

CONF-850605 - 1

CONF-850605--1

DE85 014650

MULTIPHOTON IONIZATION OF NO-RARE GAS VAN DER WAALS SPECIES

John C. Miller

Chemical Physics Section, Health and Safety Research Division
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, U.S.A.

SEVENTH INTERNATIONAL CONFERENCE ON LASER SPECTROSCOPY,

MAUI, HAWAII, JUNE 24-28, 1985

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

By acceptance of this article, the
publisher or recipient acknowledges
the U.S. Government's right to
retain a nonexclusive, royalty-free
license in and to any copyright
covering the article.

CONF-850605-1

Multiphoton Ionization of NO-Rare Gas van der Waals Species

John C. Miller

Chemical Physics Section, Health and Safety Research Division,
Oak Ridge National Laboratory,* Oak Ridge, Tennessee 37831, U.S.A.

To date, most spectroscopic studies of electronic states of clusters involving small molecules and rare gas (RG) atoms have employed laser-induced fluorescence techniques. Consequently, such studies (e.g., Levy and co-workers on I₂-RG species [1]) have been limited to the lowest lying electronic states, which are usually valence in character. Furthermore, the identification of the cluster often must be inferred from spectral shifts, pressure dependence, etc.

We have applied the technique of multiphoton ionization (MPI) to the study of electronic spectroscopy of NO-RG van der Waals species and extended the previous experiments of SATO et al. [2]. These works show several of the advantages of the MPI technique relative to the LIF method. Specifically, mass analysis can provide identification of the new species formed as well as allowing discrimination against other species (the parent monomer or higher clusters) while recording spectra. Furthermore, the use of MPI photoelectron spectroscopy can provide data on the states of the cluster ion as well [2].

The MPI technique has another advantage which is particularly important in the study of van der Waals molecules. This is the ability to study Rydberg states much more easily than LIF or other techniques. Because most excited states are highly polarizable, van der Waals forces are enhanced. Furthermore, for high Rydberg states, the influence of the positively charged core allows the stronger dipole forces to become more important contributors to the binding energy. Thus, the binding energy of molecule-RG complexes should increase in the order: ground state < valence state < Rydberg state < ionic ground state. Nitric oxide is the "alkali atom" of molecules, having one unpaired electron outside of filled molecular orbitals. Consequently, its spectroscopy is dominated by Rydberg transitions which have been very well characterized.

The apparatus is a modified version of that used previously for MPI mass analysis [3] and MPI photoelectron spectroscopy [4]. The apparatus consists of a pulsed supersonic nozzle, a short, low-resolution time-of-flight mass spectrometer and an excimer pumped dye laser. Typically, the laser (1-5 mJ) is focused by a 38-mm lens into the gas pulse (5% NO in Ar at a total backing pressure of 2 atm) after a variable delay relative to the nozzle opening. The time (and hence mass) gated ion signal is averaged with a boxcar integrator and recorded as a function of wavelength. Mass spectra showing the production of NeNO⁺, ArNO⁺ and KrNO⁺ are shown in Fig. 1.

*Operated by Martin Marietta Energy Systems, Inc. under contract DE-C05-74OR21400 with the U.S. Department of Energy.

REPRODUCED FROM
BEST AVAILABLE COPY

MPI spectra are presented for several Nu-RG van der Waals molecules. Structured excitation spectra of the ArNO cluster associated with the $B^2\pi$ ($v=0$), $C^2\pi$ ($v=0,1,2,3$), and $D^2\Sigma^+$ ($v=0$) states of NO are observed as well as an unstructured, presumably dissociative, spectrum near the $A^2\Sigma^+$ ($v=0$) state. The C state was also observed for NeNO and KrNO. The B state represents a valence transition and the A, C, and D states are Rydberg states. Details of these studies may be found in a recent paper [5].

From the observed spectral shifts and analysis of the spectra, excited state vibrational constants and bond dissociation energies can be extracted. These parameters are summarized in Fig. 2 for ArNO.

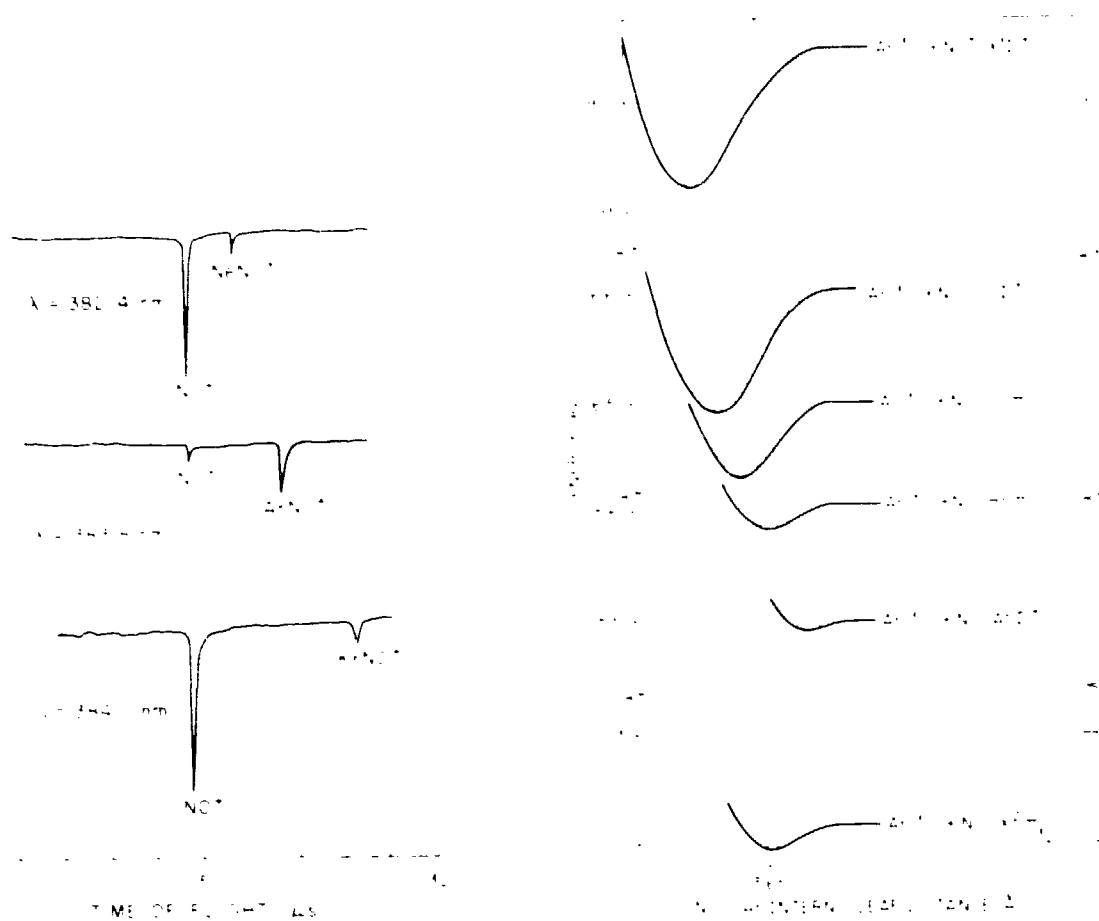


Fig. 1. Time-of-flight mass spectra showing the MPI detection of NeNO, ArNO, and KrNC van der Waals molecules. The figure is traced from photographs of the oscilloscope image.

References

1. D. H. Levy in **Photoselective Chemistry** (I. J. Jortner, R. D. Levine, and S. A. Rice, Eds.) *Advances in Chemical Physics* **XLVII**, 323 (1981).
2. K. Sato, Y. Achiba, and K. Kimura, *J. Chem. Phys.* **81**, 57 (1984).
3. C. D. Cooper, A. D. Williamson, J. C. Miller, and R. N. Compton, *J. Chem. Phys.* **73**, 1527 (1980).
4. J. C. Miller and R. N. Compton, *J. Chem. Phys.* **75**, 22 (1981); *J. Chem. Phys.* **75**, 2020 (1981); *Chem. Phys. Lett.* **93**, 453 (1982).
5. J. C. Miller and W. C. Cheng, *J. Phys. Chem.* **89**, 1647 (1985).

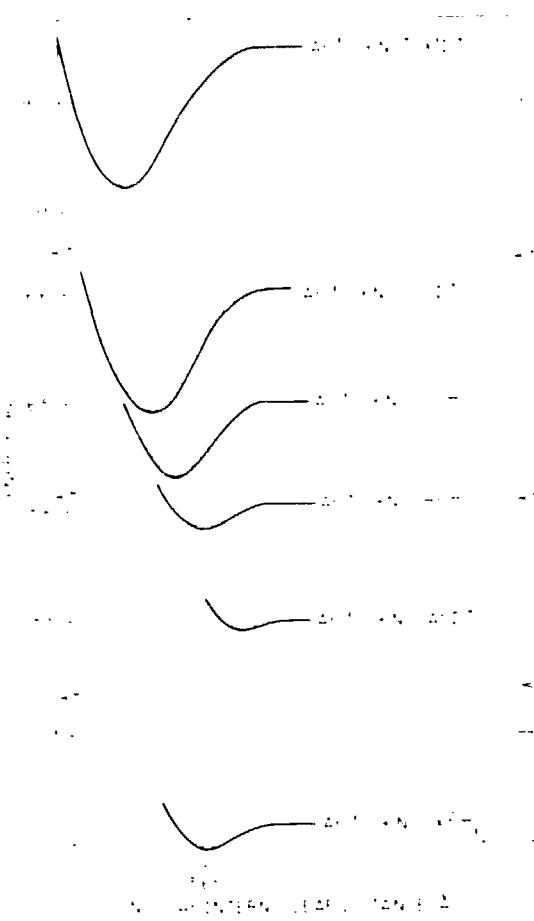


Fig. 2. Schematic representation of the potential energy curves for ArNO.