variables. Therefore all the overhead associated with

the explicit manipulation of software defined barriers is eliminated in this case.

Let us see how this works in the context of fork/join operations, or equivalently, in the con-
text of parallel loops. Consider the loop of Figure 7.21 where L,, L, are serial and L, is a paral-
lel loop. Initially BR, is cleared and the first idle processor to dispatch the first iteration of L,
sets BR, to 1. (Any other processors that will attempt to dispatch other itera;ions of L, will be
blocked until BR, is cleared 'by the-hardware.) Loop L, will be executed by the same processor
but several processors may execute L,. Each processor i that will dispatch part of L, sets the
R(¢) bit of the corresponding register to 1. The processor that dispatches the iast iteration(s) of
L, will also enable the switch in the module (Figure 7.22). When a processor finishes executing
on L, it will reset its corresponding bit in R to 0. (Note that the same bit in an R register may
‘be set/cleared sever.a.l times if the same processor dispatches several d‘ifferent processes of the
same task.) From the time the enable switch is set on (by the last processor) the module will
" start testing for the all 0’s conditio;l. This can be done in a fan-in fashion and can also be pipe-
lined so ;;hat the condition is tésted every clock cycle thereafter. When the all 0’s condition

becomes true the BR register is cleared automatically. If the last- processor to work on the task
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executes for more than log p clock cycles, then this barrier synchronization mechanism involves
zero overhead. The implementation of fork/join operations is straightforward. If we treat a set of
independent tasks as different iterations of a parallel loop, the case of high level spreading is also

{

identical.

Note that this hardware module can be used to implement barriers in a multiprogramming
environment where tasks from different programs may be active simultaneously. If barrier
modules are identified by id numbers, then each processor may be multiplexed between diﬁ'er;ant
processes and update the corresponding bits in the I¢ registers in the ¢orreet order. During con-
text switching the contents of barrier modules can be stored as part of the process state. In the
case of the Cedar machine such ba_rrier modules may be designed to be operated by the proces-
sors of a particular cluster. Separate clusters will thus have different sets of barrier modules. A
processor interconnection (e.g. a bus) may allow processors to update barriers outside their clus-
ter without going through the memory network. This can be useful when tasks are spread across

many processor clusters.

This hardware implementation of barriers avoids the probiems of busy waiting, synchron-
ized accesses to critical regions, and hot-spots. In addition it eliminates the responsibility of the
processors to explicitly handle barrier variables. This scheme can be used in cénjunction with
loop coalescing for a véry efﬁcie;lt implementation of the GSS algorithm. The mod
(re_mainder) function c;cl.n be used to set loop barriers in the general case as explained in the pre-
vious section. For instance, for the loop of Figure 7.8 and the example of Section 7.7.1, the bar-

rier associated with I, is set each time I, mod (40) = 0.

Another instance where the cost of extra hardware may be worthwhile is the case of syn-

chronization for DOACR loops. Such loops are frequent in numerical programs [Cytr84], and con-

ventional synchronization instructions may be very costly, especially when the loop body is
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small. During execution of a DOACR loop, each iteration i passes through a ‘“‘synchronization
point’’ which is a statement that assigns, for example, a variable used by iteration ¢-1. Iteration
i+l may start execution only after iteration ¢ has passed through its synchronization point. This
(simple and regular) type of synchronization can be implemented in a straightforward manner
through the use of a set of registers that act as a distributed bulletin board. Each processor ¢
may have its own X, register. All X; registers may be written at once by any processor (broad-
cast operation), but each X; may be read only by the i-th processor. All p registers contain the
same value at any given moment during the execution of a DOACR. When a processor i is
assigned the j-th iteration of a DOACR loop, it reads its register and the execution of that itera-
tion proceeds if and only if X; = j. When Aa, processor executing iteration j passes through its
synchronization point, it broadcasts the value 7+ to all X registers. Given the fact that v;'ilen
processor ¢ executing iteration j must find the value j posted in X; before it can post its own
value (), this scheme works nicely for simple loops. The drawbacks of such an implementa-
tion however, are that it can not support the parallel execution of nested DOACRs or the con-

current execution of different DOACR loops.

7.9. Run-Time Scheduling Using a Global Control Unit

During self-scheduling the binding of processes to processors is performed dynamica.ily. Pre-
fetching of instructions to processors is therefore impossible. There is an exception in the case of
parallel loops where processors executing part of a loop may be forced to check whether there are
aﬁy iterations left before they dispatch anotherl task. Prefetching of instructions and data to
processors is meaningful only if the prefetching is performed while the processor is busy execut-
ing some other task. In order to use instruction @nd data prefetching consistently with each pro-
cessor in the system, the scheduling should be performed by a central unit. In addition the next

sched\uling decision for a particular processor must be done before that processor becomes idle.
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In this section we use the Weighted Priority heuristic algorithrﬂ from the previous chapter
and a global control unit to perform run-time scheduling with littie overhead. The scheme is sim-
ple: A global control unit is used to implement the WP heuristic at run-time. The weights may
be constants or vary dynamically. The entire program graph is stored in the GCU which is then
responsible for binding specific tasks to specific processors. The difference between applying the
WP heuristic at run-time instead of at compile-time, is that at run-time we can obtain a more
accurate estimate of the execution time and the processur demands for caoh task. At run-time we

can also tolerato processor failures.

In the WP heuristic the program graph is transformed into a layered graph, with each layer
being a set of independent tasks. A barrier synchronization (that involves all processors in the
system) will have to be executed between successive layers of tasks. The tasks in each layer are
grouped into subsets such that the total number of processors requested by the tasks of each sub-
set slightly exceeds p, the total number of processors. Then processors are assigned to cach sub-
sct so that each task receives a number of processors that is proportional to its size and its pro-
cessor request. This scheme tends to equalize the execution time for all processors in a subset,
and therefore in a layer. Since the scheduling is performed at run-time but in a rather deter-
ministic way, scheduling overhead can be almost negligible. This is because the binding of the
tasks of a given subset (or layer) tu processors io dosided while the processors are executing the
tasks of the previous layer. In this way the instructions of the task a given processor will execute
next, and its read-only data, can be prefetched before that processor completes its previous
assignment. In the best case, scheduling overhead will only affect the execution of the tasks in

the first layer of the program graph.

The penalty we pay in the centralized case is some idle processor time that may occur

between the execution of different layers. This idle time depends solely on the structure of the
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program graph and the characteristics of the code. Therefore a realistic comparison between the
run-time WP scheme and the self-scheduling algorithm of the previous section can only be done
on a real machine that suppofts both scheduling mechanisms. Since phenomena such as processor
racing, network contention and overhead associated \')vith accessing shared variables cannot be
modeled accurately, simglation can be used for ‘o(nly approximate comparison of the two

n‘;ethods.
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CHAPTER 8

SUBSCRIPT BLOCKING: A TRANSFORMATION FOR
PARALLELIZING LOOPS WITH SUBSCRIPTED SUBSCRIPTS

There are two equally important phases in the problem of parallel processing of a given
program. During the first phase the parallelism must be specified. The second phase attempts to
find the best way of utilizing this parallelism on a particular machine. Several optimal and
approximation algorithms that deal with this problem were presented in the previous chapters.
Obviously neither step can be effective on its own. A given program can be scheduled on a paral-
lel ‘processor machine, given the parallel constructs in the program have been explicitly specified

by the programmer, or extracted by the compiler.

There are many cases however where pafallelism can not be found by the user nor by the
compiler. We can distinguish these cases into feasible and non-feasible. Feasible cases usually
cover problems that are very complex, and parallelism at low levels is difficult to specify of
uncover. The non-feasible cases are those in which parallelism depends directly on the input and
computed data, or a particular data structure makes it impossible for the compiler to extract
parallelism. In such cases parallelism can only be detected and utilized at run-time. There are
two possibilities for detecting and exploiting parallelism that occurs during program execution.
We cun either use

e the compiler, or
e synchronization instructions.

Using the compiler means having the compiler generate appropriate code that will detect and
exploit parallelism when it occurs. The second alternative would be to force the task execute in

parallel by synchronizing all its components. This however may involve high overhead since syn-
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A(f(1)) =

(2)

1, N

B(1) = A(£(1))

(o)
1, N
A(f(1)) =
= A(£(1))
_ ()
1, .N

A(£(1)) = A(g(2))

()
— i =1, N
j=1N
A(£(1)) =
= A(g(3))
I T (e)

Figure 8.1. Examples of loops with subscripted suhseripts
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chronization is used even where it is not needed [ZhYL83].

In this chapter we consider a particular case of parallelism detection and propose a compiler
transformation that solves this problem. The gain in speedup due to the resulting parallelism is
also derived analytically. The next section defines the problem and discusses its different forms

and use in real programs.

8.1. The Problem of Subscripted Subscripts and its Application

In Fortran programs the term subscripted subscript refers to a variable reference of the
form A(f(7)) where A is the identifier of an array and its subscript f(7) is itself a vector. When
statements with subscripted subscripts appear in scalar code there is nothing we can do at
compile-time but to assume a data, dependence chain, that involves all subscripted references of
the same variable. Thié conservative assﬁmption would disallow potential high or low level
spreading. Therefore it would result in a loss of speedup, but unless we have a large amount of
scalar code the potential loss in speedup should not be significant. A similar assumption is used
when subscripted subscripts appear inside loops. In such cases we assume that cross-{teration
dependences of unit distance exist. This in effect serializes the corresponding loop. In such cases

however the potential loss in speedup that results by serializing a loop could be very significant.

Examples of loops with subscripted subscripts are shown in Figure 81. In each case A
denotes an array identifier and f and g subscript vectors. As mentioned in Chapter 1, two of the
most vital transformations in Parafrase are the do-to-doall and do-to-doacross transformations
that recognize and mark parallel loops. To do that, Parafrase performs a sophisticated depen- .
dence checking by analyzing the subscripts of array references. Dependences in scalar code are
straightforward to detect. When we have array references with complicated subscripts however,

(that usually occur inside loops) a detailed analysis of the subscripts must be performed to

v
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decide whether or not a dependence of some kind exists [Bane79]). For example when two refer-
ences to the same array appear inside a loop, a Diophantine 4equation (that involves the subscript
expressions in the two.references) must be solved to determine whether a dependence exists
)[Bane79]. Depending on the complexity of the subscript expressions, the Diophantine equation
might be trivial to solve, it might be nontrivial but we could still solve it and find the exact
dependences, or it might be impossible to solve. For the latter case tests exist that, although do
.not compute dependences, can give us an affirmative or negative answer as to whether a depen-
dence exists. Finally there are instances (e.g. nonlinear subscript expressions) for whiqh nothing
can be done due to intractable Diophantine equations. Loops that involve such cases are of

course serialized.

With loops that involve subscripted subscripts, as are the examples of Figure 8.1, the ;bove
. approach cannot be applied obviously. Only in the case where the subscript f(¢), for'-exam;;le, is
. specified by a:closed form expression a Diophantine equation can be constructed. In real cases
however f () is simply a vector of integer values that is input to the program or computed as
. part of the program. In such cases dependence analysis is impossible and all loops of thivs"‘type
are serialized. None of the existing commercial or experimental optimizing compilers parallelize

general loops with subscripted subscripts.

Subscripted subscripts are heavily used in numerical programs that solve sparse systems,
and in general manipulate sparse matrices, as well as in Fortran programs that implement com-
binatorial problems [Kuck83]. In sparse matrices only a fraction of the matrix elements are
non-zero numbers. Storing the entire matrix would then be wasteful. Worse yet, if the dimen-
sion of the matrix is large the physical memory of the system might not be enough to store the
entire matrix. For a 1K X1K matrix for éxample 8 Mbytes of physical memory would be needed

if double precision is used. Alternatively, using secondary storage to store the matrix and page
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it during execution would result in a significant slowdown in speed. The common apprda.ch used
for storing sparse matrices is to cbmpact the matrix and store oﬂly the non-zero )elements. This
is usually done by using three vectors, A, B, and C. Vector A holds the non-zero elements of a
sparse matrix M, and B and C hold the row and column subscripts for each element in A. Two
vectors are also used in some cases. A widely-used numerical package that solves systems of
sparse equations is HARWELL. The majority of subroutines in this package contain loops with
subscripted subscripts of the type shown in Figure 8.1'. During operations with sparse matrices
many zero elements bgcome non-zero. This is commc-mly referred to as fill-in. Since the pattern
of fill-in is unpredicatable an expandable data structure should be used to store new elements.

The most popular data structures in such cases are linked lists, that expand and shrink easily.

Linked lists are implemented in Fortran by means of two unbounded vectors.

In graph-theoretic problems a similar approach is used to store graphs. A graph can be
represented by its adjacency matrix. The adjacency matrix is sparse if the number of edges is

very small compared to the number of vertices. Large combinatorial problems are often coded in

1, N
s;: f(1) =
s AE() =

Figure 8.2. Example of definition-use of f(i).
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Fortran for efficiency reasons, and their sparse matrices are store in a similar way. . Parallelizing
loops with subscripted subscripts would amount to 5 significant speedup of execution time in
many cases. In this chapter we present a compiler transformation that parallelizes loops with
subscripted subscripts. As shown later some overhead is introduced during the parallelization of

such loops. This overhead may be nontrivial for certain loops.

The sﬁbscript blocking transformation can be implemented in the compiler internally, or as
a coxﬁpiler transformation. It works by examining the values of the subscript vector, (f () in
Figure 8.1 for example) and extracting the parallel iterations repeatedly. In general we distin-
guish two ‘cases: ‘1) the subscript vector f(¢) is known at compile-time, and 2) f(7) is computed
at run-time. When f(7) is known at compile-time subscript-blocking can be implicitly applied to
tr?,nsform the corresponding Ioop(s) into DOALL(s) with zero overhead. This is because, as
shown later, the part of the transformation that checks the pattern of f(¢) is déne by the com-
pviler and it ‘.ié “charged” to compilation time. For the second case where f(7) is computed and
it is not known at compilé-time the checking of f(¢) must be done at run-time and that intro-
duces somie overhéad. If the original loop is large enough, this overhead is amortized and is
negligible;, compared to the benefits of the extracted parallelism. An example of subscript block-
ing that can be implicitly applied in the compiler is when a sparse matrix is known and 7 (%)
holds for instance, the row indeces of its non-zero elements. In this case the values of [ (%) are
" available to the qompiler which can parallelize a loop in which f(i) appears  as a subscript,
without run-time overhead. On the other hand if f(i) is associated with fill-in elements which

~ are generated during program execution, the values of the subscript vector are available only at

run-time.

Before we describe subscript blocking in detail, let us consider the dependence relation

between the definition of a subscript vector f(¢) and .its use in an array reference of the form
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A(f(7)). Consider for example the loop of Figure 8.2. If f(¢) is corﬂputed outside the loop that
uses or assign; A(f(2)), subscript-blocking always works. If f(¢) is computed inside the loop as
shown in Figure 8.2, a dependence always exists from s, to s,. If there is no backward depen-.
dence from s, to s, then s; and s, belong to different 7blocks and loop distribution can thus be
applied to separate the definition of f(7) in s, and its use in s,. If there is a hypothetical depen-
dence from s, to s, then both statements are involved in a dependence cycle and cannot be
separated. This however does not happen in practice. For instance, in all HARWELL subrou-
tines that we exammed, the definitions and uses of vector subscripts could always be distributed.
Therefore, the definitions of vector subscripts are of no concern to the following material and

examples.

8.2. The Transformation

As explained in Chapter 1, a dependence between two statements is repi'esented by an arc
and enforces an 'execution order. A statement from which a dependence originates is called a
sourc;e and a statement to which a dependence arc points is called a sink. A set of successive
iterations of a loop is said to form a domain. A sink-domain is a domain in which one or more
statements are sinks. A domain that does not contain any sinks is called a source-domaz'h. It is

obvious that all source domains of a loop can be executed in parallel.

Let us consider for example the case of Figure 8.‘1a, which involves output dependences. In
this case an output dependence may exist from A(f(¢)) =A(f (7)) for ¢ >j. If the loop involves
only a single statement, we may execute it automatically as a vector statement. If we assume -
that memory writes are always perforqu in the order they are issued then the,loo;; can be
forced to execute as a vector statement without violating any dependences; only the mos_t recent

assignment for each element of A will be valid. The above assumption may be valid for SEA
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V(1:N) 0:;
S(1) =

j=1;

1;

DO i=1, N .
if V(£(1))=0 then V(f(i))=1
else j = j+1:

S(j) = 1i:
ENDO :

DO k=1, j
DOALL 1=S(k), S(k+1)-1

A(f(1)) =

ENDOALL
ENDO

/

Figure 8.3. The subscript blocking transformation for the loop of Figure 8.1a.

systems but not necessarily for MES or MEA machines. In addition the loop of Figure 1a may
be parallel but not a vector loop. In gé\ﬁeral even though the loop of Figuré la can be vectorized

for SEA machines, it should be executed serially on MES machines.

To parallelized loops of this type we appl;y the subscript blocking transformation which
works as follows. Before we enter the loop where the vector subscript f (i) is used, we examine
the values of f(¢) and construct the “free-runs’ or source domains. In oi:her words we find sub-
éets of successive iteratiogs none of which contains a statement which is a dependence sink. That
is, the statements of a source domain are not involved in a dependence or they are sources (origi-
nators) of output dependences. To perform the construction of source domains we use twd auxi-
liary vectors V and S. V is a binary vector and S a vect.or with integer elements. Vector V is

used to detect dependences (conflicts) as explained below and S holds the indeces of the
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subscript-vector f(¢) that correspond to loop iterations that are involved in a conflict.

Specifically after f(¢) is generated, its elements are read and the corresponding elements of
the bit-vector V are set to 1. For each f(¢), if V(f(§))=O0, it is then set V(f(i))=1. If it is
found that V(f(¢))=1, this indicates a previous occurrence of the value f(¢) for another j >1.
Since this implies'a. dependence from some f(j) to f(i), j <4, index ¢ is saved in S(k). All
iterations up to S(k)-1 can therefore be executed in parallel. This procedure is performed by an
extra loop that is created by the compiler before the source loop. The transformed loop of the
example in Figure 8.1a is shown in Figure 8.3. Obviously the size ol vectors f, V and 5 1s equal
to the size of array A. As shown in Figure 8.3 the original serial loop is transformed into a
series of DOALL loops. If fis the _number of times a conflict was detected, then we have a total

of #+1 DOALLs created out of the original loop.

Let us consider the example of Figure 8.4. Only output dependences are considered. The
values of the subscript-vector f(¢) are given in the top vector of Figure 8.4. After the first 3
iterations of the first loop of Figure 8.3 a!re executed, the 4-th, 5-th and 7-th bits of V will be
set. During the next iteration for =4, a conflict occurs since V(f(4)) #0. The current index
(i =4) is then stored in the next (2nd) empty position of S. The same process is repeated until
¢ =10. The final configuration of vectors V and S is shown in Figure 8.4. The ;st'erisks next to
v indicate positions where conflicts (output dependences) occulrred. The original loop is then
transformed into a series of DOALLs by the second loop of Figure 8.3. In this case 4 DOALLSs
were created each corresponding to one of the four démains {1-3}, {4-5}, {6-9}, {10-11} of the ori-

ginal loop respectively.

In the above example we can observe that the creation of DOALLs was performed in a con-
servative manner. That is, a dependence was assumed whenever a conflict occurred, without

taking into account the possibility of eliminated dependences due to thc completion of earlier
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fG: {75473 |afl2]1]8]2

11 1] 1
21 ]* 2| 4
3|1 3|6
41| * 4|10

V(GE): 5] 1 S@i): 5|11

) 6| 0"

'7 1L|*
8|1
9| 0
10| 0

Figure 8.4. Example of computing vectors V and S.

{

domains. For example, in Figure 8.4, a dependence pointing to the sixth ‘ele-ment of f(3) was
assumed. However the source of this dependency belongs to a previous DOALL and thus the
dependence should be considered ;liminated. We can solve this problem of detecting eliminated
dependences by using more auxiliary storage as follows. :Vector V is defined now as an integer-
valued vector. Instead of setting bits in V, we store the index ¢ in position f(i) of V. Whpﬂ-
ever a conflict occurs at V(f (7)) we store the corresponding index j in the next free position of

S as previously and overwrite the old value of V(f(j)) with j..Dependences that should be

ignored are specified by the test of the following lemma.
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Lemma 8.1 Let m be the last index value inserted in vector S. If a conflict occurs at position
z=f(¢) of V and y=V(z), then the dependence is discarded if y <m. Otherwise the depen-

dence is saved in vector S. In either case set V(f(i)) «i.

N

Proof The proof to show that no dependence violation occurs when the above test is used is
straightforward. We need to show that if a dependence is discarded by the test of the lemma,
then the source of the dependence does not belong to the currcnt domain. Let j be the position

of the most recent value inserted in S, and let : be the current index of f. The current domain

fG: |7|5al7|3|4a)2|1]8]2

1| 8 1|1
2110 * 2] 4
3|15 3}10
41 6 | * 4|11
V(i): 5| 2 S(i):

6| O

714 |*

819

9l o

10{ O

Figure 8.5. The example of Figure 8.4 when V is not a bit-vector.
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includes elements from m=/f(j) to f(¢) inclusive. The conflict occurs at position f(i) of V
whose old value is y. Then it is obvious that the source of the dependence, i.e., y belongs to the
current domain if and only if y > m, which proves the lemma. ®

The version of the example of Figure 8.4, where vector V is a vector of integers is shown in Fig-
ure 8.5. The result now is three DOALL loops. The transformation results in a series of DOALL
loops as shown by the second loop of Figure 8.3. The serial loop however in this case is slightly

different and is shown in Figure 8.6.

8.3. Recurrences with Subscripted Subscripts

The case of data dependences €8 Figure 8.1c, or. recurrences, e.g. Figure 8.1d, is very simi-
lar to the case of output dependences that we discussed above. Anti-dependences pose no prob-
lem if we use the following assumption. Subscript blocking transforms a serial loop into a set of
DOALLs. The resulting parallel loops are executed in the order implied by the surlrounding serial
loop (Figure'8'.3). We assume that all write operations to array A >a.re performed in a sharecl'l
copy (that resides in global memory) after the execution of a DOALL and before the next
DOALL starts executing. Analogously, all elements of A referenced by a DOALL are fetched to

each processbr from global memory. This is a realistic assumption and if used, all anti-

DO i=1, N
if V(E£(i)) >= S(j-1) 1.:hen'
S(j) = i
j = J+1;
V(£(1)) = i;
ENDO

Figure 8.6. The set-up loop for V and S when V is an integer vector.
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Ve(1:N) = 0O;
S(1) = 1;
j =1
DO i=1, N
if V. (g(1)) > S(j) then
j = j+1:
o 8(3) = 1
Ve (£(L)) = 1
ENDO

S(3+1) = N:

DO k=1, j
DOALL im=mg(k), 3(k'1)-1

A(f(1)) = A(g(1)):

ENDOALL
ENDO

Figure 8.7. The transformed loop of Figure 8.1d.

dependences are implicitly satisfied.

Lét us consider in this section the case of subscript blocking for recurrences, and ignore for
the moment output dependences. We will show how a recurrence of the type shown in Figure
8.1d can be parallelized by subscript blocking. In this case we have two subscript vectors f (1)
and ¢(7). Two vectors Vf and Vg are used to carry out the tests, and a vector S to record the
independent domains. As shown later the two vectors Vf and Vg are necessary only if we want
to detect both data (or flow) dependences and anti-dependences. If the above assumption is used ‘
however and anti-dependences are ignored, only V/ is needed. For the sake of completeness let
us use Vj and Vg and consider anti-dependences a well.

Y
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Figure 8.8. Example of subscript blocking for recurrences.

The tests in this case are similar to those of the previous section. Vector Vf is used to
store the definitions of a variable and Vg to store its uses. If. is clear that a flow dependenc:e
exists if a particular variable that is used is found to have a definition in the same domain, i.e.,
the source and the sink of a dependence belong to the same domain. More specifically, the pro-

cedure for data dependences works as follows. Initially, vector Vj is set to zero. Then starting
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from ¢ = 1 we examine the pairs of elements (f (¢), g(¢)) of the two subscript vectors, storing
the corfesponding indeces to locations V, (f(2)) and Vg(g(i)j. A data depe-ndence is found
when for some ¢, Vf(g(i)) #0. The corresponding deper;de‘nce is Vf (g(3)) =1, and 1 is stored
in the next free location of vector S. However as in the .previous section, if the source of a flow
dependence does not belong to the current domain, that dependence is correctly ignored as stated

by the following lemma.

Lemma 8.2 Let j be the index of the last element of S, and m = S(5). If for some i,
k= V,(g(¢)) #0 and k < m, the data dependence k —>¢ is correctly discarded.

Proof The previous domains include all loop iterations up to (m - 1). Since k is the source of
the data dependence and k <m -1, it belongs to a previous domain and therefore has been

eliminated due to the order of execution enforced by subscript blocking. ®

As mentioned above the data dependences are detected using only vector V,, and the
corresponding domains are stored in vector S. The transformed loop of Figure 8.1d is shown in
Figure 8.7. Figure 8.8 gives the vectors f(¢) and g(7) for an application of subscript blocking

using the loop of Figure 8.1d. Output dependences were ignored so far but are computed exactly

as described in the previous section. T'he flow dependences in this example are shown in Figure

DO 1i=1, N
if (Ve(g(1)) or V. (f(1)) > 8(J)) tLhen
j = 3+l
S(3) = i
V(£(L)) = L
ENDO

Figure 8.9. The set-up loop of Figure 8.7 for data and output domains.
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8.8 by arrows from f () to g(z). Dependences that were discarded by Lemma 8.2 are not shown.
Asterisks and bullet-marks next to Vf indicate output and flow dependences respectively. As it
can be seen, only two out of the six data dependences defined disjoint domains (DOALLs). The

domains defined by data dependences alone are {1-2}, {3-6}, and {7-12}.

Anti-dependences are found in the same way using vectors Vf and Vg in the reverse order.
For a given 4, if V, (f(7)) >0 and v, (f(2)) belongs to the current domain, an anti-
dependence A(Vg (f (¢)) —A(1) exists. Anti-dependences are ignored however. Output depen-
dences can be computed here without extra storage for their corresponding domains. In fact flow
and output dependences may define different domains but they can be combined to form domains
that satisfy both types of dependences as shown in Figufe 8.9. If an output domain lies entirely
within a single low domain, a new domain is created otherwise output domains are ignored. If in
the example of Figure 8.8 both output and flow dependences are taken into consideration, the

corresponding domains (DOALLs) are {1-2}, {3-6}, {7-10}, and {10—12}.

The overhead introduced by the set-up loop can be reduced by executing the set-up ‘l‘oop
itself in parallel. For instance this can be done by using synchronization instructions to syn-

chronize the write operations in Vj. and S by each iteration. Those iterations that access

DO 1 i =1, N
DO 2 j =1, M
A(£(1,3), £5(1,3)) = Algy(1,3), gy(1,3)

2 ENDO
1 ENDO

Figure 8.10. An example of multidimensional recurrence with subscripted subscripts.
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different elements of Vf will be executed in parallel, while the writes .to the same element will be
done sefially. Depending on how we use synchronization instructions to execute the set-up loop
in parallel, we may have to order the elements of S. This can also be done in parallel. An
approximate speedup bound for subscript blocking is computed in the last section of this

chapter.

So far we discussed how subscript blocking can be used to parallelize singly nested loops
with subscripted subscripts of any kind. In the next section we show how the same technique

can be extended to parallelize multiply nested loops with subscripted subscripts.

8.4. Multiply Nested Loops

The subscript blocking transformation for loop parallelization works in precisely the same
way for multiply nested loops, as it does for singly nested loops. However the auxiliary vector V
now becomes a multidimensional table with a number of dimensions equal to the number of
loops in the nest, plus one. Or more precisely, equal to the maximum number of subscripted sub-
scripts in an array reference (inside the loop). Vector S can always be stored in a 2-dimensional
table. If we have m nested loops for example, V will be organized as an (m -H)-dimensional
table and S will be a 2-dimensional table with rows of size m, where each row- holds values of

the m indeces.

The rows of S define the boundaries of successive source domains. The result of the
transformation in this case will be again two disjoint loops. The first will consist of m perfectly
nested DO loops and will be functionally identical as in the single loop case (Figure 8.9). The -
second loop will consist of m-H loops; a serial outermost loop which defines the source domains,

and m DOALL loops that implement in parallel the original (untransformed) loop.

T
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V(L:N, 1:M) = (0,0);
k=1
S(k) = (1.1);

DO i=l1l, N
DO j=1, M
if (Ve(9(1.3).g(1,3)) or V,(£f,(1,3). £(i,3)) > S(k)) then
k = k+1;
S(k) = (i,3): ‘
Ve(£,(1,3), £,(1.3)) = (1.3):
ENDO
ENDO
S(k+1) = (N, M); -
DO 1 =1, k
nl S(1).1; n2 = S(1+1).1;
ml S(1).2; m2 = S(1+1).2;
if m2>]1 then m2 = m2-1
else n2 = n2-1; m2 = M;
DOALL, i = nl, n2
DOALL j = ml, m2

A

AE(L3), (LA (L3), ax(L3):
ENDOALL .

ENDOALL
ENDO

Figure 8.11. The loop of Figure 8.10 after the transformation.

Let us see how subscript blocking works with nested loops by means of an example. For
simplicity we consider the case of a 2-dimensional recurrence with subscripted subscripts as the
one shown in Figufe 8.10. We will apply the transformation to the loop of Figure 8.10 taking
into consideration flow and output dependences only. As mentioned above, the auxiliary vector
Vf is set up i.n this case using the same algorithm as in the previous section. Vectors V, and S

will be represented by a 3-dimensional and a 2-dimensional table, respectively. To simplify our

notation and drawings we represent V, with a 2-dimensional table where each entry can store an
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ordered pair of the form (a, ), a, b €Z* The same representation is used for S. In general,
for a nested loop L =(N,, N,,..., N,,) the size of the i-th dimension of Vf will be N, and the

size of the m -+l-st dimension will be m. S will always be represented by a set of rows of size m.

To compare elements of V, and S in our example we use the following rule. If (a,, b,) is an
element of V,, and (a,, b,) an element of S, then
(au’ bu) Z(Gn’ bn)
if and only if a, >a,, or a, = a, and b, >b,. If (a,, b,) is the ¢-th element (row) of S then

a, = S(i).1, and b, = S(1).2. The transformed loop of Figure 8.10 is shown in Figure 8.11.

A detailed example for N =3, and M =4 is shown in Figure 8.12. Figure 8.12 shows the
unrolled version of the example loop with arcs illustrating flow and output dependences. After
the set-up loop of Figure 8.11 is executed the final conﬁgura.tién'of table V, and the resulting
domains in S are also shown in Figure 8.12. The four domains that were created by subscript
blocking in this case are {(1,1), (1,2), (1,3)}, {(1.4), (2.1)}, {(2.2),
(2,3), (2,4)}, and {(3,1), (3.2), (3,3), (3.4)}. Note that from a total of six
flow and output dependences only three were used to define the source domains, and the remain-

ing were ignored.

8.5. Expected Speedup

The set-up loops created by subscript blocking can be executed in parallel using, for
instance, the Cedar synchronization scheme [ZhPe83|. In case the subscript vector is known at
compile-time the transformation can be applied without the set-up loop, in which case the extra -
overhead is zero. We believe that this ra,relj happens in real code and therefore the set-up loop is
needed to define the domains at run-time. The body of the set-up loop will always contain three

) ‘ . .
to four statements, and in general it is independent of the body size of the original loop.
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1 2 3 4 1 2 3 4
1 1 2 2 1 1 4 1 3 4

£,0 2 3 1 3 2 £,0 2 2 4 4 2
3 3 2 1 3 3 4 3 3 1

1 2 3 4 1 2 3 4

1 2 3 2 3 1 2 3 4 2

gy 2 1. 1 1 2 gy 2 2 1 1 3
3 3 2 2 3 . 3 4 1 4 3

1 2 3 4
i(z, j) 1 1(00)](00) {(33) | (22
(3,3) | Ves 2 | (12| (24) | 32) | (00)
A(2.4) 3 | G4 @1)] (00| @BY
A(3,2)
A(l,2)
A(1,1) , 1 (1,1)
A(1.1) 2 4
A(2.3) 3 (22)
A(3,4) S: 4 (3,1)
A(2,1) 564
A(2,4)
A(3,3)

Figure 8.12. The unrolled loop of Figure 8.10 with its subscript values and the V. and S tables.
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Let C and B be the execution time of the loop body (i.e., one iferation) of the set-up loop,
and the Aoriginal loop respectively. If we assume that each sta,tem;ant takes a unit of time to exe-
cute, then we always have C=3, or 4. Consider the case of a perfectly nested serial loop
L =(N,, N,,..., N,;)(B) of nest depth m, where M is the number of iterations of the i-th loop
and B is the execution time of the loop body. Subscript blocking will transform this loop into
two loops O =(N,, N,,..., N, }(C) and R=(B, N}, N,,..., N, )(B). O is the set-up loop and R is
a set of m DOALL loops nested in a serial outermost loop with S iterations. 8is the number of

domains. Let Tpo, T: be the parallel exccution times of 1 and R on p praressnrs, respechively.

m

Also let N = JTN,. Since the execution time of the original loop is NB, the expected speedup

1=1

of the transformed loop on p processors would be

NB
0 R’
IP +Tp

Let o; be the number of writes (conflicts) to the i-th element of V,, and a=max {o;}. Since the
i

5, = (8.1)

updates to the same element of V! are serialized, the parallel execution time of O with unlim-
ited processors will be determined by the maximum number of conflicts in each element of V,,
1e, 7‘3, aC. On p processors, each processor will execute an average of [N /p]itcrations of

O. Therefore for the limited processor case,

N
—IC if a< [—‘
P p (8.2)
(¢]
TP T aC otherwise

Tf is computed as follows. Let § be the number of domains and m; be the number of iterations

: 5
in the i-th domain, (i =1, 2,..., §). Obviously };m; = N. Then we have

i=1
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ﬂ m.
R 3
Ll ’
i=1'P '
and since by definition
m, rm,- m .
< < +1, (1=1,2,., P (8.4)
. P p 4 ‘
from (8.3) and (8.4) it follows that
NB NB
—<T}<— +4B (8.5)
p p

If we assume Tpo NNC/p in (8.2), we finally have from (8.1) and (8.5) that

NB o > __NB
(NB)/p +(NC)/p — ~ ~ (NB)/p +(NC)/p +0B

» or, .

]25,, Zp[ B (8.6)

[B +C B +C +(8Bp)/NJ

When N is large relative to 8 and p, the speedup converges to the upper limit in (8.6). As an |
example, for a,-loop with V=100, B=50, C=3, p =16 and =8, the speedup range (depending
on the size of the domains) is

15 >5,, >7.
If all eight domains have 16 or fewer iterations, then S, ®12.5. We plan to implement sub-
script blocking in Parafrase and measure its effect on sparse matrix solvers, where subscripted

subscripts appear frequently.
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CHAPTER 9

CONCLUSIONS

The speed of computer systems grew by approximately a factor of ten every three years
until the end of the last decade, and this was largely due to improvements in device technology.
Although increased performance is still achieved through improvements in technology and the
advent of new technologies, the factor of speed-increase as a function of time is only a fraction of
what it used to be. In recent years, a,tl-;ention has focﬁséd on a,ltern-ative sources for increasing
computer performance. The major source is parallelism in its many (ambiguously defined) forms.
Although the basic principles of parallelism are old, a systematic research effort in the area of
parallel processing has only begun. Of course this was made possible through advancements in

technology that allow us to design fast, compact, and cost-effective components.

As opposed to technology (which offers increased performance through improvements in
hardware), parallelism can be applied to algorithms, languages, and hardware. It is a more gen-
eral, and potentially”more power.\ful alternative for increasing performance without theoretical
limits. There are many crucial problems involved in specifying, extracting, and exploiting paral-

lelism. Most of these are very complex problems, but their solution is a “must” for the realiza-

tion of large scale parallel processor systems.

- In this thesis we investigated and proposed solﬁtions to many import;,a,nt problems in paral-
lel processing. We define the notion of parallelism in general for program models and in particu-
lar for Fortran programs. We discuss the different types of parallelism and develop a notation
that is useful for describing the mode of execution for a set of serial and parallel tasks. We con-
sidered the problem of interprocessor communication and proposed an optimal solution for spe-

cial types of program graphs.
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The problem of processor allocation and scheduling for arbitrarily nested parallel loops was
discussed in great detail. Modern parallel processor systems can exploit up to two dimensions of
parallelism in Fortran programs. In this thesis we déveloped analytical methods for studying
multidimensional parallelish (multiply-nested loops) and proposed optimal static algorithms for
the general case. An optimal self-scheduling algorith‘m was also presented. This scheme involves
less overhead than any other known self-scheduling scheme. Analyt.ica.l and simulation results
showed the advantage of GSS over self-scheduling. Two models for estimating rup-time overhead
were developed for the case of linear' and logarithmic (on the number of processors) overhead.
These models can be used to predict the optimal number of processors for a given task bef01;e the

actual assignment of processors is performed.

Heuristic and optimal algorithms were developed for high-level spreading and processor
allocation to general program graphs. Finally we presented tw;) new compiler transformations:
loop coalescing, and subscript blocking. The former transformation is useful for static and
dynamic scheduling. The latter transformation can be used to vectorize previously unvectorizable
loops with subscripted subscripts. When the original loop limits are large enoqgh, the resuif.ing

speedup can be proportional to the number of processors.

This dissertation proposes new solutions to some important problemsﬂin parallel processing.
The next step in our future work will involve the extension of the algorithms and techniques
presented in this thesis to include memory allocation and related compiler optimizations, and
their implementation. Specialized hardware for the fast implementation of the proposed self-
scheduling scheme along with a sophisticated restructuring compiler, would be a powerful combi-
nation for solving the major problems in parallel processing: scheduling, communication, and

synchronization.
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