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INTRODUCTION 

I n j e c t i o n  t e s t s  i n  geothermal w e l l s  a r e  commonly performed f o r  

t h r e e  s p e c i f i c  purposes: (1) t o  o b t a i n  p ressure  t r a n s i e n t  d a t a  from 

which t h e  r e s e n o i r  t r a n s m i s s i v i t y  and sk in  f a c t o r  o f  t h e  w e l l  can be 

c a l c u l a t e d ,  ( 2 )  t o  s t i m u l a t e  n a t u r a l l y  f r a c t u r e d  geothermal w e l l s ,  and 

( 3 )  t o  determine t h e  cause o f  r e i n j e c t i o n  problems. 

temperature o f  t h e  i n j e c t e d  f l u i d  is d i f f e r e n t  from t h a t  o f  t h e  i n  s i t u  

r e s e r v o i r  f l u i d .  In o r d e r  t o  i n t e r p r e t  t h e  pressure  t r a n s i e n t  d a t a  

c o r r e c t l y  from any t y p e  o f  i n j e c t i o n  t e s t ,  t h e  e f f e c t  o f  nonisothermal  

U s u a l l y ,  t h e  

r e s e r v o i r  c o n d i t i o n s  must be understood. 

Dur ing  i n j e c t  i o n  o f  f l u i d s  a t  temperatures d i f f e r e n t  from t h e  i n  

s i t u  temperature,  a thermal  d i s c o n t i n u i t y  i s  formed around t h e  w e l l .  

With i n c r e a s i n g  i n j e c t i o n  volumes, t h e  d i s t a n c e  t o  t h e  r a d i a l  d i s c o n t  in- 

u i t y  inc reases .  Both  t h e  e f f e c t  o f  t h i s  thermal  r a d i a l - d i s c o n t i n u 1 t . L  

and t h e  e f f e c t s  o f  t h e  movement o f  t.he thermal  f r o n t  on t h e  pressure  

t r a n s i e n t  response must be considered t o  c o r r e c t l y  i n t e r p r e t  nonisothermal  

i n j e c t i o n  and f a l l o f f  t e s t s .  

For t.he i n t e r p r e t a t i o n  o f  w e l l  t e s t  data,  t h e  two most impor tan t  

temperature-dependent f l u i d  p r o p e r t i e s  o f  water a r e  t h e  dynamic v i s c o s i t y  

and d e n s i t y .  I n  F i g u r e  1, t h e  dynamic v i s c o s i t y  and d e n s i t y  o f  water  

a r e  p l o t t e d  as a f u n c t i o n  o f  temperature.  Between 20°C and 300°C t h e  

v i s c o s i t y  changes b y  an o r d e r  o f  magnitude, t h e  major  change o c c u r r i n g  

between 20°C and 100°C. 

30% between 20'C and 300°C. 

The f l u i d  d e n s i t y  decreases by approx imate ly  

Because o f  t h e  temperature s e n s i t i v i t y  o f  
I 

these parameters, t h e  m o b i l i t y  o f  the. i n j e r t e d  and i n  s i t u  f l u i d s  can 

d i f f e r  b y  an o r d e r  o f  magnitude. 

A s i m i l a r  problem, o f  i n t e r e s t  t o  t h e  pet ro leum i n d u s t r y ,  i s  t h e  

e v a l u a t i o n  o f  w a t e r f l o o d  i n j e c t i o n  w e l l s .  Dur ing  i n j e c t i o n ,  water 
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sweeps some o f  t h e  o i l  from t h e  r o c k  pores  and c r e a t e s  an o i l  bank ahead 

o f  t h e  i n j e c t e d  water.  Around t h e  i n j e c t i o n  w e l l ,  t h e  pore volume i s  

f i l l e d  m a i n l y  with water, which u s u a l l y  has a v i s c o s i t y  lower  than t h e  

i n  s i t u  o i l .  For e b a l u a t i n g  pressure  t r a n s i e n t s  i n  such systems, t h e  

r e s e r b o i r  is  t r e a t e d  as a composi te system w i t h  an i n n e r  r e g i o n  m o b i l i t y  

o f  kw/uw and an o u t e r  r e g i o n  m o b i l i t y  o f  ko/po. 

a n a l y s i s  methods have been debeloped f o r  c a l c u l a t i n g  t h e  p e r m e a b i l i t y  o f  

t h e  fo rmat ion ,  t h e  s k i n  f a c t o r  of  t h e  w e l l ,  and i n  some cases, t h e  

d i s t a n c e  t o  t h e  f l o o d  f r o n t .  The major  drawback o f  t h i s  approach i s  

t h a t  t h e  d i s t a n c e  t o  t h e  c o n t a c t  between t h e  o i l  and water must be f a r  

enough from t h e  w e l l  so t h a t  t h e  presence o f  t h i s  i n n e r  r e g i o n  w i l l  be 

apparent i n  t h e  pressure  t r a n s i e n t  da ta .  

Using t h i s  approach, 

Methods debeloped f o r  e b a l u a t i n g  composi te systems a r e  a l s o  

a p p l i c a b l e  t-o nonisothermal  i n j e c t i o n  i n  t h e  sense t h a t  e v e n t u a l l y  t h e  

system i s  a composi te one w i t h  an i n n e r  r e g i o n  a t  one temperature and an 

o u t e r  r e g i o n  at  another .  Howeber, t a k i n g  t h i s  approach has two drawbacks. 

F i r s t ,  i t  n e g l e c t s  t h e  p o t e n t i a l  e f f e c t s  o f  t h e  moi ing  thermal  f r o n t .  

Second, t h e  methods a r e  n o t  a p p l i c a b l e  u n t i l  t h e  thermal  f r o n t  i s  very  

f a r  from t h e  i n j e c t i o n  w e l l .  This r e q u i r e s  t h a t  l a r g e  Lolumes o f  f l u i d  

be i n j e c t e d  i n t o  t h e  f o r m a t i o n  b e f o r e  pressure  t r a n s i e n t  t e s t i n g  can be 

used t o  e i a l u a t e  t h e  i n j e c t i o n  process. 

The o b j e c t i b e  o f  t h e  c u r r e n t  s tudy  is  t o  debelop procedures f o r  

a n a l y z i n g  nonisothermal  i n j e c t i o n  t e s t  d a t a  d u r i n g  t h e  e a r l y  phases o f  

i n j e c t i o n .  This w i l l  p r o b i d e  a means f o r  d e t e c t i n g  i n j e c t i o n  w e l l  p lug-  

g i n g  and p r e d i c t i n g  premature thermal  breakthrough b e f o r e  t h e  thermal  

f r o n t  has moied L e r y  f a r  from t h e  w e l l ,  thereby  a l l o w i n g  remedia l  measures 

t o  be taken b e f o r e  t h e  consequences o f  these problems become s e r i o u s .  
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BASIC PROBLEM 

Phys ica l  D e s c r i p t i o n  

When water  is i n j e c t e d  i n t o  a geothermal  r e s e r v o i r ,  numerous p h y s i c a l  

changes  t a k e  p l a c e  i n  t h e  system. 

t o  one o f  t h e  fo l lowing  c a t e g o r i e s ;  

1 )  Pressure i n c r e a s e s  i n  t h e  pore  s p a c e s  o f  t h e  rock .  

2 )  Mobement o f  bo th  t h e  i n j e c t a t e  and i n  s i t u  po re  f l u i d  away from 

t h e  well .  

3 )  Temperature changes  i n  bo th  t h e  rock and pore  f l u i d  r e s u l t i n g  

from t empera tu re  d i f f e r e n c e s  between t h e  i n j e c t a t e  and r e s e r v o i r  

f l u i d .  

These changes  can  be  grouped accord ing  

4) P o r o s i t y  and p e r m e a b i l i t y  changes  r e s u l t i n g  from chemical  

i n t e r a c t i o n s  between t h e  i n j e c t a t e ,  po re  f l u i d  and r e s e r L o i r  

rock .  

5 )  P o r o s i t y  and p e r m e a b i l i t y  changes  r e s u l t i n g  from mechanical  

changes  i n  t h e  near -wel lbore  r eg ion  ( e . g . ,  h y d r a u l i c  f r a c t u r i n g ,  

f r a c t u r e  d i l a t i o n ,  thermal  stress c r a c k i n g ,  and p a r t i c u l a t e  p lugg ing)  

F o r t u n a t e l y ,  f o r  t h e  purposes  o f  t h i s  s t u d y ,  t h e s e  can be  c l a s s i f i e d  

i n t o  t h e  eLen broader  groups :  very-near  we l lbo re  e f e c t s ;  near -wel lbore  

e f f e c t s  ; and r e s e r v o i r - s c a l e  e f f e c t s .  

Changes i n  p o r o s l t y  and p e r m e a b i l i t y  r e s u l t i n g  from bo th  mechanical  

and chemical  changes  a r e  c o n c e n t r a t e d  i n  a r e g i o n  very-near  t h e  we l lbo re .  

Such changes  can be  t r e a t e d  a s  a s k i n  e f f e c t  around t h e  well ( \ a n  

Eberdingen,  1953) .  I n i t i a l l y ,  t empera tu re  changes  a r e  a l s o  l i m i t e d  t o  

t h e  Lery-near wel lbore  r e g i o n .  However, w i th  i n c r e a s i n g  i n j e r t i o n ,  t h e  

thermal  f r o n t  moLes away from t h e  wel l .  Temperature changes  a r e  b e t t e r  

c l a s s i f i e d  a s  a near-wel l  e f f e c t .  For t y p i c a l  La lues  o f  t h e  r e s e r v o i r  

, 
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p r o p e r t i e s ,  l a r g e  volumes o f  t h e  r e s e r b o i r  qu ick ly  e x p e r i e n c e  a p r e s s u r e  

i n c r e a s e  which r e s u l t s  i n  f l u i d  movement. The re fo re ,  t h e s e  a r e  c l a s s i f i e d  

a s  r e s e r v o i r - s c a l e  e f f e c t s .  

Th i s  d i k i s i o n  o f  t h e  r e s e r v o i r  s u g g e s t s  t h a t  t h e  t h r e e - r e g i o n  

composi te  r e s e n o i r ,  d e p i c t e d  i n  F i g u r e  2 ,  is a s u i t a b l e  framework f o r  

e v a l u a t i n g  p r e s s u r e  t r a n s i e n t s  d u r i n q  noniso thermal  i n j e c t i o n  . Immediately 

su r round ing  t h e  well is  a s k i n  r eg ion  where t h e  p e r m e a b i l i t y  may be  

d i f f e r e n t  from t h a t  o f  t h e  reservoir. In  g e n e r a l  t h e  s i z e  o f  t h i s  

r e g i o n  is smal l  and mat.hematically is t r e a t e d  a s  i n f i n i t e s i m a l l y  t h i n .  

The second r e g i o n  i n  t h e  r e s e r v o i r  e x t e n d s  from t h e  o u t e r  r a d i u s  o f  t h e  

s k i n  r e g i o n  t o  t h e  the rma l  f r o n t .  I t  h a s  t h e  same p e r m e a b i l i t y  a s  t h e  

r e s e r v o i r  b u t  is t h e  t empera tu re  o f  t h e  i n j e c t e d  f l u i d .  Although i n  

a c t u a l i t y  t h e  thermal  f r o n t  is  not  s h a r p ,  f o r  t h e  time b e i n g ,  i t  i s  

cons ide red  t o  be  so.  The p r o p e r t i e s  o f  t h e  o u t e r  r eg ion  which e x t e n d s  

from t h e  thermal  f r o n t  t o  an u n s p e c i f i e d  d i s t a n c e  from t h e  well, a r e  

t h o s e  o f  t h e  und i s tu rbed  r e s e r k o i r .  

Numerous r e s e a r c h e r s  i n  t h e  f i e l d  o f  petroleum e n g i n e e r i n g ,  hake 

used t h i s  framework f o r  debe loping  mathemat.ica1 models  f o r  c a l c u l a t  i nq  

p r e s s u r e  t r a n s i e n t s  i n  wa te r f lood  i n j e c t i o n  wells and composi te  r e s e r v o i r s .  

Major resul ts  o f  t h e s e  s t u d i e s  are p r e s e n t e d  i n  t h e  nex t  s e c t i o n .  

habe been s u c c e s s f u l  a t  d e s c r i b i n g  p r e s s u r e  t r a n s i e n t s  and deve lop ing  

t e c h n i q u e s  f o r  ana lyz ing  p r e s s u r e  t r a n s i e n t s  i n  such  systems. However, 

a s  mentioned p r e v i o u s l y ,  t h e r e  are  two major l i m i t a t i o n s  t o  t h e  a p p l i c a -  

b i l i t y  o f  e x i s t i n g  a n a l y s i s  t echn iques .  F i r s t ,  t h e  m a j o r i t y  o f  p r e k i o u s  

s t u d i e s  assume t h a t  t h e  d i s t a n c e  t o  t h e  " f lood  f r o n t "  does  not  change 

d u r i n g  t h e  time p e r i o d  o f  i n t e r e s t .  Second, i n  g e n e r a l ,  methods o f  

a n a l y s i s  a re  a p p l i c a b l e  on ly  a f t e r  l a r g e  Lolumes have been i n j e c t e d .  

They 
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f igure  2 .  Schematic of a 3-region composite reservoir. 
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Related Research 

Numerous s t u d i e s  have been p u b l i s h e d  on t h e  a n a l y s i s  o f  w e l l  t e s t  

One o f  t h e  e a r l i e s t  o f  these, p u b l i s h e d  d a t a  i n  composi te r e s e r v o i r s .  

b y  Hazebroek e t  a l . ,  (1958) proposed a method f o r  a n a l y z i n g  pressure  

f a l l o f f  t e s t s  i n  water i n j e c t i o n  w e l l s .  

and e r r o r  procedure i n  which t h e  l a t e - t i m e  pressure  t r a n s i e n t  d a t a  a r e  

a d j u s t e d  i n  such a way as t o  make them l i n e a r  on a pressure  vs.  l o g  ( t i m e )  

p l o t ,  t h e  c o r r e c t  average r e s e r v o i r  pressure,  p e r m e a b i l i t y - t h i c k n e s s  

o f  t h e  r e s e r v o i r ,  and s k i n  f a c t o r  o f  t h e  w e l l  can be determined. 

o t h e r  a u t h o r s  have r e p o r t e d  on t h e  development o f  a n a l y t i c  s o l u t i o n s  or  

approximate a n a l y t i c  s o l u t i o n s  f o r  c a l c u l a t i n g  pressure  t r a n s i e n t s  i n  

composi te r e s e r v o i r  systems wi th  a s t a t i o n a r y  boundary s e p a r a t i n g  t h e  

r e s e r v o i r  r e g i o n s  o f  d i f f e r e n t  f l u i d  or  r o c k  p r o p e r t i e s  ( L a r k i n ,  1963; 

Kazemi, 1966; Odeh, 1969; and Ramey, 1970). These s t u d i e s  show t h a t  two 

semi- log s t r a i g h t  l i n e s ,  t h e  f i r s t  corresponding t o  t h e  p r o p e r t i e s  o f  t h e  

i n n e r  r e g i o n ,  and t h e  second t o  t h e  p r o p e r t i e s  o f  t h e  o u t e r  r e g i o n ,  should 

be apparent i n  t h e  pressure  bui ldup and f a l l o f f  da ta .  

t h i c k n e s s  p r o d u c t  o f  t h e  two r e s e r v o i r  r e g i o n s  can be c a l c u l a t e d  from t h e  

s l o p e s  o f  t h e  semi- log s t r a i g h t  l i n e s .  The skin f a c t o r  f o r  t h e  w e l l  can be 

c a l c u l a t e d  u s i n g  c o n v e n t i o n a l  methods and t h e  f i r s t  semi- log s t r a i g h t  l i n e .  

The r a d i a l  d i s t a n c e  t o  t h e  d i s c o n t i n u i t y  can be eva lua ted  from t h e  t i m e  a t  

which t h e  two semi- log s t r a i g h t  l i n e s  i n t e r s e c t  (van  Pool len,  1965). 

They show t h a t  by u s i n g  a t r i a l  

Several  

The p e r m e a b i l i t y -  

The problem has a l s o  been i n v e s t i g a t e d  b y  u s i n g  numer ica l  methods 

t o  s i m u l a t e  t h e  pressure  f a l l o f f  i n  systems w i th  r a d i a l  d i s c o n t i n u i t i e s  

( B i x e l  and \ a n  Poo l len ,  1967; Kazemi e t  a., 1972; and M e r r i l l  e t  a l . ,  

1974). These au thors  have i n i e s t i g a t e d  t h e  e f f e c t s  o f  d i f f e r e n t  m o b i l i t y  
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r a t i o s ,  s to rage c o e f f i c i e n t  r a t i o s ,  a f t e r f l o w ,  and t h e  presence o f  

r e s e r i o i r  boundar ies on t h e  pressure  t r a n s i e n t  da ta .  They i n d i c a t e d  

t h a t  u n l e s s  s to rage c a p a c i t y  i s  approx imate ly  equal  on b o t h  s i d e s  o f  

t h e  d i s c o n t i n u i t y ,  t h e  s l o p e  o f  t h e  second semi-log s t r a i g h t  l i n e  

cannot be used t o  c a l c u l a t e  t h e  p e r m e a b i l i t y - t h i c k n e s s  o f  t h e  o u t e r  

r e g i o n .  Furthermore, t h e y  showed t h a t  i f  w e l l b o r e  s t o r a g e  masks t h e  

e a r l y - t i m e  data,  i t  may no t  be p o s s i b l e  t o  determine t h e  p r o p e r t i e s  o f  

t h e  i n n e r  r e g i o n ,  and t h e  c a l c u l a t e d  d i s t a n c e  t o  t h e  f r o n t  may be 

erroneous. 

More r e c e n t l y ,  s e v e r a l  papers d i s c u s s  t h e  i n t e r p r e t a t i o n  o f  p ressure  

b u i l d u p  and f a l l o f f  t e s t s  i n  geothermal i n j e c t i o n  w e l l s .  Tsang and 

Tsang (1978) developed a semi -ana ly t i c  s o l u t  ior '  f o r  c a l c u l a t i n g  t h e  

pressure  b u i l d u p  d u r i n g  nonisothermal  i n j e c t i o n  i n  an i d e a l i z e d  w e l l /  

r e s e r v o i r  system. They demonstrated t h a t  under s p e c i a l  c o n d i t i o n s ,  t h e  

p h y s i c a l  p r o p e r t i e s  o f  t h e  i n j e c t e d  f l u i d  c o n t r o l  t h e  pressure  response. 

Tsang e t  a l . ,  (1978) and Bodvarsson and Tsang (1980) used a numer ica l  

s i m u l a t o r  t o  s tudy  t h e  pressure  b u i l d u p  i n  response t o  c o l d  water 

i n j e c t i o n  i n t o  a h o t  water r e s e r v o i r .  They i l l u s t r a t e d  t h e  e f f e c t s  o f  

t h e  temperature dependent f l u i d  p r o p e r t i e s  ( v i s c o s i t y  and d e n s i t y )  and 

e l a b o r a t e d  on t h e  e f f e c t  o f  a moLing thermal  boundary on t h e  pressure  

response. Mangold et a l . ,  1980, used a numer ica l  model t o  s tudy t h e  

e f f e c t s  o f  nonisothermal  r e s e n o i r  c o n d i t i o n s  on b o t h  p r o d u c t i o n  and 

i n j e c t i o n  pressure  t r a n s i e n t s .  They showed t h a t  t h e  e f f e c t s  o f  thermal  

d i s c o n t i n u i t i e s  may bc er roneous ly  i n t e r p r e t e d  as r e s e r i o i r  boundar ies.  

O ' S u l l i L a n  and Pruess (1980) and Garg and P r i t c h e t t  (19811 i n v e s t i g a t e d  

t h e  pressure  b u i l d u p  and f a l l o f f  i n  response t o  c o l d  water i n j e c t i o n  
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i n t o  a two-phase geothermal r e s e r i o i r .  The above s t u d i e s  conf i rmed 

t h a t ,  under c e r t a i n  c i rcumstances, t h e  p e r m e a b i l i t y - t h i c k n e s s  product, o f  

t h e  r e s e r v o i r  can be c a l c u l a t e d  from pressure  b u i l d u p  or  f a l l o f f  d a t a  by 

u s i n g  c o n v e n t i o n a l  a n a l y s i s  methods. 
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APPROACH 

The d e s c r i p t i o n  o f  t h e  r e s e r v o i r / w e l l  model used f o r  t h i s  s tudy  i s  

as f o l l o w s :  

I )  With t h e  e x c e p t i o n  o f  an annular  r e g i o n  around t h e  w e l l ,  ( s k i n  
r e g i o n )  t h e  r e s e r v o i r  i s  o f  cons tan t  p o r o s i t y ,  c o m p r e s s i b i l i t y ,  
p e r m e a b i l i t y ,  heat c a p a c i t y ,  and thermal  c o n d u c t i v i t y .  

2) The r e s e r v o i r  i s  h o r i z o n t a l ,  i n f i n i t e ,  o f  c o n s t a n t  th ickness ,  
and bounded above and below by impermeable r o c k .  

3)  Thermal conduct ion  t o  t h e  caprock and bedrock is neg lec ted .  

4) The r e s e r v o i r  i s  f u l l y  s a t u r a t e d  w i th  s l i g h t l y  compress ib le  
l i q u i d  water.  

5 )  The e f f e c t s  o f  g r a v i t y  on t h e  shape o f  t h e  thermal  f r o n t  a r e  
neg lec ted .  

6 )  The w e l l  has a f i n i t e  r a d i u s  and f u l l y  p e n e t r a t e s  t h e  r e s e r v o i r .  

Several  o f  t h e  c o n s t r a i n t s  on t h e  present  s tudy  warrant  d i s c u s s i o n .  

F i r s t ,  d u r i n g  nonisothermal  i n j e c t i o n  i t  i s  w e l l  known t h a t  t h e  d e n s i t y  

c o n t r a s t  between t h e  f l u i d s  c r e a t e s  a t i l t i n g  o f  t h e  thermal  f r o n t .  The 

degree o f  t i l t i n g  depends on a number o f  f a c t o r s  i n c l u d i n g  t h e  v e r t i c a l  

p e r m e a b i l i t y  o f  t h e  r o c k  and t h e  d u r a t i o n  o f  i n j e c t i o n  ( H e l l s t r o m  e t  

a l . ,  1979).  As many porous media format ions c o n s i s t  o f  in ter -bedded 

sands and shales,  t h e  v e r t i c a l  p e r m e a b i l i t y  i s  lower than t h e  h o r i z o n t a l  

p e r m e a b i l i t y .  Th is  tends  t o  i n h i b i t  t i l t i n g  o f  t h e  f r o n t  ( H e l l s t r o m  e t  

a l . ,  1979). Also,  s i n c e  t h e  present. s tudy  i s  concerned p r i m a r i l y  w i th  

i n j e c t i o n  t e s t i n g  when t h e  thermal  f r o n t  has n o t  advanced v e r y  f a r  from 

t h e  w e l l ,  t h e  importance o f  f r o n t  t i l t i n g  i s  min imal  ( H e l l s t r o m  e t  a l . ,  

1979). A second c o n s t r a i n t  on t h e  present  s tudy  i s  t h e  assumption t h a t  

t h e  abso lu te  p e r m e a b i l i t y  o f  t h e  r o c k  i s  independent o f  t h e  t.emperature. 
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I n  genera l ,  l a b o r a t o r y  s t u d i e s  support  t h i s  assumption, howeber, severa l  

s t u d i e s  sugqest t h a t  t h e  r o c k  p e r m e a b i l i t y  may be temperature s e n s i t i k e  

(Gobran e t  a1 ., 1980; Grant,  1983; Bodvarsson e t  a1 ., 1982).  Since t h e  

p r i m a r y  o b j e c t i b e  o f  t h i s  s tudy  i s  t o  e v a l u a t e  t h e  system w h i l e  t h e  

thermal  f r o n t  remains r e l a t i k e l y  c l o s e  t o  t h e  w e l l ,  temperature dependent 

r o r k  p r o p e r t i e s  should be r e f l e c t e d  by changes i n  t h e  s k i n  f a c t o r  o f  t h e  

w e l l ,  r a t h e r  t h a n  t h e  o v e r a l l  p e r m e a b i l i t y  o f  t h e  system. Therefore, 

t h i s  c o n s t r a i n t  does n o t  l i m i t  t h e  g e n e r a l i t y  o f  t h e  approarh.  

Governing Equat ions 

The govern ing  equat ions  t h a t  d e s c r i b e  t h e  hydrodynamics o f  f l u i d  

i n j e c t i o n  i n t o  a porous medium are developed by c o n s i d e r i n g  t h e  mass and 

energy c o n s e r v a t i o n  requirements.  I n  c y 1  i n d r i c a l  c o o r d i n a t e s  t h e  mass 

c o n s e r v a t i o n  equat ion  is expressed as 

For t h e  system descr ibed above, t h a t  i s ,  one i n  which t h e  q r a k i t y  term 

is n e g l e c t e d  and t h e  medium i s  assumed t o  be homogeneous and i s o t r o p i c ,  

Equat ion (1) can be s i m p l i f i e d  t o  

I n  o r d e r  t o  eva lua te  t h i s  express ion,  an e q u a t i o n  o f  mot ion  and an 

equat ion  o f  s t a t e  f o r  t h e  f l u i d  a re  r e q u i r e d .  Assuming Darcy f l o w ,  t h e  

equat ion  o f  mot ion  i s  expressed as 
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There i s  no s imp le  express ion  f o r  t h e  equat ion  o f  & a t e  t h a t  i n c l u d e s  

b o t h  t h e  tempcrat.ure and pressure dependence o f  the f l u i d  d e n s i t y .  

Therefore,  f o r  t h e  t i m e  b e i n g  l e t  i t  s u f f i c e  t o  d e f i n e  

and 

By s u b s t i t u t i n g  equat lons  ( 3 ) - ( 5 )  i n t o  Equat ion ( Z ) ,  t h e  govern ing 

equat ion  f o r  t h e  pressure  d i s t r i b u t l o n  i n  t h e  system can be  expressed 
as 

The propagat ion  o f  t h e  thermal  f r o n t  i n t o  t.he r e s e r v o i r  i s  governed by 

t h e  energy balance equat ion  

0 V 
(7) 

where p Ca i s  t h e  v o l u m e t r i c  heat c a p a c i t y  o f  t h e  r e s e r v o i r .  

Bodvarsson (1969) showed t h a t  i f  t h e  conduct ion  t o  t h e  c o n f i n i n g  s t r a t a  is 

a 

neg lec ted ,  t,he d i s t a n c e  t o  t h e  thermal  f r o n t  1s g i v e n  by 

T h i s  express ion,  however, does n o t  p r o v i d e  i n f o r m a t i o n  about t h e  d i s t r i -  

b u t i o n  o f  temperatures around t h e  thermal  f r o n t .  

more romplex and has been done b y  Avdonin (1964).  

E v a l u a t i o n  o f  t h i s  i s  

A n a l y t i c a l l y  e v a l u a t i n g  Equat ion 6 i s  a formidable t a s k .  Tsang and 

Tsang (1978) eva lua ted  a s i m i l a r  express ion  that. 1) neg lec ted  t h e  
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dependence o f  f l u i d  d e n s i t y  on t e m p e r a t u r e  and 11)  assuned  t h a t  t h e  

d i s t r i b u t i o n  of  t empera tu re  about  t h e  f ron t  cou ld  be expres sed  by t h e  

Fermi-Dirac f u n c t i o n .  Although t h i s  approach p r o b i d e s  i n s i g h t  i n t o  t h e  

hydrodynamics o f  noniso thermal  f l u i d  i n j e c t i o n  i t  n e i t h e r  a l l o w s  r i g o r o u s  

e b a l u a t i o n  o f  t h e  problem nor t h e  f l e x i b i l i t y  t o  i n c o r p o r a t e  t h e  e f f e c t s  

o f  c o m p l i c a t i o n s  such  a s  v a r i a b l e  f l o w r a t e s  or  r e s e r b o i I  h e t e r o g e n e i t y .  

For t h i s  s t u d y ,  a numer ica l  s i m u l a t o r  is  used t o  g e n e r a t e  t h e  

p r e s s u r e  t r a n s i e n t s  i n  r e sponse  t o  noniso thermal  i n j e c t i o n .  Th i s  

approach i s  t a k e n  f o r  s e v e r a l  r e a s o n s ,  t h e  most impor t an t  one  be ing  t h e  

f l e x i b i l i t y  i n h e r e n t  i n  a numerical  s i m u l a t o r .  I t  r a n  be  argued t h a t  

debelopment o f  an a n a l y t i c  s o l u t i o n  p r o v i d e s  g e n e r a l  r e s u l t s  from which 

t h e  p h y s i c a l  s i g n i f i c a n c e  o f  g roups  o f  pa rame te r s  i s  r e a d i l y  a p p a r e n t .  

I t  can  a l s o  be argued t h a t  t h e  i n a c c u r a c i e s  i n h e r e n t  i n  numer ica l  

methods shed doubt on t h e  r e s u l t s  o f  s u c h  a s t u d y .  Howeber, u n l e s s  t h e  

p h y s i c a l  system is bery s imple ,  t h e  a n a l y t i c  s o l u t i o n  ( i f  one  ex is t s )  

becomes extremely compl i ca t ed ,  a s  demonst ra ted  by t h e  qove rn ing  e q u a t i o n s .  

S i n c e  t h e  a u t h o r s  mentioned p r e v i o u s l y  have a l r e a d y  s t u d i e d  many i d e a l i z e d  

systems u s i n g  a v a r i e t y  o f  t e c h n i q u e s ,  t o  r e p e a t  t h i s  work would be  

unnecessary  d u p l i c a t i o n .  I t  i s  t h e  purpose  o f  t h i s  s t u d y  t o  c o n s i d e r  

t.he e f f e c t s  o f  some o f  t h e  common problems encountered  i n  geothermal  

i n j e c t i o n  well t e s t i n g  t h a t  do not  a p r i o r i  l end  themse lbes  t o  a n a l y t i c  

t r ea tmen t  ( e .g . ,  b a r i a b l e  f l o w r a t e s ,  a d i f f u s e  f r o n t ,  f i n i t e  o f  s k i n  

damage, a l a y e r e d  r e s e r v o i r ,  e t c . ) .  Numerical s i m u l a t o r s  are  a t o o l  

t h a t  can a i d  u s  i n  mobing i n t u i t i v e l y  from a p h y s i c a l  o b s e r v a t i o n  

( s i m u l a t e d  r e s u l t )  t o  a g e n e r a l  rule  wi thout  r e q u i r i n g  t h e  i n t e r b e n t i o n  

o f  cumbersome mathematlcs .  As f o r  t h e  q u e s t i o n  o f  t h e  accuracy  o f  t h e  
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r e s u l t s ,  t h e  numer ica l  s i m u l a t o r  used f o r  t h i s  s tudy  has been v e r i f i e d  

b o t h  a n a l y t i c a l  and exper imenta l  r e s u l t s .  

Numerical  Techniaue 

The numer ica l  s i m u l a t o r  PT (pressure- temperature)  , developed by 

Bodvarsson (1982) i s  used f o r  t h i s  s tudy.  The code i s  3-dimensional and 

s o l v e s  t h e  coupled mass and energy t r a n s p o r t  equat ions  f o r  a l i q u i d -  

saturat.ed, heterogeneous, porous and/or f r a c t u r e d  media. 

" i n t e g r a t e d  f i n i t e  d i f f e r e n c e  method (IFDM) for  d i s c r e t i z i n g  t h e  

medium and f o r m u l a t i n g  t h e  govern ing equat ions  (Narasimhan and Witherspoon, 

1976; Edwards, 1972).  The s e t  o f  l i n e a r  equat ions  i s  so lved a t  each 

t i m e s t e p  b y  d i r e c t  means u s i n g  an e f f i c i e n t  sparse m a t r i x  s o l v e r  ( D u f f ,  

1977). 

I t  employs t h e  

The s i m u l a t o r  a l l o w s  f o r  temperature- and/or pressure-dependent 

f l u i d  and r o c k  p r o p e r t i e s .  The f l u i d  d e n s i t y  is c a l c u l a t e d  as a f u n c t i o n  

o f  p ressure  and temperature,  u s i n g  a po lynomia l  approx imat ion,  accura te  

t o  wi th in  1%. F l u i d  v i s c o s i t y  i s  c a l c u l a t e d  as a f u n c t i o n  o f  temperature 

u s i n g  an accura te  ( w i t h i n  1%) e x p o n e n t i a l  express ion.  

been v a l i d a t e d  aga ins t  many a n a l y t i c a l  s o l u t i o n s  as w e l l  as i n  f i e l d  

exper iments (Bodvarsson, 1982; and Doughty e t  a l . ,  1983). A d e t a i l e d  

d e s c r i p t i o n  o f  t h e  s i rnu lator  i s  giver!  by Bodbarsson (1982) .  

The s i m u l a t o r  has 

Numerical S i m u l a t i o n  

Numerous numer ica l  s i m u l a t i o n s  were perormed i n  o r d e r  t o  determine 

t h e  c h a r a c t e r i s t i c  p ressure  response d u r i n g  nonisothermal  i n j e c t i o n .  

Most o f  t h e  s i m u l a t i o n s  were performed assuming a s e t  o f  " t y p i c a l "  

p h y s i c a l  parameters f o r  a geothermal system ( f o r  ins tance,  see Table I ) .  
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P C  a a  

x 

r 
W 

Ct 

Tr 

1.0 x 10 -I4 m2 (IO md) 

100.0 m 

0 . 2  

2 .57  x IO6 J/m30n 

2.0 J/m/"C/s 

0.1 m 

I x  IO-^ Pa-' 

250 "C 

L 

(6.9~10-~ p s i  - I )  

Table 1 .  Reservoir parameters used for t h e  numerical simulations. 
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However, v a l u e s  o f  parameters were v a r i e d  i n  order  t o  determine t h e  

a p p r o p r i a t e  d imension less group ings  o f  these parameters.  

For most, o f  t h e  s i m u l a t i o n s  a s i n g l e - l a y e r  r a d i a l  mesh ( c o n c e n t r i c  

c i r c l e s )  w i t h  a r e a l i s t i c  w e l l b o r e  r a d i u s  o f  0.1 m i s  used. Close t o  

t h e  w e l l ,  v e r y  f i n e  elements a r e  used f o r  accura te  model ing o f  tempera- 

t u r e  L a r i a t i o n s  d u r i n g  i n j e c t i o n .  F a r t h e r  away from t h e  w e l l ,  t h e  mesh 

spacing i n c r e a s e s  l o g a r i t h m i c a l l y  f o r  accura te  model ing o f  t h e  pressure  

response. For  most computer runs, a mesh w i th  approx imate ly  100 elements 

i s  used. 

mobement o f  t h e  thermal  f r o n t  and t h e  propagat ion  o f  t h e  pressure  pu lse .  

As such, d i f f e r e n t  g r i d s  a re  used depending on t h e  s p e c i f i c  problem 

b e i n g  i n b  e s t  i g a t e d  . 

The g r i d  i s  chosen t o  o p t i m i z e  accurate model ing o f  t h e  

The t i m e  s t e p s  are  a u t o m a t i c a l l y  s e l e c t e d  by t h e  numer ica l  code, 

based upon user s p e c i f i e d  c r i t e r i a  for  t h e  maximum a l l o w a b l e  p ressure  

and temperature changes d u r i n g  a t i m e  s t e p  (Bodbarsson, 1982). 

runs t h e  maximum a l l o w a b l e  p ressure  and temperature changes a r e  IO5 Pa 

and 1 " C ,  r e s p e c t i b e l y .  

For most 
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R E S E R V O I R  RESPONSE T O  NONISOTHERMAL INJECTION 

I n  t h e  f o l l o w i n g  sec t ions ,  t h e  pressure  t r a n s i e n t s  t h a t  occur i n  

response t o  nonisothermal  i n j e c t i o n  a r e  demonstrated. Pressure t r a n s i e n t s  

d u r i n g  b o t h  h o t  water i n j e c t i o n  i n t o  a c o l d  r e s e r v o i r  and c o l d  water 

i n j e c t i o n  i n t o  a h o t  r e s e r v o i r  were i n v e s t i g a t e d .  

water i n j e c t i o n  i s  more common and o f  g r e a t e r  i n t e r e s t ,  t h e  examples c i t e d  

are  l i m i t e d  t o  t h i s  case. The r e s u l t s  a r e  j u s t  as a p p l i c a b l e  t o  t h e  o t h e r  

problem. 

a n a l y s i s  f o r  i n j e c t i o n  t e s t s ,  t h e  r e s u l t s  o f  these s i m u l a t i o n s  a r e  presented 

i n  such a way as t o  f a c i l i t a t e  understanding o f  how t h e y  may be used t o  

analyze i n j e c t i o n  t e s t s .  As such, t h e y  a r e  graphed accord ing  t o  t h e  M i l l e r -  

Dyes-Hutchinson, Horner, o r  ~ a r i a b l e  r a t e  technique,  depending on t h e  method 

most a p p r o p r i a t e  f o r  t h e  s p e c i f i c  problem (Matthews and R u s s e l l ,  1967; 

Ear lougher ,  1977).  

However, because c o l d  

Because t h e  i n t e n t i o n  o f  t h e  work i s  t o  develop methods o f  

Pressure B u i l d u p  D u r i n g  Nonisothermal I n j e c t i o n  

The pressure  b u i l d u p  during c o l d  water i n j e c t i o n  (95"C), i n t o  a h o t  

r e s e r v o i r  (25OOC) i s  i l l u s t r a t e d  i n  F i g u r e  3.* The pressure  t r a n s i e n t s  

a t  t h e  w e l l  and severa l  o t h e r  r a d i i  a r e  p l o t t e d .  Note t h a t  a l l  o f  t h e  

d a t a  p o i n t s  f a l l  on t h e  same curve  when p l o t t e d  i n  terms o f  t/r$. 

A t  e a r l y  t imes, t h e  pressure  t r a n s i e n t s  a r e  i d e n t i c a l  t o  those fo r  250°C 

i n j e c t i o n  (see 250°C Theis l i n e  i n  F i g u r e  3 ) .  

t h e  s l o p e  o f  t h e  semi- log s t r a i g h t  l i n e  changes and becomes i d e n t i c a l  t o  

t h e  s lope f o r  i s o t h e r m a l  95°C i n j e c t i o n  (see 95OC The is  l i n e  i n  F i g u r e  3 ) .  

This  t y p e  o f  p ressure  t r a n s i e n t  behav io r  i s  c o n s i s t e n t  with t h e  n u m e r i c a l l y  

A f t e r  a p e r i o d  o f  t ime, 

*The r e s e r i o i r  p r o p e r t i e s  used f o r  t h i s  s i m u l a t i o n  a r e  l i s t e d  i n  Table 1. 
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s imu la ted  r e s u l t s  o f  Bodvarsson and Tsang, 1980, and t h e  a n a l y t i c a l  

model o f  Tsang and Tsang, 1978. Also p l o t t e d  i n  t h e  t o p  o f  f i g u r e  3 a r e  

t h e  temperature d a t a  a t  severa l  d i s t a n c e s  from t h e  i n j e c t i o n  w e l l .  Note 

t h a t  i n  each case ( w i t h  t h e  e x c e p t i o n  o f  t h e  w e l l ) ,  t h e  change i n  s l o p e  

o f  t h e  semi- log s t r a i g h t  l i n e  o c c u r s  when t h e  thermal  f r o n t  passes. 

This o b s e r v a t i o n  can be used t o  develop a genera l  express ion  fo r  t h e  

t i m e  when t h e  s lope o f  t h e  semi- log s t r a i g h t  l i n e  changes. 

The r e l a t i o n s h i p  between t h e  t i m e  a t  which t h e  s l o p e  o f  semi- log 

s t r a i g h t  l i n e  changes and t h e  passage o f  t h e  thermal  f r o n t  can be 

d e r i b e d  as f o l l o w s .  

f r o n t  rearhes  a r a d i u s ,  r f ,  when 

P c c a l l i n g  Equat ion ( E ) ,  we know t h a t  t h e  thermal  

I f  Equat ion  ( 9 )  is d i v l d e d  by t h e  d imensionless r a d i a l  d i s t a n c e  t o  

t h e  f r o n t  ( r D f  = r f / rwl ,  t h e  movement o f  t h e  f r o n t  can be expressed 

as 

'aca ah 2 
t'rDf = pc Q w w w  

(10) 

E v a l u a t i n g  Equat ion  ( I O )  a t  rw, we see t h a t  t h e  s l o p e  on t h e  semi- log 

s t r a i g h t  l i n e  changes when 

For t h e  r e s e r v o i r  p r o p e r t i e s  and w e l l  d imensions l i s t e d  i n  Table 1 and 

an i n j e c t i o n  r a t e  o f  10 kg/s (5,660 STB/D), to occurs  a t  approx imate ly  

200 seconds. 
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Figure  3 .  Pressure  bui ldup during i n j e c t i o n  o f  95°C water i n t o  a 250°C 
r e s e r v o i r .  
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Numerous s i m u l a t i o n s  were conducted t o  determzne t h e  dependence o f  

to on t h e  rock  p e r m e a b i l i t y ,  p o r o s i t y ,  c o m p r e s s i b i l i t y ,  i n j e c t i o n  

temperature,  r e s e r v o i r  temperature and f l o w r a t e .  These s t u d i e s  v e r i f y  

t h a t  Equat ion  (11) g i v e s  a reasonable approx imat ion  f o r  t h e  i n t e r s e c t i o n  

o f  t h e  two semi- log s t r a i g h t  l i n e s .  For example, F i g u r e  4 shows t h e  

pressure  t r a n s i e n t  behav io r  due t o  i n j e c t i n g  f l u i d s  at  50°C, lOO"C, and 

150°C i n t o  a 250°C r e s e r v o i r .  In each case t h e  pressure  d a t a  f a l l  f i r s t  

on t h e  s lope corresponding t o  t h e  250°C r e s e r v o i r  f l u id ,  and then on t h e  

corresponding c o l d  s lope.  

s t r a i g h t  l i n e s  i s  n e a r l y  i d e n t i c a l  for each case. 

Note t h a t  t h e  i n t e r s e c t i o n  o f  t h e  two semi- log 

T h i s  t y p e  o f  p ressure  t r a n s i e n t  response i s  h e n c e f o r t h  r e f e r r e d  t o  

as mov ing- f ron t  dominated behabior .  

a r e  1 )  an i n i t i a l  p e r i o d  d u r i n g  which t h e  pressure  response i s  governed 

by t h e  r e s e r v o i r  f l u i d  p r o p e r t i e s  and 2 )  a second p e r i o d  d u r i n g  which 

t h e  f l u i d  p r o p e r t i e s  o f  t h e  i n j e c t a t e  govern t h e  response. 

The c h a r a c t e r i s t i c s  o f  t h i s  response 

E f f e c t  o f  a Pre-Exis t  i n g  D i s c o n t i n u i t y  

I n j e c t i o n  t e s t s  a r e  o f t e n  conducted a f t e r  t h e  w e l l  has been cooled 

b y  d r i l l i n g ,  or  a f t e r  an extended p e r i o d  o f  i n j e c t i o n .  

e f f e c t  o f  a " c o l d  spot"  around t h e  i n j e c t i o n  w e l l  must be considered.  

In  t h i s  case t h e  pressure  response a t  t h e  w e l l  is as f o l l o w s  (see F i g u r e  

5 ) .  

o f  t h e  c o l d  spot .  

c o l d  s p o t )  t h e  da ta  depar t  from t h l s  curve  and f a l l  on a second semi- log 

s t r a i g h t  l i n e  w i th  a s lope corresponding t o  t h e  p r o p e r t i e s  o f  t h e  

r e s e r v o i r  f l u i d s .  The s lope changes t o  t h a t  o f  t h e  h o t  o u t e r  r e g i o n  

Therefore,  t h e  

I n i t i a l l y ,  t h e  pressure  behav io r  i s  governed by t h e  f l u i d  p r o p e r t i e s  

A f t e r  a p e r i o d  o f  t i m e  (depending on t h e  s i z e  o f  t h e  
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Figure 4. Pressure buildup at the well due to injection of 50"C, 100°C 
and 150°C into a 250°C reservoir. 
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Figure 5. Pressure buildup at the well f o r  injection o f  100°C water into 
a 250°C reservoir. 
by 100°C cold spots with r a d i i  o f  1-m, 5-m, and 10-m. 

Prior to injection the well is surrounded 
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when t h e  dra inage r a d i u s  exceeds t h e  s i z e  o f  t h e  c o l d  spot .  

( t f )  i s  approximated by (Ear lougher ,  1977) 

This t i m e  

%Ct 2 
t f  = 4k (12)  

For t h e  r e s e r v o i r  p r o p e r t i e s  l i s t e d  i n  Table 1, t f  i s  approx imate ly  

140 s for  a 10-m c o l d  spot,  a 35 s for  a 5-m c o l d  spot  and 1 s for  a I-rn 

c o l d  spot .  

With cont inued i n j e c t i o n ,  t h e  s lope e v e n t u a l l y  changes a g a i n  (see 

F i g u r e  5)  and t h e  pressure  response i s  n e a r l y  i d e n t i c a l  t o  t h e  no-cold-spot 

p ressure  t r a n s i e n t .  

0 'aCa - -  
t o  - pwcw 

For a f l o w r a t e  o f  10 

The second t r a n s i t i o n  (t;) occurs  when 

nh 2 
Q r f  
- (13)  

kg/s  (5,600 STB/D) and t h e  r e s e r v o i r  p r o p e r t i e s  

l i s t e d  i n  Table 1, t i  i s  approx imate ly  20 days for  a 10-m c o l d  spot ,  

5 days fo r  a 5-rn c o l d  spot ,  and 5 hours  f o r  a l-m c o l d  spot .  

This t y p e  o f  response, up u n t i l  t h e  f i n a l  change i n  s lope,  a r e  

h e n c e f o r t h  r e f e r r e d  t o  as t h e  composi te r e s e r v o i r  behak io r .  

i s t i c s  o f  t h i s  response a r e  1 )  an i n i t i a l  p e r i o d  d u r i n g  which t h e  

pressure  response i s  governed b y  t h e  p r o p e r t i e s  o f  t h e  i n j e c t e d  f l u i d  

and 2) a second p e r i o d  d u r i n g  which t h e  p r o p e r t i e s  o f  t h e  r e s e r v o i r  

f l u i d  govern t h e  pressure  response. 

t h e  moving-front. dominated response. 

The c h a r a c t e r -  

Note t h a t  t h i s  i s  t h e  o p p o s i t e  o f  

E f f e c t  o f  Skin Fart,or 

Wel ls  a r e  t y p i c a l l y  surrounded b y  an annular  r e g i o n  w i t h  a perme- 

a b i l i t y  d i f f e r e n t  from t h a t  o f  t h e  r e s e r v o i r .  Th is  r e g i o n  i s  u s u a l l y  

t r e a t e d  mathemat ica l l y  i n  terms o f  an i n f i n i t e s l r n a l l y  t h i n  sk in  t h a t  
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i n f l u e n c e s  t h e  c a p a c i t y  o f  t h e  w e l l  (Hurst, 1953; Van Everdingen, 1955). 

The i n f l u e n c e  o f  t h i s  r e g i o n  on t h e  magnitude o f  t h e  pressure  b u i l d u p  

and t h e  t i m e s  a t  which t h e  s l o p e  t r a n s i t i o n s  occur must be determined i n  

o r d e r  t o  develop a genera l  t h e o r y  f o r  i n j e c t i o n  t e s t  d a t a  a n a l y s i s .  The 

sk in  f a c t o r  is i n c o r p o r a t e d  i n  t h e  s i m u l a t i o n s  b y  model ing i t  as an 

annu lar  r e g i o n  o f  reduced or enhanced p e r m e a b i l i t y  around t h e  w e l l .  

corresponding s k i n  f a c t o r  is g i v e n  by (Hawkins, 1956) 

The 

The i n f l u e n c e  o f  t h e  sk in  f a c t o r  on t h e  mov ing- f ron t  dominated 

behav io r  i s  demonstrated i n  F i g u r e  6, which shorYs t h e  pressure  b u i l d u p  

a t  t h e  w e l l  f o r  s e v e r a l  va lues  o f  t h e  s k i n  f a c t o r .  I n  t h i s  case t h e  

s k i n  f a c t o r  d i s p l a c e s  t h e  abso lu te  p ressure  change and s h i f t s  to t h e  

f a c t o r  o f  e-2S. Therefore,  

'a'a nh -s )2 ( r w e  
O pwcw 4 

t = - -  

The problem i s  more complex i f  t h e r e  i s  a c o l d  spot  around t h e  

w e l l .  The system i s  descr ibed by t h r e e  reg ions :  t h e  s k i n  r e g i o n  wi th  a 

m o b i l i t y  o f  ks/ui; a c o l d  spot wi th  a m o b i l i t y  o f  k/ui; and t h e  

h o t  r e s e r v o i r  w i th  a m o b i l i t y  o f  k / h .  

t r a n s i e n t s  f o r  100°C i n j e c t i o n  i n t o  a 250°C r e s e r b o i r  w i th  a 3-m c o l d  

spot  f o r  sebera l  va lues  o f  t h e  s k i n  f a c t o r .  The f i g u r e  shows t h a t  t h e  

sk in  f a c t o r  o n l y  d i s p l a c e s  t h e  curves,  w i t h o u t  changing t h e i r  s lopes  or 

t h e  t r a n s i t  i o n  t imes.  

F i g u r e  7 shows t h e  pressure  
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6.0 

5.2 

A 

F i g u r e  6 .  Pressure b u i l d u p  a t  t he  well dur ing  100°C i n j e c t i o n  i n t o  a 
250°C r e s e r v o i r  f o r  a well w i t h  s e v e r a l  va lues  o f  t h e  s k i n  
f a c t o r .  
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F i g u r e  7 .  Pressure b u i l d u p  a t  t h e  well dur ing  100°C i n j e c t i o n  i n t o  a 
250°C r e s e r v o i r  w i t h  a 3-m c o l d  spot around t h e  well and 
s e v e r a l  v a l u e s  o f  t h e  s k i n  f a c t o r .  



-27- 

Pressure F a l l o f f  

A f t e r  shu t - in ,  immediate ly  f o l l o w i n g  nonisothermal  i n j e c t i o n ,  t h e  

r e s e r v o i r  i s  e s s e n t i a l l y  a composi te system w i t h  an i n n e r  r e g i o n  o f  

m o b i l i t y  k/pi, a t r a n s i t i o n  r e g i o n  w i th  m o b i l i t y  r a n g i n g  from k/pl 

t o  k/po, and an o u t e r  r e g i o n  o f  m o b i l i t y  k/po. 

8 shows t h e  temperature d i s t r i b u t i o n  i n  t h e  r e s e r v o i r  f o r  two cases: 1 )  

a f t e r  IO5 s o f  i n j e c t i o n  a t  0.2 kg/s/m (11,320 STB/D); and ii) a second 

a f t e r  IO7 s o f  i n j e c t i o n  a t  0.1 kg/s/m (5660 STB/D). 

f i g u r e ,  t h e  width o f  t h e  t r a n s i t i o n  r e g i o n  i s  s i g n i f i c a n t  w i th  r e s p e c t  

t o  t h e  d i s t a n c e  t o  t h e  thermal  f r o n t  f o r  b o t h  cases. 

For  example, F i g u r e  

As seen i n  t h e  

The pressure  f a l l o f f  d a t a  from these two cases a r e  p l o t t e d  i n  

F i g u r e s  9 and 10. As a n t i c i p a t e d ,  t h e  pressure  f a l l o f f  i n i t i a l l y  

r e f l e c t s  t h e  presence o f  t h e  i n n e r  r e g i o n .  A f t e r  a p e r i o d  o f  t ime,  t h e  

p r o p e r t i e s  o f  t h e  r e s e r k o i r  f l u i d  b e g i n  t o  a f f e c t  t h e  response and t h e  

d a t a  f a l l  on a second semi- log s t r a i g h t  l i n e  t h a t  corresponds t o  t h e  

p r o p e r t i e s  o f  t h e  i n  s i t u  r e s e r v o i r  f l u i d .  The t i m e  a t  which t h e  da ta  

depar t  from t h e  f i r s t  s lope can be c a l c u l a t e d  from Equat ion  12 i f  t h e  

r a d i u s  t o  t h e  f r o n t  i s  eva lua ted  a t  t h e  median temperature between 

i n j e c t e d  and i n  s i t u  f l u i d s .  I n t e r p r e t a t i o n  o f  numerous s i m u l a t i o n s  

show t h a t  f o r  purposes o f  i n j e c t i o n  t e s t  a n a l y s i s ,  t h e r e  i s  a n e g l i g i b l e  

d i f f e r e n c e  between t h e  pressure  t r a n s i e n t  response fo r  a system wi th  a 

d i f f u s e  thermal  f r o n t  and a system i n  which t h e  f r o n t  i s  i n f i n i t e s i m a l l y  

th in .  Therefore t h e  system can be t r e a t e d  i n  terms o f  a t w o - f l u i d  

composi te system, where t h e  r a d i u s  o f  t h e  i n n e r  r e g i o n  i s  assumed t o  

c o i n c i d e  wi th t h e  thermal  f r o n t .  
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Figure 8. Temperature d is t r ibu t ion  i n  the reservoir a f t e r  l o 5  s 
( a t  20 kg/s) and I O 7  s ! a t  10 kg/s)  o f  injection o f  lr30"C 
water into a 250°C reservoir.  
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Figure 9. Pressure f a l l o f f  a f t e r  lo5  s o f  injection i n t  a 250°C 
reservoir.  
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F i g u r e  10 Pressure f a l l o f f  a f t e r  l o 7  s of  inject ion o f  100°C water  in to  
a 250°C reservoir .  



-31- 

Step-Rate I n j e c t i o n  Tests 

T y p i c a l l y ,  i n j e c t i o n  t e s t s  a r e  n o t  conducted at a s i n g l e  f l o w r a t e .  

Ins tead,  they  a r e  conducted i n  a s e r i e s  o f  s t e p - r a t e s  f o l l o w e d  or preceded 

by a complete shut-in (Howard e t  a l . ,  1978; A l l e n  and Baza, 1980; and 

Bodvarsson, e t  a l . ,  1984). Therefore,  t h e  e f f e c t  o f  f l o w r a t e  v a r i a t i o n s  

on t h e  pressure  t r a n s i e n t  response must be determined. 

The f o l l o w i n g  s i m u l a t i o n  i l l u s t r a t e s  t h e  key aspects  o f  nonisothermal  

s t e p - r a t e  i n j e c t i o n  t e s t s .  

IO, 20, and 15 kg/s  o f  20°C f l u i d  i n t o  a 250°C r e s e r v o i r  a r e  f o l l o w e d  b y  

Three 6-hour s teps  w i t h  i n j e c t i o n  r a t e s  o f  

a complete shut-in. TGble 1 summarizes t h e  p r o p e r t i e s  o f  t h e  r e s e r v o i r  

used f o r  t h i s  s i m u l a t i o n .  The s i m u l a t e d  pressure  da ta  a r e  shown i n  

F i g u r e  11. 

i n j e c t i o n  are a l s o  p l o t t e d .  

For comparison, s imu la ted  r e s u l t s  'or 20°C and 250°C i s o t h e r m a l  

The pressure  t r a n s i e n t s  d u r i n g  each s t e p  a r e  

p l o t t e d  i n  F i g u r e s  12 th rough 15. 

f u n c t i o n  o f  

Note t h a t  p ressures  a r e  graphed as a 

n t i  + .... tn + At 9 1  i - l o g  + .... + tn + at 
i=~ qn tl+l ( 1 5 )  

i n  accordance wit-h c o n v e n t i o n a l  m u l t i - r a t e  t h e o r y  (Ear lougher ,  1977). 

The pressure  t r a n s i e n t  resonse d u r i n g  each s t e p  i s  as f o l l o w s .  

Step 1 i s  a t y p i c a l  moving- f ront  dominated case, as i s  shown i n  F i g u r e  

12. I n i t i a l l y ,  t h e  d a t a  a r e  i d e n t i c a l  t o  t h e  250°C i s o t h e r m a l  p ressure  

t r a n s i e n t s  ( a l s o  shown i n  F i g u r e  1 2 ) .  

depar t  from t h e  i n i t i a l  c u r v e  and f a l l  on a second semi- log s t r a i g h t  

A t  approx imate ly  300 s ,  t h e  d a t a  

l i n e  with a s l o p e  t h a t  corresponds t o  t h e  p r o p e r t i e s  o f  t h e  i n j e c t a t e .  

The second st.ep, shown i n  F i g u r e  13, f i r s t  d i s p l a y s  t h e  composi te 

r e s e r v o i r  behab ior ,  and then t h e  moving- f ront  dominated behav io r .  The 
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Figure 11. Simulated step-rate injection tes t .  
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F i g u r e  12. Pressure t r a n s i e n t  d a t a  f o r  S t e p  1 o f  t h e  s i m u l a t e d  s t e p -  
ra te  test .  
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F i g u r e  13. Pressure t r a n s i e n t  da ta  fo r  Step 2 o f  the  s imu la ted  s tep-  
r a t e  t e s t .  
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F i g u r e  14. P r e s s u r e  t r a n s i e n t  d a t a  f o r  S t e p  3 o f  t h e  s i m u l a t e d  s t e p -  
ra te  tes t .  
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Figure  1 5 .  Pressure  t r a n s i e n t  d a t a  for the  f a l l o f f  a f t e r  the  s imulated 
s t e p - r a t e  test. 
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e a r l y  t r a n s i e n t s  a r e  governed b y  t h e  1.1-m c o l d  spot  formed d u r i n g  Step 

1. A t  approx imate ly  4 s t h e  pressure  d a t a  depar t  from t h e  f i r s t  s lope 

and f a l l  on a second s l o p e  which corresponds t o  t h e  p r o p e r t i e s  o f  t h e  

r e s e r v o i r  f l u i d .  A t  approx lmate ly  1 . I  hours t h e  d a t a  depart, f rom t h e  

second s l o p e  and t h e  moving thermal  f r o n t  b e g i n s  t o  c o n t r o l  t h e  pressure  

response. The t r a n s i t i o n  t i m e s  ( t f  and t;) a r e  i n  reasonable 

agreement with those c a l c u l a t e d  from Equat ions ( 1 2 )  and (131, or  5 s and 

2.7 hours,  r e s p e c t i v e l y .  

n o t  eba lua ted  from thr p l o t  because t h e  t e s t  d i d  n o t  run l o n g  enough 

t o  develop t h e  f i n a l  s e a i - l o g  s t r a i g h t  l i n e .  

Note t h a t  t h e  t r a n s i t i o n  t i m e  (t;) 

The t h i r d  s tep  beg ins  a t  12 hours  i n t o  t h e  t e s t .  By t h i s  t i m e  t h e  

thermal  f r o n t  has advanced 1.9 m i n t o  t h e  form:.tion. 

i n d i c a t e s  t h a t  t h e  r e s e r v o i r  w i l l  behave as a composi te system u n t i l  16 

hours  a f t e r  t h e  r a t e  change. Therefore,  t h e  e n t i r e  6-hour s t e p  w i l l  

o n l y  r e f l e c t  t h e  composi te r e s e r v o i r  behavior .  

F i g u r e  14, where o n l y  two s lopes  a r e  apparent,  t h e  f i r s t  corresponding 

t o  t h e  f l u i d  p r o p e r t i e s  o f  t h e  c o l d  spot ,  and t h e  second, t o  t h e  r e s e r v o i r  

f l u i d .  

Equat ion ( 13) 

This  i s  c l e a r l y  shown i n  

The pressure  f a l l o f f  d a t a  f o l l o w i n g  t h e  s t e p  t e s t  a r e  p l o t t e d  i n  

F i g u r e  15. 

t o  t h e  p r o p e r t i e s  o f  t h e  c o l d  spot  and then become i d e n t i c a l  t o  t h e  

pressure  f a l l o f f  f o r  250°C i s o t h e r m a l  i n j e c t i o n .  

As expected, t h e  d a t a  i n i t i a l l y  f o l l o w  a s l o p e  corresponding 

It i s  apparent t h a t  s u p e r p o s i t i o n  i s  an acceptable way t o  t r e a t  

t h i s  problem and t h a t  t h e  equat ions  developed f o r  s i n g l e - r a t e  t e s t s  a r e  

~ a l i d  i f  t h e  e f f e c t s  o f  t h e  growing c o l d  spot  and v a r i a b l e  i n j e c t i o n  

r a t e s  a r e  taken i n t o  c o n s i d e r a t i o n .  
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It i s  i n t e r e s t i n g  t o  n o t e  t h a t  t h e  w e l l  i n j e c t i v i t y ,  shown i n  

F i g u r e  16, i s  o f  l i t t l e  va lue  f o r  t h e  

p r o d u c t i v i t y .  T h i s  r e s u l t s  f rom t h e  

between t h e  non iso thermal  i n j e c t i v i t y  

P 

1so- 

thermal  cases ( f r o m  which, t h e o r e t i c a l l y ,  p r o d u c t i v i t y  c o u l d  be i n f e r r e d ) .  

Wel lbore E f f e c t s  

i n f e r e n c e  o f  downhole w e l l  

ack o f  a s imp le  r e l a t i o n s h  

(midd le  curve)  and t h e  two 

I n  t h e  preced ing  d i s c u s s i o n s  t h e  i n f l u e n c e  o f  w e l l b o r e  e f f e c t s  have 

been neg lec ted .  B o t h  thermal  t r a n s i e n t s  i n  t h e  w e l l b o r e  and t h e  e f f e c t s  

o f  w e l l b o r e  s t o r a g e  must be considered.  I f  a f r e e  l i q u i d  l e v e l  i s  

p resent  in t h e  we l lbore ,  we l lbore-s to rage e f f e c t s  w i l l  be l a r g e  and may 

mask much o f  t h e  e a r l y  t i m e  pressure  data.  

The d u r a t i o n  o f  w e l l b o r e  s t o r a g e  e f f e c t s  can be es t imated  b y  c o n s t r u c t i n g  

a p l o t  o f  l o g  (4)  vs. l o g  ( t ) .  

b e g i n n i n g  o f  t h e  c o r r e c t  semi- log s t r a i g h t  l i n e  w i l l  b e g i n  1 t o  1-1/2 l o g  

c y c l e s  a f t e r  t h e  end o f  t h e  one-to-one s l o p e  (Ear lougher ,  1977). I f  t h e  one- 

to-one s lope i s  n o t  apparent,  t h e  b e g i n n i n g  o f  t h e  semi- log s t r a i g h t  l i n e  can 

I f  a one-to-one s l o p e  i s  apparent,  t h e  

be es t imated  ( i n  f i e l d  u n i t s )  by (Ear lougher ,  1977) 

(200,000 + 12,000s) c* 
(kh/ IJ) t >  

For a f a l l o f f  t e s t ,  t h e  b e g i n n i n g  o f  t h e  semi- log s t r a i g h t  

(16)  

i n e  is e s t i -  

mated u s i n g  t h e  same l o g - l o g  procedure,  or ( i n  f i e l d  u n i t s )  b y  (Chen and 

Br igham , 1974) 

* 0.14s 170,000 C e 
(kh/ IJ) t >  (17)  

Ear lougher  e t  a l . ,  (1973) and Ear lougher (1977) g i v e  a more complete 

d i s c u s s i o n  o f  w e l l b o r e  s t o r a g e  e f f e c t s .  
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Figure 16. Bottomhole pressure change vs. f lowrate for the simulated 
step-rate tes t .  
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Thermal t r a n s i e n t s  may a l s o  i n f l u e n c e  t h e  e a r l y  t i m e  pressure  

response. I f  t h e  w e l l  i s  deep or t h e  c a s i n g  d iameter  la rge ,  i t  t a k e s  a 

s i g n i f i c a n t  p e r i o d  o f  t i m e  b e f o r e  t h e  bot tomhole i n j e c t i o n  temperature 

s t a b i l i z e s .  

i n j e c t i o n  temperature p r o f i l e  i n  t h e  w e l l ,  t h e  i n j e c t i o n  r a t e ,  t h e  depth  

o f  i n t e r v a l  b e i n g  tes ted ,  and t h e  p r e - t e s t  w e l l  h i s t o r y .  In  o r d e r  t o  

demonstrate t h e  s i g n i f i c a n c e  o f  thermal  t r a n s i e n t s ,  t h e  w e l l b o r e  s i m u l a t o r  

The impor tance o f  t h i s  depends p r i m a r i l y  on t h e  pre- 

HEATLOS ( M i l l e r ,  1980) i s  used t o  c a l c u l a t e  sandface i n j e c t i o n  temperature 

d u r i n g  i n j e c t i o n  o f  20°C water i n t o  a 250°C r e s e r v o i r .  

temperature p r o f i l e  o f  t h e  2000 m deep w e l l  i s  shown i n  F i g u r e  17. A 

w e l l b o r e  r a d i u s  o f  0.1 m, and an i n j e c t i o n  r a t e  o f  20 kg/s  a r e  used f o r  

t h e  s i m u l a t i o n .  F i g u r e  18 shows t h e  c a l c u l a t e d  sandface temperature as 

a f u n c t i o n  o f  t ime.  Note t h a t  i n j e c t i o n  o f  more than two w e l l b o r e  

Lolumes i s  r e q u i r e d  b e f o r e  t h e  i n j e c t i o n  temperature i s  wi th in 10% o f  

i t s  s teady-s ta te  k a l u e  (approx imate ly  70°C). 

1.7 hours  a f t e r  i n j e c t i o n  begins.  

The p r e - i n j e c t i o n  

This does n o t  occur  u n t i l  

C l e a r l y  t h e  e f f e c t s  o f  t h e  temperature changes i n  t h e  bore  must be 

cons idered t o  a c c u r a t e l y  eLa lua te  i n j e c t i o n  t e s t  data.  F i g u r e  18 a l s o  

c l e a r l y  demonstrates t h a t  t h e  downhole i n j e c t i o n  temperature may be very  

d i f f e r e n t  f rom t h e  wel lhead temperature.  Therefore,  a l l  c a l c u l a t i o n s  

must be based on t h e  sandface f l u i d  temperature i n s t e a d  o f  t h e  wel lhead 

temperature.  Because t h e  p r e - t e s t  temperature p r o f i l e  and t h e  w e l l  

c o n f i g u r a t i o n  a r e  s i t e - s p e c i f i c ,  i t  i s  n o t  p o s s i b l e  t o  develop a genera l  

r u l e  f o r  t h e s e  e f f e r t s .  However, to w i l l  be de layed u n t i l  t h e  bottom- 

h o l e  temperature s t a b i l i z e s .  I f  thermal  t r a n s i e n t s  a r e  s i g n i f i c a n t ,  

t o  must be eva lua ted  with a w e l l / r e s e r v o i r  s i m u l a t o r .  
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Figure 17. Initial temperature profile for the simulated wellbore- 
temperature transients. 
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Figure 18. Calculated bottomhole temperature for inject ion o f  20°C 
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C a r e f u l  t e s t  p l a n n i n g  can be used t o  a v o i d  t h e  e f f e c t s  o f  thermal  

For i ns tance,  p ressure  bui ldup t e s t s  i n  w e l l s  t r a n s i e n t s  on t h e  data.  

a l r e a d y  surrounded b y  a thermal  d i s c o n t i n u i t y  a r e  t h e  l e a s t  a f f e c t e d  by 

thermal  w e l l b o r e  t r a n s i e n t s .  Also, pressure  f a l l o f f  t e s t s  a r e  u n a f f e c t e d  

b y  thermal  w e l l b o r e  t r a n s i e n t s  i f  downhole p ressures  a r e  measured. 

i s  i m p o r t a n t  t o  r e a l i z e  t h a t  even smal l  changes 3n t h e  w e l l b o r e  f l u i d  

temperature can r e s u l t  i n  s i g n i f i c a n t  changes i n  t h e  water l e v e l  o f  t h e  

w e l l .  

f o r  p ressure  t r a n s i e n t  i n j e c t i o n  t e s t  a n a l y s i s .  

I t  

Therefore,  as a genera l  r u l e ,  water l e v e l  d a t a  are n o t  s u i t a b l e  
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D i s c u s s i o n  

The d i s c u s s i o n s  i n  t h e  p r e v i o u s  s e c t i o n s  have shown t h a t  p r e s s u r e  

t r a n s i e n t s  d u r i n g  non i so the rma l  i n j e c t i o n  can  b e  c h a r a c t e r i z e d  by one o f  

two t y p e s  o f  behav io r :  moving f r o n t  dominated or compos i t e  r e s e r v o i r  

b e h a v i o r .  Moving f r o n t  dominated b e h a v i o r  o c c u r s  i f  t h e  well h a s  n o t  

been used f o r  i n j e c t i o n  p r i o r  t o  t h e  t e s t .  Composite r e s e r v o i r  behav io r  

o c c u r s  i f  t h e  well is su r rounded  by a the rma l  d i s c o n t i n u i t y  c r e a t e d  by 

p r e v i o u s  i n j e c t i o n .  

In  t h e  absence  o f  w e l l b o r e  e f f e c t s ,  p r e s s u r e  t r a n s i e n t s  i n  t h e  

moving-front dominated case are d e s c r i b e d  by two semi- log s t r a i g h t  

l i n e s ;  t h e  f i r s t  c o r r e s p o n d s  t o  t h e  p r o p e r t i e s  o f  t h e  i n  s i t u  r e s e r v o i r  

f l u i d  and t h e  second t o  t h e  p r o p e r t i e s  o f  t.he - n j e c t e d  f l u i d .  The 

i n t e r s e c t i o n  o f  t h e s e  two semi-log s t r a i g h t  l i n e s  can be  e s t i m a t e d  by 

Equa t ion  ( 1 1 )  i f  t h e  e f f e c t . s  o f  t he rma l  w e l l b o r e  t r a n s i e n t s  and w e l l b o r e  

s t o r a g e  a r e  n e g l i g i b l e .  I f  t he rma l  w e l l b o r e  t r a n s i e n t s  a r e  s i g n i f i c a n t ,  

a s  i s  almost  a lways  t h e  c a s e ,  t h e  t r a n s i t i o n  can  o n l y  b e  e v a l u a t e d  wi th  

a w e l l b o r e  and/or  r e s e r v o i r  s i m u l a t o r .  

I 

The composit.e r e s e r v o i r  behav io r  is a l s o  c h a r a c t e r i z e d  by two semi- 

l o g  s t r a i g h t  l i n e s .  However, i n  t , h i s  c a s e  t h e  f i r s t  s l o p e  c o r r e s p o n d s  

t o  t h e  p r o p e r t i e s  o f  t h e  i n n e r  r e g i o n  and t h e  second t o  t h e  r e s e r v o i r  

f l u i d s .  The time a t  which t h e  d a t a  d e p a r t  from t h e  f i r s t  s l o p e  can  b e  

e s t i m a t e d  by Equat ion ( 1 2 ) .  

even i f  t.he t e m p e r a t u r e  d i s t - r i b u t i o n  around t h e  the rma l  f r o n t  is r e l a -  

t i v e l y  d i f f u s e  ( i . e . ,  p r s s s u r e  f a l l o f f  or s t e p - r a t e  t e s t s ) .  

i n j e c t i o n ,  t h e  p r e s s u r e  t r a n s i e n t s  e v e n t u a l l y  f a l l  on a t h i r d  semi-log 

s t r a i g h t  l i n e  ( i n  t h e  c a s e  o f  compos i t e  r e s e r v o i r  b e h a v i o r )  having t h a t  

Th i s  e x p r e s s i o n  is approx ima te ly  c o r r e c t  

During 
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h a s  a s l o p e  c o r r e s p o n d i n g  t o  t h e  p r o p e r t i e s  o f  t h e  i n j e c t e d  f l u i d .  

i n t e r s e c t i o n  o f  t h e  l a s t  two semi-log s t r a i g h t  l i n e s  can  be approximated 

by Equat ion ( 1 3 ) .  

c h a r a c t e r i z e d  by t h e  moi ing - f ron t  dominated b e h a v i o r .  

The 

From t h i s  time onwards,  t h e  p r e s s u r e  t r a n s i e n t s  a r e  

For many p r a c t i c a l  c a s e s ,  t h e  composi te  r e s e r v o i r  model is  a p p l i c a b l e  

f o r  i n j e c t i o n  tes t  d a t a  a n a l y s i s .  Howeker, u n t i l  t h e  d i s t a n c e  t o  t h e  

t h e r m a l  f r o n t  is f a r  enough from t h e  well, t h e  semi-log s t r a i g h t  l i n e  

c o r r e s p o n d i n g  t o  t h e  p r o p e r t i e s  o f  t h e  i n n e r  r e g i o n  w i l l  n o t  be  a p p a r e n t  

( i . e . ,  i t  w i l l  b e  masked by w e l l b o r e  s t o r a g e  e f f e c t s  o r  measurement 

i n a c c u r a c y ) .  T h e r e f o r c ,  o n l y  t h e  second semi-log s t r a i g h t  l i n e  is  

a v a i l a b l e  f o r  a n a l y s i s .  C l e a r l y ,  t h e  p e r m e a b i l i t y  t h i c k n e s s  ( k h )  o f  t h e  

reservoir c a n  be  e v a l u a t e d  from t h i s  s l o p e .  l-bwever, i f  t h e  s k i n  f a r t o r  

is e b a l u a t e d  u s i n g  t h i s  l i n e ,  t h e  c a l c u l a t e d  v a l u e  w i l l  r e f l e c t  t h e  

p r e s e n c e  o f  t h e  i n n e r  r e g i o n .  This  p r h l e m  c a n  be  r e s o l v e d  by u s i n g  t h e  

concept  o f  a " f l u i d  s k i n  f a c t o r " ,  which a c c o u n t s  f o r  s t e a d y - s t a t e  

p r e s s u r e  b u i l d u p  due t o  t h e  c o l d  r e g i o n  around t h e  well. In t h e  next 

s e c t i o n ,  t h i s  term is d e r i v e d  and a p p l i e d  t o  i n j e c t i o n  test a n a l y s i s .  
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FLUID SKIN FACTOR 

From t h e  d i s c u s s i o n  o f  t h e  pressure  t r a n s i e n t s  i n  a system w i t h  a 

p r e - e x i s t i n g  thermal  d i s c o n t i n u i t y ,  i t  i s  c l e a r  t h a t  u n t i l  t h e  e f f e c t s  

o f  t h e  moving thermal  f r o n t  c o n t r o l  t h e  pressure  response, t h e  system 

behaies l i k e  a composi te system. The m o b i l i t i e s  o f  t h e  i n n e r  and o u t e r  

r e g i o n s  a r e  k/pi, and k/po, r e s p e c t i i e l y .  U n t i l  t h e  r a d i u s  o f  t h e  

i n n e r  r e g i o n  i s  s u f f i c i e n t l y  l a r g e ,  t h e  semi- loq s t r a i g h t  l i n e  correspond- 

i n g  t o  t h e  p r o p e r t i e s  o f  t h e  i n n e r  r e g i o n  w i l l  n o t  be observed i n  t h e  

measured pressure  da ta .  Therefore,  an a l t e r n a t i v e  approach i s  r e q u i r e d  

i n  o r d e r  t o  account f o r  t h e  e f f e c t s  o f  t h e  i n n e r  r e g i o n .  To improve t h e  

unders tand ing  o f  t h i s  t y p e  o f  system, a s teady-s ta te  a n a l y s i s  o f  t h e  

t w o - f l u i d  composi te r e s e r i o i r  can be performed. 

a n a l y s i s ,  a f l u i d  s k i n  f a c t o r ,  which i s  analogous t o  t h e  mechanical  sk in  

fact -or ,  can be de f ined.  

same manner as t h e  mechanical  s k i n  f a c t o r  (Sm) t o  c a l c u l a t e  an a d d i t i o n a l  

component o f  p ressure  b u i l d u p  due t o  an annular  r e g i o n  o f  c o l d  water 

around t h e  w e l l .  I t  w i l l  a l s o  be shown t h a t  t h e  concept o f  t h e  f l u i d  

skin f a c t o r  can a l s o  be used as t h e  b a s i s  f o r  a method o f  m o n i t o r i n g  the  

p e n e t r a t i o n  o f  c o l d  water i n t o  t h e  r e s e r v o i r  (Benson, 1982).  

Based on t h e  s teady-s ta te  

The f l u i d  s k i n  f a c t o r  ( s f )  can be used i n  t h e  

D e r i v a t  i o n  

The s teady-s ta te  p ressure  bui ldup i n  a t w o - f l u i d  composi te system 

w i t h  a s t a t i o n a r y  boundary s e p a r a t i n g  t h e  two r e g i o n s  can be c a l c u l a t e d  

by t h e  f o l l o w i n g  procedure. From Darcy 's  Law 

Rearranging, s u b s t i t u t i n g  Q = q/p i n t o  Equat ion  (18) , and i n t e g r a t l n g ;  

we see that. a t  steady s t a t e  
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ie 2nkh q" dr r - - - l e d p  

P W 
r 

W 

(19) 

Recognizing t h a t  t h e  s teady-s ta te  mass f l o w r a t e  i s  cons tan t ,  and assuming 

t h a t  t h e  f l u i d  p r o p e r t i e s  wi th in  each o f  t h e  two r e g i o n s  a r e  un i fo rm,  

t h i s  i n t e g r a l  can be eva lua ted  

where r f  i s  t h e  r a d i u s  o f  t h e  i n n e r  r e g i o n .  

as 

Equat ion 20 can be rearranged 

I f  t h e  term l n ( r f / r w 1  is added and s u b t r a c t e d  from t h e  r i g h t - h a n d  

s i d e  o f  t h e  equat ion,  

( 2 2 )  
r re W I 

The second t e r m  i n  t h e  equaklon, when multiplied by  t h e  express lon 

o u t s i d e  o f  t h e  parenthes ls ,  IS just t h e  pressure  b u i l d u p  i n  a homogeneous 

r e s e r v o i r  w i th  t h e  p r o p e r t i e s  o f  t h e  i n i t i a l  i n  s i t u  f l u i d .  Therefore,  

t h e  steady s t a t e  p ressure  bui ldup a t  t h e  w e l l  can be w r i t t e n  as t h e  sum 

o f  two terms 

r f  - I )  I n (  9 + In(--) "1 a p = -  
qo"o 2nkh [ (  W 

1 A p = -  Qo ['"(SI + S f  

r 

W 
2nkh 

where sf i s  t h e  f l u i d  sk in  f a c t o r  and i s  d e f i n e d  as 

r f  

" O P i  W 
-7 I I n (  r 1 Sf  = 1 - -  " i  '0 

( 2 3 )  

( 2 4 1  
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Comparing Equat ion ( 2 4 )  t o  Equa t ion  (141,  we see t h a t  t h e  f l u i d  

s k i n  f a c t o r  and mechanical  s k i n  f a c t o r  have n e a r l y  t h e  same form. 

T h e r e f o r e ,  e s t a b l i s h i n g  t h e  v a l i d i t y  o f  a f l u i d  s k i n  f a c t o r ,  t o  account 

f o r  t h e  p r e s s u r e  b u i l d u p  due t o  t h e  c o l d  s p o t  d u r i n g  uns t eady  c o n d i t i o n s ,  

is ana logous  t o  e s t a b l i s h i n g  t h e  v a l i d i t y  o f  u s i n g  a c o n v e n t i o n a l  s k i n  

f a c t o r  t o  account  f o r  t h e  p r e s s u r e  b u i l d u p  due t o  a r e g i o n  o f  p e r m e a b i l i t y  

o f  d e g r a d a t i o n  o r  enhancement around t h e  w e l l b o r e .  E s s e n t i a l l y ,  i t  m u s t  

be shown t h a t  it i s  r e a s o n a b l e  t o  assume pseudo-steady c o n d i t i o n s  w i t h i n  

t h e  f l u i d  s k i n  r e g i o n .  

Wattenbarger  and Ramey (1970) performed a f i n i t e  d i f f e r e n c e  a n a l y s i s  

o f  an a n n u l a r  r e g i o n  o f  p e r m e a b i l i t y  d e g r a d a t i o n  o r  enhancement around a 

well i n  i n  o r d e r  t o  d e t e r m i n e  t h e  v a l i d i t y  o f  t h e  t h i n  s k i n  concep t  ( v a n  

Eberdingen,  1953;  Hurs t  , 1953) .  Their  c r i t e r i o n  f o r  d e t e r m i n i n g  t h e  

L a l i d i t y  o f  t h e  concept  is based on whether o r  not  t h e  semi-log s t r a i g h t  

l i n e  c o r r e s p o n d i n g  t o  t h e  p e r m e a b i l i t y  o f  t h e  i n n e r  r e g i o n  w i l l  be 

obse rbed  i n  t h e  p r e s s u r e  t r a n s i e n t  d a t a .  I f  o b s e r k e d ,  t h e y  d e t e r m i n e  

t h a t  t h e  concept  is  no t  L a l i d .  They conc lude  t h a t  f o r  l a r g e  v a l u e s  o f  

t h e  w e l l b o r e  s t o r a g e  c o e f f i c i e n t  ( i . e . ,  t h e  ear ly  time d a t a  is masked) ,  

t h e  concep t  is v a l i d  f o r  rs<lOOxrw. However, r e c a l l  t h a t  t h e  

d u r a t i o n  o f  t h e  f i r s t  semi-log s t r a i g h t  l i n e  i s  no t  g o i e r n e d  s imply  by 

t h e  r a t i o  o f  rs/rw o r  t h e  w e l l b o r e  s t o r a g e  c o e f f i c i e n t ,  b u t  p r i m a r i l y  

by t h e  d i f f u s i b i t y  ( k / + p l c t )  o f  t h e  i n n e r  r e g i o n .  

S i n c e  t h e  s k i n  f a c t o r  and t h e  f l u i d  s k i n  f a c t o r  a r e  c a l c u l a t e d  o n l y  

a s  a f u n c t i o n  of  t h e  r a t i o s  of t h e  p e r m e a b i l i t i e s  o r  f l u i d  p r o p e r t i e s  o f  

t h e  i n n e r  and o u t e r  r e g i o n s ,  t h e  c r i t e r i o n  t h a t  rs< r w x l O O  i s  n o t  

g e n e r a l l y  a p p l i c a b l e .  Although i t  is c e r t a i n l y  u s e f u l  a s  a g e n e r a l  
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r u l e ,  e s p e c i a l l y  when i t  i s  n o t  p o s s i b l e  t o  e v a l u a t e  r f  or  rs ,  I t  

may be o b e r l y  conserbat ive .  

d u r a t i o n  o f  t h e  f i r s t  semi- log s t r a i g h t  l i n e  u s i n g  Equat ion (121. 

Howeker, use o f  Equat ion  ( 1 2 )  r e q u i r e s  an e s t i m a t e  o f  r f .  If r e c o r d s  

o f  cumula t ike  i n j e c t i o n  i n t o  t h e  w e l l  

eba lua ted  w i t h  Equat ion  ( 8 ) .  Therefore,  Equat ion  (12 )  can be evaluated.  

A more genera l  approach i s  t o  e s t i m a t e  t h e  

are  a v a i l a b l e ,  r f  can be 

I n  summary, use o f  t h e  f l u i d  skin f a c t o r  t o  account f o r  t h e  pressure  

b u i l d u p  due t o  t h e  presence o f  t h e  c o l d  spot i s  v a l i d  f o r  t i m e s  g r e a t e r  

than t f ,  which can be c a l c u l a t e d  from Equat ion (121. However, f o r  

l a r g e  c o l d  spots ,  t h e  c o r r e c t  second semi-log l o g  s t r a i g h t  l i n e  may n o t  

dekelop u n t i l  r e l a t i b e l y  l o n g  t imes (Ramey, 1 9 7 0 ) .  Therefore,  if t h e  

c o l d  spot  is l a r g e ,  t h e  a n a l y s i s  should be approached c a u t i o u s l y  t o  

ensure t h a t  t h e  c o r r e c t  semi- log s t r a i g h t  l i n e  has been i d e n t i f i e d .  

A p p l i c a t i o n  t o  Pressure Trans ien t  A n a l y s i s  

Outside t h e  c o l d  r e g i o n  t h e  t rans ien t ,  response i s  i d e n t i c a l  t o  t h a t  

for  a homogeneous system w i t h  p r o p e r t i e s  o f  t h e  i n  s i t u  f l u i d .  Therefore,  

t h e  t r a n s i e n t  response a t  t h e  w e l l  can be approximated by 

where 

and t D  i s  d e f i n e d  accord ing  t o  t h e  convent iona l  d e f i n i t i o n  

k t. 
tD = 2 

QPOCt r W  

( 25 )  

( 2 6 )  

( 2 7 )  
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I f  t h e  w e l l  has a mechanical s k i n  factor ,  t h e  pressure bu i ldup has 

th ree  components, one due t o  t h e  mechanical sk in ,  a second due t o  the  

reg ion  i n s i d e  t h e  thermal f r o n t ,  and t h e  t h i r d  due t o  t h e  rese rvo i r .  A 

steady-state analys is ,  s. imilar t o  t h e  one above, shows t h a t  

I f  t h e  r a d i u s  o f  t h e  s k i n  damaged reg ion  i s  small  i n  comparison t o  t h e  

r a d i u s  t o  t h e  front. then ln ( r f / rs )  = l n ( r f / r w ) .  Therefore, t h e  

f l u i d  s k i n  fac to r  can again be used t o  express t h e  steady-state pressure 

buildup as 

r 1 

where t h e  mechanical s k i n  fac to r  of t h e  w e l l  combines w i t h  f l u i d  

r e l a t e d  components t o  g i i e  an apparent mechanical s k i n  f a c t o r  (sma), 

de f ined as 

r 
k 'i '0 S 

s '1 W 

s = ( - - -  -1)  l n  (r 1 ma ( 3 0 )  

App l i ca t i on  t o  I n j e c t i o n  Test Analys is  -- 
In t h e  prev ious  sec t i on  i t  was shown t h a t ,  i n  general, t h e  pressure 

bu i l dup  a t  t h e  i n j e c t i o n  we l l  has th ree  components, one due t o  t h e  

apparent mechanical s k i n  fac to r  (Sma), a second due t o  t h e  f l u i d  s k i n  

fac to r  ( s f ) ,  and t h i r d  due t o  t h e  rese rvo i r .  

f a l l o f f  t e s t  IS analyzed us ing the  semi-log s t r a i g h t  l i n e  t h a t  corresponds 

t o  t h e  p r o p e r t i e s  o f  t h e  r e s e r v o i r  f l u i d s ,  then t h e  t o t a l  apparent s k i n  

fac to r  (Sa) w i l l  be g iven by 

If a pressure bu i l dup  o r  
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+ 

s = s  
a ma 

I f  t h e  r a d i u s  t o  t h e  r o l d  f r o n t  and t h e  p r o p e r t i e s  o f  t h e  i n j e c t e d  and 

i n  s i t u  f l u i d s  a r e  known, t h e  L a l u e  o f  t h e  f l u i d  s k i n  f a c t o r  can be 

c a l c u l a t e d  from Equat ion ( 2 4 ) .  The apparent mechanical  skin f a c t o r  

(Sma) 1s c a l c u l a t e d  from t h e  d i f f e r e n c e  between Sa and s f .  

I n  o r d e r  t o  determine t h e  r e l a t i o n  between Sm and %a, i t  is 

u s e f u l  t o  re-examine t h e  d e f i n i t i o n  o f  t h e  mechanical  s k i n  f a c t o r  f o r  a 

f i n i t e  r e g i o n  o f  p e r m e a b i l i t y  degradat ion  or  enhancement (Hawkins, 1956):  

Also, r e c a l l  t h a t  

r 
S 

W 
-1J 1n (r) s = ( - -  Y o  

k s ma ( 3 3 )  

From t h e  two equat ions  i t  r a n  be seen t h a t  i n  g t n e r a l  t h e r e  i s  no d i r e c t  

means t o  e v a l u a t e  t h e  mechanical sk in  f a c t o r  from apparent mechanical  

s k i n  f a c t o r  because b o t h  ks and rs  a r e  unknown. Howeber, i n  two 

impor tan t  cases i t  i s  p o s s i b l e  t o  approximate t h e  v a l u e  o f  t h e  mechani ra l  

s k i n  f a c t o r .  F i r s t ,  i f  ks << k ,  Equat ion  ( 3 2 )  can be approximated by 

.- 
fo r  ks << k (341 

1 k S s - - 1 n  (,J 
S W 

m - k  

s i m i l a r l y  f o r  Equat ion  33 

Equat ing these two express ions i n d i c a t e s  t h a t  

s = -  S rn ma 

for  k s  << k ( 3 5 )  

for  ks << k ( 3 6 )  
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Therefore, f o r  p o s i t i v e  s k i n  f a c t o r s  i t  i s  poss ib le  t o  approximate Sm 

from t h e  ca l cu la ted  value o f  

ks>>k. In  t h i s  case 

A second impor tant  case a r i s e s  when 

r 

f o r  ks >> k (37) 

and 

S = s  f o r  ks >> k (38 )  ma m 

Therefore, Sm can be evaluated simply from t h e  d i f f e r e n c e  between sa 

and sf. 

From t he  above d iscuss ion  i t  i s  c l e a r  t h a t  i f  t h e  apparent s k i n  

fac to r  (Sa) can be ca lcu la ted  from a standard pressure t r a n s i e n t  i n j e c t i o n  

t e s t ,  and i f  t h e  r a d i u s  t o  t h e  inner  reg ion  i s  Known, i t  i s  poss ib le  t o  

est imate the  mechanical s k i n  fac to r  of t he  we l l .  However, if t h e  

d is tance t o  t h e  f r o n t  i s  no t  known, eva lua t i on  o f  s f  i s  no t  poss ib le .  

I n  order t o  avoid t h i s  d i f f i c u l t y ,  an a l t e r n a t i v e  method o f  ana lys i s  has 

been dekeloped. 

o f  t he  f r o n t  i n t o  the  r e s e r v o i r  and estimate t h e  mechanical skin f a c t o r  

o f  t h e  we l l .  Development o f  t h i s  procedure, discussed i n  the  next 

sect ion,  i s  based on t h e  r e l a t i o n s h i p  between t h e  growth o f  t h e  f l u i d  

skin f a c t o r  and the  inc reas ing  d is tavce t o  t h e  thermal f r o n t .  

This method g ives  bo th  t h e  a b i l i t y  t o  t r a c k  the  movement 

Front TrackinQ 

I n  order t o  use t h e  f l u i d  s k i n  fac to r  as a f ron t  t r a c k i n g  t o o l ,  a 

t e s t  and ana lys i s  procedure must be developed t h a t  a l lows d i f f e r e n t i a t i o n  

between t h e  mechanical and f l u i d  s k i n  f a c t o r s  o f  a we l l .  In cases where 

the  f ron t  between t h e  i n j e c t e d  and r e s e r v o i r  f l u i d  moves as a func t i on  

o f  t / r 2 ,  which i s  t h e  case f o r  many i n j e c t i o n  processes considered i n  
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a po rous  medium, such a p rocedure  is developed a s  f o l l o w s .  From Equat ion 

(81, t h e  r a d i a l  p o s i t i o n  o f  t h e  f r o n t  can  b e  e x p r e s s e d  a s  

where a is a c o n s t a n t  o f  p r o p o r t i o n a l i t y  t h a t  depends  on t h e  mass- and 

energy-balance equat . ions gove rn ing  t h e  d i sp lacemen t  p r o c e s s .  For example 

fo r  non i so the rma l  i n j e c t i o n .  

t h e  c u m u l a t i v e  i n j e c t i o v  ( C )  and s u b s t i t u t i n g  Equa t ion  ( 3 9 )  i n t o  Equa t ion  

( 2 4 1 ,  we see t h a t  

Noting t h a t  t h e  term Qt can b e  r e p l a r e d  by 

S i n c e  t h e  second l o g a r i t h m i c  term is a c o n s t a n t ,  i t  i s  c l e a r  t h a t  a p l o t  

o f  t h e  l o g a r i t h m  o f  t h e  c u m u l a t i v e  i n j e c t i o n  v s .  t h e  f l u i d  s k i n  f a c t o r  

w i l l  resul t  i n  a semi-log s t r a i g h t  l i n e  w i t h  a s l o p e  o f  

n = 1.151 

I f  sf  is  e v a l u a t e d  at C = vhrwz, 

s (nhrw 2 1 = n l o g  ( a >  
f 

( 4 2 )  

( 4 3 )  

S i n c e  t h e  value o f  a i s  simply t h e  r a t i o  o f  t h e  v o l u m e t r i c  h e a t  c a p a c i t i e s  

o f  t h e  i n j e c t e d  water and t h e  r e s e r v o i r  f l u i d ,  sf ( f i r w  > i s  eas i ly  

e b a l u a t e d .  

2 

For a well w i th  a mechanical  s k i n  f a c t o r ,  t h e  e x t r a p o l a t i o n  o f  t h e  

semi- log l i n e  t o  a v a l u e  o f  C = ~ r w 2  y i e l d s  
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sa(nhrw2)  = s + n l o g  ( a )  ma 

s = s  (nhrw2)  - n l o g ( a )  
a ma 

(44)  

Therefore,  t h e  mechanical  sk in  f a c t o r  can be es t imated  u s i n g  Equat ion 

( 3 6 )  or  (381 ,  depending upon which i s  a p p r o p r i a t e .  

The f l u i d  s k i n  f a c t o r  f o r  any v a l u e  o f  t h e  cumula t ive  i n j e c t i o n  

i s  eva lua ted  by 

Since sma i s  c a l c u l a t e d  by Equat ion  (44a) ,  we see t h a t  

s f (C)  = sa(C) - sa(nhrw2)  + n l o g a  (46)  

Once s f (C)  i s  known, t h e  d i s t a n c e  t o  t h e  thermal  f r o n t  can be 

es t imated  by 

1 .151sf(C! 
r f ( C )  = r W exp [ n  3 (47)  

I n  Table 2, t h e  r a d i a l  d i s t a n c e  t o  t h e  f r o n t  i s  g i v e n  as a f u n c t i o n  

o f  1.151 sf /n .  For s m a l l  b a l u e s  o f  t h i s  term, r e s o l u t i o n  o f  t h e  

r a d i a l  d i s t a n c e  t o  t h e  f r o n t  i s  good. However, a t  l a r g e  ba lues  o f  1.151 

( s f / n ) ,  s m a l l  e r ro r s  i n  t h e  c a l c u l a t e d  f l u i d  s k i n  f a c t o r  r e s u l t  i n  

l a r g e  e r r o r s  i n  t h e  computed r a d i a l  d i s t a n c e  t o  t h e  f r o n t .  

t h i s  method o f  f r o n t  t r a c k i n g  i s  most u s e f u l  d u r i n g  t h e  e a r l y  s tages o f  

i n j e c t i o n .  

Therefore,  
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1 .151sf/n r f  

.I 0.11 m 

.2 0.12 m 

. 3  0.13 m 

.4 0.15 m 

.5 0.16 m 

1 .o 0.27 m 

2.0 0.74 m 

3.0 2.00 in 

4.0 5.46 m 

5.0 14.84 in 

6.0 40.34 m 

Table 2. D is tances  t o  t h e  thermal  f r o n t  for s e v e r a l  va lues  o f  1.151sf/n. 
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INJECTION TEST ANALYSIS 

Methods f o r  a n a l y z i n g  i n j e c t i o n  d a t a  f a l l  i n t o  two ca tegor ies ,  

based on whether t h e r e  has been no i n j e c t i o n  p r i o r  t o  t h e  t e s t  (moving 

f r o n t  dominated tes ts ! ,  or t h e  w e l l  has been used f o r  i n j e c t i o n  p r i o r  t o  

t h e  t e s t  (composi te  r e s e r v o i r  t e s t s ) ;  (Benson and Bodvarsson, 1982). 

The f i rs t ,  case occurs  when an i n j e c t i o n  t e s t  i s  b e i n g  used t o  determine 

t h e  r e s e r v o i r  c h a r a c t e r i s t i c s  or when i n j e c t i o n  i s  b e i n g  c a r r i e d  out  i n  

an at tempt  t o  s t i m u l a t e  t h e  w e l l .  

d i a g n o s t i c  purposes w i l l  f i t  i n t o  t h e  l a t t e r  case. 

f o r  each case i s  developed separa te ly .  

An i n j e c t i o n  w e l l  b e i n g  t e s t e d  f o r  

The a n a l y s i s  method 

MOL i n g  F r o n t  - Dorninat ed Tests  

I n  t h e  p r e b i o u s  d iscuss ions ,  p ressure  b u i l d u p  due t o  nonisothermal  

i n j e c t i o n  w i th  a moving thermal  f r o n t  has been demonstrated. C l e a r l y ,  

t h e  pressure  t r a n s i e n t  d a t a  can be used t o  c a l c u l a t e  t h e  m o b i l i t y - t h i c k n e s s  

produc t ,  kh/v, from one o f  t h e  semi- log s t r a i g h t  l i n e s  on t h e  pressure  L S .  

l o g  ( t i m e )  p l o t .  I f  t h e  f l u i d  p r o p e r t i e s  t o  which t h e  s l o p e  corresponds can 

be determined, then k h  can be determined. Furthermore, i f  t h e  f i r s t  s lope 

is apparent,  e i t h e r  i n  t h e  case of  a c o l d  spot  or a moving thermal  f r o n t ,  

then t h e  c o r r e c t  s k i n  v a l u e  can be c a l c u l a t e d  u s i n g  conLent iona1 methods o f  

a n a l y s i s .  

I n  p r a c t i c e ,  h o w a e r ,  t h e  f i r s t  s l o p e  and t h e  f i r s t  break i n  s l o p e  

a r e  masked b y  w e l l b o r e  s torage.  Therefore,  i t  i s  impor tan t  t o  be a b l e  

t o  determine independent ly  t h e  f l u i d  p r o p e r t i e s  t o  which t h e  analyzed 

p o r t i o n  o f  t h e  d a t a  correspond. In  t h e  f o l l o w i n g  sec t ion ,  techniques 

a r e  debeloped t o  determine t h e  a p p r o p r i a t e  method o f  a n a l y s i s  and t o  

i d e n t i f y  t h e  f l u i d  p r o p e r t i e s  t o  which t h e  da ta  correspond. Also, methods 



f o r  c a l c u l a t i n g  t h e  mechanical  sk in  f a c t o r  o f  t h e  w e l l  i n  t h e  absence o f  t h e  

f i r s t  s lope a r e  debeloped. 

The pressure  b u i l d u p  i n  response t o  nonisothermal  i n j e r t i o r i  w i thout  

a p re-ex is t  i n g  thermal  d i s c o n t i n u i t y  i s  demonstrated i n  F i g u r e  19. 

I n i t i a l l y  as shown by case 2 ,  t h e  pressure  b u i l d u p  i s  c o n t r o l l e d  b y  t h e  

i n  s i t u  f l u i d  temperature.  

on a second semi- log s t r a i g h t  l i n e ,  i n d i c a t i n g  t h a t  t h e  pressure  b u i l d u p  

is t h e r e a f t e r  goLerned by t h e  temperature o f  t h e  i n j e c t e d  f l u i d .  

Comparing t h i s  t o  Case 1 i n  F i g u r e  19, i t  car) be seen t h a t  t h e  pressure  

b u i l d u p  i s  I d e n t i c a l  t? t h a t  o f  i s o t h e r m a l  i n j e c t i o n  a t  t h e  temperature 

o f  t h e  i n j e c t e d  f l u i d ,  except f o r  a s h o r t  p e r i o d  d u r i n g  which t h e  

pressure  changes ro r respond t o  t h e  r e s e r b o i r  f l u i d  p r o p e r t i e s .  

p ressure  o f f s e t  (Ape) c r e a t e d  between t h e  two curves  i s  a f u n c t i o n  o f  

pi, po ,  to and t h e  d e n s i t y  cont.rast o f  t h e  f l u i d s .  

A t  to t h e  s l o p e  changes and t h e  d a t a  f a l l  

The 

The pressure  o f f s e t ,  Ape, can be c a l c u l a t e d  i f  kh and Octh are  

Since kh r a n  be determined from t h e  pressure  1s. log  ( t i m e )  known. 

graph and Q c t h  r a n  be es t imated  from w e l l  log  data ,  t h e  o f f s e t  between 

t h e  curies i s  c a l c u l a t e d  as f o l l o w s :  

where 
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1 I I I I I I I I  I I 1 I I I I I I  I I I I l l  

Moving Front Dominated Injection 
Case 1 v Isothermal injection 

Case 2 . Isothermal injection 

Case 3 A Nonisothermal injection (no wellbore storage) 
Case 4 0 Nonisothermal injection 

(reference case,injected temperature 1 

(reference case, reservoir temperoture 1 

(wellbore storage and thermal transients) 

Time 

XBL 841 I - 6157 

Figure 19. Apparent sk in  values vs. log (C) for four hypothetical cases. 
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Note t h a t  t h e  sk in  f a c t o r  o f  t h e  w e l l  does no t  a f f e c t  t h e  magnitude 

o f  Apo because d imensionless t i m e  i s  s h i f t e d  by a f a c t o r  o f  e-2s fo r  

b o t h  i s o t h e r m a l  and non iso thermal  i n j e c t i o n  (see Equat ion  ( 1 5 ) ) .  

The t ime,  to, i s  ext remely s i t e - s p e c i f i c  because i t  i s  a f u n c t i o n  

o f  t h e  w e l l  c o n f i g u r a t i o n ,  p r e - t e s t  w e l l  h i s t o r y ,  i n i t i a l  geothermal 

g r a d i e n t  and f l o w - r a t e .  As discussed e a r l i e r  i t  i s  n o t  p o s s i b l e  t o  

debelop a genera l  r u l e  f o r  c a l c u l a t i n g  to under these c i rcumstances.  

Howeber, t h e  t i m e  at  which t h i s  t r a n s i t i o n  o r c u r s  can be c a l c u l a t e d  if a 

s i m u l a t o r  such as PT is a v a i l a b l e  (Bodvarsson, 1982). Case 4 i n  F i g u r e  

19 shows a t y p i c a l  p ressure  b u i l d u p  curve  where b o t h  w e l l b o r e  s to rage 

and thermal  w e l l b o r e  t r a n s i e n t s  a r e  s i g n i f i c a n t .  The e f f e c t s  o f  these 

f a c t o r s  i s  t o  i n c r e a s e  to (hence Ape) and mask t h e  i n i t i a l  semi log 

s t r a i g h t  l i n e  coresponding t o  t h e  p r o p e r t i e s  o f  t h e  i n  s i t u  r e s e r v o i r  

f l u i d .  

In  genera l ,  s i n c e  to may be t i m e  consuming t o  ebaluate,  i t  i s  

recommended t h a t  i n j e c t i o n  t e s t s  be designed t o  abo id  e v a l u a t i n g  t h i s  

term. Th is  i s  accomplished by conduct ing  pressure  f a l l o f f  t e s t s  o r  

s t e p - r a t e  t e s t s  i n  which t h e  f r o n t  i s  s u f f i c i e n t l y  f a r  from t h e  w e l l  so 

t h a t  composi te r e s e r v o i r  behabior  p r e v a i l s .  Howeber, if these c o n d i t i o n s  

cannot be s a t i s f i e d ,  t h e  d a t a  can be analyzed by t h e  f o l l o w i n g  procedure.  

1) 

2) 

3 )  

Use Equat ion ( 1 1 )  or  a numer ica l  s i m u l a t o r  t o  e s t i m a t e  t h e  
t i m e  a t  which t h c  s l o p e  o f  t h e  pressure  t r a n s i e n t  changes t o  
t h a t  corresponding t o  t h e  i n j e c t e d  f l u i d .  

Es t imate  t h e  d u r a t i o n . o f  w e l l b o r e  s t o r a g e  by convent iona l  
methods. 

Ch a p l o t  o f  p ressure  v s .  l o g  ( t i m e ) ,  f i n d  t h e  s t r a i g h t  l i n e  
from whirh kh can be c a l c u l a t e d ,  making sure t h a t  t h e  da ta  
b e i n g  analyzed a r e  f o r  t i m e s  g r e a t e r  t h a n  to and that, 
w e l l b o r e  s to rage e f f e c t s  habe reased. Then, c a l c u l a t e  



4) 

5) 
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Use Equat ion (48) t o  c a l c u l a t e  t h e  pressure  o f f s e t  between t h e  
i s o t h e r m a l  and non iso thermal  i n j e c t i o n .  

E x t r a p o l a t e  t h e  semi- log s t r a i g h t  l i n e  (mi> t o  1 second 
and determine p i s .  C a l c u l a t e  

PI; = P I s  + *PO 

C a l c u l a t e  t h e  s k i n  f a c t o r  

- 1  PI: - p i  s = 1.151 [ - 
1 

(51)  

Re-evaluate to with Equat ion 1 5  t o  ensure t h a t  t h e  d a t a  used 
t o  c a l c u l a t e  t h e  s l o p e  o f  t h e  semi- log s t r a i g h t  l i n e  corresponds 
t o  t h e  p r o p e r t i e s  o f  t h e  i n j e c t e d  f l .J id.  Repeat t h e  abobe 
procedure i f  t h e  i n c o r r e c t  d a t a  were used. 

A n a l y s i s  o f  Composite R e s e n o i r  I n j e c t  i o n  Test s --- - - -- 

The pressure  response t o  nonisothermal  i n j e c t i o n  i n t o  a r e s e r v o i r  

w i t h  a p r e - e x i s t i n g  thermal  d i s c o n t i n u i t y  around t h e  w e l l  can be descr ibed 

i n  terms o f  t h r e e  p e r i o d s .  The f i r s t  corresponds t o  t h e  pressure  

t r a n s i e n t  assoc ia ted  with t h e  f l u i d  p r o p e r t i e s  o f  t h e  i n n e r  r e g i o n  o f  

r a d i u s  ( r f ) ,  t h e  second t o  t h e  i n  s i t u  r e s e r v o i r  f l u i d ,  and t h e  t h i r d  

t o  t h e  i n j e c t e d  f l u i d .  The f i r s t  two p e r i o d s  correspond t o  t h e  composi te 

r e s e r b o i r  beha\ i o r .  T y p i c a l  p ressure  t r a n s i e n t s ,  c h a r a c t e r i s t i c  o f  t h i s  

t y p e  o f  system, a re  shown i n  F i g u r e  20. 

20, f o r  a s u f f i r i e n t l y  l a r g e  i n n e r  r e g i o n ,  t h e  f i r s t  semi- log s t r a i g h t  

l i n e  may be apparent;  i f  so, i t  can be used t o  c a l c u l a t e  kh and t h e  s k i n  

f a c t o r  (Odeh, 1969; Bircl and Van Pool len,  1967; M e r r i l l  e t  a l ,  1974: 

As shown by Case 2 i n  F i g u r e  
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Composite Reservoir Behovior f 
Case 1 v Isothermal injection 

Case 2 9 Isothermal injection 

Case 3 A Nonisothermal injection (no wellbore storage) 
Case 4 0 Nonisothermal injection 

(reference case,injected temperature) 

(reference case, reservoir temperature 1 

(wellbore storage and thermal transients) 

Time 
XBL 841 I- 6158 

Figure  20. Schematic o f  the  presure  t r a n s i e n t  response during rnoving- 
f ront  dominated i n j e c t i o n  tests. 
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Earlougher,  1977). However, i f  t h e  f i r s t  s l o p e  i s  masked by t h e  e f f e c t s  

o f  we l lbore  s to rage,  another method o f  a n a l y s i s  i s  needed. 

The a n a l y s i s  procedure developed below i s  based on u s i n g  t h e  semi- log 

s t r a i g h t  l i n e  t h a t  corresponds t o  t h e  p r o p e r t i e s  o f  t h e  i n  s i t u  r e s e r v o i r  

f l u i d .  From t h e  s l o p e  o f  t h i s  l i n e ,  k h  and t h e  apparent s k i n  f a c t o r  

can be c a l c u l a t e d .  

I t  is impor tant  t o  habe a reasonably  accura tp  e s t i m a t e  o f  t h e  

curnulat ibe i n j e c t i o n  i n t o  t h e  w e l l  p r i o r  t o  t h e  t e s t .  O f  course, i f  

t h e  temperature o f  t t ; r  f l u i d  around t h e  w e l l  has r e - e q u i l i b r i a t e d  t o  

t h e  i n  s i t u  r e s e r b o i r  temperature,  t h e  pressure  b u i l d u p  w i l l  no t  

resemble t h a t  o f  a composite r e s e r v o i r .  I n  t h i s  case, moLing f r o n t  

a n a l y s i s  i s  a p p r o p r i a t e .  Lack o f  proper  plant lqcj and i n c o r r e c t  i n f o r -  

mat ion  about t h e  p r e - t e s t  w e l l  h i s t o r y  may r e s u l t  i n  ex t remely  erroneous 

i n t e r p r e t  a t  i o n  o f  i n j e c t i o n  t e s t  data.  

I f  an e s t i m a t e  o f  t h e  curnulat ibe i n j e c t i o n  i s  a b a i l a b l e ,  t h e  

f o l l o w i n g  a n a l y s i s  procedure i s  used t o  c a l c u l a t e  k h  and t h e  mechanical 

sk in  f a c t o r  o f  t h e  w e l l .  

1) Est imate t h e  d i s t a n c e  t o  t h e  f r o n t  f rom 

Jpwcw c r =  -- 
P c nh a a  f 

2 )  Use Equat ion ( 1 2 )  t o  e s t i m a t e  t h e  t i m c  at  which t h e  d a t a  w i l l  
depar t  from t h e  f i r s t  semi- log s t r a i g h t  l i n e ,  

2 
t f  = 4k r f  

and Equat ion ( 1 3 )  t o  e s t i m a t e  t h e  t i m e  at which t h e  da ta  w i l l  
depar t  from t h e  second seml- log s t r a i g h t  l i n e  
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3) Es t imate  t h e  d u r a t i o n  o f  wel lbore  s t o r a g e  by c o n v e n t i o n a l  
met hods.  

4)  From t h e  s l o p e  (mo> on a plot  of p r e s s u r e  vs. l og  (time) 
c a l c u l  a t  e 

qpO kh = 0.183 - 

5 )  Determine p i s  by e x t r a p o l a t l n g  mo t o  1 second.  

6 )  C a l c u l a t e  t h e  apparent  s k i n  f a c t o r  

- 0.351 ) k 

t w 
- log 2 

PIS - P I  
s = 1.151 [ 

0 
a 

( 5 3 )  

(54 )  

7) C a l c u l a t e  t h e  f l u i d  s k i n  f a c t o r  froin Equat ion (241 and t h e  
e s t i m a t e  of r f  o b t a i n e d  from s t e p  1 

p1 I r f  
pl W 

sf = 1.151 [ -- - 1) l r - . \ r ]  

8 )  C a l r u l a t  e t h e  apparent  merhanlca l  s k i n  f a c t o r  

s = s  - S f  ma a 

9 )  Es t imate  t h e  apparent  mechanical s k i n  f a c t o r  

where s >> 0 or - 
'ma ma s " - -  

pl Po 

- s " S  m ma where s << 0 ma 

( 2 4 )  

( 5 5 )  

( 3 6 )  

(38) 

I f  Sma is c l o s e  t o  z e r o ,  t h e  c o n d i t i o n s  under whlch Equat ions  
(36)  and ( 3 8 )  a r e  v a l i d  a r e  not s a t i s f i e d .  In  t h l s  r a s e ,  I t  
can o n l y  be dctermined t h a t  t h e  merhanlca l  s k i n  f a c t o r  l i e s  
somewhere between t h e  p r e d i c t e d  Lalues  by t h e s e  two equal i ons .  
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10) If Equat ion ( 1 6 )  i s  used t o  e s t i m a t e  t h e  d u r a t i o n  o f  we l lbore  
s t o r a g e  e f f e r t s ,  t h e  express ion  should b e  reeva lua ted  t o  
ensure t h a t  t h e  r o r r e c t  d a t a  a r e  used f o r  t h e  a n a l y s i s .  Equat ion 
(16)  must be m o d i f i e d  t o  account f o r  nonisothermal  i n j e c t i o n  
e f f e c t s .  Therefore,  t h e  s t a r t .  o f  t.he semi- log s t r a i q h t  l i n e  
r a n  be es t  m a t e d  b y  ( i n  f i e l d  u n i t - s )  

t >  
(200, 000 + 12, OOOsa) C" 

kh/ vo ( 56? 

T h i s  m o d i f i r a t i o n  i s  necessary because t h e  apparent s k i n  
f a r t o r ,  r a t h e r  than j us t  t h e  mechanical  skin fac to r ,  p r o v i d e s  
t h e  r e s i s t a n c e  t o  f low near t h e  we l lbore .  

Pressure F a l l o f f  A n a l y s i s  

When a w e l l  i s  shut-in a f t e r  nonisothermal  i n j e c t i o n  i t  behaves 

l i k e  a t w o - f l u i d  composi te system. Therefore,  t h e  a n a l y s i s  procedure 

r l o s e l y  p a r a l l e l s  t h a t  developed fo r  compos l te - reservo i r  a n a l y s i s .  Pressure 

f a l l o f f  a n a l y s i s  i s  s u b j e c t  t o  t h e  l'east, uncert .a int .y because e v e n t u a l l y ,  

t h e  p r o p e r t i e s  o f  t h e  r e s e r v o i r  f l u i d  w.111 govern t h e  pressure  t r a n s i e n t  

response. I n  t.he case t h e  t h e  d i s t a n c e  t o  t h e  thermal  f ront .  i s  s u f f i -  

c i e n t . 1 ~  l a r g e ,  t h e  f i r s t  s lope w i l l  be apparent i n  t h e  pressure  t r a n s i e n t  

da ta .  The e a r l y  t i m e  d a t a  can be analyzed t o  e v a l u a t e  t h e  w e l l  s k i n  

f a c t o r ,  tht. p e r m e a b i l i t y  o f  t h e  f o r m a t i o n  and t o  e s t i m a t e  t h e  d i s t a n c e  

t o  t h e  f r o n t  ( B i x e l  and van Poo l len ,  1967; Kazemi e t  a l . ,  1972; M e r r i l l  

e t  a l . ,  1975; Sat.man e t  a l . ,  1980; van P o o l l e n  e t  a l . ,  1965). However, 

if t h e  i n n e r  r e g i o n  i s  r e l a t i v e l y  smai l ,  t h e  semi- log s t r a i g h t  l i n e  

corresponding t o  i t s  f l u i d  p r o p e r t i e s  w i l l  n o t  be apparent.  Therefore,  

o n l y  t h e  second semi- log s t r a i g h t .  l i n e ,  cor respond ing  t o  t h e  p r o p e r t i e s  

o f  t h e  r e s e r v o i r  f l u i d ,  w i l l  be a v a i l a b l e  f o r  a n a l y s i s .  In  t h i s  case 

t h e  f o l l o w i n g  a n a l y s i s  procedure i s  used. 
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Prepare a Horner graph o f  t h e  pressure  b u i l d u p  da ta  (Horner,  
1951) (e.g., p vs l o g  ( t  + k t / A t ) ) .  

Est imate t h e  d i s t a n c e  t o  t h e  thermal  f r o n t  f rom Equat ion  
( 5 2 ) .  

Est imate t h e  t i m e  a t  which t h e  pressure  f a l l o f f  d a t a  depar t  
from t h e  f i r s t  semi- log s t r a i g h t  l i n e  u s i n g  Equat ion ( 1 2 ) .  

Est imate t h e  d u r a t i o n  o f  w e l l b o r e  s t o r a g e  e f f e c t s  from 
Equat ion  ( 17). 

C a l c u l a t e  t h e  kh o f  t h e  r e s e r v o i r  u s i n g  t h e  s l o p e  o f  t h e  
semi- log s t r a i g h t  l i n e  on t h e  Horner graph and Equat ion  ( 5 3 ) .  
Make sure t h a t  t h e  semi- lop s t r a i g h t  l i n e  used f o r  t h e  
a n a l y s i s  b e g i n s  a f t e r  t h e  t i m e s  i n d i c a t e d  by s t e p s  3 and 4. 

Calcu1at.e t h e  f l u i d  skin f a c t o r  o f  t h e  w e l l  by Equat ion ( 2 4 ) .  

Evaluate p i s  b y  e x t r a p o l a t i n g  t h e  semi- log s t r a i g h t  l i n e  
on t h e  Horner graph t o  t h e  va lue  o f  ( t  + A t ) / A t )  where 
A t  = 1 S .  

Evaluate t.hc apparent sk in  f a c t o r  o f  t h e  w e l l :  

k - 0.351) 2 - 10.9 - 
P I S  - Pwf s = 1.151 [ a 

4poCt w 
0 

(571 

Evaluate t h e  apparent mechanical  sk in  f a c t o 1  from Equat ion  ( 5 5 ) .  

Est imate t h e  mechanical  sk in f a c t o r  from Equat ion ( 3 6 )  o r  ( 3 8 ) .  

Re-evaluate t h e  d u r a t i o n  o f  t h e  e f f e c t s  o f  w e l l b o r e  s t o r a g e  
u s i n g  a m o d i f i c a t  i o n  o f  t h e  Chen and Brigham (1974) equat ion  
( i n  f i e l d  un i ts ) :  

Repeat t h e  above procedure i f  t h e  i n c o r r e c t  semi- log s t r a i g h t .  
l i n e  was used. 

Step-Rate A n a l y s i s  

A d i s c u s s i o n  o f  t h e  behav io r  o f  t h e  pressure  b u i l d u p  d u r i n g  

non iso thcrmal  s t e p - r a t e  t e s t s  was presented p r e v i o u s l y .  I t  was shown 
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t h a t  t h e  pressure t r a n s i e n t s  behave i n  a composite or moving-front- 

dominated manner depending upon t h e  s i z e  o f  t he  thermal d i s c o n t i n u i t y  

surrounding the  we l l .  If t h e  step-rate t e s t  i s  conducted i n  a we l l  

never be fore  used for  i n j e c t i o n ,  t h e  t r a n s i e n t s  i n i t i a l l y  correspond t o  

t h e  moving f r o n t  behakior. During t h e  second and a l l  subsequent steps, 

t he  data behaie f o r  a p e r i o d  o f  t ime l i k e  those i n  a composite system. 

I f  t h e  d is tance t o  t h e  thermal d i s c o n t i n u i t y  i s  r e l a t i v e l y  small ,  b o t h  

t h e  composite and moving f r o n t  may be obserted i n  a s i n g l e  s tep (see 

F igure  13). 

The t e s t  must be desiar~ed so t h a t  t he  observed pressure t r a n s i e n t s  

c l e a r l y  correspond t o  e i t h e r  t h e  composite-reservoir o r  moving-front 

behavior. Howeber, s ince composite r e s e r v o i r  ' jehavior i s  eas ier  t o  

analyze, t e s t s  should be designed so t h a t  t h i s  procedure i s  app l i cab le .  

Equations ( a ) ,  ( 1 2 ) ,  and (13) can be used t o  c a l c u l a t e  t h e  t imes a t  

which t h e  pressure data w i l l  change from one behavior t o  another 

Hence, t h e  t e s t  can be designed t o  achieve t h e  requ i red  r e s u l t s .  

In  t h i s  case, t h e  data a re  d i f f i c u l t  t o  analyze accurate ly .  

Assuming t h a t  t he  t e s t  i s  designed so t h a t  a l l  o f  t h e  pressure 

t r a n s i e n t s  a f t e r  t h e  f i r s t  s tep behave according t o  t h e  composite-reserboir 

model, t h e  f o l l o w i n g  ana lys i s  procedure r a n  be app l ied  (Benson, 1982). 

Prepare a p l o t  o f  

t -  + ... t-+ A t  
1 r i  

Og t + ... t n + A t  1+1 
1= 1 

(59) 

Estimate t h e  du ra t i on  of t h e  e f f e c t s  o f  wel lbore s torage us ing 
the  methods o u t l i n e d  p r e i i o u s l y ,  depending on which i s  
appropriat e. 

Calcu late kh from t h e  slope of t h e  co r rec t  semi-log s t r a i g h t  
l i n e  on t h e  prepared graph: 
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6 )  

7 )  

E ?  

9) 
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qn '0 kh = 0.183 - 
m 
0 

( 6 0 )  

C a l c u l a t e  t h e  apparent skin fact .or :  

- 0.351 j (61) k 
2 - l o g  qn PI  s - p w f s = 1.151 [ m 

%%- 1 0 4poctrw 
a 

Est1mat.e t h e  d i s t a n c e  t o  t h e  thermal  f r o n t  f rom Equat ion  ( 5 2 ) .  

C a l c u l a t e  t.he f l u i d  skin f a c t o r  u s i n g  Equat ion ( 2 4 ) .  

C a l c u l a t e  t h e  apparent mechanical  s k i n  f a c t o r  f rom Equat ion (55). 

Est imate t h e  mechanical  sk in f a c t o r  o f  t h e  w e l l  u s i n g  Equat ion 
( 3 6 )  or  ( 3 8 1 .  

Re-evaluate t h e  d u r a t i o n  o f  we l lbore  s t o r a g e  u s i n g  Equat ion (56)  
or (58). I f  t h e  c o r r e c t  semi- log s t r a i g h t  l i n e  was n o t  used 
f o r  t h e  a n a l y s i s ,  repeat  t h e  abobe procedure u s i n g  t h e  correct 
semi- loq s t r a i g h t  l i n e .  

Step-rate t e s t s  can be v a l u a b l e  t o o l s  f o r  monitoring t h e  i n j e c t . i o n  

process.  Not o n l y  can t h e  d a t a  be usee t o  e v a l u a t e  t h e  near w e l l b o r e  

f o r m a t i o n  changes r e s u l t i n g  from i n j e c t i o n ,  but  they  can be used a l s o  

t o  t r a c k  t h e  advancement o f  t h e  thermal  f r o n t  i n t o  t h e  r e s e r v o i r  

(Elenson and Bodvarsson, 1983). In  t h e  f o l l o w i n g  s e c t i o n  a procedure 

f o r  thermal  f r o n t  t r a c k i n g  i s  developed. 

F r o n t  Track ing  Method 

Dur ing  c o l d  water i n j e c t i o n  t h e  thermal  f r o n t  advances i n t o  t h e  

r e s e r v o i r .  In t h e  p r e i i o u s  d i s c u s s i o n  o f  t h e  f l u i d  skin f a c t o r ,  t h e  

r e l a t i o n s h i p  between t h e  advancement o f  t h e  f r o n t  and t h e  growth o f  t h e  

f l u i d  skin f a c t o r  was developed. I t  was found t h a t  

s f  = n ( log(C)  + l o g  - i h r w  a * )  ( 6 2 )  
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and the  apparent. s k i n  fac to r ,  when evaluated a t  C = mhrW2, is g iven by 

s a ( h r w 2 )  = n log(a)  + sma ( 6 3 )  

The constant n is a func t ion  o f  t h e  r a t i o  o f  t h e  f l u i d  p r o p e r t i e s  o f  t he  

inner  and outer  reg ions  and IS expressed as 

pi n = 1.151 ( - -  -1 ) 
pi 

(64) 

I f  t h e  f l u i d  s k i n  fac to r  i s  known, t h e  rad ius  t o  t h e  thermal f r o n t  

can be calculated b y  

These four  equations prov ide  the  t h e o r e t i c a l  bas i s  of t h e  f o l l o w i n g  

procedure for  f r o n t  t rack ing .  

The method cons is t s  o f  conducting a s e r i e s  o f  i n j e c t i o n  and/or 

Each o f  these f a l l o f f  t e s t s  a f t e r  inc reas ing  per iods of i n j e c t i o n .  

t e s t s  i s  analyzed us ing  t h e  methods o u t l i n e d  p rev ious l y ,  depending upon 

which method is appr0priat.e. (Note t h a t  t h i s  method i s  not  v a l i d  u n t i l  

t h e  pressure t r a n s i e n t s  are charact.erist. ic o f  t h e  composite-reservoir 

behavior.) Once two values of t h e  apparent s k i n  f a d o r  are a v a i l a b l e  

the  f o l l o w i n g  procedure can be used. Refer t o  F igure  21 f o r  a g raph ica l  

exp lanat ion  o f  t he  t e x t .  (Table 3 summarizes t h e  we l l  and r e s e r v o i r  

parameters used fo r  t h i s  exarnpJe.1 

1) Prepare a p l o t  o f  Sa vs. log(C).  For example, Case 1 i n  
F igure 21 shows t h a t  a t  C = 10 m 3 ,  Sa = 2.6 and at. C = 100 m 3 ,  
Sa = 6 . 3 .  
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15 

5 

10 1 00 

Cumulative injection (m3) 

1000 

XBL 844-9779 

F i g u r e  21. Schematic o f  t h e  p r e s s u r e  t r a n s i e n t  response du r ing  composite- 
r e s e r v o i r  t y p e  i n j e c t i o n  tests. 
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'aca 

Tr 

Ti 

'i 

'i 

h 

r 

sm(case I) 

W 

sm(case 2)  

sm(case 3)  

sm(case 4) 

2.46~10~ J/m3/"C 

250°C 

50°C 

1.1 x  IO-^ Pa.s (0.11 cp) 

5 . 5  x Pa.s (0.55 cp) 

81 0 kg/m3 

988 kg/m3 

100 m 

0.1 m 

0 

1 

1 

1 

Table 3 .  Reservoir p roper t ies  used for the discussion o f  f ront  t rack ing .  
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2) Draw a s t r a i y h t  l i n e  connect ing  t h e  p o i n t s ,  o r  t h e  bes t  
s t r a i g h t .  l i n e  th rough a s e t  o f  p o i n t s .  

3)  C a l c u l a t e  t h e  s l o p e  o f  t h e  semi- log s t r a i g h t  l i n e ,  n ( i . e . ,  
t h e  change i n  Sa f o r  one log c y c l e  o f  C). For b o t h  Cases 1 
and 2, n = 3.6. 

4) Compare t h e  s lope,  n, t o  t h e  va lue  o f  n c a l c u l a t e d  by Equat ion 
( 6 4 ) .  
ind icat .es t h a t  t h e  method is  a p p l i c a b l e .  I f  t h e  s l o p e  does 
n o t  agree w i th  t h a t  c a l c u l a t e d  by Equat ion (64) ,  e i t h e r  t h e  
s k i n  f a c t o r  o f  t h e  w e l l  is changing or t h e  thermal  f r o n t  i s  
moving away from t h e  well at. a r a t e  d i f f e r e n t  than expected. 
This w i l l  be d iscussed l a t e r .  For t.he t i m e  be ing ,  assume 
t h a t  t-he s lope i s  c l o s e  t o  i t s  a n t i c i p a t e d  va lue.  

E x t r a p o l a t e  n back t o  C = n h r w 2  and e v a l u a t e  Sa. 
i n  F i g u r e  2 1 ,  C = 3.14 m 3 .  

I f  they  a r e  i n  good agreement. w i t h  one another t h i s  

5) For example, 

6) C a l c u l a t e  t h e  apparent mechanical  s k i n  f a c t o r :  

s = sa(nhrwL)  - n l o g ( a )  
ma ( 6 6 )  

For b o t ~ h  Cases 1 and 2, n l o g ( a 1  = 0.87. Therefore,  f rom F i g u r e  
21 we see t h a t  S,a = 0 f o r  Case 1 and Sma = 4.1 f o r  Case 2. 

7) C a l c u l a t e  the  f l u i d  skin f a c t o r  f o r  t h e  t e s t  o f  i n t e r e s t  ( i . e . ,  
a t  a s p e c i f i c  va lue  o f  C! 

Sf(C! = Sa(C) - s  ma ’ (67)  

3 

3 

i . e . ,  Case 1 s f ( l O O  rn ) = 6 . 3 - 0 ~ 6 . 3  

Case 2 s f ( l O O  rn = 10.4-4.1~6.3 

8 )  Calcu1at.e t h e  r a d i u s  t o  t h e  thermal  f r o n t  from Equat ion ( 6 5 ) .  
For Cases 1 and 2: 

This v a l u e  agrees v e r y  w e l l  w i t h  t h e  v a l u e  o f  0.73 m c a l c u l a t e d  
from Equat ion ( 3 9 ) .  

Note t h a t  t h e  mechanical sk in  f a c t o r  o f  t h e  w e l l  r a n  a l s o  be es t imated  

because t h i s  procedure p r o k i d e s  a d i r e c t  method o f  eLaLuat ing 
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For Cases 1 and 2, c a l c u l a t e d  va lues  o f  Sm a r e  equa l  t o  0 and 1, 

r e s p e c t i v e l y ,  which agree w e l l  wi th t h e  input va lues.  

The procedure o u t l i n e d  above assumes t h a t  t h e  f r o n t  i s  d i s p l a c i n g  

t h e  i n  s i t u  f l u i d s  i n  a p i s t o n - l l k e  manner and t h a t  t h e  mechanical  sk in 

f a c t o r  o f  t h e  w e l l  remains constant .  I f  these c o n d i t i o n s  a r e  n o t  

s a t i s f i e d  then t h e  s l o p e  o f  t h e  semi- log s t r a i g h t  l i n e  w i l l  be d i f f e r e n t  

from t h e  a n t i c i p a t e d  va lue.  

Two s c e n a r i o s  a r e  demonstrated by Cases 3 and 4 i n  F i g u r e  21. 

t h e  w e l l  i s  p r o g r e s s l b e l y  damaged by i n j e c t i o n ,  hence t h e  sk in  f a c t o r  

i s  i n c r e a s i n g  w i th  t imc.  This i s  r e f l e c t e d  i n  p l o t  o f  t h e  apparent 

s k i n  f a c t o r  vs. log(C)  by t h e  c a l c u l a t e d  va lues  o f  Sa r i s i n g  above 

t h e  a n t i c i p a t e d  La lues  (Case 2) .  

p o i n t s  i s  g r e a t e r  t h a n  t h a t  c a l c u l a t e d  by Equat ion  (64) .  

i s  g r e a t e r  t h a n  t h a t  c a l c u l a t e d  by Eqbat lon  (64) i t  can b e  assumed 

t h e  w e l l  i s  b e i n g  damaged d u r i n g  i n j e c t i o n  or  t h e  thermal  f r o n t  i s  

In  f a c t ,  t h e  l i n e  might n o t  b e  s t r a i g h t .  

I n  Case 3 ,  

The s l o p e  o f  t h e  l i n e  between t h e  

I f  t h e  s l o p e  

a d i a n c i n g  i n t o  t h e  f o r m a t i o n  more r a p i d l y  t h a n  expected. I f  t.he s l o p e  

o f  t h e  semi- log s t r a i g h t  l i n e  i s  s i g n i f i c a n t l y  g r e a t e r  t h a n  a n t i c l p a t e d ,  

t h i s  f r o n t  t r a c k i n g  procedure may n o t  be a p p l i c a b l e .  However, i t  does 

p r o v i d e  a means o f  d e t e c t i n g  i n j e c t i o n  w e l l  p l u g g i n g  or  r a p i d  advancement 

o f  t h e  thermal  f r o n t .  Unfortunat,ely,  i t  may not. be p o s s i b l e  t o  d i f f e r -  

e n t i a t e  between these two cases. 

A second s e t  o f  c i rcumstances is shown by Case 4 i n  F i g u r e  21. 

Here, t h e  e f f e c t s  o f  conduct ion  t o  t h e  c o n f i n i n g  s t r a t a  a r e  i n f l u e n c i n g  

t h e  r a t e  at  which t h e  thermal  f r o n t  moves i n t o  t h e  fo rmat ion .  Therefore,  

t h e  growth  o f  t h e  apparent sk in  f a c t o r  i s  n o t  as r a p i d  as expected. In  

t h i s  case i t  may be p o s s i b l e  t o  app ly  t h e  f ront.  t r a c k i n g  method i f  
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another means o f  e v a l u a t i n g  Sma i s  a v a i l a b l e .  For ins tance,  i f  

apparent s k i n  f a c t o r s  a r e  c a l c u l a t e d  for r e l a t i v e l y  smal l  i n j e c t i o n  

bolumes, then t h e  e f f e c t s  o f  conduct ion  t o  t h e  c o n f i n i n g  s t r a t a  may be 

n e g l i g i b l e .  The f a c t o r  Sma can t h e n  be eva lua ted  by t h e  procedure 

o u t l i n e d  here  i f  o n l y  t h e  e a r l y  d a t a  a r e  considered.  For  example, 

i n  F i g u r e  21 t h e  da ta  p o i n t s  up t o  C = 100 rn3 !Case 4 )  f a l l  on t h e  

c o r r e c t  s lope.  Therefore,  t h e  l i n e  th rough these d a t a  p o i n t s  can be 

e x t r a p o l a t e d  back t o  C = nhr,2 i n  o r d e r  t o  eva lua te  Sma. 

f l u i d  sk in  f a c t o r  and d i s t a n c e  t o  t h e  thermal  f r o n t  can be determined 

f o r  any i a l u e  o f  C by Equat ions (67) and (65)  i f  n i s  c a l c u l a t e d  from 

t h e  known f l u i d  p r o p e r t i e s  and Sma i s  assumed t o  be unchanged from 

i t s  e a r l i e r  va lue.  

The 



-74- 

EXAMPLES OF NONISOTHERMAL INJECTION TEST ANALYSIS 

The a n a l y s i s  methods developed i n  t h i s  paper a r e  demonstrated by 

a p p l i c a t i o n  t o  s e k r r a l  s imu la ted  d a t a  s e t s  (Examples 1-5)  and one f i e l d  

d a t a  s e t  (Examples 6 ) .  

p r e b i o u s  s e c t i o n ,  t h e y  a r e  n o t  repeated here. However, t h e  c a l c u l a t i o n s  

i s  demonstrated, thereby a l l o w i n g  a c l e a r  d e s c r i p t i o n  o f  t h e  procedure.  

As t h e  equat ions  f o r  this are  presented i n  t h e  

f o r  

w 1 1  

t h e  

a r e  

Example 1. Moving F r o n t  A n a l y s i s  

The f o l l o w i n g  example demonstrates t h e  a n a l y s i s  procedure used f o r  

an i n j e c t i o n  t e s t  conducted i n  a w e l l  t h a t  has n o t  been used p r e v i o u s l y  

t r a n s i e n t s  i n j e c t i o n .  Knowing t h i s ,  i t  i s  assumed t h a t  t h e  p r e s s u r e  

behave l i k e  t h o s e  dominated b y  a moving thermal  f r o n t .  h e r e f o r e ,  

moking- f ront  dominated a n a l y s i s  procedure i s  a p p r o p r i a t e .  

The r e s e r v o i r  p r o p e r t i e s  and t e s t  parameters f o r  t h i s  simu 

g iben i n  Table 4. Both  thermal we l lbore  t r a n s i e n t s  and we1 

s to rage a r e  neg lec ted .  However, t h e  d a t a  a re  analyzed w i th  t h e  

t i o n  t h a t  t h e  e a r l y  t i m e  d a t a  ( i . e . ,  t,he d a t a  showing t h e  s l o p e  

at  i o n  

bore  

assump- 

that  

corresponds t o  t h e  p r o p e r t i e s  o f  t h e  r e s e r k o i r  f l u i d )  a r e  n o t  a b a i l a b l e  

f o r  a n a l y s i s .  A p l o t  o f  Ap b s .  l o g ( t )  f o r  t h i s  example i s  shown i n  

F i g u r e  22. 

p ressure  i n s t e a d  o f  p ressure  changes. 

terms o f  Ap f o r  convenience, r a t h e r  than out  o f  n e c e s s i t y .  

I n  genera l ,  semi- log p l o t s  a r e  prepared u s i n g  t h e  a b s o l u t e  

The d a t a  here  a r e  p l o t t e d  i n  

The pressure  da ta  f o l l o w  t h e  s l o p e  corresponding t o  t h e  r e s e r v o i r  

f l u i d  p r o p e r t i e s  i n i t i a l l y  (mol'. A t  approx imate ly  250 s t h e  d a t a  f a l l  

on a second st . ra ight  l i n e  w i t h  a s l o p e  mi. The p e r m e a b i l i t y - t h i r k n e s s  

o f  t h e  r e s e r k o i r  is c a l c u l a t e d  u s i n g  Equat ion (49) .  For t h i s  case, 
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k 

h 

cp 

P C  a a  

A 

Ct 

r 

Tr 

W 

T 
i 

9 

S m 

1.0 x 10 -14 m2 ( I O  md) 

100 m 

0.2 

2.57 x IO6 J/m3/"C 

2.0 J/m/'C//s 

1.0 x Pa-' ( 6 . 9  x ps i - ' )  

0.1 m 

250°C 

100°C 

10 kg/s 

0 

(5660 STB/D) 

Table 4. Reservoir p r o p e r t i e s  and w e l l  c h a r a c t e r i s t i c s  used for Example I. 
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3.0 
n 

L - 
x 

0 
0 
v) 

v) 2.0 - 

a" 

a 
v 
p 1.0 

I I I I I I 

0 

- Injection into a hot reservoir with no skin 

Ti = 100°C 1 - Calculated 
Extrapolated 

I 

0- 
0' ,=-4x106 Pa 

// 
0 

I 10 100 1,000 l0,Ooo 1oo,oO0 

Time (seconds) 
XBL an -mi 

Figure 22. Pressure bui ldup a t  the well for Example 1. 



-77- 

which compares well w i t h  t h e  i n p u t  d a t a .  

I s  is o b t a i n e d  by e x t r a p o l a t i n g  mi t o  I s  and e v a l u a t i n g  t h e  p r e s s u r e :  

The f lowing  p r e s s u r e  a t  

6 = -0.4 x 10 Pa P lS  

The o f f s e t  between i s o t h e r m a l  and non i so the rma l  i n j e c t i o n  i s  c a l c u l a t e d  

by Equal i o n  ( 4 8 )  : 

p = 1.3 x 10 6 Pa 
0 

The c o r r e c t e d  f lowing p r e s s u r e  is e v a l u a t e d  from Equa t ion  ( 5 0 ) :  

6 6 6 = -0.4 x 10 + 1 . 3  x 10 = 0.9 x 10 Pa P?S 

The s k i n  f a c t o r  i s  c a l c u l a t e d  w i t h  Equa t ion  ( 5 1 ) :  

6 1 I 0-1 )- 0.3511 [ 5 . 4 ~  1 O5 - log (  (0.2) ( 2 .ax1 3-4) ( Ix 1 0-9) (0 .1  2 m 
0 . 9 ~ 1 0  s = 1.151 

= 0.1 

T h i s  is  i n  good agreement wi th  t h e  v a l u e  i n p u t  t o  t h e  s i m u l a t o r ,  Sm = 

0. I f  p i s  is not c o r r e c t e d  t o  accoun t  f o r  t h e  non i so the rma l  b e h a v i o r ,  

a s k i n  v a l u e  of  -2 .7  i s  c a l c u l a t e d .  Table  5 summarizes t h e  s k i n  

f a c t o r s ,  c a l c u l a t e d  skin f a c t o r s ,  and a p p a r e n t  s k i n  f a c t o r s  f o r  t h e  

p r e s s u r e  t r a n s i e n t  d a t a  p l o t t e d  i n  F i g u r e  6 .  

The e f f e c t  o f  i g n o r i n g  non i so the rma l  p r e s s u r e  t r a n s i e n t s  d u r i n g  

c o l d  wa te r  i n j e c t i o n  dominated by a moving f r o n t  is  t h a t  t h e  s k i n  

f a c t o r  is underes t ima ted .  In  f a c t ,  even a well w i t h  a p o s i t i v e  s k i n  

may appear  t o  have a n e g a t i v e  s k i n .  The l a r g e r  t h e  L i s c o s i t y  c o n s t r a s t  

between t h e  i n j e c t e d  and i n  s i t u  f l u i d s ,  t h e  more t h e  s k i n  f a c t o r  i s  

u n d e r e s t  imated.  
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Input sm Calculated sm S a 

5.7 
3.6 
1.6 
0.0 

-2 .3  

5.6 
3.6 
1.6 
0.1 
-2.3 

3.0 
0.9 

-1 .I 
-2.7 
-4.9 

Table 5 .  Calcu la ted  and apparent s k i n  v a l u e s  for t h e  pressure  
bu i ldup  d a t a  shown i n  Figure  6 .  
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ExamDle 2. ComDosite Reservo i r  A n a l y s i s  

Composite a n a l y s i s  procedure i s  used when t h e  w e l l  has been used 

f o r  i n j e c t i o n  p r i o r  t o  t h e  t e s t .  For t h i s  example, i n j e c t i o n  i n t o  a 

w e l l  surrounded by a 3-m c o l d  spot i s  s imu la ted .  The method descr ibed 

here  i s  a p p l i c a b l e  i f  a w e l l  has been used f o r  i n j e c t i o n  and t h e n  l e f t  

i d l e  f o r  a p e r i o d  s u f f i c i e n t  for  t h e  pressure  g r a d i e n t s  i n  t h e  r e s e r v o i r  

t o  d i s s i p a t e ,  but. not l o n g  enough f o r  t h e  c o l d  spot  t o  r e - e q u l l i b r a t e  

w i th  t h e  r e s e r L o i r  temperature.  The r e s e r v o i r  p r o p e r t i e s ,  w e l l  c h a r a c t e r -  

i s t i c s  and t e s t  parameters for  t h i s  example a r e  l i s t e d  i n  Table 6. 

Once again,  t h e  e f f e c t s  o f  w e l l b o r e  s t o r a g e  a r e  neg lec ted  b u t  i t  i s  

assumed t h a t  t h e  e a r l )  t i m e  data,  when t h e  pressure  t r a n s i e n t s  correspond 

t o  t h e  p r o p e r t i e s  o f  t h e  c o l d  spot,  a re  not a v a i l a b l e  f o r  a n a l y s i s .  

A semi- log p l o t  o f  t h e  pressure  b u i l d u p  i s  shLwn i n  F i g u r e  23. 

The d a t a  i n i t i a l l y  f o l l o w  a s lope t h a t  corresponds t o  t h e  f l u i d  

p r o p e r t i e s  o f  t h e  c o l d  spot .  A f t e r  apFroxirnately 20 s, t h e  d a t a  f a l l  

on t h e  s l o p e  corresponding t o  t h e  f l u i d  p r o p e r t i e s  o f  t h e  ho t  r e s e r v o i r .  

A t  approx imate ly  1.5 x l o 5  s (approx imate ly  42 hours) ,  t h e  d a t a  aga in  

change t o  t h e  c o l d  slope. This change ror responds t o  t h e  t i m e  when 

t h e  m o i i n g  thermal  f r o n t  b e g i n s  t o  dominate t h e  pressure  response. 

p ressure  b u i l d u p  i s  analyzed u s i n g  o n l y  t h e  d a t a  d u r i n g  t h e  t i m e  when 

t h e  semi- log s t r a i g h t  l i n e  corresponds t o  t h e  p r o p e r t i e s  o f  t h e  

r e s e r b o i r  f l u i d .  

The 

F i r s t ,  c a l c u l a t e  kh usinq Equat ion  (53)  and t h e  s lope o f  t h e  

semi- log s t r a i g h t  l i n e  mo: 
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P c  a a  

A 

Ct 

r 
W 

f r 

r T 

Ti 

1.0 1 0 - l ~  m2 (IO md) 

150 m 

0 . 2  

2.57 x IO6 2/m3/"C 

2.0 J/m/"C/s 

1.0 x Pa-' (6 .9 x psi- ')  

0.1 m 

3.0 m 

250°C 

100°C 

15 kg/s (8490 STB/D) 

2 

Table 6 .  Reservoir p roper t i es ,  w e l l  c h a r a c t e r i s t i c s  and t e s t  
parameters for Example 2. 
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I I I 1 1 

Injection with a 3m cold spot 

Tr =250°C 
Ti =lOO"C 

= 100°C Tcold sbo? 

- Calculated - - Extrapolated 
I I I I I 
IO' io2 I 33 I o4 io5 IO6 IO0 

XBL 821 - 899 
. Time (seconds) 

F i g u r e  2 3 .  P r e s s u r e  b u i l d u p  at the well for  Example 2. 



-82- , 

E x t r a p o l a t e  mo t o  I s  and e v a l u a t e  p i s :  

6 = 2 . 3 ~ 1 0  Pa * P I  s 

C a l c u l a t e  t h e  apparent s k i n  f a c t o r  u s i n g  Equat ion  (54 ) :  

s = 8.7 a 

The f l u i d  sk in  f a c t o r  i s  c a l c u l a t e d  u s i n g  Equat ion (24) :  

- t  \ 1 . 1 ~ 1 0 - ~  9t 

The apparent mechanicaL skin f a c t o r  is eva lua ted  u s i n g  Equat ion  ( 5 5 ) :  

s = 8.7 - 3 . 9  = 4.8 ma 

Equat ion  36 can be used t o  es t imate  t h e  mechanical  s k i n  f a c t o r  

4.8 = 2.2 (1. I~IO-~) ( 9 6 0 )  s =  
m (2.8x10-’) (810) 

which i s  i n  good agreement w i t h  t h e  i n p u t  da ta ,  s = 2. 

If t h e  nonisothermal  behav io r  i s  neg lec ted ,  a skin v a l u e  o f  +8.7 

is c a l c u l a t e d  b y  c o n v e n t i o n a l  methods. 

f a c t o r ,  n o n i s o t h e r m a l l y  c a l c u l a t e d  skin f a c t o r ,  and t h e  apparent skin 

f a c t o r  f o r  t h e  pressure  t r a n s i e n t  d a t a  shown i n  F i g u r e  7 a r e  summarized 

i n  Table 7. For c o l d  water i n j e c t i o n  i n t o  a h o t  r e s e r i o i r  with a c o l d  

spot  sur round ing  t h e  w e l l ,  a f a i l u r e  t o  account f o r  non iso thermal  

behav io r  r e s u l t s  i n  a very  l a r g e  o v e r e s t i m a t l o n  o f  t h e  sk in  f a c t o r .  

The v a l u e s  o f  t h e  input s k i n  

ExamDle 3. Pressure F a l l o f f  A n a l y s i s  

I n  t h i s  example, a p ressure  f a l l o f f  a f t e r  IO5 s (approx imate ly  

one day) o f  i n j e c t i o n  i s  analyzed. The r e s e r v o i r  p r o p e r t i e s ,  w e l l  
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S a Input sm Calculated sm 

5.0 
2.0 
0.0 

-2 .o 

5.0 
2.1 

-0.2 
-2 .o 

1 8 . 3  
0 . 7  
3 . 6  
0 . 2  

Table 7 .  Calculated and apparent s k i n  factors for t h e  pressure  
bui ldup d a t a  shown i n  Figure  7 .  
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dimensicns a n d  t e s t  parameters used i n  t h i s  exanple a r e  lpven i n  Table 8. 

Horner p l o t  o f  t h e  pressure  f a l l o f f  i s  shown i n  F i g r e  24. 

t h i s  case t i m e  increases  t o  t h e  l e f t .  In t h i s  example, as i n  t h e  p r e v i o u s  

ones, w e l l b o r e  s t o r a g e  i s  neg lec ted .  However, t h e  e a r l y  t i m e  d a t a  a r e  n o t  

r e q u i r e d  f o r  t h e  a n a l y s i s ;  hence, t h e  procedure i s  e q u a l l y  a p p l i c a b l e  i f  

s i g n i f i c a n t  w e l l b o r e  e f f e c t s  a r e  p resent .  

A 

Note t h a t  i n  

A f t e r  105 s o f  i n j e c t i o n  a t  10 kg/s,  t h e  thermal  f r o n t  has penet ra ted  

2.2 m i n t o  t h e  f o r m a t i o n  (based on Equat ion  8 ) .  Therefore,  t h e  f a l l o f f  d a t a  

r e f l e r t  t h e  presence o f  t h i s  r e g i o n  u n t i l  approx imate ly  4s ( c a l c u l a t e d  from 

Equat ion 12). 

p r o p e r t i e s  o f  t h e  i n -s i t u  r e s e r v o i r  f l u i d .  

A f t e r  - 10 seconds, t h e  pressure  d a t a  correspond t o  t h e  

From t h e  s l o p e  o f  t h e  semi- log s t r a i g h t  l i r l e ,  mo, and Equat ion 

(53) ,  t h e  kh o f  t h e  r e s e r v o i r  i s  c a l c u l a t e d :  

(10.0) (1.1 

(1000) (2 .0  lo5) 
kh = 0.183 

= 1.0 x IO ’m2 (1 000 md-m) 

The shut-in pressure  at. Is i s  eva lua ted  b y  e x t r a p o l a t i n g  mo t o  1s. 

From F i g u r e  24 

6 = 1.05 x 10 Pa 
PIS 

The apparent s k i n  f a c t o r  i s  c a l c u l a t e d  from Equat ion  ( 5 7 ) :  

I x1 0-” 

( 0 .1) ( 1 .1 x 1 o - ~  1 ( 1 1 o - ~  ( 0 .  I 

6 
-log 2.26~10~ - 1.05~10 

2.ox10 5 s = 1.151 a 

= 4.3 

The f l u i d  sk in  f a c t o r  i s  c a l c u l a t e d  by Equat ion  (24): 

2.2 - 1 1 I n  - = 4.8 ~ . 8 ~ 1 0 - ~  (IOOO! 
S f =  ( 1.1x1~-4 (1000) 0.1 
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k 1.0 x 10 -I4 m2 (IO md) 

h 

Q 

'aca 

'i 

h 

r 
W 

t C 

Tr 

Ti 

100 m 

0.1 

2.57 x IO6 J/m3/"C 

1000 kg/m3 

1000 kg/m3 

2.0 J/m/"C/s 

0.1 m 

I .O x ~ ~ - 9  Pa-" 

250°C 

100°C 

(6.9 x psi - ' j  

10 kg/s  (5430 STB/D) 9 

S 0 

Table 8. Reservo i r  p r o p e r t i e s ,  w e l l  c h a r a c t e r i s t i c s  and t e s t  parameters 
for  Example 3. 



-86- 

2.0 

- 
9 1.6 
'0 - 
x 

0 
0 
u) 

v) 1.2 - 

&J .0 
U 

a a .4 

0 

I I I I 

i Fol loff after IO5 seconds of inject ion 

P d  = 2.26 x IO6 PO - 

- 

- Calculated - - 
mo = 2.0x 105 pa Ex t ro polo t ed 

IO0 IO' IO2 io3 io4 io5 

XBL 827 - 896 

Figure 24. Pressure f a l l o f f  af ter  lo5 s o f  100°C injection into a 25OoC 
reservoir: Example 3. 
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The a p p a r e n t  mechanical  s k i n  f a c t o r  is c a l c u l a t e d  from Equa t ion  ( 5 5 )  : 

s = 4.3 - 4.8 = -0.5 ma 

The sma l l  n e g a t i 1 e  s k i n  is t h e  r e s u l t  o f  approx ima t ion  t h a t  t h e  d i s t a n c e  

t o  t h e  c o l d  s p o t  i s  e q u a l  t o  t h e  d i s t a n c e  t o  t h e  the rma l  f r o n t .  Th i s  

is a l s o  a good example o f  t h e  d i f f i c u l t y  o f  e v a l u a t i n g  t h e  mechanical  

s k i n  f a c t o r  from t h e  a p p a r e n t  mechanical  s k i n .  The a p p r o p r i a t e  form o f  

t h e  e q u a t i o n  ( i . e . ,  36 or  38) i s  u n c e r t a i n .  Clearly,  u s i n g  (36)  w i l l  

resul t  i n  a b e t t e r  approx ima t ion  o f  t h e  true s k i n  f a c t o r  i n  t h i s  c a s e .  

T h e r e f o r e ,  

s = (  1.1xi  r4 (I 000)) (-0.5) = -0.2 
2 . ~ ~ 1 0 - ~  (1000) a 

T h i s  is i n  good agreement wi th  t h e  i n p u t  v a l u e  o f  s = 0. 

value is  c a l c u l a t e d  by i g n o r i n g  t h e  e f f e c t s  o f  t h e  non i so the rma l  p r e s s u r e  

t r a n s i e n t s ,  a v a l u e  o f  s = 4.4 i s  o b t a i n e d .  Large p o s i t i v e  s k i n  v a l u e s  

a r e  o f t e n  r e p o r t e d  f o r  geothermal  i n j e c t i o n  wells. One such  example is  

r e p o r t e d  by S a l t u k l a r o g l u  and Rodriguez ( 1 9 7 8 ) .  

I f  t h e  s k i n  

Table  9 summarizes t h e  a p p a r e n t  s k i n  f a c t o r s  f o r  f a l l o f f  t e s t s  a f t e r  

104, 105,  and 106 s o f  i n j e r t i o n  a t  an i n j e c t i o n  r a t e  o f  10 k g / s  

( f o r  t h e  r e s e n o i r  p r o p e r t i e s  used i n  t h e  p r e v i o u s  example) .  The 

c o r r e c t l y  c a l c u l a t e d  s k i n  b a l u e s  a r e  a l s o  i n c l u d e d  i n  Tab le  9 f o r  

comparison.  

Example 4. Step-Rate A n a l y s i s  and F ron t  T rack ing  

In . t h i s  example t h e  s i m u l a t e d  d a t a  s t e p  r a t e  t es t  d a t a  d i s c u s s e d  

b e f o r e  are ana lyzed .  Recall t h a t  t h i s  t e s t  c o n s i s t e d  o f  t h r e e  f l o w r a t e s ,  

e a c h  w i t h  a d u r a t i o n  o f  6 hour s .  The r e s e r v o i r  p r o p e r t i e s  and well 

c h a r a c t e r i s t i c s  used f o r  t h i s  s i m u l a t i o n  a r e  g i v e n  i n  Tab le  10. 



Cumulative rf I n p u t  Calculated 
Inject ion (m> sm Srn Sa 

(kg)  

1 x 10 0.7 0.0 2.5 

I lo4 2 . 2  0.0 -0.2 4.4 

I lo5  7.0 0.0 0.0 6 . 0  

Table 9. S k i n  values for pressure fa l lof f  analyses a f te r  I O 2 ,  IO3, 
and IO4 secords o f  injection a t  a ra te  of 10 kg/s. 



k 1 x 10- l4 m2 (IO md) 

h 100 m 

Q 0.2 

P C  a a  2.57 x I O 6  J/m3/"C 

x 2.0 J/m/"C/s 

r w  

=t 

Tr 

Ti 

9 

0.1 m 

I x Pa-'(6.9 x psi - ' )  

250°C 

20°C 

Step 1. 
Step 2 .  
Step 3.  

10 kg/s (5430 STB/D) 
20 kg/s (10,865 STB/D) 
15 kg/s (8,150 STB/D) 

S 0.0, 2.0, 5.0 

Table IO. Reservoi r  p roper t ies ,  w e l l  dimensions and t e s t  parameters 
for Example 4. 
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Dur ing  each s t e p  t h e  pressure  t r a n s i e n t s  a r e  somewhat d i f f e r e n t .  

Therefore,  t h e  a n a l y s i s  method must be chosen by e v a l u a t i n g  t h e  c o r r e c t  

s e t  o f  f l u i d  p r o p e r t i e s  t o  which t h e  d a t a  correspond. Table 11 summarizes 

t h e  key q u a n t i t i e s  f o r  each o f  t h e  steps. 

Step 1 should be analyzed w i t h  t h e  moving-front-dominated procedure.  

Step 2 may be d i f f i c u l t  t o  analyze because t h e  e a r l y  t i m e  d a t a  w i l l  

most l i k e l y  be masked b y  w e l l b o r e  s t o r a g e  and t h e  remain ing  d a t a  

d i s p l a y  b o t h  t h e  composi te r e s e r v o i r  behav io r  and t h e  moving f r o n t  

behav io r .  Steps 3 and 4 b o t h  e x h i b i t  o n l y  t h e  composi te r e s e r v o i r  

behak io r .  Methods f o r  a n a l y z i n g  these d a t a  a re  g i v e n  i n  d e t a i l  i n  

p r e v i o u s  s e c t i o n s .  As t h e y  are  v e r y  s i m i l a r  t o  t h e  procedures descr ibed 

i n  Examples 1 t h r o u g h  3 ,  t h e y  a r e  n o t  d iscussed i n  d e t a i l  here.  The 

v a l u e s  o f  apparent s k i n  f a c t o r s  f o r  Steps 2,  3, and 4 are  l i s t e d  i n  

Table 12. These d a t a  are used t o  demonstrate t h e  f r o n t  t r a c k i n g  

The t a b l e  i n d i c a t e s  t h a t  

procedure.  

In  F i g u r e  25 t h e  apparent s k i n  f a c t o r s  a r e  p l o t t e d  as a f u n c t i o n  

o f  t h e  volume o f  water i n j e c t e d  i n t o  t h e  fo rmat ion .  The r e s u l t s  o f  t h e  

a n a l y s i s  o f  two s i m i l a r  d a t a  s e t s  a re  a l s o  shown ( i . e . ,  f o r  w e l l s  with 

mechanical  s k i n  f a c t o r s  o f  2 and 5, r e s p e c t i v e l y ) .  Note t h a t  i n  each 

case t h e  d a t a  p o i n t s  f a l l  on a s t r a i g h t  l i n e  with t h e  same s lope.  

s lope o f  t h i s  l i n e ,  (7.2) agrees w e l l  w i th  t h e  v a l u e  c a l c u l a t e d  b y  

Equat ion ( 6 4 ) :  

The 

( 1 . 0 x 1 0 - ~  (810) 

n = 1.151 1 .1x10-~  (1000) 
1 = 7.3 

3 By e x t r a p o l a t i n g  t h i s  l i n e  back t o  t h e  v a l u e  where C = "hrw2 = 3.4 m , 
t h e  v a l u e  Sa (mhrwz) i s  obta ined:  

s (3.14m3) = 1.5 a 



- 9 1 -  

Step r,(m) t (SI t,(s) to'(s) A n a l y s i s  Method 
0 

1 0.0 185 - - Moving F r o n t  

2 1 .I 

3 1.9 

4 2 . 3  
( f a l l o f f  ) 

6 1.1 x 10 Both 

4 
18 4.4 x IO Composite 

26 - Composite 

Reservo i r  

Reservo i r  

Table 11. P e r t i n e n t  parameters f o r  t h e  s t e p - r a t e  t e s t  a n a l y s i s :  
Example 4. 



92-  

Step Cumulative 
Inject ion (m3) 

Sa s , = o  
rf  (m) 

(calculated)  

2 1 .I 32.4 14.0 0.9 0.0 

3 1.9 64.8 18.9 2.0  2.0 

4 2 . 3  
( f a l l o f f )  

97 .2  19.8 2 . 3  5.2 

Table 12. Summary of analyses for t h e  s tep-rate  t e s t :  Example 4.  
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Figure 25. Apparent sk in  fac tors  vs. cumulative i n j e c t i o n  fo r  Example 4. 
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Sma is c a l c u l a t e d  by Equa t ion  ( 6 6 ) :  

(4200!(1000) = o.o s = 1 .5  - 7 . 3  log  
ma ( 2 . 5 7 ~ 1 0 ~ )  

T h i s  i m p l i e s  t h a t  s, = 0, which a g r e e s  well w i t h  t h e  v a l u e  i n p u t  t o  

t h e  s i m u l a t o r .  

w i t h  t h e  result t h a t  s, e q u a l s  2.0 and 5.2, r e s p e c t i v e l y .  

t h e s e  v a l u e s  a g r e e  well w i t h  t h e  i n p u t  d a t a .  

S i m i l a r  a n a l y s e s  can  be  a p p l i e d  f o r  t h e  o t h e r  two c a s e s  

Both o f  

The f l u i d  s k i n  f a c t o r s  f o r  each  value o f  C are  c a l c u l a t e d  by 

Equat ion (67). S i n c e  Sma is z e r o  f o r  Case 1, t h e  f l u i d  s k i n  f a c t o r s  

a r e  i d e n t i c a l  t o  t h e  appa ren t  s k i n  f a c t o r s .  

t h e r m a l  f r o n t  a t  e a c h  v a l u e  o f  C are c a l c u l a t e d  by E q u a t i o n  ( 6 5 ) .  For 

example,  when C = 6 4 . 8  m 3  

The d i s t a n c e s  t o  t h e  

= 2.0 m r f  = 0.1 e ( 1 . I  51 ( 1 8.9) /7.3) 

The same p r o c e d u r e  is  used f o r  e a c h  o f  t h e  v a l u e s  of Sa.  

summarizes t h e  v a l u e s  o f  r f  f o r  each o f  t h e  s t e p s .  

between t h e  c a l c u l a t e d  and a c t u a l  v a l u e s  is v e r y  good. Note t h a t  t h e  

c a l c u l a t e d  v a l u e  o f  t h e  s l o p e  n is  used r a t h e r  t h a n  t h e  v a l u e  o b t a i n e d  

from t h e  g raph .  I f  t h e  v a l u e  o b t a i n e d  from t h e  g raph  is used ,  t h e  

d i s t a n c e  t o  t h e  f r o n t  is o n l y  changed s l i g h t l y ,  from 1.97 t o  2.05 m .  

Table  1 2  

The agreement 

Example 5 .  Layered Reservoir A n a l y s i s  

In o r d e r  t o  d e t e r m i n e  t h e  a p p l i c a b i l i t y  o f  t h e s e  methods o f  

a n a l y s i s  t o  a l a y e r e d  r e s e r v o i r ,  t h e  p r e s s u r e  f a l l o f f  f o l l o w i n g  i n j e c t i o n  

o f  50°C water  i n t o  a 250°C t h r e e - l a y e r  r e s e r v o i r  was s i m u l a t e d .  

r e s e r v o i r  and f l u i d  p r o p e r t i e s  used are  l i s t e d  i n  Table  13.  A s c h e m a t i c  

o f  t h e  r e s e r v o i r  is shown i n  F i g u r e  26.  

The 
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k l  

k2 

k3 

hl  

h2 

h3 

Q 

C r 

r fJ 

A 

Ct 

r 
W 

S 

Ti 

r T 

-14 2 5.0 x 10 /m 

-13 2 1.0 x 10 /m 

-14 2 
5.0 x 10 /m 

10 m 

10 m 

10 m 

0.2 

1000 J/kg/"C 

2200 kg/m3 

2.0 J/m/"C/s 

1.0  IO-^ 
0.1 rn 

0.0 

50°C 

250°C 

(50 md) 

(100 md) 

(50 md) 

(6.9 x ps i - "  

Table 13. Reservoir  p r o p e r t i e s  and w e l l  c h a r a c t e r i s t i c s  used for 
Example 5. 



r , r  I ,  ,, ,", , / , I ,  / ,  

k I = 5 x m2 ( 50 md 1 
9, = 012 

k2  = I x  m2 (100md) +* = 012 

T 
IOm 

k, = 5 x 10-'4m2 (50md) 
& = 012 

1 

1 

f 
'p 

- 1 

t Om 

I 

XBL936- 1873 

F i g u r e  26. Schematic o f  t h e  l a y e r e d  r e s e r v o i r  used i n  Example 5. 
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Pressure f a l l o f f s  a r e  s imu la ted  a f t e r  t h r e e  d i f f e r e n t  p e r i o d s  o f  

i n j e c t i o n  104, 2.5 x 104, and IO5 s ( a t  a r a t e  o f  30 kg /s ) .  

graphs o f  each f a l l o f f  a r e  shown i n  F i g u r e  27. Note t h a t  by nondimensional-  

i z i n g  t h e  d a t a  u s i n g  ( t  + A t ) / A t  t h e  d a t a  f a l l  on one curve. 

i s  t y p i c a l  o f  t h e  t w o - f l u i d ,  composi te r e s e r b o i r  behav io r .  

t h e  va lues  o f  p l S  are  shown on t h e  graph f o r  each o f  t h e  f a l l o f f  t e s t s .  

Horner 

Each d a t a  s e t  

Also n o t e  t h a t  

The s l o p e  o f  t h e  semi- log s t r a i g h t  l i n e ,  mo, i s  used t o  c a l c u l a t e  
- - 

t h e  "average" p e r m e a b i l i t y  ( k ) .  

(6.7 md), i s  i n  e x c e l l e n t  agreement w i t h  t h e  c o r r e c t  va lue  o f  

The apparent sk in  f a c t o r s  a r e  c a l c u l a t e d  u s i n g  Equat ion ( 5 7 ) ,  if k i s  

s u b s t i t u t e d  f o r  k. The c a l c u l a t e d  va lues  o f  t h e  apparent s k i n  f a c t o r s  

a f t e r  104, 2.5 x 104, and IO5 s o f  i n j e c t i o n  a r z  9.7, 11.2 and 

13.4, r e s p e c t i L e l y .  A p l o t  o f  t h e  apparent sk in  va lues  vs .  C i s  shown 

i n  F i g u r e  28. Once again,  t h e  d a t a  f a l l  on a s t r a i g h t  l i n e .  The s l o p e  

o f  t h e  l i n e  i s  3.7, which i s  c l o s e  t o  t h e  v a l u e  o f  3.6 computed u s i n g  

Equat ion  ( 6 4 ) .  

cumula t ike  i n j e c t i o n  equal  t o  nrw2h. 

-0.2 ( c a l c u l a t e d  by Equat ions 66 and 36) ,  which i s  c o n s i s t e n t  wi th  t h e  

zero  sk in  v a l u e  used i n  t h e  s i m u l a t i o n .  

The c a l c u l a t e d  va lue  o f  k ,  6.7 x 10-14 m* 

6.7 x I O - l 4 m 2 .  
- 

The l i n e  e x t r a p o l a t e s  t o  a v a l u e  o f  Sa = 0.2 a t  t h e  

Therefore, Sm i s  equal  t o  

In  F i g u r e  29, t h e  s imu la ted  r e s u l t s  o f  r a d i a l  d i s t a n c e  t o  t h e  

thermal  f r o n t  i s  shown f o r  each o f  t h e  t h r e e  l a y e r s .  Note t h a t  t h e  f r o n t  

has extended f a r t h e s t  f rom t h e  w e l l  i n  t h e  most permeable l a y e r s .  The 

r a d i a l  d i s t a n c e  t o  t h e  f r o n t  a f t e r  each p e r i o d  o f  i n j e c t i o n  can be c a l c u l a t e d  

from Equat ion ( 6 5 ) .  The r e s p e c t i v e  va lues  a r e  2.2 m, 3.5 m, and 7.1 m. 

Comparison between these va lues  and those shown i n  F i g u r e  29 i n d i c a t e s  t h a t  

t h e  p r e d i c t e d  va lues  a r e  midway between t h e  d i s t a n c e  t o  t h e  f r o n t  i n  t h e  more 
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Figure 27. Pressure falloff data after I O 4 ,  2.5 x IO4 and 1 x IO5 s 
of injection into a multilayered reservoir. 
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Figure 28. Apparent skin factors vs.  cumulative in ject ion f o r  Example 6 .  
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Figure 29. Distance t o  t h e  thermal front a f t e r  I O 4 ,  2 . 5  x lo4 and 
lo5  s o f  i n j e c t i o n  i n  a multilayered reservoir .  
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permeable l a y e r s  and l e s s  permeable l a y e r .  Th is  cannot be considered 

a r i g o r o u s  a n a l y s i s  o f  f r o n t  p e n e t r a t i o n  i n  l a y e r e d  format,ions. 

however, i n d i c a t e  that, t h e  smal l -sca le  h e t e r o g e n e i t y  p r e v a l e n t  i n  most 

fo rmat ions  w i l l  n o t  s i g n i f i c a n t l y  reduce t h e  e f f e c t i v e n e s s  o f  these 

methods o f  a n a l y s i s .  

I t  does, 

Example 6 .  East Mesa Wel l  5-1: Pressure B u i l d u p  A n a l y s i s  

The f o l l o w i n g  d a t a  were ob ta ined from an i n j e c t i o n  t e s t  i n  a 

geothermal r e i n j e c t i o n  w e l l  i n  t h e  East Mesa geothermal f i e l d  (McEdwards 

and Benson, 1978) .  Cold water (approx imate ly  50°C) was i n j e c t e d  i n t o  

w e l l  5-1 f o r  f o u r  days, d u r i n g  t h i s  t i m e  downhole pressures were 

measured wit.h s i l i c o n - o i l - f i l l e d  c a p i l l a r y  t u b i , l g .  The t e s t  c o n s i s t e d  

o f  s e v e r a l  s tep- ra tes .  

b u i l d u p  midway th rough t h e  t e s t .  Table 14 summarizes t h e  p e r t i n e n t  

The t e s t  segment d iscussed here  comes from a 

w e l l h e s t  data.  

Knowing t h e  cumula t ive  volume o f  water i n j e c t e d  p r i o r  t o  t h e  t e s t  

segment t o  be analyzed, t h e  t h i c k n e s s  o f  t h e  r e s e r v o i r ,  and t h e  thermal  

p r o p e r t i e s  o f  t h e  r e s e r v o i r  rock ,  t h e  p e n e t r a t i o n  o f  t h e  thermal  f r o n t  

int.0 t h e  f o r m a t i o n  can be es t imated  ( i n  s tandard o i l f i e l d  u n i t s )  from 

/- 
PacaTh 

r f  = 2.37 

Thus, r f  = 12.5 ft f o r  a cumula t lon  i n j e c t i o n  o f  2.3 x IO4 STB. 

Wel lbore s t o r a g e  e f f e c t s  a r e  s m a l l  because t h e  w e l l  was comple te ly  

f i l l e d  w i th  l i q u i d  water. However, t h e  method used t o  measure t h e  

( 6 8 )  

downhole p ressure  has a response t i m e  o f  approx imate ly  20 minutes  fo r  

t r a n s m i t t i n g  l a r g e  pressure  changes ( M i l l e r  and Haney, 1978).  Therefore,  
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W e l l  r a d i u s  ( r w )  0.32 ft 

Wel l  depth 

Open i n t e r v a l  

I n j e c t i o n  i n t e r v a l  ( h )  

R e s e r v o i r  temperature 

I n j e c t i o n  temperature 
( sand f ace 1 

Rock t y p e  

P o r o s i t y  ($1  

6000 ft 

4000-6000 ft 

4000-4400 f t  

150°C 

50°C 

Sandstone 

0.2 

T o t a l  c o m p r e s s i b i l i t y  (c,) 7.0 x psi- ’  

BW 

Flow r a t e  (Q> - 

S t a t i c  p ressure  

1.08 RB/STB 

1.27 x lo4  STB/D s u r f a c e  r a t e  

(Pi) , 135 p s i *  

Cumulat ive i n j e c t i o n  2.3 lo4 BBL 

*This i s  o n l y  a r e l a t i v e  v a l u e  because downhole pressures were measured 
with an o i l - f i l l e d  c a p i l l a r y  tube. 

Table 14. I n j e c t i o n  t e s t  d a t a  summary: Example 6. 
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on ly  d a t a  from 20 minu tes  onward a r e  a v a i l a b l e  f a r  a n a l y s i s .  The d r a i n -  

age r a d i u s  w i l l  exceed t h e  s i z e  o f  t h e  c o l d  s p o t  i n  ( i n  f i e l d  u n i t s )  

+ V t  2 
r f  t f  = 1189 - k (69)  

For a 12.5 f t  c o l d  s p o t  ( k  is e s t i m a t e d  a t  10 md), t h i s  o c c u r s  a t  app rox i -  

ma te ly  50 s. 

( i n  f i e l d  u n i t s !  

The second change i n  s l o p e ,  from ho t  t o  c o l d ,  o c c u r s  a t  

I P c  a a  "h 2 
to = 4.28 - - 

P c  Q ' f  w w  
(70)  

or  approx ima te ly  43 h o u r s  a f t e r  t h e  s t a r t  o f  t h i s  tes t  segment.  

T h e r e f o r e ,  a l l  o f  t h e  p r e s s u r e  d a t a  between 50 s and 4 3  h o u r s  c o r -  

respond t o  t h e  f l u i d  p r o p e r t i e s  o f  t h e  i n  s i t u  r e s e r v o i r  f l u i d s .  

F i g u r e  30 shows t h e  p l o t  o f  t h e  downhole p r e s s u r e  vs .  l o g  ( t i m e ) .  

The semi- log s t r a i g h t  l i n e  b e g i n s  a t  app rox ima te ly  20 m i n u t e s .  The 

p e r m e a b i l i t y - t h i c k n e s s  can  be  c a l c u l a t e d  from ( i n  f i e l d  u n i t s )  

@ w " O  kh = 162.6 - m 
0 

T h e r e f o r e ,  t h e  p e r m e a b i l i t y  i s  approximakely 20 md. The i n j e c t i o n  

p r e s s u r e  a t  1 hour is 

' l h r  
= 560 p s 1  

The appa ren t  s k i n  f a c t o r  is  e v a l u a t e d  a s  ( i n  f i e l d  u n i t s !  

20 s = 1.151 a (0.2) (0.181 (7x1 0-6 1 ( 0  32) 

For t h i s  example 

s = 3.7 a 

( 7 1  1 
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Figure 30. Pressure buildup data from East Mesa well 5-1. 
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The 12.5 f t  c o l d  s p o t  creates  a f l u i d  s k i n  f a c t o r  o f  ( c a l c u l a t e d  w i t h  

Equat ion ( 24) : 

12.5 -1) I n  - = 6.7 " f=h (161.8) 0.32 
.55 (57.4) 

The a p p a r e n t  mechanical  s k i n  f a c t o r  i s  c a l c u l a t e d  from Equa t ion  ( 5 5 ) :  

S = 3.7 - 6.7 = -3.0 ma 

and t h e  mechanical  s k i n  f a c t o r  is c a l c u l a t e d  from Equa t ion  ( 3 8 ) :  

s = -3.0 m 

In a p r e v i o u s  a n a l y s i s ,  i n  which t h e  non i so the rma l  b e h a v i o r  was 

i g n o r e d ,  a s k i n  v a l u e  a f  + 3 . 7  was c a l c u l a t e d  (McEdwards and Benson, 

1978) .  

s u g g e s t e d  t h a t  t h e  well had been h y d r a u l i c a l l ;  f r a c t u r e d  i n a d v e r t e n t l y  

a t  an e a r l i e r  d a t a .  The n e g a t i v e  s k i n  v a l u e  c a l c u l a t e d  h e r e  s u g g e s t s  

t h a t  a f r a c t u r e  i n t e r s e c t s  t h e  well. T h i s  is c o n s i s t e n t  w i th  t h e  

h i s t o r y  o f  t h e  well. 

The p o s i t i v e  s k i n  La lue  was c o n t r a r y  t o  t h e  ev idence  which 
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CONCLUSIONS 

The o b j e c t i b e  o f  t h i s  s tudy was t o  develop procedures f o r  a n a l y z i n g  

nonisothermal  i n j e c t i o n  t e s t  d a t a  d u r i n g  t h e  e a r l y  phases o f  i n j e c t i o n .  

In  p a r t i c u l a r ,  methods f o r  d e t e r m i n i n g  t h e  p e r m e a b i l i t y - t h i c k n e s s  o f  

t h e  fo rmat ion ,  sk in  f a c t o r  o f  t h e  w e l l  and t r a c k i n g  t h e  movement, o f  t h e  

thermal  f r o n t  haLe been developed. The techn iques  developed f o r  

i n t e r p r e t i n g  i n j e c t i o n  pressure  t r a n s i e n t s  a r e  c l o s e l y  a k i n  t o  c o n v e n t i o n a l  

groundwater and pet ro leum techn iques  f o r  e v a l u a t i n g  these parameters. 

The approach taken t o  t h e  problem was t o  n u m e r i c a l l y  s i m u l a t e  

i n j e c t i o n  w i th  a L a r i e t y  o f  temperatures,  r e s e r v o i r  parameters and 

f l o w r a t e s ,  i n  o r d e r  t o  determine t h e  c h a r a c t e r i s t i c  responses due t o  

non iso thermal  i n j e c t i o n .  Two c h a r a c t e r i s t i c  responses were i d e n t i f i e d :  

moving f r o n t  dominated behavior and composi te r e s e r v o i r  b e h a k i o r .  

A n a l y s i s  procedures f o r  r a l r u l a t i n g  t h e  p e r m e a b i l i t y - t h i c k n e s s  o f  t h e  

f o r m a t i o n  and t h e  s k i n  f a c t o r  o f  t h e  w e l l  have been developed f o r  each 

o f  these cases. 

In  o r d e r  t o  i n t e r p r e t  t h e  composi te r e s e r v o i r  behav io r ,  a new 

concept has been developed; t h a t  o f  a " f l u i d  skin f a c t o r " ,  which 

accounts f o r  t h e  s teady-s ta te  p ressure  b u i l d u p  due t o  t h e  r e g i o n  i n s i d e  

t h e  thermal  f r o n t .  Based on t h i s  same concept,  a procedure f o r  t r a c k i n g  

t h e  movement o f  t h e  thermal  f r o n t  has been e s t a b l i s h e d .  The techn ique 

has t h e  advantage over p r e v i o u s  procedures i n  t h a t  i t  does n o t  r e q u i r e  

t h e  presence o f  p ressure  t r a n s i e n t s  corresponding t o  t h e  i n n e r  r e g i o n  

t o  be apparent i n  t h e  data.  This a l l o w s  f r o n t  t r a c k i n g  t o  b e g i n  d u r i n g  

t h e  e a r l y  phases o f  i n j e c t i o n .  Therefore,  premature thermal  break-  
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th rough can be i d e n t i f i e d  e a r l y ,  and remedia l  measured be taken t o  

p r e i e n t  i t s  occurrence. 

The r e s u l t s  ob ta ined d u r i n g  t h i s  s tudy a l s o  i d e n t i f y  t h e  dangers 

o f  n o t  account,ing t h e  nonisotherrnal  e f f e c t s  when a n a l y z i n g  i n j e c t i o n  

t e s t  da ta .  

can be g r o s s l y  m i s c a l c u l a t e d  i f  t h e  e f f e c t s  o f  t h e  c o l d - r e g i o n  around 

t h e  w e l l  a r e  n o t  taken i n t o  c o n s i d e r a t i o n .  

B o t h  t h e  p e r m e a b i l i t y - t h i c k n e s s  and skin f a c t o r  o f  t h e  w e l l  
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