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LATIN SQUARE THREE-DIMENSIONAL BALL PLATE (A Practical Approach
to Evaluation of Coordinate Measuring Machine Capability)

BDX-613-2682, Topical Report, Published October 1981

Prepared by L. L. Jones

Electronic coordinate measuring machines (CMM) represent the
state-of-the-art in automatic three-dimensional measuring equip-
ment. Current techniques for determining measurement capability
of CMM are complex. A Latin square three-dimensional ball plate
has been developed to evaluate the measurement capability of a
CMM in three dimensions. The unique allocation of tooling balls
in an XYZ space permits data to be obtained that is balanced
statistically and can be analyzed quickly by using the analysis
of variance techniques for a Latin square experimental design.
The analysis of this data is used to determine quantitative
measures of the precision and systematic error of CMM in three
dimensions and to identify sources of error in machine geometry.
This ball plate currently is used to determine CMM capability and
to identify source(s) of error in machine geometry. This device
requires 70 percent less time than some conventional techniques
to estimate CMM capability in three dimensions. b
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SUMMARY

Electronic coordinate measuring machines (CMMs) represent the
state-of-the-art in automatic three-dimensional measuring equip-
ment. Current techniques to determine the measurement capability
(precision plus systematic error) of a CMM are complex. Knowledge
of this capability is important because it can affect machine |
productivity. A Latin square three-dimensional ball plate (LS3DBP)
has been developed to obtain data that can be analyzed to determine
the measurement capability of a CMM. The determination is achieved
by a unique allocation of the heights of tooling balls in three
dimensions. This allocation is achieved by using the concept of

a Latin square experimental design. Data obtained from this
configuration can be analyzed quickly by using the standard
analysis of variance technique for a Latin square experimental
design. The LS3DBP can reduce the time required to determine CMM
measurement capability by 70 percent, compared to some conventional

methods.

The information determined from the analysis is precision, systematic
error, and identification of error sources in CMM geometry. This
information provides a quantitative basis to determine whether

the CMM can adequately measure a product and to assure that the
decision regarding product acceptability has a high probability

of being correct.



DISCUSSION

SCOPE AND PURPOSE

The Latin square three-dimensional ball plate (LS3DBP) is an
innovation in the current technology of determining directly the
measurement capability of coordinate measuring machines (CMMs).
The advantage of this innovation to earlier art lies in the |
unique allocation of the heights of tooling balls in three dimen-
sions (Figure 1). This allocation is achieved by using the
concept of a Latin square experimental design. The heights of
the tooling balls (cones) are arranged in a three-~-dimensional
pattern. Data obtained from using this configuration are balanced
statistically and can be analyzed Quickly by using the standard
anal&sis of vériance technique for a Latin square experimental
design. The analysis of data obtained by use of'this device is
used to determine quantitative measures of the precision and
systematic error of CMMs in three dimensions and to identify

error sources in machine geometry.

ACTIVITY

CMM

Electronic coordinate measuring machines represent the state-
of-the-art in three-dimensional measuring equipment. Although
thousands of CMMs are in use throughout the world, current tech-
niques for determining precision and systematic error are complex

and not readily available or used by most users and manufacturers.



Figure 1. Latin Square Three-Dimensional Ball Plate

One report! describes the significance and versatility of CMMs.
Appendix A lists sources that can supply information about
examples of CMMs. Classifications of CMMs are in Appendix B.
Knowledge of CMM measurement capability is important because it
can affect machine productivity, which will be demonstrated in

a subsequent section.



Uses of LS3DBP

The LS3DBP is used to obtain data that is analyzed by using the
analysis of variance (AOV) technique to determine the measurement
capability of a CMM and to identify source(s) of error in machine
geometry. The analysis technique is simple, straightforward, and
can be performed in about one hour by an indi?idual with no
background in statistics who uses a hand calculator. (The AOV
computational procedure can also be programmed into the micro-
processor interfaced with a CMM.) The LS3DBP can be used with
any CMM with a working space that will accommodate its configura-
tion. The information that can be determined through analysis

of data from the LS3DBP follows.

Measurement Capability

Measufement capability (accuracy) of a coordinate measuring
machine is characterized by precision and systematic error
(bias), determined relative to a given calibrated fixture.
Precision is a random'(inherent) error in the measurement process
of a CMM. This error is determined by the inability of the
measurement process of a CMM tb obtain the same values (X and/or
Y and/or Z) when the same point is measured more than once. The
magnitude of this error may vary from one location to another

within the working space of a CMM,

Systematic error (bias) is the. difference between the true value

of a characteristic and the average of repeated measurements of



that characteristic. This study deals with systematic error that
is caused by crror in CMM geometry. Thus, systematic error is
determined by bias introduced into the measurement process by
movement along the X-, Y-, and Z-axes. Other factors that may
contribute to systematic error are environments, operators, and
calibration error. These factors are not considered in this
study and subsequent analyses. CMM measurement capability is
variation in the measurement process that consists of precision
plus systematic error. The characterization of this capability
in this study is denoted by GZCMM and is a univariate representa-
tion of the observed variability in a three-dimensional space.
This characterization provides the CMM user with a quantitative
measure of the machine's measurement capability and a basis for
determining whether a CMM can measﬁre product adequately and for
assuring that a decision regarding product acceptability has a

high probability of being correct.

Identification of Errors in CMM Geometry

There are 21 sources of error in machine geometry that can introduce
inaccuracy into the measurement process. Such inaccuracy results

in misclassification of parts. (Misclassification means to

accept a defective part or to reject a good part.) Each source

of error produces a unique pattern of systemctic errors (bias) in
the deviations from nominal. These patterns may be characterized

as to which axis movement affects the deviations, and the form of

the effect on the deviations of that axis movement. An advantage
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of the LS3DBP is that the analysis of variance, from which quanti-
tative estimates of the factors affecting machine capability are
obtained, also can be used to identify sources of error in CMM
geometry. Balanced data from an experimental design (Latin
square) supply quantitative estimation of systematic bias, both

in magnitude and form. A study involving simulated data from a
cantilever design CMM indicates that the type of error can be
identified by proper interpretation of the Latin square analysis
of variance.? (This will be discussed further in the section on
identification of machine geometry error.) Rapid identification
of the source of error reduces machine downtime for adjustments
and thus increases productivity. Proper adjustment of the machine
will reduce inaccuracy, which will in turn reduce the probability

of misclassifying a part.

Description of the LS3DBP

Design Concept

Statistically balanced data are the most efficient means of
obtaining information about a system. Other current methods of
evaluating CMMs in three dimensions cannot adequately determine
deviations from nominal values simultaneously in XYZ space that
are balanced and that can be analyzed by using simple statistical
techniques. The inadequacy of other methods exists because the
associated deviqes must be moved to obtain balanced data. This
‘movement introduces an additional source of variability into the

measurement process that cannot be isolated. The data obtained

11



by methods that require moving such devices fail to provide the

best determination of the measurement capability of the CMM.

The LS3DBP overcomes this inadequacy caused by movement by using
the concept of a Latin square experimental design in a single
construction. A distinct advantage of the single construction is
the reduction of CMM time required to obtain data to determine
machine capability in XYZ space. Current methods can require the
use of a two-dimensional ball plate evaluated three times at one
location in the XY plane; then tilted on its longest side and
evaluated three times in the YZ plane; then rotated 90° and
evaluated one time in the XZ plane. Tilting in ball plate on its
side can be a potential source of error because the plate may
deform iﬁ this position. The total time required is three and
one-half hours (30 minutes for each evaluation). The LS3DBP
requires no movement and provides simultaneous data in XYZ space.
Two evaluations require only one hour (30 minutes for each evalua-
tion), a 70 percent reduction in the time required to obtain data

in XYZ space. This time savings increases CMM productivity.

A Latin square of side n, orAan n by n Latin square, is an arrange-
ment of n letters, each repeated n times, in a square array of

side n in such a manner that each letter appears only once in

each row and column. An example of a 4 by 4 Latin square (n = 4)
is shown in Figure 2. A two-dimensionai representation of a

LS3DBP (n = 4) is presented in Figure 3. The actual device is

shown in Figﬁre 1.



A, B, C, AND D DENOTE 4 DIFFERENT
FACTORS OR 4 DIFFERENT LEVELS-OF
A SINGLE FACTOR OR TREATMENT.

Xi - DENOTES DISTANCE ALONG
THE X-AXIS (i=1, 2, 3, 4)

Y; - DENOTES DISTANCE ALONG
THE Y-AXIS (j=1, 2, 3, 4) '

Z, - DENOTES DISTANCE ALONG
THE Z-AXIS (k=1, 2, 3, 4)

ROW 4 B C A D
ROW 3 C B D A
ROW 2 D A C B
ROW | A D B C
COL | COL 2 COL 3 COL 4

Figure 2. A Four by Four Latin Square
Ya Zz Z; Zl 24
Ys Z; Z, Zs Z
Y Z, Zi Z, 2,
Y zZ Z. Z, zZ,
X| XZ Xl X.s

<

Figure 3. Two-Dimensional Representation of a Latin

Square Three-Dimensional Rall Plate
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Data obtained from a Latin square experimental design are balanced
statistically and therefore can be analyzed by using the analysis
of variance technique. (This technique will be illustrated in a
subsequent section.) The balance concept implies that each level
of each factor occurs equally often at each level of all remaining
factors (Figure 2). The levels are axis distance and the factors
are axes. In Figure 3, the distance X1 occurs exactly once with
each distance of Y(Yl, Y2, Y3, Y4), and with each distance of
Z(Zl’ ZZ’ 23, 24). The same is true for XZ’ X3, and X4, and

about Y and Z. The advantage of the "balancing" concept is that
determination of precision and accuracy for the analysis of data

is applicable over the total range the three axes were moved.

Physical Characteristics

The dimensions of the LS3DBP is 18 by 18 by 11 in. (X by Y by Z).
These dimensions were selected to be compatible with CMMs at
Bendix Kansas City. The cone heights are approximately 9, 6, and
3 in., respectively. The approximate height of the cored bench
plate is 2 in. The bench plate and cones are made from the alloy
meehanite to provide strength and stability.' The cones are 3 in.
in diameter at the base, and the walls are 1/2-in. thick. The

cones have been cored and tapered to a 1l-in. diameter at the top

to reduce weight and to provide a solid base to maintain stability.

The cones, grouped together (9-and 0-in. heights, and 3-and 6-in.

heights), provide even weight distribution to each quadrant of

14



the plate. (In Figure 3, Zl = 9 in.; 22 = 6 in., 23 = 3 in. and
24 = 0 in. heights.) Each cone is fastened to the bench plate

with four cap screws and two dowell pins.

The tooling balls are 5/8-in.-diameter tungsten carbide balls,
grade five, and the uniformity between balls for diameter and
sphericity measures within 0.000010 in. These balls are press-fit
into the cones and bench plate. Holes have been drilled into

each side of the plate to provide a location for plate temperature
to be monitored. Other holes have been drilled at three locations
in the bottom for feet to establish three points of surface
contact to define a plane. If stress relief occurs, the deforma-
tion will always be consistent if the plate is resting on three

points.

Determining the point coordinates of the tooling balls (Table 1)
should be accomplished as accurately as possible. The point
coordinates in Table 1 were obtained by using a Sheldon Coordinate

Measuring Machine (Figure 4) and have been assigned an accuracy

(uncertainty) of #0.000180 in. It is expected that this uncertainty

may be reduced by additional measurements of these coordinates.
In practice, the estimate of coordinate accuracy would be combined
with the estimates of precision and systematic error of the CMM
to completely describe the accuracy of the CMM. The point coordi-

nates become the nominal values.
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Table 1. Point Coordinates for Gage Master for the
Three-Dimensional Measuring Machine*

Point X Coordinates Y Coordinates Z Coordinates
Number (In.) (In.) (In.)
1 0.000000 0.000000 0.000000
2 5.000328 0.001090 -8.999770
3 10.001227 -0.000417 -2.999062
4 15.001312 0.000000 -5.999860
5 0.000884 5.001870 -8.999847
6 5.000450 5.000704 0.000838
7 10.003708 4.997918 -5.998178
8 15.001899 5.000274 -2.998789
9 0.000616 10.002434 -5.999860
10 5.001917 10.001809 -2.998642
p I 10.001670 9.999530 -8.997912
12 15.002967 10.000883 0.000786
13 0.001012 15.002576 -3.000078
14 5.000853 15.002546 -6.001035
15 10.000411 15.005720 0.000000
16 15.001188 14.999662 -9.000279

*Accuracy of a given coordinate is *0.000180 in.




Figure 4. Sheldon Coordinate Measuring Machine

Data Collection

Data is collected by using the LS3DBP in the following manner.
The device is placed on the table of a CMM (Figures 5 through 7).
In this example, cone one is selected as the reference ball. The
machine is started at this location. The probe is then moved
from ball to ball in sequence (1, 2, 3, 4, 5, 6,..., 16). At
each ball location, X, Y, and Z observed values are obtained

automatically. (In most machines the nominal values are read
into the CMM computer so that deviations from nominal can be

obtained automatically.)

17



Figure 5. Close-Up of Probe at Point One

Notation

The following notation is used in this analysis.

oiDEV = A quantitative measure of variation of deviations from
X nominal.
O%DEV = A quantitative measure of variation of deviations from

Y nominal.

18



Figure 6.

a

Figure 7.

LS3DBP on Table of CMM With Probe
at Point 12

LS3DBP on Table of CMM With Probe
at Point Five
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Z nominal.

Oyppy - A quantitative measure of variation of deviations from

oRr = A quantitative measure of inherent random variation in
the measuring process, determined by both repeated
observations and/or residual interaction.

oi = A quantitative measure of systematic error in deviations
from nominal because of movement of the probe along the
X-axis.

0% = A quantitative measure of systematic error in deviations
from nominal because of movement of the probe along the
Y-axis.

c% = A quantitative measure of systematic error in deviations
from nominal because of movement of the probe along the
Z-axis.

GSMM = A quantitative measure of capability of a coordinate

measuring machine.

Determining the Capabhility of CMMs

An example of the analysis technique is presented. In Table 2

are a set of nominal values and sample data readings from a

coordinate measuring machine obtained by using the LS3DBP. For

20



Table 2.

Sample Data to Demonstrate Analysis
Technique for Data From LS3DBP

Nominal Observed OBS-NOM

Pt = Axis Values Values (puin.)
1 X 0.000000 0.000000 0
: Y 0.000000 0.000000 0
Z 0.000000 0.000000 0
2 X 4.999490 4.999500 10
Y 0.001590 0.001590 0
Z -9.000310 -9.000310 0
3 X 10.000910 10.000920 10
Y -0.000450 -0.000490 -40
v/ -2.999960 -2.999960 0
4 X 15.000750 15.000770 20
Y 0.000020 -0.000020 -40
Z -6.001260 -6.001300 ~40
5 X 0.000200 0.000220 20
Y 5.002580 5.002580 0
vA -8.999640 -8.999640 0
6 X 5.000510 . 5.000450 -60
Y 5.000690 5.000650 -40
Z 0.000710 0.000750 40
7 X 10.003230 10.003210 -20
Y 4.998210 4.998170 -40
yA -5.998780 -5.998820 -40
8 X 15.001730 15.001750 20
Y 5.000260 5.000180 -80
Z -2.999800 -2.999800 0
9 X 0.000470 0.000490 20
Y 10.002890 10.002890 0
Z -5.999370 -5.999450 -80
10 X 5.001930 5.001990 60
Y 10.001950 10.001910 -40
Z -2.998460 -2.998580 -120
11 X 10.001180 10.001200 20
Y 9.999860 9.999940 80
yA -8.998270 -8.998350 80
12 X 15.003230 15.003330 100
Y 10.000570 10.000570 0
v/ 0.000040 0.000000 -40

21



Table 2 Continued. Sample Data to Demonstrate
Analysis Technique for Data
From LS3DBP

Nominal Observed OBS-NOM

Pt Axis Values Values (pin.)
13 X 0.001140 0.001160 20

Y 15.003010 15.002970 -40

Z -2.999210 -2.999290 -80
14 X 5.000590 5.000650 60

Y 15.002970 15.003010 40

Z -6.000630 -6.000710 -80
15 X 10.000670 10.000690 20

Y 15.005610 15.005650 - 40

Z 0.000040 0.000000 =40
16 X 15.000750 15.000770 20

Y 15.000020 14.999940 =80

Z -9.000830 -9.000940 =110

simplification in this study, the subsequent analyses assume that

the nominal values in Table 2 are the true values. In practice,

the true values are not known and the uncertainty of the point
coordinates would be combined with the measures of precision and
systematic error of the CMM to completely describe the accuracy

of the CMM. A statistical layout of the data is presented in

Figure 8 for the X, Y, and Z deviations from nominal. The objec-
tive of the analysis will be to estimate the precision and systematic

' . . ~2 _ A2
error of the CMM being evaluated. For this study ScmM = OXpEV +

2 2 ,
Sypev * 9zppys Where:

22



2 Ca2 a2 L A2 L A2
Oxpgv = %x * Oy * Oz * Opys

2 a2 a2 L A2 L a2
Oyppy = Ox * Oy * 07 + Opy; and
L2 L a2 a2 a2 a2
OzpEv - Ox * Oy * 07 * Opg-

The symbol "~ denotes a value estimated from using observed data.

These components (02) are determined directly from the analysis

of variance table. Table 3 shows a generalized analysié of

variance table for a 4 by 4 Latin square. The computation procedure
for data from the LS3DBP is also in Figure 9 for deviations from

X nominal. Table 4 shows the AOV table for deviations from

X nominal. The components used to determine machine capability

are obtained by simplé algebra, indicated by using the mean-square
column and the expected mean-square column. For example, the
estimate of precision is 6§X'= 1250 pin.2. To estimate the

component caused by movement along the Z-axis,

- Eyg

If this value is negative, set 8% = 0. Similarly,

23



DEVIATIONS FROM X NOMINAL (xIN.)
' DISTANCE ALONG THE X-AXIS (INCHES)

Xi=0 X2=5 X;=10 Xs=15

Z, Zs Z, Z;
Y| = 0
0 10 10 20
Z4 ZI Z; ZZ
DISTANCE Y2772 20 60 220 20
ALONG THE T
Y-AXIS A Z Z; Zs Z
(INCHES) Y>=10 20 60 20 100
Z Z 7, Z|
Y4 = 15
20 60 20 20

DEVIATIONS FROM Y NOMINAL (uIN.)
DISTANCE ALONG THE X-AXIS (INCHES)

Xi=0 X,=5 X;=10 Xs =15

Z, Z, Z, Z,
Y[ =0
0 0 -40 -40
Z, Z, Z; Z,
Yz =35
DISTANCE 0 -40 -40 -80
ALONG THE 7 Z Zs Z
Y-AXIS Y:=10
(INCHES) : 0 -40 80 0
Z, VYARE Z, Z,
Y4 =15
-40 40 40 -80

Figure 8. Data From Table 2 in Latin Square Matrix (Reference
Weight Z; [9-in. cone] = 0, Z, = -3, Z3 = -6, Z4 - 9.)
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DEVIATIONS FROM Z NOMINAL (uIN.)
' DISTANCE ALONG THE X-AXIS (INCHES)

Xi=0  X=5 X;=10 X,=15

Z Z Z Z
Yl =90 1 4 2 3
0 0 0 -40
; Zs Z "Zs Z,
Y:=5§ )
DISTANCE- 0 40 -40 0
ALONG THE Z Z Z. Z
Y-AXIS Y;=10 )
(INCHES) -80 -120 80 -40
- Z Zs Z Zs
Y. =15
-80 -80 -40 -110

Figure 8 Continued. Data From Table 2 in Latin Square Matrix
(Reference Height Z; [9-in. conel] = 0,
22 = '3, 23 = '6, Z4 = -94,)

and

Xys - Eys

A2 -

OX bl ﬁ""—"—.
The analyses of deviations from Y and Z nominal .are similar to
those for deviations from X nominal. Replace the deviations from
X nominal in Figure 9 by the appropriate set of deviations and

compute the AOVs. The AOVs are presented in Tables 5 and 6 for

25



2

C = (Sum of Xdev)2/16 = [(0)+(10)+(10)+...+(20)]%/16 = (3fg = 6400
2 2 2 2 2
Tss = Sum of (Rdev) 2~ C=[(0)%+(10)2+(10)+. . .+(20)%]-6400=24600-6400=18200
2.2 2.2
KR+ X24X 2 2 2 2
Xss = — 24 3 4 _ ={60) +(70) Z(3°) +(160)” _ ¢ - 8750-6400 = 2350
2.2 .22
Y2472 4x%4x 2 2 2 2
Yss = — 24 34 _ c=(40) +(=40) 2(200) (12007 _ ¢ - 14400-6900 = 8000
2,22 2
2247%47%42 2 2 2 2
zes = 123 & _ (600 +(110) +(80) +UD)_ _ ¢ - 750-6400 = 350
Ess = Tss~Xss-Yss-Zss = 18200-2350-8000-350 = 7500
Whefe:

X1=Sum of all deviation from X Nominal at X = 0

X1 =0+ 20 + 20 + 20 = 60

X2=Sum of all deviation from X Nominal at X = 5
X2 10+ (-60) + 60 + 60 =70
X3=10 + (-20) + 20 + 20 = 30

X4=20 + 20 + 100 + 20 = 160

n

Yl=Sum of all deviation from X Nominal at ¥ = O

Y1 =0+ 10 + 10 + 20 = 40
Y2=20 + (-60) + (-20) + 20 = =40
Y3=20 + 60 + 20 + 100 = 200
Y4=20 + 60 + 20 + 20 = 120

N
]

Z,=Sum of all deviation from X Nominal at Base Height (9~inch cone)

1
Z, = 0+ (-60) + 20 + 100 = 60
2,210 + 20 + 60 + 20 = 110
Z,=20 + (-20) + 20 + 60 = 80

Z4=10 + 20+ 20+ 20 =170

Figure 9. Computational Technique to Compute Sum of Squares
for a Four by Four Latin Square
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Table 3. Generalized Analysis of Variance for Four by Four
Latin Square With No Repeated Runs

Source of Degrees of Sum of Mean Expected
Variation Freedom Squares Square Mean Square
Total 15 Tss

X 3 Xss Xms=Xss/3 0% + 40§

Y 3 Yss Yms=Yss/3 oé + 40%

yA 3 Zss Zms=Zss/3 oé + 40%
Error* 6 Ess Ems=Ess/6 0%

* residual

deviations from Y and Z nominals, respectively. The results from
the AOVs are used to determine CMM measuremeﬁt capability. (The
aforementioned analyses can be programmed into the microcomputer
interfaced with the CMM, a procedure that requires 300 to

400 programming steps. Calculations could begin as soon as the
first data point is taken, and the complete analysis would be
finished almost as soon as the last data point was taken. Other-
wise, about one hour is required, using a non-programmable

scientific hand calculator.)

e . A o _|.2 2 2
Precision is defined as tzoCMMR’ where UCMMR."J;XR + OYR + OyRr"

For the data in this example, & yp = J1250 + 1467 + 2490 = /5207
72 pin. = 0.000072 in. Therefore, precision = *0.000144 in.
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Table 4. Deviation From X Nominal (pin.z)

Source of Degrees of Sum of Mean Expected
Variation Freedom Squares Square Mean Square
Total 15 18200
. 2 2
X 3 2350 783 orx * 40X
2 2
Y 3 8000 2667 opx t 40Y
2 2
Z 3 350 117 orx * 402
. N 2
Error? 6 7SQO 1250 OR¥
*residual

Component Estimation
2

62, = 1250
62 = -0 °
62 = 354
62 = 0
62 gy = 1606

. L . . A~ a _.]x2
Machine capability is defined as iZUCMM, where G oMM —‘IOXDEV +

2 .2
Sypev * 9zDEV"

1999 + 3190 = (6793 = 82 pin. = 0.000082 in. Therefore, machine

For the data in this example, Gy = v1604 +

capability = %0.000164 in.

This information is then used to determine whether the machine
has the capability of correctly classifying parts submitted to be

inspected. Parts whose "specifications" or tolerance requirements
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Table 5. Deviations From Y Nominal (pin.z

)

Source of Degrees of Sum of Mean Expected
Variation Freedom Squares Square Mean Square
Total 15 28400
X 3 7600 2533 o2, + 402
. RY X
‘ 2 2
Y 3 5200 1733 Opy + 4oY
2 2
Z 3 6800 2267 opy + 4oZ
2
*
Error 6 8800 1467 ORy
*residual

Component Estimation

A2

6py = 1467
A2

Og = 200
63 . = 66
ag = 266
52 = 1999
YDEV =

are less than or close to the machine tolerance cannot be
adequately inspected by using the machine; if the& are inspected,
misclassification may result. To illustrate, suppose, for
example, that the diameter of a critical pért has a tolerance
requirement of +0.000164 in. For the measurement machine, in the
aforementioned study, the capability is £0.000164 in. Based on
these tolerances, if the variation in the process is such that

the process is making five percent defective parts, then 14 percent

29



Table 6. Deviations From Z Nominal (pin.2

)

Source of Degrees of Sum of Mean Expected
Varlation Freedom Squares Square Mean Square
Total 15 43844
X 3 14569 4856 02 + 402
RZ X
2 2
Y 3 5569 1856 URZ + 40Y
2 2
Z 3 8769 2923 Opg + 4oz
Error* 6 14937 2490 cgz
*residual

Component Estimation

62, = 2490
62 = 108
82 = o
82 - 592
62 gy = 3190

of the parts will be misclassified because of the magnitude of
machine accuracy. Then, suppose that, based on this information,
this magnitude of accuracy was determined to be unacceptable for
this part. By using tﬂe techniques described in the subsequent
section, it was détermined that there was yaw in the X-axis. The
CMM was then adjusted and its capability was determined to be
t0.00004; in. Now, the misclassification error rate would be only
two percent. Therefore, knowledge of the measurement capability of
a CMM can be used to determine whether the CMM can correctly

measure inspection items.
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Identification of Errors in Machine Geometry

The Latin square AOV has another important use in evaluating
CMMs. 1If a CMM is out of calibration or exhibits excessive
variation or both, it is desirable to make the necessary adjust-
ments to bring the CMM back into calibration (reduce its inaccuracy).
Currently, the approach to determine the necessary adjustments is
based on experience and trial and error. An advantage of the
LS3DBP is that the analysis of variance, from which quantitative
estimates of the factors affecting machine measurement capabili-
ties are obtained, can also be used to identify sources of error
in CMM geometry. A study involving simulated data from a canti-
lever design coordinate measuring machine indicates that the type
of error--yaw, pitch, roll in X/Y/X, point—to—point.positioning

in X/Y/Z, ana out-of-squareness (XY, XZ/and YX) can be identified
by proper interpretation of the Latin square analysis of variance.?
The results of this study are summarized in Table 7. Each source
of error produces a unique pattern regarding which deviations

from nominal are affected, which axis affects the deviation, and
the form (linear, quadratic and/or cubic) that the effect of axis
movement has. From Table 7, yaw in the X-axis is identified by
linear and cubic (Ll,c) effects on X deviations from nominal when
movement along the X-axis is present. Tn addition, movement

along the X-axis causes a small quadratic effect on deviations

from Y nominal.
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Table 7. Summary of Analysis Results on Simulated Data From Cantilever Design CMM

Classification
cf Error

Source XDEV YDEV

of

Error X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Axis Movement Axis Movement

ZDEV
Axis Movement
X~-Axis Y-Axis Z-Axis

Foint to Point

YAW

Pitch

Roll

-
=]

In
In
In
In
In
In
In
In
In
In
In

Out of Squareness XY

XZ

YZ

"
[

Lq(YZ) L, (y2)

N o= XN X N N
=

L1~

S
q

51

Lq(xy) Ll(xy) Sl’c
Lq(YZ) L, (yz)

NOTATION:

N = U=
1

Denotes
Denotes
Denotes
Denotes
Denotes

Large Effect
Small Effect
Linear Effect
Quadratic Effect
Cubic Effect




The determination of the linear, quadratic, and cubic effects is
as follows. Consider the AOV for deviations from X nominal in
Table 4. The three degrees of freedom for movement along each
axis can be separated,into three independent effects--linear,
quadratic, and cubic. This separation is achieved by the use of
orthogonal comparisons for equally spaced data.® Figure 10
iilustrates the coefficients and divisors with the computational
procedure to obtain the three effects. A complete separation of

the axes (X, Y, and Z) sums of squares is in Table 8.

To judge which sources are significant, consider first only these
axes whose mean square is of some predetermined magnitude greater
than the error mean square. The predetermined magnitude can be a
tabulated F to determine statistical significance.? (Regardless
of the statistical significance, this magnitude should be judged
for practical significance relative to specified CMM precision.)
A conservative test of significance is to consider those sources
whose mean square is more than twice the magnitude of error mean
square. By applying the conservative test to the mean square in
Table.8, the Y-axis is significant and Y1 and Yc would be candi-
dates. In Table 9, no axes are significant. In Table 10, only
the Y-axis approaches twice the error mean square, and Y1 is A

potential candidate.
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Coefficient and divisors for separation of sums of squares of axis move-
ment for data from LS3DBP.

Degrees of

.Contrast Freedom Coefficient Divisor
Linear (1) 1 =3,-1,+1,+3 20
Quadratic (q) 1 +1,-1,-1,+1 4
Cubic (c) 1 -1,+3,-3,+1 20

Computational Procedure

1. Take the 4 totals for the X-axis (Figure 9) (Deviation from X
nominal)

P
»
>

e ) 3 %

0 70 30 160

X, = [-3(60) - 1(70) + 1(30) + 3(160)]% / (20)(4) = 845
5k§ = [+1(60) - 1(70) - 1(30) + 1(160)] / (4)(4) = 900
X_ = [-1(60) + 3(70) - 3(30) .+ 1(160)1% / (20) (4) = 605

2. The previous three sums of square equal the sums of squares for X in
Table A-5 (845+900+605=2350)

3. For the effect of Y»axis on deviation from X nominal

zl Y2 Y3 Y4

40 =40 200 120
Y1 = [-3(40) - 1(-40) + 1(200) + 3(120)]2 / (20) (4) = 2880
Y = [+1040) - 1(=40) - 1(200) + 1(120)1% / (4)(4) = 0
Yc = [-1(40) + 3(-40) - 3(200) + 1(120)]2 / (20) (4) = 5120
4, For separation of contrasts for Z-axis on deviation from X nominal

ol e A | %

- 60 110 80 70

Y, = [-3(60) - 1(110) + 1(80) + 3(70)1% 7 20)) = 0

= [+1(60) - 1(110) - 1(80) + 1(70)1% / (4)(4) = 225

q
= [-1(60) + 3(110) - 3(80) + 1(70)]1% / (20)(4) = 125

Cc

The complete analysis breakdown is presented in Table 8;

Figure 10. Coefficient and Divisors for Separation of Sums
of Squares of Axis Movement for Data From LS3DBP
and Computational Procedure



If the previous data had been taken on a cantilever design CMM,
the candidates (Y1 and YC on deviations from X nominal and Yl on
deviations from Z nominal) could be compared to the results in
Table 7 to determine the source of errors in machine geometry.
However, the data that were used in this discussion to demonstrate
the analysis procedure is from a bridge design CMM. A comparison
i1s not meaningful because the patterns of deviations are expected
to be different for each of the five major design configufations
(Appendix B). The philosophy used to evaluate error identification
for a cantilever design can be applied to other CMM design con-
figurations to develop results for each configuration, as shown

in Table 7. To date, only the results of the cantilever design
have been determined. An investigation to define error patterns

in other design configurations is underway.

CONCLUSIONS

Coordinate measuring machines are an important factor in meeting
the challenge to improve productivity in the field of quality
assurance. These machines can fulfill this function only if they
are measuring to their designed capabilities. The Latin square
three-dimensional ball plate (LS3DBP) can be used to determine

the measurement capabilities of a CMM in three dimensions. Data
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Table 8. Expanded Analysis of Variance for
Deviations From X Nominal for
Separation of Axis Sum of Squares
Into Three Orthogonal Contrasts for
Use in Identification of Sources of
Error in Machine Geometry

Source of Degrees of Sum of Mean
Variation Freedom Squares Square
Total 15 18200
X 3 2350 783
'Xl 1 845 845
Xq 1 900 900
XC 1 605 605
Y 3 8000 2667
Y, 1 2880 2880
Yq 1 0 0
Y, 1 5120 5120
Z 3 . 350 117
Zq 1 0 0
: -
Zq 1 225 225
Z 1 125 125
c
Error* 6 7500 1250
*residual

obtained by use of the LS3DBP are statistically balanced and
therefore can be analyzed quickly by using the analysis of variance
technique. The information that can be determined from the analyses

followse:
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Table 9. Expanded Analysis of Variance for
Deviations From Y Nominal for
Separation of Axis Sum of Squares
Into Three Orthogonal Contrasts for
Use in Identification of Sources
of Error in Machine Geometry

Source of Degrees of Sum of Mean
Variation Freedom Squares Square
Tofal 15 28400
. X 3 7600 2533
X, 1 2000 2000
Xq 1 3600 3600
X, 1 2000 2000
Y 3 5200 1733
Y, 1 11280 1280
Yq 1 0 0
Y, 1 3920 3920
Z 3 6800 2267
Zq 1 320 320
Zq 1 3600 3600
Z, 1 2880 2880
Error#* 6 8800 1467
*residual
® Precision;
° Systematic error (bias);

° Capability; and

® Identification of sources of error in CMM geometry..



Table 10. Expanded Analysis of Variance for
Deviations From Z Nominal for
Separation of Axis Sum of Squares
Into Three Orthogonal Contrasts for
Use in Identification of Sources of
Error in Machine Geometry

Source Degrees of Sum of Mean
Variation Freedom Squares Square
Total 15 43844
X 3 5569 1856
Xy 1 61 61
Xq 1 2257 2257
X, 1 3251 3251
Y 3 14569 4856
Y, 1 11762 11762
Yq 1 2256 2256
Y, 1 551 551
Z 3 8769 2923
Zq 1 1 1
Zq 1 8557 8557
Z, 1 211 211
Error* 6 14937 2490
*residual

This information provides a quantitative basis to determine
whether the CMM can adequately measure a product and to assure
that the decision to accept product has a high probability of

being correct.
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Appendix A
INFORMATION ABOUT EXAMPLES OF COORDINATE MEASURING MACHINES

Information about various types of coordinate measuring machines
can be obtained from these companies:

Digital Electronic Automation, Incorporated
36310 Ecorse Road
Romulus, MI 48174

Mitutoyo Instrument Center
14847-B Proctor Avenue
City of Industry, CA 91746

Boice Division

Mechanical Technology, Incorporated
968 Albany-Shaker Road

Latham, NY 12210

Carl Zeiss, Incorporated
IMT Division

1 Skyline Drive
Hawthorne, NY 10532

Bendix Automation & Measurement Division
Springfield and Thomas Streets
Dayton, OH 45401



Appendix B
CLASSIFICATIONS OF CMMs

(The material in this appendix has been taken from an initial draft

of ASME B89.1.12 Committee--CMM Industrial Standard.

This material is included for general information regarding various
types of CMMs. Permission to incorporate this material was granted

by Erwin Loewen, Chairman of ASME B89 Committee.)
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CLASSIFICATION - The following descriptions relate to Coordinate
Measuring Devices employing moving mechanical components, the relative
motions of which are measured by a suitable encoding means. The devices
incorporate probing components utilized to interface with the object
being measured, which is restrained on a support table. Variations in

the methods of moving the mechanical components, the encoding means and
the probing components may be varied within each classification to further
expand the types of Coordinate Measuring Devices.

CANTILEVER - A measuring device employing three mechanical
components moving along mutually perpendicular axes. The
probing device is attached to the component with motion in

the vertical direction, which in turn is attached to the first
of the two horizontal components. The first is fixed to:the
second at one end ounly, in cantilever fashion, over the support
table. (see Fig. A)

BRIDGE - A measuring device employing three mechanical components
moving along mutually perpendicular axes. The probing device is
attached to the component with motion in the vertical direction,
which in turn is attached to the first of the two horizontal com-
ponents. The first is attached to the second at two locations
forming a bridge over the support table. (see Fig. B)

COLUMN - A measuring device employing one mechanical component
moving in the vertical direction to which the probing device is
attached. The support table is movable in two mutually perpen-
dicular horizontal directions. (see Fig. C)

HORIZONTAL ARM - A measuring device employing three mechanical
components moving along mutually perpendicular axes. The probing
device is attached to the first component movable in the horizontal
direction. This component is attached to the vertical component

in cantilever fashion over the support table. The vertical component
is attached to the second horizontal component. (see Fig. D)

GANTRY - A measuring device employing three mechanical components
moving along mutually perpendicular axes. The probing device is
attached to the component moving in the vertical direction, which
in turn is attached to the first horizontal component. - The first
component is attached to the second horizontal in two locations
‘bridging the support table (support jacks) in a location elevated
above the support table. (see Fig. E)

OTHER - Any machine utilizing axes configuration different than
stated in the above categories.
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. FIG. "B"
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~ FIG. “E"
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variance techniques for a Latin square experi-
mental design. The analysis of this data is
used to determine quantitative measures of the
precision and systematic error of CMM in three
dimensions and to identify sources of error in
machine geometry. This ball plate currently is
used to determine CMM capability and to identify
source(s) of error in machine geometry. This
device requires 70 percent less time than some
conventional techniques to estimate CMM capa-
bility in three dimensions.
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