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Formal Language Constrained Path Problems

CHRIS BARRETT ! RIKO JACOB! MADHAV MARATHE !

July 7, 1997

Abstract

In many path finding problems arising in practice, certain patterns of edge/vertex labels in the labeled
graph being traversed are allowed/preferred, while others are disallowed. Motivated by such applications
in intermodal transportation planning, we investigate the complexity of finding feasible paths in a labeled
network, where the mode choice for each traveler is specified by a formal language. A prototypical
problem considered is the following:

(Formal Language Constrained Shortest/Simple Paths:) Given a labeled weighted (di-
rected or undirected) graph G, a source and a terminal s and ¢, and a formal language L
(such as regular, context free, etc) find a shortest (or simple) path from s to ¢ such that the
label of the path is in L.

The main contributions of this paper include the following.

1. We show that the problem of finding a shortest path between a source and destination for a traveler
whose mode choice is specified as a context free language is solvable efficiently in polynomial
time. When the mode choice is specified as a regular language we provide algorithms with im-
proved space and time bounds.

2. In contrast, we show that the problem of finding simple paths between a source and a given des-
tination is NP-hard, even when restricted to very simple, regular expressions and/or very simple
graphs (e.g. interval graphs, meshes, complete graphs, e_tc.)

3. For the class of treewidth bounded graphs, we show that (i) the problem of finding a regular
language constrained simple path between source and a destination is solvable in polynomial time
and (ii) the extension to finding context free language constrained simple paths is NP-complete.

Several extensions of these results are presented in the context of finding shortest paths with addi-
tional constraints. These results significantly extend and generalize the results in [MW95]. As a corollary
of our results, we obtain a polynomial time algorithm for the BEST k-SIMILAR PATH problem studied
in [SIB97]. The previous best algorithm was given by [SJTB97] and takes exponential time in the worst
case.

Keywords: Transportation Planning, Algorithms, Shortest Paths, Multi-criteria Problems, Formal Lan-
guages, Computational Complexity.
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Abstract

In many path finding problems arising in practice, certain patterns of edge/vertex labels in the labeled
graph being traversed are allowed/preferred, while others are disallowed. Motivated by such applications
as intermedal transportation planning, we investigate the complexity of finding feasible paths in a labeled
network, where the mode choice for each traveler is specified by a formal language. A prototypical problem
considered is the following:

(Formal Language Constrained Shortest/Simple Paths:) Given a labeled weighted (directed
or undirected) graph &, a source and a destination s and d, and a formal language L (such as
regular, context free, etc) find a shortest (or simple) path from s to d such that the label of the
pathisin L.

The main contributions of this paper include the following.

1. We show that the problem of finding a shortest path between a source and destination for a traveler
whose mode choice is specified as a context free language is solvable efficiently in polynomial time.
When the mode choice is specified as a regular language we provide algorithms with improved space
and time bounds.

2. Incontrast, we show that the problem of finding simple paths between a source and a given destination
is N'P-hard, even when restricted to very simple regular expressions and/or very simple graphs (e.g.
interval graphs, meshes, complete graphs, etc.)

3. For the class of treewidth bounded graphs, we show that (i) the problem of finding a regular language
constrained simple path between source and a destination is solvable in polynomial time and (ii) the
extension to finding context free language constrained simple paths is NP-complete.

Several extensions of these results are presented in the context of finding shortest paths with additional
constraints. These results significantly extend the results in [MW95]. As a corollary of our results, we
obtain a polynomial time algorithm for the BEST k-SIMILAR PATH problem studied in [SIB97]. The
previous best algorithm was given by [STB97] and takes exponential time in the worst case.

Keywords: Transportation Planning, Algorithms, Shortest Paths, Multi-criteria Problems, Formal Lan-
guages, Computational Complexity.
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1 Introduction

In many path finding problems arising in diverse areas, certain patterns of edge/vertex labels in the labeled
graph being traversed are allowed/preferred, while others are disallowed. Thus, the feasibility of a path is
determined by (i) its length (or cost) under well known measures on graphs such as distance, and (ii) its
associated label. The acceptable label patterns can be specified as a formal language. For example, in transport
systems with mode options for a traveler to go from source to destination the mode selection and destination
patterns of an itinerary that a route will seek to optimize can be specified by a formal language. The problem of
finding label constrained paths arise in other application areas such as production distribution network, VLSI
Design, Databases queries [MW95, AMMY7], etc. Here, we study the problem of finding shortest/simple paths
in a network subject to certain formal language constraints on the labels of the paths obtained. We illustrate
the type of problems studied here by discussing prototypical application areas:

1.1 Intermodal Route Planning

Our initial interest in the problem studied in this paper came from our work in the TRANSIMS? project at the
Los Alamos National Laboratory. We refer the reader to [TR+95a, AB+97, TR+95b] for a detailed description
of this project.

As a part of the intermodal route planning module of TRANSIMS, our goal is to find feasible (near

optimal) paths for travelers in an intermodal network (a network with several mode choices, such as train, car,
etc.) subject to certain mode choice constraints. The mode choices for each traveler are obtained by either
processing the data from the microsimulation module or by certain statistical models built from real life survey
data. We refer the reader to the book by Ben-Akiva and Lerman [BaL] for a detailed discussion and references
on the theory of discrete choice analysis as applied to transportation science. The following example illustrates
a prototypical problem arising in this context.
Example 1: We are given a directed labeled, weighted, graph G. The graph represents a transportation network
with the labels on edges representing the various modal attributes (e.g. a label ¢ might represent a rail line).
Suppose, we wish to find a shortest route from s to d for a traveler. This is the ubiquitous shortest path problem.
But now, we are also told that the traveler wants to go from s to d using the following modal choices: either
he walks to the train station, then uses trains and then walks to his destination (office), or would like to go all
the way from home to office in his car. Using ¢ to represent trains, w to represent walking and ¢ to represent
car, the travelers mode choice can be specified as wt+ w™ U ¢*, where U, + and * denote the usual operators
used to describe regular expressions.

1.2 Searching the Web:

Browsing the Web to find documents of interest as well as searching a database using queries can be inter-
preted as graph traversals in a certain graph. From this viewpoint, one views a Web (database) as a directed
(undirected), labeled graph — the nodes are URL sites (text) and edges are hyperlinks. A query for finding
a particular URL site for instance, proceeds by browsing the network by following links and searching by
sending information retrieval requests to “index servers”. A serious problem that arises in the context of using
pattern matching based search engines is that the queries cannot exploit the topology of the document network.
For example as pointed out in [Ha88],

Content search ignores the structure of a hypermedia network. In contrast, structure search specif-
ically examines the hypermedia structure for subnetworks that match a given pattern.

We refer to the reader to the work of [MW95, AMM97, Ha88] for a more thorough discussion on this topic.
The following example is essentially from [AMMO97].

*TRANSIMS is an acronym for the “TRansportation ANalysis and SIMulation System”.




Example 2: Let G be a graph describing a hypertext document. Suppose, we want to search for job op-
portunities for software engineers. We first query an index server to find pages that mention the keywords
“employment job opportunities™ and then, from each of these pages, we could follow the local paths of length
zero, one or two to find pages that contain the keywords “software engineer”. We can state the above problem
as finding labeled paths in G with constraints on the admissible labelings. We refer to [AMMO97] for a number
of additional interesting queries that can be formulated in such a framework.

2 Problem Formulation

The problems discussed in the above examples can be formally described as follows: let G(V, E) be a
(un)directed graph. Each edge e € F has two attributes — I(e) and w(e). [(e) denotes the label of edge
e. In most case considered in this paper, the label is drawn from a fixed finite set of alphabet 2. The attribute
w(e) denotes the weight of an edge. Again, for this paper, we assume that the weights are non-negative in-
tegers. Most of our positive results can in fact be extended to handle negative edge weights also (if there are
no negative cycles). A path p of length k£ from u to v in G is a sequence of edges (e;, ez, ... e}, such that
v = head(e), v = tail(ex) and tail(e;—1) = head(e;), 1 < < k. A path is simple if all the vertices in the path
are distinct. Given a path p = (e1, e2, . . . e), the weight of the path is given by 3, ., -, w(e;) and the label of
pis defined as i(e;) - {{e3) . .. l(ex). In other words the label of a path is obtained by simply concatenating the
labels of the edges on the path in order. Let w(p) and {(p) denote the weight and the label of p respectively.

Definition 2.1 Formal Language Constrained Shortest Path:
Given a directed labeled, weighted, graph G, a source destination pair s, d and a formal language (regular,
context free, context sensitive, etc,) L find a shortest (not necessarily simple) path p in G such that l(p) € L.

Definition 2.2 Formal Language Constrained Simple Path:
Given a directed labeled, weighted, graph G, a source destination pair s, d and a formal language (regular,
context free, context sensitive, etc.,) L find a simple path p in G such that [(p) € L.

For the rest of the paper, we denote the formal language constrained shortest path problem restricted to
regular, context free and context sensitive languages by NFA-SHP, CFG-SHP and CSG-SHP respectively.
Similarly, we denote the formal language constrained simple path problem restricted to regular, context free
and context sensitive languages by NFA-SIP, CFG-SIP and CSG-SIP respectively.

Note that in unlabeled networks with non-negative edge weights, a shortest path between s and d is nec-
essarily simple. This need not be true in the case of label constraint shortest paths. As a simple example,
consider the graph G(V, E) that is a simple cycle on 4 nodes. Let all the edges have weight 1 and label a. Now
consider two adjacent vertices z and y. The shortest path from z to y consists of a single edge between them;
in contrast a shortest path with label aacaa consists of a cycle starting at = and the additional edge (z, y).

3 Summary of Results:

Here, we investigate the problem of formal language constrained path problems. A number of variants of
the problem are considered and both polynomial time efficient algorithms as well as hardness results ( NP-,
PSPACE-hardness, etc) are proved. The main results obtained in the paper include :

1. We show that CFG-SHP has a polynomial time algorithm. For NFA-SHP, we give polynomial time al-
gorithms that are substantially more efficient in terms of time and space. The polynomial time solvability
holds for the NFA-SHP problem, when the underlying regular expressions are composed of (U, -, x, 2)3
operators. We also observe that the extension to regular expressions with (U, -, ¥, —) is PSPACE-hard.

Joperator 0% or simple 2 stands for the square operator. R” denotes R - R.




2. In contrast to the results for shortest paths, we show that the problem finding simple paths between a
source and a given destination is NP-hard, even when restricted to very simple, regular expressions
and/or very simple graphs. The problems continue to be N'P-hard even for fixed regular expressions
and for undirected graphs. Our intuition is, that this problem is closely related to HAMILTONIAN PATH
problem. Using distinct labels, we can essentially choose the set of edges present — this idea can be used
to show that NFA-SIP remains NP-hard even for simple classes of graphs such as complete graphs,
meshes, etc.

3. In contrast to the results in (1) and (2) above, we show that for the class of treewidth bounded graphs, (i)
the NFA-SIP is solvable in polynomial time, but (i) CFG-SIP problem is NP-complete. The easiness
proof uses a dynamic programming method; although the tables turn out to be quite intricate. The
hardness result uses new technique for simulating certain context free grammars by directed graphs. We
believe that this technique is of independent interest. ‘

4. Finally, we investigate the complexity of the problems — CSG-SHP and CSG-SIP. Using simple reduc-
tions and in contrast to the complexity results in (1) and (2), we show that (i) CSG-SIP is PSPACE-
complete but (i) CSG-SHP is undecidable.

5. As an application of the theory developed here, we provide a polynomial time algorithm for the BEST

k-SIMILAR PATH problem studied in [SJB97]. In [SJB97], the authors present an integer linear program
formulation for this problem. They also remark and we quote

The link overlap constraint thus makes finding the best path much more difficult (i.e. shortest
path problems with a single constraint are NP -hard)

thus indirectly implying that BEST £-SIMILAR PATH is NP-hard. They then present heuristics based
on Lagrangian relaxation method. Here we show that this problem is solvable in time O(kT,) where

Ts, denotes the time taken to find a shortest path. This substantially improves on the exponential time
algorithm of [SJTB97].

4 Related Work and Significance

As mentioned earlier, we refer the reader to [TR+95a, AB+97, TR+95b] for a more detailed account of the
project. Regular expression constrained shortest path problems were considered by Mendelzon and Wood
[MW95]. The authors investigated this problem in the context of finding efficient algorithms for processing
database queries (see [CMW87, CMW88, MW95]). Online algorithms for regular path finding are given
in [BKV91]. Our work on finding formal language constrained shortest paths is also related to the work of
Ramalingam and Reps [RR96]. The authors were interested in finding a minimum cost derivation of a terminal
string from one or more non-terminals of a given context free grammar. The problem was first considered
by Knuth [Ku77] and is referred to as the grammar problem. [RR96] gives an incremental algorithm for a
version of the grammar problem and as corollaries obtain incremental algorithms for single source shortest
path problems with positive edge weights. The results and the models presented here extend/improve the
known results in the following ways

1. To our knowledge this is the first attempt to use formal language theory for modeling mode/route choices
in transportation science.

2. The results in this paper provide an interesting contrast between the complexity of formal language
constrained shortest paths and simple paths.

3. Our results significantly extend the known hardness as well as easiness results in [MW95], on finding
regular expression constrained simple paths. In [MW95] the authors state

Additional classes of queries/dbgraphs for which polynomial time evaluation is possible
should be identified . .. '




The hardness and the polynomial time algorithms presented here are a step towards finding such classes
of graphs for which polynomial time query evaluation is possible.

4. The basic techniques extend quite easily (with appropriate time performance bounds) to solve other (reg-
ular expression constrained) variants of shortest path problems. Two notable examples that frequently
arise in transportation science and can be solved are (i) multiple cost shortest paths [Ha92] and (ii) time
dependent shortest paths [OR90]. These extensions are briefly outlined in Section 7.

5. The results in (1) (2) and (3) provide fairly tight bounds on the polynomial time solvability of the
problems studied, when the underlying formal language varies. Note that while CFG-SHP is plausibly
easier to solve that CFG-S1P, CSG-SHP is “harder” than CSG-S1P— depicting an interesting contrast
between the complexities of these problems.

6. Finally, our theory also allows us to solve other related route planning problems that arise in practice. As
an example consider the trip chaining problem. In this problem, we need to find a shortest route that visits
a sequence of destination types. For example a typical trip might look like — (home-daycare-shop-
postoffice-cafe-home). In the above example, there are many options for shops, cafe and postoffice
and our goal of course is to find the best combination of them. By appropriately constructing regular
expressions and extending our ideas to node labels, we can solve this problem more efficiently than the
naive way of keeping all possible shortest path estimates between the sub-destination types.

RL CFL CSL
shortest general graph O(|R||G| log(|R||G1)) FP undecidable
path directed chain linear FP undecidable
simple | planar/grid graph NP-c. NP-c. PSPACE-c.
path | treewidth bounded FP NP-c. PSPACE-c.
directed chain linear cubic PSPACE-c.

Figure 1: Summary of results on formal language constrained simple/shortest paths. RL, CFL, CSL denote
regular, context free and context sensitive languages respectively. For regular languages, the polynomial time
results hold for regular expressions with the operators (U, -, *,2). FP states that the sought path can be
computed in deterministic polynomial time, even if the language specification is part of the input. On the other
hand most of the hardness results are valid for fixed languages. A directed chain is a graph that forms exactly
one directed simple path.

The rest of the paper contains selected proof sketches. Additional results and proofs can be found in the

appendix. Definitions and basic concepts in formal language theory and computational complexity theory can
be found in [HU79, GJ79]

S Results for Shortest Path Problems

In this section, we present polynomial time algorithms for the problems NFA-SHP and CFG-SHP.

5.1 Algorithm for NFA-SHP and Extensions

In this subsection, we will describe our algorithms for regular expression constrained shortest path problems.
We note that regular expressions over (U, -, ¥) can be transformed into equivalent NFAs* in O(n) time [AHU],
where n represents the size of the regular expression. Thus for the rest of this subsection we assume that the
regular expressions are specified in terms of an equivalent NFA.

*NFA stands for nondeterministic finite automata




The basic idea behind finding shortest paths satisfying regular expressions is to construct an auxiliary graph
(the product graph) of the NFA denoting the regular expression and the underlying graph. We formalize this
notation in the following.

Definition 5.1 Given a label directed graph G, a source and a destination s and d define an NFA M(G) =
(S,%,0,s0, F) as follows:

1. S=V;sg=sF={d};
2. 3 is the set of all labels that are used to label the edges in G and
3. j € 4(i,a) if there is an edge (i, j) with label a.

Definition 5.2 Let My = (S1,%, 01, p0, F1), and My = (S2,X, 62, qo, F2), be two NFAs. The product au-
tomaton is defined as My x My = (S, x S, %, 6, (po, q0), F1 X F), whereVa € T, (pa, q2) € 6((p1,41), @)
if and only if py € 61(p1,a) and g3 € d2(q1,a).

It is clear that L(M; x My) = L(M;) N L{(My).

ALGORITHM RE-CONSTRAINED-SHORT-PATHS outlines the basic steps for solving the problem.

ALGORITHM RE-CONSTRAINED-SHORT-PATHS:

o Input: A regular expression R, a directed labeled weighted graph G, a source and destination
pair s and d.

e 1. Construct an NFA M(R) = (S, %, d, sp, F) from R.

2. Construct an NFA M(G) of G.

3. Construct M(G) x M(R). The length of the edges in the product graph are to the
according edges in G.

4. Starting from state (sg, s), find a shortest path to all of the vertices (f, d), where f € F.
Denote these paths by p;, 1 < ¢ < w. Also denote the cost of p; by w(p;)

5. C* := ming, w(p;); p*: wlp*) = C*.
(If p* is not uniquely determined, we choose an arbitrary one.)

o Output: The path p* in G from s to d of minimum length subject to the constraint that
I(p) € L(R).

Theorem 5.3 ALGORITHM RE-CONSTRAINED-SHORT-PATHS computes exact solution for the problem
NFA-SHP with non-negative edge weighis in time O(|R||G|log(|R||G])).

Proof: The correctness of the algorithm follows by observing the following:
Consider a shortest path ¢* in G of cost w(g*), that satisfies the regular expression R. Then there is a path
g’ of the same cost between (sg, s) to (f, d) for some f € F. So we know, that the sought path is considered.
Conversely, for each path 7 in in M (G) x M(R) of cost w(7), that begins on a starting state and ends on
a final state, there is a path of same cost in G from s to d that satisfies the regular expression R.
To calculate the running time of the algorithm, observe that the size of M(R) x M(G) is O(|R||G|).

Using efficient algorithms to solve shortest path problems in Step 4 the problem can be solved in time
O(IR||G| log(|RIG1)- °




5:2 Extensions

We consider two possible extensions for the problem NFA-SHP— (i) regular expressions with the operators
U, -, *, 2 and regular expressions consisting of U, -, x, —, i.e. union, dot, star and complement. We refer the
reader to [HU79] for the corresponding definitions. Let us denote these problems by NFA-SQUARE-SHP and
NFA-COMPLEMENT-SHP respectively. First consider the problem NFA-SQUARE-SHP. A simple extension
of the algorithm given above for NFA-SHP does not work because of the following reason. The NFA which
needed to represent such a regular expression can in general be exponentially larger than the regular expression
—implying that the algorithm could take exponential time to execute in the worst case. We show that a slightly
different way of viewing our technique allows us to obtain polynomial time algorithm for NFA-SQUARE-SHP.

We can solve these problems by applying a dynamic programming approach, that computes tables of all
pairs constrained shortest paths in a bottom up way along the regular expression.

Let Ry and Ry be regular expressions. Assume that for each regular expression we have a table telling us
for all pairs of network nodes, the length of the shortest path according to the regular expression. We will show
how to compute the new table for the compound expression.

Case 1: Let the operator be U. The language accepted is L{R;) U L{Rs). In this case, the new table consists
of the component wise minimum of the two original tables.

Case 2: Let the operator be -. Then for every (s, d) pair the minimum over all intermediate vertices ¢ of the
sums of subpaths is computed.

Case 3: Let the operator be 02, The same as Case 2, only that the tables are identical.

Case 4: Let the operator be . We know that R* = e U RU R?U - - -. Since we are looking for shortest paths

in the graph (without negative cycles), R¥ for k > n is never used. As a result, we can use the ideas in
Case 1-3 to solve this case.

Next, consider regular expressions with (U, -, x, —) as operators. By a simple reduction from the problem
REGULAR EXPRESSION INEQUIVALENCE (See [GJ79] problem AL9) we can show that

Proposition 5.4 NFA-SHP is PSPACE-hard for regular expressions over (U, -, , —).

Given an instance R of REGULAR EXPRESSION INEQUIVALENCE problem, we create a graph G with one
node v. There is a self loop from v to v for each symbol in the alphabet. There exists a path from v to v to
with a label in L(R) if and only if £* — L(R) # 8, i.e. L(R) # T*. a

5.3 Algorithm for CFG-SHP

We now extend our results in Section 5.1 to obtain polynomial time algorithms for context free language
constrained shortest path problems. Such an extension is significant for the following reasons (i) The result
stands in contrast to the hardness of simple path problems even for regular expression, (ii) it allows us to
work with more powerful queries in database systems and allow natural mode choices to be included, (iii) it
strengthens the bounds on what problems are feasible. For example, a traveler might prefer a freeway over
a arterial. Unfortunately, using regular expressions, we cannot specify mode choices that enforce the travel
distance over a freeway to be at least say 5 times the travel distance on arterials. This can be specified using
expressions such as g™ f57+5m fxgm

The algorithm for solving context free grammar constrained shortest paths is a dynamic programming
based approach. Hence we will first investigate the structure of an optimal shortest path from s to d in G that
obeys CFG R constraints. Assume that R is in Chomsky normal form (see [HU79] for definition). Consider
any such shortest path p such that [(p) = a1, a2, . .. am. One important property of CFG is, that nonterminals
are expanded independently. In the case of a Chomsky Normal form, the derivation forms a binary tree, which




means that the label can be decomposed into two parts [; and Iy such that i(p) = 1112, S — AB, A —* [ and
B —* 52.

With this structure in mind let us define the quantity D(3, 7, A) as the shortest path distance from ¢ to j
subject to the constraint that the label on this path can be derived starting from the nonterminal A.

These values are well defined and fulfill the following recurrence:

D(i,5,A) = Agiélcn}cin{(D(i,k,B) + D(k, 3,C))} (1)
L [DGg) ifU5) =6
DG,j,a) = {oo otherwise. - @

Observation 5.5 These equations uniquely determine the function D, and they immediately imply a polyno-
mial time dynamic programming approach.

Proof: See appendix.

6 Constrained Simple Paths

Next, we investigate the complexity of finding formal language constrained simple paths. The question of
CFG-shortest-simple paths on graphs with bounded treewidth turns out to be N'P-hard.

Before formally stating the proof, we give the overall idea. We present a reduction from 3SAT (See
€.g. [GJ79] for definition). The basic idea is to have a path, that in the first half uniquely chooses an assignment,
and then in the second part can only reach the destination, if the assignment satisfies the given formula.

Consider the language L = {w#wESw#wE ... wH#wl|w € T*}. Asis standard, wF denotes the reverse
of string w. At the heart of our reduction is the crucial observation that L can be expressed as the intersection
of two context free languages L and L. '

Formally, L = Ly N Lo, where L = {wp#w;Swli#woSwEt. .. wiSwl#wey i |w; € T*} and Ly =
{ni#vfSva#tol . up#ol v € T*}

To see that L = L; N Ly, observe that wo = vy, vff = wy, and Vi, wf = vy, v, = win,
establishing that Vi, v; = v;41 and thus L = L; N Lo.

Now, imagine w representing an assignment to the variables of a 3CNF formula with a fixed ordering of
the variables. For every clause of the formula, we create a copy of this assignment. L is used to ensure that all
these copies are consistent, i.e. identical.

Note that we have two basic objects for performing the reduction — a CFG and a labeled graph. We will
specify Ly as a CFG and use the labeled graph and simple paths through the graph to implicitly simulate L.
Recall that there is a straight forward deterministic pushdown automaton M for accepting L. Our graph
will consist of an “upward chain” of vertices and a “downward chain” of vertices along with a few additional
vertices. The upward chain will simulate the behavior of M when it pushes w on the stack. The “downward
chain” will then simulate the act of popping the contents of the stack and verifying that they match w®. We
will call such a gadget a “tower” as an analogy to M.

We now describe the proof in detail. For the purposes of simplicity, we prove the results for directed
graphs, the extension to undirected graphs is easy and is omitted.

Theorem 6.1 The CFG-SIP problem is NP-hard, even for Graphs of constant treewidth and a fixed Context
Free Language.

Proof: Reduction from 3SAT. Let F(X,C) be a 3CNF formula, where X = {z1,...,z,} denote the set
of variables and C = {cy,...,cn} denote the set of clauses. Corresponding to F', we create an instance




G(V, E; U E) of CFG-SIP as follows. We will describe the reduction in two parts — first the subgraph
(V, E1) and then the subgraph (V, Es).

The subgraph (V, E;) goes as follows. Corresponding to each clause c;, we have a Tower 77, It consists
of n “simple-path stack-cell” gadgets H, for each variable one, and is depicted in Figure 2.

Consider a simple path p from one of the bottom nodes (marked by a square in the Figure) to one of the
top nodes. Because of the labels of this gadget, we can define the signature y of this path by I(p) = cyc
with y € {a,b}. Let ¢ be another simple path, that has no vertex in common with p, starts at one of the top
nodes and ends in one of the bottom nodes. Then we can again properly define the signature z of this path by
l{g) = czc.

Because of the nodes « and 5, the signatures are identical, i.e. y = 2. Furthermore, if p uses the node z,
the node z; is not used at all, and ¢ has to use the node ~z;. Similarly, if p uses the node -2, the node —z; is
not used at all, and ¢ has to use the node z;. .

These gadgets now composed to form towers 77, by identifying the top terminal nodes of H 7 with the
bottom terminal nodes of H. f +1- The tower has four levels corresponding to every variable. We call this a floor
of the tower. The bottom of the tower 77 is connected to the bottom of the tower 79+, The start vertex is
connected to the bottom of the tower T*. These connections are depicted in Figure 3. Before we describe the
remaining edges, we discuss the properties of a tower.
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Figure 2: the gadget H; used to
implement the tower, forcing the
assignment to be spread consis-
tently over the graph.

Figure 3 'Assembling the gad- Figure 4: One tower of the sec-
gets, building the first part of the ond part of the graph, according
graph. to the clause (—z; V z; V ).

Consider a Tower 77 and a simple path labeled (c(a U b) é)*#(c(a U b)c)* that starts at one bottom vertex
and reaches the other bottom vertex. Such a path has the following important properties:

1. The path consists of two simple sub-paths p and g with an edge labeled # in between. p starts at the
bottom of the tower and is labeled according to the regular expression I(p) = (c(a U b)c)*. On every
floor it uses exactly one of the nodes {z;, —z;}, by this realizing an assignment to the variables of X.
This assignment uniquely corresponds to the labeling of this path.

2. The constraints of simplicity and the direction of edges implies that g has the following structure: it
starts at the unused top vertex, is labeled with I(q) = I(p)¥, avoids already used nodes, and reaches
the unvisited bottom vertex. Further ¢ is uniquely determined given p. Observe that the label of this
sub-path is uniquely determined by the label of the upward path, it is its reverse.

3. Note that for each variable z;, the simple path visits exactly one of the nodes z; and —z;, If the path
reflects the assignment that z; is true, then z; is unused and —z; is used and vice versa. These free nodes
will be used in the second part of the reduction to verify that this is indeed a satisfying assignment for
F.




Proposition 6.2 Any simple path starting at the start node s, and reaching the intermediate node T, with the
constraint that the labeling belongs to t((c(a U b)c)*#(c(a U b)c)*$)*t generates the language

Lo = { tw1 #wlwo#wlS . .. wn#wlt | w; € (c(aUb)e)* }.

We now choose the CFL to be
Ly = {tw1 #woSwEHwsSwl# . . wp_1$wl  Fwet |k € Nw; € (cec(aUb))*}.
The following important lemma follows from Proposition 6.2 and definition of L.

Lemma 6.3

1. Proposition 6.2 enforces that in every tower the used and unused nodes can be uniquely interpreted as
an assignment to the variables of X.

2. L enforces that these assignment are consistent across two consecutive towers.

We now describe the subgraph (V, E3). The label of each edge in this subgraph is u. The subgraph is
composed of mn subgraphs D; ... Dy, the subgraph D; corresponding to clause ¢;, depicted in Figure 4. Each
of this D; basically consists of four simple chains. The first one goes up the tower. There it is split into three
downward directed subpaths, for each literal one path. Three connecting edges to subgraph D;,; join these
paths again. On this way down every path uses the node that corresponds to its literal. The vertex 7 is used
instead of Dy, instead of D,,, the destination vertex d is used. This completes the description of the graph
G(V, E; U Es).

The instance of CFG-SIP consists of the graph G(V, E; U E») and the CFL is L - u*. This enforces
the path to go through every tower using edges in G(V, Ey), visit vertex 7 and then use the edges of G(V,, E»)
to reach d. The complete proof of correctness is omitted due to lack of space. It is easy to see that G has a
bounded treewidth (can be shown to be 16), O

Another extension considered is to investigate both class of problems (simple and shortest paths) for undi-
rected networks. We extend the result of [MW95] to hold for undirected graphs. Such graphs adequately
model problems in hypertext retrieval and VLSI designs. The extension was not considered in [MW95], and
indications were given that implied that the answer is not clear. The following two theorems whose proofs can
be found in the Appendix, summarize the new hardness results for the NFA-SIP problems.

Theorem 6.4 The problem of computing Regular Expression Constrained Simple Paths is NP-complete even
Jor undirected graphs, and for the fixed regular expression (abab)*.

Theorem 6.5 Let C be a graph class (such as planar, grid, etc) such that the HAMILTONIAN PATH problem
is NP-hard when restricted to C. The problem of finding regular expression constrained simple paths is NP-
hard when restricted to C.

The result immediately implies the hardness of finding simple paths in grid graphs, bipartite graphs, etc.
Note that in this case the regular expression depended on the input graph G.

Given the hardness results for solving NFA-SIP problems even for fixed “simple” regular expressions,
the natural question to investigate is — are there natural restrictions that can be placed on the class of regular
grammars or the input graphs to yield polynomial time solutions.

[MW95], initiated this line of investigation and defined the notion of restricted regular expressions. Given
a regular expression R, let R’ be the regular expression obtained by replacing some occurrence of a symbol
a € Zin R by (aUe). Then R is said to be restricted if and only if R = R’ for any R’ obtained as outlined
above. Mendelzon and Wood [MW95] show that the NFA-SIP problem is solvable in polynomial time for
restricted regular expression. Motivated by the remark in [MW95] discussed in Section 4 we investigate the
complexity of the NFA-SIP problem for restricted classes of graphs. Our results show that in general the
problem continues to remain NP-hard even for the simplest classes of graphs.




Theorem 6.6 Let C be a class of graphs such that for all k > O, there is an instance T € C that contains as a
subgraph either (i) a k-clique, or (ii) a k x k-mesh, then the NFA-SIP problem is NP-hard for C.

Thus the NFA-SP problem is NP-hard even for (i) interval graphs, (ii) Chordal graphs, (iii) complere
meshes, (iv) Complete hypercubes, (v) permutation graphs.

Proof: See appendix.

In contrast to these INP-hardness results, we show that if the graphs have bounded treewidth then the
problem is polynomial time solvable. It should be noted that this includes (i) interval graphs and Chordal
graphs with bounded clique size, (iii) complete meshes, with fixed length or width, and other well known
classes. The hardness result above also imply that these results are in a sense the best possible. The proof of
the following theorem can be found in the appendix:

Theorem 6.7 The NFA-SIP problem is solvable in polynomial time on treewidth bounded graphs

An easy extension of this construction shows, that the pathwidth can also be bounded by a constant.

7 Extensions and Applications

7.1 Node Labeling

Consider the problem, where instead of the edges the nodes have labels, and the constraint is on the compound
node label of a path. Easy transformations of the input show, that all the results we develop for the edge labeled
case are also true for the node labeled case. Details appear in the appendix.

7.2 Finding Alternatives to Shortest Paths

There has been a considerable interest in finding algorithms for variations of shortest pathsfAMO93]. For
example, in a recent paper, by Scott, Pabon-Jimenez and Bernstein [SJB97], the authors consider the following
problem — given a graph G, a shortest path SP in G and an integer parameter, find the shortest path SP1
in G that has at most £ links in common with SP. Call this the BEST k-SIMILAR PATH. Our approach for
solving the problem is based on using our algorithm for regular expression based shortest paths. The approach
uses the fact that for fixed &k the words, that have less or equal to k£ symbols a in them, is regular. More details
are given in the appendix.

7.3 Other Formal Languages

As expected attempts to extend the techniques to more general grammars such as the context sensitive gram-
mars fails to yield polynomial time results. Intuitively, the hardness of the problems is due to the fact that
recognition or emptiness problems for such grammars are hard. Consider for example the problem for context
sensitive grammars. It is easy to show that the problem (CSG-SHP) is undecidable. The proof is straightfor-
ward and thus we give only the essential features. Given a fixed CSG R, it is well known that the question
whether L(R) # 0 is undecidable. We reduce this problem to the problem of finding paths. Given R we
simply create a graph G' with one node and self loop for each symbol in the alphabet. There exists a path from
this node to itself with the labeling in the language if and only if L(R) # 0.

In contrast, the CSG-SIP is PSPACE-complete. Membership in PSPACE follows by observing that a
simple path in a graph G(V, E) can have at most | V| nodes. Thus a space bounded NDTM can guess a simple
path p and then verify that [(p) € L{M), where M is the CSG. The hardness is shown by reducing the problem
of deciding if w € L(M) to finding a simple path in a directed chain that is labeled according to w.
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8 Appendix
8.1 Basic Definitions

Definition 8.1 Let X be afinite alphabet disjoint from {, ¢, (,)}. A regular expression R over T is defined as
follows:

1. The empty string “z”, the empty set “¢” and for each a € ¥, “a” is an atomic regular expression.

2. If Ry and Ry are regular expressions, then (Ry U Rg), (R; - Ry) and (Ry)* are compound regular
expressions.

As mentioned earlier, in a regular expression, ¢ denotes the empty string, ¢ denotes the empty set, U
denotes union, - denotes concatenation and * denotes reflexive transitive closure under concatenation. We will
also use R to denote the positive closure of R under -.

Definition 8.2 Given a regular axpreséion R, the language (or the set) defined by R over ¥ and denoted by
L(R) is defined as follows.

= {e}; L(¢) = {¢}; Va € L: L(a) = {a}
2. L(RiURy)=L(R)) U L(Rz) = {w | we L(Rl) orw &€ L(RQ) }
3. L(R; - Ry) = L(Ry) - L(Ry) = {wyws | wy € L(R1) and wa € L(Ry) }

4. L(R*) = U2 L(R)* where L(R)® = {¢} and L(R)* = L(R)""! - L(R)

Definition 8.3 4 nondeterministic finite automaton (NFA) M is a 5 tuple (S, %, 8, so, F'), where
1. S is a finite nonempty set of states;

Y is the input alphabet (a finite nonempty set of letters); |

J is the state transition function from S x (X U {e}) to the power set of S;

so € S is the initial state;

SR W

F C S is the set of accepting states.

If there is an s € § such that §(s, €) is a nonempty subset of S, then the automaton M is said to have
e-transitions. If M does not have any ¢-transitions and for all s € S and a € I the set (s, a), has at most one
element, then § can be regarded as a (partial) function from S x X to S and M is said to be a deterministic
finite automaton (DFA).

The extended transition function §* from S x X* is defined in a standard manner. The size of M denoted
by | M| is defined as |S||Z|.

Definition 8.4 4 M = (S, %, 4, 59, F'), be a NFA. The language accepted by M denoted L(M), is the set
{weX [0 (so,w)NF#¢}
A string w is said to be accepted by the automaton M if and only if w € L{M).

Definition 8.5 A context free grammar (CFG) G is a 4 tuple (V,X, P, S), where V and ¥ are disjoint
nonempty sets of nonterminals and terminals, respectively, P C V x (V U X)* is a finite set of productions

and S is the start symbol. A CFG G is said to be linear if at most one nonterminal appears on the right-hand
side of any of its productions.
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Definition 8.6 Treewidth bounded graphs: The class of k-trees are recursively defined as follows.

A clique of size k + 1 is a k-tree.

A k-tree with n + 1 vertices can be obtained from a k-tree with n vertices by adding a new vertex and
edges from the new vertex to a set of k completely connected vertices.

A partial k-tree is a subgraph of a k-tree. The minimum value of k_for which a graph is a subgraph of a k-tree
is called the treewidth of the graph

Let G = (V,E) be a graph. A tree-decomposition of G is a pair ({X; | i € I}, T = (I,F)), where
{Xi| i€ I}isafamily of subsets of V and T = (I, F) is a tree with the following properties:

L Uer Xi=V.
2. For every edge e = (v,w) € E, there is a subset X;, 1 € I, withv € X; and w € X;.
3. Foralli,j, k € 1, if j lies on the path from i to k in T, then X; () Xy C Xj;.

The treewidth of a tree-decomposition ({X; | i € I}, T) is max;er{|X;| — 1}.
The treewidth of a graph is the minimum treewidth of a tree decomposition.

A class of treewidth-bounded graphs can be specified using a finite number of primitive graphs and a
finite collection of binary composition rules. We use this characterization for proving our results. A class of
treewidth-bounded graphs T is inductively defined as follows [BL+87]. '

1. The number of primitive graphs in I" is finite.

2. Each graph in I' has an ordered set of special nodes called terminals. The number of terminals in each
graph is bounded by a constant, say 4.

3. There is a finite collection of binary composition rules that operate only at terminals, either by identifying
two terminals or adding an edge between terminals. A composition rule also determines the terminals
of the resulting graph, which must be a subset of the terminals of the two graphs being composed.

8.2 CFG-SHP

Proof of Observation 5.5

Consider the case, that D and D’ satisfy the above recurrence but are different. Then there must be a smallest
witness of this fact a = D(i, j, A) and b = D'(i, 4, A), and @ # b. Let us assume @ > b and consider the
smallest such b. :

By the definition we know that A is a nonterminal, b is finite and satisfies (1). This and the fact that all
length are positive, imply that there must exist two witnesses that establish this minimum as their sum. These
have values less then . On these D and D’ are identical, otherwise a and b would be chosen different. Because
of that, a can not satisfy (1).

This discussion immediately implies a dynamic programming approach to compute the table of D. Starting
with the values for links in the network, we fill the table with increasing values. This can be done with a
Bellman-Ford type algorithm. The proof then implies, that at least one entry every round, namely that with the
smallest value that changed, is finally labeled.

This Algorithm would take time at most one round for every entry, by this the square of the number of
entries in the table. This is polynomial, namely O(|V|*|G|?|R]) with |G| denoting the number of Nonterminals
and R the number of rules. (Recall that G is in Chomsky normal form.)

Another implementation would be to fill the table with a Dijkstra type algorithm. There a heap is used to
hold the current estimates on entries, and the smallest one is finally put in the table generating a lot of new
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estimates. We would have for every entry one extract-min operation and up to 2|V| update operations. Using
Fibonacci-Heaps (see [CLR] for an analysis), this sums up to O(|[V |G| - (log([V]?|G]) + 2|V||R})), that is
O(VPIGIIRD.

Proof of theorem 6.7:

We use the fact, that we can move separators over the graph that stay bounded because of the treewidth bound.
We will use the notion of a nice tree decomposition.

Definition 8.7 A tree decomposition ({ X (i) | i € I },T = (I, F)) is nice, if one can choose a root r in the
tree such that:

e T is a binary tree,

o ifiisaleaf, then | X (i)| = 1 (Start node);

e if'i has two children j and k then X (i) = X (j) = X (k);

e if'i has one child, then there exists a vertex v such that either

— X(3) = X(j) \ {v} (Forget Node), or
— X(i) = X(j) U {v} (Introduce Node).

We use the fact, that there exists always a nice tree decomposition of optimal width (treewidth), and that it
can be constructed in linear time[Bo92].

We will describe an algorithm, that computes tables of (partial) shortest simple paths bottom up in the tree.

As we are talking about simple paths, we have to take care of used nodes. Because of that we must carry
with us all possibilities to enter and leave a visited region. This is in general far too much information, but as
the treewidth is bounded, we can do it.

Dividing paths in the network into subpaths, we have to do this also with paths in the automaton. As these
paths don’t have to be simple things are easier. If we remember the starting and ending vertex of such a path,
we know everything we need to know.

We will maintain tables for sets of active nodes. The indices are made up of the following information:

e k > 0 denoting the number of subpaths,

k ordered pairs of active nodes and & ordered pairs of states in the NFA, denoting simple subpaths in the
already visited graph, (identical nodes are permitted for the case of paths of length zero)

the subset of current nodes, that are used, excluding endpoints of the subpaths.

possibly an active node, and a state for a simple path coming from s to this node labeled such that the
automaton is in this state,

possibly an active node, and a state for a simple path leading to ¢ such that the automaton can reach a
final state from this state.

Note that the entry for £ = 0 and none of the last two items, represents a simple path from s to ¢ in the
already visited graph.
This index set is polynomial in the size of the NFA.
We maintain for each index the summed up length of all the partial paths. It is important, that they could
get concatenated to a simple path, i.e. that they do not use any node in the visited graph twice.
We will now use the nice tree decomposition to provide sets of current nodes, that only change a little bit.
For the leaf node the table is easy to compute. It has 0-entries at the following indices:
for all states : (1 path, this node to this node with (3, 1), this node used, -, -);
if it is the start node: (0 paths, -, this node used, ¢, - ) and a similar, if it is the destination node.
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Join e keep the component wise min of the tables,

o make all possible concatenations. That is either if the sets of used nodes are disjoint and the
start-path and the destination path is in at most one of the indices, or if the partial paths can get
concatenated at one or more vertices and the sets of used nodes are otherwise disjoint.

For this, we essentially have to try out all pairs of X;-X> indices, see if they fit together somehow, and
if create the appropriate entry of the table with the sum of weights. If this entry already exists, we only
update it, if the new entry would be smaller than the old one.

Forget We eliminate the entries in the table, where this node is used as endpoint in the index. We delete this
node in all sets of used nodes in all indices.

Introduce we add the edges one by one.

1. Setup new node. Extend table by all indices extended by this node used as an € path, or if it is start
or destination vertex specially.

2. Include all edges one by one. Try to close table entries with this edge, by this creating new entries.
If both of the endpoints of the edge are used as appropriate endpoints of subpaths, and the labeling
matches the transition in the automaton, then there exists a new path not being open at these points.
We create or update the according entry of the table.

The proof of correctness goes as follows: First, note that no entry of the table is ever to small, i.e. that

whenever there is a table entry, there also is an according path of this type and the given length.
On the other hand, we take (one of) the shortest paths and follow the tables throughout the run of the
algorithm. We find, that whenever a part of the paths is already visited, an appropriate entry in the table exists.
a

8.3 Hardness for simple graph classes

Proof of Theorem 6.4
The reduction is a simple modification from the problem of finding simple paths in directed graphs, for
the regular expression (00)*. We simply replace each directed edge (u,v) in G by two undirected edges
(utuv), (tuw,v) to obtain a new graph G;. The label on edge (utyy) is a, and the label on edge (¢, 4, v)
is b. Now we claim that there is a simple path from z to y in G with label of the form (00)* if and only
if there is a simple path from z to y with label (abab)*. The if part is easy and so we only briefly discuss
the converse. Note first that G5 is bipartite and hence any simple path going from z to y will look like
T —t;, — T4 —ti, — Ty, .. . 1, — y, where the vertices z ;s are the vertices in G and ¢;; are the new vertices
added Also note that each ¢;; has degree exactly 2. This 1mmed1ately implies that the path can be transformed
to the appropriate in G. O
As we mentioned earlier, the hardness of the simple path problem stems from the Hamiltonian path type
nature of the problem. We formalize this intuition in the following.
Proof sketch of theorem 6.5
Consider a fixed class of graphs C for which the HAMILTONIAN PATH problem is NP-hard. Then given an
instance G of the HAMILTONIAN PATH problem in which G € C, with n nodes, we construct an instance G
of regular expression constrained simple path problem by labeling all the edges in G by a. We now claim that
there is a Hamiltonian path in G is an only if there is a simple path in G that satisfies a”. a
Proof sketch of theorem 6.6 The basic idea of the reduction is the following. We assume that given a
graph G, two vertices s and ¢ the problem of finding a Hamiltonian path starting at s and ending at ¢ is NP-
hard (see [GJ79], Problem GT39). Given G, s and ¢, we create a complete graph G as follows: All the edges
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in G that were in G are given labels a, the remaining edges are given label b. Now we claim that G has a
simple path from s to ¢ with label o™ if and only if G has a Hamiltonian path starting at s and ending at £.

Since a complete graph is also an (i) interval graph , (ii) Chordal graph (iii) perfect graph, etc, we get the
required result.

A similar embedding can be done by starting with G being a grid graph and constructing a complete grid
G out of it.

These reductions can be done in polynomial time. a

8.4 Node Labeling

We can transform this kind of instance into an edge labeled one by the following steps: The network stays the
same, the edges get labeled with a new symbol. Every node gets an additional loop attached. This loop gets
the label(s) of the node. Then the Language has to be extended such that (i) Exactly every second symbol has
to be the edge symbol and (ii) The word without the edge symbols is in the original Language.

The regular and context free languages are closed under this operation. This shows, that easiness results
for edge label constraints transfer into easiness results for node label constraints.

If we have a edge labeled graph, we split the edges and insert a node with the edge label, and label all the
old nodes with one new symbol. The Language has to be extended like above. This construction transfers edge
label constraints hardness results to node label constraints.

8.5 k-Similar Path
Given a graph G, a shortest path SP in G and an integer parameter k, we perform the following steps:
1. Label the edges on the shortest paths by a and all the other edges in G by b.

2. Construct an NFA M that accepts all strings that have no more than k occurrences of a. The correspond-
ing automaton is shown in Figure 5.

3. Find a shortest path in G with the constraint that its label is in L(M).

(¥ Cp ¥ % o
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Figure 5: Automaton used to count shared links, accepting if less than 4

The proof of correctness is straightforward. We note that in this particular case, we in fact always get a
simple path, since we can always remove a loop from the path without increasing its length or acceptability of
the shorter string.

The question which naturally comes up is — what happens if the first path is not given? In such a case, it is
easy to see that for general case (i.e. setting k& = 0) the problem reduces to finding two disjoint paths of small
total length — a well known hard problem. By simple padding arguments, the hardness result can be extended
to bigger values of k.
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