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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.
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Introduction . . . . . el

Modeling of transport process in fracturedmedla Bmathematlcally verydlfflcult
because of the complicated geometries and transportprocesses h mvolved Pruess and
Narasimhan (1982) have ‘developed ‘an extension of the double-porosity method (Baren-
matt,: 1960; Warren and Root, 1963), referred to as method of "multiple interacting con- -
tinua” (MINC), Which can handle transient inter-porosity flow of fluid and heat in frac-"
tured porous media. The MINC ép;’)ird;ci’ﬁidt'bn assumes thdt,tgdue'to"'hig'h“péfiﬁedbil'ity' ’
and low storativity of :t”he'fractufés",féiny;éhanges of thermodynamic conditions‘in “a frac--
tured "pofo'ﬁs"ﬁ‘l‘édiﬁm wifl‘;;x;op‘a;'g‘é;té";i-alpid'ly in the fracture ﬁetﬁdrk, while:‘iihigiréjfing -

only slowly int6 the low-permeability rock matrix blocks. Therefore, the changes of ther-

. modynamic ¢onditions in the rock matrix blocks will depend primarily on the distance to

the nearéSt"frac't‘.ure.“‘lhl'light of this’ ana'b{y‘ neg;leiéting 'gfairity"eﬂeété, ‘luid ‘and heat flow
in the rock matrix blocks may be treated by a oné-dimensional approximation. This
concept is applicable to ‘tegular aswell as irregﬁlar‘rﬁai?ix blocks (Pruess and Karasaki,
1983).

In numerica.l"':gir_niil;;tions,‘ Qhe'MILNC...r,xieﬁh'(_)d partitions rock matrix blocks into sets
of nested volume eleﬁ;et;t;s (Figures 1 rand 2). Tfms, tﬁe interactions between fractures
and the rock matrix can be de§?ribgd by one-dimensiqqgl mass and energy conservation

eqﬁations. When applicable,” this: abpfékimation can ‘save substantial amounts of
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computer time and storage in comparison to the more detailed discretization by conven-
tional finite difference methods. However, the accuracy of the method employed needs to
be tested and justified (Pruess et al., 1982). In general, mass and heat flow are not per-
pendicular to the fracture surfaces, especially near fracture intersections (”corners”), and
hence can not strictly be considered one-dimensional. To study this "corner” effect, we
have considered some idealized geometrical configurations and simple boundary condi-
tions, for which exact solutions as well as solutions based on the MINC approximation

are available in analytical and semi-analytical form.
Case 1: Fluid Flow in a Porous Cube

The test case considered is for isothermal, slightly compressible fiuid flow in a
porous cube (or, equivalently, heat conduction in an impermeable cube). A constant pres-
sure, P, is maintained at the cube surfaces, and an initial pressure of zero is assumed
everywhere. With the MINC approximation, fluid flow in a cube can be approximated by
a one dimensional model, as shown in Figure 3. The basic model represents one-sixth of
a cube, with the surface area for flow decreasing from D? (D is the side length of the
cube) at the edges of the cube to zero in the center. Thus, the total mass flow at the
cube surfaces will be six times that given by.the one-dimensional model. This one-
dimensional. approximation leads to a differential equation whose form is identical to the
heat conduction equation in a system with spherical geometry. The dimensionless pres-
sure and flow rate for this problem using the one-dimensional approximation is given by

Carslaw and Jaeger (1959):

P, DY) 2n nz 4n?r2kt
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The same problem can be solved exactly in three dlmen31on The dxmenswnless transient

pressure and ﬂow ra,te is gwen by (Carsla.w and Jaeger, 1959)
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In the é,bove equations, (z, y, z) - coordinates are measured from the center of the cube -
and parallel to the edges. The.‘dvinllensionle.ss.p;essulfes’at a distance z = 0.3D for the
MINC approximation and for th.'e exactrsrolution are plotted versus ’dimensionless time in
Figure 4 The ﬁ'gur:e c_leq‘,_rly,)inc_’i‘_isc@tes ((:,hvat in yhe;lqent_‘:er of the Pl@pg z = 0.3D (ie., for

=0,y = -1% = 0) the pressures from the MINC approximation are somewhat

" -3
higher than the exact pressures, but in;the corner of that plane (z! =y’ = 0.3) they
are éomewhat lower. The discrepancies are not large (about 10-15%). What really
matters, however, is not the detailed pressure distributions inside the cube, but the total

(areally integrated) flow rate at the cube surface. Figure 5 shows that the flow rate at

the cube surface using the MINC approximatioh agrees very well with the exact solution.
Case 2: Fluid Flow in a Rectangular Porous Slab

To further test the MINC approximation, a comparison was made for fluid flow in
two-dimensional rectangular matrix blocks with side lengths A and B for different

aspect ratios § = A /B . The same initial and boundary conditions are used as in case 1.




With the MINC approximation, the basic model (Figure 6) of a rectangle will be solved.
The governing equation describing the mass conservation in the domain of the basic

model can be expressed as:

¢S -{ 3¢S +7;9;(q~‘>')dz‘}=2(%"l )

where ¢ is mass flow rate, ¢ is porosity, p is fluid density, ¢ is time, and § is the cross

section surface area in the z direction expressed as:

S =42+ A -B (6)

Substituting Eq. 6 and Darcy’s law (¢ = - ’:‘—kvP) into Eq. 5, the governing equation

describing slightly compressible fluid flow in the domain of the basic model can be

expressed as:

J’P 1 oP ¢uc OP
+ — = — (7)

2

9:2 i( 4-p) 7 ko

where ¢ is fluid compressibility and & is intrinsic permeability of the medium. The ini-

tial and boundary conditions are:

P (z,00=0 - (8)
P(2)=P ©)

aP

E Iz=0 = 0 (10)

In terms of dimensionless parameters, the governing equation and the initial and

boundary conditions can be written as:

82PD i 8PD 3PD
on? +; am o (11)
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Pp =0 (12)
A+B
8Py
_p = 0 ! 14
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where
P _
Pp = B - - ~ (15)
kt
_— 17
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In the Lalilé.ce; dbmaihj, the sdlutiox;x. of Eq. 7 ‘subject‘ to the given initial and boundary

conditions is:

L KOFAZEE ) + Kl A "
Pp =
- ? K,(\/_ )Iow‘“BHKo( a A4;B)11(f" B)_ |

where. p iis the Laplace parameter. The dimensionless mass:flow. rate at the surface of

the rectangle can. be obtained .from ‘Eq. 18 by evaluating the pressure gradient at the

surface:. -,
A B A4B, A+B
w‘ )n(«‘ =)= K,(f )1V
@ = 2(—- + 1)
where ‘ID is I:IP” . -In this study, the solution for dimensionless flow rate ‘in real space is

obtained by numerical inversion of Eq. 19 (Stehfest, 1970). The exact solution for this




two-dimensional problem is given by Carslaw and Jaeger (1959):
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Figure 7 shows that the dimensionless mass flow rate across the surface of the rectangle
obtained from the MINC approximation for different aspect ratios (8) compares well with
the exact solution. The agreement becomes close when the aspect ratio is increased,

because this will diminish the "corner” effects neglected by the MINC approximation.
Conclusions

The method of "multiple interacting continua” is based on the assumption that
changes in thermodynamic conditions of rock matrix blocks are primarily controlled by
the distance from the nearest fracture. We have evaluated the accuracy of this assump-
tion for regularly shaped (cubic and rectangular) rock blocks with uniform initial condi-
tions, which are subjected to a step change in boundary conditions on the surface. Our
results show that pressures (or temperatures) predicted from the MINC approximation
may deviate from the exact solutions by as much as 10-15% at certain points within the
blocks. However, when fluid (or heat) flow rates are intégrated over the entire block sur-
face, MINC-approximation and exact solution agree to better than 1%. This indicates
‘that the MINC approximation can accurately represent transient inter-porosity flow in
fractured porous media, provided that matrix blocks are indeed subjected to nearly unvi-

form boundary conditions at all times.
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Figure 22 Computational mesh to model transport processes in fractured porous media

employed by the MINC approximation
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Figure 3: Basic model for a porous cube using the one-dimensional approximation
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Dimensionless pressure, P‘b='P/ Py
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Figure 4: Pressure distributions in a porous cube calculated using the one-dimensional

approximation and the exact solution (Iaheled 3D model)
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Figure 5: Comparison between the flow rate from the cube using the one-dimensional
solution and the exact solution
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Figure 6. Basic model for a rectangular porous slab using the one-dimensional approxi-

mation
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Dimensionless flow rate, qQ* qQu/Kp,
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Figure 7. Comparison between the flow rate from a rectangular porous slab using the

one-dimensional solution and the exact solution (labeled 2D model)
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