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This dissertation discusses several software and hardware aspects of program execution on 

large-scale, high-performance parallel processor systems. The issues covered are program restruc- 

turing, partitioning, 'scheduling and interprocessor communication, synchronization, and 

hardware design issues of specialized units. All this work was performed focusing on a single 

goal: t o  maximize program speedup, or equivalently, to  minimize parallel execution time. 
/ 

Parafrase, a Fortran restructuring compiler was used t o  transform programs in a parallel fdrm 

and conduct experiments. Two new program restructuring techniques are presented, loop 

coalescing and subscript blocking. Compile-time and run-time scheduling schemes are covered 

extensively. Depending on the program. construct, these algorithms generate optimal or near- 

optimal sck~edules. For the casc of arbitrarily nested hybrid loops, two optimal scheduling algo- 

rithms for dynamic and static scheduling are presented. Simulation results are given for a new 

dynamic scherli~ling algorithm. The performance of this algorithm is compared t o  that  of self- 

scheduling. Techniques for program partitioning and minimization of interprocessor communica- 

tion for idealized program models and for real Fortran programs are also discussed. The  close 

relationship between scheduling, interprocessor communication, and synchronization becomes 

apparent a t  several points in this work. Finally, the impact of various types of overhead on pro- 

gram speedup and experimental results are presented. 
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CHAPTER 1 

INTRODUCTION 

As technology approaches certain physical limitations, parallelism seems t o  be the most 

promising alternative for satisfying the ever-increasing demand for computational speed. The 

main driving force behind the development of parallel processor systems is the ability to  exploit 

the parallelism in algorithms and programs, and solve problems whose computational complexity 

makes them impossible t o  tackle on conventional systems:Recently i t  has become clear that  the 

shared memory parallel processor model will be one of the dominant architectures for the near 

future supercomputers. The  flexibility, scalability, and high potential performance offered by 

parallel proceqor machines are simply necessary "ingredients" for any high performance system. 

The flexibility of these machines is indeed greater than that  of single array processor computers 

[Kuck84], and they can execute more efficiently a larger spectrum of programs. 

But there are divided opinions when the question comes t o  the number of processors needed 

for an efficient and cost-effective, yet very fast polyprocessor system. A number of pessimistic 

and optimistic reports have come out  on this topic. One side uses Amdahl's law and intuition t o  

argue against large systems [Mins70], [Amda67]. The  other side cites simulations and real exam- 
! 

ples t o  support the helief tha t  highly parallel systems with large numbers of processors are prac- 

tical, and could be efficiently utilized t o  give sibstantial  speedups [PoBa86], [Cytr84], [Krus84], 

(ICuck841, [Bane81], [FlHc80]. However, we have little experience in efficiently using a large 
1 

~lurnber of processors. This inexperience in turn is reflected in the small number of processors 
, 

used in modern commercially available supercomputers such as the CRAY X-MP, CRAY 2, and 

Alliant FX/8 systems. 



Truly  parallel languages, parallel algorithms, and ways of defining and exploiting program 

parallelism are still in their infancy. Only recently the appropriate attention has been focused 

on research for parallel algorithms, languages, and software. Several factors should be con- 

sidered when designing high performance supercomputers [Kuck84]. Parallel algorithms, carefully 

designed parallel architectures and powerful programming environments including sophisticated 

restructuring compilers, all play equally important roles on program performance. In addition 

several c~iicial  problems in scheduling, synchronization,' and cnmmunication must be adaquatcly 
. . 

solved in order t o  take full advantage of the i n h ~ r ~ n ~  f l c~ ib i l i t .~  of para1101 proccooar ayatelr-I$. 

..-- 
l 'he investment in traditional (serial) software however is so  enormous, tha t  i t  will be many 

years before parallel software dominates. I t  is then natural t o  ask: " How can we efficiently run 

existing software on parallel processor systems?" The answer to  this question' is well-known: by 

using powerful restructuring compilers. One such powerful 'restructurer is the Parafrase compiler 

developed over the last fifteen years a t  the University of Illinois ([KKLW80], (Wolf821). 

T h e  work in this thesis involves several aspects of parallel processing. The primary ohal- 

lexlge with parallel processor systems is t o  speed up the execution of a single program a t  9, time, 

o r  maximize program speedup (as opposed t o  minimizing response time, or maximizing 

throughput). One of the most critical issues in parallel. processing is the design of processor all* 

cation and scheduling schemes tha t  minimize execution time and interprocessor communication 

for a given program. A significant amount of theoretical work has been done on the subject of 

scheduling, but because of the complexity of these problems, only a few simple cases have been 

solved optimally in  polynomial time. Moreover, almost none of these cases is of practical use. 

Another important  issue is program partitioning. Given a parallel program, we need to  partition 

i t  into a set  of independent or communicating, pr6cesses or tasks. Each can then be all@ 

cated (scheduled on) one or  more processors. Program partitioning affects and can be affected by 



several factors. ,It is a multidimensional optimization problem where the variables t o  be optim- 

ized are not compatible. 

Although loops are the largest potential source of program parallelism, the problem of using 

several processors for the fast execution of complex parallel loops had not been given enough 

attention until recently [PoKP86], [PaKL80], [Cytr84]. A key problem in .designing and using 

large parallel processor systems is determining how to  schedule independent processors to  execute 

a parallel program as fast as possible. We know little about coordinating large numbers of pro- 

cessors t o  execute multiply nested parallel loops, and no significant work has been done. thus far 

t o  adequately solve this problem. 

1.1. Thesis Overview and Related Work 

This thesis discusses and proposes solutions t o  some important problems that  arise in paral- 

lel processing. Speedup models, scheduling, program restructuring, and program partitioning are 

the topics involved. More specifically, Chapter 2 considers three models of program execution 

I slid their associated speedup bounds. A generalization of the Doacross model (Cytr841 is also 

presented in Chapter 2. Chapter 3 discusses the issue of program partitioning and minimization 

of interprocessor communication. An idealized model for int8erprocess~r communication is 

developed and then is applied t o  Fortran programs. Chapter. 4 covers lhe topic of static proces- 

sor allocation t o  multiply nesled parallel loops. Optimal algorithms for simple and complex 

loops are presented. ,Chapter 5 presents a compiler transformation that  is beneficial t o  both 

static and dy~~biiiic'schcduling. This tra.nsformation can also be used in certain cases t o  improve 

memory management. The ge~ieral problcm of scheduling independent tasks on a parallel proces- 

sor system and proposed solutions are covered in Chapter 6. Dynamic scheduling of complex 

loops and independent tasks is discussed in Chapter 7. A powerful dynamic scheduling algo- 

rithm for arbitrarily nested loops is presented. Simulation results for this algorithm and for self- 



scheduling are also presented in Chapter 7. A new scheme for paralleliiing loops with subscripted 

subscripts is presented in Chapter 8. Finally Chapter 9 gives the conclusion of this thesis. 

Our  work on scheduling differs from the previous work in several aspects. Instead. of con- 

sidering simplified abstract models [CoGJ78] [Coffl6] [KaNa84], we focus .on  the aspects of 

scheduling of real programs. The  central issue in this thesis is t o  develop static and dynamic 

sclreduling schemes for arbitrarily nested Fortran loops. Little work ,has been reported on t,hie 

toplc so  far (Cytr84], [ P O K P ~ ~ ] ,  [TaYe86], although i t  becomes an area of great theoretical and 

practical interest [Bohk85], [GGKM83]. This thesis presents optimal static and dynamic solu- 

tions for the general problem. The most significant work on scheduling parallel loops .has so.far 

been conducted a t  industrial laboratories. Microtasking [Rein861 for example is used t o  sched1.1le 
, 

parallel loops on the CRAY machines. However most of these efforts consider the simple case of 

singly nested pa,rallel loops. No significant work 11as been reported for thc case of multiply 
. . 

nested loops until recently [PoKP86] [TaYe86]. This is partially justified by the small number of 

pr0cessoi.s used in real ~ u p e r c ~ m ~ u t e r a ;  one level of parallelism would be adequate t o  utilize all 

A few dynamic scheduling schemes have been proposed in  the past few ycars [I<rWe85], 

[hlann84], [Dsi1178]. Most of these schemes are based on specialized scheduling hardware or 

operating system functions. In the case of hardware schemes the drawbacks are cost and gen- 

erality. T h e  majority of these schemes are designed for ~ p ~ s i a l ' p u r p o ~ e  machines [Daiu78], or for 

scheduling special types of tasks, e.g. atomic operations. On the other hand, the disadvantage of 

dynamic scheduling by the operating system is the high overhead involved. Especially when the 

granularity of tasks is small, the overhead involved with the invocation of the operating system 

is likely t o  outweigh the benefit of parallelism. I t  is more appropriate to  implement dynamic 

scheduling without iqvolving the operating system, by using low level primitives inside the pro- 



gram. The  most appropriate primitives are naturally various kinds of synchronization instruc- 

tions. More recently a lot of attention has been focused on dynamic scheduling through the use 

of synchronization [TaYe86] [GGKM83]. These schemes however involve high run-time overhead 

and are not efficient for parallel loops with a complex nest pattern. An algorithm that  is 

presented in Chapter 7 deals with such cases efficiently and involves minimal overhead. 

Extensive work has been done on the problem of scheduling independent tasks on parallel 

processors [Sahn84], [Liu81], [CoGJ78], [Grah72], [CoGr72]. Most of the instances of this prob- 

lem have been proved t o  be NP-complete problems. Optimal algorithms have been discovered 

for special cases of the problem tha t ,  restrict the tasks t o  be of unit-execution time and/or the 

number of processors t o  be 2. These theoretical results however are of little help t o  practical 

cases. Heuristic algorithms for approximate solutions [CoGJ78], [CoGr72], also use simplifying 

assumptions tha t  make them difficult t o  use in practice. 'In Chapter 6 of this thesis we consider 

the general scheduling problem. By considering the nature of tasks that  occur in Fortran pro- 

grams we were able t o  design optimal algorithms and approximation heuristics that  can be used 

efficiently in practice. , 

As mentioned earlier, a vast amount of existing software has been coded eil l~er in a serial 
[ ,  

language (e.g. Fortran, Pascal, Lisp, C), or for a serial machine. The  need t o  run serial software 

on array or  parallel machines without reprogramming gave rise to  a new research field: program 

restructuring. During program restructuring, a compiler or preprocessor identifies the parts of a 

program tha t  can take advantage of the architectural characteristics of a machine. Two equally 

important reasons for program restructuring are ease of programming and complexity. Coding a 

particular problem to  take full advantage of the machine characteristics is a complex and tedious 

task. For non-trivial programs and on the average, a compiler can perform better than a skillful 

programmer. As is the case with traditional code optimization, restructuring can be automated. 



INTERCONNECTION NETWORK 

PROCESSOR INTERCONNECTION 

Figure 1.1. The shared memory parallel processor model. 
. -- 

A very significant amount of work has been performed on program restructuring primarily in the 

case of Fortran [I<LPL81], [KuckSO], [Kenn80]. However more remains'to be done in this area. 

Chapters 5 and 8 of this thesis present two restructuring schemes tha t  can be used t o  extract 

more parallelism out  of serial Fortran programs and obtain better sche.di.lles. 

T h e  next section introduces the b a i c  assumptions, notantion, a.nd definitions that  are used 

throughout this thesis. Notation and definitions that  are relevant only t o  a particular section 

are given wherever appropriate. A brief overview of the Parafrase compiler tha t  was used for 

experiments is also given. Most of the experimental work discussed in this thesis was performed 

I 

and designed in the context of Parafrase (Figure 1.2). 

-5 



1.2. Basic Concepts and Definitions 

The architecture model used throughout this thesis is a shared memory parallel processor 

system as shown in Figure 1.1. The  machine consists of - p  processors (numbered 1,2, . . . , p )  that  

are connected t o  a shared memory M through a multistage interconnection network N. The 

memory can be interleaved and each processor can access any memory module, or can communi- 

cate with any other processor through the memory. Each processor has its own private memory 

that  can be organized as a cache, register file or RAM. Each processor is a stand-alone unit. I t  

has i ts  own control unit and can operate independently and asynchronously from the other pro- 

cessors. Our machine model therefore is multiple-instruction, multiple-data or MIMD. We also 

assume tha t  each of the processors is a vector or array processor and thus it can operate in 

single-instruction, multiple-data or SIMD mode. I t  is apparent tha t  this taxonomy [Flyn80] can- 

not uniquely characterize our machine model. Another taxonomy proposed in (Kuck781 is used 

later t o  describe the machine model of Figure 1.1. 

In this thesis we consider parallel Fortran programs. By parallel, we mean programs that  

have been written using language extensions or  programs that  have been restructured by an 

optimizing compiler. For our purposes we use output generated by the Parafrase restructurer 

[KuckSO], [Wolf82]. ,Parafrase is a restructuring compiler which receives as input Fortran pro- 
! .  

I . . 
I 

grams and applies t o  them a series of machine independent and machine dependent transforma- 

tions. The  structure of Parafrase appears in Figure 1.2. The  first part  of the compiler consists of 

a set of machine independent transformations (passes). The  second part consists of a series of 

machine dependent optimizations that  can be applied on a given program. Depending on the 

architecture of the machine we intend t o  use, we choose the appropriate set of passes t o  perform 

transformations t,argeted t o  the underlying architecture. Currently Parafrase can be used to  

transform programs for execution on four types of machines: Single Execution Scalar or SES 
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Figlire 1.2.  The structurc of PARAFRA3E 

(uniprocessor), Single Execution Array or SEA (array/pipeline), Multiple Execution Scalar or 

MES (multiprocessor), and Multiple Execution Array or MEA (multiprocessor with vector 



processors) architectures [I<uck78]. SES is a uniprocessor machine 'and optimizations for serial 

architectures include the traditional code optimizations used in most compilers [AhU177]. SEA 

architectures include all single instruction multiple da ta  models such as vector or  pipeline and 

array machines. The  MES model includes parallel processor systems with serial processors, or 

more commonly referred t o  as MIMD. In other words MES systems are composed of a set of 

independenl SES machincs ( that  may operake out of a shared memory). In case of a parallel pro- 

cessor system where each processor has an SEA or  SIMD organization, the corresponding 

machine is called MEA. The machine models used for this thesis are MES and MEA. The 

front-end passes or transformations used in Parafrase are applicable to  all machine organizations 

defined above. In addition Parafrase has a set of back-end transformations for each different 

architecture. 

The  most important aspect of the restructurer is its ability t o  perform sophisticated depen- 

dence analysis and build the da ta  dependence graph (DDG) of a Fortran program. The  DDG is 

an internal representation of the program that  is used by most subsequent passes to  carry out a 

variety of transformations and optimizations without violating the semantics of the source pro- 

gram. The  DDG is a directed graph, where nodes correspond t o  program statements and arcs 

represent dependences. Dependences in turn enforce a partial order of execution on the program 

statements. For most of our work we make an implicit assumption that  Parafrase can supply us 

with any compact data dependence graph or CDDG. A CDDG is a directed graph that  can be 

built from the DDG by condensing several nodes into a single composite node. A set of consecu- 

tive program statements for example can define a composite node. The  arcs in DDO's reprcocnt 

collections of dependences. Clearly several different CDDG's can be constructed from the same 

DDG. As we see later, Parafrase builds CDDG's that  are used by certain transformations. 



There are four different types of arcs or dependences in a DDG. Let si and s j  be two pro- 

gram statements, and suppose that  during serial execution si is executed before s , .  If si and s, 

are involved in a use-definition chain [AhU177], where a variable defined in si is used in s j  (and 

is not reassigned in between), then we say that  s j  is data or  j lok dependent on s i .  If a variable 

assigned in s ,  is used in s i ,  then there is an anti-dependence from si t o  s , .  If the same variable 

is assigned in both si and s j  (and not in between), then s j  is output dependent on s i .  Fina.11~ 

the fourth hype of dependences are control dcpendences tha i  originate from decision (condi- 

tional) nodes and point t o  the ~ t ~ a t e m c n t s  of the targcl code. More about dependence analysis 

can be found in [Bane79], [Bane76]. We often use the term "data dependencen t o  refer t o  any 

type of dependence. 

In a restructured Fortran program we observe several types of parallelism and all of them 

can be potentially utilized by an MES machinc. We can rougl~ly classify the different types of 

parallelism into two categories: Fine grain parallelism and ' coarse grain parallelism. Fine grain 

parallelism includes the parallel execution of different ~ t ~ a t e m e n t s  of tho program on diffel.elll pro- 

cessors, or  even different operations of the same statement on different processors or  functional 

units. Coarse grain parallelism arises from the parallel execution of independent disjoint modulco 

of the program, or  from parallel loops. 

Through a series of transformations, Parafrase is able t o  restructure Fortran loops into a 

parallel form. There are three major types of loops in a typical restruulurcd program. Doserial 

(or DOSERIAL) are loops tha t  must execute serially on any machine due t o  dependence cycles. 

An important transformation in the restructurer is the do-to-doall pass, tha t  recognizes and 

marks Doall (or DOALL) loops. In a Doall loop cross-iteration dependences do not exist and 

thus all iterations can execute in parallel and in any order. A restricted case of a Doall is the 

Forall loop. In a Forall loop cross-iteration dependences of constant distancc (usually greater 



than one) may exist, but  str ip mining can be used to  execute such loops as Doalls. Another pass 

in Parafrase is the do-to-doacross tha t  recognizes and marks Doacross (or DOACR) loops. A 

DOACR is a loop that  contains a dependence cycle in its loop body. If the cycle involves all 

statements in the loop a DOACR is then equivalent to  a DOSERIAL loop. Otherwise partial 

overlapping of successive iterations may be possible during execution. A DOALL loop can also 

be thought of 3s a special case of a DOACR without dependence cycle in its body. 

In addition t o  restructuring Fortran programs Parafrase supplies the user with program 

statistics tha t  include speedup of execution for different numbers of processors, parallel and serial 

execution times, and efficiency and utilization measures. For a Fortran program, T I  denotes 

its serial execution time. Tp denotes the parallel execution time of a program on a p processor 

machine. For a given p ,  the program speedup Sp is then defined as 

T I  
S =- 

P 

TP 

The  efficiency Ep for a given program and a given p is defined as the ratio, 

P 

and 0 <BP - 5 1. Often in this thesis Ilie terms parallel execution time a.nd schedule length a r e  

used interchangeably. 

The  overlapped execution of disjoint modules of a parallel program is referred t o  as spread- 

ing. If spreading is performed for fine grain parallelism it  is called low-level spreading. If high 

level or coarse grain parallelism (e.g. disjvi~ll loops) i3 ucod it is called hkh-level spreading 

(Veid851. A block o j  assignment statements (or BAS) is a program module consisting exclusively 

of consecutive assignment statements. A BAS is also referred to  as a basic block [AhU176]. Basic 

blocks have a single entry and a singlc exit statement which are the first and last statements in 



the BAS. A program task graph is any compact DDG. Nodes ' i n  a program 'task graph 

correspond t o  program modules and are called tasks. Arcs represent dependences ' a i d  are 

labeled with weights reflecting the amount of da ta  that  need t o  be transmitted between tasks. 

T h e  arcs of a CDDG define a partial order on its nodes. The  predecessors. of a task are the 

nodes pointing t o  tha t  task. T h e  tasks pointed to  by the arcs originating from a given node are 

successors of tha t  node. Tasks  may be serial or parallel depending on whether they c8.n exe- 

cute on orie or more processors. A parallel task may fork or spawn several .processes with 

each process executing o n  a different processor. Sorial tasks are co~nposed of a single process. A 

task is said t o  be active if i t  can spaw11 more processes, or  if some of its processes have not 

completed execution. A task is ready when i t  does not have predecessor tasks, and i t  is com- 

plete when all of its processes have completed execution. 

A processor allocation is the assignment of a number of processors t o  each task of llie pro- 

gram task graph. A schedule is the assignment of tasks t o  processors under time constraints. 

Note . that  processor allocation specifies thc number of grocassors w.signed to each task but not 

the actual binding of tasks t o  physical processors. Scheduling on the other hand binds a specific 

task t o  one or more physical processors a t  a specific time interval. Processor alloca.t8ion takes into 

account the timing constraints implicitly. A schedule may he static or  dynamic. A static 

schedule specifies the assignment of tasks t o  processors deterministically before execulion. 

Dynamic scheduling performs the binding dynamically at. run-time in a nondctlorrniniatic 

approach. A variation of dynamic scheduling is self-scheduling. During self-scheduling idle pro- 

cessors fetch their next process from a shared pool of ready tasks. 

A schedule-length is the time i t  takes t o  execute a given program (graph) under a specific 

scheduling scheme. If a program starts  executing a t  time 1, the execution time is determined by 

the moment the last processor working on that  program finishes. For the same program graph 



different scheduling schemes have (in general) different schedule lengths. Finish time and com- 

pletion time are synonyms t o  schedule length. 

A program variable is shared if i t  is used in more than one process (and is not a read-only 

variable). A barrier is a shared variable that  assumes integer values in a fixed range [N, MI, 

where N, M are integers and N < M. A barrier synchronization is a synchronization primitive 

that  tests and performs incrementldecrement operations on a barrier. 



CHAPTER 2 . . 

. . .  , 

SPEEDUP BOUNDS FOR PARALLEL PROGRAMS 

In this chapter we s tar t  with a parallel program that  is the result of restructuring a serial 

program for execution on a parallel processor machine. We discuss different types of parallelism 
, . 

tha t  can be i r l j e ~  vell in such a program, the kinds of overhead involved during parallel program 

execution, and the effect of task size and scheduling overhead on spccdup. We than a.ddreaa the 

problem of allocating available processors to  different parts of the program and estimating the 

possible speedup. Program task graphs have been chosen t o  provide concrete representatio~is of 

parallel programs. These are directed graphs where a node represents a DOACR loop and arcs 

represent precedence constraints. 

We have restructured LINPACIC using Parafrase and computed the fraction of parallel code 

for all subroutines. Our  results cont,ra.rlict, the originnl Amdahl cor~jeclure tha t  most programs 

have a t  least 10% serial code, and hence ran achievo a maxirnuis.l ~ ~ e e d u p  of 10. The experiments 

strongly support the view that  there is enough inherent parallelism in real programs so  that  large 

numbers of processors can be efficiently utilized. 

2.1. Basic Concepts 

A basic seq~lential m s c h i n ~  iti n. single ClPU ovrrlputcr tha t  c~il l  carry out operations serially, 

taking one unit of time for each. A p-unit multiple execution scalar (MES) machine is composed 

of p identical basic sequential machines, and each processor is driven by i ts  own control unit. 

Because of its flexibility, we will consider only the MES machine. I t  is variously referred to  as a 

multiprocessor, a parallel machine with p-processors, or simply a p-processor machine. 



An assigninent statemcnt is a statement of the form z = E, where z is a variable and E 

an expression. A do across or DOACR loop [Cytr84] with delay d has the form 

L :  DOACR I = 1 , N  
B 

END 

where d l  N are integer constants, I an integer variable with the range (1, 2, ..., N ), B a 

sequence of assignment statements and DOACR loops, and i t  is understood that  the iterations of 

L can be partially overlapped as long as there is a delay of a t  least d units of time from the 

s tar t  of iteration i t o  the s tar t  of iteration i + 1, ( i  = 1, 2, ..., N - 1). For L ,  the index 

variable is I, the number of iterations is N, and the loop-body is B .  

Consider now the two extreme cases of overlapping. If d = 0, there is complete overlap- 

ping, i.e. all the iterations of L can be executed simultaneously. In this case the DOACR loop is 

called a DOALL loop. If d = b, where b is the execution time (assumed t o  be independent of 

I) of the loop-body B ,  then there is no overlapping, i.e. the iterations of L must be executed 

serially, ope after another. In this case the DOACR loop is a standard serial loop, and we write 
. . 

DOSERIAL for DOACR. A BAS o r  a block of assignment statements is a special kind of serial 

loop, namely a. loop with a single iteration. (A BAS may aiso be regarded as a special case of a 

do all loop.) 

A program is s sequence of steps where each step consists of one o r  more operations that  

can be execl~ted simultaneously. A program is serial if each step has exactly one operation; 

otherwise i t  is pnrullel. Two programs are semantically equivalent if they always generate the 

same output on the same input. Parallel programs are conveniently represented in terms of do 

across loops (Section 2.5). 

Let PROCI ,  M O G 2  be two equivalent programs and let their execution times on a p- 

processor machine be Tp(PROGI) and Tp(PROG2) respectively. Then the speedup obtained 



(on this machine) by executing PROG2 instead of PROG, is denoted by Sp(PROGl, PROG2) 

> .  
and is defined by . ' - '  

Sp (PROG,, PROG,) = 
Tp (PROG,) 

Tp (PROG,) 

An immediate consequence of this definition is the following lemma. 

Lemma 2;l. If PROG,, PROG2, ..., PROG,, i s .a3 sGquence of programs any t w u  uf which are 

t iu iv  al t !~~I,  'then 

n -1 

Sp (PROG,, PROG,,) = fl sp (PROGj j PROG*). 
i =I, 

We usually write Sp for the speedup when the two programs involved are understood. Of 

special interest to  us is the case where PROG,. is. a serial program and PROG, is an equivalent 

parallel program olLained by restructuring PROG,. In Ihis chapter we assume that the execu- 

tion time of a. program is determined solely by the time taken to perform its operations, and 

that thc total number of opera,t,inns in a program io ncver affected by any restructuring. These 

assumptions are not very ,far from the truth; they help to keep the formillas simple, and yct let 

us derive important conclusions. If T1 is the number of opcrations in the serial program PROG,, 

then l', is also the execution time of PROG, on the basic sequential machine, or on any parallel 

machine .(i.e., T, = Tp (PROG,)). The equivalent parallel program PROG2 also has T, opera- 

tions, but now these operations are arranged in fcwer than T, steps. We call T, the serial exe- 

cution time of PROGa and it' can be obtained simply by counting the operations i n  PROG,. 

The execution time T, r Tp(PROG,) of PROG, on tha,p-processor machine will depend on tile 

structure of the program, the magnitude of p ,  and the way the p processors are allocated to 

different parts of PROG2. T o  distinguish it from TI, Tp is referred to as the parallel execution 

time of PROG2. The speedup of a program is then the ratio of its serial execution time to its 



parallel execution time. 

For a given program, we have the unlimited processor case when p is large enough so that  

we can always allocate as many processors as we please. Otherwise, we have the limited pro- 

cessor case. These two cases will be often discussed separately. 

There are several factors affecting the speedup of a given program. For example, different 

compiler implementations or different compiler algorithms used on the same problem may result 

in different speedups. Given a particular parallel machine M i E M ,  where M is the universal set 

of machine architectures, and a set A of equivalent algorithms (all of which receive the same 

input and produce the same output), we can define a mapping: 

E M  A + R,+ 
+ where R o  is the set o f t h e  nonnegative real numbers and EMi(Aj) = Tj is the execution time 

of algorith~n A j  on machine Mi.  Let A,€ A be the algorithm for which 

EMi(Ao) = min{EM,(Aj)} and A, be the algorithm we currently have available. Then the 
i 

I 

speedup we can achieve by selecting.Ao, (the most appropriate algorithm for the specific archi- 

tec tare) would bc: 

The  selection of the fastest algorithm is the user's responsibility and i t  seems unlikely that  this 

process will be automated a t  least in the foreseeable future. 

2.2. Restru~t~uring, Program Partitioning and Critical Task Size 

In our program model we assume that  parallelism is explicitly specified in the form of tasks 

(disjoint code segn~ents) which are parallel loops (DOALL or  DOACR). This can be done for any 

Fortran program written in a serial form by employing restructuring compilers. In our case 



Parafrase was used t o  transform programs into parallel form and compute some experimental 

values presented in the following section. Each branch of. an. IF. or  GOT0 statement is assigned a 

branching probability-by the user, or  automatically by Parafrase [Kuck84]. We can therefore view 

any program as a sequence of assignment statements, where each statement.has an, accumulated 

weight associated with it.  All loops in a program are automatically normalized, i.e., loop 

indeces assume values in [I ,  N] for some integer N. As in the case of branching stat em ant,^, nnk- 

llvwn loop ripper bounds are either dcfined by the user, or  automatically by the compiler (using a 

default valuc). During parallel execution of the restructured program, da ta  and control depen- 

dencies must be observed to  assure that  program semantics is preserved. For this reason, the 

d a t a  dependence graph of the program is used by most transformations as a guide. 

If we consider a block of assignment statements as a loop with a single iteration, a restruc- 

tured program can be viewed as a series of outermost DOACR loops with each such loop being 

arbitrarily complex. This defines a "natural" partition of a restructured program into a series of 

code segments o r  tmks. Dependencies may exist between any pair of segments in the program. 

We can thus define the program task graph as a directed graph ' G ( V ,  E), where the nodes in V 

are the outermost loops Li in the program, and there is an arc from a node Li t o  a node Lj  if 

and only if loop Lj  depends on loop Li .  Since backward dependencies are not allowed, G(V,  E) 

is acyclic. 

In a restrtrctured program we mny nhservc two types of parallclisrn: hot~i~u'111uI and verti- 

cal. Horizontal parallelism results by executing a DOACR loop on two or more processors, or 

equivalently, by simultaneously executing different iterations of the same loop. Vertical parallel- 

ism in turn, is the result of the simultaneous execution of two or more different loops (tasks). 

T w o  or  more loops can execute simultaneously only if there exists no control or da ta  dependen- . . 

cies between any two .of the loops. In the general case the prograln lask graph exposes both 



types of parallelism. When we execute such a task graph on an MES machine, we must decide 

how t o  allocate the available processors t o  the program tasks so that  program speedup is maxim- 

. . 

ized. 

A serious problem arises when while executing a restructured program on an MES machine, 

we attempt t o  minimize the overheads of communication, synchronization and scheduling. This 

is a non-trivial optimization problem, and attempts t o  minimize such overheads usually results 

in reducing the degree of program parallelism. Most instances of this optimization problem have 

been proven t o  be NP-complete [GaJo78]. A heuristic algorithm would attempt to  minimize the 

communication cost by-merging nodes of the graph together t o  avoid the overhead involved in 

communicating da ta  from one processor t o  another. This however often reduces the degree"of 

available vertical parallelism (Chapter 3). 

As an example of node merging, consider two loops L 1  and L 2  in our restructured program 

model, with da ta  dependencies going from L ,  to  L 2 .  The dependencies restrict the two loops t o  

execute in this order since da ta  computed in L ,  are used by L 2 ,  In this case only horizontal 

parallelism inside each loop can be exploited. If we d o  not coordinate the processors chosen for 

thc cxccution of L, and Tt2, then data computed inside L ,  will have t o  be stored in a shared 

rnetnory upon completion of L 1 ,  and then fetched from that  memory t o  the processors executing 
\ 

L a .  If on the other hand we consider the two loops as a single task, then we can bind iterations 

of L 1  and corresponding iterations of L 2  t o  specific processors. In this manner da ta  computed by 

a particular iteration of L 1  and used by the corresponding iteration of L a  need only be stored in 

fast registers of the processor, thus avoiding the overhead of redundant store and fetch opera- 

tions. For relatively small loops the savings by such "task merging" can be very significant. 

Task merging can also be used to  decrease scheduling overhead that  is involved when we 

distribute different program nodes across different processors. This scheduling overhead is in 



/ 

addition t o  the synchronization overhead and may become disastrous especially for very small 

tasks. For  the CRAY X-MP for example, the overhead involved with scheduling two parallel 

tasks can be several rnsecs [Cray85]. This overhead imposes a minimum size on parallel tasks, 

below which the speedup becomes rather a slowdown (i.e., S, < 1). We call this the critical 

task size. 

If during the execution of a program we schedule a set of parallel tasks, the pa,rnllel cxecu- 

tion time is augmented by OT,  where OT is the scheduling overhead. The maximum expected 

speedup Il~erel'ure is given by 

In order t o  have a speedup of at least 1, we must have T 1 .  2 Tl  / p + OT, i.e., 

TI 2 p*OT / p-1 which gives the critical task size as (L function of the overhead and the 

number of processors. More generally, the minimum program size Tmin required t o  obtain a given 

* 
speedup S on p processors should satisfy: 

Program partitioning for minimizing da ta  oommunica.tlian and scheduling overheads is a 

complicated optimization problem and i t  is the subject of the next chapter. 

2*3* Gencr~ l  Rnnnds on Speedup 

In this section we consider an arbitrary parallel program, and think of i t  simply as a 

sequence of steps where each step consists of s set of operations that  call execute in parallel. 

T h e  total number of operations (and hence the serial execution time) is denoted by T I .  Let po 

denote the maximum number of operations in any step. 



Suppose first we are using a p-processor system with p 2 po. (This is the unlimited proces- 

sor case). Let di T1 denote the number of operations that  belong t o  steps containing exactly d 

operations, ( i  = 1, 2, ..., po). Then 4i is the fraction of the program tha t  can utilize exactly i 

p 0 p 0 

processors, and we have C = 1. We call f = C 4i the parallel part  of the program or 

i =l i =2 

the jraction of parallel code, and 1 - f = bl the serial part  of the program or the fraction of 

serial code. (At least p - po processors will always remain unused.) 

Consider now a limited processor situation with a p-processor machine where p < pa. The 

steps with more than p operations ,have t o  be folded over and replaced with a larger number of - 

steps with p operations. (For simplicity, we are assuming tha t  each new step has exactly p 

operations, although one of them may actually have fewer than p) .  Let f i  EZ f i ( p )  denote the 

fraction of the modified program that  can utilize exactly i processors, ( i  = 1, 2, ..., p).  Then we 

have 

p 0 

f i  = 4i ( i  = 2 . p - 1 and f p  = C 4 i .  
i =p 

P 

An long as p > 2, the parallel part ,f is given by C f i  and the serial part  1 - j: by f l. 
i =2 

An arbitrary p-processor machine is assumed in the following. The first two results are 

well-known [Bane81], [Lee77]. 

3 - -  f i  
Theorem 2.1. x-. 

sp i =l 
i 

Proof: When executing on a p-processor machine, the fraction of the program tha t  uses exactly 

i processors is j; T1, (a = 1, 2, ..., p).  Hence, the number of steps where i processors are 

J i l l  
active is - . The  total number of steps is then given by 



f i T l  f i  
- TIC- .  Tp = C-- 

i =l 8 a i=l , 

Since T 1  is the serial and Tp the parallel execution time of the program, we get 

Corollary 2.1. 1 5 Sp 5 p . 

f i - f i - Proof: We have j > . 2 ($' = 1, 2 ,..., p ) .  Hence 
2 P 

f i  1 
o r ,  1 2 C -  > - 

Corollary 2.2. Sp 5 l / f l .  

Corollary 2.3. The  speedup S,,  the number of processors p and the fraction of parallel code 

f satisfy (for p > 1.) 

and p > r 

1 - (1 - / ISp  

Proof: These three inequalities are equivalent; from any one the other two can be derived easily. 

Note tha t  



'\. 

f i  f i  f i  
I 

f - C = I 1 +  C - 2 j l +  C - = I -  j + , 
i =l d i =2 a i=2 P P 

P 1 f 
since j = C ji and j l  = 1 - j .  Then by Theorem 2.1, - > 1 - j + -, so that  

i =2 SP P 

Now, assume we have a program that  can use a maximum number of po processors. If the 

fraction I$1 of ,serial code in i t  is very small, we can choose p (> 1) processors such tha t  

1 P - 1  j i  f P 
- =  C + -  we get 

sP ; 7 1  
a P 

I 1 f P  / P - 1 .  
i' 

i P - l f  I -  - - ,  = 1 ~ - 1  < x j i  ='I  - f ,  n o ,  ' 
! sp P I l i I - i = 1  

p 0 

or equivalently, Sp n p / f p  a p .  Thus, if for some p > 1, C l i  1, thcn the program 

r =p 

runs very efficiently on a p-processor system giving an almost linear speedup. In this case, given 

the coefficients 4; for the particular program, we can always determine the maximum number of 

processors tha t  would get a linear speedup. 

Because of Corollary 2.2, Amdahl and some other researchers thereafter questioned the use- 

fulness of very large MES systems, since, according to  their argument, the majority of programs 

have a.n average of more than 10% serial code and therefore their spee'dup on any MES machine 

is bounded above by 10. 

We cv~~di lc ted somc cxperiments to  measure the fraction of parallel code j in LINPACK, a 

widely used numerical package for solving systems of linear equations. Knowing the serial 



Table 2.1. Values of f for LINPACK subroutines. 

.Sub. Name f 
SPOFA 0.9997 
SQRDC 0.9988 
SPBDIl 0.9975 
SGBDI1 0.9974 
SGEDI2 0.9961 
SQRDCl 0.9961 
SSIDI2 0.9961 
SSVDCl 0.9954 
SPODIl 0.9950 
SSICO 0.9905 
SQRSL1 0.9900 
SQRSLP 0.9900 
SQKSL4 0.9900 
SQRSL5 0.9900 
SSPCO 0.9896 
SQRSL3 0.9868 

_SGEFA 0.9862 

execution time T I ,  the pa.rallel execution time T, and the number of prucessors p tha t  were 1.1aed 

during the execution of a subroutine, we can easily compute a lower bound for f from (2.2). A.11 

the above parameters are supplied by Parafrase. On the other hand, if the value of f for a par- 
0 

ticular subroutine is known and we want t o  achieve a specific speedup Sp for this subroutine, 

then (2.3) gives us a lower bound on the number of processors tha t  we must use. 

T h e  sorted lower bounds of j are shown in Table 2.1. The  measurements were done on 

LINPACK subroutines after they had been restructured by Parafrase. From Table 2.1 we 

Sub. Name f 
SSIFA 0.9862 
SPODI2 0.9853 
SGESLl 0.9807 
SSISL 0.9806 
STRSLO 0.9773 
STRSLl 0.9773 
SPOSL 0.9767 
SGESL2 0.9762 
STRSL2 0.9753 
STRSL3 0.0753 
$POCO 0.9751 
SPPCO 0.9746 
SSIDIl 0.9746 
SGEDIl 0.9745 
SGECO 0.9664 
SPPSL 0.9629 
SPPFA 0.9350 

observe tha t  the majority of subroutines have a very high fraction of parallel code. For the f i r ~ t  

Sub. Name f 
SPBFA 0.9257 
SGBFA 0.9189 
SGBSL2 0.9164 
SGBCO 0.8561 
SPBCO 0.8314 
SSIDI3 0.7353 
SGBSL1 0.6645 
STRCO 0.6113 
SPBSL 0.5659 
SGTSL 0.5295 
SPPDI 0.5064 
SSPSL 0.4010 
SPTSL 0.3799 
SSPDI 0.3616 
SSPFA 0.1348 

37 subroutilles ((out of 49), the average fraction of parallel code was f >_ 0.9784. Almost 76%. 

of the subroutines have j > 0.9 and only 18% have j < 0.8. 



Considering tha t  LINPACK is a typical numerical package not very amenable t o  restruc- 

turing, the results of Table 2.1 are very encouraging. EISPACK for example (another numerical 

package), should be expected to  have a much higher value of 7 than LINPACK [Kueksl]. Since 

several numerical packages are more amenable t o  restructuring than LINPACK, we should be 

more optimis'tic when designing large multiprocessor systems. The claim for the non- 

effectiveness of systems with large numbers of processors is mostly based on programs that  exhi- 

bit an j < 0.9. 'As mentioned in Section 2.2, the real performance threat for large MES sys- 

tems lies in scheduling and interprocessor communication overheads. 

/ 

Secondly, we should consider all possible operating modes of a multiprocessor. There is no 

question that  there exist numerical programs that  could fully exploit hundreds or  thousands of 

processors. For programs that  utilize only a few processors, MES systems can be operated in a 

multiprogramming mode to  keep system utilization high. The question then breaks down t o  

whether we can have sites with enough users (workload) t o  keep system utilization at acceptable 

levels. The  answer to  this question is rather obvious. 
. - 

2.4. Speedup and Processor Allocation for Task Graphs 

Wc consider here an arbitrary parallel program represented by a task graph G E G(V,  E). 

Recall from Section 2.2 that  this graph is defined on a restructured program with nodes 

representing outermost DOACR loops, and arcs representing da ta  and control dependencies 

among loops. Let there be n nodes in V: vll v2, . . ., v, . These nodes can be partitioned into 

disjoint layers Vl, V2, . . . , Vkl such that  (1) all nodes in a given layer can execute in parallel, 

and (2) the nodes in a layer can s tar t  executing as soon as all the nodes in layer V,. have 

finished, (i = 1, 2,. .., k - 1). T o  construct this layered graph of G ,  we use a modified 

Breadth First Search scheme for labeling the nodes of the graph. Initially, the first node of the 



LAYERED TASK GRAPH 
r-----------------------7 

Figure 2.1. A example of a program task graph and i ts  corresponding layered graph. 

graph (corresponding t o  the lexically first loop of the program), is labeled 1 and queued in a 

FIFO queue Q.  A t  each following step, vj, the node a t  the front of Q is removed, and if a' is its 

label, all nodes adjacent too vf are labeled a' + 1, and arc queued in Q.  Note tha t  a node may 



be relabeled several times but its final label is the largest assigned t o  it. When Q becomes . 

empty, the labeling process terminates and we get the layered graph by grouping all nodes with 

label i into layer y.  An example of a program task graph and its corresponding layered task 

griph is shown in Figure 2.1. We consider below three execution models of a layered task graph 

on a p-processor MES machine. The most general and the two extreme cases are discussed, 

As usual T1 denotes tlie total number of operations i n  the wllole program. For a node v,, 

let g, Tl denote the number of operations in the node and TPj its parallel execution time, 

n 
A 

( j  = 1, 2, ..., n).  Then C g, = 1. The  absolute speedup Spj of v, is the speedup obtained 
j =1 

A 
by considering the node separately a s  a program and is given by SPj = g, T1 / Tpj. 

Case 1. (Horizontal parallelism). Let k = n and each layer Vj consist of a single node viJ 

(i =. 1, 2,..., n ) .  T o  get the maximum speedup for the whole program on p processors, we 

need t o  get the maximum: speedup for each. node. Detailed formulas are given below. 

R 
The  relative speedup Spi of vi is the speedup of the whole program when only vi is exe- 

cuted in parallcl and all other nodes are executed serially. Thus  

Lemma 2.2. The  absolute and relative spcedups of a node oi are connected by the equation 

Proof: It follows directly from the above definitions. m 

Theorem 2.2. The speedup Sp of the whole program (when all nodes are executed in parallel) is 

related to  the absolute and relative speedups of the individual nodes by the following equations: 



A A Corollary 2.4. If all n nodes give the same absolute speedup Sp , then Sp = Sp .  If all n nodes 

R give the same relative speedup Sp , then 

n 

Proof: T h e  first a.ssnrt,inn fnllowa immediately from thc abovt Iheureol, y i~ lce  C gi = I. fi'or 
i =l 

the second, we see t h a t  when the  r n i ~ . t ~ i v ~ !  sp~edups are all oqual 

Since Sp 5 p ,  this  implies 

Y 
Each node of the  graph can be an arbitrarily complex nested loop containing D O S E R I ' ~ ,  

DOALL, and DOACR loops.' The  problem of optimal static processor allocation.to such nodes has 

been solved optimally and is discussed in Cha.pter 4. 

Corollary 2.4.1. A program can not be partitioned i n t o  n, rti.sjoint segments so  that  thc rcla- 

tive speedups are 1, 2, ..., n respectively, for n > 3. 

Proof 

If there was a program with the above property, then from Theorem 2.2 we would have, 



where Hn is the n-th harmonic number and therefore, 

because for n  2 3 we have H, < ( n  - 1). 

Corollary 2.4.2. If a program is partitioned into n disjoint segments with all segments having 

1 
a relative speedup sR = -SpJ and if n 5 p - 1, then 

n 

Sp = n + 1 and therefore sR = 
n + l  

n 
R 

Proof: By substituting S in Theorem 2.2 we get, 

n - ( n -  

2 and after simplification we have n - (n - l )Sp - 1 = 0. Solving for Sp we finally get 

Case 2. (Vertical parallelism). Let the task graph be flat, i.e. let there be a single layer V 

consisting of n nodes. This is the case when no dependencies exist between any pair of nodes. 

Here we may exploit vertical parallelism by executing all program nodes simultaneously. We con- 

sider the extreme case where each node requests-exactly one processor: Since each node is allo- 

cated one processor, if n  5 p the execution time is dominated by the largest task. In the gen- 

eral case bin-packing can be used t o  evenly distribute the n  nodes into p bins. In chapte;  6 we 

discuss D&F, a heuristic algorithm for this case. This algorithm performs better than Multifit, 

the best known heuristic so far [CoGJ78]. Then, if biJ 1 5 i 5 p denotes the largest bin, we 

have the following theorem. 



Theorem 2.3. T h e  total  speedup resulting from the parallel execution of an n-node flat graph 

on p processors, where each node is allocated one processor, is given by 

vjE bi 

Proof: T h e  proof follows directly from the definition of speedup and tohe assumptions stated 

above. . 
Corollary 2.5. If n 5 p then 

s = 
1 

P 
max(y11 g2, ...,g,) 

Proof: This  follows from the previous theorem since each bin contains one node. . 
Case 3. (Horizontal and vertical parallelism). In the most general case we have a program that  

exhibits both types of parallelism, horizontal and vertical. In other words, the task graph con- 

sists of k (> 1') disjoint layers V1, V2, . . . , Vk with a t  least one layer containing two or more 

nodes (Figure 2.1). If I Vi I is the cardinality of the i-th layer, we assume tha t  I Vi I 5 p ,  

( d = 1, 2, ..., k ) .  (In the case of I.Vi 1 > p we fold and fuse nodes such tha t  I I 5 p 

(Chapter 6).) Our  aim in this case is t o  exploit horizontal and vertical parallelism in the best 

possible way. Maximizing speedup is equivalent t o  minimizing parallel execution time. For each 

node of the task graph vj, we define r j  t o  be the maximum number of processors that  the node 

could use. When r j  - 1, ( j  = 1, 2, ..., n) our problem is reduced t o  the classical multipro- 

cessor scheduling problem, which has been proved NP-complete (GaJo781. Our general problem 

can be reduced t o  the latter one by decomposing each'node vj into r j  independent sub-nodes of 

equal size. This trivially proves that  our problem is also NP-complete. Heuristic solutions are 

therefore the only acceptable approach t o  solving the problem suboptimally in polynomial time. 



In Chapter 6 we discuss an efficient linear-time heuristic algorithm for allocating processors 

t o  general task graphs. The total program speedup on p processors that  results from the applica- 

tion of this heuristic is given by the following theorem (Chapter 6). 

Theorem 2.4. The  total program speedup that  results from the parallel (vertical and horizon- 

tal) execution of a k-layer task graph on p processors is given by 

1 
-5' = - where X .  = max 

i =l 
A where SPj is the absolute speedup of node v, when pi processors are allocated t o  it. 

Note that  Theorems 2.2 and 2.3 are special cases of Theorem 2.4. If the graph is reduced 

t o  a flat graph, then k = l  and Corollary 2.5 holds. On the other hand, if each layer contains 

one node (linearized) then gi = 1 in (2.5), ( i  = 1, 2, ...., k), and thus Theorem 2.2 holds true. 

2-15. Speedup and Processor Allocation for DOACR Loope 

In this section we focus on a single node of the task flow graph representing the given p r e  

gram, i.e. a. DOACR loop. We extend and generalize the do across model, t o  allow for idle proces- 

sor time caused by do across delays. In (Cytr841 i t  is assumed tha t  no processor may become 

idle unless i t  completes all iterations assigned to it. This is true only in certain special cases. As 

we shall see later by i~ieans sf an cxample, each processor may have t o  idle between successive 

iterations. The  following theore111 generalizes thc do across model and accounts for idle processor 

time. 

Theorem 2.5. Consider a DOACR loop with N iterations and delay d ,  and let b denote the exe- 

cution time of the loop-body. Then p processors can be allocated to the iterations of the loop in 

such R way tha t  the speedup is  given by Sp = Nb/Tp, where 



D O A C R I  = 1,s { d = 4 )  

> 10 

END 

Procl 

Figure 2.2. An example of the application of Theorem 2.5 for p = 3. 

T, =  IN/^^ - l ) m a x ( b ,  pd)  + d( (N - 1)mod p )  + b (2.6) 

Proof: Let us number the iterations 1, 2, ..., N in their natural order and the processors 



1, 2,..., p in any order. The  processors are allocated t o  the iterations as follows. Assume first 

that  N > p .  Iteration 1 goes t o  processor 1, iteration 2 goes t o  processor 2, ..., iteration p goes 

t o  processor p .  Then iteration (p + 1) goes t o  processor 1, etc., and this scheme is r'epeated as: 

many times as necessary until all the iterations are completed. We can now think of the itera- 

tions arranged in a [ N / ~ ]  X p  matrix, where the columns represent processors. If N < p ,  we, 

employ the saiile scheme, but now we end up with a 1 X N matrix instead. 

Let tk denote the starting time of iteration k ,  (k = 1, 2, ..., N ) ,  and assume that  

t l  = 0.  Let us find an expression for tN. First, assume that  N > p .  For any iteration j in 

the first row, the time t j  is easily found: 

t j  = ( j  - l ) d  ( j  = 1, 2,..., p) .  

Now iteration (p + 1) must wait until i ts  processor (i.e., processor 1) has finished executing 

iteration 1, and d units of time have elapsed since tp,  the starting time of iteration p on proces- 

sor p .  Hence 

t,, ,= max (b ,  tp + d)  = max (b ,  pd). 

The  process is now clear. If we move right horizontally (in the matrix of iterations), each step 

amounts t o  a time delay of d units. And if we move down vertically t o  the next row, each step 

adds a delay of max(b, pd)  units, Thus the starting time tk for an iteration that  lies on row a' 

and column j  will be given by 

tk = ( a  - 1) max ( b ,  p d )  + ( j  - 1)d. 

For the last iteration, we have i = [ ~ / ~ l  and 

{pN mod p if N mod p > 0 
j = 

otherwise 

Since j - 1 can be written as (N - 1) mod p ,  we get 



t = ([N/pl - 1) max (b ,  pd)  + d( (N - 1) mod p). 

Now let N 5 p . I t  is easily seen tha t  

tN =(N - l ) d  

= ([N/~] - 1) max (b,  pd)  + d( (N - 1) mod p). ' 

Finally, since the parallel execution time Tp is given by Tp = tN + b ,  ' t he  proof of the 

theorem is complete. . 
Figure 2.2 shows an exar~iple of the application of Theorem 2.5. The  DOACR loop of Figure 2.2 

11as 8 ilerations, a, delay d = 4, and a loop-body size of 10. The  total parallel execution time 

on p = 3 processors is 38 units, as predicted by Theorem 2.5. We can maximize the speedup of 

an  arbitrarily nested DOACR loop which executes on p processors by using an optimal processor 

allocation algorithm described in Chapter 4. 

Corollary 2.6. Consider a sequence of m perfectly nested DOALL loops numbered 1, 2,..., m 

from the outermost loop t o  the innermost. Let S denote: tthe speedup of the construct on a pi- 
pi 

processor machine when only the i t h  loop executes in parallel and all other loops serially, 

m 

( i  = 1, 2, ..., na). Then the speedup Sp on a p-processor machine, where p = n p i  and pi 
i =l 

m 

processors are allocated t o  the i t h  loop, is given by Sp = nSpi. 
i =l 

2.6. Multiprocessors vs. Vector/Array Machines 

In this section we consider an application of Lemma 2.1. Generally in a restructured pro- 

gram we have vector constructs that  can execute in parallel on an  SEA system. Let S, denote 

the speedup that  results by executing a program PROG, on an SEA machine. Obviously vector 

statements can be executed in parallel on any MES system as well (perhaps with a significantly 



higher overhead). Do across loops with d > 0 can execute in parallel only on MES systems. 

Let Sm denote the additional speedup we achieve by executing the DOACR loops of PROG with 

d > 0 in parallel. Finally, let So denote the additional speedup tha t  results by overlapping dis- 

joint code modules during execution (vertical parallelism or high level spreading). If S,, is the 

total speedup we obtain by executing PROG on an MES machine, then from Lemma 2.1 we have 

s, = s v *  s m *  so 
It  is clear that  for SEA systems we always have Sm =l and So = 1, while for MES systems all 

three components may be greater than one. If SsEA(PROG) and SMEs(PROG) denote the overall 

speedups of PROG for SEA and MES systems respectively, then 

sm = s~ and 

SMEs = Sv* S m *  So 

Assuming no overhead of any type or the same overhead for both systems, the S, term should 

have a value tha t  depends on the program characteristics (and is independent of the machine 

architecture). For each program we can therefore measure the additional speedup offered by MES 

systems. Let us define a,(PROG), the MES superiority index as follows. 

s,,, (PROG) 
(U(PROG) = = sm * so 

s,, (PROG) 

where 1 5 a,(PROG) 5 P. a, is computed on a program basis and can be used as  a relative 

performance index for MES architectures (PROG can execute a, times faster on an MES system 

than on an SEA machine). 
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CHAPTER 3 

PROGRAM PARTITIONING AND INTERPRO CESSOR COMMUNICATION 

In this chapter we consider two closely related problems: Program partitioning and inter- 

processor communication. These are two popular terms in parallel processing, but there is no 

precise definition as t o  what their meaning and use are [GGKM83], ISton771, (Veid851. Int~iit,ivnIy 

these two terms are self-explanatory: Program partitioning refers to the pmcess of hreaking a 

program down t o  smaller components, but this can be done by using several different approaches 

and for different objectives. Questions like how we partition a program, what are the boundaries 

between partitions or parts, how we define a "part", what are the trade-offs and the precise goals 

of program partitioning remain largely unanswered. The  term "interprocessor communication" 

is also self-explanatory. But similar questions about the precise meaning of interprocessor com- 

munication and its impact on prngra.m exrzcubion have no uniquc nnnwcm, Also, wt  do s ~ o l  have 

available a methodology for quantitatively characterizing these terms. 

Here we a t tempt  t o  define more precisely the problems of program partitioning and inter- 

processor communication, to  model them,  irlentaify the variables involved and quantify t,hem. We 

see below Llial program partitioning, interprocessor communication, parallelism, and da ta  depen- 

dences are all closely related. Recall tha t  our machine model is a shared memory parallel pro- 

cessor system as shown in Figure 1.1. The  processor-memory interconnection network can be a 

multistage interconnection network or a bus. In Figure 1.1 we also have a dedicated processor- 

to-processor interconnection network. As usual we consider the case of the dedicated execution 

of a single parallel program. Data  dependences were also defined in Chapter 1. 



Let us consider initially the problem of interprocessor communication for the case of a 2- 

processor system. During the parallel execution of a program, different program modules will 

execute on different processors. Since both processors work on the same program there should ,be , 

some coordination among them. One processor must "inform" the other a t  certain instances 

about specific events. The process of information exchange between two or more processors exe- 

cuting llie same program is called interprocessor commun%'cation. We can distinguish two 

types of interprocessor communication: Data communication, during which one processor 

receives d a t a  tha t  i t  needs from other processors, and control commzsnication, where processors 

exchange control information, for example t o  announce an event or t o  coordinate execution. Data  

communication is mostly program dependent. Control communication depends highly on.. the 

architecture of the machine and is necessary only because i t  is needed t o  impose an order under 

which' specific events must take place (e.g. order of execution). Both types of interprocessor com- 

munication are significant because both are reflected as overhead in the total execution time of a 

program. 

Control communication is involved in activities such as barrier synchronization, semaijhore 

updates, or invocations of the operating system. Control communication is usually involved in 

d a t a  communication as well, as shown later. For the most part  in this chapter, we ignore con- 

trol communication or assume that  i t  takes a constant amount of time t o  checklupdate a sema- 

phore, seb a flag, or  activate a process. 

As mentioned in Chapter 1 from the DDG of a program we can derive different compact 

BDG's or CDDG's with nodes representing blocks of code (instead of statements) and arcs 

representing collections of dependences between nodes. Each different CDDG defines a different 

program partition. Later in the chapter we see how t o  construct the appropriate CDDG.or pro- 

gram partition. Let G(V, E) be a compact d a t a  dependence graph of a given program. This 
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directed graph G ( V , E )  is called the program task graph or simply the task graph. The nodes 

V of G are the tasks of the program and arcs E represent da ta  dependences among tasks. Each 

node vi E V makes a request for ti processors (i.e., task vi can use a t  most ri processors). We 

have serial and parallel tasks when ri = 1 and ri > 1 respectively. During program execution a 

parallel task spawns two or  more processes. A parallel loop for example can be considered a 

parallel task with one or  more iterations forming a process. A task graph may he nnnnrr:brd or 

disconnected. T h e  cardinality of G is the number of connected subgraphs in G .  If I G I =I VI 

the11 any parallel execution of G' will involve an interprocessor communication of zero. The 

indeyree of a node of G is the number of dependence arcs pointing t o  it,  or  equivalently, the 

number of immediate predecessors of that  node. Similarly we define the outdegree of a node t o  

be the  number of immediate successors or the number of arcs originating from that  node. The 

I I 

indegree of a subgraph G of G is the number of arcs ' u - - s ~ I  of the form u does not belong t o  G 

I f I 

and v&' . The outdegree of G is the number of arcs of G such that  rr + I ,  u EG and v does 

I 

not belong to  G . A node or snhgrn,ph of G is said t o  bc ready if i ts  indegree is zero. Note that  

if we execute d a t a  independent program modules (i.e., with zero indcgree) in parallel, da ta  com- 

munication does not occur. All nodes of a subgraph with zero indegree can be executed in paral- 

lel. Consider the two loops of Figure 3.1. The second loop is da ta  depe~~clenl on the first loop. 

However we can still execute them in parallel, each on a different processor assuming synchron- 

ized writelread access t o  array A by each processor. 

3.1. Goals and Trade-offs 

T h e  goal of this chapter is t o  study the problem of minimizing overhead due t o  interproces- 

sor communication. Communication overhead obviously occurs at run-time, but we want t o  deal 

with the problem a t  compile-time (the reason being that  any extra run-time activity will incur 

additional overhead).'"We will .develop techniques tha t  will be applicd t o  the source prograln a t  



. . .  
Sl: A ( i )  = B ( i )  * C (i)  

Figure 3.1. Example of da ta  communication. 

compile-time and will result in the reduction of communication a t  run-time. Our main criterion 

is t o  design these schemes such that  when applied t o  a given program, they do not reduce the 

degree of potential parallelism in that  program. In other words, if PROGl and PROG2 denote a 

parallel program before and after these schemes are applied, the execution time of PROG2 on a 

p-processor machine under any scheduling policy 'will be less than or  equal t o  the execution time 

of PROGl under the same scheduling policy. 

Now let us  see how communicstion takes place between two tasks u and v where v is da ta  

dependent on u .  If during exccution u and v run concurrently on different processors, da ta  com- 

puted in u must be sent t o  v and the overhead involved is explicitly taken into account. 

Another alternative is t o  execute u t o  completion and thereafter execute v on the same 

processor(s). Thus  da ta  computed in u and used by v can reside in the corresponding 

processor(s), and therefore no explicit communication through the interconnection network is 

needed. In such a case the communication overhead would be zero. Yet another alternative is t o  



execute v after u has completed, and possibly on a different set of processors. In this case we 
. . 

assume the existence of prejetching capabilities in the system (e.g., Cedar machine), i.e., the 

d a t a  computed in u and used by v are written into the shared memory (upon completion of u )  

and prefetched (for example t o  registers) before v starts  executing. The communication overhead 

in this case will also be zero. Note that  this latter approach allows other tasks to  execute 

between the time u completes and the time v starts. I t  also takes care of local memory limita- 

tions, e.g. when the processor(s) executing u is unable (due t o  memory limitations) t o  keep the 

d a t a  needed by 1) until 2) s tar ts  executing. In summary, we can not avoid overheads due to  "real 

time" communication tha t  occurs when tasks execute concurrently, but by using appropriate 

techniques we can eliminate or  reduce this overhead when the tasks involved execute on different 

time intervals. 

From the abpve discussiori i t  becomes apparent that  the approach we will use is t o  reduce 

interprocessor .communication by disallowing high level spreading whenever appropriate. It is 

clear tha t  by prohibiting high level spreading we reduce the degree of potentia.1 program parallel- 

ism. As shown later however, this is done only when i t  can bc guaranteed that  the savings'in 

interprocessor communication outweight the potential loss of parallelism irrespectively of the 

scheduling scheme used. 

In what follows when we explicitly prohibit two or more (data  dependent) tasks from exe- 

cuting concurrently, we say tha t  these tasks a.re merged. Thus task mnrging rloca not lexically 

merge tasks but i t  implies that  the merged tasks can execute on the same or different sets of pro- 

cessors, but  on different time intervals. This restriction can be relaxed for certain cases as shown 

later. For  the purpose of this work we assume tha t  merged tasks execute on adjacent time inter- 

vals (one after the other), and the d a t a  computed by one task reside in local memory until the 

successor task can use them. During execution each task is assigned a set of processors which 



remains fixed throughout execution of that  task, or varies dynamically during execution. 
I 

The process of merging defines a partition of the program into disjoint code modules or  

tasks. Program partitioning is the end-product of minimizing communication overhead. We wish 

t o  have a s t ruct~lre  that  represents a program without "hiding" any of its parallelism. This 

structure should be a low-level representation of the program, and in our case the best one is the 

d a t a  dependence graph (DDG). Any other higher level program graph can be derived from thc 

DDG by merging together some of i ts  nodes. Merging however may hide some of the parallelism 

inherent in the DDG. T h e  extreme case is considering the entire program (DDG) as a single node 

(task). (It should be emphasized that  we are not concerned about how t o  schedule a program 

graph a t  this point; and the material of this chapter is applicable t o  any scheduling scheme.) 

Since merging reduces the degree of parallelism, i t  should be done only when i t  can be proved 

that  the (resulting) reduced graph will have a shorter execution time than tha t  of the previous 

graph, under any scheduling scheme. Clearly independent tasks can never be merged, unless 

scheduling overhead is taken into account and that  is the subject of Chapter 7. 

In the following sections we propose optimal and near-optimal solutions t o  the problems of 

program partittinning and minimization of interprocessor communication. First we consider an 

idealized program model consisting of atomic operations, a.nd without coarse grain constructs. 

All atomic operations have equal execution times. Even though this is not a very realistic pro- 

gram model, a few functional programs fall into this category. We propose a model for quantify- 

ing interprocessor communication for such programs, and present an algorithm tha t  generates 

optimal partitions for chains of tasks. This algorithm also generates optimal 

time/communication schedules for this particular case. 

Then we cvilsider the case of real Fortran programs and show how some of the above ideas 

can be applied t o  real programs. The  algorithm mentioned above can be used t o  obtain optimal 



partitions of straight-line code in Fortran programs, chains of serial loops, and some types of 

parallel loops. However the idiosyncrasies of Fortran do not permit a direct mapping to  the 

idealized model. Furthermore, these idiosyncrasies can be used t o  our advantage t o  obtain fast, 

efficient partitions of real programs heuristically. These partitions are locally optimal and are 

appropriate for efficient execution on real parallel machines. 

3.2. More on Communication and Partitioning 

For the rest of this chapter interprocessor commiinica~tion refers t o  da ta  communicetioii 

alone, unless stated otherwise. Let ui denote the task (program module) assigned t o  processor i, 

in a parallel processor system with p processors. Then int,erprocessor communication, or data  

communication from processor i to  processor j ,  takes place if and only if u j  is da ta  or flow 

dependent on ui, or  when d a t a  computed in ui are used by uj. Note tha t  anti-dependences and 

output  dependences are satisfied through control communication only. Therefore da ta  communi- 

cation refers t o  interprocessor communication that  involves explicit transmission of da ta  between 

processors. We use S,(i) t o  denote the amount of da.ta sent by processor i t o  processor j. 

Similarly Rj( i )  denotes the amount of d a t a  received by processor j from processor i. For each 

task, R i ( j ) S j ( i ) .  If {a',,..., ik) is a set of tasks tha t  execute in parallel, then 

Let us define the unit of data t o  be the value of a scalar, and the communication unit T 

t o  be the time i t  takes t o  transmit a unit of da ta  between two processors. Then the time spent 

for communication during the concurrent execution of the two loops of Figure 3.1 on two proces- 

sors would be r*n 
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Interprocessor communication takes place only during the parallel execution of da ta  depen- 

dent tasks. By executing such tasks in parallel we may reduce the execution time if the amount, 

of communication is not too high. Clearly there is a tradeoff between parallelism and communi- 

cation. Communication is minimized when all tasks execute on the same processor; parallelism 

however is also minimized in such a case. Parallelism on the other hand tends t o  be maximized 

(or equivalently execution time tends t o  be minimized) when each task executes on a different 

processor. This however maximizes interprocessor communication. T h e  problem of simultane- 

ously maximizing parallelism and minimizing communication. is a hard optimization problem 

that  has been proved NP-complete [Ston77], [GaJo79]. Communication takes place to satisfy 

da ta  dependences. Another way of viewing this relation is the following: communication 

quantifies the notion of flow dependence between different tasks. 

We can intuitively define the degree of parallelisna as the number of ready tasks a t  any 

given moment, Obviously in a system with p processors we want the"degree of'parallelism to 

always be a t  least p .  In general, the degree of parallelism and interprocessor communication are 

incompatible. The goal during program partitioning is t o  decompose the program as much & 

possible t o  keep the degree of pairallelism close t o  p ,  and at the same time to  have as  many 

independent tasks a s  possible t o  keep interprocessor communication low. Usually i t  is impossible 

t o  optimize both objectives since optimizing one counteroptimizes the other. For certain cases 

however there is an "equilibrium" point that  minimizes the parallel execution time. 

In the following sections we develop a formal model for interprocessor communication and 

stlidy the impact of d a t a  communication on execution time. For special types of program graphs 

we can obtain optimal partitions for an unlimited number of processors, and optimal processor 

allocations for a limited number of processors, where execution time is minimized also taking 

into account interprocessor communication. Then we consider program partitioning for the 



specific case of Fortran programs and show how the above model can be applied t o  minimize 

d a t a  communication between certain types of Fortran tasks. 

3.3. Methods for Program-Partitioning 

Tb.ere are two approaches for partitioning a program. The  top-down approach starts  with 

a single task which is the entire program. Then following some ri11es it, clccomposes tho program 

into snialler tasks in a recursive way. The  second is a bottom-up approach. Starting with the 

lowest level graph representation of the program, i t  tries t o  merge nodes togathcr t o  form largcr 

tasks. The  best low level representation of a pr0gra.m is the DDG. In both cases we have to  

split o r  merge nodes repeatedly until 1) we have ellough tasks to  assign t o  p processors a t  each 

moment during execution, and 2) the splitting/merging creates tasks tha t  are "as independent as 

possible". Heuristic algorithms could be used t o  obtain a suitable partition. In terms of avail- 

able information, the bottom-up composition is superior t o  thc top-down decomposition, Thio is 

true since during decomposition of the entire program we do not have informati011 about its 

internal s lruc l~ ire ,  and extensive searching must take place. During coqposition hnwev~r ,  wc 

have information about the global structure of the program (that  can be easily maintained by 

the compiler) as well as about its basic components. We can therefore perform local optimiza- 

tions tha t  may be impossible or  very expensive t o  do in the top-down approach, For what, fnl- 

lows we assume tha t  program partitioning is performed through composition starting from the 
, 

d a t a  dependence graph of the program. 

Let Gi E Gi(Vi,Ei) be a directed graph. Our approach t o  program partitioning is t o  s tar t  

from GI, the DDG of (;he program, and through a series of transformations that  create a 

sequence of CDDGs G2,G3,...,Gk-1, construct Gk which gives the program task graph and there- 

fore the final partition. Since the construction of the program graph is done throiigh composition 



we have I V1 1 <I V2 I< - - - <I Vk 1 and I El 15- . . <I Ek 1. Gk will have enough tasks t o  keep all 

p processors busy while minimizing interprocessor communication. Our approach t o  program 

partitioning involves the design of exact and approximation algorithms that  accomplish the fol- 

lowing goals. 

Tasks are merged together if and only if the resulting graph is better 
(in terms of execution time) under any circumstances, i.e., under any 
scheduling scheme and for any number of processors. 

Optimal partitions for special types of graphs with serial nodes. 

Optimal partitions for special types of graphs with serial and parallel 
nodes and for an unlimited number of processors. 

Near-optimal partitions for general task graphs. 

Efficient near-optimal partitions for task graphs of real Fortran programs. 

Nodes are merged only if da ta  communication is very high. In this way we reduce only the 

necessary degree of parallelism t o  keep communication a t  tolerable levels. The  next section 

describes the model that  can be used t o  construct Gk. 

. . 

3.4. A Model for Quantifying Communication 

Consider a: machine with p processors that  are connected through a bus t o  a shared 

memory. The model s tar ts  wil;li a representation of the program as a, directed task graph as 

defined in the previous section. Candidates for merging are nodes whose possible parallel execu- 

tion involves a large amount of da ta  communication. 

Let G1 bc thc DDG of a program. The first composition of tasks finds all strongly con- 

nected components of C,. Each strongly connected component forms a task and let G2 be the 

resulting task graph. T h e  arcs of G1 and G2 are labeled with weights called the communication 

trrafic or weight such tha t  the weight wi of arc ei=(vi,vj) is given by .:, 



wi = ~ * m  

where m is the number of d a t a  items tha t  need t o  be transmitted from task vi t o  task vj, and T 

is the communication constant. For example the communication traffic between the two loops of 

Figure 3.1 is T * n .  During the reduction of G1 t o  G2  the composition of new tasks is performed 

as follows: 

Let V 1 = { ~ 1 , u 2 , . . . , ~ ~ )  be the tasks of G I  and t , (i=1, - - . ,n) be their serial execution 
'i 

times. Suppose now tha t  subgraph Hi&G1 is a strongly connected component of GI. Then Hi is 

replaced by ti nod& uY with execution time 

Arcs are merged using the following procedure: For each task v not in Hi, replace all arcs 

V v e ,  , e 2 ,  ..., e r  originating from v and such that  e[=(v,u,), and u,EH,, (i=1,2 ,..., j) with an arc 

H 
e V  =(v,u ) which has a weight wU given by 

After the first reduction the resulting graph G 2  is a connected or  disconnected graph without 

nontrivial strongly corinected components. Therefore G2  is a directed acyclic graph or  DAG. 

. ,  
During parallel execution of C2, two (or more) independent, or da ta  dependent uodes may 

execute simultaneously. Let u i+uj  be two da ta  dependent tasks. -If ui and u j  execute simul- 

taneously on two processors, the total execution time T will be 

T =nrax(Tf,  T i )% 

This is a reasonable assumption since the processors are connected through a bus and bus tran- 

sactions are serial. The  communication time wij is reflected in the total execution time since the 

processor executing ui incurs an overhead t o  transmit the data, and the processor executing u j  

must wait until the da ta  arrives. 



Let us assumc that  the total overhead is equal t o  the time i t  takes to transmit the data.  

Therefore if tasks ui and u j  execute on the same processor, the communication can be done 

through the local memory inside each processor and i t  is ignored. The  execution time in that  

case will be 

T , = T ~  +T;. 

. We also assume tha t  tasks are collections of atomic operations, and if u is a parallel task 

and T; is its serial execution time, then the parallel execution time TPu of u on p<T; processors 

will be 

Consider a set of two tasks {u ,v). We use the notation (set-x/task-x) t o  describe the execution 

of u and v ,  where x can be serial or parallel. Task-serial '(or t-s) means tha t  both u and v 

execute serially. Task-paraNel (or t-p) indicates that  a t  least one of u and v executes on more 

than one processor. Set-serial (or s-s) means tha t  both u and v execute on the same set of pro- 

cessors (perhaps in parallel). If both execute on g processors, then u will complete execution 

I I I 

before v starts .  Sf u executes on p and v on p processors and p < p ,  then p processors are 

give11 to  the se t  and u and v s tar t  simi~ltaneous execution, with u executing on the'first p pro- 

1 .  

cessors and v executing on the remaining p -p processors. When u finishes executing, all pro- 

cessors are taken over by v .  Set-parallel (or s-p) means tha t  u and v are executed concurrently 

on disjoint sets  of processors. Therefore there are foiir possible ways of executing u and v. 

(s-s/ t-s)  describes the case wl~ere both u and v execute serially or! the same processor. 

(s-s/ t-p) when each of u a ~ i d  v executes in parallel but on the same set  of processors. 

(s-p/t-s) is the case of u and v executing serially but  each on a different processor. Finally 

(s-p/t-p) ,denotes the case wherc each of u and o executes in parallel and both execute con- 



currently on disjoint sets of processors. The above notation can also describe the execution 

mode for sets with an arbitrary number of tasks. 

As mentioned above, interprocessor communication is ignored for the case of (s-s/t-s) or 

(s-s/t -p) when all tasks execute on the same number of processors. For the case of two tasks 

u and v the total execution time is defined as follows: 

(s-s/t-S) --r T;+T; 

(S -S /t -P ) + T~'+T; 

(if both execute on the same p processors) 

(s-p/t-p) --r m a x ( ~ ~ ~ , ~ ~ ~ ) i w ~  (3.5) 

where we is the weight of the arc e =(u , v) (if any) and p , are disjoint sets of processors used 

by a and v ,  respectively. 

Note that  for the (s-s/ t-p) case, if u and v execute on a, different number (but the same 

I 

common subset) of processors, say p and p respeat~ively, then the total cxccution time is defined 

I 

as follows: Suppose p <p , i.e., both tasks will execute on a common set of p processors but task 

v will use an extra p - p processors. Suppose also that  task v will finish execution after taok u 

I 

has completed. Both tasks s tar t  executing concurrently, 94 on p processors and v on p -p pro- 

cessors. When u lerminates, task v takes over the remaining p proccomrs and erecules UII p' 

processors until i t  completes. Since the overlap (i,e, set seria,liza.tion) 'is nst perfect Eomc inbctr- 

processor communication will occur in this case. We assume that  the da ta  communication is 

I I 

proportional to  p -p/p . In other words if the total amount of da ta  communication from u t o  v 

is w, the amount of d a t a  tha t  must be explicitly transmitted will be inversely proportional t o  

the the number of common processors. In the above case the da ta  communication that  must be 

I I I 

transmitted through the bus will be (p -p/p)w. When p =p (total set serialization), the 
2 .. 



communication is zero. When p and p are disjoint sets of processors (set parallel), then p =O 

and therefore the da ta  communication is w as would be expected based on the previous 

definitions. Therefore the total execution time for the case of (s-s/t-p) where u and v execute 

I 

on p and p processors respectively is 

Since this case is not truly set-serial let us denote i t  with ( s - i / t - ~ ) .  Again the above can be 

easily extended for any set of tasks. We can say tha t  the above notation describes four basic 

schedules. We can compare basic schedules, i.e., the corresponding schedule lengths (or execu- 

tion times) using the following notation. 

( s  -?/t -2) ( s  -?/t -2) 

where ? €(serial, parallel) and E{ <, 5 >, 2 =, #}. We can augment the basic schedule 

notation with a tuple tha t  specifies the number of processors assigned t o  each task. For the case 

of the previous example (s-s/t -p) (p ,p) ,  indicates that  u will execute on p processors followed 

by the execution of v 011 the same p proccssors. The schedule corresponding t o  (3.6) can be 

I 

uniquely characterized by ( s  -f/t -p) (p ,p ). We can n0.w s ta te  the following lemma. 

Lemma 3.1 Tf u and v are two adjacent tasks connected by e=(u ,v )  with a communication 

weight of we, and 

(S - ~ / t  -s) 5 (S -p/t -s) or T; +T: *ax(TfJ T ; ) w e  (3-7) 

then it is also triie tha t  . 

(s-.~/t...-p) <(s-p/t-p) or  T~"+T~'C. ax( TPu, TPu) +we . (3.8) 

Equivalently if the execution time of u and v when they execute serially on the same processor is 

smaller than when they execute simultaneously on two different processors, then the combined 

parallel execution time when they execute on the same set  of p processors is smaller than when 



each executes on i ts  own set of p processors and their execution is concurrent. 

Proof Since (3.7) is true, i t  follows directly that  

we>min(T;, T i ) .  

Since by definition TPu<T: and TPv<T; we have 

we 2 min( TpUl T;) 

and by adding the same term t o  both sides of (3.9) we get 

to, + max( T:, T;) 2 - min( T,,", T;) + max( T:, T;) . (R 10) 

But  the right handside of (3.10) is by definition equal t o  T ; + ~ ,  therefore (3.8) is also truc. . 
Theorem 3.1 For a set of tasks { u ,v ) and an unlimited number of processors, the following is 

a generalization of Lemma 3.1. 

if (s -s / t -s )<(s-p/ t -s )  

then ( ~ - ~ / ~ - P ) ( P , P ' ) I ( ~ - P / ~ - P ) ( P , P ' )  
or  equivalently (from (3.2), (3.4), (3.5), and (3.6)) 

T; - (p' - p)TPu 
then T; + P < max( TpuI T;, ) +,,-we . - 

P ' .PI 
Proof We have two cases depending on which of u and v is larger. 

GaaLL T; 2 T;, (i.e., task u is greater than or equal t o  task v). Then from (3.l.l) we have 

T; < w e .  

From (3.12) and (3.1) we have, 

which is true due t o  (3.13). 

ChxidL T; c T; (i.e., task u is smaller than v). Therefore from (3.11) we have 



Here there are two subcases. 

Then after we carry ou t  the calculations in (3.12) we have 

p T P u ~ p w e  or TPu1we 

which is (3.15) and therefore true. 

Again from (3.12) we have 

and finally 

But from (3.16) we have 

T ;  T ;  
-5- T ;  p' 

or, -1- 
P' P T I  

and therefore t o  show (3.17) i t  is enough t o  show tha t  

which is true since we 2 T , ~  > . 
\ 

Lemma 3.1 and Theorem 3.1 can be used t o  partition a program in a bottom-up approach, 

starting from its DDG representoation and composing larger tasks by merging nodes of the DDG 

together whenever appropriate. But task merging reduces the possibilities for high level spread- 

ing and therefore the degree of parallelism. However by using Lemma 3.1 and Theorem 3.1 we 

can mcrge only those tasks tha t  do not affect the degree of parallelism. 



I 

More precisely if G is a program task graph and u ,  v are tasks in G ,  then let G be the 

graph derived from G by merging nodes u and v into a single node w .  The  merging of u and v 

I 

takes place if and only if the execution time of G is less than or  equal t o  the execution time of 

G under any scheduling scheme and any number of processors. In other words we merge tasks 

together only when i t  is "safe" under any circumstances. More elaborate partitions may follow 

if necessary as described in the following sections. , 

W e  can merge tasks of a graph G in any order by checking repeatedly pairs of tasks in G .  

If a pair of tasks satisfies the conditions of Lemma 3.1 or  Theorem 3.1, the two nodes in the pair 

are merged and form a single task. If for a given task there is more than one adjacent task for 

which the conditions are met, the order of merging becomes significant. Only in special cases we 

can find the optimal order and thus the optimal partition as explained below. However any 

I 

merging that  is based on the above tests is bound t o  reduce G into a task graph G that  will 

have an execution time less than or equal to  that  of G ,  irrespectively of the scheduling scheme 

used. For  example an initial partition of the graph in Figure 3.2a will be formed by merging the 

first three nodes labeled 5, 10, and 15 into a single node labeled 30. This will be accomplished in 

two steps. The same partition will be obtained if we s tar t  from the leftmost or  rightmost node. 

For special types of graphs the optimal merging can be found; In addition the optimal 

schedule that  minimizes execution time (taking into account interpr6cessor communication) can 

also be obtained for a limited number of processors. 

3.5. Optimal Task Composition for Task Chains 

In this section we present the task composition or TACOM algorithm that  finds the 

optimal task composition for chains with da ta  dependent serial tasks. For a limited number of - 
processors, the algorithm also finds the optimal processor allocation for task chains that  minim- 



ize overall execution time includihg interprocessor communication. Lemma 3.1 and Theorem 3.1 

, are implicitly used to  drive the algorithm. As shown by Theorem 3.1, if two tasks involve a 

large amount of d a t a  communication when they execute concurrently (but each serially), then 

they are combined to  form larger tasks. The components inside these tasks can execute in paral- 

I 

lel, but  on the same physical processors. For this case we assume an idealized model where inter- 

task cor~iii~unication is constant and thus independent of the way we partition and schedule a 

chain of tasks. W e  also assume tha t  the da ta  can be sent from one task t o  another a t  any time 

I after the tasks s tar t  executing. This simplification is not very realistic but  i t  makes i t  easier to  

describe the model and the algorithm. As it will be shown later, intertask (or interprocessor) 

communication changes depending on how tasks are grouped together and how they are 

scheduled. Assuming tha t  the compiler can be used to  evaluate intertask communication for each 

given configuration during the application of TACOM, precisely the same algorithm can be used 

to perform optimal partitioning and scheduling df real Fortran programs. Before we describe the 

.algorithm let us define the necessary terms. 
I 

A chain graph is a directed graph of the ty,pe shown in Figure 3.2a, with V={1,2, ..., k )  

and E =fei =(i , i+l)  I i = l ,  ..., k -1). Each node i is associated with a weight ti which is its serial 

execution time. Each arc ei=(i,i+l) is labeled with a weight w which gives the amount of 
ei 

communication traffic from node i to  node i+l .  A fork-join or FJ-graph is a graph of the type 

shown in ' ~ i ~ u r e  3.2b consisting of a single source (node with indegiee of zero), a single sink 

(node with outdegree of zero), and an arbitrary set of source-to-sink disjoint paths. The 

TACOM algorithm can perform optimal task composition for chain and FG-graphs. In what fol- 

lows we consider the case of chains and the extension to  FG-graphs is straightforward. 

Consider a chain graph G, and let v, and vk be its first (source) and last (sink) node respec- 

tively. We can use the results of Lemma 3.1 and Theorem 3.1 to  merge tasks tha t  involve heavy 



(b) 

Figure 3.2. Example of chain and FJ-grapha. 

d a t a  communication. However Lemma 3.1 gives us the necessary condition for merging two 

tasks but i t  does nbt give us any insight as to  how the optimal merging can he. n.chieved, in case 

of an arbitrarily long chain of tasks. The  TACOM algorithm of which a similar version is given 

in [l'oly84] and [Bokh85] uses Lemma 3.1 t o  choose pairs of tasks that .are  candidates for merg- 

ing, and finds the optimal merging pattern as described below. 

Let VG = (1, 2, ..., k )  be the tasks in chain G.  We construct a layered graph LG consist- 

ing of k layers L 1 ,  L2,  . . . , L k .  Nodes in LG are represented by ordered pairs ( i ,  j )  such that  

1 5 i ,  j  5 k and i 5 j .  A node ( i ,  j )  denotes the merging of nodes i through j  (inclusive) into a 

single node. Each node ( i ,  j )  in La is labeled with ti, defined by 



i 
tij = C tm (3.19) 

m =i 

where t,,, is the label (serial execution time) of node rn in G .  The  layers of LG are constructed 

as follows. L 1  = { (1 ,  j )  I j = 1, 2,..., k ) ,  i.e., L 1  contains the nodes corresponding t o  all com- 

binations of merging tasks 1 through j ,  for ( j  = 1, 2, ..., k ) .  There are k such nodes. Then for 

( i  = 2, 3,  ..., k )  we construct k - 1 layers Li which are defined as follows. 

Li = ( i ,  i ) ,  ( i ,  i+l), ( i ,  i+2),..., ( i ,  k ) ,  (i+lJ i+l),..., (i+lJ k),...,(k-1, k ) ,  ( k ,  k )  [ ' 

The  leftmost and .rightmost nodes of Li (with the exception of L 1 )  are ( i ,  i )  and ( k ,  k )  respec- 

tively. The LG for the example of Figure 3.2a is shown in Figure 3.3. The  ordered pair ( i , j )  a t  

the left hand side of each node in Figure 3.3 denotes the tasks included (merged) into tha t  node 

(i.e., tasks i through j inclusive). 

Arcs in LG exist only between successive layers and only connect nodes ( i ,  j )  and ( m  , l )  such 

tha t  i 9 ,  m and m =j+l. In layer Li the first node is ( i , i )  and the number of different 

merging combinatioi~s tha t  s t a r t  from node i is k-i+l: Similarly all merging combinations -that 

s t a r t  from node ( i+l)  are k -(i+l)+l. In general, the number of nodes in layer Li ,  (i=2,3 ,..., k )  

is 

( k  -i+l)4k -i +2) ' L  1 = 
I i l  

2 

For  the first layer of LG we have IL ,  I=k, since the first layer consists of all nodes (l,i.), for 

(i=1,2 ,... ,k). The  outdegree of node ( 1 , l )  is k-1, of node (2,2) k-2, and in general the outdegree 

of node ( i , i )  is k - i .  Note tha t  in each layer Li the node with the largest outdegree is (a , i ) .  In 

fact if the nodes inside each Li are in order as shown in Figure 3.3, then the outdegree of each 



Figure 3.3. T h e  application of the TACOM algorithm on the example of Figure 2a. 

node from left t o  right is [ (k  - i ) , ( k  - i - l ) , ( k  4 - 2 ) ) .  . . , 1 , 0 ] ,  [ (k  - i - l ) , ( k  - i -2) , . . . ,1 ,0] ,  ... , [1,0] , [ 0 ] .  

T h e  nodes of the first layer L 1  are labeled according t o  (3.19) .  T h e  arcs originating from 

the tasks of L 1  are labeled as follows: From each node ( 1 , i )  we have ( k - i )  a.rcs originating from 

i t  and pointing t o  nodes of L2 of the form ( i + l ,  j ) ,  for i  < j .  All these arcs are labeled with 

w i.e., the communication weight of arc e, = ( i , i + l )  in G .  This is repeated for ( i=1 ,2  ,... , k )  of 

L 1- 



Then the algorithm relabels all nodes and arcs of LG starting from L2. In general, if the 

nodes of and arcs originating from layers L1,...,Lr-l have been labeled, the nodes of layer L,, 

( r  < k )  are labeled a s  follows. Let ( m ,  d) be a node of. L, connected t o  a number of nodes of 

the form (h, ,m -1) of L,-l (for h, <_ m -1 < m 5 i and all h,). Let xh be the label of (h,, m -1) 
r 

and w be the weight of arc (h , ,  m-1) +(m,  i) .  Also let tmi be defined by (3.19). The  label x, 
h; 

of node ( m ,  i )  is chosen from the labels of all nodes (h,, m -1) of Lr-l pointing t o  ( m ,  i )  as fol- 

lows. 

x, = min { wh, + max(zh, , 'mi) . 

The  arc from which the node ( m ,  i )  was labeled is marked. 

I 
The  arcs are labeled with the corresponding accumulated da ta  communication weights as 

follows. Let ( m  , a) EL, and e l  be the arc (h,, m -1) + (m , i )  from which node (m , a )  was 

labeled in the previous paragraph. Now let e 2  be the arc connecting ( m ,  i )  t o  a node (i+l, CJ) of. 

(for r < g).  Also let wi be the weight of arc ei = ( i ,  d+1) in thc original chain G.  Then 

the weight of e2 is we and given by 
2 

wea = wi + w e .  (3.21) 
1 

A global pointer ptr is maintained which a t  any given moment points t o  a node with the 

minimum label. The algorithm terminates when one of the following two conditions is met. 

All nodes of LG are labeled, or 

All nodes a t  a given layer Li have labels greater than the node 
pviated t o  by p t r ,  and ptr points t o  n node ( j , k )  of a previous layer. 

After the algorithm terminates, the optimal merging of the tasks in G is given by following 

backwards the marked arcs starting from the node pointed to  by pt r .  The nodes in this path are 

of the type (1, ii), (i,+l, iz), ..., (i,+l, k)  where 1 < i l  < i2 < i3 < . . < i, < k ,  and they 



Input: A chain graph G ( V ,  E), with V = (1, 2, ..., k'), E = {ei = ( i ,  i+l) I i =1, 2,...,k-I), task 
execution times ti, ( i  = 1, 2, ..., k )  and communication (arc) weights wei, (i= 1, 2,...,k-1). . 

Output: The  optimal task composition (partition), or the optimal schedule of G on p 5 k processors. 

Method: 
F r o m  G construct a layered graph LG with k layers ( L , ,  C2, , . . , Lk). Nodes 

in layers are ordered pairs (i,  , j j  such tha t  i 5 j representing t,he merging of nodes 
i through j of G .  Layers are defined,by the following sets: 

L ,  = ( ( 1 ,  8') s' = 1, 2, ..., k ) 
4 . .  

L, = { ( m ,  i )  I such that  m I d ,  m = 1, 1+1, ..., k ,  and i = I ,  1+1 ,..., k ) 
. . .  

Lk = { (k ,  k )  1. 
l FOR (all nodes (i; j ) ,  i 5 j ,  i j  j = 1, 2,..., k of Lo) DO 

- label ( i ,  j) with xi = C ti 
m =i 

' ENDFOR 

l F O R  (all nodes (1, i )  of L,) DO 
- label all arcs originating from (1, i) with wei. 

- ptr points t o  node (1, i) with minimi.!m ri. 
ENT)FOR. 

F O R  ( r  = 2, to (k - 1)) DO 
FOR (every node ( m ,  i) in L,) DO 
- By searching all nodes ( h ,  m -1) of L,-I connected t o  ( m ,  8 ' )  

through eh compute the label x, of ( m ,  i): 
x, = min { w + max(xh, tmi) ) 

b 
eh 

- Mark the arc e,, corresponding to  the minimum value, 
and label all arcs originating from ( m ,  a) with 

U' + u',;+l - Oh 

where w i t  the weight of ei+l = (i+l, j) in G 
ei+l 

- If ptr  > x, then ptr e x ,  
' ENDFOR 

ENDFOR 
label node (k ,  k )  of LG with tk. 

l Reconstruct the optimal solution from ptr  . 

Figure 3.4. The  task composition algorithm (TACOM). 



uniquely define an optimal solution. A procedural description of the TACOM algorithm is given 

in Figure 3.4. 

The application of this algorithm for the example of Figure 3.2a is shown in Figure 3.3. 

Note tha t  the algorithm terminated when all labels of the third layer were found t o  be greater 

than. tha t  of ptr.  The optimal solution for this example is (1,3)(4,5), i.e., tasks 1, 2, and 3 form 

a new task and tasks 4 and 5 form another composite task. . 

The construction of the layered graph LC and the application of TACOM can be performed 

2 simultaneously. Each layer in LC has a t  most O(k ) nodes and each node has an outdegree of a t  

most O(k).  Since there are k layers in LC the worst case performance of the algorithm is 0 ( k 4 )  

3 and the average complexity is O(k ) where k is the number of tasks in the original chain G 

$ 

This  algorithm can also be used t o  find the optimal schedule of a set  of k d a t a  dependent 

tasks on p processors. In such a case the layered graph will consist of p layers and the path 

starting from ptr will give us the schedule tha t  minimizes parallel execution time taking into 

a.ccoi~n t interprocessor communication cost. 

3.5.1. Task Chains with Serial and Parallel Tasks 

The  same basic algorithm can be used to  generate optimal partitions fo; the case of chain 

graphs with parallel and serial tasks that  are 'to be executed on a system with an  unlimited 

number of processors. In this case the test of Theorem 3.1 must be used t o  decide whether two 

tasks should execute simultaneously or not based on the amount of d a t a  tha t  must be exchanged 

between them. A modification of the TACOM algorithm can be used in this case t o  compute the 

optimal partitioning and the optimal schedule when i t  . is guaranteed tha t  if needed, each task 

can be allocated as many processors as i t  requests. In what follows we use exactly the same nota- 

tion as in the previous section. 



As mentioned earlier ri is the number of.processors requested by task vi of G .  When we 

f consider a composite task v: tha t  contains more than one task of G ,  we define rS8 and ri to  be 

the number of processors requested by the first and last task-components of v: respectively. The 

order is taken t o  be tha t  which is implied by the direction of the da ta  dependence arcs. For 

example, the composite task corresponding to  node v," = (2, 5 )  in the graph of Figure 3.3, has 

f r ;  = r t  and r9  = rl,.  T h e  execi~tion times of the composite taks of L are given hy 

j -1 

tij = Z tnA,ll+, (3.22) 
m =i 

where 'm  ,,+I is giver1 by (3.6). In this case (3.22) replaces (3.19) in the TACOM algorithm. The 

analogous modification of (3.20) for labeling the nodes of L is given by (3.23). 

xm = min 

Qir~iilarly the arcs of L are labeled in this case using 

I f 1 

- I rm, i  - 'i+l,g I 

W e 2  - we1  + *wi f 8 
(3.24) 

m 4 r m , i 1  rt+l,g) 

instead of (3.21) of the previous section. TACOM can then be applied in exactly the same way as . 

shown in Figure 3.4. The  output  of the algorithm will be the optimal partition of a chain graph 

tha t  minimizes communication for the unlimited processor case without reducing the amount of 

available parallelism. 

3.6. Reducing Communication in  triangle^ 

As mentioned earlier the problem of minimizing communication in general DAGs without 

reducing potential parallelism is NP-complete. However we can solve the problem optimally for 

chains and other simple graphs, tha t  are often the building blocks of general DAGs. We can then 



process DAGs by solving the communication problem optimally for each of their building blocks. 

Local optimality however does not guarantee global optimality, but  this approach can be used t o  

design near-optimal heuristics. 

One of the most frequently observed basic subgraphs in general DAGs are triangles, tha t  

arise.from transitive dependences. Figure 3.5 depicts a triangle with tasks a ,  b, and c .  Weights 

wl, w2, and w3 denote as usual the amount of communication between pairs of tasks. We can 

have an arbitrary number of tasks between nodes a and b for example, but  since they would 

form a chain they can be partitioned using TACOM. Therefore in this case we are only 

interested in finding the conditions for the best merging of tasks in a triangle. Exhaustive search 

is appropriate in this case.   here are five possibilities: T o  leave the triangle unchanged; t o  

merge tasks a and b,  or a and c ,  or  b and c ,  or all a ,  b, and c .  The  best solution will beqic-  

tated based on the amount of da ta  communication and the relative size of the tasks. This is 

b trivial to  determine. Let T;, TI,  and T; be the serial execution times of tasks a ,  b, and c 

b respectively. Without loss in generality assume also tha t  T; > T I  2 T I C .  Consider the following 

enequalities. 

Figure 3.5. A basic subgraph. 



b TI - T; < w l  - wg 

Ti - T; 5 w,.- w2 

b 
T, < w ,  - ~2 

b TI - T, <w,  - W2 

T; < w 3  - w2 

TI < w, + w, 

b T, 5 or!, + ul2 
l'f (- w2 - 4 .  W$ 

then we have the following proposition. 

~ r o ~ o s i t i o n  3.1 If the tasks of a triangle must be merged t o  reduce communication, then the 

best merging is specified in the following table. 

Condition Best Merging 
X 6  X 7  X 8  merge all 0 ,  b, and c 

( X 1  X2)  t. ( X I  X3)  merge a and h 
- 

( X 1  X 4 )  ~ 5 )  merge a and c 
- - - - 

(X2  X4)  + ( X 3  X5)  merge b and c 

where and +denote AND and OR operations respectively. 

Proof For each case we compare the corresponding execution times. For example merging all 

three tasks together gives the best solution, if the resulting execution time is less than or equal 

t o  the execution time corresponding t o  merging any pair of tasks only, e.g. merging tasks .a and 

b .  In other words, 

T; +T: +T; <rnax(T; +T:, T ; ) + U ) ~ + W , .  

By simplifying this enequality we get (X6). Similarly' we can derive (X7) and (X8). All other cases 

are similar. . 



The  tests of the above proposition can be used t o  determine the optimal or  near-optimal 

merging patterns for other basic subgraphs as well. As an example consider the case of four 

tasks with d a t a  interdependences tha t  form a square. By adding a zero communication link 

between a pair of nonadjacent tasks, we can form two triangles tha t  can now be processed 

separately using the previous proposition. Note tha t  by definition independent tasks can never be 

merged. 

3.7. Constructing the Task Graph of Fortran Programs 

The assumption about constant communication weights used previously is not very realistic 

when we consider real Fortran programs. Communication per se, i.e., the.number of da ta  items 

tha t  must be transmitted between two given tasks is indeed constant. However in multiprocessor 

systems the time it takes t o  transmit the same amount of d a t a  a t  two different instances may 

vary. In our case we want to  .measure the effect of communication on program speedup, tha t  is, 

in terms of processor latencies, or execution time. Consider for example two tasks u and v, 

where v is d a t a  dependent on u .  The  number of d a t a  items that  will be sent froin u t o  v is con- 

s tant  for each such pair of tasks. In order t o  measure communication overhead precisely using a 

deterministic model, we must assume that  the time it takes to  transmit a unit of da ta  between 

two processors is constant. Delays in processor initiation caused by communicating these da ta  

however vary and depend on several factors. One such factor is the relative position of the source 

of a dependence in the code of task u ,  and its sink in the code of task v .  

Consider for example the parallel execution of tasks u and v of the previous paragraph, 

when both tasks s t a r t  executing a t  the same moment each on a different processor. Let 7 be the 

'time i t  takes t o  transmit a unit of da ta  between two processors. Assume tha t  each statement in 

u and v takes a unit of time t o  execute. Consider now a d a t a  dependence from u to v caused by 

a variable X which is defined in u and used in v. Let d l  be the execution time of the segment of 



u between i t s  first statement and the statement defining X, inclusive. Correspondingly d 2  

denotes the execution time of the code of task v between i ts  .first statement and the statement 

using X ,  exclusive. Depending on the relative positions of the use and the definition statements 

of X in v and u respectively, we have the four cases described below and shown in Figure 3.6. 

is computed in u before it is used in v .  Figure 3.6a shows the case where d 2  .> dl.+?.  

T h e  coiilrriunication overhead in this case is zero, that  is, no extra delays will occur in the 

(4 
Figure 3.6. Four different cases of interprocessor communication. 



processor executing v ,  since the value of X will be available when needed. 

G u s 2  Figure 3.6b shows the case where X is computed in u when i t  is needed in v .  T h a t  is, 

d2 = dl and in this case the communication overhead is 7, the time i t  takes t o  transmit X 

between the two processors. 

C h d L  In Figure 3 . 6 ~  X is used after i t  is computed but d2 - dl  < r, and the overhead in this 

case is ( d ,  - d2) +z  

Case In this case (Figure 3.6d) X needs t o  be used before i t  is computed. This case involves 

the largest overhead, and the processor latency is given by (dl  - dB) + T  

I t  is clear that  the communication overhead in all four cases is given by 

6 = max(0, d; - d2  +7), 

and the execution time of u and v when they execute concurrently on two processors is given by 

rnax(T;, T: +9. 
The  two tasks u and v should therefore be merged if and only if 

T; + T ;  <rnax(T;, T; +b) 

or equivalently if and only if T; 56. The same analysis can be done when each of u and v exe- 

cute on several processors, and both s tar t  executing concurrently. In this case we assume that  

each task is distributed equally among p processors, and each processor executes [T;/pl and 

[T:/~] part  of u or respectively. The  corresponding timing in this case would use [dl/p1 and 

[d&1 in place of d l  and d2 respectively. 

This model which is realistic satisfies Lemma 3.1, Theorem 3.1, and most of the assump- 

tionb I I S P . ~  by the simple model employed in the previous sections. The  TACOM algorithm is also 

valid here as well. However, intertask communication, should be estimated by the compiler for 



each different merging pattern tha t  appears in the layered graph of Figure 3.3. 

T h e  da ta  communication overhead caused by several dependences can be determined in a 

similar way. Consider again the  tasks u and v of Figure 3.6. Only "parallel" dependences, that  

is dependences tha t  lexically d o  not intersect need to  be considered. This implicitly assumes that  

in the worst case we can transmit [T /c~  da ta  items simultaneously through an interconnection 

network without conflicts (where E is the  exec~lt,inn time nf a. single statement), Cloarly thin is a 

realistic assumption for a parallel processor system. When two or  more dependence arcs cross 

each other, the arc whose sink precedes all other (sinks) is preserved and all other dependences 

are ignored (as far as processor initiation delays are concerned, but are accounted fnr in t8hc 

amount of communication). An example with two dependence arcs is shown in Figure 3.7a. A 

communication overhead may be caused by e 2  but not by e l  and therefore e l  is discarded as far 

as overhead is concerncd. 

Figure 3.7. (a) A cross dependence example. (b) Parallel tasks with several dependences. 



Thus  in the general case we have nonintersecting dependences from u t o  v tha t  may pro- 

long the execution time of v as shown in Figure 3.7b. (Since strongly connected components are 

always merged, as discussed below, the case with dependences going both directions never arises.) 

2 
If d: and d, denote the execution times for the segments of u and v defined by the i- th depen- 

dence arc, as shown in Figure 3.7b, then we have the following proposition. 

Proposition 3.2 If there are n dependences from u t o  v and the two tasks execute concurrently 

on two different processors, the total communication overhead will be 

1 2  
6, = max (0, ( d n  - dn ) + T + 6. 

where 4 = 0. 

Proof The formula can be easily proved using induction on n. (For exa,mple, 

1 2 
= max(0, d l  - d l  + i )  is obviously true as i t  was shown above for the case of Figure 3.6.) 

The execution time is then given by 

a max(T;, T: +4) 
and the two tasks are merged if and only if T: < 6,. 

We have seen how interprocessor communication can be measured for Fortran programs. 

Assuming tha t  the compiler is used to  measure interprocessor communication as described above, 

the task composition algorithm can be applied t o  find the optimal partitions for certain types of 

Fortran code. For long chunks of straight-line code, optimal partitions can be obtained by 

TACOM easily. The same is true for chains of serial loops, assuming loop bounds and branch 

probabilities of conditional statements are known. In the case where all loops have bounds tha t  

are expressions of the same variable, optimality can also be achieved. 

Even though partitioning of Fortran programs can be performed using the bottom-up 

approach described earlier, we choose to  partition programs using the following heuristic guide- 



lines for reasons tha t  are stated later. 

Partitioning Heuristic 

R1: Outermost loops form a single task (that  can possibly generate several processes dur- 
ing execution). 

R2: Conditional and unconditional branching statements form individual tasks ( that .  are 
given the highest priority during execution). 

RY: Each one of the remaining state111enLs form individual tasks, 

R4: Strnngly r.nnn~.ct,erl cnrnponents of tasks of typo R3 are merged into sillglt: h.sks. 

R5: 'l'he TACOM algorithm is applied t o  chains of serial loops, or chains of tasks of type 
R3 or R4? 

Any chains in the resulting program graph cannot be further reduced. Next we look for tasks of 
. . 

type R3 or R4 with transitive interdependences and for trees of tasks of type R3 or  R4. In the 

case of trees, the root-to-leaf path that  involves the highest total communication is determined 

and treated as a chain. TACOM can then be applied t o  that  chain adjusting the appropriate 

dependences during merging. The  same procedure is repeated until the entire tree is reduced t o  a 

single task, or the root-to-leaf path of a reduced tree ca.nnot be reduced further. 

Theorem 3.1 and thus TACOM can be applied t o  only special cases of chains of parallel 

loops. These include cases of pairs of loops with interdependences such tha t  all the dependences 

from each iteration of the first loop point t o  a single iteration of the second loop. 

As mentioned above, outermost loops are considered t o  be special tasks, and no partitioning 

is attempted inside an outermost loop. There are two reasons for this approach: First interpro- 

cessor communication for parallel loops (usually) has a "regularJJ pattern, and therefore is easier 

t o  deal with. Secondly, we have developed algorithms (discussed in following chapters) that  pro- 

cess complex loops efficiently or  optimally in a separate way. 



If the number of processors p ,  tha t  will be used during execution is known in advance, p r e  

gram partitioning can be carried out  further so  tha t  the resulting task graph G has enough 

"parallelism" and "balanced" tasks tha t  involve very little communication. As explained earlier 

there is no universal definition of "parallelism" or  "degree of parallelism" but i t  intuitively 

means tha t  G should have enough tasks t o  assign t o  all p processors a t  any moment during exe- 

cution. Since G is a directed acyclic graph i t  can he transformed into a layered graph as 

explained in Chapter 2. If the i- th layer has ni tasks and there are k layers in total, a possible 

definition of the degree o j  parallelism 6, (useful only t o  deterministic approaches) can be 

In summary, the techniques of this chapter can be used t o  obtain the partitioning of a For- 

tran program into tasks that  are parallel or serial outermost loops, or scalar tasks. .The resulting 

partitioning involves minimum communication between a series of scalar tasks and a series of 

serial 1oops;for any scheduling algorithm. This partitioning in effect defines a program task 

graph tha t  can be scheduled on a parallel machine using techniques tha t  are described in later 

chapters. 



CHAPTER 4 

OPTIMAL LIMITED PROCESSOR 
ALLOCATION TO PARALLEL LOOPS 

4.1. Optimal Processor Assignment to Parallel Loops 

Tt, h a s  been shown tha t  in most programs parallel loops are the source of the grcn.t,~.st- per. 

centage of parallelism [Kuck84]. In this chapter we will investigate the problem of proceaeor 

assignment to  parallel loops. This problem becomes especially important when we deal with 

nested parallel loops where inefficient assignment algorithms may result in an execution time far 

worse than the optimal. In programs with several nested parallel loops the efficiency may then 

drop down to  unacceptable levels. We can informally define the limited processor assignment 

problem as follows: Given an arbitrary multiply nested loop which contains serial and parallel 

(DOACR, DOALL) loops and a number of P processors, find the best way of assigning thc P pro- 

cessors to the loops so  tha t  the parallel execution time of the entire module is minimized. For 

loops with very few nest levels and systems with a small number of processors exhaustive search 

might be affordable at compile time. But as the number of processors increases, the number of 

processor-loop combinations grows exponentially. Moreover, loops with large nest levels are not 

very uncommon in scientific computations. As an example, 10 t o  17 deeply nested parallel Ioops 

were observed in several subroutines of the res t r~~c tu red  (by Parafrase) IEEE Digital Signal Pro- 

cessing Package [IEEE79]. In this chapter we define the stat ic processor allocation problem for 

parallel loops, and discuss an  optimal algorithm based on dynamic programming tha t  handles 

loops of arbitrary complexity. The algorithm described here may also be used t o  determine 

locally optimal assignments of loops of different programs when throughput is t o  be maximized 

in a multiprogrammed parallel processor system. 



4.1.1. optimal Simple Proces~ur Assignment to DOAL.La 

A metric called the eficiency index is used throughout this chapter. The usefulness of this 

metric is twofold. First i t  makes i t  easier t o  formulate the processor assignment problem, and 

secondly i t  allows us t o  observe several interesting properties of the problem tha t  are otherwise 

hidden in modular arithmetic. 

A processor assignment algorithm (OPTAL) is proposed tha t  solves the general problem 

optimally. The optimal processor assignment is guided by the use of a function called the 

assignment junction. The  assignment function can easily be defined to measure efficiency or  

parallcl cxecution time. Processor assignment in an arbitrarily nested parallel loop is performed 

by allocating (possibly) different numbers of processors t o  different loops in the nest. The tech- 

niques described below partition a p-processor machine hierarchically and assign different parti- 

tions of processors t o  different loops in the nest. T o  simplify our terminology we invariably refer 

t o  partitions of any size as processors. Consider for example two nested DOALL loops N1 and N2 
. . 

and a 8 processor systcm. One possible allocation t o  these loops would be one tha t  assigns 2 pro- 

cessors t o  the outer loop and 3 processors to  the inner loop. More precisely, this means tha t  the 

machine is partitioned into two halfs, each half consisting of 3 physical processors. Then each 

iteration of the outer loop N1 is assigned a one half partition and the corresponding iterations of 

the inner loop are allocated 3 physical processors. Therefore, "processor" is used as a generic 

term in this chapter and refers t o  clusters of physical processors of different sizes. 

Before we discuss processor assignment i s s ~ ~ e s  we need to  introduce some notation and 

definitions. T o  simplify the notation, each loop is. assumed t o  be normalized (i.e., its iteration 

space is of the form 1, ..., N )  and denoted by the upper bound of its iteration space. Thus, Ni 

denotes a DO whose loop body is execut'ed .Ni times, and L =(N1, NB,  . . . , N,,,) denotes an 

rn level nested DO where N, is surrounded by Ni-l and surrounds N,,, ( i = 2 ,  . . . m - 1 )  Nl 
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and Nm are the outermost and innermost loops respectively. 

In what follows the number of available processors P is always assumed t o  be "useful", 

t h a t  is, less than or  equal to  the maximum number of processors tha t  a loop L can fully utilize. 

I-Iere we assume tha t  a fixed number of processors has been allocated t o  each outermost loop of a 

given program. Our  aim is to optimally distribute the allocated processors t o  the  different loops 

in the (arbitrarily complex) nest for each such niitnermnstn Innp, in order t.0 minimizo tho paraillcl 

execution time. How processors are allocated t o  different outermost loops of a given program i s  

the subject of Chapter 6. 

Definition 4.1. For a DOALL with N, iterations tha t  has been assigned pi processors we define 

ci ,  the e f i c i ency  index o r  EI of N, as follows: 

T h e  efficiency index is an  indicator of how efficiently a loop runs on a given number of proces- 

sors. 'l 'he higher the El the higher the efficiency (as defined in Chapter 1). Some other properties 

of the efficiency index tha t  will be used directly or  indirectly in the following sections are: 

PI: For  any DOALL N, and any number of processors p we have: O C  6; < 1'. 

1 
P2: P'or any Nil ei = I. 

P3: For  N, 2 p ,  e'; > 1/2. 

I t  should also be noted tha t  p # q does not necessarily imply t[ # €9. I t  is always true that  

pi > 1. If during allocation a loop N, is not assigned processors explicitly, i t  is implied tha t  

pi = 1 and thus 6, = 1. 

Definition 4.2: For a nested DOALL L =(N1, N2, . . . , N,), a number of processors 

P = plp2  . . . pm and a particular assignment of P t o  L we define the e f ic iency  index vector 



P I  J'2 Pi 
w= (el , e , ..., € 2 )  of L , where ei is the EI for loop Ni using pi processors. 

In what follows, the terms "assignment of P" and "decomposition of P" are used inter- 

changeably. Any assignment of P t o  L defines implicitly a decomposition of P into factors 

P=p1p2 . . . pm where each of the na different loops receives pi, (i=1,2, ..., na) processors. A 

processor assignment profile (pl, pa, ..., pm)  (where loop Ni receives pi processors) can also be 

described by its efficiency index vector as defined above. 

P I  
Definition 4.3: For an assignment w = (el , ..., em Pm) of P = p1p2 . . . pm processors t o  L ,  

we define EL, the compound efi,ciency index ( CEI ) of L as 

For any L we also have O <  EL < 1. Let Tl be the serial execution time of a perfectly 

I 

nested DOALL .L.  Next suppose that  L is executed on P processors and let Tp and Tp denote 

the parallel execution times for two different assignments w= (el, e2, ..., em)  and 

I I I I 

w = (el, , ..., e m )  of P t o  L ,  where P = p l  . . . pm = p i  . . . We can express the paral- 

lel execution time Tp of L in terms of its CEI as follows: 



m 

where B is the execution time of one iteration of the loop, and N = n Ni.  B is assumed t o  
; =1 

be a constant for all loop iterations. The  following lemma is a direct application of (4.3). 

I I 

Lemma 4.1: Tp < Tp if and only if EL > EL. 

In the next few sections we show how the eficiency index cam he ilsed to  direct the efficient 

assignment of processors t o  perfectly nested parallel loops. 

Given a nested' loop L and a number of processors P we call a simple processor assignment 

one t h a t  assigns all P processors to  a single loop Ni of L .  A complex processor assignment .is 

one t h a t  assigns two or  more factors of P to  two or more loops of L .  

Theorem 4.1. The  optimal simple processor assignment over all simple assignments of P t o  L ,  

P is achieved by &signing P t o  the loop with c = max(Ei ). 
is1,fn 

Proof: Without loss in generality assume that  c = cl .  Then ci=l for i=2,3,  ..., m and 

I 

EL = c l .  For any other simple allocation of P t o  N j , .  j # 1, with a CEI of EL, we have 

I 

c1 = EL 2 EL = E j. The  optimality follows from Lemma 4.1.. 

T h e  following two lemmas are indirectly used in subsequent discussion. 

m 

Lemma 4.2. 
i =l 

Proof: By definition we have that  



and since the left hand side of (4.4) is an integer i t  follows directly tha t  

m. " Ni 

i =l 

The next lemma follows directly from Lemma 4.2. 

Lemma 4.3. For any integer n ,  we have n - I 13 
For the next lemma and most of what follows we assume tha t  processors are assigned in units 

that  are equal t o  products of the prime factors of P unless explicitly stated otherwise. Therefore 

each loop is assigned a divisor of P including one. 

Lemma 4.4. If N is a (single) DOALL loop, P = p1p2 . . . pm, and ei1 ( i=ll2, . . . ,m) are 

the efficiency indeces for assigning pl ,  p1p2, p 1p2p3, ..., p lp2 . . . pm processors t o  N respec- 

tively, then 

f 1 2 E 2 2 E a >  . . .  > E m . ,  (4.5) 

Proof: We sketch the proof for m =2 and the general case follows exactly the same reasoning. 

N /  P,  N/P,P~ 
E l  2 € 2  + 2 

TNA TN l p l p 2 1  
- P2 ILl t 

p 1p 2 

But the last relation is Lemma 4.3 and is therefore true. 

From Lemma 4.1 we conclude that  the optimal processor assignment of P t o  L is the one tha t  

. maximizes EL. Each assignment defines indirectly a decomposition of P into a number of factors 

less than or equal to  the number of loops in L .  As P grows, the number of different decomposi- 

tions of P into factors grows very rapidly. From number theory we know tha t  each integer is 



uniquely represented as a product of prime factors. Theorem 4.2 below can be used to  prune 

'(eliminate from consideration) several decompositions of P ,  or equivalently several assignment 

profiles of P t o  L tha t  are not close t o  optimal. From several hand generated tests we observed 

t h a t  the use of Theorem 4.2 in a branch and bound algorithm for determining the optimal 

assignment of processors eliminated more than 90% percent of all possible assignments. In some 

instances all bu t  the optimal assignments were pruned by the test of Theorem 4.2. 

Again, let L =, ( N , ,  ..., lVm) be a perfectly nested DOALL that  executes on P proces- 

surs, and P = a l p P  . . . pk be any decomposition of P where k s m .  Now let 

P. 
E = max {ei ) be the maximum efficiency index over all simple assignments of P to  L ,  

. l s i s r n  

and ei = 
P i  

max {E, ), ( i = l ,  2, ..., k)  be the maximum efficiency indeces (over all loops of 
l < j < m .  

pi 
L )  for t h e  factors p,, p,, ..., pk of P rcspcctively (i.e., r j  = ( N , / p i ) / ( b  / Pi] )). Note 

tha t  here we do not perform any actual assignment of processors t o  loops, but simply compute 

the inaxirrium efficiency index for each factor pi of P over all loops of L excluding the loop tihat 

corresponds t o  E.  If T8 and Tc are the parallel execution times for L corresponding t o  the 

optimal simple assignment of P ,  and the optimal complex assignment of the specific factors of P 

respectively, and S8 and Sc their respective speedups, we have the following theorem (using the 

notation of this paragraph). 

Theorem 4.2. If there exists i ~ { 1 , 2 ,  ..., k )  for which E 2 ci1 then T, L Tc and thus 

S8 2 Sc .  O r  equivalently if one of the factors of P has a maximum efficiency index equal to  or 

less than the maximum efficiency index of P, then we gain more speedup by assigning the entire 

P t o  a single loop than from any complex assignment of the factors of P (including the optimal). 

Proof: Without loss of generality we can assume tha t  the optimal complex allocation assigns 



DOALL 1 I1=1,63 
DOALL 2 I2=1,7 

DOALL 3 I 3=1,31 
DOALL 4 14=1,20 

. . . 
4 CONTINUE 
3 CONTINUE 
2 CONTINUE 
1 CONTINUE 

If P=32 the optimal assignment is tha t  which assigns 
all 32 processors t o  the outermost loop. 

Figure 4.1. An application of Theorem 4.2. 

more than one processor to  the first k loops (k 5 m), and implicitly one processor t o  the 

remaining m - k loops. Therefore the corresponding efficiency index vector for the optimal 

P I  P k 
complex allocation is csC = (cl , . . . , c k  , 1 ,..., 1) and for the optimal simple allocation of 

P is w8 = (1 ,..., 1, c, 1 ,..., 1)) where E corresponds t o  the j - th  position. Then the parallel exe- 

cution times of the optimal simple and complex allocations are: 

T, = NlN2...Nj-1 Nj+l...N,,, and Tc = 1 .  . . + . . . N,,, (4.6) 

Suppose now tha t  for some i €  {1,2, ..., k )  we have c > c or  equivalently, 

Again without loss in generality we may assume j > a' and by millt.iplying both sides of (4.7) 
, . 

by Nl  .... Ni-lNi+l . . . IVj-lNj,,l...Nm we have 



If we denote the left and right hand sides of (4.8) by M1 and M2 respectively, we have 

Tc > M I  > M2 = T8 or finally, 

Tc 2 T8 and S, 5 S8. 

Thus,  given any decomposition of P intoo factors P = p l . . . p k ,  a necessary (but not sufficient) 

condition for a complex assignment t o  be better than the best simple assignment is r  < r i ,  for 

all i=1,2 ,... , k  (where r i  is the maximum efficiency index for factor pi over all loops of L). Obvi- 

ously if 6 = 1 the optimal simple assignment is the overall optimal as well. An example of the 

application of Theorem 4.2 is shown in Figure 4.1. The next theorem is a generalization of 

Theorem 4.2 when only factors of P are considered. 

'I'heorem 4.3. If in Theorem 4.2 P = p l p  2 . . . pk  is the prime factor decomposition of P and 

there exists iE{l ,  ..., k )  for which 6 > c i ,  then tohe simple allocation of P t o  L (corresponding to  

t )  m Ll~e vverall optimal. 

Proof: Suppose that  for some kE (1, ..., k) we have r  > r i .  Suppose further that  r i  corresponds 

t o  loop Ni.  We therefore have that  

r i  2 r  for all Ni # Nj for the same pi . 
I 1  I 

(4.9) 

Any other allocation of P t o  L defines another decomposition P = .  pip 2 . . . p , ,  r < k and 

I 11 

since pi is a prime factor of P there exists some pi1 that  includes pi ( that  is, pi = p ip i  , for some 

11 

integer pi ). We consider the following two scenarios: 
I 

I 

( 7 a s e S u p p o s e  tha t  in this new allocation pi is :issigned to  the same loop Ni as pi in the prime 

I I I 11 

factor allocation. Then if r i  is the efficiency index of pi and since pi = p ip i  i t  follows directly 

I I 

from Lemma 4.4 tha t  .ri 2 r i  and therefore r  > r i  > r i .  



GasLL Suppose now tha t  pi is assigned to  a loop different than Ni, say N,. If E ,  and E , are the 

J 

efficiency indeces for allocating pi and pi processors t o  N, respectively, then from Lemma 4.4, 

the initial hypothesis, and relation (4.9) we have 

J 

E 2 6,. 2 e j  2 6,. (4.10) 

Therefore in any complex. allocation of P t o  L ,  there is at least one loop of L tha t  has a max- 

imum efficiency index less than or equal to  E,  the efficiency index of the o p t i r ~ ~ s l  simple allocation 

(OSA) of P t o  L .  Thus  the OSA is the overall optimal. . 
m 

Corollary 4.1. If N = n N i ,  E is the efficiency index of the optimal simple assignment, ci 
i =l 

is the efficiency index for the i- th loop in a complex optimal assignment ( i  =l ,  2, ..., m), and EL 

the corresponding compound efficiency index, then any optimal complex assignment must satisfy, 

E < ci 5 1, ( i = 2 , . . .  m )  and E < EL 51. 

Let 

N P m 

Eo = --L where N = ~ 4 .  
W/PI i =l 

Then any optimal assignment of P t o  L satisfies 

EL 5 Eo (4.1 1) 

where EL is the CEI of an optimal assignment. Only in special cases would there be an optimal 

assignment of P t o  L for which the equality in (4.11) holds. A compiler transformation called 

loop coalescing, that  is discussed in the next chapter, can be applied t o  certain types of loops and 

always achieves EL = Eo. 

Corollary 4.1 can be used t o  check whether a given complex assignment is better than an 

optimal simplc assignment. I t  woi.llrl be useful however t o  be able t o  answer the question of the 
. . 

existence of such assignments. T h a t  is, given a loop L and a number of P processors, is there an 



optimal complex assignm'ent better than the optimal simple assignment? If for a particular loop 

the answer is negative, the optimal simple assignment is chosen and therefore the problem for 

tha t  loop is solved in constant time, assuming the efficiency indeces have been computed. Propo- 

sition 4.1 below provides the test for the existence of an optimal complex assignment. 

For each loop Ni E L ,  we define the critical capacity gi of Ni as the maximum number of 

processors that  can be assigned to  Ni with its efficiency index remaining strictly grsa,ter than c 

(the maximum efficiency index of P). In other words, for each Nil gi is chosen t o  satisfy, 

'i gi * ei > r and c i  5 c 

for any,r  2 1. Then 'we have the following proposition. 

Proposition 4.1. A necessary condition for the existence of a complex assignment of P t o  L 

which is better than the corresponding optimal simple assignment, is 

i i i  

IT gi 2 P. 
i -1 

Proof: If we had n g i  < P, then in any complex allocation there would be a t  least one loop 

Ni with ei 5 E (assuming tha t  all P processors are useful). From Theorem 4.2 then i t  follows 

tha t  the optimal simple allocation is also the overall optimal. 

T h e  obvious approach for optimally solving the general instance of the static processor assign- 

ment problem is exhaustive search. For small nested loops and a very small number of processors 

exhaustive search would probably be tolerable a t  compile time. For medium size loops and a few 

tens of processors however, the cost of exhaustive search becomes intolerable even a t  compile 

time. For example the number of different assignments of 50 processors t o  15 nested loops is 

4 . 8 ~ 0 ' ~ .  If it takes lOOOns (on a fast machine) t o  process each different assignment i t  would 



take more than 555 days CPU time t o  find the optimal assignment of 50 processors t o  15 loops. 

Using the results of this section' however, we can design a branch and bound algorithm that  

greatly reduces the number of candidate optimal assignments. In several cases the tests of this 

section can prune all possible assignments but the optimal and in practice such a branch and 

bound algorithm would have polynomial complexity for most cases. The  problem remains 

unsolved though since we can never guarantee polynomial complexity and we can always come 

up with an example loop which can make even the branch and bound algorithin run in exponen- 

tial time'. 

In the next section we present an optimal processor assignment algorithm tha t  has a low 

polynomial complexity and finds the optimal assignment for all types of loops and any number of 

processors. 

4.1.2. Optimal Complex Processor Assignment to Parallel Loops 

In order to  better illustrate the ideas of this section we s t a r t  by considering perfectly nested 

k 
DOALLs and a number of P=2 processors. As we proceed the concepts are generalized to  

include more complex loop structures such as nonperfectly nested combinations of serial, 

D ~ L ,  and DOACR loops. 

k 
Let us consider an m-level nested DOALL L =(N1, N2) ..., N,,,) and a number of P=2 

processors. The  optimal allocation algorithm or OPTAL which is analytically described below 

will give us the optimal assignment profile of the P processors t o  the m loops of L .  For each 

loop L we compute the efficiency table M as shown in Figure 4.2. Each column j of M 

i 
corresponds to  a loop N, of L and each row i corresponds t o  a number of 2 , ( i  =O)l , . . . )k)  p r e  

i 
cessors. An entry ( i , j )  of table M contains the efficiency index for assigning 2 processors t o  loop 

m 

N,. This (m X k )  efficiency table will be used repeatedly by OPTAL t o  obtain the optimal 



assignment of P t o  L .  

From Lemma 4.4 we observe that  each column of M is ordered in nonincreasing order. If 

the loops are ordered by size then each row of M is also ordered in nonincreasing order. There- 

fore if eij is the element of M in the %.'-th row and j - th  column, 

eij 2 eiur for w 2 j. 

I t  is clear that  in any assignment of P t o  L there can be a t  most one, entry of the lower half of .. 

M invojved in tha t  assignment. Let us give an outline of the basic steps of the algorithm. The 

process starts  by assigning the P processors t o  the innermost or  outermost loop, and let us 

always s tar t  from the innermost in our case. The second step finds the optimal assignment of P 

t o  the two innermost loops. In the process we also need t o  compute the optimal assignment of 

2 k 
1, 2 2 , . . . , 2 processors respectively t o  the two innermost loops. These assignments how- 

ever are computed only once for each loop and stored for later use by successive steps. 

In general, after the (na - i)-th step OPTAL has found the optimal assignment of 

2 
1, 2, 2 , ..., P processors t o  loops TJi =(Ni, Ni+,, ..., N,). The  next (m - 8' -t- 1)-th step 

k 
Figure 4.2. T h e  efficiency table for P = 2  and na nested loops. 



2 
considers loop Ni-l a n d f i n d s  the optimal assignment of 1, 2, 2 , . . . , P processors to  loop 

(Ni-l ,  Li) ,  possibly by reassigning processors from Li t o  Ni-,. All possible assignments for Ni-l 

are considered. Note tha t  all possible assignments for Li have already been computed. At  the 

k 
end of the m-th s tep  OPTAL outputs the profile of the optimal assignment of P = 2 t o  loop 

L =(N1,  N2, ..., Nm).  Based on Lemma 4.1  the optimal assignment of P t o  L would be the 

one tha t  maximizes EL. This is precisely what OPTAL does. 

4.1.2.1. The Perfectly-Nested Loop Case 

In this section we describe in detail processor assignment for perfectly nested DOALLs and 

k P = 2 . We use this case as an example of the application of the general algorithm which is 

described in the next section. I t  is followed by a simple example that  illustrates the details of 

computing the optimal assignment. The heart of OPTAL is a recursive function G ,  tha t  is 

k 
defined as follows: Given P=2 and L an m-way nested loop as previously, we define Gi(q)  as 

the product of efficiency indeces of the optimal assignment of q processors to  loops 

(Ni l  Ni+l, ..., Nm).  More specifically a closed form expression of function Gi(q)  is given by, 

m 

and such tha t  q = JJpj 5 P .  The recursive definition of Gi(q)  and the one tha t  we will be 
. . 

3 =r 

using from now on is given by (4.12)  

G i ( p )  = max Gi+,[P) ,  c ~ G ~ , ( P R ) .  I : G ~ + ~ ( P A ) .  ~ P ~ + ~ ( P / ~ ) , ' .  . . , e ~ G ~ + ~ ( l ) ]  i 



where 6 ;  is the efficiency index for assigning q processors to  loop N, (available from table M). 

Relation (4.12) tells us tha t  the optimal assignment of P t o  (NiJ Ni+l, ..., Nm) can be found by 

selecting from all assignments of 2' processors t o  loop N, and 2k-' processors to  

m 

(Ni+l, ..., Nm), (r = 0, 1 ,... , k), the one that  maximizes ,. . . 
] =r 

T h e  function in (4.12) is computed for i = m ,  m-1, ..., 1 and for each i we also compute 

k G ( 1 )  Gi(2), ~ ~ ( 2 ' )  ,..., G,(P=2 ). The  optimal assignment of P t o  L will be given a t  the end 

k 
of the rn-lh s tep by G1(2 ). Initially (first step) for i = m  we have Cm(q)  = 6 : .  For each 

k 
G,(q) the corresponding processor assignment profile is stored and when G1(2 ) is computed the 

profile for the optimal assignment is available. 

T h e  .algorithm completes in m steps. In each of the m steps, k = log 2P function evalua- 

tions are performed and each of the (e=1,2 ,..., k)  function evaluations involves the computation 

22 of the maximum of r values. The  overall complexity of the algorithm is therefore O ( m  log P ) .  

Using the results of the previous sections, we can easily avoid unnecessary computations and 

further reduce the complexity of OPTAL. 

T h e  explicit processor assignment vector (with the exact number of processors assigned to 

each loop) is computed a side effect of the computation of Gi. When a particular Gi is chosen 

as optimal, the corresponding assignment vector can be trivially reconstructed. In order to  illus- 

t ra te  the computationai details of the algorithm let us consider a simple example involving four 

5 
DOALLs and 2 processors. I t  should be noted that  this approach not only finds the optimal 

assignment of the given P processors t o  a partic111a.r loop nest, hut  i t  also finds the optimal 

assignments of P/2,  P/4, P/8, P/16 ,..., 1 processors t o  the same loop. We can therefore deter- 

mine the minimum number of useful processors with little extra cost. 

Example 4.1.1: Consider the loop L =(Nl = 15, N2 = 17, N, = 17, N,=25) of Figure 4.3 



DOALL 1 11=1,15 
DOALL 2 12=1,17 

DOALL 3 13=1,17 
DOALL 4 I4=1,25 

4 CONTINUE 
3 CONTINUE 
2 CONTINUE 
1 CONTINUE 

Figure 4.3. The nested loop of example 4.1.1. 

Figure 1.4. The table for example 4.1.1. 

5 
and let P=2 . The optimal assignment of P t0 .L  is computed as folIows: First the 5x4 efficiency 

2' 
matrix M is computed. A t  the firsl slsp for i d 4  wc have G J ~ ~ )  = f4 for r =  0, 1, ..., 5. The 

computations for the remaining three steps are shown analytically below. In each case the 



maximum element appears in bold letters. For each of the four steps the optimal assignments are 

tabulated in table T shown in Figure 4.4. Each row of T corresponds to  each of the four steps. 

Step 2 

G3(16) = max G4(16), r ~ G 4 ( 8 ) ,  r:G,(4), r:G4(2), r:'G,(l) I 
~ ~ ( 3 2 )  = max ~ ~ ( 3 2 1 ,  ~ : ~ ~ ( 1 6 ) ,  rjc4(8) ,  4 ~ , ( 4 ) ,  C:'G~(~), c F G ~ ~ )  

Step 3 

I 
G2(2) = max 

G2(32) = max G ,(32) .:G3(l6), €;G3(8), r;G3(4), I ~ ' G ~ ( ~ ) ~  r:G3(l)] 

Step 4 
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G1(2) = max G2(2), E:G,(I) r I 
Gl(4) = max G2(4), e:~z(2), €:G 2(1) I 

The optimal assignment in this example is therefore the one tha t  assigns 16 processors t o  loop 

N1 and 2 processors t o  loop N4.  The processor assignment profile is reconstructed as follows. 

First we look a t  the maximum element of G,(32). This element is e 1 k 2 ( 2 )  which indicates tha t  

loop N1 receives 16 processors, and the remaining processors are allocated to G2(2). The max- 

imum element of entry G2(2) in Step 3 is G3(2) which indicates tha t  loop N; receives 1 proces- 

sor. Continuing in the same way, the maximum element of entry G3(2) is G4(2) which again 

indicates that  loop N3 is assigned 1 processor, and therefore loop Nq is assigned the remaining 2 

processors. 

4.1.2.2. The General Algorithm 

k 
Although most real polyprocessor systems have P = 2 for some integer k ,  OPTAL can be 

used t o  generate optimal processor assignments for any integer P. I t  also handles arbitrarily 

nested parallel loops. Before we describeythe details of the general algorithm however, we need 

t o  define the concepts of DOACR and loop nesting more precisely. 



As mentioned in Chapter 1 ,  a DOACR is a parallel loop in which d a t a  dependences allow for 

partial overlap of successive iterations during execution on an MES system. In other words, if 

iteration i s tar ts  at time t on a given processor, iteration (i+l) can s tar t  a t  time t + d ,  where d  

is (idealy) a constant. Constant d is called delay and represents the execution time of a subset 

of loop statements whose d a t a  dependence graph forms a cycle. If B is the (serial) execution 

time of the loop body, then d/B gives the percentage of overlap, (or doacross percentage). 

When d =B the loop is serial while if d  =O the loop is a DOALL. DOALL and serial loops are 

therefore special cases of DOACR loops. The parallel execution time of a DOACR loop with Ni 

iterations, a .delay of di and a body size of Bi that  executes on P processors is given by the fol- 

lowing [PoBa86]. 

T ~ ( B ~ )  = [ - 1 )  * maxi4, P d i )  + di * ((N - I) mod P) + Bi (4.13) 

In o rder ' to  simplify the notation in the following discussion, we assume that  a block of assign- 

ment statements (BAS) can be considered as a DOACR loop with Ni = I ,  and df = 0. 

An arbitrarily complex nested loop can be uniquely represented as a k-  level tree where k is 

the maximum .nest depth. T h e  leaves of the tree correspond t o  BASS and intermediate nodes 

correspond to  (DOACR) loops. The  total number of nodes in a loop tree is X + p, where X is the 

number of individual loops in the structure and p the number of BASS. An example of a nested 

loop and its tree representation are shown in Figure 4.5. Intermediate tree nodes a t  level m 

correspond to  loops a t  nest depth m .  We assume that  individual loops in an arbitrarily nested 

loop are numbered increasingly in lexicographic order (Figure 4.5). 

In the general case loops are not perfectly nested and therefore the efficiency index as 

defined in Section 4 is not useful. We can redefine the efficiency index for the general case but i t  

is more convenient t o  define the assignment function to  measure directly parallel execution time. 



Figure 4.5. A nested loop and its tree representation. Square$ and leaves deuote BASS. 

The  max term of the assignment function in the previous section becomes min in this case since . 

our objective is to  minimize execution time and thus maximize speed 1 1  1 t .  



T h e  steps of the general algorithm are almost identical t o  the case of perfectly nested loops. 

T h e  example of Figure 4.5 is  used whenever i t  helps illustrate the computations involved. A 

AX P table can be used to store intermediate values.. (A, P are the numbers of loops and p r e  

cessors respectively.) During the first s tep we compute the parallel execution time of the DOACR 

loops at level k on the tree, where k is again the maximum nest level. This is done as follows: 

and for all leaves i. 

where 15 is given by (4.13). T h e  general step is defined recursively as in the perfectly nested loop 

case. The  optimal assignment of P processors t o  loops in levels i through k ( i  < k), (assuming 

the optimal assignment of P to loops a t  level i+l is known), is then generated by: 

~ : ( q )  = min [ C G:+~(LP/~I))] 
1 < r 4  n child of j 

and for (q= l ,  2, 3, ..., P )  

where (4.15) is computed for all nodes (loops) j n.t level s', and T(*) is given by (4.13). The 

summation in (4.15) accounts for all nodes a t  level i + 1 that  are descendants of node j ,  tha t  is, . . 

all loops nested inside loop N j .  The optimal assignment of P processors to a given loop is given 

1 
by GI (P) .  Recall from the example of the previous section tha t  the detailed processor assign- 

ment vector is automatically constructed during the evaluation. of (4.15). For each loop the 

number of processors assigned to  i t  corresponds t o  the minimum term in (4.15). I t  should be 

noted tha t  all optimal assignments of 1, 2,.. ., P- 1 processors t o  L are computed as intermediate 

L 
results of the computation of G1 (P) .  We therefore have the following. 

Lemma 4.5 T h e  maximum number of useful processors given P for a loop L is the minimum 

Q ,  such t h a t  1 5 Q 5 P and G:(Q)=G:(P). 



OPTAL 

Input: 
A loop L =(Nl, NZ, . . . , N,,,), of nest depth nest k and P processors. 

Output: 
An optimal processor allocation profile of P t o  L .  

Method: 

1. For all loops j at level k of the loop tree, and 
For all q = 1, 2, 3, ... ,P, compute the allocation function: 

~ : ( 9 )  = T;(B,) 

2. For i =(k - 1) t o  1 Compute: 
For all h o p s  j in nest depth i compute: 

G:(l) = T:[ G;(l)] 
n child of j 

i Gi(2) = rnin { [ T ;  [ 
n child of j n child of j. 

G$P) = min { [ T : [  C G + ~ ( P / J ) ] ] ,  for r = l 1 2 1 3 , . . . J P  
n child of j 1 

and store the results in the 3-th row of table T .  
e 3. Output  the processor allocation profile corresponding t o  G1(P). 

Figure 4.6. The  processor allocation (OPTAL) algorithm. . 

A procedural description of OPTAL is given in Figure 4.6. 

Theorem 4.4 For any loop L of nlaximum nest depth m ,  and any integer P, OPTAL ter- 

minates after m iterations and generates the optimal assignment of P processors t o  L .  

Proof: The proof is by induction on i. Since i is decreming in successive steps, we apply induc- 

tian backwards. For i=m (the.innermost loop) we have by definition an optimal allocation given 



by G,(P). Suppose tha t  for i =k + 1 , G ( q )  ( q  = 1, 2, ... , P) is optimal, for all loops j a t  

nest level k+1. We will show tha t  for i = k ,  G:(q), ( q =  1, 2, ..., P )  is also optimal. For every 

q,  Gk is defined by (4.15) and without loss of generality we can assume tha t  

n child of j 

Since ~ ; + ~ ( [ q / r )  is optimal for all j by the induction hypothesis, and since (4.16) is the 

lrlinimum term in (4.15), i t  follows that  G : ( ~ )  is npt.imal for q and thuo c ~ [ P )  is orLil~laI. We 

1 thus conclude tha t  G1 (P) gives the optimal allooation of P processois t;o lvvp L .  W . 

T h e  complexiLy of the algorithm can be easily determined. The  assignment function G/ is 

computed P times for each node (loop) in the tree, or a total of XP times. Each evaluation of 

the assignment function also involves finding the minimum of an average of P/2 terms. The 

complexity therefore (without counting additions) is 0 ( X p 2  / 2). The  complexity can be reduced 

t o  U(XP log P), and OPTAL can be used t o  implement a systolic array control unit that  con- 

sists of P log P nodes and determines the nptimal assignment of P processor5 lu a given loop in 

X S ~ C P Y ,  M cliscussad later in this chapter. 

Note that  the (maximum) speedup resulting from the optimal assignment of P processors 

to a loop L i3 given by, 

An interesting point of this approach is thal; although loops at the same nest level are sllo- 

cated the sall~t: total number of processors, each loop manages (assigns) its own processors to  its 

own iterations in an independent way. For example, suppose tha t  loops 3 and 6 of Figure 4.5 are 

allocated 8 processors each. A possible assignment then may assign 1 processor t o  loops 3 and 4, 



11 Subroutine Name I '32 I '256 

ELMBAK 
ELMIIES 
ELTRAN 
HQR2 
TREDl 
MINFIT 
TRED2 
CBABK2 
CH 
COMBAK 
CORTB 
CORTH 
BANDV 

Table 4.1: Speedup values for 32, 256, and 2048 processors for EISPACK subroutines. 

11 Subroutine Name I '32 I '256 I '2048 11 
INISHL 
WFTA 
TRBIZE 
PCORP 
POWER 
COSYFP 
FREDIC 
FJ,PWT., 
DIINIT 
SRINIT 
SMINVD 
DEFIN4 
F F T  
LOAD 
COVARl 
CLHARM 
FLCHAR 
REMEZ 
D .  
LPTRN 

Table 4.2: Speedup values for 32, 256, and 2048 processors for IEEE DSP subroutines. 



and 8 processors t o  loop 5, while in the second case we may have 2 processors assigned t o  loop 6, 

and 4 processors t o  each of the loops 7 and 8. I t  is clear that  loops on the same nest level must 

be assigned the  same total number of processors when executing on a parallel processor system. 

Otherwise we have suboptimal parallel execution times since some processors will be forced to  

remain idle. 

4.2. Experiments 

We implemented this processor assignment algorithm in the Pamfrnse compiler, Proccooor 

assignment is performed after DOALL and DOACR loops are recognized and delays computed. In 

our experiments we measured spccdup values for some subroutines of the EISPACK and IEEE 

DSP packages. 

In our case T p ,  the parallel execution time, was measured for P=32,  P=256, and 

P=2048 processors, and for lnnp bounds set t o  10. In same EI3I'ACK subroutines where loop 

bounds correspond t o  the bandwidth of band-matrices, we used lnnp bounds of 1 or 4. The  

speedup values measured for the three different numbers of prnwssors are shown in Tables 4.1 

and 4.2. The subroutines from the two packages used in these experiments were randomly 

selected. 

From the s p e e d ~ ~ p  values we observe that  for 32 processors llie average spccdup is almost 

linear for both EISPACK and IEEE subroutines. For 256 processors the average speedup for 

EISPACIC subroutines is about 137, or  more than P/2. T h a t  is, we have. an efficiency of more 

than 50% for P=256. For the IEEE subroutines .+ve observe an even higher average efficiency for 

the same number of processors. The third column in each table corresponds t o  an unlimited 

number of processors. Since most of the EISPACK subroutines deal with square matrices, for 40 

X 40 arrays the maximum expected speedup is 1600. Taking into account several loops with 
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Figures 4.7 and 4.8. New and previous speedups for EISPACK for 32 and 2048 processors. 

bounds of 1 or 4 and the number of one-dimensional loops, the average maximum speedup should 



be expected to be considerably lower than 1600. The average speedup of the third column of 

Table  4.1 is about 310, which corresponds t o  an average efficiency of about 15%. Since a t  most 

1600 processors would be useful for most of the EISPACK routines, in reallity we would have an 

efficiency of about 20%. The  corresponding values for the third column of Table 4.2 are quite 

higher than those of EISPACK. Generally, supercomputers deliver a wide range of performances 

from program to program. Th i s  is true of real machines [DoHi85], and has been observed in our 

earlier experimental work [Kuck84]. I t  a,ppea.rs, from bhe experimonto wc havc conducled su Fir, 

t h a t  when OPTAL is used there is very libtlo variation whcn prograliid are ruli wiLh limited 

number of processors. 

Considering the fact tha t  efficiencies in the range of 20% are characterized very satisfactory 

in modern supercomputers, we can claim tha t  optimal processor assignments to  parallel loops 

result in high speedups for most cases. Processor. allocations to independent codc segments can 

increase the average speedup at least by a factor of two [Veid85]. 

F'igures 4.7, 4.8, 4.9, ~ . n d  4.60 show the improvcmcnt in speedup fur the same set of 

EISPACK and IEEE/DSP subroutines. The  horizontal axis in the plots correspond t o  s i ~ h r o ~ ~ t i n e s  

arranged in order of increasing speedup. The vertical axis display actual speedups. Thc  solid lines 

plot the speedup spectrum obtained by using OPTAL. The dotted lines plot speedups obtained 

by the previous method [Cytr84]. 

W e  compared tohe performance ir~iproverrent using the two methods for p = 3 2  and i 
p =2048. As mentioned above, the problem size was chosen so  tha t  p =2048 approaches the 

unlimited processor case. W e  observe t h a t  for p = ~ 3 2  the speedup improvement is very significant 

for both EISPACK and IEEE/DSP routines. This is the case when the number of processors is 

small relative to the problem size, nonoptimal allocations have a significant negative impact on 

performance. In other,words when the number of processors is relatively small we can not afford 
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Figure 4.9 and 4.10. New and previous speedups for EEE/DSP for 32 and 2048 processors. 

to  underutilize even a few processors. When the number of processors is large, the inefficiency 
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introduced by poor utilization of a few processors is amortized and has less impact on overall 
. . 

performance. Th i s  becomes evident in the plots of Figures 4.8 and 4.10 where the number of pro- 

cessors is 2048. In this case the improvement in performance is significantly less than in the case 

of p=32 (Figures 4.7 and 4.9). T h e  relative performance improvement for p=256 lies in 

between. 

4.3. Implementing OPTAL with Systolic Array 

As mentioned earlier OPTAL generaatom nptima.1 atat-ic processor m~ignmcnto if b h t  loop 

bounds are known at compile-time. This  is frequently the case in numerical software where loop 

Loulids usually reflect the problem size. However there are many cases where the loop bounds 

are not known a t  compile-time and default values are used by Parafrase instead. In such cases it 

is impossible to assure optimality. For  example, loops with unknown loop bounds a t  compile- 

time are triangular loops whose bounds are a.ctai.!a.lly indeses of outer loopo. By unrolling l u u p  
'I 

t h a t  surround triangular loops we obtain a sequence of loops with constant upper bounds that  

can be handled optimally. This  unrolling does not need to  lexically tonkc place but proccfinnr 

assignment can be performed assuming an implicit loop unrolling a t  compile-time. Loop upper 

bvul~ds tha t  cannot be estimated a t  compile-time are also those tha t  are determined by a func- 

tion call or  by the value of an array element, for example. This problem is alleviated a t  run- 

time however, where loop bounds must be known before the loop is entered. I t  would thus be 

appropriate in such cases to perform processor assignment at run-time, just before we s tar t  exe- 

cuting each loop. Of course more information is a.vailable at run-time but the overhcad of run- 

time assignment would also be more significant. Although run-time assignment and scheduling is 

the subject of Chapter 7, in this section we discuss a hardware implementation of OPTAL in the 

form of a systolic array tha t  can be used for run-time processor assignment. Let us again con- 

sider the perfectly nested loop case where the number of processors is a power of two. The 



A C ,  B C ,  CC: Registers tha t  hold operands for the functional unit. 
CMPR: Comparator, finds the MAX of two reals. . 

k q ( l l ,  F02: Output  latches. 
RO1, R 0 2 :  Input latches. 
RPI, R P O :  Input and output latches for propagatiilg data.  

Figure 4.11. The  structure of the systolic array cell. 

general case is also discussed. 

Consider the cpad;aply nested loop in Figure 4.3 and the computation of the allocation 

function G in Example 4.1.1. Since the computation of t h e  different steps involves computing 

the max of a set of elements, the algorithm is naturally 'offered for a parallel hardware 



implementation t h a t  uses a tree-structure to  fan-in the partial max terms. By looking a t  Exam- 

ple 4.1.1 we observe tha t  the main operations are an initial multiplication and subsequent com- 

parisons. W e  can easily implement OPTAL using a systolic array tha t  is a triangle of cells of 

the type shown in Figure 4.12. 

T h e  basic cell, shown in Figure 4.11, has a small local memory L M  whose size should be a t  

least m words, (where m is the nest depth of the loop under consideratinn). A functional unit 

t h a t  is used t o  multiply efficiency indeces of two loops a t  the beginning of each phase, where a 

pll.ast: COIIS~S~S 01 a11 the computation involved for each nest level. CMPR is a comparator and ' 

the remaining elements are latches used to receive and forward partial results. Going back to  

Example 4.1.1 i t  is easy to  see how the computation is performed within each cell of the systolic 

array. For simplicity let us assume that  each multiplication takes one full clock cycle and each 

of the other operations take half a clock cycle to  complete (low and high). 

T h e  systolic. array for P = 1 6  is shown in Figure 4.12. Cells in the array are numbered ( i , j )  

where i is the row number and j is the position of tha t  cell in the i- th row counting froin left Lo 

right. The  initialization of each phase involves a multiplication which is performed as follows. 

[ C C c L M ( x ) ]  (inncrmost loop only) 
B C ~ M ( Y )  
R O , c B C * A C  

where x and y are local memory addresses. In general, at the beginning nf the  k-t,h phase cell 

(i , j) will execute: 

For  the innermost loop the computation of the efficiency. indeces is done separately and the 

appropriate values are broadcast t o  the corresponding cells. For example, cell (a' ,  j) will receive 

2i-1 

E ,  . After the multiplication step for a, given phase has been completed, the following two steps 



Figure 4.12. The systolic array implementation for P=16.  

are repeated log P times. 

Step 1 (High clock) 

l ( l j ) l  F'02(iJ j )  c m a x  (Rol( i , j ) ,  ~ 0 2 ( ~ 1 j ) ) .  

Step 2 (Low cluck) 

ROl( i ,  j )  +FOl( i+l ,  j )  
R 0 2 ( i J  j) t F 0 2 ( i  , j + l )  
R P I ( i ,  j )  c R P O ( i - 1 ,  j). 

In Step 1 the operands in registers RO1 and R 0 2  within each cell are read by the COMPR and 

the result (max element) is latched into registers FO1 and P O 2  of each cell. During the sccond 

step, each cell in the systolic array forwards the contents of its F O I  and FO, regishers t o  i ts  two 

neighboring cells. Simultaneously, the contents of the R P O  register within each cell are for- 

warded to  the RPI and AC registers of their lower left neighbors. 



As shown in Figure 4.12 each row i of cells in the array holds the elements of the set  

corresponding to ~ ~ ( 2 ~ - ' ) ,  (k =m,  m -l,..., 1). For the k-th loop, the computation of G ~ ( P = ~ " )  

is completed after log P steps. The  intermediate allocation functions G k  Gk(2), 

~ ~ ( 2 ' ) , . . . , ~ ~ ( 2 ~ - ' )  are also produced, one per clock, during tha t  phase. Each result ~ ~ ( 2 ' )  is 

written into the AC registers of all cells numbered (*, r+l) .  Clearly i t  takes O(mlogP) steps t o  

complete the optimal assignment of' P process6rs t o  m nested loops. 

Since the elements of the efficiency table M must b e  read into the cells of the systolic array 

('one row per cell), the computation time for M ,  which is m P  would domina.te the complexity of 

the entire computation. This  problem however can be eliminated by overlapping the computa- 

tion of M with the operation of the systolic array. Since each phase of computation in the array 

requires only one row of M, each row of M but, the first, can be computcd (and broaclcast lo  the 

corresponding cells) during the computation of the previous phase. A linear systolic array can be 

used t o  implement OPTAL in a similar way. 

T h e  general case is similar but now wc have to conlpule a t;ime taljle instead of the 

efficiency table M. Each entry of the time table gives the execution time for the corresponding 

loop for a specific number of processors. Synchronization of the operations in the  systolic array is 

a n  additional concern here. T h e  number of clock cycles needed t o  complete one step varies with 

the number of additions needed in (4.15). Therefore, in order t o  synchronize the computation 

some of the cells may need t o  idle f ~ s  a few cloaks. .As shown in (4.15) thc number of additions in 

each phase depends on the number of loops a t  the same nest level. 



CHAPTER 5 

SCHEDULING WITH LOOP COALESCING 

In the previous chapter we discussed compile-time scheduling, and presented an optimal 

deterministic processor assignment algorithm for arbitrarily complex parallel loops. Compile-time 

scheduling is a simple problem when we deal with singly nested loops where all loop iterations 

have equal execution times. In that  case, the obvious one-step processor assignment is also the 

optimal one: the optimal distribution of N iterations to  P processors is clearly the one tha t  

assigns [ N / P ~  iterations to  each processor. I t  would be therefore desirable to  have, if possible, 

parallel programs with singly nested parallel loops. 
. . (  

In this section we introduce a compiler transformation called loop coalescing tha t  restruc- 

tures certain types of multiply nested loops into single parallel loops. Thus, for those loops that  

can be restructured, the optimal processor assignment problem becomes simple. In addition, the 

processor assignments for the transformed loops are generally better than the optimal assign- 

ments t o  the original loops generated by OPTAL. This is true assuming all iterations of a loop 

have equal execution times. When this last condition is not satisfied the optimal processor 

assignment becomes a complex problem even for singly nested loops. In Chapter 7 we show how 

loop coalescing can be used to achieve optimal or  near-optimal dynamic schedules for general 

parallel loops. This transformation is also used in Chapter 7 t o  reduce (and minimize in certain 

cases) the number of synchronization points needed during the execution of hybrid loops. Again 

we s tar t  from the perfectly nested loop case and generalize the concepts and results as we 

proceed. Some more definitions are in order. 

I,et L =(N,, Nm ,, . . . , N,) be a perfectly nested DOALL and P the number of available 

m 

processors. Let N = J-J Ni, B is the execution time of the innermost loop body, and 
i =l 



where T i  represents the minimum execution time of loop L on P processors. Consider now any 

allocation o of the P processors t o  the component loops of L ,  and let % be the optimal such 

W 

allocation. If T: and TpO denote the parallel execution time of L for the allocations w and % 

respectively, then 

DOALL 1 I=1,15 
DOALL 2 J=1,7 

. . .  
2 ENDOALL 
1 ENDOALL 

For  P=27 the optimal processor allocation (OPTAL) assigns 3 processors 
to outer loop and 7 processors t o  inner loop which results in 5 iterations. 
'I'he corresponding superoptimal allocation assigns 27 processdrs to 105 
iterations which resulls in a total of only 4 parallel Iterations: 

Figure 5.1. Scheduling with coalescing. 

2 ENDOALL 
1 ENDnATjT, 

1 ENDOALL 

Figure 5.2. Example of loop collapsing. 



for some distribution of q. ( i  = 1, 2 . .  m )  processors t o  the component-loops Nil ' ' . . 
m 

( i  = 1, 2 ,  ..., m )  of L such that  J-J qi 5 P. From Lemma 4.2 i t  then follows tha t  
i =l 

Definition 5.1 An allocation w of 'P. processors t o A a  multiply nested loop L is said to be 

superoptimal if and only if 

T; = T;. (5.2)  

Obviously (5.2)  holds true for 'al l  singly nested loops, but  in general, is not true for multiply 

nested loops. I t  becomes evident therefore that  transforming arbitrarily complex loops into single 

loops, not only simplifies the processor assignment problem, but  i t  also improves the resulting ' 

DOALL 1 J=1, N 
DOALL 2 K=1, N 

2 ENDOALL 
.1 ENDOALL 

1 ENDOALL 

I . . .  , 

Figure 5.3. Loop coalescing in two dimensions. 



schedules. 

By applying loop coalescing we can achieve superoptimal limited allocations for the major- 

ity of DOALL loops. Loop coalescing transforms a series of nested DOALLs t o  a single DOALL 

with an  iteration space equal t o  the product of the iteration spaces of the original loop. Then the 

superoptimal allocation is accomplished in a single step by allocating all P processors t o  the 

transformed loop. In order to apply loop coalescing t o  a nest of DOALLs, all dependence direc- 

tions must  be "=" [Wolf82]. In Chapter 7 we show how loop coalescing can be used with unequal 

direction veclors. Consider for example the loop of Figure 5.1 that  is t o  be executed on a P=27 

processor system. The  optimal deterministic assignment t o  the original loop allocates 3 (clusters 

of) processors to the outer loop and 7 processors t o  the inner loop. This results in a total of 5 

iterations per processor. If the original loop is coalesced into a single DOALL with 105 (=15*7) 

iterations, all processors are assigned to  that, single loop which results in 4 iterations per proces- 

sor. 

Loop cvalescil~g resembles loop coliapsing, another transformation that  already exists in 

Parafrase. Loop collapsing though is different than coalescing in both its purpose and mechan- 

ism. The  former is a memory: related .transformation t,ha.t collapses doubly nastcd loops only, to  

single loops by transforming two dimensional arrays into vectors. Figure 5.2 shows an example of 

loop collapsing. The  purpose of this transformation is t o  create long vectors for efficient execu- 

tion on memory-to-memory SEA sy~t~arns (e.g., CDC Cyber 205). Nn wrhscript maiiipulaLiol~ io 

at tempted by loop collapsing, which by the way, is applicable only to double perfectly nested 

DOALLs. 

Loop coalescing should be applied so  tha t  the original and the transformed loops are 

semantically equivalent. This means tha t  the transformation should manipulate loop subscripts 

so tha t  there always exists a one-to-one mapping between the array subscripts of the original and 



(N- 1) N+ 1 
(N-1) N+2 

Figure 5.4. Index values for original and coalesced loop - two dimensions. 

the t ranskrmed loop. Moreover, the resulting loop should be scheduled such tha t  each processor 

knows exactly which iterations of the original loop i t  has been assigned. 'since the resulting loop 

has a, single index, we must find mappings that  correctly map subscript expressions of the origi- 

nal loop (which are multivariable integer functions) t o  expressions involving a single subscript 

(corresponding t o  the index of the restructured loop). 

Before we describe the general transformation let us look a t  two examples of loop cualesc- 

ing. Figures 5.3 and 5.5 show the cases of coalescing perfectly nested DOALLs of nest depth two 

and three. Consider first the loop of Figure 5.3'and its co$lesced equivalent. Figure 5.4 shows llle 

index values for the two cases in the order they are assumed. Clearly the first subscript J of 

A ( J , K )  should be transformed into an expression involving I, i.e., 



DOALL 1 J=l,N 
DOALL 2 K=l,N 

DOALL 3 L=l,N 

3 ENDOALL 
2 ENDOALL 
1 ENDOALL 

becomes 

1 ENDOALL 

Figure 5.5. Loop coalescing in three dimensions. 

J + j ( I )  

where f is an integer-value function and such tha t  the value of f (I) is i n c r ~ m e n t ~ ~ r l  hy one each 

time I  assumes a value of the form wN+l, for t o E ~ + .  Similarly we must determine a mapping g 

such t h a t  

K + g ( I )  : 

and such Illat g ( I )  assumes the successive values 1, 2, ..., N ,  but its values wrap around each 

time f ( I )  becomes wN+1, as i t  becomes evident from Figure 5.4. For thexase of the loop of Fig- 

ure 5.3 i t  can be seen tha t  



The mappings in (5.3) satisfy the properties mentioned above. In the case of the triply nested 

DOALLs of Figure 5.5 the corresponding mappings are defined by, 

I t  is clear tha t  the mappings f ,  g ,  and h follow a regular pattern. As i t  is shown below, loop 

coalescing can be applied to  a much wider range of nested loops with unequal loop bounds. The 

following theorem defines the general array subscript transformation for loop coalescing. Let. 
. . . . 

1 

L =(N,, N,-,,.. ., N1) be any m-way (non-perfectly) nested loop, and L =(N=NmNm-l...N1) 

be the corresponding coalesced (single) loop. Let also J,, Jm-,,.. . , J, denote the indeces of the 

loops in L ,  and I the index of the transformed loop L'. Then  we have the following. 

Theorem 5.1 Any array reference of the form A ( J m J  Jm-l,...J J1) in L can be uniquely 

. ' _  expressed by an eqiiivalent array reference 

or  for the case of equal loop bounds, 

Proof: Consider an m-level nested loop L tha t  is transformed into a single loop L' with index I, 



as above. Any array reference of the form A (J, ,..., Ji, . . . , J1) will be transformed into 

A(I, ,...,Ii, . . . , 11), where I i ,  (i = m ,... ,l) are functions of I. We will derive the mapping for 

Ji --*Ii and prove tha t  i t  is given by (5.4). 

A step is defined t o  be one execution of the loop-body of the innermost (1st) loop. I t  is clear 

tha t  the 1st index Il is incremented by one a t  each step. The second index I2 is incremented a t  

steps of size N1, I, at steps of size N1N2, ..., Ti is incremented a t  steps of size NINQ - Ni-l, 

and so  on. A t  each moment the total number of steps (iterations) that  have been completed is 

given by 1 .  I t  is clear therefore that  the expression 

is incremented by one a t  steps of size NlN2...Ni-1. However, all indeces (but the outermost) 

wrap around and assume repeatedly the same values for each iteration of their outermost loops. 

Each index assumes a maximum value which is i ts  corresponding loop upper bound. This value 

is reached after N1 steps for fl, after N1N2 steps for 12, ..., after NIN2 . - - Ni steps for Ji and 

so on. Therefore the mapping defined by (5.5) for Ii is correct as long as I 5 NIN 2...Ni but not 

for later steps. Thus  we have t o  "compensate" (5.5) for the wrap around of the values of Ii. This 

can be done by subtracting from (5.5) the multiples of Ni a t  the steps a t  which Ii repeats its 

values. In other words we should subtract from (5.5) the multiples of Ni which are given by, 

From (5.5) and (5.6) i t  follows that  the correct mapping for Ii is given by, 



For the last iteration, index Ik, (k = m ,  rn -I,..., 1) should more precisely be defined by 

I k  = min(Nkl f k(I)). 
m -1 

From (5.4) we also observe that  for the outermost index I,, the transformation is [ ~ /n  Nil 
i =l 

since the second term in (5.4) is always zero. 

5.1. Processor Assignment and Subscript Calculation 

From a first observation, i t  seems that  loop coalescing introduces expensive operations in 

the subscript expressions. Thus,  one may question the practicality of such a transformation. The 

rather complicated subscript expressions do not pose any serious performance problem because, 

as i t  will be shown in this section, these expressions need only be evaluated once per processor, 

and each processor is assigned blocks of consecutive iterations. Each subscript calculation con- 

sists of two division operations, one multiplication and one subtraction. 

I 

Considering again a loop of the form L = (N,, ..., N I )  all partial products n N i ,  
i =l 

( j  = 1, 2, ..., m )  are obtained (and stored for later use) a t  no extra cost during the evaluation of 

m 

n Ni which involves m mulliplications. 

I 

Now let us see what happens when the coalesced loop L is scheduled on P processors. Each 

processor will be assigned to  execute r = [N/Pl  successive iterations of L'. More specifically, 

processor g , ( p  = 1, 2, ..., P )  will cxccute iterations ( p  - l ) r  + 1 through pr of the coalesced 

loop. 

Suppose next tha t , an  array reference of the form A (*, ...,*, f ;(I) ,  *,.-.., *) exists in the code of 

I 

L . Then from the previous paragraphs i t  follows tha t  processor p will access those elements in 

the i- th dimension of A tha t  are included in 



DOALL 1 J=1,2 
DOALL 2 K=1,3 
DOALL 3 L=1,6 

3 ENDOALL 
2 ENDOALL 
1 ENDOALL 

(a) 

becomes . c : . .  

1 ENDOALL 
(b) 

becomes 

1 ENDOALL 
(4 

Figure 5.6. Coalescing for block scheduling. 

A(*,..., *I fi((p-l)r+1) : f ; (pr) ,  *I..., *) 

(where the notation i:j denotes all increments of 1 from a t o  j inclusive). In general, from (5.4) 

i t  follows that  the subscripts in the k-th dimension referenced by processor p are in the following 

interval, 



In order t o  see in more detail how the subscript computation is performed after processors have 

been assigned, consider the following example. Let us suppose tha t  we h a i e  the loop of Figure 

5.6(a) tha t  is coalesced into the single DOALL of Figure 5.6(b), which is t o  be executed on P =5 

processors. In this ease N3=2, N2=3, N1=6 and therefore r =[N~N~N~/P]  = [36/51 = 8 . .  

Since the coalesced loop is executed on 5 processors, as far a s  array A is concerned, i t  is 
C 

equivalent t o  the pseudo-vector loop of Figure 5.6(c). Thus, for each processor we only need to  

compute the value range for each subscript. Since each subscript depends only on p ,  all subscript 

ranges can be evaluated in parallel. For p =3 for example, the range of A tha t  is referenced by 

the 3rd processor is given by, 

Figure 5.7. Distribution of array elements (and iterations) among 5,processors. 

Processor 1 

A ( l , l ,  1 )  
A ( l , l ,  2) 
A ( l , l ,  3 )  
A ( 1 , 1 , 4 )  
A ( l , l ,  5) 
A ( l , l ,  6) 
A ( 1 , 2 , 1 )  
A ( 1 , 2 , 2 )  

Processor 4 . 

A ( 2 , 2 ,  I) 
A ( 2 , 2 , 2 )  
A ( 2 , 2 , 3 )  
A ( 2 , 2 . 4 )  
A ( 2 . 2 , 5 )  
A ( 2 , 2 , 6 )  
A  ( 2 , 3 , 1 )  
A  ( 2 , 3 , 2 )  

Processor 5 

~ ( 2 ,  3 , 3 )  
A ( 2 . 3 , 4 )  
A ( 2 . 3 , 5 )  
A ( 2 . 3 , 6 )  

Processor 2 

A ( 1 , 2 , 3 )  
A ( 1 . 2 . 4 )  
A ( 1 , 2 , 5 )  
A ( 1 , 2 , 6 )  
A ( 1 , 3 , 1 )  
A ( 1 , 3 , 2 )  
A ( 1 , 3 , 3 )  
A ( 1 , 3 , 4 )  

Proccssor 3 

A ( 1 . 3 , 5 )  
A ( 1 , 3 . 6 )  
A ( 2 , 1 , 1 )  
A ( 2 , 1 , 2 )  
A ( 2 , 1 , 3 )  
A ( 2 , 1 , 4 )  
A ( 2 , 1 , 5 )  
A ( 2 , 1 , 6 )  



or  A(1:2, 3:1, 5:6) (5.7) 

Since we know the upper bounds for each index, (5.7) uniquely determines the elements of A 

t h a t  will be accessed by the 3rd processor (A(1,3,5), A(1,3,6), A(2,1,1), A(2,1,2), A(2,1,3), 

A(2,1,4), A(2,1,5), A(2,1,6)). The  detailed access pattern of the elements of A by each processor 

in our example is shown in Figure 5.7. 

Therefore the subscript expressions that  are superficiall_y i~troduced by loop coalescing 

should not degrade performance, especially when P is small compared to the number of itera- 

DOALL 1 J=l,N 
DOSERIAL 2 K=l,N 

DOALL 3 L=1, N ' 

3 ENDOAT,l'., 
2 ENDOSERIAL 
1 ENDOALL 

(a> ' 

becomes 

DOSERIAL 1 K=1, N 
2 

DOALL 2 I=l,N 

2 ENDOALL 
1 ENDOSERIAL 

(b 

Figure 5.8. Coalescing ,of a hybrid loop. 



tions of the coalesced loop. 

Even though we have considered the most simple subscript .expressions so far, i t  is easy t o  

observe tha t  loop coalescing can be applied in the same way for any polynomial subscript expres- 

sion. In the following sections we generalize the transformation and show how it  can be applied 

to  hybrid and non-perfectly nested loops. In principle, loop coalescing can be used with any arbi- 

trarily nested loop. 

5.2. Hybrid Loops 

Loop.coalescing may be applied selectively on hybrid loops. A loop is hybrid when it con- 

tains combinations of DOALLs, DOACRs, and serial loops. An example of a hybrid loop is shown 

in Figure 5.8(a). In such cases loop coalescing can be applied to  transform only the DOALLs of 

the hybrid loop. Only the subscripts of array references that  correspond t o  the DOALLs are 

transformed in this case. The indeces (subscripts) of any serial or  DOACR loop are left 

unchanged. The  coalesced ver'sion of the loop in Figure 5.8(a) is shown in Figure 5.8(b). 

5.3. Non-Perfectly Nested Loops, One W a y  Nesting 

Coalescing can also be applied t,o non-perfectly nested loops. The  subscript transformations 

remain the same, but care must be taken to  &sure correct execution of code segments that  

appear in different nest levels. Such code segments must be executed conditionally in the 

transformed loop. Let us consider for the moment only one-dimensional nesting as in the exam- 

ple of Figure 5.9(a), where S1 and S2 denote straight line code segments. Obviously if the 

DoALLs of the example are coalesced, segment S, should be executed conditionally in the 

transformed loop. The  compiler must insert a conditional statement before the first statement of 

S1. Fortunately ' this is an easy' task for the compiler t o  do and the conditionals .are alw.ays 



D O A L L  1 J=1, N 

1% 
D O A L L  2 K = l , N  

) S 2  
2 E N D O A L L  
1 E N D O A L L  

(a) 

t = O  
2  

D O A L L  1 I = l , N  
I F ( [ I / N ~  . N E .  t) T H E N  

1 

t ,= b/N1 
E N D I F  

s 2  
1 E N D O A L L  

(b) 

Figure 5.9. Coalescing of a non-perfectly nested loop. 

straight  forward t o  compute. 

T h e  coalesced version of the example loop of Figure 5.9(a) is shown in Figure 5.Y(b). Scalar 

t is a compiler generated temporary variable tha t  is used t o  test the value of I and is reset each 

time code segment S,, is executed. The  extension t o  multiple nonperfectly nested loops is also 

straightforward. 

6.4. Multiway Ncoted Loopa 

A loop is multiway nested if there are two or more loops a t  the same nest level. The loop in 

Figure 5.10(a) is a multiway (kway)  nested loop. Figure 5.10(b) shows the corresponding 

coalesced loop. However, extra care should be taken with multiway nested loops. As i t  can be 



DO'ALL 1 J=1, N 
DOALL 2 K=l,N 

2 ENDOALL 

3 ENDOALL 
1 ENDOALL 

(a) 

becomes 

2 
DOALL 1 I=l,N 

1 ENDOALL 
(b) 

Figure 5.10. Coalescing of a Zway nested loop. 

observed from Figure 5.10, in this case coalescing alters the execution order.of the two state- 

ments in the example. In the loop of 10(a) all elements A(J,*) are computed before any element 

of B(J,*) is computed. In the coalesced loop the order of execution changes and ordered pairs 

( A ( J , ~ ) ,  B ( J , i ) )  are computed for each J instead. Thus, coalescing in this case can be applied as 

long as the second component of the direction vector of (any) flow dependences from DOALL 2 to  

DOALL 3 is ">". 



CHAPTER 6 
'_ 

OPTIMAL AND APPRO2UMATION ALGORITHMS 
FOR HIGH LEVEL SPREADING 

As mentioned in Chapter 2, there are several types of parallelism in a restructured Fortran 

program, but all can be characterized as vertical or horizontal. In Ch8pter 1 wc cxplomd lnnp 

(honzontalj parallelism, and solved the problem of' compile-time processor assignment optimally. 

In chls chapter we wiil concentrate on vertical parallelism and p r e ~ e n t ' a l ~ o r i t h m s  for determinis- 

tic scheduling of vertical objects. Recall that  vertical parallelism ari& from the concurrent exe- 
.- 

cution of lexically disjoint parts  of a program. 

Scheduling for vertical parallelism is also referred to  as spreading. Depending on the granu- 

larity of the different parts of a program we have low and high level spreading for fine and 

coarse grain program modules respectively [Veid85]. Most instances of the spreading problem 

belong t o  the NP-complete family of problems. In this chapter we discuss optimal solutions for 

some instances of high level spreading, and efficient heuristics for the intractable cases. 

In Chapter 1 we discussed liow Parafrase builds the da ta  dependence graph for a given For- 

tran program. Recall that  the da ta  dependence graph is a directed graph with nodes represent- 

ing statements of the program and arcs representing d a t a  and control dependences. The com- 

piler can build a similar graph called the task graph with nodes representing higher level blocks 

of code such as BASS and loops, and arcs representing collections of dependences hetween these 

higher blocks. Chapter 3 discussed how basic program statements can be grouped together t o  

form higher level blocks called tasks. For the purposes of this chapter we can assume that  the 

task graph is supplied by the compiler and need not be concerned about the details of construct- 

ing such a graph. 



Figure 6.1. Task graph for subroutine SETDT. 

Ideally, high level spreading should be applied t o  a set of program modules tha t  are free of 

control or d a t a  interdependences. In such a case any assignment of modules t o  processors would 

be "legal" and no  extra precautions need t o  be taken to  assure correct execution. There .are  

several such instances of independent program modules in real numerical programs. A s  an exam- 

ple Figures 6.1, 6.2, and 6.3 show the task graphs of three numerical subroutines (Denelcor 

benchmarks) tha t  are commonly used in different application areas. Subroutine SETDT in Figure 

6.1 consists of thirteen independent DOALL loops. The  notation nD shows the dimensionality of 

each loop, i.e., the number of nest levels. Figure 6.2 shows a type of task graph tha t  occurs fre- 

quently in numerical programs. The  entire graph is surrounded by two serial loops. If we unroll 

these serial loops we get a series of uniform task graphs. Since this type of graph characterizes 

a large pcrcentage of numerical subroutines we will consider them separately a t  the end of this 

chapter. Their regularity makes i t  easier t o  schedule them. Finally Figure 6.3 shows a more 

complex task graph (DAG) for subroutine THREEDH. Performing high level spreading for such 

arbitrary graphs is much more complex than for uniform graphs of the type of NOLI's. Of 

course we can still use simple heuristics t o  optimize high level spreading for random graphs 

' locaily. For  example the optimal algorithm of the next section could be used to  perform high 

level spreading for the first two levels of tasks in the graph of Figure 6.3. As we shall later see 



however, optimizing schedules locally may result in non-efficient global schedules. Spreading can 

also be applied t o  lexically disjoint program modules tha t  are "connected" with any type of 

dependences. For  example, we can still execute concurrently the two last modules of Figure 6.3. 

In such a case though synchronization instructions should be used t o  coordinate the execution of 

these modules such tha t  interdependences are satisfied in the correct order. 

Figure 6.2. Task graph for subroutine N O L I  . 



In this chapter we focus on both instances of spreading, i.e., spreading of independent pro- 

g r a m  modules, and spreading of program modules with interdependences. Both cases arise fre- 

quently in numerical software. First we look a t  the problem of spreading a set of independent 

tasks where the number of processors is larger than the number of tasks, each task may request 

any number of processors up to the maximum available, and all tasks are to  be executed simul- 

taneously. Several instances of spreading in real .programs belong to  this category. We solve this 

instance optimally in polynomial time. A fast heuristic algorithm is also presented for the case of 

independent tasks where the number of processors is smaller than the number of tasks and each 

task requests exactly one processor. This algorithm is also useful for scheduling a set  of ready 

jobs in a multiprogramming environment where load balancing in the processors is our objective. 

Finally we discuss spreading of dependent tasks and scheduling of complete program task graphs. 

An efficient heuristic is also presented for the latter case. 

6.1. .Optimal Allocations for High Level Spreading 

In this section we consider the instance of spreading where the number of processors is . 

larger than the number of tasks, all tasks are t o  be executed concurrently, and each task may 

request any number of processors up to  the maximum available. All tasks are independent, i.e, 

intertask dependences of any kind are not allowed. Let us suppose tha t  we are given a set 

S = {MI, Mz, ..., M,) of rn disjoint program modules (tasks) from a given program PROG. 

m 

Then Mi n M j  = 0, for i # j, and U Mi CPROG. Since no dependences exist betweell ally 

i =l 

pair ( M i ,  Mi) of tnsks, all elements of S may be executed simultaneously. Let us also suppose 

that  PROG is t o  be executed on a parallel processor system with P pr~cessors,  and tha t  each 

program modiile Mi requests pi SF', (i=l, 2, ..., m )  processors (the maximum i t  can use). In 

order., t o  simplify the following discussion we always assume tha t  pi > P .  The  results tha t  we 



derive below can be trivially extended for the general case where pi 5 P. 

As shown below, algorithm OPTAL from Chapter 4 can be used to  solve this instance of 

high level spreading optimally. Let T,! denote the parallel execution time of module Mi on r pro- 

cessors. We can now define the allocation function G of OPTAL for this case, and show how 

OPTAL computes optimal processor allocations for high level spreading. Starting from the last 

task M, in S we define: 

Gm(q)  = Tqm, for q =1, 2, ..., P .  
. - 
'l'hen for 1 ( a  < na the allocation function (which in this case measures parallel execution time) 

is defined as 

and (q = 1, 2, . . . ,  P). 

Following the same approach as in Chapter 4, i t  can be proved tha t  G,(P) will compute the 

optimal allocation of P processors t o  the indepe'ndent program modules M I ,  M2, ..., Mr. The  

processor allocation vector giving the optimal assignment of processors to  tasks is computed 

similarly t o  Example 4.1.1 of Chapter 4. In this case however the subscripts of T"S are used in 

place of the exponents of the E terms in Example 4.1.1. 

A point tha t  has not been clarified yet is how we compute T: for a given Mi and for 

different values of 9 .  There are two alternatives for computing the para,l'lel execiltzinn time of a. 

task. T h e  most precise one would be i o  have the compiler recompute T: for each different value 

of q .  This  however may be an expensive process. A less accurate but very close (and inexpen- 

sive) approximation, would be to  compute T: from ~ f ,  the serial execution time of Mibas  shown 

in (6.2). 



Figure 6.3. Task graph for subroutine THREEDH. 



T h e  parallel execution time defined by (6.2) is very 'accurate when Mi is a loop for example, 

which is often the case. Each step of the algorithm involves an average of P/2 comparisons. 

There are m phases and therefore the complexity of OPTAL for high level spreading is 

o ( l p m p 2 ) .  

When .P < m and pi = 1, ( i  = 1, 2,..., na),  i.e., when each task is allowed t o  execute on 

exactly one processor and there are more tasks than processors, the problem becomes 

NP-complete [GaJo79]. Although this case does not occur very often 'during parallel processing 

of a single program, especially when the granularity of the tasks is fairly coarse, i t  arises fre- 

quently in multiprogramming environments where a set of serial jobs are t o  be scheduled on the 

processors of a system, such tha t  processor loads are kept balanced. Since this is a special case 

of high level spreading a t  the program level we discuss i t  in the following section. Because of the 

intractability of this problem only heuristic a lg~r i t~hrns  tha t  work in polynomial time are possi- 

ble. 

6.2. Scheduling Independent Serial Tasks 
! 

In this section we consider the problem of spreading a set of independent seriad taska a.csoss 

a number of processors in order . to  minimize the total execution time, $ince each task may use 

exactly one processor, and if the number of processors is larger than the number of tasks the 

problem becomes trivial. We examine the case where the number of processors is smaller than 

the number of tasks. This problem is a classical NP-complete problem [GaJo79] and the best 

known approximation algorithm so far is Multifit [CoGJ79] which uses bin-packing as its core 

routine. In this section we present a new heuristic algorithm for this problem tha t  has essentially 

the same complexity as Multifit. Experimental results show tha t  our algorithm outperforms 



Multifit in most cases. Even though this algorithm is primarily designed for spreading a set of 

independent serial tasks on a parallel processor system, i t  can also be used for load balancing on 

a multiprogrammed parallel processor system where individual jobs are the unit of workload. 

The  Divide-and-Fold or  D&F algorithm which is discussed below opkrates in two phases. 

Before we describe D&F in detail let us introduce the necessary definitions a n d  nomenclature. 

Let us suppose that  we have a set of n tasks that  are ordered by execution time: 

S = {tl > t 2  > . * a >t , ) .  We use the execution time ti t o  represent the i - th  task. Our prob- 

lem here is t o  spread the tasks in S across p processors, so that  the total execution time of S is 

minimized. Let T represent the execution (completion) time of S for a given distribution of tasks, 

i.e, the time i t  takes the processor with the heaviest load t o  process i ts  workload. If preemption 

is allowed we can easily spread for the optimal Tin polynomial time. Therefore we assume that  S 

contains nonpreemptive tasks. This is a practical .restriction since, in most real cases, S consists 

of a set of relatively small BASS, and the overhead involved with process swapping ,during 

preemptive execution of RASs would more than eliminate the benefits of spreading. 

A list of tasks from S is an ordered subset of tasks tha t  are assigned t o  the same proces- 

sor, A list of size m is represented as  an m-t1l~ple, (ti*, tiM, ... , ti+,,,). Let 

and w be the optimal execution time or schedule length. Then i t  is easy to  prove the following 

lemma. 

Lemma 6.1 r > w >  max Tcp)  = LB. 

The  motivation here is t o  generate a schedule with a length T as close t o  was  possible, by spread- 

ing the tasks of S so that  the load in each processor is balanced around LB. D&F consists of two 

phases. During Phase I the set of tasks is partitioned into subsets of tasks and subsets are 
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Figure 6.4: Example of the first phase of D&F. 

merged together until the number of subsets is equal t o  p .  Thus  generating a set  of p lists. B; 

assigning one list t o  each processor we have the -first "first-cut" assignment of tasks t o  proces- 



sors. Subsequently, Phase I1 moves tasks between processors according t o  a specific procedure to  

obtain a finer degree of balancing. The two phases of the D&F algorithm are .described below in 

detail. 

1 1  During this p h ~ o  the set  of tasks S is partitioned into q=[n/pl subsets SI , S 2 ,  ..., S: 

with each subset but  (possibly) the last containing p tasks. If q is odd, we add a "dummy" sub- 

1 set Sq+l tha t  consists of p tasks of zero execution time a t  the end of the list, and set q t q + l .  

After the initial partitioning, Phase I proceeds with a series of folding steps. During the first 

1 folding we concatenate subsets sil and Sq-i+l , (i = 1, 2, ..., q/2) such that ,  if 

1 i i i 1 1 2 Si = {t l ,  t 2 ,  . . . , tp} and Sq-i+l =Sj = {t:, t i ,  . . . , t(),the resulting subset Si consists of 

p lists of size two, i.e., 

for i = l , 2  ,..., q/2. 
2 2 2 After the first folding step we have q/2 subsets S1 , S2 ,..., Sq,, with each consisting of p lists 

of size two. Bctween successive folding steps we reorder the subsets by list (accumulated) execu- 

tion time. A t  the end of each folding step an empty subset is appended if the resulting number of 

subsets is odd. We proceed in the same way until, after j = Llog2n] steps, the configuration is 

reduced t o  a single subset S{ =sf which consists of p lists. Each list contains tasks from 

Q 
the original set. Figure 6.4 illustrates the steps of Phase I for p = 3 and for the set  of tasks 

shown a t  the top of Figure 6.4. The  tasks inside each list are sorted a t  the end of Phase I in 

order of decreasing execution time. In each of the p lists we add an empty task of zero execution 

time needed for the tests of Phase 11. 



F h a d L  

Phase I1 of D&F reassigns tasks to processors selectively in order t o  further balance the 

load inside each processor, and thus reduce the overall completion time. The  previous phase con- 

f structed S = {11, 1 2 ,  . . . , $1 where each list li contains tasks and has been assigned t o  

the i- th processor ( i  = 1, 2, ..., p).  Phase I1 performs a single pass through the loads of the p 

processors considering a pair of processors ( i ,  p -i+l) ant a time for ( i  = 1, 2,..., lp/2] ). For 

each pair of processors i t  performs three tests and, based on the outcome of these tests, makes 

one reassignment. For  the list li or processor i let Ti be the total execution time of the tasks in 

l i l  ( i  = 1, 2,..,, p).  Then for each pair ( i ,  j = p  -i+l) of processors perform the following: Let 

INPUT FROM 1st PHASE TO 
BALANCING (2nd) PHASE 

PR , . 

Schedule Lengths 

Processor 1 Processor 2 Processor 3 

Figure 6.5: Example of the balancing (2nd) phase of D&F. 



Test 1: Find the smallest task t: of li for which T, - t: 5 LB. If such task does not exist let t i  

be the largest (topmost) task of 1,. ~ e t  t;'-l be the next smallest task and compute 

i MI = max (T, - tk, T, + t i )  

i M 2  = max (T, - tkdl , T, + tf-l) 

r2 = min(M1, M2).  

Test 2: Find the smallest sum w;' of the first k smallest tasks in I ,  for which T, - W: 5 LB, 

and let = w;' - {tf}. Then perform the following computations. 

NI = max (T, - w:, T, + w:) 

N 2  = max (T, - wI-~ ,  T, + w;,) 

5 = min(N1, N2). 

Test 3: This test finds the optimal single exchange of tasks between the two processors. Let 

be the difference in loads between processors i and j =p -i+l. For q = [n/pl, cdmpute 

r j l  
r4 = min pi - (tk {: - t k 2 ) Y  1 < k l i k 2 < q  

From the three tests we find the smallest value between r2, ??, r4 and r1 (that  corresponds t o  no 

action) and perform the reassignment of tasks that  is implied by the test for that  z For example, 

i 
if r2 is the minimum then if 7 ,  = Mi, task tk is dequeued from processor i and queued in proces- 

i 
sor j = p -i+1; otherwise tk-l is reassigned to  the j - th  processor. If 3 is the minimum and 

r3 = Nlr the first k smallest tasks from processor i are transferred t o  processor j; otherwise the 

first k-1 tasks are transferred. Finally if T, is the minimllm among the three, a mutual exchange 

of tasks between processors 4 and j takes place. This exchange is the one that  best balances the 
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loads in the two processors. This rebalancing procedure is performed once for each pair of pro- 

cessors ( i ,  p -i+l), ( i  = 1, 2,..., q) .  Figure 6.5 shows a trivial case of rebalancing for the exam- 

ple of Figure 6.4. 

Since the tasks are ordered inside each li, test 3 takes an average of q  comparisons for each 

pair of processors. T h e  most expensive activity in Phase I1 is the 3rd test. Assuming that  tasks 

are initially ordered by execution time, Phase I takes O(loga(n/p)) steps t o  complete. Phase I1 of 

2 2 D&F is performed once but i t  is the bottleneck since its average complexity is O(n /p ). If thk 

balancing phase is restricted t o  use only the first of the three tests, the complexity of Phase11 is 

In order to test the pe;formance of D&F against Multifit, the best known heuristic for this 

problem, we implemented D&F and Multifit and performed the same experiments for the two 

cases. The implementation of D&F has a balancing phase (IT) tha t  uses only the first of the 

three tests described above. Thus  a full implementa.tion of D8cF as described in this chapter 

should perform at least as well as the current implementation. In order t o  compare our experi- 

ments with those for Multifit reported in [CoGJ78], the same approach was used t o  generate our 

tests. The  execution times of tasks were ra.ndomly generated using normal distribution and the 

same size of tests as in [CoGJ78] were used. \I 

More specifically we conducted two types of experiments. For Experiment 1 we performed 

20 runs. Each run consisted of 128, tasks randomly generated with task execution times follow- 

ing the normal distribution with values in the range [l ... 1001. The 20 runs used different 

numbers of processors ranging from 2 t o  21. Table 6.1 summarizes the results of the first experi- 

- 
ment. DBF and Multi j i t  denote the average schedule lengths over all 20 runs. In the.second 

experiment the number of processors was kept constant to  p =10 and again 20 runs were per- 

formed each with a~,different  number of tasks. The task execution tim- were also generated 



- 
DtYF -- Multifit 

- 1.0005, = 1.013 
opt. opt. 

D&F 
Multifit 

Table 6.1. Results of 1st experiment. 

Wins 
19 
0 

Losses 
0 

19 

D6F -- . Multijit 
- 1.012. = 1.022 

Ties 
1 
1 

D&F 
Multifit 

opt. opt. 

Optimal Schedules 
19 
0 

Table 6.2. Results of 2nd experiment. 

Wins 
18 
1 

randomly in the range [l ... 100). The number of tasks in each of the twenty sets was 20, 30, 40, 

50, ..., 210 respectively. Table 6.2 surnr11;irizes the results of the second experirrient. 

So far we have discussed and presented algorithms for spreading independent serial or  

parallel tasks. High level spreading however can be applied t o  sets of tasks that  exhibit inter- 

task dependences and thus form, in the general case, a direct graph. Such directed task graphs 

can be generated for a given program by the compiler. Performing spreading for a directed 

graph is the most difficult case of spreading, and all instances of this problem for p > 2 and 

task execution times of greater than 1 are NP-Hard i(:;1.1079]. In the following sections we con- 

sider high level spreading for directed task graphs . 111c l  present efficient heuristics for assigning 

Losses 
1 

18 

Ties 
1 
1 

Optimal Schedules 
14 
0 



processors to  minimize execution time and maximize efficiency. 

6.3. High Level Spreading for Complete Task Graphs 

6.3.1. Processor Allocation for p-Wide Task Graphs 

W e  consider here an arbitrary parallel program represented by a task graph G&(V, E ) ,  

where the  set of nodes V represents the tasks (modules of the program) and the set of arcs E 

represents intertask dependences. For each such graph G we can construct its corresponding lay- 

ered graph. T h e  mechanism for deriving the layered graph of a DAG is described in Section 2.4 

of Chapter 2. Since each node of the layered G may be a complex module of code i t  may be exe- 

cutable on one o r  more processors. 

Below we present a simple linear time heuristic' algorithm for allocating processors to  gen- 

eral task graphs. We call this Proportional Allocation heuristic since i t  allocates to  each node a 

number of processors which is proportional to  the size of the node. The  idea behind proportional 

allocation is t o  allocate processors to  the task graph on' a layer-by-layer basis, so tha t  the load in 

each layer is evenly distributed across the available processors, resulting in a suboptimal execu- 

tion time. 

Let V,., ( i  = 1, 2, .: . ,  k )  be the layers in G and vj, ( j  = 1, 2,.. . ,  n )  the nodes of 

k 

V = u q .  Let  also ci be the cardinality (number of tasks) of layer q. We define the width 

i =l 

of G t o  be the maximum number of nodes in any of i ts  k layers. If p is the number of available 

processors a p-wide graph is thus a graph in which each layer contains a t  most p nodes. In this 

section we discuss high level spreading for p-wide graphs. A generalization of this algorithm tha t  

handles graphs of any width is given later in this chapter. Each node vj of G may request 

r j  S p ,  ( j  = 1, 2, . . . ,  n )  processors. For each layer \ ,  ( i  = 1, 2, ..., k )  of G we carry out  the 



following steps. (The notation x t a used below indicates the assi.gnment of an expression a 
< 

t o  variable x .) 

Step 1. Each node v j  E V,  is allocated one processor. If lV,l = q i ,  then the number of remain- 

DOALL 1 I 1  = 1, 7 
1 

1 ENDOALL 

DOALL 2 I 2  = 1, 14 
3 8 

2 ENDOALL 

DOALL 3 I 3  = 1, 5 
} 5 

3 ENDOALL 

DOALL 4 I 4  = 1, 20 
> 4 

4 ENnnALL 

DOALL 5 I5  = 1, 24 
3 6 

5 ENDOALL 

Figure 6.6. A simple program with DOALLs and the processor allocation profile. 

Number of processors allocated t o  each loop 
Loop Nuniber 

1 
2 
3 
4 
5 

Total  -- 

No. of Processors 
1 
9 ,  
3 
7 
12 

32 
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ing processors is pR = p  - qi. The tasks in V, are arranged in order of decreasing size. 

I 

Step 2. The remaining p  = pR processors are allocated t o  the nodes of 5 with r ,  > 1 so that  

each node receives a number of processors proportional t o  its size. For a node v j  in Vi with 

r ,  > 1, the serial execution time is t i .  Let ri = C t j  denote the total execution time of all 

v,€ v; 

nodes v j  E Vi with r j  > 1. Then, for a l l  such nodes perform: 

PR + . P R  - Pj (6.5) 

where pi is the number of processors allocated t o  node v j .  Steps (6.3)) (6.4), and (6.5) are 

repeated until all processors are allocated ( p R  = 0), or all nodcs in 5 are processed. It should be 

noted tha t  if at the end pR > 0, then pi + 1 = r , ,  ( j  = 1, 2,..., qi). A procedural description 

of the proportional allocation heuristic is given in Figure 6.8. A simple example of the applica- 

tion of this algorithm t o  a single layer with DOALL loops, is shown in Figures 6.6 and 6.7. The 

number of processors allocated to  each loop by our algorithm is shown in the table of Figure 6.6. 

Figure 6.7(a) shows the processor/time diagram when loops are execl~ted one by one on an unlim- 

ited (in this case) number of processors, with a total execution time of 24 units. Figurc 6.7(b) 

shows the processor/time diagram for the allocation performed by prnpnrt8innal allocation heuris- 

tic. Processors were allocated so that  both horizontal and vertical parallelism are utilized; 16 

units is the total  execution time in this case. The total program speedup on p  processors that  

results from the application of the above heuristic is given by Theorem 2.4 of Chapter 2. 



PROCESSORS 

Figure 6.7. (a): The  processorjtime diagram for the program of Figure 2 (Case 1). 
(b): The  processor/time diagram after the application of the algorithm (Case 3). 
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P-ALLOCATION HEURISTIC 

INPUT: T h e  layered task graph G ( V l  E )  of a transformed 
program and the number of available processors p. 

OUTPUT: A processor assignment profile for the nodes of G(V,  E). 

F O R  (All layers V,  of G'(Vl E)) DO 

Aiiocate one processor t o  each node v, of layer V;. 
I 

If qi = lyl then set p = pR c p - qil and compute ri = C t j  
for all v .  E Vi with r .  > 1. ti is the serial execution time of v j  and 

3 3 
pR the number of remaining processors. , 

Sort tasks of Vi in decreasing size. 

F O R  (All v j  E Vi with r j  > 1) AND WHILE (pR > 0) DO 

F o r n o d e  v,. compute: 

Allocate pi processors t o  node v,. 

PR'P~ - P j .  

ENDFOR 

e Task v i e  V, is allocated p j  + 1 processors. ( j  = 1, 2,. . . ,  pi). 

Figure 6.8; The  Proportional Allocatiijn Heuristic. 



6.4. List Scheduling Heuristics 

The  only parallel processor scheduling problem for DAGs that  has been solved'optimally in 

polynomial time is the case where p = 2  and all tasks in the graph have unit execution time. 

Hardly any practical cases fall into this category. In most real cases we have p >2 and tasks 

that  have varying execution times. A family of heuristic algorithms that  have been developed 

for more general cases are the list scheduling algorithms [Coff76]. The most popular of them is 

the critical path heuristic. The  basic idea behind list scheduling is t o  arrange the tasks of a 

given graph in a priority list and assign tasks with highest priority each time a processor 

becomes idle. The  critical path heuristic finds the critical path of the graph, and gives priority to  

those tasks that  compose the critical path. T o  find the critical path of a graph we label the 

nodes starting from the topmost node. Each node is labeled with the accumulated execution time 

of the longest path (in terms of execution time) t o  the first node of G.  

The  CP/EMS heuristic in IKaNa841 is acclaimed t o  be the best heuristic yet for scheduling 

general DAGs. This scheme is identical to the Critical Pa th  heuristic with the following 

enhancement: tasks that  do not belong t o  the critical path are given priority based also on the 

number of their successors i.e., the .more the successor nodes of a task, the higher the priority i t  

is assigned, As is the case with all scheduling heuristics, CP/IMS handles only graphs with serial 

nodes, the point being, that  parallel nodes can be broken down t o  a set of serial nodes. However 

this assumption is not practical. Usually program task graphs supplied by the compiler consist 

of a few tens of nodes. Decomposing parallel tasks even for small program graphs could create 

thousands of nodes that  even fast heuristics could not process in a reasonable amount of time. 

In the following section we discuss a scheduling heuristic that  processes program graphs 

with parallel nodes without dccomposing them. This hei~.ristic is more general than both the 

critical path and the CP/IMS heuristics. Later we see how this heuristic can be coupled with 



the proportional allocation heuristic to  form an efficient algorithm for scheduling task graphs of 

any width with parallel nodes. 

6.5. The Weighted Priority Heuristic Algorithm 

T h e  unique characteristic of this algorithm that  distinguishes i t  from the C P  or CP/IMS 

heuristics is t h a t  i t  covers a continuous spectrum of scheduling algorithms. In other words the 

weighted priority (WP) heuristic is a parameterized schedl~ling algorithm whose performance can 

be tuned by choosing values for a set of parameters or weights. Before we describe the W P  

heuristic let us see how we can construct the critical path for a task graph with parallel nodes. 

Let G be a task graph with n nodes that  is t o  be scheduled on p processors, and ri the 

number of processors requested by the i- th task, ( i = l ,  2, ..., n) .  An initial node in the graph is 

a task that  has no predecessors and a final node one without successors. If a task graph has 

more than one initial or  final node we can always change i t  so that  i t  has a single initial and a 

single final node. This can be done by adding an empty task a t  the top of the graph and con- 

necting i t  to  all nodes without predecessors. Similarly we can add an empty final node and con- 

nect i t  from all nodes without successors. Starting from the initial node then we label the nodes 

in G visiting them in a Breadth First manner. Let ti be the execution time of the i-th ta&, 
7:  

(a--1, 2, ..., n) .  The  initial node receives a label 0. All nodes immediately reachable from the 

initial node are labeled with their execution times. In general if node vi is visited from node v,, 

and xj is the label of vj then vi is labeled with xi + [ti/ril. If vi had been already labeled by 

an earlier visit and xi is its old label, then the visit from vj will relabel it with 

max(z,, xj + [ti/ri] ). We continue in the same way until the final node is labeled. 

T o  find the critical path of G we s tar t  from the bottom of the graph constructing the criti- 

cal path (CP) as a set of nodes. The  final node vj is added t o  C P .  Next we add to  C P  the 



immediate predecessor of vj with the largest label. We proceed in the same way until the initial 

node of the graph is added to  the critical path. Obviously if W, is the optimal completion time 

of G on an unlimited number of processors then 

The W P  algorithm considers a subset of the tasks in G a t  a time. I t  computes priorities for 

these tasks and then allocates processors to  the tasks with the highest priorities. In fact in W P  

"highest priority" means lowest numeric priority. 

Let Li be the set of executable tasks of G ,  i.e., the set of tasks that  have no predecessor 

nodes. The  algorithm schedules the tasks in Li until all tasks of G have completed. There i r e  

k discrete steps in WP and each step processes the tasks of list Li ,  ( i=l  ,..., k ) .  The tasks of 

Li+l cannot s tar t  executing until all tasks of Li have completed. We want t o  schedule tasks so 

that  those tha t  constitute a bottleneck are given preference over less critical tasks. We also 

want to  maintain a fairness criterion. In other words more processors should be allocated to  

tasks that  are time consuming and demand many processors. The criteria are listed below ahd 

we see later how they are embedded in the W P  algorithm. 

Our scheme assumes nonpreemptive schedules where each task is assigned a priority, and 

tasks execute in ascending priority (lowest priority tasks first). The  heuristic computes priorities 

using the following three rules of thumb: 

Give priority t o  tasks t;ha,l Belong to  the critical path. 

. . 
Give priority t o  those tasks tha t  have the longest " . ' 

execution times. 

Give priority t o  those tasks that  have the largest 
number of immediate successors (i.e., break as many 
dependences as possible and as soon as possible). 



e Give priority to those tasks tha t  have successors . 

with long execution times. 

Below we show how t o  compute these three individual priorities, and from them the composite 

priority for each task. 

A t  each moment during program execution, we have a set L V of runnable or executable 

tasks i.e., those t h a t  have no predecessors (not including the ones currently running). Suppose 

t h a t  the m tasks in L have execution times t , ,  t , ,  . . . , t,,, respectively. Let ail (i=1,2 ,..., m )  

i "  
be the  number of successor tasks for each t i ,  ( i= l ,Z ,  ... ,m) and t l  , t i ,  t' he the execution timoo 

a,  

of the  ai successors of task ti. Then we define the following: 

m m 

A = C a i  (6.6) T = C t i  (6.7) 
i =l i =l 

m 

Ti= C t: (6.8) Ta =C Ti (6.9) 
j=1 , i =l 

and using (6.6), (6.7), (6.8)) and (6.9) we define the three individual priorities in the following 

way (low numbers correspond to  high priorities): 

Tasks  with longest execution times first: 

Tasks  with largest nu'mber of successors first: 

Tasks  with largest successor-tasks first: 

T h e  composite priority P ( i )  of task ti is then computed from (PI) ,  (P2), and (P3) as, 



p ( i ) = ( 4 ~ :  + &P: + & p i  1. 0'4) 
where 0 5 4 ,  &, & 5 1 and 4+&+=1. We call parameters 4, & and & the priority weights 

since they reflect the weight (significance) we give to  each of these three individual priorities. 

Tasks on the critical path are given the highest absolute priority i.e., if L contains a task on the 

critical path, tha t  task will be given priority over all other tasks in L .  I t  is trivial t o  prove that  

a t  each time the set of executable tasks L contains a t  most one task of the critical path. This is 

true since, by definition, there is always a dependence between any two successive tasks (ti,  ti+J 

of the critical path. 

After all tasks of L have been assigned a priority P ( i ) ,  ( i  =1,2, ... ,na) for some predefined 

values of 4 ,  & and &, the processor allocation is performed as follows. 

The  tasks of L are ordered in increasing priority and let L ={tl, t2,..., t,) be the new 

order. Each ti requests ri processors. We choose the first k tasks from L such tha t  

k k +l 
ri < p  5 ri. 

i =l i =l 

Processor allocation will now be performed for the k selected tasks of L .  I t  should be noted'that 

if a task of the critical path belongs t o  L i t  is selected for allocation automatically no matter 

what its composite priority P ( i )  is. Each of the k tasks receives one processor and the remain- 

1 

ing pR =p = p  -k processors are allocated as shown below. Let 

Then task ti 1 , 2 , .  k)  receives min{ri - 1, pi) processors aud we reset 

pR e p R  - min(ri - 1, pi), (i = 1, 2, ..., k). The assignment of processors is repeated for all k 

tasks that  were selected. If k =m then we delete the nodes of L from the task graph G together 

with the dependences (arcs) originating from them. Those tasks that  had predecessors only in L 



become now the  new executable tasks and are added to  L..  This process is repeated until all n 

tasks of G are assigned processors. If k <m then only the first k tasks of L are deleted from G 

as described above. The  remaining m-k' tasks together with any new executable tasks compose 

the new set L of executable tasks. 

Another version of the W P  heuristic is when only.one priority is used to  order tasks within 

each list as follows. Let T: be the serial execution time of the i- th task in iist Lj ,  and ri the 

number of requested processors (maximum number of processors i t  can use). Then the  priority 

for each task is defined as P ( i )  = [Tf/min(ri,  p)l, where p is the number of processors in the 

system. Tasks are ordered inside each L j  in order of decreasing priority and processor allocation 

is performed in exactly the same way as above. Note that  this version orders the tasks in order 

of decreasing minimum parallel execution time. The  priorities as defined above measure the 

minimum possible time i t  takes to execute each task on p processors. This approach accom- 

plishes two desirable goals: I t  gives priority to  large tasks, and simultaneously, groups together 

tasks whose parallel execution time after proportional allocation is approximately the same 

(minimizing therefore idle processor time). 

We can use many combinations of boundary values (0's and 1's) for the X's to  derive 

different heuristics. For example, if we set h=O then only task execution time and number of 

successors contribute t o  the composite priority. Another special - case of this heuristic (for 

&=O, %=1/2, h-0) is the CPJIMS heuristic [KaNa84] which is the best known so far. Since 

CP/IMS is a special case of the W P  algorithm, W P  performs a t  least as well as CP/IMS. 

In the worst c'ase where ri > p ,  (i=1,3, ..., n )  the complexity of W P  is O(nq)  where q is 

the width of the task graph. If in addition ri=cp, (i=1,2, ..., n )  for some integer c ,  i t  can be 

shown tha t  the W P  heuristic generates the optimal processor a l l o c a t i ~ . ~ ~ ~  for G.  In general, when 

the processors requested by each node are uniformly distributed the c~ . !~~~plex i ty  of W P  is O(n) .  
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6.6. Bounds for Deterministic Scheduling 

In the previous sections we presented algorithms for allocating processors a t  compile-time 

to  high level program modules. Only one of the algorithms is provably optimal even though the 

heuristics which handle the general problem generate schedules which can be very close to  

optimal. In this section we derive a worst case bound for any random scheduling heuristic. 

Coffman has shown tha t  when dealing with serial task graphs (where nodes are serial tasks) any 

random heuristic can generate schedules which are a t  most less than twice as long as the optimal 

ones. In deterministic scheduling of parallel task graphs however, this worst case bound is much 

larger. T h e  reason is tha t  when we allocate several processors t o  several different nodes, 

all processors should become idle before we may reassign them. (Since we process nodes in 

groups and in order t o  satisfy dependences an  implicit type of barrier synchronization must be 

used between successive groups of nodes tha t  are scheduled.) This may result in several idle pro- 

cessors. in successive steps when a "purposely bad" heuristic is used. Of course intelligent heuris- 

tics should have a worst case performance which is always close to  the optimal. Although the 

worst case bound that  we prove below should not characterize any reasonable heuristic we 

include i t  for the sake of completeness. 

.An atomic operation is an indivisible operation that  takes one unit of time t o  execute. Let 

P R O G  be a program that  consists of n atomic operations and w, and w be the optimal comple- 

tion time, and the completion time of P R O G  for a specific scheduling 'algorithm and for p p r e  

cessors. Then we have the following theorem. 

0 
Theorem 6.1 - 547. 

Wo 

Proof Consider the extreme case where P R O G  cdnsists of n independell 1 t~l:,mic operatiois and 



Figure 6.9. Example of a scheduling anomaly. 

i t  is t o  be executed on a parallel processor system with p processors. Then i t  is clear that  

n .  
a, > - (6.10) 

P 
Now consider how we can achieve the worst case schedule for PROG on p processors. Since all p 

processors must be utilized at least once, the worst case schedule wniilrl he the one that 3, 

single atomic operation t o  each of the first p-1 p r o ~ e s s ~ r s ,  2nd tohe remaining of the program to 

the last p-th processor. 'The completion time of such an assignment would thus be 

w 5 n - ( p  - 1 ) .  

From (6.10) and (6.11) we have 

and for n + m w e  have 

Therefore the worst case schedule can be asymptotically p times longer than the optimal. . 



u 

Figure 6.10. The optimal and the worst case allocation for the graph of Figure 6.10. 

In fact the worst case bound of Theorem 6.1 can be asymptotically reached for non-trivial 

programs. Consider for example the task graph of Figure 6.9, which is surrounded by a serial 

loop with k iterations. Nodes a and b are parallel consisting of p-1 and np atomic operations 

respectively, and node c is a single atomic operation. Figure 6.10a shows the execution profile for 

the optima.1 allocation of G on p processors. Figure 6,lOb illustrates the worst case schedule of 

G on p processors. From Figure 6.10 i t  is easy t o  see tha t  w, = k(n + 1) while w = k(np + 1). 

Therefore for n --+oowe have 

Thus static scheduling heuristics tha t  are based on local information t o  obtain locally optimal 

solutions may fail in certain cases. In the next chapter we investigate dynamic scheduling which 
. , 

is  less sensitive in that  respect. 



CHAPTER 7 

RUN-TIME SCHEDULING SCHEMES AND THEIR PERFORMANCE 

In this chapter we concentrate on run-time environments tha t  efficiently support scheduling 

and synchronization. W e  discuss compiler, operating system, and hardware issues. It is clear that  

some decisions such as resource allocation in a shared environment, memory management, tran- 

sient and hard deadlock detection, should be performed dynamically a t  run-time (for example by 

the operating system or by the hardware). In this chapter we discuss run-time issues for proces- 

sor allocation and synchronization tha t  arise from different -situations. We first concentrate on 

dynamic and self-scheduling of processors in a parallel machine during the parallel execution of a . 

single program. Hardware and compiler support schemes are presented. The  issue here as usual is 

performance, tha t  is, the maximum speedup that  can be achieved for a given program and for a 

specific parallel processor system. 

7.1. Dy narnic or Self-scheduling of Processors 

As discussed in the previous chapters static or compile-time scheduling is performed deter- 

ministically by the compiler a t  compile-time, or by the operating system a t  load-time before the 

actual execution of the program is initiated. Static scheduling is "fixed" (in terms of number of 

processors aliocated t o  speciiic program modules) for a virtual machine with or without the same 

number of processors as the physical machine. The  mapping of a virtual stat ic schedule to  a real 

schedule can be done by the operating system. Otherwise stat ic schedules can be "fixed" for the 

real machine if i t  is known in advance tha t  the program will execute in a dedicated environment. 

In the first part  of this chapter we will concentrate on non-deterministic or dynamic 

scheduling. A scheduling scheme is called dynamic when the actual processor allocation is 



performed by a hardware or software emulated control unit during program execution. Therefore 

during dynamic scheduling decisions for allocating processors are taken "on-the-fly" for different 

parts  of the program, as the program executes. Another form of non-deterministic scheduling 

scheme is self-scheduling. As implied by the term, there is no single control unit tha t  makes 

global decisions for allocating processors, but rather the processors themselves are responsible. for 

determining what task t o  execute next. 

There are several factors (such as communication and task granularity) that  must be taken 

into account during scheduling. Implementations of pure dynamic or self-scheduling could be 

very inefficient and involve enormous overhead. Because pure versions of these schemes will look 

a t  the instruction level for parallelism, the previous claim is substantiated. There is no method 

tha t  allows us t o  have some knowledge about the topology of the program a t  r.un-time unless 

compiler support of some form is provided. Hybrid forms of dynamic or self-scheduling are pos- 

sible by having t h e  compiler "help" the cdntrol unit or the processors on ,making a scheduling 

decision. Guided self-scheduling is such a hybrid scheme tha t  we discuss later in this chapter. 

Another reason tha t  can be used t o  argue against pure dynamic scheduling, is tha t  the user 

may want t o  explicitly specify t h e  concurrent modules of a given program and -.keep the task 

granularity within certain' limits. The  run-time system should support user directives as well as 

fully automated scheduling. 

7.2. Parallcl Pkocessing with Centrsr.lized versus Distributed Control 

When stat ic (or deterministic) scheduling is used, the run-time overhead is minimal. With 

dynamic scheduling however, the run-time overhead becomes a critical factor and may account 

for a significant portion of the total execution time of a prog,ram. This is a logical consequence of 

dynamic or non-deterministic scheduling. While a t  compile-time the compiler or  an intelligent 



preprocessor is responsible for making the scheduling decisions, a t  run-time this decision must be 

made in a case-by~case fashion, and the time spent for this decision-making process is reflected in 

the program's execution time. 

One way to  alleviate this problem is to  have the scheduler make scheduling decisions for a 

chunk of the program while other parts  of the program are already executing on the co ipu ta -  

tional processors. This  however implies advanced knowledge about the structure of t h e  program 

w h ~ c h  can not be available at run-time. F'or example, .we must know how to  partition the pro- 

gram into a series of task sets  so that  durlng execution of a task set decisions for the scheduling 

of t h e n e x t  task set can be made "for-free". The execution time of the tasks in each task set 

should thus be long enough t o  allow the scheduler the necessary time to  make the next decision. 

Moreover if the scheduler is the operating system the above scheduling "for free" is impossible, 

since one or more processors must be "wasted" t o  execute the operating system it,self. If the 

scheduler is a control unit (CU), scheduling for free implies tha t  the CU is a standlalone unit (a 

superprocessor) and therefore more costly than a traditional control unit which is essentially a 

sequencer. 

Many have argued against global control units in a parallel processor machine, stating as 

an argument t h a t  a single control unit will constitute a bottleneck. We do not necessa.rily share 

this view point at least from the scheduling (or concurrency control) point of view. If bottleneck 

is the  issue rather than cost, we can argue tha t  a sophisticated global control unit (GCIJ) cam he , 

designed such tha t  i t  never becomes the scheduling bottleneck. The rationale behind this argu- 

ment  is the nature of the dynamic scheduling problem itself: No matter how many control units 

we have, there is always a bottleneck. Even in a fully distributed-control parallel processor sys- 

tem, where each processor makes its own scheduling decisions, processors must  access a common 

pool of ready tasks.,?'hat common pool becomes the bottleneck, since it is a critical region, and 



each processor has to  lock and unlock semaphores t o  enter the critical section and grasp a task. 

Worse yet, there is little hope tha t  this bottleneck can be overlapped with execution, which is 

possible with centralized control. One can argue tha t  instead of a common pool of ready tasks, 

we can use multiple pools of ready tasks. Even in this case (unless each processor has its own 

pool of ready tasks) someone must make the decision on which processors access which pool a t  

run-timc. Moreover since the tasks are spawned from the same program, we should have a way 

of distributing them t o  the common pools. This argument can go on rec'ursively but  the conclu- 

sion is tha t  due t o  the riature of the parallel execution of a single program, there is always some 
1 

kind of bottleneck with run-time scheduling. 

'Ne will consider both powerful stand-alone GCUs and cases of distributed control. In our 

view the most serious drawback of a centralized control unit is its lack of fault'tolerance. How- 

ever there is the following soft solution t o  this .problem as well. In any asynchronous shared 

memory parallel processor machine, each processor has its own control unit and can function 

independently of the other processors in the system. Therefore, the operating system can: be 

designed t o  support hard failures of the global control unit: upon a failure of the GCU the 

operating system can choose one of the ordinary processors t o  become the new control unit. This 

(user transparent) transition will thus be graceful without hard failures and (perhaps) with a loss 

in performance. (Of course the same could happen in a fully distributed-control system, where 

each processor can function as a GCU.) In the case of centralized control the CU is presumably 

a special unit of the system with hardware modules tha t  are not available in the computational 

processors. Therefore, any hard failure that  can be solved by the operating system as discussed 

above should result in a performance degradation. This however is not a serious drawback unless 

the system is used for real time critical tasks where any performance degradation is untolerable; 

in such ' a  case a distributed control system is necessary (unless replicated GCUs are used where 



cost is not an issue compared to  performance). 

7.3. Design Rules for Run-Time Scheduling Schemes 

It has been shown [Grah72] that  in many cases of random task graphs vylirnal schedules 

can be achieved by deliberately keeping one or more processors idle in order t o  better utilize 

them at a later point. This  and other scheduling "anomalies" are reported in [Grah72]. Detecting 

such anomalies however requires processing of the entire task graph in advance. Since this is not 

possible a t  run-time the luxury of deliberately keeping processors idle (with the hope that  we 

may better utilize them later) should not be permitted. Even if we had a way of processing the 

task graph in i t s  entirety a t  run-time, the scheduling overhead of an intelligent heuristic could be 

enormous in many cases. 

T h e  following guideline for any run-time scheduling scheme shoul'd always be applied: Make 

simple and fast scheduling decisions a t  run-time. This principle implicitly forbids asking (and 

answering) questions of the form: "How many processors should we allocate t o  this task'?" Obvi- 

ously answering such a question means, in general, that  we are willing to  hold up idle processors 

until they become as many as the number of processors requested by tha t  task. This is exactly 

what we want t o  avoid. 

Si~ice we waul bu avoid deliberale idling of processors as much as possible, any run-time 

scheduling scheme should rather be designed t o  ask (and answer) questions of the following type: 

"How much work should we give t o  this processor?" In other words, when a processor becomes 

idle try t o  assign i t  a new task as soon as possible, making the best possible selection. As shown 

later this policy is guaranteed to  generate a schedule length which is always by a t  most twice (in 

the worst case) as long as the optimal. 



There is only one exception t o  the above rule. If a global control unit (GCU) is used and if 

the compiler is used to  generate a substantial amount of scheduling information, we can decide 

on the number of processors for each specific task a t  run-time. This can be done in most cases 

without additional overhead assuming the GCU can make decisions about a subset of tasks while 

the computational processors are working on ano'ther subset. We discuss this case-later in this 

chapter. First however we look a t  the more traditional dynamic scheduling where individual pro- 

cessors are the focus of attention instead of individual tasks. 

7.4. Deciding the Minimum Unit of Allocation 

Chapter 2 mentioned scheduling overhead and i ts  impact on the granularity of parallelism 

that  we can exploit. The scheduling overhead depends greatly on the machine characteristics 

(organization). So far most of the existing parallel processor systems have not addressed this 

issue adequately nor have they taken i t  into account either in the compiler or  the hardware. On  

the CRAY X-MP for example multitasking can be applied a t  any level, although i t  has been 

shown tha t  below a given degree of granularity multitasking results in a slowdown. The  responsi- 

bility of multitasking a program is in addition left entirely to  the user. This is also a disadvan- 

tage since the average user must know the details of the machine and the.code t o  determine the 

best granularity. If the code is complex enough, e.g., containing several nested branching state- 

ments, finding the minimum size of code for multitasking would be a difficult procedure even for 

the most skillful'programmer. In real systems where scheduling is clone by Lhe cullipiltr or thc 

hardware (e.g., Alliant FX/8) the critical task size is also ignored. So we may have Ihe case 

where a novice programmer or the compiler schedule a single statement parallel loop on several 

processors with successive iterations executing on different processors. This would most likely 

result in a performance degradation. 



Another bad, in our view, practice that  has been widely adopted by users and system 

designers is exploiting the parallelism in DOALL loops by allocating successive iterations to 

different processors. Thus  in a system with p processors it is common t o  execute a DOALL loop 

with N > p iterations in the following way: Iteration 1 is assigned t o  processor 1, iteration 2 

t o  processor 2, ..., iteration p t o  processor p ,  iteration p + 1 to  processor 1 and so on. There- 

fore processor i will execute iterations i, i + p ,  i + 2p,  .... However i t  is more efficient to  

make the assignment so tha t  a block of' successive iterations would be allocated t o  the same pro- 

cessor. For example in the above case i t  would he more wise t o  assign iterations 1, 2, ..., [ ~ / ~ l  to  

the first processor, iterations [N/pl+l, [N/p1+2, ..., 2[N/pl t o  the sec'ond processor and so on. 

Memory interleaving can not be brought up as an argument against the latter approach since 

memory allocation can be done t o  best facilitate scheduling in either case. 

There are several advantages tha t  favor the second approach of assigning iterations t o  pro- 

cessors. When iterations of a parallel loop are assigned t o  processors by blocks of successive 

iterations, each processor does not have to  check the value of the loop index each time i t  exe- 

cutes an iteration. Recall tha t  the loop index is a shared variable and each processor must lock 

and unlock a semaphore in order t o  be granted access t o  i t  and get the next iteration. In case. all 

processors finish simultaneously they will all access the loop index serially going through a time 

consuming process. In the worst case N accesses to  a shared variable will take place. If the 

assignment of blocks of iterations is performed instead, only g accesses t o  the shared loop index 

will be done in the worst case. For a large N and a small p this will' result in a substantial sav- 

ings, considering the fact that  each access t o  the loop index will have t o  go through the 

processor-to-memory network. Note that  the number of accesses t o  the loop index is indepen- 

dent of N in our case. Another advantage of this scheme is tha t  when we execute FORALL loops 

in parallel, the block assignment can be done so that  the cross-iteration dependences are con- 



tained within one block and the dependences are therefore satisfied by virtue of the assignment. 

In what follows the second method is used, that  is, whenever a parallel loop (excluding DOACRS) 

is executed on several processors, the allocation will be' done so that  each processor is assigned a 

block of successive iterations. 

Another point of interest here is the difference in scheduling flexibility between DOALL and 

DOACR loops. By definition, the iterations of a DOALL loop can be scheduled and executed in 

any order. For example a DOALL may be scheduled vertically (in which case blocks of consecu- 

tive iterations are assigned t o  the same processor), or horizontally (where consecutive iterations 

are assigned t o  different processors). Any permutation of the index space is legal in the case of 

DOALLs. By contrast, a DOACR loop can be scheduled only horizontally. In a DOACR loop tlfere 

are cross-iteration dependences between any pair of consecutive iterations. Thus  vertical schedul- 

ing of a DOACR amounts to  essentially .executing. that  loop serially. This fundamental difference 

between DOALLs and DOACRs should be taken carefully into consideration during implementa- 

tion of scheduling on parallel machines that  support both types of loops. 

Let us return t o  the main subject of this section, namely critical task size. As mentioned 

earlier in this chapter our philosophy nhout run-time scheduling is to put the emphasis on Ihe 

amount of work that  we assign t o  an idle processor, rather than on the number of processors 

assigned to  a particular loop. I t  should be clear by now that  the former approach is more 

appropriate and practical for run-time scheduling, while the latter is more appropriate for 

compile-time scheduling. The obvious problem however is that  a t  run-time we can not afford cal- 

cula,tions to  estimate the projected execution time of a task, and then decide how it  should be 

partitioned so that  the basic partitions are "large enough". T h e  obvious answer t o  this problem 

is the compiler. The compiler can accomplish the same with no less accuracy. Estimating the 

projected execution time of a piece of code (on a single processor) can be done by the compiler or 



1: B1 
i f  C, t h e n  B2 
else B3 

B2 
i f  C2 then g o t o  1 
else i f  C3 t h e n  B4 

else B5 
e x i t  

B3 
i f  C, t h e n  B8 
else B, 

Figure 7.1. An example of condi t io~~al  code. 

the run-time system with the same precision. 

Let us take for example the case of a DOALL loop without conditional statements. All that  

needs t o  be done is estimate the execution time of the loop body, and let i t  be B. The exact 

number of loop iterations need not be known a t  compile-time. Usually the  scheduling overhead is 

constant for a particular machine and i t  may ~ n l y  depend on the code cha,ra,ct,erist,ir.s. Fnr Ayn.m- 

ple, if instruction fetching is considered t o  be part of the overhead, loops would have different 

overhead than high level spreading. With loops each processor receives the same set of instruc- 

tions which is broadcast t o  all processors; with high level spreading each processor will receive a 

different set of instructions and the network traffic would thus be higher. In any case, the esti- 

mate  for the execution time of a piece of straight line code can be done as precisely by the com- 

piler as by the run-time system (operating system of.hardware). Since we know the overhead for 

the particular machine and the particular case we can find the critical block size for that  DOALL 

tha t  is, the minimum number X of iterations for which T, < T,. We see how X can be deter- 

mined in the next section. This number X , c a n . b e  "attached" t o  that  DOALL loop as an attri- 



bute a t  compile-time. All the run-time system must do during execution, is t o  assign t o  an idle 

processor X o r  more iterations of that  particular loop (but no less). In case where X 5 N the 

loop is treated as serial. 

The same technique can be used with high level spreading in the absence of conditional 

statements. When high level spreading involves only basic blocks (Chapter 1) and no loops, any 

conditional statement can be executed in the GCU, thus following the correct execution path 

without significant overhead. A more difficult problem is determining the critical task size of 

parallel loops with conditional statements a t  run-time. Again we have the same limited choices 

(in the compiler or in the run-time system) t o  determine accurately the critical task size. Again 

the compiler can solve the problem by applying a more conservative approach. 

Let us consider the code inside a DOALL loop excluding the loop statements. The control- 

flow graph of a code module with conditional statements can be uniquely represented by a 

pseudo-tree. Consider for example the code module of Figure 7.1 which constitutes the loop body 

of some DOALL. The  corresponding control-flow graph is shown in Figure 7.2. Since there'is no 

hope of accurately estimating the execution time either in the compiler or  a t  run-time in this 

case, we choose to  follow a conservative 'path. The, execution time of each basic block B1,. . . , 6, 

can be estimated precisely. We take the execution time of the loop body t o  be equal t o  the execu- 

tion time of the shortest path in.the tree. 

The  shortest path can be found by starting from the root of the tree and proceeding down- 

wards labeling the nodes with the following procedure. Let ti be the execution time of node 

(basic block) vi, and li be i ts  label. The root vl is labeled tl.  Then a node vi with parent node' 

vj is labeled with 1, = I ,  + ti. As we proceed we mark the node with the minimum (so far) 

label. In case we reach a node that  has already been labeled (cycle) we ignore it. Otherwise we 



Figure 7.2. The  control flow ttee for the example of Figure 7.1. 

proceed until we reach the leaves of the tree. Note tha t  the 1abeling.process does not have t o  be 

completed: If a t  some stage of the algorithm the node tha t  has the minimum label happens t o  be 

a leaf, o r  i t  leads to  an already labeled node (cycle) the labeling process terminates. The path n 

tha t  consists of the marked nodes is the shortest execution path in tha t  code. The number of 

iterations required (conservatively) t o  form the "critical mass" is a function of the number of 

processors as shown in the following section. B ,  the execution time of T, is given by the label of 

the last node of path n. A less conservative approach would be to take the sum of the execution 

times of all paths in the tree and divide i t  by the number of leaves and cycles. In the example of 

Figure 7.2 the above :procedure gives us B = 15 and B = 33.33 respectively. All the above 



can be easily implemented in the compiler. 

T o  summarize the above we assume that  the critical task size is always supplied by the 

compiler and is observed (from below) by the run-time system during execution. For the case of a 

loop which is the most important case, the critical task size is specified t o  the run-time system as 

a loop attribute which is constant and specifies the minimum number of iterations tha t  can be 

allocated each time. In the case of high level spreading the compiler can easily group basic blocks 

together t o  form tasks that  always meet or exceed the critical task size. 

7.5. Run-Time Scheduling Overhead and Its Impact on Parallelism 

During the last few years the field of parallel processing has undergone an enormous 

growth. Parallel processor machines with thousands and millions of processors, have often been 

the subject of research and development projects in industrial and academic laboratories. Look- 

ing a t  what has happened and what is planned for the next few years we see tha t  general pur- 

pose parallel processor systems have been restricted t o  a few processors only. Cost, or the 

absence of applications that  can use thousands of processors is clearly not the reason. The over- 

head involved with the simultaneous application of many processors t o  the same task can be 

enormous. Moreover we have not yet developed algorithms and methods t o  coordinate efficiently 

many processors that  work on the same problem. The only exception is special purpose 

machines tha t  have been built for specific applications, and can utilize large numbers of special 

purpose pccscessors by using a fixed task assignment policy. 

In order t o  make i t  feasible to build very large-scale parallel processor systems we r r ~ u s l  

solve first the scheduling and the run-time overhead problems. In this s e c t i o ~ ~  we study analyti- 

cally two widely accepted models of overhead and their impact on the degree of parallelism that  

we can exploit. When a parallel task is distributed to  several processors a t  run-time, i t  incurs a 



penalty or overhead t h a t  limits the degree of task granularity. Consider for example the parallel 

execution of a DOALL loop whose iterations are spread across processors a t  run-time. Self- 

scheduling for example or any other dynamic scheduling scheme falls into this category. Run- 

time overhead may include several activities tha t  do not occur during the serial execution of a 

loop. All processors involved for example will have to  access the ready task queue in a serial 

mode since i t  is a critical section. Different processors will get different iterations of the same 

loop. A t  the end of the loop all processors involved must "pass through a barrier" serially to 

determine tha t  the loop has been executed and tha t  they are allowed t o  proceed with the next 

task. Even during execution the processors may have to  access several shared variables as is the 

case for example, with DOACR loops. T h e  fetching of instructions a t  run-time can also be con- 

sidered part  of the overhead. Especially with self-scheduling, instructions fetches cannot, be 

overlapped with execution since by definition, i t  is impossible t o  predict, whe.t part  of the pro- 

gram or which iteration of a loop a given processor will execute next. All these activities prolong 

the parallel execution time of a program. None of the above occurs during serial execution. 

This  overhead, as would be expected, makes i t  inefficient t o  execute in parallel small tasks or to  

use a very large number of processors on even large parallel tasks. If the task is not large 

enough t o  amortize the overhead, we may end up with a parallel execution time which is larger 

than the serial execution time. 

In this section we study the overhead involved with parallel t ~ k s . s t n d  its impact on thc 

maximum degree of "usable" parallelism. In our case a parallel task is a parallel loop or a set 

of independent serial modules of a program. We analyze the case of parallel loops and the same 

is applicable t o  high level spreading. T h e  tasks involved in an instance of high level spreading 

can be thought of as iterations of a DOALL loop whose loop-body contains conditional state- 

ments, and therefore different iterations have different execution times. Therefore high level 



spreading can be reduced to  the parallel loop case where the number of iterations equals the 

number of independent tasks in that  set. Since i t  is impossible t o  precisely estimate the execution 

time of a loop body with conditional statements, either at compile-time or at run-time, we 

assume an average or a worst case value as mentioned' in the previous section. For the moment 

let us assume that  the loop-body for a given parallel loop has a constant execution time. 

T o  analyze the run-time overhead we use two different widely accepted conjectures that  

have been backed by empirical results. The first conjecture states that  during the parallel execu- 

tion of a parallel task the run-time overhead is linearly proportional t o  the number of processors 

involved. The second conjecture states that  idvanced techniques and special hardware modules 

can be used t o  make the run-time overhead logarithmically proportional t o  the number of proces- 

sors. We therefore have O ( p )  and O(log,p)  overhead respectively. In what follows we analyze 

each position and derive practical results for each case. We develop the two models and derive 

the optimal number of processors that  can be used for a given parallel task. The  two models 

were implemented and quantitative results are presented in section 7.5.3 for a few randomly 

selected parallel loops. 

The  results presented in this section are practical since they can be used by the compiler to  

draw exact or approximate conclusions for each task in a program, and used at run-time t o  avoid 

inefficient allocalions. The analytical results are also applicable t o  other cases, for instance t o  

study the overhead involved when several processors access a shared variable, or study the effect 

of combining memory requests in network switches. 

7.5.1. Run-time Overhead is O ( p )  

As mentioned above we can always identify a parallel task with a DOALL without loss of 

generality. Let as usual TI and T, denote the serialand parallel execution time of a given task. 



Let  N be the number of iterations of a loop and B the execution time of the loop-body. If the 

loop-body has a varying execution time the procedure of section 7.4 can be used t o  derive a 

worst case or  average value for B. 

In this section we consider the case where the run-time overhead is linearly proportional to 

the number of processors assigned t o  that  loop. Let a, be the run-time overhead constant which 

in general depends on the characteristics of the code, The compiler cn.n supply the valuo of g 

for each loop (parallel task) in the program. Obviously the serial execution time of a loop with 

N iLeraLions and e loop-body executior~ lime of B would be T, = NR. The parallel execution 

t ime then on p-processors would be 

Consider (7.1) as a function of p .  If overhead was zero, (7.1) would be an integer valued mono- 

tonically decreasing function. Since (7.1) is not a continuous function i t  is not amenable to  

analytical study. W e  can easily approximate the function in (7.1) by s continuous function, by 

e l i ~ ~ l i ~ ~ a l ~ n g  the ceiling. We thus get 

T ( p )  = NB/p  + cr,p. (7.2) 

(7.2) is a continuous real function in the interval (0, + m), with continuous firat and second 

derivatives. We can thus study its shape and determine the point where overhead becomes 

minimal. In other words we want t o  find the value of p for which (7.1) becomes minimum and 

therefore the speedup of tha t  task is maximized. The  result is given by the following theorem. 

Theorem 7.1 The  parallel execution time of a task tha t  consists of N serial processes, each tak- 

ing B units of time to execute, is minimized when the task is executed on a number of processors 

given by 



P o  = V N B j o ,  (7 -3 )  

Proof First we show how (7 .3)  is derived and then prove that  i t  is indeed the optimal value for 

that  task (loop). Consider (7 .2)  which is an approximation t o  the parallel execution time defined 

by (7 .1) .  T ( p )  is continuous in the interval (0, + 4 and has a first derivative 

dT(P NB 
= T 1 ( p )  = - - + 0,. 

dp P 

The local extreme points of (7 .2 )  are a t  the roots of its first derivative. 

and since we are only interested for values in the interval (0, + 4, we discard the negative root 

p, .  The  second derivative of T ( p )  is 

(7 .6)  is always greater than zero and therefore the extreme at ( p , ,  T ( p , ) )  is a minimum, where 

po io given by ,(7.5) .  If p, is a.n integer, then the parallel execution time T,, is also minimized as  

we prove later, and it is 

Indeed if T p  is the parallel execution time for any other p = c v m w h e r e  c can be of the 

type na, or l/na wherc m is a positive integer, then T < Tp , or equivalently, 
P o  

2 m  < <V(NB)~U, I C'(NB) + VC~O~(NB) I 0, (7 .8)  

and if we s i~hst i tu te  x = NBao in (7 .8)  we have 

and since z > 0, we finally get (1 - c 2 y  > 0 which is always true. . 
Corollary 7.1 The  parallel execution time T~ is also minimized when the number of processors 



Proof Let us suppose tha t  there is another p = po + k ,  where k is a positive or negative 

integer, for which Tp < T . Then from (7 .1)  we have, 
P o  

But  from Theorem 7 . 1  we know that  

By dividing the two sides of (7 .9)  and (7.10) we get 

and after the simplifications we finally have 

and since, by definition, 1x1 - x 1 for any real x ,  (7.11) gives us 1 > 1.  Therefore the  ini- 

tial hypothesis can never be true for any integer k and thus p, is optimal for (7 .1)  also. W 

NB 
Corollary 7.2 For uo 2 - the approximation function T ( * )  defined in (7 .2 )  satisfies 

4 

T ( P )  2 NB 
for any integer p # 0. 



Proof By substituting T ( p )  fi-om (7.2) in (7.12) we have 

NB - + o o p  > NB or % p 2  + p(NB) + NB > 0 .  (7.13) 
P 

(7.13) is a quadratic equation of p and since o0 > 0 ,  the inequality in (7.13) is always true if 

I 
the determinant D of the equation in (7.13) is negative, i.e., 

NB 
D = ( N B ) ~  - 4oo(NB) < 0 which gives us oo I> - .E 

4 
NB 

Corollary 7.3 If a, > - then the parallel execution time for p > k is greater than the 
k 

serial execution time, i.e., Tp > T I .  

Proof The proof here is trivial. Suppose that  for some positive p > k we have Tp 5 T I .  

Then [ N / p l B  + c o p  5 NB, and from the statement of the corollary we have 

and since N is always positive i t  should be p < k which contradicts the statement. . 
In the next section we analyze the case of logarithmic overhead in a similar way. 

7.5.2. Run-Time Overhead is 0 ( log,  p ) 

Let us assume tha t  the run-time overhead is logarithmically proportional t o  the number of 

processors assigned to  a parallel task. Again the task consists of N independent serial processes 

where each process takes B units of time to  execute. In this case therefore, the parallel execution 

time is given by 

T o  determine the optimal number of processors tha t  can be assigned to a given parallel task in 



this case, we follow the same approach as in the previous section. Again since (7.14) is not a con- 

tinuous'function we approximate i t  with 

NB 
U P )  = - + 0, log P (7.15) 

P 
where T ( p )  is now a continuous function in the interval (0, + 4, with continuous first and 

second derivatives. The  corresponding theorem follows. 

Theorem 7.2. The  approximate parallel execulion time defined by (7.15) is minimized when 

O O  

Proof The first derivative of (7.15) is given by 

I 

T ( p )  has roots p = 0, which is discarded, and 

The aecond dcrivative of ('1.15) a t  p ,  is 

3 
11 2NB - ~ , p  

T ( P )  = and T'~(NB/u,) = > 0 
P3 (NB12 

Therefore T ( p )  has a minimum a t  p = p , .  . 
If p,  is an integer, then we have the following corollary. 

Corollary 7.4. For any p = p,. + k ,  where k is any integer, we have T P o  < T p .  

Proof The proof is similar t o  the proof of Corollary 7.2. Again we assume that  there is a k for 

which p = p, + k and T > T p ,  i.e., 
P o  



But from Theorem 7 . 2  we have tha t  

N Po + k ] < 0, log..[ 1. (7.19) 
P o  P o  + k 

Dividing (7.18) and (7.19) and using again the fact tha t  ,[XI - s 5 1, we reach a contradiction 

to  the initial hypothesis. Therefore the statement of the corollary is true. . 
If p, is not an  integer, then we have the following theorem. 

Theorem 7.3. Let 6 = r p 0 ]  - p, where 0 < 6 < 1. Then the number of processors p: 

tha t  minimizes the parallel execution time .Tp .in (7.14) is given by 

where po = NB / a,. 

I 

Proof Let us suppose tha t  the optimal execution time T p  is achieved for p = p, + k ,  where 

k is some nonzero integer and ( k I # 1. Then 

Rut in Theorem 7.2 ,  we proved that  T ( p )  is a parabola and reaches its minimum value at 

p, = NB / ao. From calculus we know then tha t  for 1 C1 1 < 1 C2 1 we have 

and since 6 < k and 1 - 6 < k we have 

T ( P ,  f 6 )  < T ( P ,  f ' k )  and ~ ( p ,  & ( I . -  6 ) )  < T ( ~ ~  + k )  

or equivalently,' . . . . . 
. . . , 

T ( p )  > ' ~ ( p : ) : '  . (7.22) 



Using the same approach as in the previous corollary and substituting the Tp9s and T(p)'s in 

(7 .21)  and (7.22) we contradict the initial hypothesis. Therefore the statement of the theorem is 

true. . 
N B ( p  - 1)  

Corollary 7.5. If O, 2 then T p  > T,. 
P 

Proof Suppose tha t  T, < TI. Then 

N 
-B + 0, log p 5 
P 

By taking the first and last terms in (7.23) we have 

NBp - N B  - o,, log p > 0. 

Let NB = log y. Then NBp = p log y. = log y P  and (7.24) becomes 

p 
log Y P  - log y - 10g.p > 0, or  

log ] - > O Or log [ ~ ; & ; ~ l ]  > 0 

and finally, 

Y P  - 1 > p p p  or e NB(P -1) > p P P  

and since p >' e we finally have that  

N B ( p  - 1)  > pa,  or a, > N B ( p  - 1) 

P 
which contradicts the basis of' the corollary and thus (7.23) is not true. . 

We used the  above models t o  study the effect of run-time overhead on the degree of usable 

parallelism and thus on execution time. We used (7 .1 )  and (7.2)  to  compute the actual execution 

time of a program, and (7 .2)  t o  compute i ts  approximation function for the linear overhead case. 
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Figure 7.3. Execution times with (a) linear and (-b) logarithmic overheads for N=200 and B =8. 
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Figure 7.4. Execution times with (a) linear and (b) logarithmic overheads for N=100 and B =loo. 
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Similarly (7.14) and (7.15) were used for the logarithmic overhead case. 

Figure 7.3 illustrates the execution time for a DOALL with N=200 and B=8 under (a) 

linear. overhead, and (b) under logarithmic overhead. Figures 7.4, 7.5, and 7.6 illustrate the same 

d a t a  for three different DOALLs. The solid lines plot the values of :Tp, the actual parallel execu- 

tion time. Dashed lines give the approximate execution time defined by the continuous functions. 

For these measurements a value of a= 4 was used. The overhead constant although optimisti- 

cally low, is not unrealistically small for (hypothetical) systems with fast synchronization 

hardware. In all cases we observe that  as long as p 5 .N, the difference. between the values of 

the approximation function T(p)  and the actual parallel execution time Tp is negligible. 

Looking a t  Figures 7.3a and 7.5a we observe that  when the loop body is small, the associ- 

ated overhead limits severly the number of processors that  can be used on tha t  loop. For these 

two cases for example, only 1/10 and 1/40 of the ideal speedup can be achieved. When B is large 

however the overhead has a less limiting impact on speedup. For the case of Figure 7.4a for 

example, 112 of the maximum speedup can be obtained in the presense of linear overhead. The 

same is true for Figure 7.6a. In all cases the logarithmic overhead had practically no significant 

negative impact on speedup. 

7.6. . Problems and Trade-offs in Dynamic Scheduling 

For our discussion in this section we need t o  define more precisely .what are the components 

of a program tha t  we want to  schedule, namely tasks and processes. We defined earlier the con- 

cept of basic block (AhU1771. A straight line code (SLC) module is a piece of code tha t  consists 

of a set of basic blocks with. conditional statements embedded between basic blocks. The only 

other type of executable code are outermost loops. Outer loops can be arbitrarily complex and 

are treated separately. A task is an SLC module or an outermost loop. A task may consist of 



several iterations or processes in which case we have a parallel task. Processes and straight line 

code modules are always executed on a single physical processor. Each process may have scalar 

or vector statements but  never parallel components. Therefore the parallelism within a process 

is always of SIMD type. Parallelism in tasks is always of MIMD type. 

In defining the above terms we considered the following aspects of Fortran programs and 

real parallel processor systems. Recall tha t  our machine model is a, gen~ra.1  purpose parallel pro 

cessor system with ~ o w e r f u l  processors whose utilization should be kept as high as possible. The 

processors may be multifunctional or pipelined and low level parallelism should be exclusively 

utilized within a processor. In other words we do not allow low level spreading across processors 

(where low level refers t o  statement or instruction level granularity). We therefore exclude from 

our definition of parallelism low level spreading and vector statements. Note tha t  this assump- 

tion still allows for very long vector statements t o  be distributed across several processors. This 

can be done by breaking the vector statement into smaller segments a t  compile-time and creat- 

ing an artificial parallel loop around the reduced size vector statement. This is known ai strip 

mining. 

If we adopt the above assumptions, there can be only two types of parallelism in a Fortran 

program: Parallelism due to high level spreading (vertical) and parallelism due t o  (possibly 

nested) parallel loops. Using the earlier results of this chapter we serialize (either a t  compile or a t  

run-time) all those parallel loops whose parallel execution would potentially result in a slow- 

down, or  no speedup due t o  the overhead involved. We can now consider the tradeoffs involved 

with scheduling these types of constructs. 

All ready-to-execute tasks will be queued in a common pool Q tha t  may be implemented to  

support parallel deletions and insertions. Each ready task in Q will be represented by a tem- 



Figure 7.7. A multiply nested hybrid loop. 

plate. Tasks in Q may be serial (serial loops or SLC) or parallel. When a processor dispatches a 
3 

task from Q it  may execute the entire task or  part  of it .  The type of parallelism discussed 

above is explicitly represented in Q:  All tasks in Q may be executed simultaneously (high level 

spreading). O n  the other hand parallel tasks in Q may be executed on several processors (loop 

parallelism). 

Let us suppose tha t  Q has parallel access capabilities and thus each processor can dispatch 

a task (or part  of a task) from anywhere in Q.  Therefore there is no complication with high 

level spreading. If Q for example contains serial tasks only, each incoming p;ocessor will 

dispatch a single task until all tasks in Q are dispatched. Some groups of processors may have 

t o  perform a barrier synchronization, but  we are not concerned of how this can be done until 

later. The  only problem left is how to  dispatch a ~ a r a l l e l  task, tha t  is, a parallel loop. Let us 



look a t  the problems involved with distributing a parallel loop. We assume tha t  each incoming 

processor dispatches a set of consecutive iterations (process) from a parallel loop. I'f we have a 

single level of parallelism the procedure is trivial. If however we have multiply nested parallel 

loops the dispatching process becomes more complicated. Consider the example loop of Figure 

7.7 and let us consider the following scenarios. 

All loops are DOALLs. Then if Ni is the number of iterations of Li the first, j loops for 

i 
which n Ni 2 p will be executed in parallel. All remaining loops will be serialized. Since we 

i =t.l 

are not interested in the optimal allocation (since i t  is impossible in this case), our objective is to 

utilize enough parallelism t o  keep the processors busy. Because all loops are parallel the above 

selection will give us enough iterations (processes) t o  keep all p processors in the system busy. If 

i +2 

thcrc is no dependence from Li+l to  LiG and in addition n Nj < y ,  we should be able to per- 
j =1 

form high level spreading inside Li by overlapping the execution of Li+l and Lie .  If all surround- 

ing loops are DOALLs the compiler can distribute them around LiM and therefore Li4 will 

appear in Q as a separate parallel k k .  High level spreading is then automatic. If one of the sur- 

rounding loops e.g., Li is serial, loop distribution is not allowed and we should take provisions in 

our design to  enforce or  allow spreading within a parallel task. In this case overlapped execution 

of Li+l and Lie  can be achieved by using a barrier synchronization a t  the end of L i .  Incoming 

.processors can dispatch iterations of Li+l and Li4  in any order, for the same value of the index 

of L i ,  and as long as the barrier is+cleared. Exactly the same could be done if the serial loop was 

L, ,  for 1 5 j < a .  

If there is a dependency from Li+, t o  LiG,  each processor that  executes an instance of Li+, 

for a given index value of Li will also execute the corresponding instance of LiG.  Therefore, since 



dependences remain. "within a processor" they are preserved automatically. No barrier syn- 

chronization between the two loops is needed in this case. . T h e  self-scheduling scheme proposed 

in [Tape861 uses synchronization for each single loop in the construct. This approach involves a 

large overhead especially for small loops with many iterations. Moreover this method does not 

allow high level spreading within the scope of a loop. Later in this chapter we. present a different 

self-scheduling scheme that  uses far less synchronization and also allows for spreading inside a 

.loop. 

Our  next goal is to  design a dynamic scheduling scheme tha t  is efficient, realistic, and 

involves as low an overhead as possible. Since scheduling is done in a non deterministic way in 

this case, we should design our scheme such tha t  processors are scheduled automatically akd 

select the "best" task to  execute next by going through a simple and fast proced~re .  T o  achieve 

this we design our scheme around the following two objectives: 

e Keep all processors as busy as possible. 
e Run-time overhead should be kept minimal. 

, . 
The following theorem clarifies our intention for using these two rules. Assuming zero overhead, 

a,nd thak we: can keep all processors busy, we see from the next theorem tha t  we can get very 

close t o  an optimal sclladule by using any simple self-scheduling scheme. 

Theorem 7.4 Let L be a DOALL loop with N iterations and a loop-body tha t  takes a max- 

imum of B units of time to  execute. Then the execution time wL using any self-scheduling 

scheme is bounded by 

Proof Let us assume that  N > p .  During self-scheduling iterations are scheduled on demand. 



When a processor becomes free it dispatches a new iteration or a block of iterations. (since the 

lat ter  case can be reduced t o  the case where iterations are assigned one by one, we consider the 

former case.) In a DOALL there are no cross-iteration dependences. Therefore new processes are 

always available until L is completely dispatched. In other words there are no "gaps" in the exe- 

cution profile. 

Assume tha t  all p processors s tar t  a t  time 1. Let t be the time the first of the p processors 

tinlshes completely ('i.e., it tinds an empty Cj). 'l'hen no new iteration (process) can s tar t  execu- 

tion at time greater than or  equal t o  t .  'l'herefore all other processors will complete before time 

t + B and thus 

< t + B .  w~ - (7.26) 

There is a t  least one (out of the p )  processor that  by time t has been assigned a t  most 

[ N / p l  - 1 iterations. This is true because otherwise (i.e., if each processor has been assigned a t  

least [ N / ~ ]  iterations by time t )  the total number of iterations x assigned up t o  time t would 

be x 2 p [ N / p l  2 N which is impossible (unless p divides N wliicli agairl proves the 

theorem). I t  follows therefore that  

and if we substitute t in (7.26) we finally have 

Consider again a DOALL loop L with N iterations, or equivalently a set of N  independent serial 

tasks. Let B and b be the execution times of the longest and shortest iterations of. L respec- 

tively. Then if wO is the optimal schedule length of L on p processors and wL the schedule lenght 

of L on p processors under any dynamic (demand-driven) scheduling scheme (assuming no over- 



head of any kind), we have the following. 

Corollary 7.6 can never be B/b times worse than the optimal, tha t  is 

Proof From the previous theorem it  follows that  

- B "L IN/plS W p l S  - - - I 5 
C J ~  W~ ~ N / P  l b  b 

For example if all iterations of L have equal execution times oL = uo ,  i.e., any demand-driven 

scheme is optimal, excluding again overhead. 

Another upper bound which in general is closer than that  of Corollary 7.6 is given by the follow- 

ing. 

W~ 
Corollary 7.7 - P B < 1 + -*-. - 

CJo N b  

Proof Since t  is the time the first processor completes execution on L .(Theorem 7.4)) i t  is obvi- 
.' . 

ous that  

From the previous theorem we also have, 

w , =  T , < t + B .  

From (7.28) and (7.29) i t  follows that  



which proves the corollary. 

Fro111 Corollary 7.7 we observe tha t  if N is very large compared to  p ,  any dynamic schedul- 

ing heuristic converges t o  the optimal. The case of high level spreading is also included in the 

above theorem. In the case of general program graphs (DAG's) the above theorem holds true if 

we replace [ N / ~ @  by 4 whcrc w, is the iength (executioll lilrle) of the optimal schedule for a 

particular program graph, Therefore in tohe worst, cnse dynamic scheduling will rcoult in a per.]- 

lel execution time which is by a t  most t, units of time longer than the optimal (where t, is the 

execution time of the longest serial task in the graph). By using the compiler t o  guide dynamic 

scheduling, we can reduce t, t o  be the execution time of a particular serial task. This is as good 

a performance as we can get given the nondeterministic nature of the problem. Since any 

dynamic scheduling algorithm is bounded by (7.25), we should use the simplest possible: for 

example processors pick random tasks from Q to  execute next. This will work (theoretically) a~ 

well as any other more complicated scheduling procediire T h e  nnly problem (and in faot thc 

dominant one in reality) is overhead. The  overhead varies with different schemes. The  execution 

t ime given by Theorem 7.4 can never be realized in real systems. Overhead is. never zero but 

instead, i t  may be several times longer than the execiit,ion time of a task. When a task ti is 

scheduled there is always an overhead factor oi associated with i t  t ha t  .prolongs its execution 

time. This overhead is paid by a processor each time tha t  processor dispatches a new task. 

Therefore in reality, if a given program graph is scheduled on p processors with each processor 

executing an average of rN/pl  tasks, with an average task execution time of ti the schedule 

length would be of the order O( [ N / ~ X ~ ~  + oi)) instead of O( [N/plti) as implied by 

Theorem 7.4, where oi is the overhead factor. If oi > ti which is often the case, then dynamic 
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scheduling may give an execution time several times longer than the best possible. 

Our next design goal therefore is t o  implement dynamic scheduling such that  oi is minim- 

ized for each processor. Note also that  if oi was a constant i t  would be rather easy t o  optimize 

the schedule even a t  run-time. However the overhead oi depends dynamically on several factors 

and may yary vastly from task t o  task and processor t o  processor. For example, oi depends on 

the size of the task, the type of the task, the total number of processors tha t  at tempt a dispatch 

a t  the same moment, and so on. This becomes clear if we see what run-time activities "contri- 

bute" t o  o i .  Such activities for example include time spent in Q during dispatching. Obviously 

the fewer the processors that  try to  dispatch a task a t  a given moment, the shorter the time a 
. . 

processor will wait in Q. Since dynamic and in particular self-scheduling makes, i t  by nature 

impossible t o  predict what task a processor will execute next, instruction and da ta  fetching will 

have t o  be done after a processor dispatches a task. Although we discuss later ways of prefetch- 

ing instr~lctions and data, in a pure implementation of self-scheduling these activities cannot be 

overlapped with execution and they are attributed t o  o i .  Several processors may have t o  syn- 
. 

chronize after executing a parallel task by performing a j o i n  operation which can be imple- 

mentoerl with barrier synchronization. This overhead is also accounted for in o i .  If all the p r e  
J 

ccssors involved in a parallel task atteinpt a join simultaneously; the overhead for each processor 

would obviol~sly be higher than if each processor performs the join at a different moment, or  if 

the arrival of processors t o  the barrier follows some probabilistic distribution. Since a systematic 

a~lalysia is impossible for the real problem, we should design a run-time scheduling scheme that ,  

in a pure form, limits the overhead t o  be within reasonable bounds. Compiler generated infor- 

mation can then be used t o  enhance performance by forcing the processors t o  make more intelli- 

gent selection of tas lc~ without extra overhead. 

\ 



7.7. Self-scheduling Through Implicit Coalescing 

In this section we discuss a new self-scheduling scheme that  requires minimal synchroniza- 

tion. In this case the concurrency control is fully distributed i.e., our machine model consists of 

p processors tha t  operate independently and autonomously - no global control unit of any type 

exists. For simplicity we can assume that  the machine has a fixed address space in global 

memory where the program graph (in some representation) is stored. There is also a common 

pool Q of ready-to-execute tasks. Q may support parallel task dispatchlinsert operations. A 

possible implementation would be t o  maintain Q as a hash table. A processor then may access 

any entry of Q by computing the address using a hash function. In addition a processor may be 

forced t o  use the last hash address instead of recomputing a new one. This for instance may be 

useful when a processor executes part of a 'parallel loop. If the processor is forced in this case to  

dispatch another part  of the same loop next we save instruction and fetches of read-only data. 

Another possible implementation of Q is a table where an idle processor dispatches i ts  task from 

a random entry. There are several other ways of organizing Q but this is another subject o n  its 

own. 

Another concern here is how t o  insert (enqueue) ready-to-execute tasks in Q ,  and how to 

determine whether a task is ready- t~execute .  Since there is no global control unit in our system 

this should be the responsibility of the operating system or  the program itself. T h e  operating 

system however is activated only when i t  receives a specific request. This means that  only 

periodic checking for ready-to-execute tasks is possible, clearly the least desirable approach. The 

best approach is t o  enqueue tasks in Q as soon as they become executable. This means that  as 

soon a s  all their predecessors complete execution, one of the processors should be able to  detect 

this event and "fire" the corresponding tasks. The  best candidate for this, in terms of efficiency, 

is the processor tha t  completes the barrier associated with each task (if any), or the processor 



that  dispatches the last part of a task. We can view this activity as service t o  the "communityJJ 

of processors. In general the responsibility for this service should be evenly distributed among 

the p processors. Therefore for what follows we assume that  Q always contains the r e a d y - t ~  

execute tasks and remains updated through program execution. The details of how this is done 

are of no concern t o  the following discussion. Again high level spreading is automatic. There- 

fore we' present our self-scheduling scheme only in the context of arbitrarily nested hybrid loops. 

Most of the schemes that  have been proposed so far [GGKM83], [TaPe86], implement self- 

scheduling by making extensive use of synchronization instructions. For example in [Tape861 a 

barrier synchronization is associated with each loop in'the construct. In addition, all accesses t o  

loop indeces are, by necessity, synchronized. Another common characteristic of these schemes.is 

that  they assign only one loop iteration to  each incoming (free) processor. Our scheme differs in 

all aspects discussed above. Only one barrier per serial loop is used. Furthermore, indepen- 

dently of the nest pattern and the' number of loops involved, we need synchronized access to  only 

a single loop index. In contrast the above schemes need synchronized access t o  a number of 

indeces which is equal to  the number of loops in the construct. 

Self-scheduling can be achieved through loop coalescing. This compiler transformation was 

described in Chapter 4 and was used to  enhance the performance of static-scheduling. The key 

characteristic of this transformation which is useful here, is i ts  ability t o  express all indeces in a 

loop nest as a function of a single index. This makes i t  clear why synchronized access to  each 

loop index is wasteful. We can always use a single index. If the loop bounds are known a t  run- 

time just before we enter the loop, we may decide exactly how many iterations each processor 

will receive. Thus  when a processor accesses the single loop index t o  dispatch a range of con- 

secutive iterations i t  goes through a single synchronization point. Since the range of iterations is 

determined before-hand, each processor will dispatch all the work i t  is responsible for, the very 



first time i t  accesses the corresponding loop index. Therefore only a total of p synchronization 

instructions will be executed. For a matter of comparison, in the schemes mentioned above each 

processor executes a synchronization instruction for each loop in the nest, and each time it 

dispatches a new iteration. In a nested loop that  consists of m separate loops we would then 

m 

have a total of m n  Ni synchronization instructions that  will execute before the loop completes. 
i =l 

rrr 

T h e  difference between p and m n  Ni can obviously be tremendous. In theoretical terms we can 
' i=l  

thus s ta te  t h a t  the scheme in [Tape861 or  [GGKM83] for example, involves an overhead which is 

unbounded on p .  

Figure 7.8. Example loop for the application of GSS. 



7.7.1. The Guided Self-scheduling (GSS(k)) Algorithm 

In this section we present a simple, yet powerful algorithm for dynamic scheduling. The  

idea is t o  implement Guided Selj-Scheduling with bound k ,  (GSS(k)) by "guiding" the proces- 

sors on the amount' of work they choose; The bound is defined t o  be the minimum number of 

loop iterations assigned t o  a given processor by GSS. The  algorithm is discussed below in great 

detail and is summarized for k = l  in Figure 7.10. First we present the case of. k = l ,  GSS(1) or 

GSS for short, and later discuss the general case for k > 1.  The  GSS algorithm achieves 

optimal execution times in most cases. Let us describe in more detail how self-scheduling 

through implicit loop coalescing works. For the beginning assume tha t  we have a perfectly 
! 

(one-way) nested loop L = . (N1, ..., Nm). As discussed in Chapter 4, loop coalescing coalesces 

m 

all m loops into a single loop L' = (N = JJ Ni) through a transformation j that  maps the 
i =l 

I 

indeces I i ,  ( = 1 2 . .  m )  of the original loop L t o  index I of L such that  

Ii = j i ( I )  (i = : lj  2, ..., m). This index transformation is universal, i.e., i t  is the same for all 

loops, perfectly nested or not. Therefore each processor can compute locally ji for a given I .  

Better yet, each processor can compute locally a range of values j (x:y) .  for a range of 

x 5 I 5 y .  This mapping j as defined in (4.4) (Chapter 4) may be implemented in micr* 

code, or a fast hardware device may be used inside each processor t o  realize j .  The global index 

I is then kept in the shared memory as a shared variable. Each processor accesses I in a syn- 

chronized way and dispatches the next set of consecutive iterations of L along with a pointer t o  

its code. Then inside each processor, mappings ji are used to  compute the corresponding range 

for each index Xi of the original loop. After the index ranges are computed for each processor, 

execution proceeds.in the normal mode. In case all loops in L are parallel no processor will ever 

go' back t o  dispatch another range of iterations of I. This is obviously the miaimum possible 



amount of synchronization that  is needed with any self-scheduling scheme. 

T h e  process is more complicated with self-scheduling of hybrid loops. Let us look a t  the 

case of hybrid loops tha t  consist of DOALLs and DOSERIAL loops, and in particular consider 

the example of Figure 7.8. In the example the innermost and outermost loops are DOALLs and 

the second is a serial loop. Let us denote this loop with L = (N1, N2, N3) = (10, 5, 4). 

W e  have a total of N = 200 iterations. On a machine with an unlimited number of processors 

(200 in this case) each processor would execute 5 iterations of L ,  and this is the best possible 

that tife can achicvc. On a system with p processors self-scheduling should be done such that  

iterations of L are. evenly distributed among the p processors (assuming an equal execution time 

for all iterations). The  presence of the serial loop in L however limits our ability t o  do this. I t  

is profound tha t  the approach of assigning consecutive iterations of I t o  each processor would 

fail here. (This is true because after coalescing we have a single iteration space and assignments 

are done in blocks of consecutive iterations.) At  most 4 successive iterations may be assigned at 

once. If all 4 are given t o  the same processor, the loop is executed serially. Tf each processor 

receives one iteration on the other hand, we can use only up t o  4 processors. 

This problem can be eliminated by permuting the indeces of the original loop, or 

equivalently, by applying implicit loop interchange [Wolf82]. Our goal is t o  permute the indeces 

so tha t  the longest possible set of parallel iterations corresponds to  successive values of the index 

I 

I of L . This can be done by permuting the indeces I and J so  that  the aerial loop becomes the 

outermost loop or by permuting J and K so that  the serial becomes the innermost loop - which 

would violate dependences in this case. In general a serial loop can be interchanged with any 

DOALL that  surrounds it, but  i t  may never be interchanged by a loop surrounded by it. There- 

fore in the case of our example we implicitly inte;change loops I and J. 



The  interchange can be implemented trivially using implicit coalescing as follows. The  

mappings of I and J are permuted such that  I is defined by the mappiLg of J and vice versa. 

No physical loop interchange takes place (neither physical coalescing). More specifically, if I, is 

the global index of the coalesced loop for the example loop of Figure 7.8, then the original 

indeces I ,  J and K are mapped to I, as follows: 

X = Ic - 4I1c 1 I ] .  

After implicit loop coalescing the mappings are: 

The  result is tha t  the first 40 successive values of I, correspond now to 40 parallel iterations 

(instead of 4 iterations previously). Therefore up to 40 processors can be used in parallel. Extra 

synchronization is still needed however. As mentioned earlier in this section, each serial loop in 

L .needs a barrier synchronization t o  enforce its seriality. The following lemma tells us when it 

is legal t o  apply loop interchange in order t o  maximize the number of consecutive parallel itera- 

tions. 



Proposition 7.1. In a hybrid perfectly nested loop, any DOALL can be interchanged with any 

serial or  DOACR loop tha t  is in a higher nest level. This loop interchange can be applied repeat- 

edly and independently for any pair of (DOALL, DOSERIAL / DOACR) loops. 

Proof The proof is trivial for the case of two loops. The general case follows by induction on the 

number of loops interchanged. . 
T h e  only case tha t  remains t o  be discussed is nonperfectly (multi-way) nested loops. This 

is identical t o  the one-way nested loop case, unless one of the following two conditions is met. 1) 

Loops a t  the same nest-level have different loop bounds. 2) High level spreading should be 

applied with loops a t  the same nest-level. In the first case if k loops Ni+l, Ni+2, . . . , Ni+k 

happen t o  be a t  the i- th level, the' global index I, is computed with a number of Ni iterations 

for the i- th level, which is given by 

Ni = max (Ni+,) 
l s j s k  

Then during execution, loop Ni+j at the i- th level will have Ni - Ni ,, null iterations;(which 

are not actually computed). 'I'herefore some of the processors execute only part of the code a t  

level i. This corresponds to  computing (cslicesJ1 of each loop on the same processor. Consider for 

example the loop of l?igurL 7.7. If Lid and Lid are independent, then only one mapping function 

Ii+,(.*) can Be used for both Li+l and Li4. Thus  silces of' the two loops corresponding t o  the 

same index values will be assigned to  each idle processor. In general if loops a t  the same nest 

level are' independent, outer loops can be distributed around t h e m  and each loop is-considered 
.. 

separately (i.e., we coalesce each of them and consider them as separate tasks). When there are 

dependences among loops, either loop distribution or barrier synchronization can be used as men- 

tioned above. If for example there is a dependence from Li+l to  Li4, a barrier can be inserted 

between the two loops t o  insure completion of Li+l before Li4 s tar ts  executing. 
v :  



If high level spreading is t o  be applied, then implicit loop coalescing and a global index I, 

will .be computed for each loop that  is spread. Consider Figure 7.7 of the previous section. If 

loops Li+l and LiG are t o  be overlapped, two implicit coalescings will be performed for loops 

L,, . . . , Li, L i ,  and L I J  . . . , L i ,  L i ,  that  will produce two different global indeces I,' 

2 1 2 and I, respectively. A separate task for each of the I, and I, will then be created and queued in 

Q. 

So far we saw how GSS coalesces the loops and assigns blocks of iterations t o  incoming 

(idle) processors. We have not mentioned however how the algorithm decides the number of 

iterations to  be assigned t o  each idle processor. The  schemes that  have been proposed so far 

[KrWe85], [Tape861 assign a single iteration a t  a time. This approach involves a tremendous 

amount of overhead since several critical regions must be accessed each time a single iteration is 

dispatched. The  GSS algorithm follows another approach by assigning several (blocks of) itera- 

tions t o  each processor. The size of each block varies and is determined by using a simple but 

powerful rule tha t  is described below. Before we describe how block sizes are computed let us 

s ta te  our constraints. 

Suppose that  a parallel loop L  (e.g., a DOALL) is t o  be executed on p processors. We 

assume that  each of the p processors starts  executing some iteration(s) of L at different times 

(i.e., not all p processors s tar t  computing L simultaneously). This is clearly a valid and practical 

assumption. If L for example is not the first loop in the program, the will be busy exe- 

cuting other parts  of the program before they s tar t  on L .  Therefore they will s tar t  executing L  

at different times which may vary significantly. (Of course one could force all p processors t o  

s tar t  on L  at the same time, by enforcing a join (or barrier) operation before L ;  this would 

clearly be very inefficient.) Given now the assumption that  the p processors will s tar t  executing 

L  a t  arbitrary times , our constraint is to  dispatch a block of consecutive iterations of L  t o  each 



incoming processor, such tha t  all processors terminate a t  approximately the same time. This is a 

very desirable property. If L for example is nested inside a serial loop L,, then a barrier syn- 

chronization must be performed each time L completes (i.e., for each iteration of L,). If the pro- 

cessors working on L do not terminate a t  the same time, a very significant amount of idle pro- 

cessor time (overhead) may be accumulated by the time L, cbmpletes. 

Actually the best possible solutiorl is that  which guarantees that  all p processors will tcr- 

minate with a t  most B units of time difference from each other; where B is the execution time of 

the loop body of L .  This goal can be achieved if blocks of itei-ations are assigned t o  idle proces- 

sors following the next principle. An incoming processor P, will dispatch a number of 'iterations 

x considering tha t  the remaining p-1 processors will also be scheduled a t  this (same) time. In 

other words P, should leave enough iterations t o  keep the remaining p-1 processors busy (in 

case they all decide t o  s t a r t  simultaneously) while i t  will be executing i ts  x iterations. If N is 

the total number .of iterations, this can be easily done as follows: 

1st processor receives 1; - 1 iterations, 

3d processor receives I N  - - IN/" )/P'] iterahioos, 
P 

and so on. Since GSS coalesces loops, there will be a single index I, = l . . . N ,  from which idle 

processors will dispatch blocks of iterations. Therefore the assignment of iteration blocks is done 

by having each idle processor perform the following operations: 



PROCESSORS 

Figure 7.9. An example of .the application of the GSS algorithm for N=100, p =5. 



T h e  range of iterations assigned t o  tha t  processor is then given by [w ,..., w + z -11. The same 

operations can also be described for the i- th idle processor as follows: 

and the range of iterations for the i - th  processor is given by + 1, ..., xi], where .x, = 1 

and R1 = N. 

Table 7.1.  The  detailed scheduling events of the example of Figure 7.9 ordered by time. 

' 

Time 

t l  

t 2  

E 3  

t 4  

t b  
t 6  

t7 

l 8  

t 9  

t10 , 

11  

t 1 2  

t13 

t 1 4  

4.5 
t16 

t , ,  

No. of unused iterations 
(I) 
100 
80 
64 
52 
41 
32 
25 
20 
16 
12 
9 
7 
5 
4 
3 
2 
1 

Next processor to  
be scheduled 

Pl 
P 3  

f'2 

p4 

3 
6 
P 3  

P 1 

P4  

p 1 

p3 

Ps 
P4 

P 4 

p* 
P3 
P ,  

No. of iterations assigned 
to  this processor '. 

20 
16 
12 
11 
9 a 

7 
5 
4 
4 

3 
2 
2 
1 
1 
1 
1 
1 

TOTAL= 100 



As an example, consider the case of a DOALL L with N=100 iterations tha t  executes on 

five processors. All five processors s tar t  on L a t  different times. Each idle processor is assigned a 

block of consecutive iterations using the rule described above. The  resulting execution profile is 

shown in Figure 7.9. Even though the results presented in this section hold for the general case 

where different iterations of the same loop have different execution times; for this example we 

assume that  all 100 iterations have equal execution times. Each line segment in Figure 7 .9  

represents the execution time of a loop iteration. The  thick lines represent the execution of previ- 

ous (unrelated t o  L )  tasks on processors PSI P3, P 4 ,  and P5.  The wider horizontal line seg- 

ments mark the time when iteration blocks are actually dispatched by idle processors. For exam- 

ple, a t  time t l  processor P 1  dispatches [100/51=20 iterations. The next processor t o  become 

available is P3 which a t  time t 2  dispatches [(loo-20)/51=16 iterations. Processor P 1  will receive 

its next assignment a t  time t8.  The detailed assignment of iterations t o  processors for this exam- 

ple is shown in Table 7 .1 .  The events in the table are ordered by virtual time. We observe that  

although the five processors started executing L a t  different times, they all terminated within B 

units of time difference from each other. In general if p processors are assigned t o  a (coalesced) 

DOALL with N iterations using the above scheme, we have the following. 

Lemma 7.1 Each of the last p-1 processors t o  be scheduled under the GSS algorithm is 

assigned exactly one i t e r a h a  of L .  

Proof Let r be the number of remaining iterations before the last p -1 processors are scheduled. 

Suppose tha t  the statement of the lemma is not true. Then a t  least the first (of the last p-1 

processors t o  be scheduled) is assigned 2 or more iterations. Equivalently [ r / p l  2 2, or 

r > p .  We distinguish here two' cases: 



In this  case the  (p -1)-th processor receives 2 iterations and there are p -1 iterations left. However 

each of the remaining p-2 processors will receive exactly one iteration (since the assignment is 

now computed from [z/pl where z 5 p-1) and we are thus left with 1 unassigned iteration. 

Th i s  contradicts the initial hypothesis tha t  the p -1 processors are the last t o  compute L .  

chiLL2: > p + 1. 

Using the same reasoning as in Case 1, we conclude tha t  there are a t  least two unassigned itera- 

tions in this case, which again contradicts the initial hypothesis. The  statement of the lemma is 

therefort true. . 
Theorem 7.5 Independently of the initial configuration (start-up time) of the p processors that  

are scheduled under GSS, all processors finish executing L within B units of time difference from 

each other 

Proof We will prove the theorem for the case where all p processors s tar t  executing L simul- 

taneously. T h e  proof for the general case i s  similar. By Lemma 7.1, a t  lea& the lnst p - 1, and 

a t  most the last p assignments will involve single iterations. Let 'us  consider the latter case. The 

are two possible scenarios during the scheduling of L under GSS. In the first case each of the last 

p iterations is assigned t o  a different processor. Then by virtue of GSS i t  is easy to see tha t  if 

ti, t, are the termination times for processors pi, p,, i, j E [ l . . p ]  respectively, we 11avC 

I t i  - t, 1 < B .  

The  second case is when the last p iterations of L are assigned t o  a t  most p - 1 different 

processors. Let  p 2  denote a processor whose last assignment was an iteration block of size z ,  and 

1 
p a processor tha t  is assigned one or  more of the last p iterations. Using the same argument as 

above we can show t h a t  all processors tha t  received one of the last p iterations, finish within B 

1 
units of time apar t  from each other. I t  remains t o  show tha t  any p Z  and any p terminate within 



B units of time from each other. We consider the case for z=2. The  general case is similar. We 

1 1 
will prove tha t  for any p Z  and any p  , I p Z  - p  I 5 B .  

1 1 1 
U p Z  > p  , and suppose t h i t  p Z  - p  > B or equivalently, p Z  - 2 B  > p  - B .  

1 
The last inequality implies that  p . was assigned a single iteration before the iteration block of 

size s = 2  was assigned t o  p Z .  Clearly this contradicts the basic steps of the GSS algorithm. 

1 
Therefore p Z  - P  < - B .  

1 
G a z i ~ 2 - p ~  < p 1  and suppose p 1  - p' < B or, p  - B > p Z .  But the last inequality can 

1 
never be true since p Z  would have been assigned the last iteration instead of p  . Therefore 

1 2 
p - p  5 B and thus the statement of the theorem is true. 

Note tha t  if the p  processors s tar t  executing L at different times t l  5 t 2  < . .<tp ,  the 

theorem still holds true under the following condition: 

In reality R varies for different iterations and B ~ { b , ,  b2, ..., bk), where bi, (d=1 ,..., k )  

are all possible values of B. Suppose that  B can assume any of i ts  possible values with the same 

probability, i.e., PIB=bi]=l/k,  ( i = l ,  2, ..., .k). Then Lemma 7.1 and Theorem 7.5 are still 

valid. Undcr the above assumptions we also have the following. 

Theorem 7.6 The GSS algorithm obtains the optimal schedule under any initial processor 

configuration. Because of this optimal schedule, GSS also uses the minimum possible number of 

synchronization points. 

By synchronization points we mean the number of times processors enter critical regions 

(i.e., loop indexing). An implementation of GSS can be done so tha t  when q (out of the p )  pro- 

cessors become simultaneously available a t  time t ,  the first q-1 receive IN1 / iterations and 



the  q-th processor receives rnin([(N,-(q-l)[~,/~D/~l, [N, / p )  iterations, where N, is the 

number of unassinged iterations a t  time t .  

Theorem 7.7 T h e  number of synchronization points required by GSS is p in the bestcase, and 

O(pHrN/p$ in the worst case, where H,, denotes the n- th  harmonic number and 

H,, FY ln(n) + 7 + 1/2n (7 is Euler's constant). 

Proof The best case is obvious from the above discussion. In general i t  is ciear that  the number 

of ikerations assigned t o  each processor will be (possibly multiple) occurrences of the integers 

in this order. Obviously there will be at least p - 1  and at most p assignments of exactly one 

iteration. It can also be observed tha t  the number of different assignments of iteration blocks of 

size [ N / p l  - k ,  . ( k  =1, 2, ..., [N/p l  - 2) depends on the relative values of p and [ N / p l  - k .  

More.precisely, we can have at most 

different assignments ,of iteration blocks of size [N/p l  - k .  Therefore the total number of 

different assignments and thus the total number a o f  synchronization points in the worst case is 

given by 

For computihg the order of magnitude we can ignore the ceiling and finally have 

rwp 1 I N / P ~  
P 

O M  - = p - = p H r N l p l .  
i =l a i =l s 

Therefore the number of synchronization points in the w o n t  case is o = O(pHrNIp$. . 



The GSS Algorithm 

Input An arbitrarily nested loop L ,  and p processors. 

Output The  optimal dynamic schedule of L on the y processors. The schedule 
is reproducible if the execution time of the loop bodies and the 
initial processor configuration (of the p processors) are known. 

e Distribute the loops in L wherever possible. 

For each ordered pair of (DOALL, DOSERIAL/DOACR) loops, (where the DOALL is the outer loop) 
perform loop interchange. 

e Apply implicit loop coalescing, and let I, be the index of the coalesced iteration space. 

e For each index ik of the original loop define the index mapping, 

If N, is the number of remaining iterations a t  time t ,  then set  N, = N and for 
each idle processor do. 

REPEAT 

Each idle processor (scheduled a t  time t )  receives 

iterations. 

The range of each original loop index for tha t  processor is given by 

i t c  I ji t ( I C  + I N ,  1 P I  - '1 

UNTIL (N ,  = 0) 

Figure 7.10. The GSS Algorithm 
. . 



Note t h a t  if barriers are used, GSS can coalesce all loops serial and parallel. The transfor- 

mation as presented in Chapter 5 coalesces together only DOALL loops and leaves serial loops 

unchanged. This  does not have t o  be the case in GSS however. Consider for example a DOALL 

m 

loop with n N i  iterations which is the result of coalesc.ing m DOALLs. Suppose now that  this 
i =l 

DOALL is nested inside a serial loop with M iterations. GSS works fine on this doubly nested 

loop bu t ' i t  still must access two shared variables (loop indeces) for each assignment. The other 

alternative is t o  implicitly coalesce the serial and parallel loops into a single block-parnllel loop 

or  BDOALL with MN iterations. T o  do this .a barrier synchronization must be executed every N  

iterations: If I, = l...MN, the number of remaining iterations Ri (in 7.32) still assumes an ini- 

tial value N .  The  difference here is that  each time I, mod N = 0 a barrier synchronization is 

executed and R is reinitialized to  N.  This happens M times before the entire loop completes 

In the last section we discuss a centralized scheduling a,pproa.ah t,ha.t, s~ippnr t~s  pr~fetching of 

~ I I S L I  UCLIUIIS aud daLa. 

7.7.2. Further Reduction of Synchronization Operations 

Another interesting feature of the GSS algorithm is that  i t  can be tuned t o  further reduce 

the number of synchronization operations that  are required during scheduling. As mentioned 

above, the last p - 1 allocations performed by GSS, assigned exactly one iteration t o  each p r e  

cessor. The synchronization overhead involved in these p - 1 allocations may still be very high, 

especially when p is very large and the loop body is small. 

We shall see now how to  eliminate the last p  - 1 assignments of single iterations of GSS. 

In fact we can eliminate all assignments of iteration blocksof size k (< [ N / p l  ) or  less. Let us 

discuss first the problem of eliminating assignments of single iterations from GSS. We show how 
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this can be done by means of an example. Consider the application of GSS t o  a DOALL with 

N=14 iterations on p =4 processors. The  assignment of iterations t o  processors is shown below 

in detail: 

1st assignment gives [14 / 41 = 4 iterations 

2nd " " " " " " 110 / 41 = 3 I* 11 

3rd 11 11 I, I, 0 11 

17 / 41 = 2 
I* 'I 

4th I* I( I* el *I I# 15 / 41 = 2 11 

5th II 11 I 1  11 11 11 1.3 / 41 = 1 11 

11 11 

6th 11 I 1  ,I I. I 1  11 

12 / 41 = 1 
(1 (1 

The seven successive assignments were done with iteration blocks of size 4, 3, 2, 2, 1, 1, 1. In this 

case the single iteration assignments account for'almost half of the total assignments. We can 

eliminate the single iteration assignments by increasing the block size of the first p - 1 assign- 

ments by 1. The  successive assignments in that' case would be 5, 4, 3, and 2. Therefore the total 

number of scheduling decisions (and thus synchronization operations) is reduced by p - 1. This 

technique can be applied automatically by setting R 1  = N +. p in (7.32). Thus  the first 

assignment will dispatch xl = [ ( N ~ q ? ) / ~ l  iterations. GSS is applied in precisely the same way. 

However now it  terminates not when the iterations are exhausted, but when for some e', 

xi < 2. For the above example the application of GSS will generate the following assignments 

1st assignment gives [18 / 41 = 5 iterations 

2nd 11 ll W W II W 113 / 41 = 4 " " " 

11 O 1. 11 1I  11 3rd 19 / 41 = 3 11 11 11 



When the ratio N/p is rather small, GSS(k) for k=2 may result in considerable savings. There 

is still a drawback however, since the rule of making all the assignments of iteration blocks of 

size two or  more is not always accurate. Consider again the previous example but now let 

N=15. The assignments generated by GSS(2) will now be: 

Uiit 5 + 4 + 3 + 2 + 2 - 16 > M - 16, i.c., thc numbcr of itcrationa nmigncd by 

GSS(2) is more than the iterations of the loop. Fortunately the number of superflows iterations 

in such cases cannot be more than one, and the termination problem can be easily corrected. The 

solution is given by the following theorem. 

Theorem 7.8 Let k be the step in (7.32) such that  xk = 2 and xk+l = 1. If Rk+l = p 

then 

k 

Exi = N 
i =l 

else, if' Rn+, = p - 1 then 

k -1 

1 + Exi = N. 
i =l 

Proof: The algorithm s tar ts  with a total of N + p iterations, and i t  must assign a total of N 

iterations in blocks of size ranging from [ ( N ~ p ) / ~ l  t o  2. Since (for p 2 2) at least one i t e m  

tion block will be of size 2, and all assignments of iteration blocks of size 2 must be performed, it 
4 

follows that  the last assignment of GSS(2) will involve Rk = p + 1 or Rk = p + 2. In 
1 

the latter case the last assignment will dispatch 2 iterations and the algorithm will terminate 

assigning therefore a total of N + p - Rk+l = N iterations. If Rk = p + 1, the last 

assignment will also dispatch 2 iterations. In that  case however the total number of iterations 

k -1 

assigned will be N + p - (P - 1) .= N + 1. Thus  1 + E x i  = N.' 
i =l 
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Theorem 7.8 supplies the test for detecting and correcting superflows assignments. The 

assignment and termination condition for GSS(2) is now given by 

if (Ri+l 5 p) t h e n  
( s top:  
if (R,, < p) t h e n x i  = 1 )  

Using (7.33) now, the last assignment of GSS(2) for the last example will dispatch a single itera- 

tion. The  same process can be applied t o  derive GSS(k) for any 2 < k < [N/pl. The  best 

value of k is machine and application dependent. 

DOALL 1 I ='I, N 

. . .  
ENDOALL 

DOSERIAL 1 I = i, K 
DOALL 2 J = S (I), S (I) +B (I) 

. . . 
ENDOALL 

ENDOSERIAL 

Figure 7.11. Example of the application of GSS a t  the program level. 



I t  should be emphasized that  the GSS scheme can be implemented in hardware, i t  can be 

incorporated in the compiler, or i t  can be explicitly coded by the programmer. In the latter case 

the programmer may compute the iteration block size for each assignment, and force the assign- 

ment of such blocks by coding the corresponding loop. appropriately. Consider for example the 

loop of Figure 7.11(a). If array B holds the block size and S holds the starting iteration for each 

assignment, the loop of Figure 7.11(a) can be coded as in Figure 7.11(b). Assuming that  self- 

scheduling (SS) is implemented in the target machine, the above loop will be executed as if GSS 

was supported by the machine:(with some additional overhead involved with the manipulation of 

the bookkeeping arrays). 

7.7.3. Simulation Results 

A simulator was implemented t o  study the performance of self-scheduling (SS) and GSS 

(GSS(1)). The  simulator was designed t o  accept program traces generated by Parafrase, and i t  

can be extended easily t o  implement other scheduling strategies. The  experiments conducted for 

this work however, used four representative loops which are shown in Figure 7.1.2. 

7.7.3.1. The Simulator 

T h e  simulator input consists of a set of tuples, where each tuple represents a single loop or 

a block of straight-line code. Each tuple includes information such as number of iterations, exe- 

cution time of basic blocks inside the loop, branching frequencies for the branches of each condi- 

tional statement inside a loop, dependence information, type of loop etc. In the presence of con- 

ditional statements the conditions are "evaluated" separately for each iteration of the loop and 

the appropriate branch is selected. The  user supplies the expected frequency with which each 

branch is selected. Otherwise the simulator considers each branch equally probable. For this pur- 

31 
pose a random number generator is used with a period of 2 - 1 IKnut811, [Koba81]. Random 
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numbers are generated using uniform distribution and are normalized (in [O..l]). For each condi- 

tional statement in the loop, the interval [O..l] is partitioned into a number of subintervals equal 

to  the number of branches in tha t  statement. The size of each subinterval is proportional t o  the 

expected frequency of tha t  branch. For each iteration of the loop, a r indom number is generated 

and the subinterval t o  which i t  belongs is determined. Then the branch corresponding t o  that  

subinterval is taken. 

The  execution of arbitrary loops 'on systems with 2 to  4096 processors can be simulated. 

Processors can s tar t  on a loop a t  random times. The simulator takes also into account overhead 

incurred with operations on shared variables. For our purposes shared variables are considered to  

be only loop indeces. Although the current version of the simulator assumes a fixed execution 

time for each BAS, i t  can be easily extended to  operate on a program trace and take into 

account random delays (due t o  network contention in shared memory systems). For each 

memory access, a random delay may be computed to  fall within given upper and lower bounds. 

These bounds may he readjusted each time the number of processors (and thus the number of 
... c: .  

stages of the network) grows. 

7.9.3.2. Experiments 

The  four loops L 1, L2 ,  L3 ,  and L 4  of Figure 7.12 were used t o  conduct the experiments for 

this work. These loops are representative of those found in production numerical software. Serial 

and parallel loops are specified by the programmer, or are created by a restructuring compiler 

(e.g., Parafrase). The  loops of Figure 7.12 cover most cases since they include loops that  are i) all 

parallel and perfectly nested (L I), ii) hybrid and perfectly nested (L3), iii) all parallel and non- 

perfectly nested (L2), iv) hybrid nonperfectly nested (L4), v) and finally one-way (L2), and 

multi-way nested (L4). The arrows in L 4  indicate flow dependences between adjacent loops. The 

numbers enclosed in angle brackets give the execution times of BASS in the corresponding 



DOALL 1 I1 = 1, 100 
DOALL 2 I 2  = 1, 50 

DOALL 3 I 3  = 1, 4 

( 2 0 )  
[if C then (lo)]  

ENDOALL 
ENDOALL 

ENDOALL 

DOALL 1 I1 = 1, 50 

(5) 
[if C then (10)] 

DOALL 2 I 2  = 1, 40 

(5) 
DOALL 3 I 3  = 1, 4 

(10) 
[if C then ( 2 0 ) ]  

ENDOALL 
ENDOALL 

ENDOALL 

D O S E R I A L  1 I1 = 1, 40 
DOALL 2 I 2  = 1, 500 

.(LOO) 
[if C then (50)] 

ENDOALL 
ENDOSER.IAL 

CONTINUED (Figure 7.12) 



(CONTINUED) 

DOSERIAL 1 I1 = 1, 50 

DOALL 2 I2 = 1, 10 
DOALL 3 I3 = 1, 10 

DOALL 4 I4 = 1, 4 
(10) 
[if C then (SO)] 

ENDOALL 
ENDOALL 

ENDOALL 

DOALL 5 I5 = 1, 100 
(503 
DOALL 6 I6 = 1, 5 

(100) 
[if C then (3031 . 

ENDOALL . 
ENDOALL 

DOALL 7 I7 = 1, 20 
DOALL 8 I8 = 1, 4 

(301 
ENDOALL 

ENDOALL 

ENDOSERIAL 

Figure 7.12. Loops L 1, L 2, L 3, and L 4 used for the experiments. 
- -. .- 



positions. 

Two sets of experiments were conducted, El and E2. The  first set used the four loops of 

Figure 7.12 ignoring the conditional statements which are enclosed in square brackets. Therefore 

for El all iterations of a particular loop had equal execution times. For E2 the conditional state- 

ments were taken into account as well. Thus  in E2 different iterations of a given loop had 

different execution times. T h e  next step will be t o  consider loops with multiple and nested condi- 

tionals which were not included in these experiments. 

Earlier in this chapter we discussed extensively the various types of overhead that incur 

during dynamic scheduling. One type of overhead is the time spent accessing and operating on a 

shared variable; in our case loop indeces. This time is not constant in practice and i t  depends on 

several factors such as network traffic, number of simultaneous requests for a particular index 

and so  on. For  'our experiments we chose this overhead t o  be constant and independent of the 

loop size or the  number of processors. Since the purpose of our experiments is t o  study the rela- 

tive (rather than the absolute) performance of GSS(1) and SS, the above assumption is not very 

restricting. For  each scheduling decision the overhead is assumed t o  be a constant which 

represents, for instance, the number of clock cycles spent operating on a shared variable. Let o  

denote the overhead constant. We conducted the simulations for a best case ( o b ) ,  and a "worst" 

case ( o w )  overhead. For the best case ob =2 since a t  least two clock cycles are needed to  operate 

on a shared variable. For the worst case we chose ow = 10. In real parallel processor machines 

ob and ow can be much greater, but we are more interested in the difference ob - ow rather 

b 
than in their absolute values. El and E: denote the set of experiments that  ignored i f  state- 

b 
rnents for ob =2 and ow = 10 respectively. Similarly, Et and E; denote the set  of experiments 

using L 1, L 2 ,  L 3, and L 4  with i f  statements, for ob =2 and ow = 10 respectively. 



The  plots of Figures 7.13 and 7.14 show the speedup of the four loops L 1  - L 4  for 

b 
different numbers of processors, for El ( E l  and E:). There are four curves in each plot. Solid 

lines plot the speedup'curves for GSS(l), and dashed lines the speedup curves for SS. More 

specifically the plot of Figure 7.13(a) corresponds t o  loop L 1. The upper and lower solid lines are 

the speedup curves resulting from the schedule of L 1  under GSS(1) and for ob=2, o,=10 

respectively. The  upper and lower dashed lines are the speedup curves of L 1 under SS for 

ob = 2, and o,=10. The  plot of Figure 7.13(b) shows the performance of GSS(1) and SS for L 2  

in El. Similarly Figures 7.14(a) and 7.14(b) correspond t o  L 3  and L 4  for El. In all plots the 

upper solid and dashed lines correspond t o  GSS(1) and SS for ob =2 respectively. The  lower solid 

and dashed lines correspond t o  GSS(1) and SS for ow=lO. 

In the same way Figures 7.15 and 7.16 correspond t o  L 1, L 2, and L 3, L 4 respectively, for 

the Ez experiments, i.e., with the i f  statements taken into account. Therefore in each plot we 

can see the relative performance of GSS(l), ob =2 versus GSS(l), ow =lo; SS, ob =2 versus SS,. 

o,,, =lo; GSS(l), ob =2 versus SS, ob =2; and GSS(1) ow = 10 versus SS, ow =lo, for El and,E2. 

Except in the case of L 3  where both GSS(1) and SS perform almost identical, we observe 

that  in all other cases GSS(1) is better than SS by almost a factor of two in El and E2. It  is also 

clear from the plots that  the difference in performance between GSS(1) and SS grows as the over- 

head grows. As i t  should be expected GSS(1) is less sensitive to  scheduling overhead than SS. 

The  plots in Figures 7.17, 7.18, 7.19, and 7.20 correspond t o  Figures 7.13, 7.14, 7.15, and 

7.16 respectively, and illustrate the speedup ratio GSS(l)/SS for each case for El and E2: The 

horizontal axis shows the log of the number of processors. In each plot there are two curves. The 

upper curve plots the speedup ratio GSS/SS for ob =2. The  lower curve plots the same ratio for 

ow=lO. The common characteristic of all ratio plots is that  as the number of processors grows 

very large, the performance difference between GSS and SS becomes less significant. The large 
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Figure 7.13. GSS and SS speedups for (a) L 1, and (b) L 2 without i fs. 
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Figure 7.14. GSS and SS speedups for (a) L 3 ,  and (b) L4,wi thout  i f s .  
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Figure 7.15. GSS and SS speedups for (a) L 1, and (b) L 2  with i f s .  
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Figure 7.16. GSS and SS speedups for (a) L3,  and (b) L 4  with i fs .  
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Figure 7.17. Speedup ratio of GSS/SS for (a) L 1, and (b) L 2  without ifs .  
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Figure 7.18. Speedup ratio of GSS/SS for (a) L 3 ,  and (b) L 4  without i fs. 
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Figure 7.19. Speedup ratio of GSS/SS for (a) L 1, and (b) L 2  with ifs. . 
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Figure 7.20. Speedup ratio of GSS/SS for (a) L 3, and (b) L 4 with i fs. 



Table 7.2. GSS(1)' and SS speedup values for L 1 without i fs.  

Table 7.3. GSS(1) and SS speedup values for L 1 with i fs .  

. Processors 

2 
4 
8 

16 
32 
63 

128 
256 
512 

1024 
2048 
409 6 

Overhead=lO Overhead=2 
GSS 

2.00 
4.00 
7.98 

15.94 
31.80 
63.19 

125 nn 
246.91 
481.93 
9Q9,Q9 

1666.67 
3076.92. 

GSS 
2.00 
4.00 
8.00 

15.99 
31.96 
63.76 

12fi.90 
251.89 
496.28 
976.61 

1923.08 
3773.58 

SS 
' 0.80 

1.60 
3.20 
6.40 

12.80 
25.56 
50,gq- 

101.27 
200.00 
400.00 
800.00 

1600.00 

SS 
1.54 
3;08 
6.15 

12.31 
24.62 
49.15 
97 1111 

194.74 
384.62 
769.23 

1538.46 
3076.92 



Table 7.4. GSS(1) and SS speedup values for L 2  without i fs .  

Processors 
2 
4 
8 .  

16 
32 
63 

128 
256 
512 

1.024 
2048 
4096 

Table 7.5. GSS(1) and SS speedup values for L 2  with i fs. 

Overhead=lO Overhead=2 
GSS 

1.99 
3.97 
7.89 

15.59 
30.59 
59.57 

112.81 
209.88 
376.04 
644.64 

1061.76 
1805.00 

Proceswmi 
2 
4 
8 

16 
32 
63 

128 
256 
512 

1024 

1 .. ..". 

GSS 
2.00 
3.99 
7.97 

15.91 
31.67 
62.85 

123.63 
242.61 
465.21 
884,80 

1702.83 
2911.29 

SS. 
0.46 
0.92 
1.84 
3.69 
7.37 

14.71 
29.35 
58.23 

114.97 
228.48 
451.25 
752.08 

Overhead=lO 

SS 
1.20 
2.40 
4.80 ' 
9.59 

19.16 
38.26 

' 76.22 
151.68 

' 299.83 
582.26 

1128.13 
1880.21 

GSS 
2.00 
3.98 
7.92 

15.76 
30.42 
61.14 

115.78 
211.20 
366.02 
681.48 

1 1 .  
1895.78 

Overhead=2 
SS 

0.72 
1.45 
2.89 
5.78 

11.54 
22.91 
45.88 
90.91 

178.04 
344.89 
656.85 

1099.68 

GSS 
2.00 
4.00 
7.99 

15.98 
31.94 
63.75 

127.03 
246.93 
483.84 
905.00 

1657.38 
3289.08 

SS 
1.48 
2.96 
5.91 

11.80 
23.57 
46.90 
93.42 

184.68 
360.23 
688.39 

1265.04 

2157.59 



Table 7.6. GSS(1J and SS speedup values for L 3 without i fs.  

Table 7.7. GSS(1) and SS speedup values for L 3  with i fs.  

Processors 

2 
4 
8 

16 
32 
63 

138 
256 
512 

1021 
2048 
4096 

Overhead=lO 
GSS 

1.99 
3.95 
7.80 

15.20 
29.59 
56.18 

106.38 
200.00 
384.62 
384.82 
384.62 
384.62 

Overhead=2 
SS - 
1.67 
3.33 
6.61 

12.99 
25.91 
51.55 

102.04 
200.00 
384.G2 
384.R2 
384.62 
384.62 

GSS 

2.00 
3.99 
7.91 

15.54 
30.90 
61.12 

130.77 
338.1 0 
471.70 
471.70 
471.70 
471.10 

SS 

1.92 
3.85 
7.63 

15.02 
30.01 
59.95 

110.63 
288.10 
471.70 
471.70 
471.70 
471.70 



Table 7.8. GSS(1) and SS speedup values for L 4  without i is. 

Processors 

2 
4 
8 

16 
32 
63 

128 
256 
512 

1024 
2048 
4096 

Table 7.9. GSS(1) and SS speedup values for L 4 with i fs.  1 

1 
perturbations in the ratio curves can be explained by the fact that GSS is "logarithmically sensi- 

\ 

Overhead=2 

7 - 

Processors 
2 
4 
8 

16 
32 
63 

128 
256 
512 

1024 
2048 
4096 

GSS 

1.99 
3.97 
7.89 

15.50 
30.34 
56.85 

110.83 
186.06 
289.62 
388.61 
388.61 
388.61 

Overhead=lO 

Overhead=lO 

SS 

1.79 
3.56 
7.12 

14.07 
. 27.68 

52.75 
95.34 

155.05 
225.74 
369.88 
369.88 
369.88 

GSS 

1.97 
3.89 
7.60 

14.62 
27.53 
48,35 
88.99 

136.44 
204.67 
266.96 
266.96 
266.96 

GSS 
1.97 
3.90 
7.64 

14.69 
27.53 
,48.92 
85.52 

133.83 
207.54 
254.33 
254.67 
254.22 

... 

Overhead=2 

SS 

1.25 
2.50 
4.99 
9.87 

19.13 
36.12 
65.32 

105.86 
153.50 
227.41 
227.41 
227.41 

SS 
1.37 
2.72 
5.42 

10.71 
20.73 
39.01 
71.25 

111.46 
167.01 
225.24 
225.63 
225.29 

GSS 
1.98 
3.95 
7.83 

15.28 
29.15 
53.78 
97.82 

162.46 
270.09 
331.28 
331.72 
331.12 

SS 
1.83 
3.65 
7.26 

14.36 
27.91 
52.91.  
97.76 

150.98 
229.12 
320.46 
321.01 
320.54 



tive" while SS is "linearly sensitive" t o  scheduling overhead. Thus  the performance of SS tends 

t o  saturate much earlier (as the number of processors grows) than tha t  of GSS. As the overhead 

grows the improvement offered by GSS becomes more significant. 

Finally Tables 7.2 - 7.9 give the detailed speedup values for the four loops of Figure 7.12 

and for El and EP.  

7.8. Hardware Synchronization Support for Dynamic Scheduling 

T h e  type of synchronization tha t  is of primary importance to this work is barrier synchron- 

ization. As explained in Chapter 1 a barrier can be viewed as a program defined variable that  is 

used as a counter. In fact many implementations of barrier synchronization use this approach 

[TaPe86]. Any synchronization primitive can be used t o  implement barrier synchronization. This 

approach however is costly especially when used in the context of GSS or  other dynamic schedul- 

ing schemes. 

Figure 7.21. An example of hybrid loop with barriers. 



In .this section we propose a different implementation of barriers through the use of special 

bit addressable registers. Instead of full words we use single bit barriers that  are set (I) ,  or 

cleared (0). For example in the GSS algorithm, bit barriers can be associated with particular 

loops o r  can be inserted between loops. When a barrier associated with a loop is set, no incoming 

processor is allowed t o  dispatch new iterations. Consider for example the loop of Figure 7.21 and 

suppose that  L1 is serial and the other two loops are parallel. For each iteration of L, ,  all itera- 

tionsof L 2  and L 3  must be completed before the next iteration of L1 can be fired. This sequenc- 

ing can be achieved by associating a barrier BRl  with L1. The  first processor t o  dispatch the 

next iteration of L1  will set BR1 t o  1. Any incoming processors will not be allowed t o  proceed 

with L l  until all iterations of L 3  are completed and BR1 is cleared.' We explain below how.this 
I 

can be done in hardware, but before we do so let us explain the disadvantages with barriers as 

they are implemented through the use of P d V primitives, the Fetch d Add synchronization 

primitives [GGKM83], or the Cedar synchronization instructions (ZhPe831. 

A barrier is obviously a shared variable (counter). and thus a critical region. When several 

processors try t o  update a barrier simultaneously, all but one will be denied access to' the barrier 

and they will be forced into busy waiting. The busy wait'generates several unnecessary requests 

which, in the case of shared memory machines, clog up the network. This phenomenon is known 
t ,  

as the "hot-spot" [PfNo85]. Alternatively, instead of keeping the processors busy waiting we 

could suspend them for a fixed amount of time and let them retry at a later moment. This can 

be a-very inefficient solution since the entire program may wait on a single processor that  has 

been suspended. A third more efficient solution would be t o  assign the processors ( that  are 

blocked on a barrier) t o  a new task. When that  task is completed the corresponding processors 

will at tempt t o  update the barrier with a much higher probability of succeeding this time. This 

approach would need sophisticated compile-time analysis of the program, and we plan to  further 



study this scheme in the future. 

Here we propose another solution t o  the barrier synchronization problem that  avoids both, 

hot-spots (since there is no busy waiting), and unnecessary processor latencies. The  notion of 

barriers as shared variables is in effect eliminated. We discuss this scheme in the context of loop 

barriers although the solution is general. A detailed description of this approach is given in 

[Poly86]. In our case a barrier is not a shared variable but instead a single bit register that  is 

writable (set) by a single processor which is determined dynamically during execution. The bit 

barriers are also cleared automatically by the special hardware without the intervention of the 

processors, or  the operating system. The  hardware module tha t  implements barrier synchroniza- 

tion is shown in Figure 7.22. Each barrier in an active task is associated with such a hardware 

unit. Therefore a t  most p such units are needed in a machine with p processors. The module 

iiJ- i 
Enable All 0's 
Switch 

" 
Condition 

Barrier 

Figure 7.22. T h e  hardware module for the implementation of barrier synchronization. 



consists of a bit addressable register R ,  an enable switch, a box that  checks for the all 0's con- 

dition in log 2p time, and a one-bit barrier register BR.  The R register is p bits wide and the 

i- th bit R ( i ) ,  can be setlcleared only by the a-th processor in .the machine (i = 1, 2,... , p) .  

(This can be.done in software by associating an id number with each processor, or by directly 

connecting the i- th bit of each R register to  the a'-th processor.) The  user program can access 

only the BR registers and the remaining configuration is transparent to  the user. BR registers 

are associated with loop indeces and accessing a barrier is now part of accessing a loop index (an 

operation that  must be done anyway). Any conflicts that  may occur now will occur during 

,accesses t o  loop indeces but not to  barrier variables. Therefore all the overhead associated with 

the explicit manipulation of software defined barriers is eliminated in this case. 

Let us see how this works in the context of forkljoin operations, or  equivalently, in the con- 

text of parallel loops. Consider the loop of Figure 7.21 where L1, L 2  are serial and L3  is a paral- 

lel loop. Initially BR1 is cleared and the first idle processor t o  dispatch the first iteration of L1 

sets BR1 t o  1. (Any other processors that  will at tempt t o  dispatch other iterations of L1 will be 

blocked until BR1 is cleared by the.hardware.1 Loop L a  will be executed by the same processor 

but several processors may execute L3. Each processor i tha t  will dispatch part of L3, sets the 

R ( i )  bit of the corresponding register t o  1. The processor tha t  dispatches the last iteration(s) of 

L3 will also enable the switch in the module (Figure 7.22). When a processor finishes executing 

on L,, i t  will reset. its corresponding bit in R t o  0. (Note that  the same' bit in an R register may 

be setlcleared several times if the same processor dispatches several different processes of the 

same task.) From the time the enable switch is set on (by the last processor) the module will 

s tar t  testing for the all 0's condition. This can be done in a fan-in fashion and can also be pipe- 

lined so that  the condition is tested every clock cycle thereafter. When 'the all 0's condition 

becomes true the BR register is cleared automatically. If the last- processor t o  work on the task 



executes for more than log p clock cycles, then this barrier synchronization mechanism involves 

zero overhead. The implementation of fork,/join operations is straightforward. If we treat a set of 

independent tasks as different iterations of a parallel loop, the case of high level spreading is also 
( 

identical. 

Note t h a t  this hardware module can be used to  implement barriers in a multiprogramming 

environment where tasks from different programs may be active simultaneously. If barrier 

modules are identified by id numbers, then each processor may be multiplexed between different 

processes and update the corresponding bits in the 11 registers in the csi;rect order. During con- 

text switching the contents of barrier modules can be stored as part of the process state. In the 

case of the Cedar machine such barrier modules may be designed t o  be operated by the proces- 

sors of a particular cluster. Separate clusters will thus have different sets of barrier modules. A 

processor interconnectio~l (e.g. a bus) may allow processors t o  update barriers outside their clus- 

ter without going through the memory network. This can be useful when tasks are spread across 

many processor clusters. 

This hardware implementation of barriers avoids the problems of busy waiting, synchron- 

ized accesses t o  critical regions, and hot-spots. In addition i t  eliminates the responsibility of the 

processors t o  explicitly handle barrier variables. This scheme can be used in conjunction with 

loop coalescing for a very efficient implementation of the GSS algorithm. The mod 

(remainder) function can be used t o  set  loop barriers in the general case explained in the pre- 

vious section. For instance, for the loop of Figure 7.8 and the example of Section 7.7.1, the bar- 

rier associated with I, is set  each time I, mod (40) = 0.  

Another instance where the cost of extra hardware may be worthwhile is the case of syn- 

chronization for DOACR loops. Such loops are frequent in numerical programs (Cytr841, and con- 

ventional synchronization instructioris may be very costly, especially when the loop body is 



small. During execution of a DOACR loop, each iteration d passes through a "synchronization 

point'' which is a statement that  assigns, for example, a variable used by iteration d+l. Iteration 

a+l may s tar t  execution only after iteration d has passed through i ts  synchronization point. This 

(simple and regular) type of synchronization can be implemented in a straightforward manner 

through the use of a set of regishers that  act as a distributed bulletin board. Each processor i 

may have its own Xi register. All Xi registers may be written at once by any processor (broad- 

cast operation), but  each Xi may be read only by the i-th processor. All p registers contain the 

same value a t  any given moment during the execution of a DOACR. When a processor i is 

assigned the j - th  iteration of a DOACR loop, i t  reads its register and the execution of that  itera, 

tion proceeds if and only if Xi = j. When a processor executing iteration j passes through its 

synchronization point, i t  broadcasts the value j+l t o  all X registers. Given the fact that  when 

processor i executing iteration j must find the value j posted in Xi before i t  can post its own 

value (j+l) ,  this scheme works nicely for simple loops. The  drawbacks of such an implementa- 

tion however, are that  i t  can not support the parallel execution of nested DOACRs or the con- 

current execution of differenl DOACR loops. 

7.9. Run-Time Scheduling Using a Global Control Unit 

During self-scheduling the binding of processes t o  processors is performed dynamica.lly. Pre- 

fetching of instructions t o  processors is therefore impossible. There is an exception in the case of 

parallel loops where processors executing part of a loop may be forced t o  check whether there are 

any iterations left before they dispatch another task. Prefetching of instructions and da ta  to 

processors is meaningful only if the prefetching is performed while the processor is busy execut- 

ing some other task. In order t o  use instruction and da ta  prefetching consistently with each pro- 

cessor in the system, the scheduling should be performed by a central unit. In addition the next 

scheduling decision for a particular processor must be done before tha t  processor becomes idle. 
I 



In this section we use the Weighted Priority heuristic algorithm from the previous chapter 

and a global control unit t o  perform run-time scheduling with little overhead. The scheme is sim- 

ple: A global control unit is used to  implement the W P  heuristic a t  run-time. The  weights may 

be constants o r  vary dynamically. The entire program graph is stored in the GCU which is then 

responsible for binding specific tasks t o  specific processors. The difference between applying the 

W P  heuristic at run-time instead of a t  compile-time, is that  a t  run-time we can obtain a more 

accurate estimate of the execution time and the prucessur delna.nds for caoh tosk. At runrt0ime we 

call a130 tclerato processor f ~ ~ ~ i l i ~ r ~ s .  

In the WP heuristic the program graph is transformed into a layered graph, with each layer 

being a set of independent tasks. A barrier synchroniiation ( that  involves all processors in the 

system) will have t o  be executed between successive layers of tasks. The tasks in each layer are 

grouped into subsets such tha t  the total number of processors requested by the tasks of each sub- 

set  slightly exceeds p ,  the total number of processors. Then processors are assigned t o  caoh sub- 

set so  that  each task receives a number of processors that  is proportional t o  its size and i ts  pro- 

cessor request. This scheme tends to  equalize the execution time for all processors in a subset, 

and therefore in a layer. Since the scheduling is performed a t  run-time but in a rather deter- 

ministic way, scheduling overhead can be almost negligible. This is becausc the binding of the 

tasks of a given subset (or layer) Cu proceseu~u io dooided while the processors are executing the 

tasks of the previous layer. In this way the il~s(;ructisns of the task a given processor will execute 

next, and i t s  read-only data,  can be prefetched before that  processor completes its previous 

assignment. In the best case, scheduling overhead will only affecL Lhe execution of the tasks in 

the first layer of the program graph. 

The penalty we pay in the centralized case is some idle processor time that  may occur 

between the execution of different layers. This idle time depends solely on the structure of the 



program graph and the characteristics of t h e  code. Therefore a realistic comparison between the 

run-time WP scheme and the self-scheduling algorithm of the previous section can only be done 

on a real machine tha t  supports both scheduling mechanisms. Since phenomena such as processor 

racing, network contention and overhead associated with accessing shared variables cannot be 

modeled accurately, simulation can be used for only approximate comparison of the two 

methods. 
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CHAPTER 8 

SUBSCRIPT BLOCKING: A TRANSFORMATION FOR 
PARALLELIZING LOOPS WITH SUBSCRIPTED SUBSCRIPTS 

There are two equally important phases in the problem of parallel processing of a given 

program. During the first phase the parallelism must be specified. The  second phase attempts to  

find the best way of utilizing this parallelism on a particular machine. Several optimal and 

approximation algorithms that  deal with this problem were presented in the previous chapters. 

Obviously neither step can be effective on its own. A given program can be scheduled on a paral- 

lel 'processor machine, given the parallel constructs in the program have been explicitly specified 

by the programmer, or  extracted by the compiler. 

There are many cases however where parallelism can not be found by the user nor by the 
\ 

compiler. We can distinguish these cases into feasible and non-feasible. Feasible cases usually 

cover problems tha t  are very complex, and parallelism a t  low levels is difficult t o  specify of 

uncover. The non-feasible cases are those in which parallelism depends directly on the input and 

computed data ,  or a particular d a t a  structure makes i t  impossible for the compiler to  extract 

parallelism. In such cases parallelism can only be detected and utilized a t  run-time. There are 

two possibilities for detecting and exploiting parallelism tha t  occurs during program execution. 

We cail either use 

the compiler, or  
synchronization instructions. 

Using the compiler means having the compiler generate appropriate code tha t  will detect and 

exploit parallelism when i t  occurs. The  second alternative would be t o  force the task execute in 

parallel by synchronizing all i ts  components. This however may involve high overhead since syn- 





chronization is used even where i t  is not needed [ZhYL83]. 

In this chapter we consider a particular case of parallelism detection and propose a compiler 

transformation that  solves this problem. The gain in speedup due t o  the resulting parallelism is 

also derived analytically. The  next section defines the problem and discusses i ts  different forms 

and use in real programs. 

8.1. The Problem of Subscripted Subscripts and its Application 

Tn Fort,ra,n programs the term subscripted subscript refers t o  a variable reference of the 

form A (f (i)) where A is the identifier of an array and its subscript f ( i )  is itself a vector. When 

statements with subscripted subscripts appe'ar in scalar code there is nothing we can do a t  

compile-time but t o  assume a da ta  dependence chain, that  involves all subscripted references of 

the same variable. This conservative assumption would disallow potential high or  low level 

spreading. Therefore i t  would result in a loss of speedup, but. unless we have a large amount of 

scalar code the  potential loss in speedup should not be'significant. A similar assumption is used 

when subscripted subscripts appear inside loops. In such cases we w s u ~ n e  that  cross-iteration 

dependences of unit distance exist. This in effect serializes the corresponding loop. In such cases 

however the potential loss in speedup tha t  results by serializing a loop could be very significant. 

Examples of loops with subscripted subscripts are shown in Figure 8.1.. Tn each case A 

denotes an array identifier and f and g subscript vectors. As mentioned in Chapter 1, two of the 

most vital transformations in Parafrase are the do-to-doall and do-to-doacross transformations 

tha t  recognize and mark parallel loops. T o  do that ,  Parafrase performs a sophisticated depen- 

dence checking by analyzing the subscripts of array references. D e p e ~ ~ c l e ~ ~ c e s  in scalar code are 

straightforward to  detect. When we have array references with complicated subscripts however, 

( that  usually occur inside loops) a detailed analysis of the subscripts must be performed t o  
,i' 



decide whether or not a dependence of some kind exists [Bane79]. For example when two refer- 

ences t o  the same array appear inside a loop, a Diophantine equation (that  involves the subscript 

expressions in the two .  references) must be solved. t o  determine whether a dependence exists 

[Bane79]. Depending on the complexity of the subscript expressions, the Diophantine equation 

might be' trivial t o  solve, i t  might be nontrivial but we could still solve i t  and find the exact 

dependences, or  i t  might be impossible to  solve. For the latter case tests exist that ,  although do 

not compute dependences, can give us an affirmative or negative answer ,as t o  whether a depen- 

dence exists. Finally .there are instances (e.g. nonlinear subscript .expressions) for which nothing 

can be done due t o  intractable Diophantine equations. Loops that  involve such cases are of 

course serialized. 

With loops that  involve subscripted subscripts, as are the examples of Figure 8.1, the above 

. approach cannot be applied obviously. Only in the case where the subscript f (a), for example, is 

. specified by a.closed form expression a Diophantine equation can be constructed. In real cases 

however j ( i )  is simply a vector of integer values that  is input t o  the program or  ,computed as 

part of the program. In such cases dependence analysis is impossible and all loops of this type 

are serialized. None of the existing commercial or experimental optimizing compilers parallelize 

general loops with subscripted subscripts. 

Subscripted subscripts are heavily used in numerical programs that  solve sparse systems, 

and in general manipulate sparse matrices, as well as in Fortran programs that  implement com- 

binatorial problems [Kuck83]. In sparse matrices only a fraction of the matrix elements are 

non-zero numbers. Storing the entire matrix would then be wasteful. Worse yet, if the dimen- . 

sion of the matrix is large the physical memory of the system might not be enough to  store the 

entire matrix. For a lKMK matrix for example 8 Mbytes of physical memory would be needed 

if double precision is used. Alternatively, using secondary storage t o  store the matrix and page 



i t  during execution would result in a significant slowdown in speed. The  common approach used 

1 
for storing sparse matrices is t o  compact the matrix and store only the non-zero elements. This 

is usually done by using three vectors, A ,  R ,  and C .  Vector A holds the non-zero elements of a 

sparse matrix M, and R  and C hold the row and column subscripts for each element in A .  Two 

vectors are also used in some cases. A widely-used numerical package that  solves systems of 

sparse equations is HARWELL. The  majority of subroutines in this package contain loops with 

subscripted subscripts of the type shown in Figure 8.1. During operations with sparse matrices 

many zero elements become non-zero. This is commonly referred to  as fill-in. Since the pattern 

of fill-in is unpredicatable an expandable da ta  structure should be used t o  store new e1emen.t~. 

T h e  most popular d a t a  structures in such cases are linked lists, that  expand and shrink easily. 

Linked lists are implemented in Fortran by means of two unbounded vectors. 

In graph-theoretic problems a similar approach is used t o  store graphs. A graph can be 

represented by i ts  adjacency matrix. The  adjacency matrix is sparse if the number of edges is 

very small compared t o  the number of vertices. Large combinatorial problems are often coded in 

I 

Figure 8.2. Example of definition-use of f(i). 



Fortran for efficiency reasons, and their sparse matrices are store in a sirnilair way. Parallelizing 

loops with subscripted subscripts would amount t o  a significant speedup of execution time in 

many cases. In this chapter we present a compiler transformation that  parallelizes loops with 

subscripted subscripts. As shown later some overhead i s  introduced during the parallelization of 

such loops. This overhead may be nontrivial for certain loops. 

The  subscript blocking transformation can be implemented in the compiler internally, or  as 

a compiler transformation. I t  works by examining the values of the subscript vector, ( j ( i )  in 

Figure 8.1 for example) and extracting the parallel iterations .repeatedly. In general we distin- 

guish two 'cases: . l )  the subscript.vector j ( i )  is known a t  compile-time, and 2) j ( d )  is computed 

a t  run-time. When f ( i )  is known at compile-time subscript-blocking can be implicitly applied t o  

transform the corresponding loop(s) into DOALL(S) with zero overhead. This is because, as 
I 

shown later, the part  of the transformation that  checks the pattern of j ( i )  is done by the com- 

piler and i t  is ."chargedH t o  compilation time. For the second case where .f ( i )  is computed and 

i t  is not known at compile-time the checking of j ( i )  must be done a t  run-time and that  intro- 

duces sonie overhkad: If the original' loop is large enough, this overhead is amortized' and is 

negligible compared t o  the benefits of the extracted parallelism. An example of subscript 'block- 

ing tha t  can be implicitly applied in the compiler is when a sparse matrix is known and j ( i )  

holds for instance, the row indeces of i ts  non-zero elements. In this case the values of j ( i )  are 

available t o  the compiler which can parallelize a loop in which f ( i )  appears, as a subscript, 

without' run-time overhead. On the other hand if f ( i )  is associated with fill-in elements which 

are generated during program execution, the values of the subscript vector are available only a t  

run-time. 

Before we describe subscript blocking in detail, let us consider the dependence relation 

between the definition of a subscript vector f ( i )  and .its use in an array reference of the form 



A ( j  (i)). Consider for example the loop of Figure 8.2. If j ( i )  is computed outside the loop that  

uses o r  assigns A ( j ( i ) ) ,  subscript-blocking always works. If j ( i )  is computed inside the loop as 

shown in Figure 8.2, a dependence always exists f rom's l  t o  s2 .  If there is no backward depen- 

dence from s2 t o  s l ,  then sl  and s2 belong t o  different l~b locks  and loop distribution can thus be 

applied to  separate the definition of j ( i )  in sl and its use in s2. If there is a hypothetical depen- 

dence from s2 t o  sl then both statements are involved in a dependence cycle and cannot be 

separated. Th is  however does not happen in practice. For instance, in all HARWELL subrou- 

tines tha t  we examined, the definitions and uses of vector subscripts cou!d always be distributed. 

Therefore, the definitions of vector subscripts are of no concern to  the following material and 

examples. 

8.2. The Transformation 

As explained in Chapter 1, a dependence between two statements is represented by an arc 

and enforces an execution order. A statement from which a dependence originates is called a 

source and a statement t o  which a dependence arc points is called a sink. A set of successive 

iterations of a loop is said t o  form a domaan. A sank-domain is a domain in which one or more 

statements are sinks. A domain that  does not contain any sinks is called a source-domain. I t  is 

obvious that  all source domains of a loop can be executed in parallel. 

Let us consider for example the case .of Figure 8 . l a  which involves output dependences. In 

this case an output dependence may exist from A ( j  (i)) + A  ( j  ( j ) )  for i > j .  If the loop involves 

only a single statement, we may execute i t  automatically as a vector statement. If we assume 

tha t  memory writes are always performed in the order they are issued then the ,loop can be 

forced t o  execute as  a vector statement without violating any dependences; only the most recent 

assignment for each element of A will be valid. The above assumption may be valid for SEA 



DO i=1, N 
i f  V ( f ( i ) ) = O  then V ( f  ( i ) ) = l  
else j = j+l: 

S ( j )  = i; 
END0 

DO k=l,j 
DOALL i=S  ( k )  , S ( k + l )  - 1 

A ( f ( i ) )  = . . . 
ENDOALL 

END0 . 

./ 

Figure 8.3. The subscript blocking transformation for the loop of Figure 8. la.  

systems but not necessarily for MES or  MEA machines. In addition the loop of Figure l a  may 

be parallel but not a vector loop. In general even though the loop of Figure l a  can be vectorized 

for SEA machines, i t  should be executed serially on MES machines. 

T o  parallelized loops of this type we apply the subscript blocking transformation which 
' 

works as follows. Before' we enter the loop where the vector subscript j ( i )  is used, we examine 

the values of j ( a )  and construct the "free-runs" or source domains. 1n.other words we find sub- 

sets of successive iterations none of which contains a statement which is a dependence sink. T h a t  

is, the statements of a source domain are not involved in a dependence or  they are sources (origi- 

nators) of output dependences. '1'0 perform the construction of source domains we use two auxi- 

liary vectors V and S. V is a binary vector and S a vector with integer elements. Vector V is 

used t o  detect dependences (conflicts) as explained below and S holds the indeces of the 



subscript-vector f ( i )  tha t  correspond t o  loop iterations that  are involved in a conflict. 

Specifically after f ( i )  is generated, its elements are read and the corresponding elements of 

the bit-vector V are set t o  1. For each f (a), if V( f (i))=O, i t  is then set V( f (i))=l .  If i t  is 

found tha t  V( f ( i ) )=l ,  this indicates a previous occurrence of the value f (a) for another j > i .  

Since this implies a dependence from some f ( j )  to  f ( i ) ,  j <a, index i is saved in S(k).  All 

iterations up t o  S(k)-1 can therefore be executed in parallel. This procedure is performed by an 

extra loop t h a t  is created by the compiler before the source loop. T h e  transformed loop of the 

example in Figure 8 . l a  is shown in Figure 8.3. Obviously the size or veclors j , V and S is equal 

t o  the size of array A .  As shown in Figure 8.3 the original serial loop is transformed into a 

series of DOALL loops. If P i s  the number of times a conflict was detected, then we have a total 

of /3 + 1 DOALLs created ou t  of the original loop. 

Let us consider the example of Figure 8.4. Only output dependences are considered. The  

values of the subscript-vector f ( a )  are given in the top vector of Figure 8.4. After the first 3 

iterations of the first loop of Figure 8.3 are executed, the 4-th, 5-th and 7-th bits of V will be 

set. During the next iteration for i=4,  a conflict occurs since V(f (4)) #O.  T h e  current index 

(i=4) is then stored in the next (2nd) empty position of S .  The  same process is repeated until 

i =lo. The final configuration of vectors V and S is shown in Figure 8.4. The  asterisks next t o  

V indicate positions where conflicts (output dependences) occurred. The  original loop is then 

transformed into a series of DOALLs by Lhe second loop of Figure 8.3. 1n this case 4 DOALLs 

were created each corresponding t o  one of the four domains (1-3)) (4-51, (6-91, (10-11) of the ori- 

ginal loop respectively. 

In the above example we can observe that  the creation of DOALLs was performed in a con- 

servative manner. T h a t  is, a dependence was assumed whenever a conflict occurred, without 

taking into account the possibility of elir~linated dependences due t o  thc completion of earlier 



Figure 8.4. Example of computing vectors V and S. 

domains. For. example, in Figure 8.4, a dependence pointing t o  the sixth element of f ( i )  was 

assumed. However the source of this dependency belongs t o  a previous DOALL and thus the 

dependence should ,be considered eliminated. We can solve this problem of detecting eliminated 

dependences by using more auxiliary storage as follows. Vector V is defined now.= an integer- 

valued vector. Instead of setting bits in V, we store the index i in position f (i) of V. Wh_en- 

ever a conflict occurs a t  V(j ( j ) )  we store the corresponding index j in the next free position of 

S as previously and overwrite the old value of V(f ( j ) )  with j. . Dependences tha t  should be 

ignored are specified by the test of the following lemma. 



Lemma 8.1 Let m be the last index value inserted in vector S. If a conflict occurs a t  position 

z = j  ( i )  of V  and y =V(x) ,  then the dependence is discarded if y < m .  Otherwise the depen- 

dence is saved in vector S. In either case set V ( j ( i ) )  t i .  

Proof The proof t o  show tha t  no dependence violation occurs when the above test is used is 

straightforward. We need t o  show that  if a dependence is discarded by the test of the lemma, 

then the soirrce of the  dependence does not belong t o  the currcnt domain. Let j be the 

of the most recent value inserted in S, and let i  be the current index of f .  The  current domain 

Figure 8.5. The  example of Figure 8.4 when V is not a bit-vector. 



includes elements from m =f ( j )  t o  f (4) inclusive. The conflict occurs at position j (4) of V 

whose old value is y .  Then i t  is obvious that  the source of the dependence, i.e.,'y belongs t o  the 

current domain if and only if y > m ,  which proves the-lemma. 

The version of the example of Figure 8.4, where vector V is a vector of integers is shown in Fig- 

ure 8.5. The result now is three DOALL loops. The  transformation results in a series of DOALL 

loops as shown by the second loop of Figure 8.3. The serial loop however in this case is slightly 

different and is shown in Figure 8.6. 

8.3. Recurrences with Subscripted Subscripts 

The case - of d a t a  dependences e.g., Figure 8 . 1 ~ ~  or recurrences, e.g. Figure 8. ld,  is very simi- 

lar t o  the case of output dependences that 'we discussed above. Anti-dependences pose no prob- 

lem if we use the following assumption. Subscript blocking transforms a serial loop into a set of 

DOALLs. The resulting parallel loops are executed in the order implied by the surrounding serial 

loop (Figure . 8.3). . We assume that  all write ope;ations to array A are performed in a shared 

copy (that  resides in global memory) after the execution of a DOALL and before the next 

DOALL s tar ts  executing. Analogously, all elements of A referenced by a D O ~ L  are fetched to 

each processbr from global memory. This is a realistic assumption and if used, all anti- 

i f  ' V ( f ( i ) )  >= S ( j - 1 )  then 
S ( j )  = i; 
j = j + l ;  

~ ( f ( i ) )  = i; 

Figure 8;6. The  set-up loop for V and S when V is an integer vector. 



DO i=l, N  
i f  V , ( g ( i ) )  > ' S ( j )  then 

j = j + l ;  
S ( j )  = i; 

V , ( f ( i ) )  = i: 
END0 

ENDOALL 
END0 

Figure 8.7. The  transformed loop of Figure 8 . ld .  

dependences are implicitly satisfied. 

Let us consider in this section the case of subscript blocking for recurrences, and ignore for 

the moment output  dependences. We will show how a recurrence of the type shown in Figure 

8 . ld  can be parallelized by subscript blocking. In this case we have two subscript vectors f ( a )  

and g (i). . . T w o  vectors V and V are used to  carry out  the tests, and a vector S t o  record the f 9 

independent domains. As shown later the two vectors V' and Vg are necessary only if we want 

t o  detect both da ta  (or flow) dependences and anti-dependences. If the above assumption is used 

however and anti-dependences are ignored, only Vj is needed. For the sake of completeness let 

us use V and V and consider anti-dependences a well. f 9 

a t  



1 

2 

3 

4 

5 

( i ) :  6 

7 

8 

9 

10 

11 

12 

Figure 8.8. Example of subscript blocking for recurrences. 

T h e  tests in this case are similar t o  those of the previous section. Vector V is used to  f 

store the definitions of a variable and V to  store its uses. It is clear tha t  a flow dependence 
9 

exists if a particular variable that  is used is found t o  have a definition'in the same domain, i.e., 

the source and the sink of a dependence belong t o  the same domain. More specifically, the pro- 

cedure for da ta  dependences works as follows. Initially, vector Vf is set t o  zero. Then starting 
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from i = 1 we examine the  pairs of elements (f (i), g (i)) of the two subscript vectors, storing 

the corresponding indeces t o  locations Vf (f (i)) and V'(g(i)). A da ta  dependence is found 

when for some i, Vf (g (i)) #O. The  corresponding dependence is Vf (g (i)) *i ,  and i is stored 

in the next free location of vector S .  However as in the previous section, if the source of a flow 

dependence does not belong t o  the current domain, that  dependence is correctly ignored as stated 
. . 

by the following lemma. 

Lemma 8.2 Let j be the index of the last element of S ,  and m .= ~ ( j ) .  If for some i, 

k = Vf (g(i)) #O and k < m ,  the d a t a  dependence k -+i is correctly discarded. 

Proof The previous domains include all loop iterations up t o  (m - 1). Since k is the source of 

the d a t a  dependence and k s m  '- 1, i t  belongs t o  a previous domain and therefore has been 

eliminated due to  the order df execution enforced by subscript blocking. W 

As mentioned above the da ta  dependences are detected using only vector V f ,  and the 

corresponding domains are stored in vector S. The  transformed loop of Figure 8 . ld  is shown in 

Figure 8.7. Figure 8.8 gives llie vectors f ( a )  and g ( i )  for an application of subscript blocking 

using the loop of Figure 8.ld. Output  dependences were ignored so far but are computed exactly 

as described in the previous section. 'l'he flow dependences in this example are shown in Figure 

Figure 8.9. T h e  set-up loop of Figure 8.7 for da ta  and output domains.. 
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8.8 by arrows from j (i) t o  g ( i ) .  Dependences that  were discarded by Lemma 8.2 are not shown. 

Asterisks and bullet-marks next t o  Vf indicate output and '  flow dependences respectively. As it 

can be seen, only two out of the six da ta  dependences defined disjoint domains (DOALLS). The  

domains defined by da ta  dependences alone are (1-21, (3-61, and (7-12). 

Anti-dependences are found in the same way using vectors V and V in the reverse order. f 9 

For a given i ,  if Vg ( j  (i)) > 0 and Vg( j  (i)) belongs t o  the current domain, an anti- 

dependence A ( Vg ( j  (i)) -+A (i) exists. Anti-dependences are ignored however. Output  depen- 

dences can be computed here without extra storage for their corresponding domains. In fact flow 

and output dependences may define different domains but they can be combined to  form domains 

that  satisfy both types of dependences as shown in Figure 8.9. If an output domain lies entirely 

within a single flow domain, a new domain is created otherwise output domains are ignored. If in 

the example of Figure 8.8 both output and flow .dependences are taken into consideration, the 

corresponding domains (DOAJLLS)' are (1-21, (3-61, (7-lo), and (10-12). 

The overhead introduced by the set-up loop c a n  be reduced by executing the set-up ioop 

itself in parallel. For instance this can b e  done by using' synchronization instructions to  syn- 

chronize the write operations in V, and S by each iteration. Those iterations that  access 

. . a  

( (  j), ( i ,  j)) , A J 9 2 ( i 9 ~ ) )  

Figure 8.10. An example of. multidimensional recurrence with subscripted subscripts. 



different elements of V' will be executed in parallel, while the writes t o  the same element will be 

done serially. Depending on how we use synchronization instructions to  execute the set-up loop 

in parallel, we may have t o  order the elements of S. This can also be done in parallel. An 

approximate speedup bound for subscript blocking is computed in the last section of this 

chapter. 

So far we discussed how subscript blocking can be used t o  parallelize singly nested loops 

with subscripted subscripts of any kind. In the next section we show how the'same technique 

can be extended t o  parallelize multiply nested loops with subscripted subscripts. 

8.4. Multiply Nested Loops 

T h e  subscript blocking transformation for loop parallelization works in precisely the same 

way for multiply nested loops, as i t  does for singly nested loops. However the auxiliary vector V 

now becomes a multidimensional table with a number of dimensions equal t o  the number of 

loops in the nest, plus one. Or more precisely, equal t o  the maximum number of subscripted sub- 

scripts in an array reference (inside the loop). Vector S can always be stored in a 2-dimensional 

table. If we have m nested loops for example, V will be organized as an (m+l)-d' imensional 

table and S will be a 2-dimensional table with rows of size m ,  where each row holds values of 

the  m indeces. 

T h e  rows of S define the boundaries of successive source domains. The  result of the 

transformation in this case will be again two disjoint loops. T h e  first will consist of m perfectly 

nested DO loops and will be functionally identical as in the single loop case (Figure 8.9). The 

second loop will consist of v+l loops; a serial outermost loop which defines the source domains, 

and m DOALL loops that  implement in parallel the original (untransformed) 'loop. 

'T ' 



DO i=l, N 
DO j=1, M 

n 

if 1 ( )  g j)) or ( f 1 ( i ,  j ) ,  f 2 ( i ,  j ) )  > S ( k ) )  t hen  
k = k + l ;  

S ( k )  = ( i , j ) ;  
V f ( f l ( i , j ) ,  f 2 ( i , j ) )  = (1, j ) ;  

E N D 0  
E N D 0  
S ( k + l )  = (N ,  M) : 
DO 1 = 1, k 

n l  = S ( l )  . l; n2 = S ( 1 + 1 )  . I ;  
m l  = S ( l )  . 2 ;  m 2  = S ( 1 + 1 )  . 2 ;  
if  m 2 > 1  then m 2  = m 2 - 1  
else n2 = n2-1: m 2  = M: 
D O A L L ,  i = n l ,  n2 

DOALL j = m l ,  m 2  

. . . 
ENDOALL 

ENBOALL 
E N D 0  

Figure 8.11. The loop of Figure 8.10 after the transformation. 

Let us see how subscript blocking works with nested loops by means of an example. For 

simplicity we consider the case of a 2-dimensional recurrence with subscripted subscripts as the 

one shown in Figure 8.10. We will apply the transformation t o  the loop of Figure 8.10 taking 

into consideration flow and output dependences only. As mentioned above, the auxiliary vector 

Vr is set up in this case using the same algorithm as in the previous section. Vectors Vr and S 

will be represented by a &dimensional and a Zdimensional table, respectively. T o  simplify our 

notation and drawings we represent Vr with a 2-dimensional table where each entry can store an 



ordered pair of the form ( a ,  b), a ,  6 €2'. T h e  same representation is used for S. In general, 
. .. 

for a nested loop L =(N1, N2,..., N,) the size of the i- th dimension of Vf will be Ni and the 

size of the m+l-st dimension will be m. S will always be represented by a set of rows of size m .  

T o  compare elements of V, and S in our exainple we use the following rule. If (a,, 6,) is an 

element of Vf , and (a,, 6,) an element of S ,  then 

(au,  4,) ?(a,,, b,,) 

if and only if 0, 2 a,, or  0, = a, and 6, 2 b,. If (a,, b,) is the i- th element (row) of S then 

a, = S( i ) . l ,  and 6, =.S(i).2. The transformed loop of Figure 8.10 is shown in Figure 8.11. 

A detailed example for N=3, and M=4 is shown in Figure 8.12. Figure 8.12 shows the 

unrolled version of the example loop with arcs illustrating flow and output dependences. After 

the set-up loop of Figure 8.11 is executed the final configuration of table Vf and the resulting 

domains in S are also shown in Figure 8.12. The  four domains tha t  were created by subscript 

blocking in this case are { ( 1 )  ( 1 2 ,  ( 1 ,  1 4  2 1 ,  ((2,2), 

( 2 , ~ ) ~  (2,4)), and {(~,1), 2 ,  , (3,4)). N o t e t h a t f r o m a t o t a l o f s i x  

flow and output dependences only three were used to  define the source domains, and the remain- 

ing were ignored. 

8.5. Expected Speedup 

T h e  set-up loops created by subscript blocking can be executed . i n  parallel using, for 

instance, the Cedar synchronization scheme [ZhPe83]. In case the subscript vector is known a t  

compile-time the transformation can be applied without the set-up loop, in which case the extra 

overhead is zero. We believe that  this rarely happens in real code and therefore the set-up loop is 

needed t o  define the domains a t  run-time. The body of the set-up loop will always contain three 
3 

t o  four statements, and in general i t  is independent of'the body size of the original loop. 



Figure 8.12. The  unrolled loop of Figure 8.10 with i ts  subscript values and the v, and S tables. 



Let C and B be the execution time of the loop body (i.e., one iteration) of the set-up loop, " 

and the  original loop respectively. If we assume tha t  each statement takes a unit of time to  exe- 

cute, then we always have C=3, or 4. Consider the case of a perfectly nested serial loop 

L =(N1, N2,... , N,,)(B) of nest depth m ,  where Ni is the number of iterations of the i- th loop 

and B is the execution time of the loop body. Subscript blocking will transform this loop into 

two loops 0 =(NIP N2,..., N,)(C) and R =(Dl N1, N2,..., N,)(B). 0 is the set-up loop and R is 

a set  of na DOALL loops nestid in a serial outermost loop with 0 iterations. jj is the number of 

0 R domains. LaL Tp , Tp be the parallel cxccution times of 0 and R on p grnmssnrs, r~sp~.~:l,iveIy 

m 

Also let N = n Ni. Since the execution time of the original loop is NB, the expected speedup 
i =l 

of the transformed loop on p processors would be 

Let a;. be the number of writes (conflicts) t o  the i- th element of Vf, ar~d a=max {ai). Since the 
i 

updates to the  same element of Vf are serialized, the parallel execution time of 0 with unlim- 

ited processors will be determined by the maximum number of conflicts in each element of VfJ 

i.* , T - a .  On g processors, each procrsnr will execute an average of [ N / P ~  itcrationa of 

0 .  Therefore for the limited processor case, 

0 
Tp = I aC otherwise 

R Tp is computed as follows. Let p be the number of domains and mi be the number of iterations 

B 

in the i-th domain, ( i  =I, 2,..., 4. Obviously C mi = N .  Then we have 
i =l 



and since by definition 

from (8.3) and (8.4) i t  follows that  

0 
P P 

If we assume Tp m NC/p in (8.2), we finally have from (8.1) and (8.5) tha t  

When N is large relative t o  /3 and p ,  the speedup converges t o  the upper limit in (8.6). As an 

example, for a loop with N=100, B=50J C=3, p =16 and P=8, the speedup range (depending 

on the size of the domains) is 

15 > S,, > 7.. 

If all eight domanins have 16 or fewer iterations, then S,, m12.5. We plan to  implement sub- 

script blocking in Parafrase and measure its effect on sparse matrix solvers, where subscripted 

subscripts appear frequently 
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CHAPTER 9 

CONCLUSIONS 

T h e  speed of computer systems grew by approximately a factor of ten every three years 

until the end of the last decade, and this was largely due t o  improvements in device technology. 

Although increased performance is still achieved through improvements in technology and the 

advent of new technologies, the factor of speed-increase as a function of time is only a fraction of 

what i t  used to be. '1n recent years, attention has focused on alternative sources for increasing 

computer performance. The  major source is parallelism in its many (ambiguously defined) forms. 

Although the basic principles of parallelism are old, a systematic research effort in the area of 

parallel processing has only begun. Of course this was made possible through advancements in 

technology t h a t  allow us t o  design fast, compact, and cost-effective components. 

As opposed' t o  technology (which offers increased performance through improvements in 

hardware), parallelism can be applied t o  algorithms, languages, and hardware. I t  is a more gen- 

eral, and potentially more powerful alternative for increasing performance without theoretical 

limits. There are many crucial problems involved in specifying, extracting, and exploiting paral- 

lelism. Most of these are very complex problems, but their solution is a "must" for the realiza- 

tion of large scale parallel processor systems. 

In this thesis we investigated and proposed solutions t o  many important problems in paral- 

lel processing. We define the notion of parallelism in general for program models and in particu- 

lar for Fortran programs. We discuss the different types of parallelism and develop a notation 

tha t  is useful for describing the mode of execution for a set of serial and parallel tasks. We con- 

sidered the problem of interprocessor communication and proposed an optimal solution for spe- 

c cial types of program graphs. 



The  problem of processor allocation and scheduling for arbitrarily nested parallel loops was 

discussed in great detail. Modern parallel processor systems can exploit up to  two dimensions of 

parallelism in Fortran programs. In this thesis we developed analytical methods for studying 

multidimensional parallelism (multiply-nested loops) and proposed optimal static algorithms for 

the general case. An optimal self-scheduling algorithm was also presented. This scheme involves 

less overhead than any other known self-scheduling scheme. Analytical and simulation results 

showed the advantage of GSS over self-scheduling. Two models for estimating run-time overhead 

were developed for the case of linear and logarithmic (on the number of processors) overhead. 

' These models can be used to  predict the optimal number of processors for a given task before the 

actual assignment of processors is performed. 

Heuristic and optimal algorithms were developed for high-level spreading and processor 

allocation t o  general program graphs. Finally we, presented two new compiler transformations: 

loop coalescing, and subscript blocking. The former transformation is useful for static and 

dynamic scheduling. The latter transformation can be used t o  vectorize previously unvectorizable 

loops with subscripted subscripts. When the original loop limits are large enough, the resulting 

speedup can be proportional t o  the number of processors. 

This dissertation proposes new solutions t o  some important problems in parallel processing. 

The next step in our future work will involve the extension of the algorithms and techniques 

presented in this thesis t o  include memory allocation and related compiler optimizations, and 

thkir implementation. Specialized hardware for the fast implementation of the proposed self- 

scheduling scheme along with a sophisticated restructuring compiler, would be a powerful combi- 

nation for solving the major problems in parallel processing: scheduling, communication, and 

synchronization. , 
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