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Figure 3—-5. A typical partitioning of phase space relative to the
model magnetic field. The guiding center region is hatched; the
bounce—averaged and free—strearning regions lie below and above,
respectively. The discontinuous definition of k” has been

chosen for use in the free—streaming region.
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Figure 3-8.1 As for figure 3—3 with the crntinuons definition of
k? chosen for us~ in the free—streaming region. In both Hgares

k2,=0.9 and k2=1.1:
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TRANSPORT SCALING IN THE
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r <o0.3 ap;

r ~0.5 ap:

r > 0.7 ap:

J(e of ECH plasma

anomalous (VTe measurement is not
accurate)
Teocc P0'4: plateau like
(but worgg than simulation)
island effect?
(£~0.5

same order with the neoclassical ripple
transport

anomalous

Xe = 1~ 3 m2/s

(Alcator 1ike? 1/3 ~ 1/5)

Ey : 'neocla::a'éaf behavivur



CONFINEMENT SCALING STUDY FoR NBI FPLAPMA
\(. 72«[’6“’:') F. Sano
M. Murakami, H.c. Howe (0RNL)
O Steady-state profile analysis is
performed with the ORNL-developed
transport-analysis code, PROCTR.

Input profiles for PROCTR are:
Te(r): Thomson scattering,
ne(r): FIR interferometer,
Ti(r): Ti(r) calculated from

TiC*(NPA). |

O Results are analyzed with the PPPL-
developed LOCUS database system for
scaling study.
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® Tpe : Electron confinement time
Tge = (electron energy)/(electron-loss
power including radiation loss)
Tgi : 1on confinement time

Tg; = (ion energy)/(ion-loss power)

® At r=2a/3, electron confinement time seems
to become comparable to ion confinement
time with carbonization.



N8L Bi=1.9 T

€10 o o e e
N . @ after carb. ,«"' -
o —~ (O before carb. : el .
0 = ® .
£ i
= 201~ —
s I N i

O, - e’ e @ -
o -
10 g‘ _
. /;b -
- ”’ 1
(),;.'ﬂ"lnllnulun|l||||||ull4|||'T
0 10 20 30
G . -0.64 —0.54
Tg . scaling OC Pheat Ne (msec)

®T:° = W,(plasma internal energy)/Ppg,¢(plasma heating power).
® T8 OC (Ppheae) 00 04- (i) 0-54.

.TEG is improved by. about a féctor of 1.3 after carbonization.



Enerj)' Corfinement Scabrg }Z/— Sano

| Confinement g{eg rades with pewer’
(1) Continuovs_ _degradation. Low
Kaye- Goldstm

10 f26_ —2.58 ‘
T = /c“”B;“_’t)‘,/ ﬂ”ea.z{ P a."“?/?/‘s

(2) Off-set Linesn Law

e o e Tn: ( o+ -]é)

Heliotron-E - NBL smhnj

' <h
® % o< o(By)+ FlB)- 2
ﬁm‘f

]

d:Bh-i- B *~_<_n_f_>_v + CanS—t.
Hhet






430 SDLHI/AVASN

ot g0 ¢'D
. 4 ' [ \ " ' [ [ { [ [ [ [ .
! eIl =TC o0t S=aieca’ 00

J _
i . w\ l
T A5 Yant ] 3
- v 100
- ﬁl
4 \ R
- . —20'0
¥ -
4 . N
J R
- d0-USIR = ELf 020 = Tl
- (}0-3533°0 F £O-STEH'T) & X(LI-m15°2 5 M-3ive 1) =A
[] ] . ¥ t ] . w ) — ki ] ] ] ﬁo.o
=STCLTA
o«a.m..&m.mu“ =S %
CIisiat=tas o +6 0018

[~ TH4E)



*isuod -

X

4




OPIMT ~

VERZ:=10 X BTOR=).04

0.63 ST T T A AT I S D ST N O W W B B BC R I BN W DS I |

l] L }

LR

MEELDOZ DIOD (5~ P8 =37
0.00 lltl[llilllll('-ltl.r‘l-—l—'ﬁ-r—!‘-ﬁ-j’_—

0.000

0.005 0.010 0.015 0.020 2.625 0.630
Z,0985-I2STORML, 4935"1_6*( PEVAY /THTODY #¢~-1,9522-3)

3.4x0 s B+ -I-SRI;“(("G).»/P) -20x10

3



Eiv
e LU €z v a% 9] S

Jlllll_llllllL_L_

T o~ L) VI8 33nLlU N38 wt Dia STISE

virrrgp vyt
8 o

|
3
b

-
.

2 = dwos

buTRS Sy 530

8
=

snjon - 4



4 Y n
113 om éoL 0~ xvmm.o QXNNN\ uon

ZOE *CRRRCISRACL" O-nuGDLineA P LS CRYWIIH (T ST )G

0209 8200 9220 G300 L B g0 062°)
.....—....-..-m..-o—....-.-’..-)O-O
._ % W=y =il oUnl Tomnizeay M

T
-2
F|

Y (O T YR N0 SO AL TRNY T SO W DY TS T W
- [ |
. e
T7
wi-CCa

o o=4C1T w Ci="7ua



)
)

X}

3 gﬁi'\.z.

Q{1 . 5)
0)#¢
()] 13

. e
0N

=i
)n'

(SAare
s&.‘Pfa

+In

||L1l|4|||L|11|$

[ N

- R X 4 -3
: _g
- -
J ax + ;3%’
: L
- :-o
-] m X+ =~
: g_u M| [,
: il C
. /)] -
T T T T i
o



Groodness o Fit in Data Ana%q:zs
@ Modelds of -F."ﬂ:‘ng cwnves = Fﬁ/&:mﬂ mea.m'rb?s

@ Govdness of it == physicat meanings
< Test)

- dy t-test; (i) Xitest; i Rtest ; (ivy F-test ; etC.

F-test . F. a A%, L S/ s2
5 F-valve & Xz'/xlz ‘/c-z—’—s? (21)

(exp.A) dato. Jo — J ()= o.,,+2'.a X;(t,) Voviance ratio

(%92 = Za z[¢J-3><xJ-x>]+Z(J‘ — Y(=x)?
=f32-(3.-3)2+ (41-R2)Z(J:-3)*

F—".i — R2Z2(J:-3)*/ hj N-n,-q R?
Mt (1-RYZ(%-F/(N-mj-1) Nj I-R?
T F-distrbution 3 F-volve Toble
f(m
oL visk Leoed (8%, %)
o T £ T
o
(exp.B)
(X — o)

"
Faet = (SYN)



?L&
el ﬁucv

S 4 gxpe =(sw) 3y

(sw) 3,



TRANSPORT ANALYSIS OF ICRF PLASMA

Measured Parameters ne(r), Te(r), Ti(O)
ICRF ECH
Pin= " » Paps{T)™", Prags
fy(E)
Assumpsion “[p: 7 msec

T;(r); calculated by Chan-Hinton X;

Energy Balance
Pabs(r): calculated by Fukuyama code(1)

Pe(r). PH(r), PD(r)

Relaxation from PH to electron and Deuteron
is calculated by fH(D) distribution

Scaling
Pabs-o.éxPln(emitted from antenna)

(1) Reviced version from Nuc. Fusion 26, ('86)
including Landau damping of fast wave,
TTMP, ion cyclotron damping

de
« PRICTR ©¢o e [
.LOCUS  Code



RF_ = 28.220@ 88 = 1.860@ RRC = @.270 IJ AJ PHASE R X _
L.RKZ = 4.318 RA = @.140 HI = 4.318 1 1.0 8.9 1.904E-81 -6.776E-2
NNQD= 907  NELM= 17@0 P= 1.9G4E~-@1

PABS
3.0945€-02
3.976€-02
1.201€-01

PNS
1.8@0E-02
9.90Q€E-83
| .Qe0E-24

Is PA Pz PN
I S.446E~84 -1. 3.QQQE-2!
2 2.009E+@@ 2.97@E-a1
3 1.e2eec+ed 3.009E-83

EX  REAL EY IMAG PagBsS IS= 1 PABS [S= 2 PABS [S= 3
STP= 13 STP= 19 STP» 19 STP= 19 STP= 19
MAX3 2,29E+9) HAX= ].42E+9) MaX= 2,.00E€+00 HAX= 6.31E-01 HaxX= 9.75E+00
HMIN==2, 44E€+0) MIN==2, 34E+01 MIN= 9.62E~11 HMiNa-7 . 64E-14 MiN=-1,85€-15
OLT= 4.07E+00 OLT= 2.00€+00 OLT= 2.06E-01 OLTa 6.31E-82 OLT= 8.7SE-81
B= /13T Teto) =300¢€
vﬂ = N%.Nnklm Nmna\ = SO el

Mvw (F) Nt (r)

o~

,

MAX= 7.47E-Q3
MIN= 4. 16E-@S
OLT= 1.00E-03

naxs= 1,05€-93
HiN= 1,SOE-B7
OLT= 1.80E-24

OLT= 2,SQ0E-94

MIN= 1.60E-95
OLT= S.PCE-04
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Transport Analysis for ATF

presented by H. Howe

Collaborators
e M. Murakami
e W. Houlberg, S. Attenberger — Chord tracker
e D. Lee, J. Harris - Vacuum flux surfaces
e B. Morris, R. Fowler, J. Rome - Neutral heating
e B. Morris, S. Hirshman - Finite-beta equilibrium

e K. Kannan - Data organization

US - Japan Stellerator/Heliotron Workshop
Oak Ridge, Tennessee, USA
November 10, 1987



Transport Analysis Flow

Coil Currents

Point Data
T.(R,Z),n.(R,2Z)

Chordal Data
neL, P[.d

v

Flux Surfaces
° Va.quum
¢ Finite 8

Profile Fitter
e Chord tracker

e Coordinate inversion

of(R,Z) — f(p)

Calculated
»(p), B8

Fit Profiles
T'e(P)g ne(p)’ Qnd(p)

Transport Code

Scaling Studies |

e Models (T;(p),...)
e Power Balance

Database
e Geometry (Rmn, Zmn)

e Chordal Af

LOCUS

e Profiles (T.(p),.-.)
e Derived (7g, P,...)

Model Data
T;CI

Diagnostic
Analysis




MAGNETIC REPRESENTATION
Flux surfaces are given by the inverse representation
R(p,6,) = 3, Bmn(p) cos(mf - nf)
2(p,6,8) = X Zmn(p)sin(mé ~ n¢)
¢(p,0,€) = ¢

where the normalized radial coordinate p is specified by the enclosed

toroidal flux ® as
pP= Q/ ®,

The ATF geometry is adequately represented by 6-7 sets of (Rmn, Zpp)-
Two methods are used to determine the flux surface geometry:

e Field-line following for vacuum surfaces

e Free-boundary equilibrium (VMEC) for finite-beta
More description in talk by J. Harris Thursday morning.

For fast transport analysis, will use either:

e Functional representation R,,(p) = f(A,,8,...) derived from
results of above models.

e Large table lookup which interpolates between R, Z., sets cal-
culated with magnetics codes.



PROFILE FITTING

e Start with calculated geometry and a set of measurements (either
point or chordal-array)

e Use assumed profile X (p) = Xo(1 — p*)? or Gfdgssian

e Minimize total least—square difference between measured and cal-
culated values to determine Xy, a, 8

¢ Point measurements Xpeas( R, Z)
— Use coordinate-invertor to find p for each (R, Z)
z (Xmeu(P) - Xca.lc(P))z
points AX

where AX may be {X) or experimental error

— Minimize

e Chordal measurments X Lycas

— Use chord-tracker to find, for each chord,
XL = [ X(p)ds

— Minimize

(XLmeu - XLca.lc)z

> AXL

chords



ATF TEST CASE

OANL-DWG 86-2216 FED

TRACK
f/-\\\\ ] HOULBERG & ATTENBERGER, ORNL
/7N INPUT DATA
R
' ‘5‘\\\ PLASMA GEOMETRY

MAJOR RADIUS : 1.720 m
MINOR RADIUS : 0.163m
SCRAPE-OFF : 0.000
ELONGATION : 1830
TRIANGUARITY : 0.180
RADIAL NODES : 16

RESULTS

SURFACESHIT : 60
CHORD LENGTH : 2838 m
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EXAMPLE OF POINT FIT
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EFFECT OF GEOMETRY MISMATCH

e Simulated data generated with finite-beta surfaces
¢ Fit performed with vacuum surfaces

o Resulting T, profile (solid line) is a poor fit to starting
profile (dashed line)
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EXAMPLE OF CHORDAL FIT
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POWER BALANCE

Global parameters such as energy confinement time 7z and 3 require
an estimate of the total stored energy

7e(p) = W(p)/Pupar(p)
We) = [‘(n(e)T(e) + ni(p)Tie))V'(¢') dp
Pagar(p) = [['(qini(F) + Guauc())V'(¢') dp'
The volume integral is expressed as
[xdv = ["X(o)WV'(e)dp
Voe) = [ e[ o Vg

8RO8Z OB8ROZ
Ve R(ao 8p 8p ao)

which is particularly simple using the inverse representation

The electron profiles n. and 7, are measured and an estimate of T;
may be obtained from the =



ION-TEMPERATURE EQUATION

3 T; m,n, ii '
—nr—a-t- = 3;;—:[21(7’ T) ap( o @)
3 0
- qcz(P) + q"u(p) + Qw(p) antT

oT; 5
g =3 (—((VP)Z)wnajxaj— +4g; + ;T aj)
j 3p 2
nr =ng + nge + N
e Solve for 8T; /0t = 0 = steady-state T;(p)

e Feedback may be used to determine the M, for which T, = T;"*
where T/"*** is the experimentally-inferred T; along some chord.

e Particle flux I'g; balances ionization where total jonization rate
is specified as Ng/7); 7, is assumed global particle confinement

time.

e Volume-integrals of the terms in the T; (and similar T.) equation
provide the experimental power balance estimate.



THERMAL-NEUTRAL TRANSPORT

e Slab model (SPUDNUT) = $;on, g, Ro

e Accurate for p > 0.5

e Two hydrogenic species

e Detailed energy/angle~dependent wall reflection

o Molecuiar dissociation and ionization

10 11 NEUTRAL DENSITY (CM*®
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NEUTRAL-BEAM HEATING

g . = D
inj VP

H(p)G;

e Initial deposition H(p) calculated fur circularized, ax-
isymmetric flux surfaces and diffuse beam

e Benchmark with Monte-Carlo deposition model (which
uses real 3-D flux-surface geometry) shows good agree-

ment

e Thermalization calculated with analytic moments of
Fokker-Plank equation (G,, G;); orbits not included

e Comparison of G, G; model with Monte-Carlo slowing-
down code shows good agreement for tangential injec-

tion (ATF)

e Orbits broaden heating profile relative to G, G; model
for perpendicular injection (Heliotron-E)



COMPARISON OF CIRCULAR AND
3-D MONTE-CARLO
FAST-NEUTRAL DEPOSITION

Shinethrough
©-a—— Monte-Carlo 0.44%
Circular 0.51%
er
H(@
1 L
o

0.2 ©.4 Q.b o.8 1.0



COMPARISON OF MOMENTS AND MONTE-CARLO
THERMALIZATION FOR PARALLEL (ATF)
INJECTION

ORNL-DWG 85C-3214 FED

20 l I I J
O Ge
O Gi
15 L ELECTRONS i
* ———=— |ONS
> . (o) |
- TOTALS
w 10 ELECTRONS 44.5 —
e 75: 'ONS 44.1
N THERM 5.6
< a LOST 6.1
(17 ] ' —
P s} ol =
Q
-0
0 1 | ==t %&D S By
0 0.2 0.4 0.6 0.8 1.0



COMPARISON OF MOMENTS AND MONTE-CARLO
THERMALIZATION FOR PERPENDICULAR (H-E)
INJECTION

Finite—orbits broaden the energy deposition profile

S
1

1

o Ge

o Gi
| e ELECTRONS
=== |ONS

percent of beam energy
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COMPARISON OF NEOCLASSICAL AND
EXPERIMENTAL TRANSPORT

The non-ambipolar fluxes of particles I'}° and heat ¢J® of plasma
species a due to the helical ripple are given by Hastings, Houlberg,
and Shaing, Nucl. Fus., 25 (1985):

= —¢ \/_hvd.n,/ dr z5/%e-* Vo(:g(;)(z)

na 5 na — 2 2 et 7/2 = ﬁﬂ(z)Ac(x)

(‘Ia + —2-1"“ Ta) =—¢ \/e—hvd.naTa/o dz z'/“e _W
where Adla) = _1_611, + Zq,e 0P + (a: _ §) _I_BT,,
N T na8p T, Op T, Op

va(z) = vof(en2®?); = =¢/T,
W3(z) = 353(z) + (er/en) {1.67 (ws + ws,)?

+ (;—E:—.)l/2 [(“"z- + 0.6 |wg, | 7a (;)3/2]}

wWg = 1 @- wp = —Yv aEh
r,pBar,” ° “or,”
— - T_.a
e, = Z.eBpr,

e The radial electric field (0®/0p) is specified arbitrarily.
e Helical ripple estimated by Fourier decomposition of magnetic
representation (single-helicity approximation)

o Fluxes calculated using experimental and derived plasma profiles
are compared with corresponding experimental estimates to de-
termine level of agreement with neoclassical transport rates.



Simulation of Neutral Beam Heating and Transport of CHS

T. Amano, K.Matsuoka and T.S. Chen’
Institute of Plasma Physics,
Nagoya University, Nagoya, JAPAN

The CHS (Compact Helical System) is an 1=2,m=8 low aspect ratio
helical device whih will come to operation in April 1988. To evaluate
the efficacy of neutral beam heating in such a lowaspect ratio
helical device in which a rather wide velocity space loss cone is
expected, a Monte Carlo orbit code which calculates orbits and
slowing down and pitch angle scattering of the fast ions. The charge
exchange loss and reabsorption are included in the code. It is shown
aboout 30 to 40 Z of the injected beam energy is lost by the orbit
and charge exchange losses. If the reabsorption process is not taken
into account, the loss rate is a little higher.

A serlies of transport calculations of the CHS plasma has been
carried out in order to predict the range of expected confinement time,
electron and ion temperature etc., in the presence of 2 Mw level
neutral beam injection. As for the neoclassical (ripple) transport
coefficients, Cak Ridge groups’ new scaling coefficients have been
used.The multi-helicity helical field effect on the transport
coefficients in the 1/v regime has been considerd. A comparison
between the new and old scaling of the neoclassical transpotrt
coefficients is made. Degradation of confinement with the increase
of the beam power, a transition to the electron rcot ambipolar
potential are discussed.

*+ on leave of absence from Institute of plasma physics,Hefei,China



SIMULATION OF NEUTRAL BEAM HEATING

AND TRANSPORT OF CHS

T. AMANO, K. MATSUOKA

and T. S. CHEN"*

INSTITUTE OF PLASMA PHYSICS
NAGOYA UNIVERSITY
NAGOYA, JAPAN
*INSTITUTE OF PLASMA PHISICS

HEFEI, CHINA



II.

III.

. " MONTE CARLO SIMULATION OF NBH

TRANSPORT SIMULATION

NEOCLASSICAL TRANSPORT COEEFICIENTS

'SUMMARY



ede .

CHS (Compact Helical System) at IPPJ

1=2 .> m=8

R=1m, a=0.2m

8=1.5T7

@‘—.003’ A=-o.°h

e=0.3, ¢.=1.0



0°‘0
1 | 1 ) 1 i
] ] 1 t
t ' t 1 ' [
uluin lnlafals Ry il B i nhututs lnfaiah
] 1 ] . (I ] [}
| | ...-\o...p ..- |
R b e R
! ! TP M TR TR ¥ '
[} 1 ~..-'_~\\‘)-/.¢ﬂ-a—
e = Y- A l-lb.l-..a.f .\*pl' - -
RN A
H H ....s> ' //
-on | )
: \\: L i) @.wrm _ﬂ i
oottt T '
“ 2 R @%m. ‘\\ _
IEAAEY \ 1i]1i:
b = —\—, l.lilﬁl.h.w.Vlll\\.mr— ”I AN P
(Y [ Y
! i RN K K0P 1 )
1 1 o, V' e g !
bbb S E TR EEd g e Loy L T
' | D L TS '
' ) ' . W AA '

' [ ] R ! I
Sntutn Infadals Rl S 1 b el Rl
' ' . “ “
{1 ] S

v jang .GUZ
00

]
* .
1" g NN
. \ \
Vi .::\\J,@/W/ ) ¢
] 1) 1 ;!
M NS
- - lll..lw&..v....nruxnu.-ﬂ..m..d..-ﬂu..w.\..ll =L =~ 4
| bo,, Miaii -.‘ L |
- — * o menss .
] ! [} [} ;
Fe=- - t---F--3 Vabate Lk
] ] [}
| ] ] ] ]

[} [} i [}
e huhaiads Bt X X T T T T ]
[} ] [} ) |
[} ] ] ] 1
1 1 ) i 1 )

* 4 Jm . COZ




(gu-d)m g7~

/7~

L2

-

O

Nt
_—_NMINOC®

Qe +FXOeKN

(e

FUTRN

aEo®

-

A
"y

T

,-5€%

L i)



MONTE CARLO SIMULATION
OF NEUTRAL BEAM HEATING

NEUTRAL BEAM INJECTION : FREYA

FAST ION BIRTH

ORBIT : BOOZER HAMILTONIAN FORMULATION

SLOWING DOWN : MONTE-CARLO
PITCH ANGLE SCATTERING

CARGE EXCHANGE LOSS OF FAST IONS

RE-IONIZATION OF FAST NEUTRALS

ot
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BEAM ENERGY
ABSORBED BY E
ABSORBED BY I
BEAM COMP,
MISSED

ORBIT LOSS
FRACTION LOST
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wihad re- aln{p;pff ™

BEAM ENERGY
ABSORBED BY E
ABSORBED BY I
BEAM COMP.
MISSED

ORBIT LOSS

CX - LOSS
FRACTION LOST

£0000,00

12570.17
3315.48
7553.92
1632.65
7280.68
7581.81
0.41

neafrols

Py S SR, S S PN Sy

0.998)
0.314)
0.083)
0.189)
0.041)
0.182)
0.190)



with re-ebgorption

BEAM ENERGY
ABSORBED BY E
ABSORBED BY I
BEAM COMP.
MISSED

ORBIT LOSS

cX LOSS
FRACTION LOSY

40000,00
13061.92
3567.01
9174.09
816.33
9282.34
e911.21
0.33

Py Ry Py PN N PN N

0.970)
0.327)
0.089)
0.229)
0.020)
0.232)
0.073)



withod esbsorption

BEAM ENERGY
ABSORBED BY €
ABSORBED BY I
BEAM.COMP,
MISSED

ORBIT LOSS
CX  LOSS
FRACTION LOST

mno. LAAV{?Q 4QQQL¢f7€?.

3899.78
6311.30
3100.66

0.00
5144.18
2549.27

0.38

0.2

P gy, S gy gy ey

1.050)
0.195)
0.316)
0.155)
0.000)
0.257)
0.127)




with v2absorpl~

BEAM EWERGY
ABSORBED BY E
ABSORBED BY I
BEAM COMP.
MISSED

ORBIT LOSS

CX  LOSS
FRACTION LOST

20000.00.
4046.94

6328.27
3783.02
759.49
5718.84
879.31
0.37

nesinls

n,= 2x)0"
n.‘ F [xw'

e X e e Xa e Xa e

1,076)

0.202)

0.316)
0.189)
0.038)
0.286)
0.044)



SUMMARY I ( NEUTRAL BEAM HEATING)

30 ~ 40 T BEAM ENERGY LOSSES ODUE TO ORBIT LOSS AND C.X.

C.X LOSS DOES NOT SEEM SIMPLY ADD UP TO VHE ORBIY LOSS

ABOUT ONE HALF OF CHARGE EXCHANGED FAST NEUTRALS

ARE REABSOREED

NEEDS MORE STWOY

@) BETTER STATISTICS LARGER NUMBER OF TEST PARTICLES

©) STEADY ATATE SIMULATION

c) NEUTRAL PARTICLE DISTRBUTION
d) COMBINE TO TRANSPORT CALCULATION ( LIKE “ TRANSP *)



TRANSPORT SIMULATION OF CHS PLASMAS

1. TRANSFPORY COEFFICIENTS

1. SHMAING : Prws. Fluids. 27, 1567(1984)
A lﬂi mxmscn.ms ( DKES )
P ~ &"° rather than N ..,y,:o

2. In the 1/v regime, multi helicity effects may be important
Form fa:tor S TFgIF.

3. m?losui transport INTOR type

also to add edge localized z,

[P

- .




II. AMBIPOLAR POTENTIAL

€./t ~a(,[=T.)* ¢+ Du WE /o

FREYA + FIFPC
OLLOES : ~f/tm

Rt L
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4.

NEW SCALING VS. OLD SCALING ( NEOCLASSICAL )

T« DEGRADADES WITH BEAM POWER
AMBIPOLAR FOTENTIAL EFFECTS

“~

ELECTRON ROOT FOR LOW DENSITY CASE

NEEDS GOOD ESTIMATION OF NEUTRAL BEAM ABSORPTION =




US-JAPAN

STELLARATORHELICTRON WORKSHOP
Oak Ridge, November 9-13, 1987

PLASMA CURRENT DURING ECF-HEATING IN THE WENDELSTEIN
W7A STELLARATOR.

H. RENNER, W 7A-Team, ECRH-Group
MPI-Plasmaphysik, EURATOM-Ass.
8046 GARCHING, W.GERMANY
IPFder Universitat STUTTGART
7000 STUTTGART, W.GERMANY

Plasma current has been observed during the experiments at the stellarator W7A dependent on
the heating method and on plasma parameters. The main contributions to the current are velated
to the plasma pressure and current drive effects by application of heating,

In the almost shearless W7A ( major radius 2m, minor radius 0.1m, main field <3.5T; helical
windings 1=2, m=5 ) the effect of "resonances" at rational values of the rotational transform

4 = m/n has been demonstrated for the confinement.Optimum confinement was found very close
to rational values of the transform, but at these values the containment became strongly degraded.
The plasma current modifies the magnetic configuration and consequently even small currents
can significantly affect the transform profile dependent on the current distributiori.

The confinement properties have been shown strongly influenced by the current and the current
density distribution. An aestimate of current density profiles for experiments with ECF heating is
based on measured density and temperature profiles. Then, the ECF driven currents can be locali-
zed to the pressure gradient region where the maximum bootstrap current is expected.

The absorption of ECF power launched nearly perpendicular to the magnetic field, ECF current
drive and generation of suprathermal electrons is analyzed using a 3-D ray tracing code in
combination with a simplified Fokker-Planck solution for which the ECF energy source funciion is
aestimated by means of quasilinear theory (1). Results have been found in rather good agreement
with experimental data of W7A.Some degradation of the local power absorption is explainable by
the deviation of the electron distribution function from the Maxwellian. So far, local current drive
by application of ECF seems to be qualified to modify the current density profile and even to
compensate the bootstrap current.

k]

4

(1) U. Gasparino, H. MaaBberg, M. Tutter, W7A-Team, ECRH-Group
Studies on electron cyclotron heating at the W7A/AS stellarator.
EPS, 14, Europ. Conf., Madrid (1987)



US-JAPAN
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Oak Ridge, November 9-13, 1987

PLASMA CURRENT DURING ECF-HEATING IN THE WENDELSTEIN
W7A STELLARATOR.

-’ H. RENINER, W 7A-Team, ECRH-Group
- MPI-Plasmaphysk, EURATOM-Ass.
8045 GARCHING, W.CERMANY
[Prder Universisit STUTTGART
700D STUTTGART, W.CERMANY

(GPLHIR (Gaspmro H."Maalberg, M. Tutter, W7 A-Team, ECRE-Group
Sudizs on Elernon yclonon heating at the WIZA/AS stellaraor.
EPS, 14. Burnp. Cont.,, NMaittid - (1987)



STELLARATOR W 7A

R=2m
as=01m

helical windings: =2, m=35
fransform D-D.5; shearless AUx< 0.01

" currentless " pperadionc NEI 1980

RESULTS

o ‘\

Pgjj <500 kW
injecticn angle: 6° ( radial injection )

ECF28 GHz -
. 70Ghz 1985
- 200 kW, 0.1 sec

HE11, o-mode and x-mode

mnmmmmm&me magnetic configuration
sland formeation an ergrdzafon
TESOTENGES” : deterioraton of contzimment at rational
vales of the transionm £ = m/n.
{ boundary and plasma core )

imfluence of shear

optimal confinement with low shear ( At/x<0.1)
and with transfarm4 = m/n

observation ofplasni'la current
depending on energy content: bootstrap current f, .. cipkir

imduced by the heating method

CONTROL of cunent andl cument density
distribution for apfima] confinemeant



W7A 25T
ECRH 70GHz , HE4,

R ~165kW
N -

o= 3-4+101%cm
: 57069 - 85
| 57028 - 66
\ KA 356330 - 50
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investigations on plasmma cusrent for plasma heated by ECF

experiment

theory

70 GHz

25T

1.25T 4

variation of plasma parameters and
power deposition

ECE measurements

suprathenmal electrons

heating efficiency

3-D ray tracing code in combination
with a simplified Fokker- Plarick
solution

absorption
current drive
generation of suprathermal electrons

on the basis of experimental density
and temperature profiles



ECF HEATING AT THE W VII-A STELLARATOR

\
-

major radius: 2 m; plasma radius: 10 cm
injected ECF power:  Ppax < 200 kW at 70 Gli=z
pulsc length of ECF maintained discharges: < 100 ms

ECF waves launched nearly perpendicular téf the magnetic ficld (= 92°)

[IN -
current drive cfficiency expccted Lo be rather small for these conditions
-]

ECF driven, pressure driven (boolstrap curreat) and ohmic currents
of the same order of magnitude

NUMERICAL FORMALISM

Hamiltonian 3-D ray tracing calculations based on Maxwellian clectron
distribution {unction yicld Oth order power deposition as a [unction of
ky and w,,

Estimation of the flux surface averaged quasi-linear tensor clement

Qi1

Solution of flux surface averaged Fokker-Planck cquation yields the
deviation of the electron distribution function from the Maxwellian

Estimation of the electcon cyclotron emission (ECE) based on the flux
surface averaged clectron distribution function (Fokker-Planck cqua-
tion) by mcans ol the Hamiltonian 3-D ray tracing codec



BASIC FORMULAEL

absorptlion cocflicient

alk,w) = |S(__,w)ﬁ ol ""'Z_:m/da" 6w — kpup — 22)
vy | (I-Nmﬂ —a—-— N“zJ; 9 Ifc(_)

oy
1- (Ex —$E,) Ju_y(6) + = (1:,+u=:,) Tnss(6) + 1 - L E,J.(0) I? }

emission coefficient

[mevl/.(z)]
| % (Ez = iE,) Jn-1(b) + %(E,+iE,) Tusr(6) + :_'l' B ')

quasi-linear tensor

tw?, = 3k .
xe { Z GV §w — kyvp - —-—)

Q.L.L = mzuz
R -

n? I ';’ (Ez - iEy) Ju—l(b} + E (Es +iE!) J-H-l(b) + % E"I"(b) Iz }

S(k,w): poynting vector with sloshing particles included



Fokker-Planck equation:

S'(N) =ClN) +S™N

quasi-linear ECF cnergy source [unction:

s*() = L "i—' v1Qi1 aaf

collision opcrator:
cl) =Tz { 5= (astedr + 3 (az(v)f))+ﬂ(0)—(l-1’ )a,, }

energy loss term:

S (v’ - NS

Lo satis{y tlie energy balance for stationary conditions



W VII-A RAY TRACING CALCULATION

2

AB= 400 GAUSS
Wi, /u?= 0.538

8=50.00°
70.0 GHZ

3.860°

f.

HE

1,=0.46
C

~

TESLA
{ .HARMONIS

T,= 985

2.S200

B5=
- 0-MCOE

1013

TH.OICHTE-PR.

Ng=

eV
-FROF
140
|.680
0.000

B(0)= 0.0048 F= 0.00036

TEMP.

7.000
2.870
0.000

S.

124 kW

Po=



'ECF power depeosition profile:

theory < experiment
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Shots

620060-82
61700-88
61908-90

63402-21
634569-73
03432-50

Oomipirison of current drive calculations with expertmentel data

Tablo 13
Dy T.(0) He(0)
(1Y (eV) (1012 cm““’) (kW)
2.67 796 1.56 16
2.64 1570 1.18 100
2.40 680 ' 1.87 0
1.280 202 2,20 106
1.266 7901 2.00 130
1.220 503 1.78 130

Ze!l

J
3
1.6

3
3
2.8

Ip
(A)

480
840
680

230
1230
920

Ipor

(A)

=200

-220
30
-10
120
280

by

(A)

-280
515
805

140
1015

1050

Ubnl
(V)

"Ot 10
‘0502

"'0501

‘0\03
-0.05
"0502

Uexp
(V)

0.07-+.05
0.0 .05
10.034.05

-0.031.03
-0.044:.03

r0.031.03



LEUTRON DISTRIBUTION FUNCTIONS
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Effects of ExB drift resonance on fast ion confinement
in Wendelstein VII-A and Heliotron E

presented by K. Hanatani

Plasma Physics Labaratory, Kyoto University,
Gokasho, Ujt, Kycto, JAPAN

This paper summarizes recent study on beam-ion confinement in helical
systems. Fast nsutral beam injection (NBI) in both Wendelstein VII-A and
Heliotron € showed effective heating of plasmas /1,2/ aeven by nearly
perpendicular beams. Reasons for the effective heatings in these devices,
however, have been considersd to be different. In WVII-A, the resason is
attributed to the enhanced confirement of beam fons as well ar of thermal
fjons due to the effects of large radial electric fielu, E.. In
Heliotron €, by contrast, E. field has been considersd to have onl§ small
effect on beam {ion orbits. We extend previous work on the fast-ion
confinement /3,4,5/ and clarify the influence of E_ field.

In order to study the E_ field effects, we hale developed an efficient
drift orbit solver which works in real space coordinates /6/. To speed up
orbit following, we use “field splitting” scheme which decomposes fully 3D
¥1led quantities into hel1callf symmatric and symmetry-braking parts. The
E. filed is calculated from electric potential ¢ which is constant on 3D

gnetic surfaces. The ordbit solver has been incorporated with Monte Carlo
NBI cade (HELIOS) /3,4/.

Extensive benchmark tests of Monte Carlo NBI codes have been carried
out between (1) ODIN code (IPP, Garching) and HELIQS code (PPL, Kyote) /7/
and (2) between HELIOS code and DESORBScode (ORNL, Oak Ridge) /8/. The
objectives of these benchmark tests are (1) to eliminate possible errors in
numerical coding, (i1) to improve physics modeling and (111) to establish
comnon ground among N8I codes for stellarator/heliotron research.

We interpret NBI experimants on WVII-A and Heliotron E by using the
Monte Carlo code including Er field. We examined how the Ex8 drift modify
the topology of drift orbit. We confirmed numerically that two kinds of
ExB drift resonance can exist in toroidal helical device. Under the
condition of ExB drift resonances, loss region of fast fon is created in
the velocity space because of resonant orbits. [t was found that different
branch of ExB drift resonance can explain the confinement properties of
beam fon in the perpendicular NBI experiments on W7A and Heliotron E /9/,
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the OH current by which the target plasma was produced in a toroidal mag

P we e
netie

field of 3.2 T with a total transform of « = 0.43 {co) and 1 = 0.44 (counter

The plasma current was lowered until t = 130 ms (Fig. 3a) and three neutral

beams were switched on, one after the other. The total neutral powers were

760 kW ("co™) and 730 kW (“counter®) (Fig. 3b). The line density (Flg. 3¢) §

l.-

developed similarly in the two cases. In the “co"-discharge, gas puffing was?
stronger, and therefors the density rose faster. The total plasma energy
(Fig. 3d) was already higher in the "counter"-discharge at the beginning and®

1t stayed higher. The radiation (Fig. 3e) developed similarily, becoming stroa P
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Fig. 3 Comparison of two typfca) discharges, one with co-injection,
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Fast Ion Con-fc'nemen-l- n W,7AE

alf‘&ady Enown

@ Nearly pevpendicviar neutral injection
in W7A showed CXPem'mentq( heq‘h'ng
efficiency higher than that predicted
by orbit following Monte Carlo Calcvla-
jrons without E, field,

@ Do pplef' Shi$t measvrement of
impurity {ine emisscon n NI discharges
showed large pelidal yotation of Pﬁqs'mq’
\'ndu‘ca'h‘ns the presence o Yaol a |

electric Po'l‘en-h'al °of '#l o (z—4)kV.

@ ODIN Codé, when 1t included Erfa'eld,
Showed \'vaovemen'!‘ of hea-h'ng eﬁ'n‘c(enc):
- ConSistent with WXA experiment,
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ORBIT LOSS

HANATANI
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g
* The presence and

the ;_mwuence. of
Er fn'eld._ n W7A
ore a.lrea.aly basically

understood.
— ur
Both transpert of thermal ton
and,
Confinement of fast ion

are improved .

o However +heve are
several points

need +o be clavified,

(abau'!' the confinement of
Fast ions



FGS',' ron C.Oh'fn'nemenf- 'n W7A g

Points need to be clerifred

@ How can the “small ” electrie pcfen+n'¢l
l%l: 0.] improve the ¢enfinement o+
-]
perpendicuviary injected fast iong 7

—> ¢$. therme| tons li?.! l >2-3
[

@ How large is the loss of fast rong
due o trapping in helical vipples 7

—> WORKING HMHYPOTHESIS:

Fat banana ovbits ( net helically trapped
orbits ) are mainly respens'ble for
the loss of beam iong in WTA

’ éh << €

* large pelordal [avmer vadivug

- ‘erHsFor-)- ot electrong
Qwnd therwa | rong



Fas‘i' ton confinement in WTA =

points need to be clarified <c°n+|‘"ued) —_—

@ Why counter - injecton was
as etficient as 0= injection 7

M counter = Teo

@ Which sign o4 po‘fenh‘al 41 (+ or _)

is appropriate for NI heated WRA plasmas
?

4 Po'avf'l'y ot & s impertant
because b1 related to the 9vvyin of é'
—> c$. +hermal ion transpert,

@ Can we ganeralize the n'mProved
Confimement of fast ions
to other helical System§ ¢

—> peculiavty of WZIA?
> Mow abovt (n HE. ATF, WZAS 4



Parameters o+ WHRA S'hllarq-row-@

R= 2 [m g, =21keV
= o.| (m] Bofy = 13:C ke
Eols= 1 keV

80 ~ RBuncgr Tz ikeV

Lormor Radiv§ o idahn

M - .
“WikeVl  Seelml  fue/ap
0.29¢ 2.98 [large
Be 21 0.21l 2.1 |

Eof2 13.§ 5. N2 02,
Eo/3 q

70
3 1.§ 0.010 0.
7' /AEZ)
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Fig. §

Fig. 6

Tntcrnedonal Sympo Scum on

W ea}ing indoreidat Plagmas, Roma.

Veor '——- INJECTION \Qsy
“cCounteyr*

Py -
AFTER 44’ g 3" v
FIELD REVERSAL

10 -
i 150 200 ms

0 e = :

0, BEFORE
-10 "\. FIELD REVERSAL
- -ﬂﬂilhnﬂliillllusllyﬂgr' P
-20- “ &@
ap=-2kVv

+30

Observed poloidal drift velocity of the plasma at r = 6.5 cm
versus tine, Comparison of a co- and 3 counter-discharge
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Estimation of Potentia! Dreg I

frem +he Doppler shift ineqsurement

Vex@ v _ l"E’xE'l
Ex8 = T

Jf qP'B‘(VE")nax
0.16 x (=S'~zs')xw3 Voelt
(2.4 ~ 40) lV

&

In this werk, we consider
cb, ==2kV +or c.a-fnlg' cedi'on
Po= = I kv tor countey- ﬁt"c:hhn

QS +he typieal vﬂvtr o} potential

': °|°q ~ 0.1

To= lkeV Wiz ! 2~ 0.33
; Eo = 27 keV 2be, | 02
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Charged Pavticle Continement &

wn Lovoidally ~helredl $ield
— withevt Ep ficld —

N ; poleidal
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E xB drift Resonance
\%

Prompt Ovbit Loss
dve te rYeésonant ovbi'ts

@fw JA Stellarator

TORAIDPAL RESONANCE

‘rll';;‘ + flgxg =0

L reSonant banana OYrb.'¥

Hanatani, Penncas4@ie ,Wob'y
TACA Tecm (Kyoto, 1986)

@ [HELIOTRON-E

HELICAL RESoNANCE

.ﬂ.'g + exg =0
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1997
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Shitt of +he ReSonance Zeone &
in +he velecity Spac8 dueto
PO?@"?"&'QI
TOROIDAL RESONANCE
S2p + flexg =0
In R=2 Sys'}ems, b x const
Assume parabelic potential profi(e

¢=¢,(1-¥¥), Y F+ar?

RESONANCE CoNPITION

RESONANT PITEH
l‘ p— e do . f‘.d

e ap
A(20keV) 2 0123 =
A (13.5keV)= o202 =
a ( Qke¥) = 0. 3XIT =X

L con
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E_H:eg-r ot ExR dri4t resonanc® #

‘n Heliotron E

1. INTRODUCTION

2. E x B DRIFT RESONANCE

3. VELOCITY SPACE LOSS REGION WITH E. FIELD
4. POLOIDAL ROTATION MEASUREMENT

5. CHARGE-EXCHANGE ENERGY SPECTRUM

6. MONTE CARLO CALCULATION

7. SUMMARY
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MOd +ication o o |

Velccrty Space I..oss Reswn .
21 dl"“ EY ‘fie'd

-40 ~20 0 \ vy 20 40keV

Eres= = 34, /Gh(l)

Fig.1 Potential dependence of velocity space loss
region in Heliotron E.” Calculated at r/a = 0.5 out
side of the torus. In the calculation, we assumed
parabelic potential profile, g = do(l-!b/ wb).

(a) By = +1 kV,

(b) do = -1 kV.



Fie NBZI inpu't Power and Mg L
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Perpendicylq,
CX Speetrum

Eves Energy %
¢/ En(g) = 3 eV

©-

Eves, &



C K. Speetrum
Perp. beam = Pevp. NPA

RELIcAL RESONANCE

3 i

E -

A- é -

Zis

e B=ziaT 7

il o o
- B=od4 7 -
0 "" ' r 1P2 15

6 9
_ENERGY  (keV)

Fig'.s Charge-exchange energy spectrum of an exactly
perpendicular beam. Open symbols for B = 1,97,
closed symbols for B= 0.94T. External parameters
were fixed except magnetic field, 8.



HELIOS 3=-p

Simula\'l'fon param etevrs

* g‘ftmc-}ion SourcCe
E = 4.5 keV, U“ =0

® $+Gv+fn3 Pos.‘-{-.'oh
(v.6.9) =(2cm, 180" 9.47)

* Ne(o) = 9%10'3%em”3

Te(0) =T (o) = 400 eV
parabolic profi le

o 100 test particle / RUN
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EHec‘]" ot ExB dri4t resonance .- (G2
in Heliotron E
7. SUMMARY

In this paper, we have investigated the role of
ExB drift resonance in the confinement of helically
trapped fast ions in Heliotron E.

(1) Instead of the toroidal resonance, which plays
major role in the beam-ion confinement in the
WVII-A device, the helical resonance becomes
important in the Heliotron E device,

(2) Confinement of helically trapped fast ions in
Heliotron E 1s improved by positive Er field
and deteriorated by negative E_ field due to
the helical resonance.

(3) The poloidal rotation measurement of NBI
plasmas suggested the presence of small
negative E_ field, which can cause the helical
resonance of fast ions in the low energy
regime.

(4) The charge exchange energy spectrum showed a
correlation with the predicted helical
resonance in the Heliotron E configuration.

(5) Monte Carlo calculation showed potential and
magnetic field dependences consistent with the
measurement§ of Vp and C.X. energy spectra in
the Heliotron E experiment.



SUMMARY

@ KyO'!'o 3D NBI code
upgraded — HELIOS.

@ Benchmark tests of
Monte Carlo NBI codes

from *three Aiferent countries

have been corried out,

@ ExB drift resonance€
can explain
beom-ion confinement

n WT7A and Heliotron E.



Benchmarks of Neutral Beam Injection Codes for Stellarators*®

R. H. FOWLER, J. A. ROME, R. N. MORRIS,
ORNL

K. HANATANI

Plasma Physics Lab., Kyoto University

The 3-dimensional geometry of stellarators/heliotrons make it more difficult
to calculate beam deposition and thermalization. Extensive comparisons between
the Oak Ridge and Kyoto codes were undertaken, using a simplified model for
the Heliotron-E plasma and magnetic field. The perpendicular injection geometry
causes most of the energetic fast ions to be helically trapped. The high transform
and shear of the heliotron configuration helps to confine these orbits, but energy
losses in the model cases ranged from 20% to 50%. Although the codes use
different coordinate systems and collision operators, when they solve the same
problem, the answers are equivalent. For perpendicular injection, very little, if

any, acceleration of the slowing process can be tolerated.

* Research sponsored by the Office of Fusion Energy, U.S. Department of
Energy, under Contract No. DE-AC05-8{0OR21400 with Martin Marie ta

Energy Systems, Inc.



II.

III.

<

VII.

BENCHMARKS OF NBI
CODES FOR STELLARATORS

Introduction - motivation

Description of thermalization codes — orbit equations, collision
operators, etc. ‘

Sensitivity and/or Numerical Issues

Benchmarks for Heliotron-E perpendicular injection with
model field

Heliotron-E results using a filament model

ATF results for perpendicular and tangential injection

Conclusions



Importance of Benchmarking NBI Codes

e Beam inputs are a significant part of the power balance but are

seldom directly measured

e Calculations serve as a guide to determine optimal injection

angles

e Calculations are expensive, so the appropriateness of analytic

moments shovld be determined



Codes and Cases Considered

HELIOS - Kyoto real space code

MAGCOM - ORNL magnetic coordinate code

DESORBS - ORNL real space code

CASES:

Perpendicular and parallel injection into Heliotron-E and ATF



ORNL MAGCOM CODE

Boozer coordinates, natural for profiles and electric field treatment
Only mod B = Y A, (%) cos(ng — mf#) needed
Ay m(¥) are least-squares fitted

Relatively fast but loss boundary cannot be extended much beyond outer flux

surface

ORNL DESORBS CODE

Real space cylindrical coordinates

¥ is interpolated using 3-D splines

For complex fields vector B is interpolated using 3-D splines
More difficult to treat electric fields

Slower than MAGCOM but allows treatment of complete geometry



Guiding Center Equations in Magnetic Coordinates

= (Pag - P¢I)/71 F-’c = [—(ch' - 4')jz)e + (pCI, + 1)P¢]/71
b= ( 8B B@\ o + B? 6pc
6¢ “8¢ ) 9P, ape

: 6B 8%\ 8y e2B? Op,
o= (53 *<a9) 35 * ot
where p. = muv)/eB, B is obtained by FFT,

B = Z Ap m(9) cos(ng — mb)

The toroidal current within a flux surface is I(¥)/(2 x 10~ 7)A,
and the poloidal current outside a flux surface is g(v)/(2 x 10~ 7) A.

= e[g(pcd’ + 1) = I(pcg' — +)], § =e*piB/m + p.
; 9B ' 6B
Py = —598, Py =522,
2y - g dpe _ _(peg'=t)
9 Ps v’ dPy — 5 )
oy _ _I e _ (Ipet1)




Guiding Center Equations in Real Space

dR _B B
— — \% -V
= qB x (uVB + mv" B B) + B,

(a1
]
)



Slowing Down of Fast Ions

ot Tyv2
On plasma ions:
3

ve At
Av,- = ——;——
'Uo Ts

On plasma electrons:
At
Av, = =y, —



Pitch Angle Scattering

1 v30 ot
“ [0 &]

<

QAR

Sample ( = zv"- from the Gaussian:

— -4(¢=(¢))?/0?
PO = Z2ge
where 02 = ((?) - (¢)?
let f=6(¢~¢o)
=% 0-0)



Charge Exchange with Re-absorption

L
§= / e~"%lp o..dl

At
anaca ] vAtnoa.cz N m— > ‘-lns
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The neutral is tracked by transforming from guiding center coordinates to particle

coordinates with a random phase for the gyro-motion



Profile Parameters For Heliotron-E Cases

Ti(¢) = T.(¥) = T,(1 - 95 ) 21 4. T,

Ni(¥) = N(v) = N,(1 - 95)% 1 N,

E, =26 keV
High Medium Low

Density Density Density
R; 0.5 2 1
R, 0.86 1 1
S1 1 2.575 1
S2 1 1 1
T, 376 eV 406 eV 540 eV
T: 5eV 10 eV 60 eV
N,  1.37Tx10% cm™? 8.7 x 10'% cm=3 4.45 x 1013 cm=?

1.00x 10} cm=3

0.3 x 1083 cm ™3

4.50 x 10*t cm—3
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Sensitivity Questions

Numerical/Statistical - How many particles are sufficient?
Random numbers, etc.

Magnetic field — Are simple models accurate?

Boundary model used to determine orbit losses - Can the outer
flux surface be used?

Acceleration of slowing down process — Can computer time be
saved without loss of accuracy?

Frequency of collisions — What is a reasonable number of colli-
sions? Should collisions be “independent” of orbit integration?



Reducing Collisions Saves A Small
Amount of Computer Time —
Is it Worth the Risk?

Model magnetic field (NF 21(1981) 1067).
Heliotron-E low demnsity case NO = 4.45el13, T0O = 540 eV,

Ts = 12 ms
100 particles
Boundary at last closed surface

Collisions Orbit GE(%) Gi(%)
(1000’s) Loss(%)
2 39.9 42.6 15.7
10 - 92.7 35.3 11.0
20 51.8 35.5 12.2
30 51.5 35.7 12.4
40 45.4 39.2 14.8
143 45.6 39.1 14.5
47.8 37.9 13.4

Collisions should be every time step in order to accurately sam-
ple at turning points where trapping and detrapping occurs



Acceleration Techniques Drastically Reduce
Computational Time But When are They Valid?

Scheme 1

Compute 7, for problem. Then choose n, = # of collisions.
The At for the collision operator is given by

TJ
te = —
At N

At., N, are the same for all acceleration factors; i.e., there is

always N, collisions with At, for each collision. The “accelera-
Ts

tion” is given by changing the orbit following time t,.bi = o
g

N, = acceleration factor.

N, collisions during ¢,.pi¢ time.

Scheme 2

Let Atpg = integration time step of GC eqgs. Collision after
each step with NyAtpg = At for the collision operator (pitch
angle and slowing down).

N, = goose factor
torbit = time for all particles to

thermalize or be lost.



ENERGY DEPOSITION
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ORBIT LOSS

ORBIT LOSS vs NUMBER of PARTICLES

- HELIOTRON~E TWO FILAMENT MODEL HIGH DENSITY
30- MAGCOM CODE ~ STANDARD DEVIATION = 10.04
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33 -
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ORBIT LOSS
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Model Helical Field Used for Benchmarks

Hanatani, Wakatani, Uo, Nucl. Fusion 9(1981)1067

B=B(0)h+Vyxh

h=(z+p8)/(1+ 0%

L
2Tz
— e1pcK3(2pc) cos 2(6 — —)} o

pe =2ma/L, p=2n+/L
a = minor radius
L = pitch length

toroidal correction factor (1 — r/R cos#)
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Beam Line
E Component

Top View
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Benchmark STEPS
Kyoto and ORNL CODES

Cases benchmarked - Perpendicular injection into high (I) and
low density (II) Heliotron-E plasmas with a model magnetic field
(Hanatani, et al., Nucl. Fusion 9 (1981) 1067)

Beam deposition agrees - 92% (I) and 65% (II) beam absorption,
shinethrough agrees

Collisionless orkit loss (I) agrees — 28.5% with boundary at last

closed flux surface

Numerically calculated collisionless orbit shift of deeply trapped

particles agrees with analytical prediction

Collisionless orbits match for Kyoto and ORNL flux coordinate

codes
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e Thermalization at birth positions for Case [

Number Energy Energy
of Fast to
Ions Electrons
HELIOS 1000 73.3% 26.7%
MAGCOM 512 71.8% | 23.3%

o Complete thermalization process, no charge exchange, boundary

ai last closed flux surface

Code Density |{Number |Energy |Energy |Energy
Case of Orbit to to
Fast Ions |Loss Electrons |Ions
HELIOS High 100 40.3%  |46.8%  |13.0%
MAGCOM |High 100 43.1% 44.8% 11.0%
DESORBS |High 100 42.8% 44.1% 11.4%
HELIOS Low 512 47.4% 39.2% 13.3%
MAGCOM |Low 500 46.1% 39.9% 13.6%
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i leliotron-1

T g
UF coils ' i

Two filaments,

VI' coilg
v =412 m

r=J350m
380 segments I, = —0.9894 In
Iy =1.16 MA (2T)
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ENERGY DEPOSITION

ENERGY DEPOSITION vs BOUNDARY
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ENERGY DEPOSITION

ENERGY DEPOSITION vs BOUNDARY

HELIOTRON-E TWO FILAMENT HIGH DENSITY

7 Vessel
70 s
+ FLECTRONS
/
80 /
.
e
LOSS
60 Q\ +. /s
e
X
7
40 v \
o)
301 \
\ .-
N & aVessel
20 A <
IoNs - © \
10- &
oVessel
T T N T \ - N '
08 60 1.0 1 1.2 ia 14 5

BOUNDARY



Many helical orbits leave and re-enter the

outer {lux surface.

harge exchange loss
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Heliotron-E

Two Filament Model §/>
R

Perpeﬁdicular Injection Dg/
Vacuum Vessel Geometry

Density Case | Energy Chargé Energy Energy
Orbit Exchange | to to Ions
| Loss Loss - Electrons
High 0.08% 10.3% 66.1% 21.5%
Medium 0.06% 12.2% 64.5% 21.2%
Low 7.32% 21.8% 49.9% 19.2%

D/I’ < l'e/oau Q)/ ///f /Z/g ZIOS:
Wor £ in /g recs /



Profile Parameters For ATF Cases

Ti(w) = T(y) = To(1 - ¥) + T

Ni(¥) = Ne(¥) = No(1 - ¥) + N,

P =39,(1~1v)

T,=1000¢eV, T, =50 eV

N,=4x102cm™3, N, =1 x 10*3cm ™3

@, =00r 2%V

E, =40 keV
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BEAM ENERGY (%)

ATF Tangeitial Injection

Monte Carlo and Analytic Moments Results
= ORNL-DWG 86C-3213 FED

ELECTRONS 653.8 ELECTRONS 36.6 ELECTRONS 20.3
TIONS 34.9 IONS 55.6 IONS 66.4
THERM 3.2 THERM 7.6 THERM 10.7
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BEAM ENERGY (%)
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TOTALS

= ELECTRONS 44.6 -

| IONS 44.1

o THERM 5.6

o LOST 6.1
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ATF

Six Filament Model

Vacuum Vessel Geometry

Injection Energy Energy Energy
Orbit to |
Loss Electrons to lons
Perpendicular 64.2% 26.9% 7.53%
Tangential 7.99% 49.1% 36.5%
0 —~C (f)lg é_




Conclusions

e Results are very sensitive to:
- Magnetic field model. Also the fields in real space and flux
mspa.ce must correspond exactly to get» aéfééxﬁeﬁt; -
— QOuter boundary model for pei'pend.icul_a.r‘ injection where‘
~_many helical orbits leave and re-enter _the oﬁter_ flux sur- _

- face and sample large regions of the plasma. However, outer

flux surface is adequate for ATF tangential injection.

e The number of collisions should be large enough to accurately

sample at turning points where trapping and detrapping occurs.

e Acceleration of slowing down process should not be used for
perpendicular injection which produces large numbers of helical
orbits. Acceleration can be used for ATF tangential injection

which produces mostly passing particles.

e Perpendicular injection into Heliotron-E for our “best” model

produces a small orbit loss while for ATF the orbit loss is ~65%.

e The analytic moments method can be used for ATF tangential

injection but not for any perpendicular injection cases.
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OUTLINE
® INTRODUCTION
- SYSTEM DESCRIPTION
~ UNIQUE FEATURES
® HIGH-POWER TEST RESULTS
~ CALIBRATION OF WAVEGUIDE MODE ANALYZER
- OVERALL SYSTEM EFFICIENCY
® ECH COMMISSIONING TASKS
® FUTURE PLANS
- NEAR TERM

~ LONG TERM
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INTRODUCTION

THE PRIMARY APPLICATION FOR THE ATF ELECTRON CYCLOTRON
HEATING (ECH) SYSTEM 1S TO PRODUCE CURRENT FREE TARGET

PLASMAS FOR SUBSEQUENT HEATING WITH HIGH-POWER
NEUTRAL BEAMS.

53.2 GHz WAS CHOSEN TO MATCH THE 1.9 TESLA PEAK FIELDS
PRODUCED BY THE ATF HELICAL FIELD POWER SUPPLY (w = cice).

MOST OF THE HIGH-POWER NBI EXPERIMENTS WILL BE DONE AT
0.95 TESLA TO INVESTIGATE HIGH  OPERATION, THEREFORE, THE
INITIAL OPERATION OF THE ECH SYSTEM WILL BE AT THE
SECOND HARMONIC (o = 2 wce).

SINCE ATF WILL ULTIMATELY RUN STEADY STATE, THE ENTIRE
ECH SYSTEM (POWER SUPPLY, GYROTRON OSCILLATOR, AND

WAVEGUIDE TRANSMISSION SYSTEM) WILL HAVE STEADY-STATE
CAPABILITY. |

NwW: 11/5/87.2



ECH SYSTEM DESCRIPTION

e ECH POWER SOURCE IS A 53.2 GHz 2006 kW cw GYROTRON

OSCILLATOR THAT PRODUCES >90% OF ITS POWER IN THE TEn2 -
MODE.

® SOME UNIQUE FEATURES OF THE SYSTEM ARE
- EVACUATED WAVEGUIDE 2.5 IN. I.D.

- QUASI-OPTICAL TEo2 MODE TRANSMISSION WITHOUT
INTERMEDIATE MODE CONVERSIONS.

- SOPHISTICATED POWER MONITORING SYSTEM.

- POWER SUPPLY AND GYROTRON CAN OPERATE SHORT PUI.SE
" TO STEADY STATE.

- WAVEGUIDE SYSTEM ALSO HAS STEADY-STATE CAPABILITY
WITH THE ADDITION OF SOME MODEST COOLING.

® INITIALLY, THE ECH LAUNCH INTO ATF WILL BE FROM THE TOP
USING A SIMPLE OPEN WAVEGUIDE RADIATING THE TEo2 MODE.

TW: 11/5787.6
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THE ATF ECH WAVEGUIDE TRANSMISSION SYSTEM
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HIGH-POWER TESTS

ECH POWER IS MEASURED CALORIMETRICALLY BY ACCURATELY
MEASURING THE TEMPERATURE RISE AND WATER FLOW |
THROUGH A WATER-COOLED MICROWAVE ‘TEST' LOAD.

THE GYROTRON POWER IS PULSED ON AND OFF CONTINUOUSLY
AT PEAK POWERS <200 kWw.

NORMALLY, THE AVERAGE POWER IS HELD TO LESS THAN 20 kW

TO PROTECT UNCOOLED BELLOWS AND PUMPOUT SCREENS IN
"THE WAVEGUIDE SYSTEM.

THE CALORIMETRIC POWER IS USED TO CALIBRATE A WAVEGUIDE’ \
MODE ANALYZER THAT CAN MEASURE INSTANTANEOUS POWER.
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WAVEGUIDE TRANSMISSION LOSSES (PEAK) vs
TIME FOR A SINGLE BEND SYSTEM
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HIGH-POWER TESTS (CGONT)

e THE WAVEGUIDE MODE ANALYZER WILL BE THE PRIMARY
POWER DIAGNOSTIC DURING ATF OPERATION.

e THE OVERALL ECH WAVEGUIDE SYSTEM EFFICIENCY WITH TWO
BENDS IS 87%.

® WAVEG'IDE PRESSURE DURING OPERATION IS LOW (107 TORR
SCALE).

TLW: 11/5/87.3



ECH COMMISSIONING TASKS

® INVESTIGATE GYROTRON “TUNE-UP" MODES WITHOUT MAGNETIC
FIELD OR GAS PUFF

- REQUIRED TO SET UP GYROTRON FOR OPTIMUM POWER SHOT
AFTER SHUTDOWN |

- REQUIRED TO ASSURE PEAK POWER AVAILABLE BETWEEN 5
MINUTE ATF SHOTS

- 200 kW SHORT PULSE OPERATION =10 ms FOR REPETITION

"RATES 52 Hz TO LIMIT AVERAGE POWER INTO ATF VACUUM
VESSEL TO 34-5 kW

Niw: 19904828



ECH COMMISSIONING TASKS (cont.)

e MICROWAVE RADIATION SURVEY NEEDED TO EVALUATE
POTENTIAL HAZARDS TO EQUIPMENT, PERSONNEL

- MICROWAVE PROTECTION SYSTEM CTONSISTS OF AN ARRAY OF
FOUR CALIBRATED DETECTORS PLACED AROUND THE ATF AND ."
GYROTRON ENCLOSURES (INTERLOCKED WITH ECH OPERATION) = '

- PORTABLE DETECTOR USED TO SURVEY ECH WAVEGUIDE AND

'OTHER AREAS

nw: 111923
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ECH COMMISSIONING TASKS (cont.)

® EXPLORE POTENTIAL INTERACTIONS OF THE ECH SYSTEM WITI-I
THE ATF HELICAL FIELD POWER SUPPLY

-~ 13.8 kV POWER GRID PERTURBATIONS WERE SIGNIFICANT

WHEN ISX-B AND EB'/-S WERE OPERATING SEVERAL YEARS -
AGO '

- WHILE GYROTRON POWER SUPPLY HAS FAST REGULATION
CONTROL, OTHER SYSTEMS SUCH AS THE GYRCTRON |
MAGNETS DO NOT

"= TIME VARYING By MAY CAUSE GROUND LOOP NOISE IN scu;{*

GROUNDING SYSTEM

- TIMING ECH SHOT FOR CURRENT FLATTOP MAY SOLVE THESE ' -

PROBLEMS

nw: 1111477



ECH COMMISSIONING TASKS (cont.)

® OPTIMIZE ELECTRON DENSITY AND TEMPERATURE AT A FIXED :
ECH INPUT POWER BY VARYING GAS PUFF, HELICAL FIELD
CURRENT, AND VERTICAL FIELDS

- INVESTIGATE THE REPEATABILITY OF EACH OF THE ABOVE
EXPERIMENTALLY CONTROLLED PARAMETERS

- THERE IS A NARROW “WINDOW" IN (Wceo/p FOR PLASMA
PRODUCTION AND HEATING

- MARK CARTER WILL DISCUSS ATF “PRESSURE WINDOW" FOR
ECH BREAKDOWN

nw: 1111878
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FUTURE PLANS
& NEAR TERM (1 YEAR)
- INSTALL 2ND 200 kW 53.2 GHz ECH WAVEGUIDE SYSTEM

- UPGRADE POWER SUPPLY TO OPERATE TWO GYROTRONS |
SIMULTANEOQUSLY

- UPGRADE SIMPLE OPEN WAVEGUIDE (TEo2) LAUNCH WITH
FOCUSED, POLARIZED BEAM LAUNCH

Taw:11-11.872



6.53 cm
TEy,

VLASOV
LAUNCHER

PARABOLIC

CYLINDER
‘\

ATF

. PLASMA

TO GYROTRON

f

ECH

RESONANCE /

GATE VALVE

_— ROTATABLE

TEFLON GRATING
WITH CURVATU.RE

T.S. BIGELOW AND T. L. WHITE, “ATF ECH WAVEGUIDE COMPONENT DEVELOPMENT AND
TESTING,” 12TH INT. CONF. ON INFRARED AND MILLIMETER WAVES, ORLANDO, FLORIDA,

DECEMBER 14-18, 1987.
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® LONGER TERM (3-4 YEARS)

FUTURE PLANS (cont.)

- SUPPORT STEADY STATE ATF PROGRAM WITH ~2 MW OF ECH
POWER

- ECH IS THE PREFERRED HEATING APPROACH BECAUSE:

Nw:11-11479

POWER DEPOSITION CAN BE LOCALIZED AND CONTROLLED

BY VARYING FREQENCY (MAGNETIC FIELD) AND BEAMING |

MINIMAL INTERACTION WITH THE WALLS AND THE EDGE

- PLASMA

LESS DEMANDING ACCESS AND LAUNCHING REQUIREMENT':S' |

PHYSICS IS WELL UNDERSTOOD

HIGHLY SUITABLE FOR NON-HEATING APPLICATIONS
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FUTURE PLANS (cont.)

@ 53,2 GHz BEST CHOICE FOR STEADY-STATE OPERATION (0.95
TESLA, SECOND HARMONIC X-MODE)

¢ 106 GHz BEST FOR HIGH DENSITY GPERATION (1.9 TESLA,
SECOND HARMONIC X-MODE) BUT LIMITED ON ATF TO 3-4 SEC

¢ CHOICE OF FREQUENCY WILL BE DETERMINED BY AT¢ PROGRAM

N
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ava.;'ablo. ‘(GV\-\ vaviowns souvrees

® ~200 milhrad/jco.« natural backgreund
vadiadion in ATF vacuum vessel with
fields on —> few Hdent of Sfvee €%
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ocewr 1F ELECTRONS ARE TRAPPED NEAR TResoNANCE

o Cold elec{'fona axre Qa.s;l-j ‘trc.??gd wke-\ T-‘““'"‘j
'UWOKJ‘& ‘U\e vYesonance fcsiov\

e A ¥ew cold electrons alwabs exist becawse
O'f M‘ékva.! backjrouno( f‘ao(ia.fiovx (Ce. ,c.-meson
Cosmic ray bambardme-\‘()

@ EnngJ time behaviov is 4??foxima-l~ec( b::..
EQ) = %E" [! - Cos @g-é)]

where : E&zc':" 3.2.2“\(‘.1 )’ ))Y«‘ ~ 20
E = ZCIE.,

- mew

u) = microwave dvivimj 'rrezuencj

lEl: modulus of riakf hand 'Pold.fitd
Companen.'('. o‘ Mmicrowave

electeic :ield S{(enyﬁk

Mm=electeon cest mass

cC = s‘?e;ed 0§ "Jk‘t in vacuUum

e = magnitude of electron ckarjg

* Phas. Fluids 29, joe (192¢)

- —— "



Tovoidal Angle

#
°

Near the X-Poiat

A Wew Exists v B alon'q; B

ON THE INSIDE OF THE TORuUS

[

g

8.-
=4

]
S Sub gt pup

QRARAEESSSS

L Lrrrespeece
N L

FIFLD ULINES

e R ESONANCE NEAR BOTTOM oF WELL

ﬁOD'B CONTOURS ON FLUX SURFACE

315.0'
T“'E*Tﬂ (?0\0'\40.\ Ama!t )

- .. [SIDE

100.0 5.0 20.0

Toreidal Field Teviod



R esonance Layer 1s Wive iF 1T occurs
Near The SAvoce Poinr

= Nonlinear Excursions are $+ron3¢s'e

a w(tk
riear 1‘3‘ ORNL-DWG 84-3811R FED

Zlem)

40
70 180 1190 200 210 220 230 240 250
X
R (cm)



Co,d elec-évons are ed..'.l‘n '('Y"PTQJ neav \'esonanet
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ELECTRON MuL‘T\'PL\CATION Mober 15 Simar
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o The resomance lgcv can not be “bhinner”
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Consider 1-D Eguation of Motion

Lov model evanescent porallel electeic Sield
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