

211
80
311° | 80°

MASTER

16. 807

UCRL-52882

ISC origin times for announced and presumed underground nuclear explosions at several test sites

Howard C. Rodean

December 3, 1979

Lawrence
Livermore
Laboratory

ISC ORIGIN TIMES FOR ANNOUNCED AND PRESUMED UNDERGROUND NUCLEAR EXPLOSIONS AT SEVERAL TEST SITES

ABSTRACT

Announced data for U.S. and French underground nuclear explosions indicate that nearly all detonations have occurred within one or two tenths of a second after the minute. This report contains ISC origin-time data for announced explosions at two U.S. test sites and one French test site, and includes similar data for presumed underground nuclear explosions at five Soviet sites. Origin-time distributions for these sites are analyzed for those events that appeared to be detonated very close to the minute. Particular attention is given to the origin times for the principal U.S. and Soviet test sites in Nevada and Eastern Kazakhstan, respectively. The mean origin times for events at the several test sites range from 0.4 s to 2.8 s before the minute, with the earlier mean times associated with the Soviet sites and the later times with the U.S. and French sites. These times indicate lower seismic velocities beneath the U.S. and French sites, and higher velocities beneath the sites in the U.S.S.R.

INTRODUCTION

The m_b : M_s relation for explosions at the Nevada Test Site (NTS) differs from that for explosions in most other parts of the world. Evidence indicates that this difference results mostly from high body-wave attenuation in the upper mantle beneath the western U.S. *Marshall, Springer, and Rodean* (1979) developed an empirical magnitude for body-wave attenuation in the upper mantle and applied it to both source (explosion) and receiver (seismometer) ends of the teleseismic body-wave path. Their magnitude correction is an empirical function of the P_n -wave velocity (upper-mantle superficial wave velocity). Marshall et al. assumed a strong correlation between seismic absorption in the upper mantle and the P_n velocity. In other words, their working hypotheses were that a relationship exists between P-wave velocity and Q in the upper mantle, and that the P_n velocity represents the quality of the upper mantle. They used P_n velocity data to develop magnitude corrections for 87 receiver (seismograph) and 10 source (explosion) locations. They designated their body-wave magnitude as m_Q to distinguish it from other definitions of m_b . Among their results, they showed that the m_b : M_s data for NTS explosions are anomalous with respect to the

data for explosions in other parts of the world, while the m_Q : M_s data are much less so.

The evidence considered by Marshall, et al. includes observations by many investigators that, in regions where observed P-wave amplitudes are generally low, P_n velocities tend to be low and P-wave arrivals are generally late. In their paper, Marshall et al. presented their correlations between P_n velocities and P-wave amplitude residuals as well as between P_n velocities and P-wave transit-time residuals in the main body and Appendix B, respectively. Their correlations were for the receiver (seismograph) locations; in this study the correlation between P_n velocity and travel time, as indicated by calculated event origin time, for source (explosion) locations is examined.

In this study, the ISC origin times for announced or probable underground nuclear explosions at two U.S., one French, and five Soviet test sites are analyzed. The data sets range from three explosions each at one U.S. and one Soviet test site, to 217 and 129 explosions at the principal U.S. and Soviet test sites, respectively.

The following discussion shows that the ISC origin times for events vary significantly from test

site to test site. The best statistical data are for the principal U.S. and Soviet test sites: the ISC origin times for NTS events tend to be less than one second before the minute while those for the principal Soviet test site in Eastern Kazakhstan tend to be about two seconds before the minute. Official an-

nouncements by the U.S. and France indicate that nearly all of their underground nuclear tests were conducted within one or two tenths of a second after the minute. It appears likely that the Soviets follow the same practice.

LOCATIONS OF TEST SITES

The locations of the test sites considered in this study may be found in the *Times Atlas* (1977). The principal U.S. test site, NTS, is approximately 150 km northwest of the city of Las Vegas. Three of the testing areas within NTS are identified in Plate III of the *Times Atlas*: Frenchman Flat, Yucca Flat, and Pahute Mesa. Three U.S. tests have been conducted on Amchitka Island in the Aleutians (Plate 113). The French have announced thirteen tests in the Sahara near En Ekker, approximately 150 km north of the city of Tamanrasset (Plate 88). The principal Soviet test site is approximately 150 km west-southwest of the city of Semipalatinsk in Eastern Kazakhstan, and is identified as the

Nuclear Testing Ground (NTG) in Plate 43. The Soviets have conducted their highest-yield tests (based on seismic magnitude data) on Novaya Zemlya (Plate 41). Most of these tests have been in the vicinity of the Matochkin Shar, a narrow strait that separates the northern and southern parts of the island. Some have been conducted at the southern tip of Novaya Zemlya near the village of Krasino. The Soviets have conducted a series of tests near the village of Azgir in the Ryn Peski, a sandy desert in Western Kazakhstan north of the Caspian Sea (Plate 45). Three Soviet tests have been conducted east of the Caspian Sea in the Ustyurt Plateau in Southwestern Kazakhstan (Plate 43).

SOURCES OF DATA

The source of seismic data for this study is the International Seismological Centre (ISC) which publishes a monthly *Bulletin* and a semi-annual *Regional Catalogue of Earthquakes*. Both publications indicate if an event is probably an explosion; the *Regional Catalogue* includes a list of probable explosions.

The U.S. and France have announced data for many of their underground nuclear explosions. In this study, the data for U.S. explosions are from

Springer and Kinnaman (1971,1975), and the data for French explosions are from *Duclaux and Michaud* (1970). The Soviet Union has not released any data that could be used in this study. Therefore, the publications of *Nordyke* (1975) and *Dahlman and Israelson* (1977) were used together with ISC data in locating sites at which series of events (presumed underground nuclear explosions) have occurred.

ANNOUNCED OR PRESUMED EXPLOSIONS

The first semi-annual *Regional Catalogue of Earthquakes* published by the ISC was for the period of January through June 1964. The *Regional Catalogue* includes a list of probable explosions that is very convenient for use in studies of explosion seismology. Therefore, the data sets for U.S. and

Soviet explosions begin in 1964. The set for the U.S. extends through 1973, the last year covered by *Springer and Kinnaman*. The set for the U.S.S.R. extends through 1976, the last year for which ISC data were available. *Duclaux and Michaud* presented data for 13 French underground tests in the

Sahara during 1961-1966; ISC publications for this period contain data for only five of these events.

Announced and ISC data are presented in Table 1 for U.S. tests at the NTS, and in Table 2 for U.S. tests on Amchitka. Announced and ISC data for French tests in the Sahara are given in Table 3. ISC data for presumed Soviet tests at the NTG, on Novaya Zemlya, near Azgir, and on the Ustyurt Plateau are given in Tables 4 through 7, respectively.

TABLE 1. Announced and ISC data for 217 U.S. tests at NTS from 1964 to 1973. These tests are listed in both the data summaries by Springer and Kinneman and the ISC publications. The locations of these tests are centered at approximately 37°N - 116°N .

Date	Name	Time, GMT (h-m-s)		ISC depth, km	No. obs. to ISC	ISC m_b
		Announced	ISC			
640116	Fore	16 00 00.15	16 00 02.4 \pm 0.16	25 \pm 6.6	50	5.2
640123	Oconto	16 00 00.15	16 00 01.8 \pm 0.29	15 \pm 31	20	4.2
640220	Klickitat	15 30 00.14	15 30 02.1 \pm 0.19	20 \pm 8.1	47	5.1
640313	Pike	16 02 00.12	16 02 00.1	0	14	—
640414	Hook	14 40 00.12	14 39 59.7 \pm 0.21	0	15	—
640415	Sturgeon	14 30 00.12	14 30 06.6 \pm 2.0	0	12	—
640424	Turf	20 10 00.16	20 10 01.3 \pm 0.22	17 \pm 9	55	5.2
640429	Pipe Fish	20 47 00.12	20 47 00.1 \pm 0.39	0	17	4.1
640514	Backswing	14 40 00.15	14 40 00.1 \pm 0.28	0	20	—
640515	Minnow	16 15 00.12	16 14 59.6 \pm 0.55	0	14	—
640611	Ace	16 45 00.15	16 45 01 \pm 0.8	0	12	—
640625	Fade	13 30 00.14	13 30 00.3 \pm 0.25	0	24	—
640630	Dub	13 33 00.14	13 32 59.8 \pm 0.24	0	20	—
640716	Bye	13 15 00.15	13 14 59.9 \pm 0.30	0	26	—
640819	Alva	16 00 00.14	16 00 01.8 \pm 1.0	0	14	—
640822	Canvasback	22 17 00.06	22 17 01.2 \pm 0.74	8 \pm 76	22	—
640828	Haddock	17 06 00.04	17 06 01.9 \pm 0.2	16 \pm 19	15	—
640904	Guanay	18 15 00.08	18 15 01.8 \pm 0.14	12 \pm 12	24	—
641002	Auk	20 03 00.04	20 03 00.6 \pm 0.20	4 \pm 10	37	4
641009	Par	14 00 00.12	14 00 02.6 \pm 0.24	20 \pm 14	37	4.8
641016	Barbel	15 59 30.04	15 59 30.3 \pm 0.45	5 \pm 38	16	—
641031	Forest	17 04 58.61	17 04 58.0 \pm 0.22	0	20	—
641105	Handcar	15 00 00.11	15 00 01.5 \pm 0.10	16 \pm 10	34	4.8
641205	Crepe	21 15 00.10	21 15 03.1 \pm 0.19	28 \pm 9	46	4.8
641216	Mudpack	21 10 00.10	21 10 00 \pm 1.2	0	16	—
650114	Wool	16 00 00.14	16 00 00.7 \pm 0.16	4 \pm 32	22	—
650204	Cashmere	15 30 00.11	15 29 59.7 \pm 0.20	0	18	—
650216	Merlin	17 30 00.04	17 30 01.6 \pm 0.32	13 \pm 52	22	—
650218	Wishbone	16 18 47.15	16 18 47.3 \pm 0.30	5 \pm 22	28	—
650303	Wagtail	19 13 00.03	19 13 03.2 \pm 0.14	32 \pm 3	77	—
650326	Cup	15 34 08.16	16 34 10.6 \pm 0.14	26 \pm 6	64	—
650405	Kestrel	21 00 00.04	21 00 03.3 \pm 0.42	29 \pm 26	26	—

TABLE 1. (Continued.)

Date	Name	Time, GMT (h-m-s)		ISC depth, km	No. obs. to ISC	ISC m _b
		Announced	ISC			
650414	Palanquin	13 14 00.11	13 14 02.6 ± 0.20	20 ± 15	23	—
650421	Gum Drop	22 00 00.03	22 00 03.4 ± 0.18	35 ± 8	33	5.0
650507	Tee	15 47 11.15	15 47 11.3 ± 0.30	0	20	—
650512	Bute ⁿ	18 15 00.10	18 15 00.0	0	18	—
650514	Scamp	17 32 36.23	17 32 38.3 ± 0.16	20 ± 8	33	—
650521	Tweed	13 08 52.11	13 08 54.2 ± 0.21	30 ± 12	33	—
650611	Petrel	19 45 00.04	19 45 00.4 ± 0.56	4 ± 55	14	—
650616	Diluted Waters	16 30 00.15	16 30 00.0 ± 0.35	1 ± 24	26	—
650723	Bronze	17 00 00.04	17 00 02.0 ± 0.14	18 ± 6	100	5.4
650806	Mauve	17 23 30.04	17 23 30.8 ± 0.28	8 ± 24	27	—
650901	Screamer	20 09 00.04	20 07 39.4 ± 0.26	0	28	4.2
650910	Charcoal	17 12 00.03	17 12 02.1 ± 0.23	22 ± 10	48	5.1
651203	Corduroy	15 13 02.10	15 13 04.52 ± 0.13	25 ± 6	97	5.6
651216	Buff	19 15 00.04	19 15 02.6 ± 0.13	27 ± 5	76	5.3
660113	Maxwell	15 37 43.10	15 37 43.0 ± 0.33	0	11	—
660118	Lampblock	18 35 00.04	18 35 03.3 ± 3.26	31 ± 24	35	5.2
660121	Dovekie	18 28 00.04	18 27 59.3 ± 0.15	0	17	—
660203	Plaid II	18 17 37.10	18 17 37.1 ± 0.34	0	22	—
660224	Rex	15 55 07.04	15 55 10.5 ± 0.36	35 ± 6	48	5.0
660305	Red Hot	18 15 00.10	18 15 00.7 ± 0.55	0	18	—
660307	Finfoot	18 41 00.07	18 41 00.5 ± 1.84	0	7	—
660312	Claymer	18 04 13.11	18 04 13.2 ± 0.26	0	13	—
660318	Purple	19 00 00.04	19 00 02.7 ± 0.52	0	29	—
660401	Lime	18 40 00.04	18 40 01.1 ± 0.73	0	12	—
660406	Stutz	13 57 17.10	13 57 19.9 ± 1.29	28 ± 13	32	4.4
660407	Tomatoe	22 27 30.04	22 27 33.4 ± 1.46	32 ± 16	22	—
660414	Duryea	14 13 43.10	14 13 46.4 ± 0.36	34 ± 4	70	5.4
660425	Pin Stripe	18 38 00.14	18 38 03.3 ± 0.94	31 ± 9	39	4.5
660504	Traveler	13 32 17.09	13 32 19 ± 9.0	11 ± 70	19	—
660505	Cyclamen	14 00 00.04	14 00 03.1 ± 1.13	28 ± 1	29	4.4
660506	Chartreuse	15 00 00.08	15 00 03.1 ± 0.64	29 ± 5	102	5.4
660512	Tapestry	19 37 26.20	19 37 26.1 ± 3.24	4 ± 25	27	4.7
660513	Piranha	13 30 00.04	13 30 02.1 ± 0.65	21 ± 6	101	5.4
660519	Dumont	13 56 28.14	13 56 30.6 ± 0.63	23 ± 6	144	5.9
660527	Discus Thrower	20 00 00.04	20 00 03. ± 0.91	28 ± 8	52	5.0
660602	File Driver	15 30 00.09	15 30 01.8 ± 0.60	18 ± 4	135	5.6
660603	Tan	14 00 00.04	14 00 02.2 ± 0.59	22 ± 4	132	5.7
660610	Puce	14 30 00.04	14 30 02.6 ± 1.53	25 ± 16	25	—
660625	Vulcan	17 13 00.07	17 12 59.6 ± 0.30	0	31	—
660630	Halfbeak	22 15 00.07	22 15 02.7 ± 0.53	25 ± 4	175	6.1
660728	Saxon	15 33 30.13	15 33 32.5 ± 1.54	0	15	—
660810	Rovena	13 16 00.07	13 16 03 ± 1.5	0	12	—
660912	Derringer	15 30 00.54	15 29 59.8 ± 0.25	0	23	4.6
660923	Daquiri	18 00 00.04	17 59 58.5 ± 0.32	0	13	—
660929	Newark	14 45 30.09	14 45 32.1 ± 1.10	0	16	—

TABLE 1. (Continued.)

Date	Name	Time, GMT (h-m-s)		ISC depth, km	No. obs. to ISC	ISC m _b
		Announced	ISC			
661105	Simms	14 45 00.00 ^a	14 45 01.2 ± 0.63	0	12	—
661111	Ajax	12 00 00.14	12 00 00.7 ± 0.57	0	21	—
661118	Cerise	15 02 00.04	15 02 01.7 ± 2.22	17 ± 25	25	—
661213	New Point	21 00 00.08	21 00 02.7 ± 1.45	23 ± 15	32	4.6
661220	Greeley	15 30 00.08	15 30 01.9 ± 0.54	21 ± 4	231	6.3
670119	Nash	16 45 00.14	16 45 02.5 ± 0.62	25 ± 5	106	5.3
670120	Bourbon	17 40 03.41	17 40 05.5 ± 0.56	26 ± 5	79	5.3
670208	Ward	15 15 00.13	15 15 00.4 ± 0.37	0	23	4.6
670223	Persimmon	18 34 00.04	18 34 00.5 ± 0.89	0	20	4.4
670223	Agile	18 50 00.0 ^a	18 50 02.9 ± 0.55	26 ± 4	162	5.6
670302	Rivet III	15 00 00.0 ^a	15 00 00.3 ± 0.23	0	31	—
670407	Fawn	15 00 00.04	15 00 02.3 ± 5.13	0	10	—
670421	Chocolate	15 09 00.04	15 09 04.4 ± 0.44	36 ± 11	23	—
670427	Effendi	14 45 00.0 ^a	14 45 02.8 ± 8.85	10 ± 69	24	—
670510	Mickey	13 40 00.04	13 40 03.0 ± 0.70	1 ± 6	55	4.9
670520	Commodore	15 00 00.0 ^a	15 00 01.7 ± 0.49	16 ± 3.8	203	5.8
670523	Scotch	14 00 00.04	14 00 02.0 ± 0.53	20 ± 4.1	166	5.7
670526	Knickerbocker	15 00 01.50	15 00 03.1 ± 0.25	35 ± 3	117	5.4
670622	Switch	13 10 00.0 ^a	13 10 01.7 ± 0.88	0	21	—
670626	Midi Mist	16 00 00.0 ^a	16 00 02.2 ± 0.74	20 ± 6.8	50	5.1
670629	Umber	11 25 00.04	11 25 03.7 ± 0.07	33 ± 16	23	4.6
670727	Stanley	13 00 00.0 ^a	13 00 02.7 ± 0.87	29 ± 8.9	43	5.0
670810	Washer	14 10 00.0 ^a	14 10 00.3 ± 0.19	0	17	—
670818	Bordeaux	20 12 30.04	20 12 30.4 ± 0.23	3	34	4.6
670831	Door Mist	16 30 00.04	16 30 00.4 ± 0.45	0	41	5.0
670907	Yard	13 45 00.0 ^a	13 45 03.1 ± 0.86	29 ± 7.3	73	5.0
670921	Marvel	20 45 00.0 ^a	20 45 04.1 ± 1.39	127 ± 34	17	—
670927	ZaZa	17 00 00.04	17 00 02.4 ± 0.48	23 ± 3.8	192	5.7
671018	Lanpher	14 30 00.0 ^a	14 30 02.0 ± 0.63	19 ± 8	158	5.8
671025	Sazerac	14 30 00.06	14 30 01.0 ± 3.66	9 ± 29	23	—
671108	Cobbler	15 00 00.04	15 00 03.1 ± 0.29	32 ± 4	52	5.1
671215	Stilt	13 00 00.04	15 00 03.5 ± 1.46	28 ± 15	32	—
680118	Hupmobile	16 30 00.0 ^a	16 30 05.1 ± 0.53	35 ± 16	25	—
680119	Staccato	15 00 00.0 ^a	15 00 03.7 ± 0.53	29 ± 15	39	—
680126	Cabriolet	16 00 00.11	16 00 03.8 ± 0.57	33 ± 16	22	—
680221	Knox	15 30 00.0 ^a	15 30 01.9 ± 0.52	19 ± 3.8	162	5.8
680229	Dorsal Fin	17 08 30.04	17 08 32.6 ± 0.64	25 ± 6	74	5.0
680312	Buggy	17 04 00.11	17 04 00.1 ± 0.40	0	19	—
680322	Stinger	15 00 00.04	15 00 02.1 ± 0.50	22 ± 3.8	136	5.6
680325	Milk Shake	18 44 27.04	18 44 29.8 ± 1.05	26 ± 11	39	—
680410	Noor	14 00 00.0 ^a	14 00 02.8 ± 0.63	28 ± 6.5	58	4.6
680418	Shuffle	14 05 00.0 ^a	14 05 03.1 ± 0.30	35 ± 3.9	88	4.9
680423	Scroll	17 01 30.0 ^a	17 01 31.2 ± 0.61	0	29	—
680426	Boxcar	15 00 00.0 ^a	15 00 01.0	13 ± 4	261	6.2

TABLE 1. (Continued.)

Date	Name	Time, GMT (h-m-s)		ISC depth, km	No. obs. to ISC	ISC m_b
		Announced	ISC			
680517	Clarksmobile	13 00 00.0 ^a	13 00 03.8 ± 0.31	36 ± 5	76	4.7
680606	Tub	21 30 00.0 ^a	21 30 02.6 ± 0.83	0	24	—
680615	Rickey	13 59 59.97	14 00 01.4 ± 15.7	15 ± 15.7	180	5.9
680628	Chatesugay	12 22 00.0 ^a	12 22 01.2 ± 0.45	15 ± 3.9	142	5.3
680730	Tanya	13 00 00.0 ^a	13 00 01.0 ± 0.44	0	22	—
680827	Diana Moon	16 30 00.04	16 29 59.9 ± 0.30	0	24	—
680829	Sled	22 45 00.04	22 45 00.7 ± 0.80	0 ± 5	192	5.9
680906	Knife A	14 00 00.04	13 59 59.7 ± 0.29	0	42	5.8
680906	Noggin	14 00 00.13	14 00 02.0 ± 0.63	18 ± 5.1	109	5.5
680917	Stoddard	14 00 00.04	14 00 03.6 ± 0.28	36 ± 3.5	59	5.1
680924	Hudson Seal	17 05 00.09	17 05 03.3 ± 1.47	32 ± 11	40	5.0
681003	Knife C	14 29 00.04	14 29 00. ± 2.9	5 ± 22	16	—
681104	Crew	15 15 00.09	15 15 02.8 ± 0.78	27 ± 6.7	65	5.0
681115	Knife B	15 45 00.04	15 45 00.8 ± 0.63	0	14	—
681120	Ming Vase	18 00 00.03	18 00 03.4 ± 0.71	30 ± 6	58	4.9
681122	Tinderbox	16 19 00.04	16 19 00.3 ± 0.29	0	16	—
681208	Schooner	16 00 00.14	16 00 05.8 ± 0.34	42 ± 8.4	51	4.8
681212	Tyg	15 10 00.08	15 10 03.0 ± 0.27	35 ± 4	43	—
681219	Benham	16 30 00.04	16 30 02.0 ± 0.50	22 ± 3.7	240	6.3
690115	Packard	19 00 00.07	19 00 05.2 ± 0.48	68 ± 14	25	—
690115	Wineskin	19 30 00.04	19 30 02.1 ± 0.57	21 ± 4.6	101	5.3
690130	Vise	15 00 00.04	15 00 03.7 ± 0.37	32 ± 4.8	54	4.9
690212	Cypress	16 18 20.88	16 18 22.0 ± 0.92	17	33	—
690320	Barsac	18 12 00.04	18 12 03.5 ± 0.68	29 ± 6	35	4.4
690321	Coffer	14 30 00.0 ^a	14 30 02.9 ± 0.77	28 ± 6	53	4.9
690430	Blenton	17 00 00.04	17 00 02.6 ± 0.67	25 ± 5.1	105	5.2
690430	Thistle	17 00 00.04	17 00 02.6 ± 0.67	25 ± 5.1	105	5.2
690507	Purse	13 45 00.04	13 45 01.9 ± 0.59	20 ± 4.4	163	5.5
690527	Torrido	14 15 00.04	14 15 02.4 ± 0.68	24 ± 5.9	73	5.0
690612	Tapper	14 00 00.04	14 00 03.7 ± 0.25	36 ± 4.4	29	4.5
690716	Ildrim	13 02 30.04	13 02 32.3 ± 0.91	21 ± 8.7	36	4.6
690716	Hutch	14 55 00.04	14 55 02.3 ± 0.61	22 ± 5	139	5.5
690827	Pliers	13 45 00.04	13 45 03.0 ± 1.1	27	24	—
690912	Minute Steak	18 02 20.42	18 02 21 ± 1.6	10 ± 12	28	—
690916	Jorum	14 30 00.04	14 30 02.2 ± 0.60	2 ± 4	244	6.1
691008	Pipkin	14 30 00.14	14 30 01.7 ± 0.53	17 ± 4	145	5.6
691029	Cruet	19 30 00.04	19 30 03.9 ± 0.38	32 ± 17	23	—
691029	Pod	20 00 00.04	20 00 02 ± 1.0	32 ± 10	33	—
691029	Calabash	22 01 51.04	22 01 52 ± 1.0	9 ± 6.3	145	5.6
691121	Piccallilli	14 52 00.04	14 52 03.0 ± 0.78	27 ± 6.4	66	5.0
691205	Diesel Train	17 00 00.04	17 00 02.6 ± 0.74	24 ± 6.3	65	4.9
691217	Grape A	15 00 00.04	15 00 02.5 ± 0.60	24 ± 5.1	112	5.4
691217	Lovage	15 15 00.04	15 15 03.7 ± 0.35	21 ± 5.3	37	4.7
691218	Terrine	19 00 00.04	19 00 03.7 ± 0.32	33 ± 3.6	85	5.2

TABLE 1. (Continued.)

Date	Name	Time, GMT (h-m-s)		ISC depth, km	No. obs. to ISC	ISC m_b
		Announced	ISC			
700123	Fob	16 30 00.21	16 30 00.4 ± 0.34	0	20	—
700130	Ajo	17 00 00.04	17 00 03.5 ± 0.85	31	32	—
700204	Grape B	17 00 00.04	17 00 01.8 ± 0.52	18 ± 3.9	152	5.6
700205	Labis	15 00 00.04	15 00 02.0 ± 0.80	20	36	4.6
700211	Diana Mist	19 15 00.04	19 15 02.1 ± 0.74	23 ± 7.1	41	4.7
700225	Cumarin	14 28 38.04	14 28 40.8 ± 0.78	23	81	5.2
700226	Yannigan	15 30 00.04	15 30 03.4 ± 0.71	28 ± 5.7	95	5.3
700306	Cyathus	14 24 00.94	14 24 02.3 ± 0.61	25 ± 5.8	35	4.3
700306	Arabis	15 00 00.21	14 59 59.7 ± 0.23	0	20	—
700319	Jai	14 03 30.04	14 03 29.9 ± 0.19	0	30	—
700323	Shaper	23 05 00.04	33 05 02.1 ± 0.62	20 ± 4.8	139	5.5
700326	Handley	19 00 00.20	19 00 02.4 ± 0.47	23 ± 3.4	260	6.4
700421	Snubber	14 30 00.04	14 30 03.1 ± 0.84	30 ± 7.6	39	4.4
700421	Can	15 00 00.04	15 00 03.3 ± 0.89	30 ± 7.6	47	4.6
700501	Beebalm	14 13 00.04	14 13 03.4 ± 1.26	32	29	—
700501	Hod	14 40 00.17	14 39 59.2 ± 0.29	0	39	4.3
700505	Mint Leaf	15 30 00.17	15 30 01.8 ± 0.67	19 ± 5.5	77	5.0
700515	Cornice	13 30 00.02	15 30 01.0 ± 1.00	13	91	5.1
700521	Manzanita	14 00 00.04	14 00 03.3 ± 3.7	18	10	—
700521	Morones	14 15 00.04	14 15 03.5 ± 0.30	31 ± 3.6	81	5.1
700526	Hudson Moon	14 16 00.17	14 16 02.8 ± 1.1	27	28	—
700526	Flask	15 00 00.05	15 00 01.2 ± 0.87	14 ± 5.5	161	5.5
700626	Arnica	13 00 00.04	13 00 01.7 ± 1.83	13	27	—
701014	Tijeras	14 30 00.04	14 29 59.3 ± 0.77	4 ± 4.9	195	5.5
701105	Abeytas	15 00 00.04	15 00 02.7 ± 0.87	21	57	4.9
701216	Artesia	16 00 00.09	16 00 01.9 ± 1.12	18 ± 7.4	39	5.2
701216	Cream	16 00 00.17	16 00 01.3 ± 1.26	18 ± 7.8	55	5.1
701217	Carpetbag	16 05 00.16	16 05 01.3 ± 0.77	13 ± 4.8	173	5.8
701218	Baneberry	15 30 00.20	15 30 01.9 ± 0.67	17 ± 5.7	76	5.1
710616	Embudo	14 50 00.04	14 49 59.0 ± 0.51	0	25	—
710623	Laguna	15 30 00.04	15 30 03.1 ± 0.27	35 ± 4	46	—
710624	Harebell	14 00 00.16	14 00 00 ± 1.3	6 ± 8.6	68	4.9
710701	Diamond Mine	14 00 00.14	13 59 54.7 ± 0.27	0	7	—
710708	Miniatu	14 00 00.09	13 59 58.7 ± 0.11	0	160	5.5
710818	Algodones	14 00 00.03	13 59 59.3 ± 0.84	4 ± 5.5	130	5.3
710929	Pedernal	14 00 00.04	13 59 58.7 ± 0.37	0	28	—
711008	Cathay	14 30 00.15	14 29 58.8 ± 0.39	0	39	—
711214	Chaenactis	21 09 59.16	21 09 57.7 ± 0.38	0	43	—
720419	Longchamps	16 32 00.16	16 31 58.7 ± 0.49	0	25	—
720517	Zinnia	14 10 00.16	14 09 58.6 ± 0.41	0	31	—
720519	Monero	17 00 00.05	17 00 00 ± 2.2	9 ± 16	50	—
720720	Diamond Sculls	17 16 00.16	17 16 02.9 ± 0.68	26 ± 5.3	76	4.9
720921	Oscuro	15 30 00.19	15 29 58.9 ± 0.09	0	172	5.6
720926	Delphinium	14 30 00.15	14 29 58.8 ± 0.35	0	37	4.1

TABLE 1. (Continued.)

Date	Name	Time, GMT (h-m-s)		ISC depth, km	No. obs. to ISC	ISC m_b
		Announced	ISC			
721221	Flax	20 15 00.24	20 14 58.7 \pm 0.18	0	87	4.8
730308	Miera	16 10 00.19	16 09 58.8 \pm 0.11	0	161	5.3
730423	Angus	22 25 00.03	22 25 02.2 \pm 0.98	29 \pm 9.5	48	4.5
730426	Starwort	17 15 00.16	17 14 59.2 \pm 0.72	1 \pm 4.5	168	5.6
730605	Dido Queen	17 00 00.17	16 59 59.0 \pm 0.18	0	82	5.0
730606	Almendro	13 00 00.08	13 00 00.0 \pm 0.60	7 \pm 3.7	258	6.1
730628	Portulaca	19 15 12.40	19 15 11.2 \pm 0.19	0	91	4.9
731012	Husky Ace	17 00 00.08	16 59 59.1 \pm 0.19	0	57	4.7

^aActual detonation time was about 0.1 \pm 0.06 s later.

TABLE 2. Announced and ISC data for U.S. Tests on Amchitka, from Springer and Kinaaman. The ISC origin time for Milrow is based on a calculated depth of 34 \pm km. The ISC origin time for Longshot is based on an assumed depth of 0 km and for Cannikin on a depth of 2 km. These assumed depths are good approximations to the actual depths of 1.2 and 1.8 km, respectively.

Date	Name	Time, GMT (h-m-s)		No. obs. to ISC	ISC m_b
		Announced	ISC		
651029	Longshot	21 00 00.08	21 00 03.6 \pm 0.08	233	5.8
691002	Milrow	22 06 00.04	22 06 01.9 \pm 0.75	294	6.4
711106	Cannikin	22 00 00.06	21 59 56.8 \pm 0.06	374	6.6

TABLE 3. Announced and ISC data for French Tests in the Sahara, from Duclaux and Michaud. The ISC assumed a depth of 0 km for all these events. The ISC did not publish any data for Agate on 611107, Emeraude on 630318, Amethyst on 630330, Opal on 640214, Topaze on 640615, Turquoise on 641128, Jade on 650330, and Corindon on 651001. The Sahara tests were conducted in a granite massif of the Hoggar, the Taourirt Tan Afela, which is located at approximately 24°N-5°E.

Date	Name	Time, GMT (h-m-s)		No. obs. to ISC	ISC m_b
		Announced	ISC		
620501	Beryl	10 00 00.458	09 59 59	73	—
631029	Rubis	13 00 00.011	12 59 59	124	—
650227	Saphir	11 30 00.039	11 29 58.6 \pm 0.12	132	5.6
651201	Tourmaline	10 30 00.088	10 29 58.4 \pm 0.24	49	4.9
660216	Grenat	11 00 00.035	11 00 00 ^a	57	—

^aTime given by Rabat (RBA), Morocco.

TABLE 4. ISC data for presumed Soviet tests at the Nuclear Testing Ground (NTC) in Eastern Kazakhstan. The ISC assumed a depth of 33 km for the events of 661203 and 710630, and a depth of 0 km for all other events. The locations of these tests extend from approximately 78 to 79°E at 50°N.

Date	ISC time, GMT (h-m-s)	No. obs. to ISC	ISC m_b	Date	ISC time, GMT (h-m-s)	No. obs. to ISC	ISC m_b
640315	07 59 58.2 ± 0.14	70	5.6	680107	03 46 57.6 ± 0.17	78	5.1
640516	06 00 57.8 ± 0.12	83	5.6	680424	10 35 57.3 ± 0.24	60	5.0
640719	05 59 58.6 ± 0.14	71	5.4	680611	03 05 57.7 ± 0.18	96	5.2
641116	05 59 58.0 ± 0.13	88	5.6	680619	05 09 57.4 ± 0.13	126	5.4
650115	05 59 58.4 ± 0.12	83	5.8	680712	13 07 57.6 ± 0.17	90	5.3
650303	06 14 58.4 ± 0.14	54	5.5	680820	04 05 58.3 ± 0.35	43	4.8
650511	06 39 57.3 ± 0.15	19	4.9	680905	04 05 57.5 ± 0.14	119	5.4
650617	03 44 57.0 ± 0.13	36	5.2	680929	03 42 57.8 ± 0.13	168	5.8
650729	03 05 02.1	10	4.5	681109	02 53 57.7 ± 0.27	41	4.9
650917	03 59 57.2 ± 0.14	36	5.2	681218	03 01 57.1 ± 0.15	79	5.0
651008	05 59 58.2 ± 0.13	55	5.4	690307	08 26 57.6 ± 0.11	162	5.6
651121	04 57 58.2 ± 0.10	116	5.6	690516	04 02 57.3 ± 0.14	108	5.2
651224	04 59 58.4 ± 0.15	47	5.0	690531	05 01 56.9 ± 0.15	98	5.3
660213	04 57 57.9 ± 0.11	197	6.1	690704	02 46 57.3 ± 0.14	112	5.2
660320	05 49 57.8 ± 0.12	160	6.0	690723	02 46 58.0 ± 0.16	135	5.4
660421	03 57 58.1 ± 0.18	103	5.3	690911	04 01 57.5 ± 0.18	65	5.0
660507	03 57 58.2 ± 0.26	33	4.8	691001	04 02 57.7 ± 0.14	99	5.2
660629	06 57 58.3 ± 0.20	104	5.6	691130	03 32 57.3 ± 0.094	214	6.0
660721	03 57 57.8 ± 0.17	103	5.3	691228	03 46 57.8 ± 0.12	181	5.7
660805	03 57 57.9 ± 0.19	102	5.4	691229	04 01 58.1 ± 0.49	12	5.1
660819	03 53 01.4 ± 0.71	29	5.1	700129	07 02 57.7 ± 0.12	146	5.5
660907	03 51 58.1 ± 0.41	28	4.8	700327	05 02 57.0 ± 0.19	58	5.0
661019	03 57 57.8 ± 0.14	138	5.6	700628	01 57 57.7 ± 0.11	176	5.7
661203 ^a	05 02 03.5 ± 0.45	17	4.8	700721	03 02 57.0 ± 0.13	124	5.4
661218	04 57 57.9 ± 0.13	175	5.8	700724	03 36 57.6 ± 0.17	109	5.3
				700906	04 02 57.6 ± 0.13	141	5.4
670130	04 01 57.9 ± 0.39	43	4.8	701104	06 02 57.4 ± 0.14	149	5.4
670226	03 57 57.8 ± 0.12	207	6.0	701217	07 00 57.7 ± 0.12	139	5.4
670325	05 57 58.9 ± 0.17	103	5.3	710322	04 32 57.8 ± 0.11	212	5.7
670420	04 07 57.7 ± 0.17	106	5.5	710425	03 32 57.9 ± 0.11	236	5.9
670528	04 07 57.7 ± 0.14	131	5.4	710525	04 02 57.9 ± 0.17	75	5.1
670629	02 56 57.8 ± 0.18	97	5.3	710606	04 02 57.3 ± 0.11	155	5.3
670715	03 26 57.6 ± 0.15	114	5.4	710619	04 03 57.7 ± 0.11	129	5.4
670804	06 57 58.0 ± 0.18	97	5.3	710630 ^a	03 57 02.1 ± 0.13	115	5.2
670916	04 03 58.2 ± 0.19	110	5.3	711009	06 02 57.3 ± 0.10	149	5.3
670922	05 03 57.8 ± 0.17	88	5.2	711021	06 02 57.5 ± 0.12	143	5.5
671017	05 03 58.0 ± 0.14	138	5.6	711129	06 02 57.7 ± 0.13	117	5.4
671030	06 03 57.9 ± 0.15	114	5.3	711215	07 52 59.1 ± 0.29	31	4.9
671122	04 03 57.5 ± 0.32	13	4.8	711230	06 20 57.9 ± 0.11	170	5.7
671208	06 03 57.4 ± 0.16	91	5.4				

TABLE 4. (Continued.)

Date	ISC time, GMT (h-m-s)	No. obs. to ISC	ISC m_b	Date	ISC time, GMT (h-m-s)	No. obs. to ISC	ISC m_b
720210	05 02 57.6 ± 0.10	151	5.4	741207	05 59 56.9 ± 0.29	23	4.7
720310	04 56 57.8 ± 0.12	160	5.4	741216	06 22 57.7 ± 0.15	70	5.0
720328	04 21 57.4 ± 0.14	113	5.1	741216	06 40 57.6 ± 0.16	71	4.8
720607	01 27 57.4 ± 0.11	147	5.4	741227	05 46 56.8 ± 0.10	181	5.6
720706	01 02 59.0 ± 0.38	21	4.4				
720816	03 16 57.5 ± 0.15	96	5.0	750220	05 32 57.6 ± 0.10	193	5.7
720826	03 46 56.8 ± 0.10	135	5.3	750311	05 42 57.7 ± 0.12	146	5.4
720902	08 56 57.3 ± 0.26	38	4.9	750427	05 36 57.2 ± 0.10	210	5.6
721102	01 26 57.8 ± 0.08	293	6.1	750608	03 26 57.6 ± 0.12	168	5.5
721210	04 26 57.8 ± 0.09	245	5.6	750630	03 26 57.3 ± 0.25	38	5.0
721210	04 27 07.6 ± 0.15	146	6.0	750807	03 56 57.6 ± 0.12	118	5.2
				751029	04 46 57.3 ± 0.10	215	5.8
730216	05 02 57.8 ± 0.12	162	5.5	751213	04 56 57.5 ± 0.18	84	5.1
730419	04 32 57.4 ± 0.12	140	5.4	751225	05 16 57.2 ± 0.08	241	5.7
730710	01 26 58.0 ± 0.12	130	5.2				
730723	01 22 57.7 ± 0.08	291	6.1	760115	04 46 57.3 ± 0.16	109	5.2
731026	04 26 57.8 ± 0.12	117	5.2	760320	04 03 39.3 ± 0.12	128	5.1
731214	07 46 57.1 ± 0.08	222	5.8	760421	04 57 57.9 ± 0.16	77	5.1
				760421	05 02 57.3 ± 0.13	125	5.3
740130	04 56 57.6 ± 0.18	56	4.9	760519	02 56 58.0 ± 0.22	47	5.0
740130	04 57 02.6 ± 0.15	135	5.4				
740416	05 52 56.9 ± 0.25	24	4.9	760609	03 02 57.5 ± 0.12	146	5.3
740516	03 02 57.5 ± 0.12	135	5.2	760704	02 56 57.5 ± 0.09	249	5.8
740531	03 26 57.4 ± 0.09	251	5.9	760723	02 32 58.0 ± 0.16	100	5.1
740625	03 56 58.1 ± 0.67	28	4.7	760828	02 56 57.6 ± 0.09	234	5.8
740710	02 56 57.6 ± 0.15	119	5.2	761123	05 02 57.4 ± 0.09	278	5.8
740913	03 02 57.6 ± 0.14	97	5.2	761207	04 56 57.5 ± 0.08	252	5.9
741016	06 32 57.6 ± 0.10	171	5.5	761230	03 56 57.6 ± 0.15	78	5.2

*ISC depth = 33 km.

TABLE 5. ISC data for presumed Soviet tests on Novaya Zemlya. A depth of 0 km was assumed by the ISC for all these events.

Date	ISC time, GMT (h-m-s)	No. obs. to ISC	ISC m_b
Events in the vicinity of the Matochkin Shar at approximately 73°N-55°E.			
640918	07 59 57.2 ± 0.33	19	4.2
641025	07 59 58.3 ± 0.21	48	5.1
661027	05 57 57.9 ± 0.09 ^a	281	6.4
671021	04 59 58.4 ± 0.13	209	5.9
681107	10 02 05.4 ± 0.92	261	6.1
691014	07 00 06.4 ± 0.12	248	6.3
701014	05 59 57.3 ± 0.08	348	6.6
710927	05 59 55.4 ± 0.07	344	6.5
720828	05 59 56.8 ± 0.08	333	6.3
730912	06 59 54.6 ± 0.07	399	6.8
740829	09 59 55.8 ± 0.08	353	6.4
750823	08 59 57.9 ± 0.08	387	6.3
751021	11 59 57.7 ± 0.08	369	6.6
760929	02 59 57.7 ± 0.10	298	5.8
761020	07 59 57.8 ± 0.15	115	5.1
Events in the vicinity of Krasin, at approximately 71°N-53°E. ^a			
730927	06 59 58.4 ± 0.11	237	5.9
731027	06 59 57.6 ± 0.09	387	6.9
741102	04 59 56.9 ± 0.07	402	6.4
751018	08 59 56.5 ± 0.08	434	6.7

^aTwo probable aftershocks of the event on 731007, which occurred on 740707 and 740722, are not included.

TABLE 6. ISC data for presumed Soviet tests near Azgir at approximately 48°N-48°E. A depth of 33 km was assumed for the event of 660422; it was not listed as a probable explosion. A depth of 29 ± 1.7 km was calculated for the event of 680701. A depth of 0 km was assumed for the other three events.

Date	ISC time, GMT (h-m-s)	No. obs. to ISC	ISC m_b
660422	02 58 04.0 ± 0.37	38	4.7
680701	04 02 00.9 ± 0.17	166	5.5
711222	06 59 56.5 ± 0.13	230	6.0
750425	05 00 03.0 ± 1.8	24	4.7
760729	04 59 58.0 ± 0.09	297	5.9

TABLE 7. ISC data for presumed Soviet tests on the Ustyurt Plateau at approximately 44°N-55°E. The ISC assumed a depth of 0 km for these events.

Date	ISC time, GMT (h-m-s)	No. obs. to ISC	ISC m_b
691206	07 02 57.5 ± 0.093	180	5.8
701212	07 00 57.4 ± 0.09	246	6.0
701223	07 00 57.3 ± 0.92	254	6.0

ANALYSIS OF ORIGIN TIMES

NTS, NEVADA

The announced detonation times (after the minute) for the 217 NTS explosions listed in Table 1 are plotted in Fig. 1. Most of the detonations occurred within the first second after the minute, a few during the thirtieth second, and a very few at other times during a minute. Of the 181 detonations occurring within the first second, 175 were in the interval from 0.0 to 0.2 s.

With a few exceptions, the ISC origin times for events at the other test sites are based on teleseismic observations at distances greater than 20°. This is in

contrast to the ISC origin times for the NTS explosions that are based on both near-regional and regional (0.1 to 20°) and teleseismic (>20°) distances. The only observations for many of the lower-magnitude explosions were at regional distances. The use of regional as well as teleseismic observations is probably responsible for some of the differences in the distributions of origin times for events at the NTS and events at the NTG and Novaya Zemlya (non-Gaussian vs approximately Gaussian).

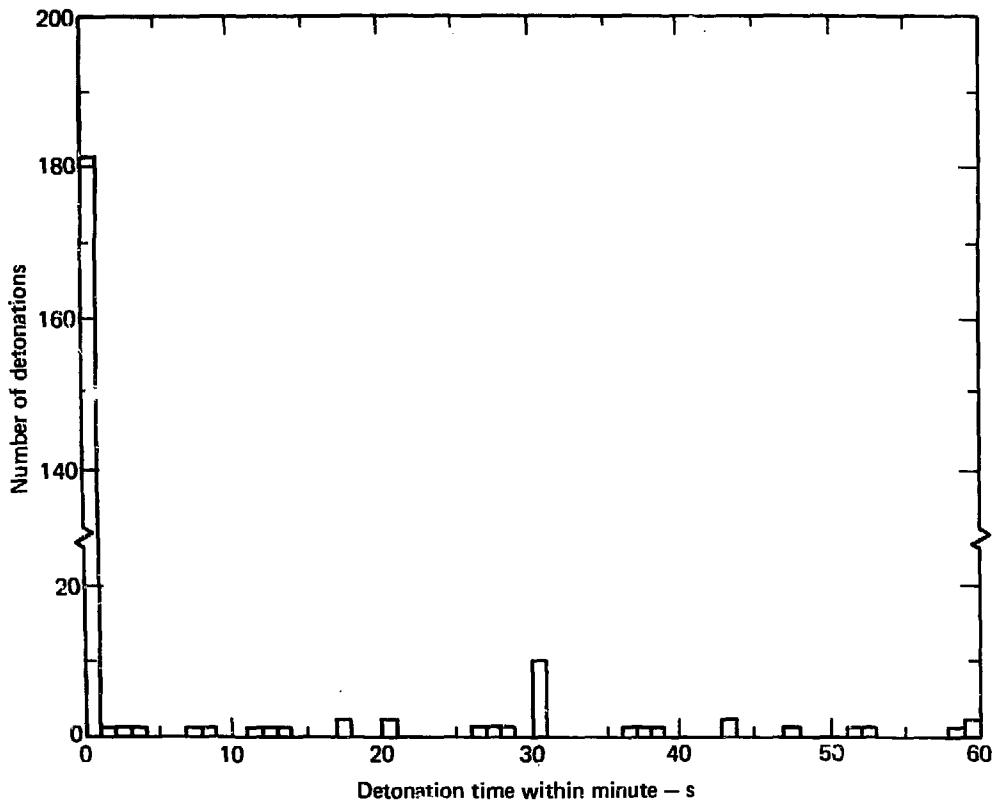


FIG. 1. Incremental distribution of detonation times within (after) the minute for the 217 NTS explosions listed in Table 1. Of the 181 detonations during the first second, 175 were in the interval from 0.0 to 0.2 s. The distributions of ISC origin times within the minute for two subsets and the full set of these 175 explosions are presented in Figs. 2 through 4.

The ISC used different practices to calculate origin times and epicentral locations for events at NTS vs events at the other test sites. The ISC (with a few exceptions listed in Tables 2, 4, and 6) assumed zero depth in the calculations for events at sites other than NTS. The ISC calculated an event depth at the NTS whenever the data permitted (generally higher-magnitude events with many teleseismic as well as regional observations). The ISC calculated nonzero depths for 123 of the 175 NTS explosions whose origin times are a subject of this study. The ISC calculated a zero depth for one explosion and assumed zero depths for the remaining 51 of the 175 explosions. These calculated nonzero depths are plotted vs the calculated origin times in Fig. 2. The

ISC uses the Jeffrey-Bullen tables in calculating origin time, epicentral location, and depth; the P-wave velocity at a depth of 33 km in these tables is 7.76 km/s (Bullen, 1963, p. 223). It appeared reasonable from Fig. 2 to use this velocity to extrapolate the origin times of the 123 events shown in Fig. 2 to zero-depth values; this was done with the result shown in the top of Fig. 3. The ISC origin times for the 52 zero-depth NTS explosions are plotted in the bottom of Fig. 3. Note that the mean origin time for the zero-depth explosions is somewhat later than the mean time for the other 123 explosions extrapolated to zero depth. The combined incremental distribution of origin times for the 175 NTS explosions is presented in the middle

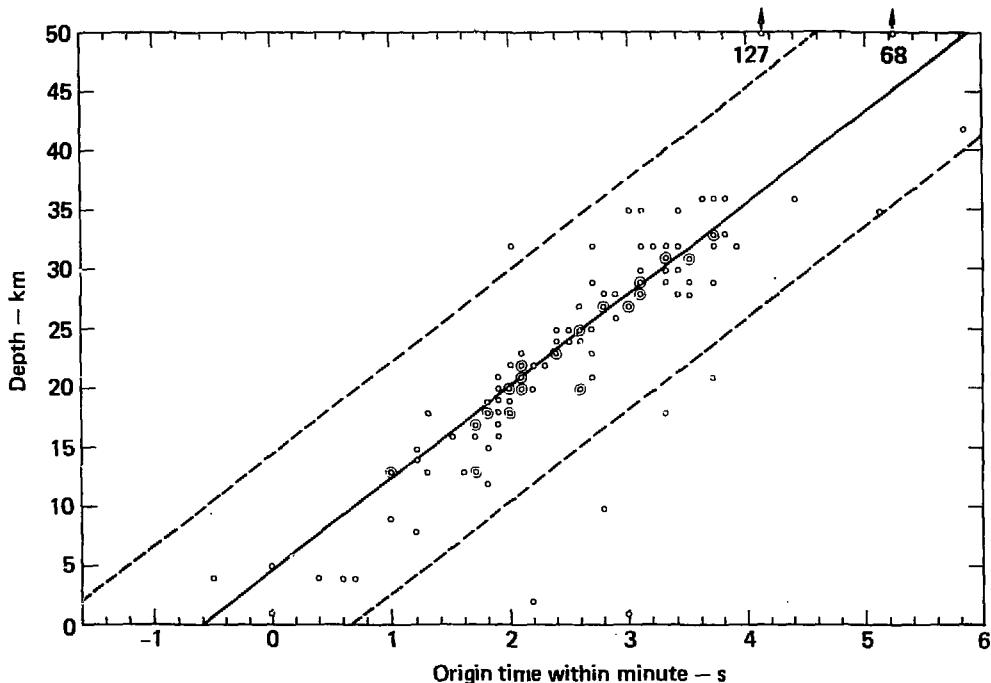


FIG. 2. ISC depth vs ISC origin times within (before and after) the minute for 123 of the 217 NTS explosions listed in Table 1. These 123 events are a subset of the 175 explosions with detonation times in the interval from 0.0 to 0.2 s after the minute. The ISC calculated nonzero depth for these events. The mean variation of ISC depth vs ISC origin time, and the corresponding standard deviation about the mean, are plotted, assuming a seismic velocity of 7.76 km/s.

of Fig. 3. The cumulation distribution of the origin times for the 175 NTS explosions is presented in Fig. 4, together with the calculated mean and standard deviation of the origin times for these explosions. As shown below, the distribution of the origin times for the 175 NTS explosions does not approximate a Gaussian distribution as well as do the distributions for events at NTG and Novaya Zemlya.

NTG, EASTERN KAZAKHSTAN

The ISC origin times before and after the minute for the 129 NTG events listed in Table 4 are plotted to the nearest second in Fig. 5. The times for 122 events are concentrated in the interval 1 to 3 s before the minute. The origin times of the other seven of the 129 events have plausible explanations.

For example, the origin times of the events of 721210 and 740130 are very easy to explain. There were double events at NTG on each of these days. Those on 721210 were separated by approximately 10 s and those on 740130 by approximately 5 s. According to the ISC, the first events on these days occurred 1 to 3 s before the minute, suggesting that the first explosion of each pair was detonated according to the standard timing practice at NTG.

The ISC assumed depths of 33 km for the events of 661203 and 710630 and depths of 0 km for the other 127 NTG events. As a consequence, the apparent travel times for the events of 661203 and 710630 were approximately 4 s shorter than for the events assumed to be at zero depth. If the travel times for these two events were increased by approximately this amount, their apparent origin times would be from 1 to 3 s before the minute, as is the case for 122 of the 129 NTG events.

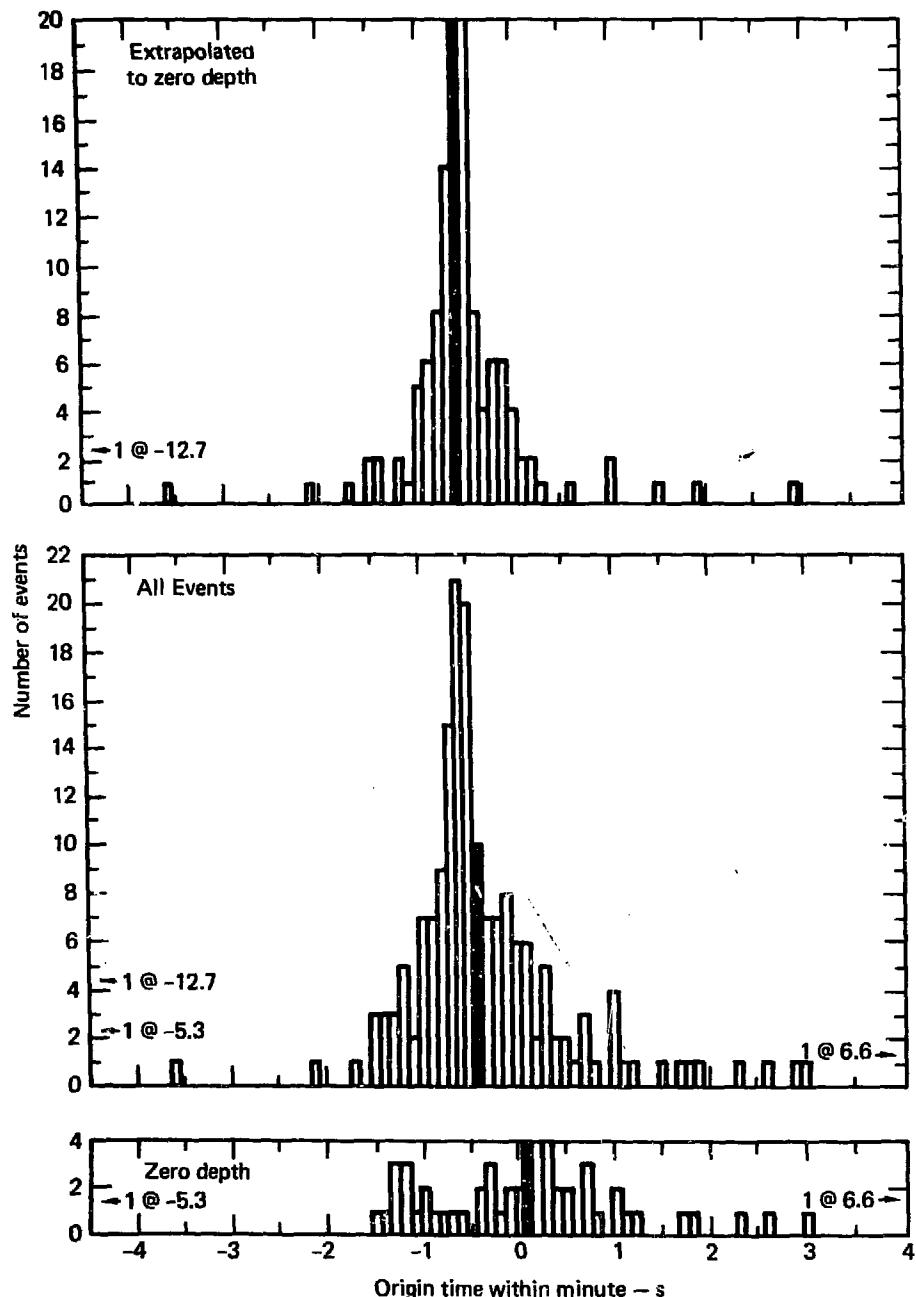


FIG. 3. Incremental distribution of origin times within (before and after) the minute for the 175 NTS explosions listed in Table 1, with detonation times in the interval from 0.0 to 0.2 s after the minute. In the top part of the figure, the origin times of the 123 events of Fig. 2 are extrapolated to zero depth, assuming a seismic velocity of 7.76 km/s. The origin times for the 52 events with zero ISC depth are presented in the lower part of the figure. The origin time distribution, assuming zero depths for all 175 events, is given in the middle part of the figure. The filled-in bars indicate the mean origin time for each subset and the full set of the 175 events.

The events of 650729 and 660819 were detected and reported by 10 and 28 stations, respectively, in Europe and North America. An additional station in Trinidad in the Caribbean region reported diffracted P from the event of 660819. The azimuth ranges for these reporting stations relative to the NTG are only 297 to 005° (for 650729) and 291 to 021° (for 660819). As demonstrated by Dahlman and Israelson (pp 176-180) in a calculational experiment involving 19 explosions with known locations at NTS, 90% of the random location errors were less than 57 km with data from 8 to 10 stations located within an azimuth section of 90° . For 8 to 10 stations well distributed in azimuth, 90% of the random location errors were less than 12 km. The ISC located these two events about 60 to 70 km north-northwest of the central concentration of most

NTG event locations. A shift of these two events to locations within this central concentration would increase the apparent travel times to the stations in Europe and North America and shift the apparent origin times toward the range from 1 to 3 s before the minute.

The origin time for the event on 760320 is clearly anomalous, as shown in Fig. 5. If that event was an explosion, there was a clean departure in that case from what appears, according to Fig. 5, to be standard Soviet nuclear testing practice. However, the event of 760320 would not be unusual in the context of U.S. nuclear testing practice as shown in Fig. 1. The event of 760320 could be an earthquake, a clearly unusual event for that aseismic area. Either explanation is plausible. Whatever the true nature of that event, its origin

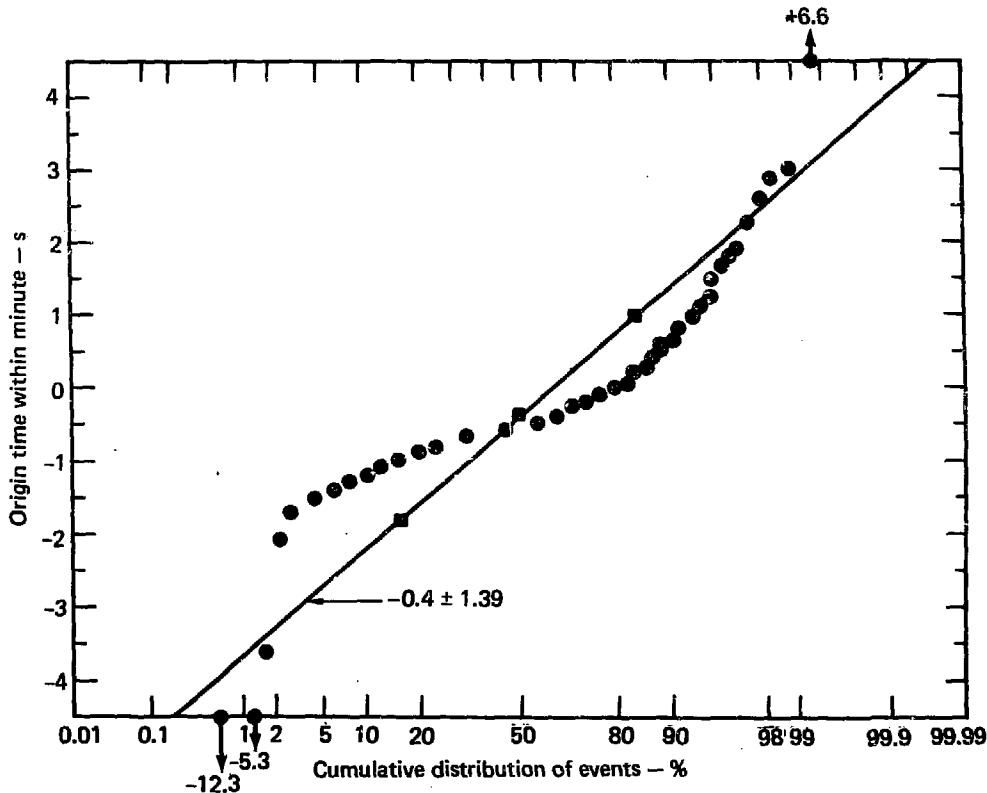


FIG. 4. Cumulative distribution of the origin times for the 175 events plotted in the middle part of Fig. 3. The ideal normal distribution with the same mean and standard deviation is also plotted. It is clear that the origin-time distribution is not Gaussian.

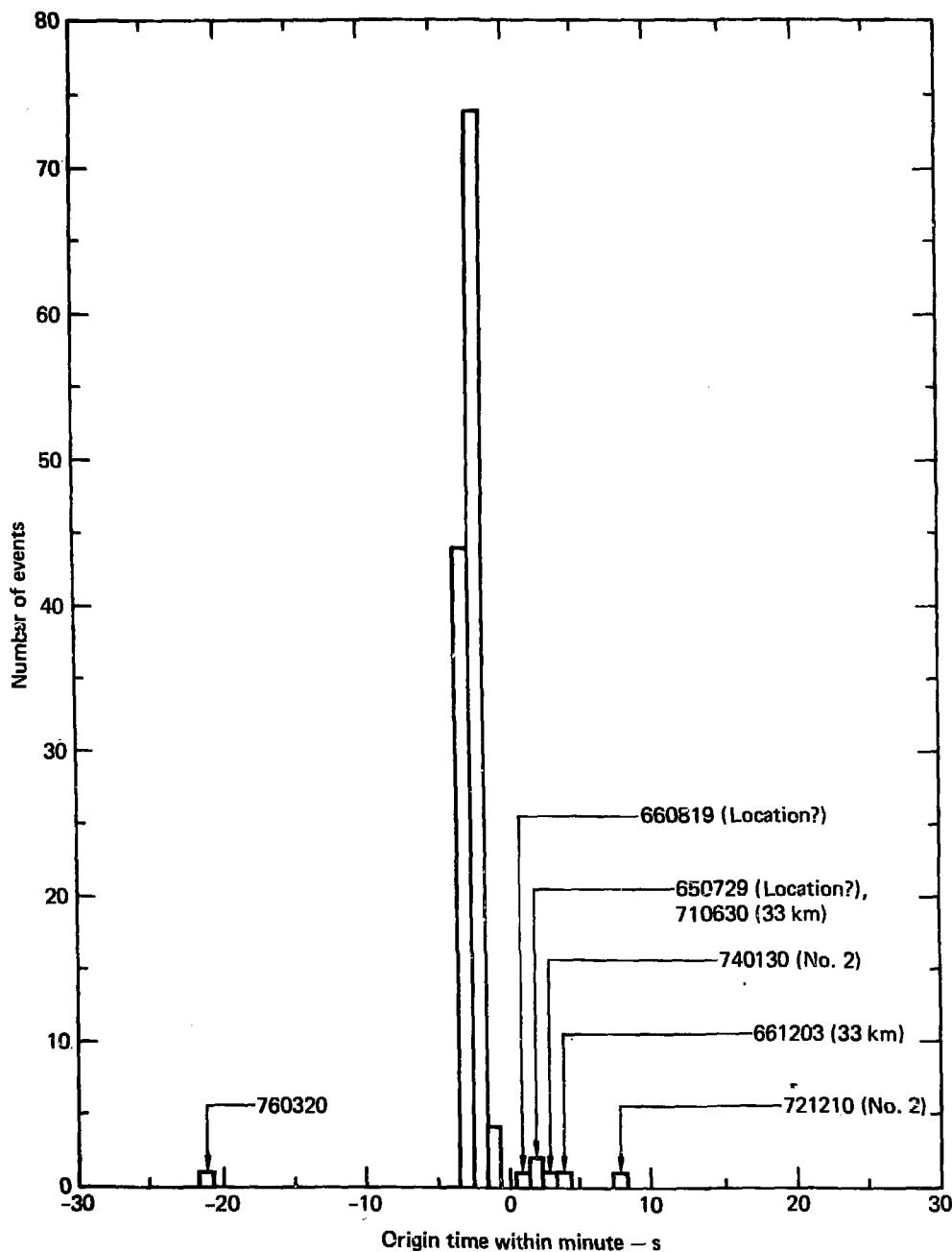


FIG. 5. Incremental distribution of ISC origin times within (before and after) the minute for the 129 NTG events listed in Table 4. The outliers among the events are identified by date. The events on 650729 and 660819 were probably mislocated by the ISC. The ISC set the depths of the events on 661203 and 710630 at 33 km. The symbol No. 2 means that the event of 721210 followed another event by approximately 10 s, and that the event of 740130 followed another event by approximately 5 s. The event of 760320 was either a rare earthquake in this aseismic area or an explosion that was not detonated according to standard timing practice.

time does not fit within the statistical pattern of those for the 122 NTG events that are not identified by date in Fig. 5.

In summary, there are plausible explanations why the ISC origin times for the seven events identified by date in Fig. 5 are not in the interval from 1 to 3 s before the minute, which is the case for 122 of the 129 NTG events. The detonation times for four of the seven events could have been essentially the same—within the minute—as those for the 122 NTG events. The other two of the seven events were deliberately detonated approximately 5 and 10 s later than the standard time. The origin time of the seventh event, that of 760320, does not fit the pattern for the other 128 events.

In the following, only the 122 events with origin times in the range from 1 to 3 s before the minute are considered. The incremental origin time distribution for these events is shown in Fig. 6 and the cumulative distribution in Fig. 7. The calculated mean and standard deviations for these events are also given in Fig. 7. The distribution of the ISC origin times for these events is a much better approximation to a Gaussian distribution than that for NTS explosions (compare Fig. 4). The standard deviation of the origin time for NTG events is much smaller than that for NTS events. It is also clear from Figs. 3, 4, 6, and 7 that the mean NTG event origin time is almost two seconds earlier than that for NTS explosions.

OTHER TEST SITES

The ISC origin times from Tables 2, 3, and 5-7 for the Amchitka, Sahara, Azgir, Ustyurt, and Novaya Zemlya test sites are plotted in Fig. 8. As indicated, the origin times for one event on Amchitka and two near Azgir are extrapolated to zero depth. The times for Amchitka and Azgir are

rather scattered. They are less so for the Sahara, but as indicated in Table 3, the origin times appear to have been determined in three different ways. The data for Ustyurt are very consistent. Those for Novaya Zemlya are reasonably so, except for two events on 681107 and 691014, with origin times 5.4 and 6.4 s after the minute, respectively. Inspection of Table 5 indicated that the data for the two sites on Novaya Zemlya could be considered together. The distribution of the origin times for Novaya Zemlya, except for the two after the minute, is a fair approximation to a Gaussian distribution as shown in Fig. 9.

ORIGIN TIMES AND P_n VELOCITIES

The origin times for the U.S. and French explosions plotted in Figs. 2-4 and 8 are for explosions with announced detonation times in the interval from 0.0 to 0.2 s after the minute. It is reasonable to assume that the detonation times corresponding to the origin times for the NTG explosions plotted in Figs. 6 and 7 are also in this interval. The statistics are much poorer for the other three Soviet test sites, but it is appropriate to assume similar detonation times for the events shown in Fig. 8 for Azgir, Ustyurt, and Nova Zemlya—except for the events on 681107 and 691014 at the latter site.

In Table 8, the average origin time (before the minute) for the seven test sites are presented together with P_n velocities beneath those sites. No P_n velocity data are available for Novaya Zemlya, but extrapolation from the data for the Urals in Volvovskii (1973) suggests a value of 8.2 km/s or greater. There is a fairly consistent trend in Table 8 of earlier origin times with higher P_n velocities. This is consistent with the working hypothesis of Marshall, et al. that a low P_n velocity indicates low upper-mantle velocities, and a high P_n velocity indicates high upper-mantle velocities.

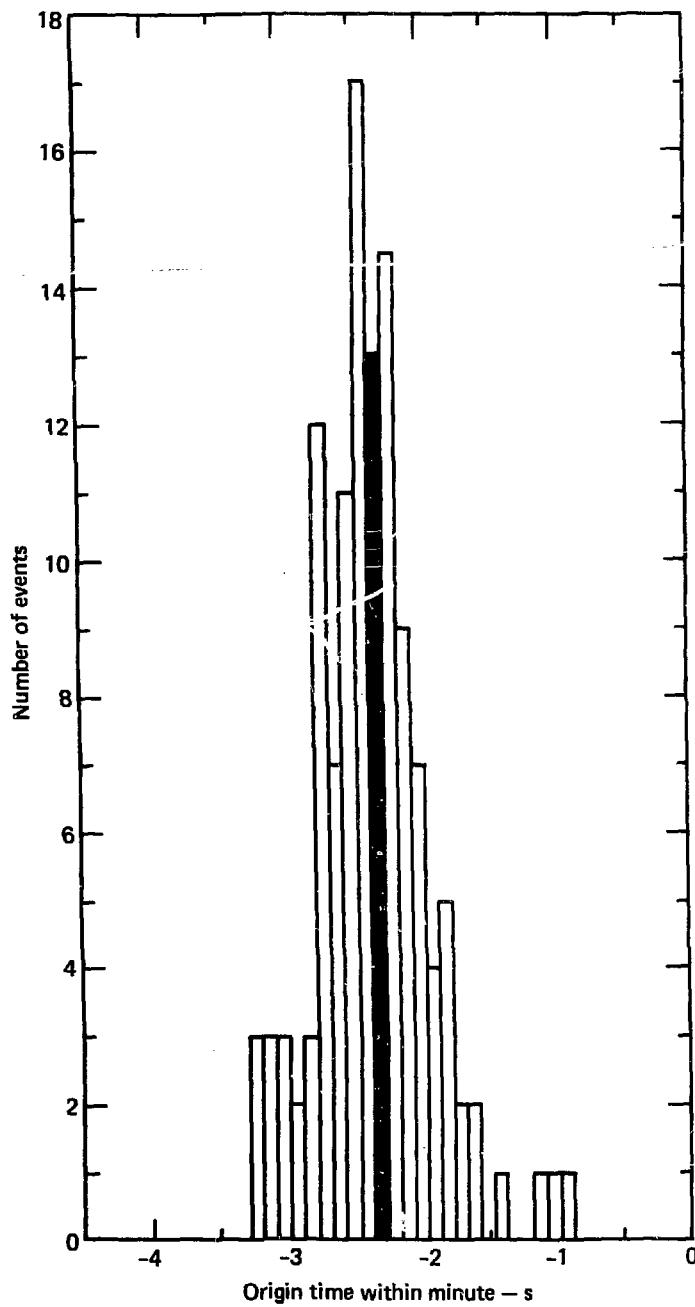


FIG. 6. Incremental distribution of ISC origin time within (before and after) the minute for 122 of the 129 NTG events listed in Table 4. The seven events identified by date in Fig. 5 are not included. The filled-in bar indicates the mean origin time for these 122 events.

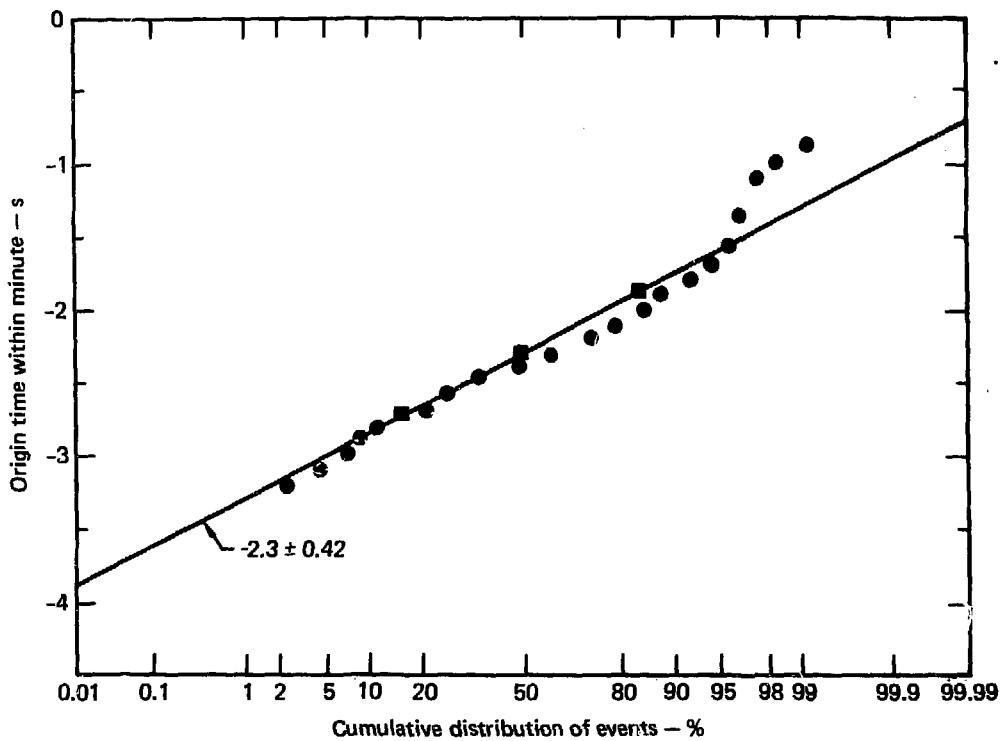
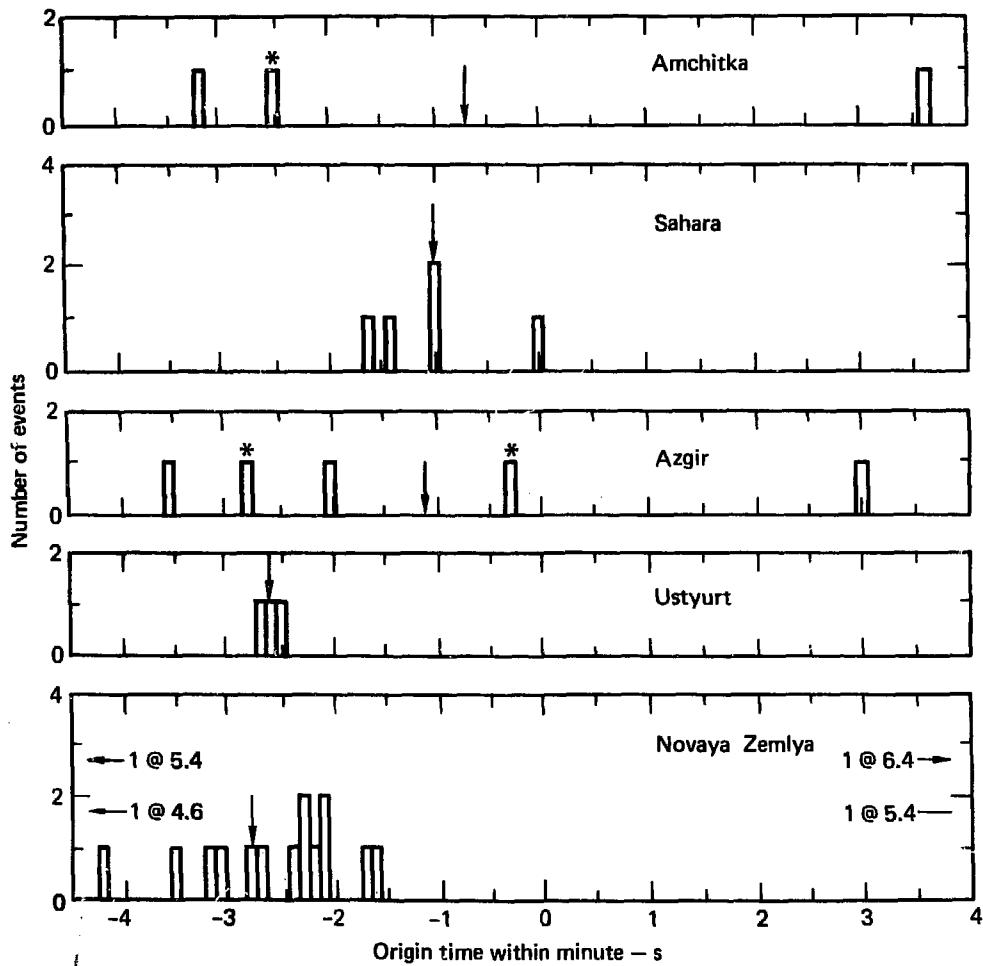



FIG. 7. Cumulative distribution of ISC origin times within (before) the minute for the 122 NTG events of Fig. 6. The ideal normal distribution with the same mean and standard deviation is also plotted. It is clear that the distribution of the NTG origins time is a much better approximation to the Gaussian than the NTS distribution in Fig. 4.

FIG. 8. Incremental distribution of ISC origin times within (before and after) the minute for events on Amchitka, in the Sahara, near Azgir, on the Ustyurt Plateau, and on Novaya Zemlya. The asterisks indicate that the origin time was extrapolated to zero depth, assuming a seismic velocity of 7.76 km/s. The arrows indicate the mean origin times. The events on Novaya Zemlya with origin times of 5.4 and 6.4 s (on 681107 and 691014) were not used in calculating the mean origin time. The data are from Tables 2, 3, 5, 6, and 7.

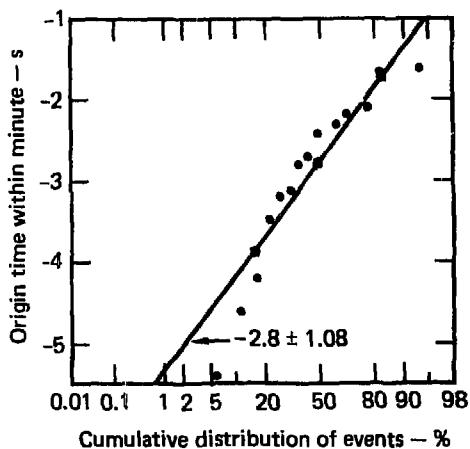


FIG. 9. Cumulative distribution of ISC origin times within (before) the minute for 17 of the Novaya Zemlya events listed in Table 5. The events on 681107 and 691014 are not included. The ideal normal distribution with the same mean and standard deviation is also plotted. The origin time distribution is a fair approximation to the Gaussian, better than that for NTS but not as good as for the NTG.

TABLE 8. Average ISC origin times within (before) the minute and P_n velocities for the several testing sites. The average origin times are from Figs. 3, 6, and 8. The P_n velocities are those given by Marshall, et al., except that for the Ustyurt Plateau which is from Volkovskii.

Test site	Mean origin time, s	P_n velocity, km/s
NTS	-0.4	7.8
Sahara	-1.0	7.84
Amchitka	-0.7	8.05
Azgir	-1.1	8.15
NTG	-2.3	8.3
Ustyurt	-2.6	8.4
Novaya Zemlya	-2.8	Not available

CONCLUSIONS

The detonation times for U.S. and French underground nuclear explosions are generally within one or two tenths of a second after the minute. The seismic evidence indicates that the normal Soviet practice is very similar.

The statistics for the origin times of NTS explosions could be improved by using the same procedure used by the ISC for calculating the origin times for NTG events: assume zero depth and use only teleseismic observations.

The statistics of the calculated origin times for all test sites would be improved if the origin times were calculated in accord with one or more of the following:

- Use only teleseismic observations.
- Use announced locations of U.S. and French explosions.
- Use the announced altitude above or depth below sea level for U.S. explosions; assume zero

depth at the altitude of the test site for the other explosions.

- Weight the calculated origin time for each event according to its estimated standard error.

The mean origin time for NTG events is significantly earlier (approximately two seconds) than that for NTS events. Assuming comparable detonation timing, this difference indicates significantly higher seismic velocities in the crust and upper mantle beneath NTG as compared to NTS. Similarly, the seismic velocities beneath Amchitka and the Sahara appear to be less than the velocities beneath the Azgir, Ustyurt, and Novaya Zemlya sites.

The mean origin time data for NTS, NTG and the other test sites are consistent with a direct correlation between P_n velocity and P-wave velocities in the upper mantle.

REFERENCES

1. Bullen, K. E., *An Introduction to the Theory of Seismology*, 3rd ed., (Cambridge University Press, 1963).
2. Dahlman, O. and H. Israelson, *Monitoring Underground Nuclear Explosions*, (Elsevier Scientific Publishing Company, Amsterdam, 1977).
3. Duclaux, F. and L. Michaud, "Conditions Experimentals des Tirs Nucleaires Souterrains Francais au Sahara, 1961-1966," *C.R. Acad. Sc. Paris* **27**, Series B, 189-192 (1970).
4. Israelson, H., R. Slunga, and O. Dahlman, "Aftershocks Caused by the Novaya Zemlya Explosion on October 27, 1973," *Nature* **247**, 450-452 (1974).
5. Marshall, P. D., D. L. Springer, and H. C. Rodean, "Magnitude Corrections for Attenuation in the Upper Mantle," *Geophys. J. R. Astr. Soc.* **57**, 609-638 (1979).
6. Nordyle, M.D., "A Review of Soviet Data on the Peaceful Uses of Nuclear Explosions," *Annals of Nuclear Energy* **2**, 657-673 (Pergamon Press, New York, 1975).
7. Springer, D. L. and R. L. Kinnaman, "Seismic Source Summary for U.S. Underground Nuclear Explosions, 1961-1970," *Bull. Seismol. Soc. Am.* **61**, 1073-1098 (1971).
8. Springer, D. L. and R. L. Kinnaman, "Seismic Source Summary for U.S. Underground Nuclear Explosions, 1971-1973," *Bull. Seismol. Soc. Am.* **65**, 343-349 (1975).
9. Volgovskii, I.C., *Seismic Investigation of the Earth's Crust in the USSR*, (Nedra Publishing House, Moscow, in Russian, 1973).

MLD/cg