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Abstract 

The application of non-linear Fokker-Planck models to the 

study of beam-driven plasmas is briefly reviewed. This 

evolution of models has led to a Fokker-Planck/Transport (FPT) 

model for neutral-beam-driven Tokamaks, which is described in 

detail. The FPT code has been applied to the PLT, PDX, and 

TFTR Tokamaks, and some representative results are presented. 

1. INTRODUCTION 

The need for a Fokker-Planck [1] description of a 

beam-driven plasma was recognized in the 1950's. An early 

proposal [2] for a two-energy component DT reactor discussed 

the non-Maxwellian character of such a plasma, and in 

particular described the "depletion" of low energy electrons 

caused by the presence of the hot ion component. This 

conjecture [3,4] was studied using a two species Fokker-Planck 

code [5] , developed to calculate energy transfer from hot ions 

to cold electrons in a plasma [6]. 

Energy transfer between ions and electrons is usually 

calculated by using the Spitzer [7] formulae. These transfer 

rates are based on a qtaasi-equilibrium theory assuming that 

*Work performed under the auspices of the U.S. Department of 
Energy by the Lawrence Livermore Laboratory under contract 
numbei.' W-7405-ENG-48. 
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the electrons have Maxwellian velocity distributions, tt was 
conjectured [3,4] that the transfer rate would be less than 
the stated value in those cases where the ions are 
considerably hotter than the electrons. The ions exchange 
energy primarily with electrons whose velocities are lower 
than the mean ion velocity. Estimates were made [3,4] that 
the slow electrons would be scattered by ions to higher 
velocities faster than they would diffuse downward in velocity 
to fill this hole in the distribution. This depletion of the 
snail velocity enc! of the electron distribution was observed 
in the Fokker-Planck calculations [6]. The consequence in 
these cases is that the transfer rates are less than the 
Spitzer values. 

Fokker-Planck models are also needed for the study of 
beam-driven mirror confined plasmas [8], because of the 
presence of the loss cone in velocity space and the ambipolar 
potential. Killeen and Futch [9,10] and Fowler and Rankin 
[11,12] solved the Fokker-Planck equations for both ions an J 

electrons, assuming that the evolution of the distribution 
functions could be described by the equations for isotropic 
distributions, with certain factors included to take the 
prese:;C3 of the loss cone and ambipolar potential into 
account. The Fowler and Rankin code was for a steady-state 
model, whereas the Killeen and Futch code was time dependent 
and included the effects of charge exchange and time dependent 
build-up of a plasma formed by neutral injection. 

A multispecies model [13,14] was developed in order to 
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study beam-driven DT and D3He mirror reactors, including the 

effects of reaction products. The principal assumptions of 

th i s model are that the "Rosenbluth potentials" [1] are 

isotropic and that the dis tr ibut ion functions can be 

represented by their lowest angular eigenfunction. An 

extensive parameter study [14] was conducted, yielding values 

of the confinement parameter m and the figure of merit Q (the 

ra t io of thermonuclear power to injected power) as a function 

of mirror rat io and injection energy. 

The f i r s t injection of neutral beams into Tokamak plasmas 

took place a t the Culham, Princeton, and Oak Ridge 

laboratories in 1972-73. The injected ions were studied with 

linearized Fokker-Planck models [15,16,17] and the expected 

plasma heating was observed experimentally. 

With the advent of much more powerful neutral beams, i t 

i s now possible to consider neutral-beam-driven Tokamak fusion 

reactors . For such devices, three operating regimes [18] can 

be considered: (1) the beam-driven thermonuclear reactor, 

(2) the two-energy component torus (TCT), and (3) the 

energetic-ion-reactor e .g . , the counterstreaming ion torus 

(CIT). In order to study reactors in regimes (2) or (3), a 

non-linear Fokker-Planck model must be used because most of 

the fusion energy is produced by beam-beam or beam-plasma 

reactions. Furthermore, when co and counter injection are 

used, or major radius compression is employed, a two 

velocity-space dimensional Fokker-Planck operator is required. 

Fortunately, a non-linear, two-dimensional, multi-species 
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Fokker-Planck model [13,19] had been developed for the mirror 
program in 1973. This model was applied successfully to 
several scenarios of TCT operation [20,21,22]. 

An important element of these simulations is the 
calculation of the energy multiplication factor, 0, [19] for 
the various operating scenarios. This involves an accurate 
calculation of <ov> for each pair of reacting species. The 
methods developed for computing these multi-dimensional 
integrals are reported elsewhere [23,24], and are briefly 
reviewed in Section 2. 

The successful application of the two-dimensional 
Fokker-Planck model to the energy multiplication studies of 
TCT led to the formulation of a more complete model of 
beam-driven Tokamak behavior [25]. The Fokker-Planck 
/Transport (FPT) code in its present form is described in 
Section 2, The FPT code has been evolving since 1975 [22], 
and it has been applied to a CIT reactor study [26] and to 
the large Princeton Tokamaks [27-30], Some representative 
results are presented in Section 3. 
2. FOKKER-PLANCK/TRANSPORT MODEL 

Neutral-beam-heated tokamaks are characterized by the 
presence of one or more energetic ion species which are quite 
non-Maxwellian, along with a warm Haxwellian hulk plasma. 
This background plasma may be described by a set of fluid 
equations. However, for scenarios in which there is a large 
energetic ion population, it is very important to represent 
the energetic species by means of velocity space distribution 
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functions and to follow their evolution in time by integrating 

the Fokker-Planck equations. I t is essential to ut i l ize the 

full nonlinear Fokker-Planck operator to assure that the 

slowing down and scattering of these energetic species are 

computed accurately and rea l i s t i ca l ly . 

The model presented here, in addition to solving 

one-dimensional radial transport equations for the bulk plasma 

densities and temperatures, solves nonlinear Fokker-Planck 

equations in two-dimensional velocity space for the energetic 

ion distribution functions. Moreover, neutral beam deposition 

iiii.i neutral transport are modeled using appended Monte Carlo 

codes developed elsewhere [31,32], 

2.1 Energetic Ions 

We consider an arbitary number of energetic ion species, 

whose presence derives from the ionization and charge exchange 

of injected fast neutrals . These species are described by 

distr ibution functions f | , (v,6,r , t) in three-dimensional phase 

space, where b denotes the particle species, v is the velocity 

magnitude, 6 i s the pitch angle with respect to the magnetic 

f ield, and r is the distance from the magnetic axis= We 

assume that the flux surfaces are concentric circular t o r i i , 

2.1.1 Fokker-Planck Equations 

The kinetic equation for the distribution function of 

energetic species b is 
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W ' \WJC

 Hb he + Sbcx + [WL 
3 V ,a .orb (2.1) 

• ^ - l - T 
/1M 

The collision term sr2- is given by the complete nonlinear 

Fokker-Planck operator as derived by Rosenbluth, et a l . [1], 

I t may be expressed in the form 

r a fb - L a A f + B ! ^ + c !!b 
^rjc y2 37 \Vb Bb 3v Lb 39 y 

(2.2) 

where the coefficients A. through P. are sums of moments of 
the distribution functions of all charged species present 
[13,19]. The quantity H|, is the source resulting from the 
injection of neutral species b. s. represents the 
deceleration of energetic ions into the bulk plasma, s. 
represents charge exchange between ion species b and the 
various neutral species. The quantity U H models the 

'E / 3 fb^ effect of the toroidal electric field. The te^m Ujr-
represents radial diffusion of the energetic ions. L£ is a 
fusion depletion term, and L represents orbit losses. 
These terms are thoroughly described in the following two 
sections. 

The numerical solution of this type of equation has been 
extensively studied [13,19]. In the PPT code, a new, fast, 
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vectorized program package [33] is uti l ized. We employ either 

implicit operator spl i t t ing or the Peaceman Rachford 

Alternating Direction Implicit (ADI) method [34]. 

I t is not actually necessary to solve for distribution 

functions f|j on every flux surface where the bulk plasma ions 

are defined. Treating the enr-rgetic ions in detail on every 

fifth flux surface combined with cubic splines of 

velocity-space-integrated quantities yields accurate answers 

in a good deal less computer time. 

2.1.2 Neutral Beam Deposition 

The energetic ion source term H. i s calculated using the 

FREYA neutral beam deposition code [31]. This is a Monte 

Carlo code wh.c-h takes into account the geometry of the 

tokamak and the precise locations and optical properties of 

the neutral beam injectors. A pseudo-collision technique is 

employed, i . e . , part icle penetration is based on the minis! urn 

mean free path throughout the plasma, and resulting collisions 

are analyzed, a posteriori, to see if they were genuine or 

false. This pseudo-collision technique enables one to compute 

potential collision points without calculating the 

intersection of the neutral path with each flux surface. 

For use in the Fokker-Planck/Transport Code, several 

improvements have been made to FREYA: 

a) A multispecies background is allowed. That i s , the 

neutral mean free path is based on charge exchange and impact 

ionization with an arbitrary number of ion species (in 

/ 



- 8 -

addition to electron impact ionization). The ionization and 

charge exchange cross-sections are taken from Ref, [35]. 

b) The reaction rate <av> for charge exchange and ion 

impact ionization is computed by averaging the product of the 

cross-section o and the relative velocity over the ion 

distribution function. A 2D table look-up procedure is used. 

c) All collisions with multiply charged ions are treated 

as ionizations, and only one charge state of any given 

impurity is considered. The total reaction rate between a 

neutral and an impurity ion of charge Z is taken as the 
1 35 equivalent proton rate times Z [36]. 

d) When a neutral beam atom undergoes a charge-exchange, 

i t s location and energy are stored for later use in the 

neutral transport module, enabling the modeling of multiple 

charge exchanges and/or re-ionization. 

e) The in i t i a l orbit of each deposited ion is analyzed. 

If that orbit str ikes the l imiter , the ion is discarded. This 

calculation assumes conservation of the toroidal component of 

the canonical angular momentum [37]. 

I t is not necessary to cal l FREYA each timestep, as the 

neutral beam deposition term is usually slowly changing. 

2.1.3 Other Source and Loss Terms 

Energetic Ion Transfer. iiach energetic ion species Mb" 

has a corresponding background plasma component. As an 

energetic ion decelerates, i t i t is not los t , i t will 

eventually join the bulk plasma, Z..±s process is simulated by 

transferring al l "hot" ions below a specified energy from the 



-9-

energetic ion distribution function to the corresponding bulk 
plasma component. This loss term, denoted S^ , satisfies 

?{yv,Mv 2dv/ f B 3 . ( r ) 
; / J s b c ( v ,6 , r ) dv J e < 2 ' 3 ) 

where T g is the electron temperature. 

Charge-Exchange. The charge-exchange term is of the form 

cb 
S b c x = " f b l "c < a v > c x ' (2 .4) 

c 

where c runs over a l l neutral species (including neutral beam 

atoms) and n is the corresponding neutral density. The 

charge exchange rate is taken from Ref. [36], As can be seen, 

the charge exchange probability i s assumed to be independent 

of ion energy. 

Toroidal Electric Field. The acceleration by the 

electr ic field in the toroidal direction is given by 

E" "a* m \ r 3v v 3e/ 
(2 .5) 

Radial Diffusion. In a neutral-beam-heated plasma, the 

fast ions will have a velocity only two to three times greater 

than that of the bulk ions. Thus, i t is reasonable to expect 

that the fast ions are subject to a certain amount of radial 

diffusion. We approximate this by the term 

'3fu 
,3t 
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3M - V " L M f 2 6 ) 
where n. i s the hot ion density and D. is a diffusion 

coefficient. This operator diffuses denr.ity kit preserves 

velocity-space shape. 

Fusion Depletion. For D-T plasmas a fusion.loss term is 

included; 

L I = V° V > DT f D 

L ? = V 0 V > D T f T 

(2.7) 

Here, fin and fir represent the total (bulk + hot) deuteron and 

t r i ton densit ies, and the fusion ra te , which is based on a 

cross-section given in detai l in Ref. [14], i s taken to be 

independent of energy. 

Orbit Losses. Orbits through the various mesbpoints 

(v,8,r) are analyzed. This is complicated by the fact that 

whether or not an orbit intersects the limiter depends on the 

poloidal angle. We assume that the energetic ions are 

distributed uniformly with respect to poloidal angle, and we 

throw out an appropriate number, based on the fraction of 

orbits which do intersect the l imiter . 

2.2 Bulk Plasma Ions and Electrons 

We consider an arbitrary number of bulk plasma ion 

species which are assumed to be Maxwellian in velocity space. 

These species are described by densities n ( r , t ) and by a 

common temperature profile T̂  ( r , t ) . The electrons have a 
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separately computed temperature profile T e ( r , t ) , and their 

density is determined by quasineutrality; that is , 

v * Va + l

 t. h\ • ( 2- 8 ) 

bull: energetic 
plasma ions > 

2.2.1 Transport Equations 

The ion densities and the ion and electro/i temperatures 

ar t described by the following set of equations: 

W - - f !FK) + ,fsbc^ab 
+ S . + S - La 

ai acx a 

l t ( l * n a T i ) = " F f r f a O s ? b J ^ E b c * « a 

a '«1 a c* 2 '1 J ua ( 2 t l 0 ) 

+

 a

E S a i E a + "a-fT.JU8 

+ a?b âb + \ + I Q t a 

MI"eTe " " FlrK W b " V«, ea 

n.T. 
2 — + j ^ 

(2.9) 

3 V e , . r (2.11) 
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The quantities r a , Q a and Q e are particle and energy fluxes; 
Ejj. is the mean energy of decelerated energetic ions; S^ is 
the ionization source and E a is the energy of neutral species 
"a"; S a c x and W c x describe charge exchange; L a represents 
fusion depletion; Qajj models heating by the energetic species; 
Q^ is energy exch.v TH between bulk ions an*-] electrons; 0 a a is 
alpha particle heatn.^,; T *S the radiation loss time; and 

r 
j^E^ represents Ohrnic heating. 
2,2.2 Transport Models 

The particle and energy fluxes are written as linea: 
combinations of the density and temperature gradients and of 
the toroidal electric field. This wakes possible the 
representation of a full multispecies neoclassical transport 
model, as described in Ref. [25], However, oresent~day 
tokamaks do not seem to obey neoclassical scaling laws [38]; 
hence, the following transport model is employed. 

We write the particle flux r as 
« 

V D a a T - R a E « • { 2 A 2 ) 

where 

D a = D 0a + Dla ^ + D

2 A + V e ( 2 ' 1 3 ) 

and 

Ra= 2.48c(f ) 1 / Z ^ . (2.14) 
6 

The first term represents anomalous transport and the second 
term the effects of the Ware pinch. 
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Th e energy fluxes ar? written in terms of their 

convective and conductive 'jomponents: 

n . I r T + K n ^J - < 2 ' l 5 > 
Qa " 7 r a T i K ia na 3r 

8T 

V 2'e 'e T V 'e 3T ' 
where 

Q = | r T +K „ - 1 . < 2 - 1 6 > 

r e= " h [ K W ' ° - 8 R a E « ) • ( 2* 1 7 ) 

For the ion thermal conductivity we employ the neoclassical 

formula of Connor [39]: 

K< 

< x a V " < x « v / 1 
/ < Y J 

(2.18) 

where the quantity in brackets is defined in Ref. [39], For 

the electron thermal conductivity we use an empirical formula 

K e= Keo / ne + K ei / n e T e ' < 2- 1 9> 

The current density j A is specified (usually parabolic to 

the three halves power), and the toroidal e lectr ic field EA is 

related to the current density through 

V v* • < 2 - 2 0 > 
where n is the Spitzer resistivity [7]. 
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2,2.3 Charge Exchange 

The charge-exchange source for species "a" is expressed 

as 

S - na E n W j - n I n <cv>" . (2.21) 
acx a d d ex a c c c x 

Here, the f i rs t sum runs over al l charged species (including 

energetic ones) and the second sum runs over al l neutral 

species (including neutral beam atoms). The term nc 

represents the density of neutral species *cu, and <ov>,. is 
CA 

the charge-exchange rate between neutral species "c" and ion 

species "a". 

The enargy gained by the bulk ions due to cha ge exchange 
i s 

"ex = & Vd < : J V > cx K 

c? a w c v > " ' ! T i • 
(2.22) 

where "a" runs over all singly charged bulk plasma ;ons, "c" 
runs over all neutral species (including beam neutrals), and 
"d" runs over all ions (including energetic ions). Recall 
that any charge exchange between a neutral and a multiply 
charged ion is treated as an ionization. 
2.2.4 Ionization 

The ionization source for species "a" is 

j a i = "a V o v > i e + iSns n b < o v > i b • < 2 - 2 3 ' 
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wherc electron and ion impact ionization are taken into 
account* As. just noted, charge-exchanges with multiply 
charged ions are included in the seconl term. The ionization 
rate formulas are based on Ref. [35]. 

The ionization energy source is merely equal to I S . E a, 
where E a is the energy of neutral species "a". There is a 
drawback in the model, in that energetic neutrals upon 
ionization become part of the bulk plasma. Energy is 
conserved, but momentum is not. The fact that this energetic 
tail is assumed to Maxwellianize instantly no doubt distorts 
the energy transfer with electrons. 
2.2.5 Radiation 

We consider only impurity radiation. The radiation loss 
time is written as 

where the sum is over all impurity species. The cooling rate 
L is expressed implicitly as 

1 o 9 l O L Z = Jo Ai t l o g10 T e J ' (2.25) 

where the coefficients Â  are enumerated in Ref. [40], An 

arbitrary number of impurity species may be cons i s t ed . 

2.2.6 Energy Transfer 

The energy transfer rate between bulk ions and electrons 

is 

InlT . T.VT . (2.26) V I fna<W/Tea • 
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where T is the Spitzer energy-exchange time [7] . The above 

sum runs over al l bulk plasma ions. 

The heating of plasma ions and electrons by energetic 

ions is obtained from integrating the appropriate part of the 

Fokker-Plancfc collision operator. This results in the formula 

<u - ( ^ * { j r fbW*«* - £ J j f v x ) x 2 < ) x ] • 
(2.27) 

where "a" represents the plasma species., "b" i- the energetic 
species, and f L are the respective distribution functions. 

Alpha particle heating is computed in a similar manner. 
2.2.7 Miscellaneous Terms 

Fusion Depletion. For D-T plasmas a fusion loss term is 
included: 

LD = nD "T < O V > D T 
(2.28) 

LT = nT "D < < J V > D T • 

Here the symbols n^ and n-. stand for the densities of the bulk 
deuterons and tritons, whereas the "hatted" symbols jL and n T 

include both bulk plasma and energetic ion contribution?. The 
fusion rate is taken to be independent of energy. 

Energetic Ion Transfer. The 6 . appearing in Bq. (2.9) 
is a symbolic way of stating that plasma species "a" and 
energetic species "b" must really be the same species (e.g. 
both deuterons) for the transfer term to take effect. The 
quantity E ^ in Eq. (2.10) is the energy at which particles 
are transferred; in most cases, E. =3/2T . 
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2.2.8 Discretization of the Transport Equations 

Eq's. (2.S)-(2.11) nay be cast in the form 

~ - X (u) , (2.29) 

where the vector u, consists of the bulk ion densities and the 

ion and electron energy-densities. An implicit, i tera t ive 

difference scheme is employed; that i s , we approximate Eq. 

(2.29) by 

u n + 1 - u" 

At >£r i(unV(l-p)£(un) , (2.30) 

where ,'jt is the time increment, u, = jj,(t=nAt). 0<p<1, and the 
n+l 

spat ial ly discretized quantity ^ . (u ) , which approximates 

2 ( ^ n ) , is linearized with coefficients depending on the 

la tes t i t e ra te . In part icular , products of derivatives are 

written as 

.31 la 
9r 3r 

n+l 
\ 3 r / \ 3 r / Var , \ 3r7 J ' (2.31) 

where * refers to the la tes t i t rrate and Adanotes a central 

difference approximation. Product? of a function and a 

derivative are written as 

Hf-f F • (2.32) 

and products of functions are written as 

(fg) n f l - \ T g + f g (2.33) 
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Second derivatives are approximated as 

with 

*ut (2.34) 

(2.35: 

where the subscript j indexes the radial variable. 
5 

An exception: The ion heat convection terra 7 T, T. uses 

the la tes t i terate for T and treats T̂  implicitly, even 

though T contains derivatives. That is (dropping subscripts) 
a 

for r < 0| 

3 3r (n) 
rj+V2 T j ' rj-1/2 TJ-1 (2.36) 

This linearization is appropriate for present-day transport 

models, in which ion heat convection dominates ion heat 

conduction—a fact which necessitates both implicit treatment 

of TJ and upwind differencing (as opposed to central 

differencing) of the heat convection term [41]. 

The boundary conditions are rather straight-forward. At 

the limitor, we impose small values of n a , T and T.. At r=0 

we employ conservation boundary conditions. That i s , Eq's. 

(2.9-2.11) are used but with flux derivatives - I | - ( r F ) 
r 3P 

replaced by -2F/ evaluated one-half meshpoint in from the 
center. With the proper numerical integration scheme, the 
total number of ions and the total ion and electron energies 
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are properly conserved (modulo known source and loss terms). 
The resulting system of difference equations is block 
tridiagonal, and it is solved using standard methodology [34]. 
2,3 Neutrals 

We consider an arbitrary number of monatomic neutral 
species, described by densities na(r,t) and mean energies 
E (r,t). These neutrals result from (1) charge-exchange of 
3 

injected beam neutrals, (2) gas puffing, and (3) recycling 
from the limiter and wall. Neutral transport is computed 
using the AURORA code of Hughes and Post [32], Although 
AURORA is a three-dimensional Monte Carlo code, it does not 
take into account toroidal effects, but instead assumes a 
long, straight cylinder. This of course results in so.ne 
inaccuracies in the treatment of energetic neutrals. AURORA 
does not use a pseudo-collision technique. The local mean 
free path and distance travelled per zone must be computed for 
each particle. It is the ttoe-consuming nature of this latter 
computation which necessitates the assumption of a cylindrical 
geometry rather than a toroidal one. 

As is the case with FREYA, several improvements have been 
made in AURORA. It is now a multispecies neutrals transport 
code. An arbitrary number of charge exchanges involving an 
arbitrary number of species may be considered. The reaction 
rates <av> are computed as in FREYA, and all collisions with 
multiply charged ions are treated as ionizations. In 
addition, neutrals can be launched from any radius, thereby 
enabling consideration of neutrals arising from charge 
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exchange of injected beam neutrals. The neutral dens;ity 
profiles computed by AURORA are scaled to yield the correct 
integrated ionization rate. Alto, neutral transport need not 
be computed every timestep, as that procedure would be too 
time-consuming. 
2.4 Fusion 

There are three contributions to the fusion reaction 
rate: (i) thermonuclear reactions, denoted R,, ; (ii) 
"beam-target" reactions, denoted R,g; and (iii) reactions 
among the energetic ions, denoted Rj,-,. At each plasma radius, 
the fusion reactivities <ov>,,, <av>^ and <av>„- are 
evaluated numerically via a five-folc velocity-space integral 
123,24]: 

R ij=JM^f.(v j)a(v rv j)|y_ i-v j|^dv. . ( 2 > 3 7 ) 

The RJJ are then integrated over the plasma volume, to give 

the total reaction rate . 

2.4.1 Deuteron Plasmas 

In Deuteron plasmas two types of fusion reactions occur: 

D + D = T + p + 4.04 MeV 
3 (2.38) 

1) + D = He + n + 3.27 MeV. 

Each reaction probability is computed separately based on 

cross-sectiops found in fief. [14]. We are thus able to 

monitor both the neutron production rate and the total fusion 

power. Because these reactions occur at such a slow rate , i t 

i s not necessary to include fusion depletion terms nor is i t 

necessary to consider the effects of reaction products. 
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2.4.2 Deutenon-Triton Plasmas / 

Here ijc is necessary to consider only the reaction 

a + n + 17.58 MeV , / (2.39) 

as the/number of D-D reactions will be orders of magnitude 

smaller, The fusion cross/section may be found in Ref. [14J. 

Unlike the D-D case, the effects of the resulting fusion 

products (namely alpha particles) must be considered. 

The alpha part icle velocity distribution is taken to be 

the angle-averaged/distribution given in Ref. [18], Alpha 

beating is computed through integration of the Fokker-PIanck 

collision operator. For computational convenience, a l l heat 

destined to. be transferred from the alphas to the energetic 

ions is added to the bulk plasma ions instead. The alpha 

part icle density is reduced in order to take into account the 

fact that some of the alpha part icles will be lost on their 

f i r s t bounce. For this purpose we employ the subroutine of 

Shumaker [37]. Depletion of-deuterons and tr i tons as a result 

of fusion is also modeled. This treatment of f„(v) i s 

reasonable only when plasma temperatures are changing slowly. 

3. APPLICATIONS 

The Fokker-Planck/Transport Code has been applied to 

several neutra^beam-injected tokamaks, including the 

Princeton Large Torus (PLT), the Poloidal Divertor Experiment 

(PDX), the Tokamak Fusion Test Reactor (TFTR) and the Divertor 

Injection Tokamak Experiment (DITE) [27-30,42]. We briefly 

highlight principal results of our applications to PLT and TFTR. 
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3.1 Applications to PLT 

The Princeton Large Torus (PLT) has achieved 

record-setting temperatures. At high beam powers (e.g. 2.3 
13 -3 

HW) and low plasma densities (e.g. n (0) = 5.5x10 cm ) , ion 

temperatures as high as 5.5 keV are reported [43]. Moreover, 

the fractional hot ion density on axis i s measured to be up to 

30 percent, and theoretical analyses indicate that at low 

density, the majority of the fusion neutrons result from 

either beam-beam or beam-target reactions [30]. 

Realizing that the energetic ions p]ay a very important 

role and that i t is crucial to model their time-evolution as 

rea l i s t ica l ly as possible, we proceed to analyze PLT with the 

FPT Code. A brief summary of PLT parameters is given in Table 

I . 

3.1.1 Steady-State Calculations 

The f i r s t set of calculations is designed to evaluate the 

treatment of the energetic ions. Using experimentally 

measured profiles of the electron density n e , the electron 

temperature T , the toroidal electric field and the impurity 

content Z-effsctive (Z-effective= l/nQ ,-L K n # and is taken 
» ions « a 

to be independent of radius and due only to carbon), and using 
estimates of the ion temperature and neutral density profiles, 
the Fokker-Planck equations for the energetic ions are 
iterated to steady state. (The bulk plasma ion density is 
continually adjusted to maintain the prescribed electron 
density and Impurity content.) The computed neutron fluxes 
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are then compared with the experimentally measured values. 

This comparison is carried out at.- peak neutron production, 

when the experiment i t se l f has reached a quasi-steady-state. 

Results are shown in Figure 1. ' ' 

We see tnat there is excellent agreement between code and 

experiment over a wide range of beam power (0,3 to 2 3 MW) and 

p^sma density (The line-averaged electron density n"e, which 

defined as 1/aJ n e ( r )d r , where "a" is the plasma minor 
° - 1 3 - 3 

/adius, ranges from 1,5 to 6.2x10 cm . ) , The principal 

uncertainties include (1) the ion temperature and neutral 

density profiles, (2) the fact that the experiment is not at 

an absolute steady s t a t e , (3) identification of the impurity, 

(4) calibration, and (5) the fact that only a limited number 

of experimental results are used. 

3.1.2 Time-Dependent Calculations 

Having established that the FPT code rea l i s t ica l ly models 

the energetic ions, we now consider time dependent modeling of 

the beam-injection phase of the experiment. For this purpese 

we make direct comparisons with August 1978 PLT shots. 

At time 0 (the time when the beams are turned on), the 
2 2 3 

density profile is assumed to vary as (1-r /a ) . Carbon and 
iron impurities are chosen with "iron 5 0- 1* "carbon a n d 

Z-effective constant in radius. The line averaged electron 
density n g is matched to the experimentally measured value. 
The electron temperature and bulk ion temperature profiles 
also vary as parabolic cubed, and the initial temperature 



-24-

values on axis Tfi(0) and T.(0) are estimated. The energetic 
ion density is of course assumed to be initially zero. 

The code is then run for 150 ms, which is the approximate 
duration of beam injection. The amount of gas puffing is 
dynamically determined to match the experimentally measured 
electron line density n g. The impurity density profiles are 
adjusted to maintain a constant Z-effective, and a recycling 
coefficient R c of 0.9 is prescribed. (The recycling 
coefficient R Q is defined as the neutral influx at the limiter 
divided by the ion outflux.) 

We take as our primary transport model D=5xl0 /n„, 
17 Kg=2,4xl0 /n e

T
er K. neoclassical and include the effects of 

the Ware Pinch, where the electron density n is in units of * e .3 cm and the electron temperature T is in keV. The code 
results at t = 150 ms are then compared with the experimental 
measurements. 

Figures 2 and 3 compare the computed neutron fluxes with 
the experimentally measured values over a wide range of 
injection power and electron line density, respectively. 
Agreement to within a factor of 1.5 is obtained. The computed 
electron temperatures on axis are significantly lower than the 
experimental values, as can be seen in Figure 4, This 
suggests that errors in the electron transport are being 
balanced by errors elsewhere in the model, to yield the 
correct neutron flux. 

We next investigate the effect of varying the transport 
model. Detailed comparisons of the electron density and 
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temperature profiles for PLT run number 88214 are shown in 
Figures 5 and 6. The computed density tends to be higher 
close to the axis and lower away from the axis, almost 
independent of transport model. Remember that the area under 
each density curve is the same, since t!ie gas puffing rate has 
been dynamically chosen to match the experimentally measured 
n a. For all of the transport models considered, the computed 
T is lower than the experimentally measured value, and the e 
experimental profile is more peaked on axis than any of the 
computed profiles. The shape and magnitude of the electron 
temperature varies considerably as the electron thermal 
conductivity K is varied. Comparisons with other 
experimental shots indicate that this trend is not uncommon. 
Thus, it ir. difficult to cite a particular transport model as 
being truly optimal. 
3.2 Applications to TFTR 

The Tokamak Fusion Test Reactor, which is currently under 
construction, is expected to come on line sometime in the 
early 1980's. It is hoped that this machine will achieve 
breakeven—that is, that the power produced from D-T fusion 
reactions will exceed the power of the injected neutral beams* 
In fact, proposals are under consideration to enhance the 
injection capability so that the ratio of output power to 
input power (denoted as Q) exceeds 2. 

Several aspects of TPTR operation have been examined 
using the FPT code. Since this work has teen presented in 
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detall elsewhere [29], we will briefly summarize our 
investigation and its principal results. 

We first compare the perpendicular injection of 120 keV 
D° beams into a tritium bulk plasma fueled by recycling and 
gas puffing with the co- and counter-injection of 100 keV D 
and 150 keV T beams, respectively, into a plasma with a very 
low recycling coefficient. At small beam powers, tiie 
injection of D° and T° neutral beams is advantageous because 
the higher temperature and increased energetic ion fusion 
reaction rate outweigh the lower density. However at large 
beam powers, the larger density with D on T combined with a 
reduced electron thermal conductivity and an increased alpha 
particle heating rate counteract the energy sink introduced by 
the cold puffed gas and recycled neutrals, thereby resulting 
in a substantially higher fusion rate. 

We also examine the effects of varying the bulk ion 
diffusion coefficient, the energetic ion diffusion 
coefficient, the ion thermal conductivity and the recycling 
coefficient. We find that Q is highly dependent on the 
particle transport, thereby making it essential that 
definitive information from present experiments on the 
magnitude of the particle diffusion coefficient at high 
temperature be obtained. 
4. CONCLUSIONS 

We have described in detail a Fokker-Planck/Transport 
Code which is applicable to tokamaks in which there is intense 
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neutral beam injection. For such scenarios, where there is a 
large energetic ion population, it is essential to represent 
these energetic species by velocity space distribution 
functions and to follow their evolution in time by integrating 
nonlinear Fokker-Planck equations. 

We have performed simulations of two large tokamaks—the 
Princeton Large Torus (PLT) and the Tokamak Fusion Test 
Reactor. Since the PLT is an active experiment, we have had 
the opportunity to make direct comparisons with the 
experimental results. We find that the computed neutron 
fluxes and the experimentally measured values agree to within 
50 percent over a wide range of beam power and plasma density. 
For the TFTR we have compared two modes of operation—the 

o injection of D beams coupled with tritium gas puffing, and 
the injection of both D° and T neutral beams. We see that 
TFTR performance depends strongly on injection power, plasma 
density (which is a function of the recycling coefficient and 
gas puffing rate), mode of injection, and the assumed 
transport model. 
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Table I 

REFERENCE PLT PARAMETERS 

Major radius 1.40 m 

Minor radius 0.40 m 

B toroidal 3.2 T 
Plasma current ~0.5 MA 

Neutral beam energy ~35 keV 

Neutral beam power Up to 3 MW 
85% full energy 
15% half energy 

Iniection angles 0°, 180° 



Figure Captions 

1 Computed neutron fluxes vs. experimentally measured 
values for steady state PLT calculations. 

2 Ratio of computed to experimental neutron flux vs. 
injection power for transient PLT calculations. 

3 Ratio of computed to experimental neutron flux vs. 
electron line density for transient PLT calculations. 

4 Computed T e vs. experimentally measured values for 
transient PLT calculations. 

5 Electron density profile vs. transport model for PLT 
run number 88214. 

6 Electron temperature profile vs. transport model for 
tLT run number 88214. 
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printery-owned ri|hu. 

Reference to a company or product'name does not imply approval or 
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Department of Energy to the exclusion of others that may be suitable. 
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Fig. 1 Computed neutron fluxes vs. experimental];' measured 
values for steady state PLT calculations, 
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Fig. 2 Ratio of computed to experimental neutron flux vs. 
injection power for transient PLT calculations. 
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3 Ratio of computed to experimental neutron flux vs. 
electron line density for transient PLT calculations. 



Computed T i = 0 ] 
Fig. 4 Computed T e vs. experimentally measured values for 

transient PLT calculations, 
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Pig. 5 Electron density profile vs. transport model for PLT 
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Fig. 6 Electron temperature profile vs, transpo . model for 
PLT run- number 8B214. 


